CN117674842A - Digital-to-analog converter and method of operating the same - Google Patents
Digital-to-analog converter and method of operating the same Download PDFInfo
- Publication number
- CN117674842A CN117674842A CN202211021421.3A CN202211021421A CN117674842A CN 117674842 A CN117674842 A CN 117674842A CN 202211021421 A CN202211021421 A CN 202211021421A CN 117674842 A CN117674842 A CN 117674842A
- Authority
- CN
- China
- Prior art keywords
- signal
- value
- current source
- random number
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0634—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
- H03M1/0656—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal
- H03M1/066—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal by continuously permuting the elements used, i.e. dynamic element matching
- H03M1/0673—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain, e.g. using intended jitter as a dither signal by continuously permuting the elements used, i.e. dynamic element matching using random selection of the elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0614—Continuously compensating for, or preventing, undesired influence of physical parameters of harmonic distortion
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
技术领域Technical field
本发明涉及一种转换器,尤其涉及一种数模转换器及其操作方法。The present invention relates to a converter, and in particular to a digital-to-analog converter and an operating method thereof.
背景技术Background technique
传统的数模转换器(Digital to Analog Converter,DAC)常见的问题在于由于内部的多个电流源所产生的电流值难免不一致的情况,而导致数模转换器所输出的模拟信号具有杂散分量干扰的影响。举例而言,假设数模转换器的多个内部电流源的至少其中一者所提供的电流值具有显著较高或较低的情况,则数模转换器在连续的(操作)周期中所依序输出的多个模拟信号的某几个信号可能会出现明显的数值异常,因此将会导致数模转换器的积分非线性度(Integral Non-Linearity,INL)以及无杂散动态范围(Spurious FreeDynamic Range,SFDR)的表现不佳。A common problem with traditional digital to analog converters (DACs) is that the current values generated by multiple internal current sources are inevitably inconsistent, resulting in spurious components in the analog signals output by the digital to analog converters. Effects of interference. For example, assuming that the current value provided by at least one of the plurality of internal current sources of the digital-to-analog converter has a significantly higher or lower value, the digital-to-analog converter relies on Some of the multiple analog signals output sequentially may have obvious numerical anomalies, which will lead to the integral non-linearity (INL) and spurious free dynamic range (Spurious FreeDynamic) of the digital-to-analog converter. Range, SFDR) perform poorly.
发明内容Contents of the invention
本发明提供一种数模转换器及其操作方法,可实现良好的数字至模拟转换功能。The invention provides a digital-to-analog converter and an operating method thereof, which can realize good digital-to-analog conversion function.
本发明实施例的数模转换器包括电流源模块、解码器、变更指示器以及随机数生成器。解码器耦接电流源模块,并且接收数字输入信号。变更指示器耦接解码器,并且提供指示信号至该解码器。随机数生成器耦接变更指示器,并且提供随机数信号至变更指示器。变更指示器根据随机数信号产生指示信号,并且解码器根据数字输入信号以及指示信号产生控制信号至电流源模块,以使电流源模块根据控制信号产生对应于数字输入信号的模拟输出信号。The digital-to-analog converter in the embodiment of the present invention includes a current source module, a decoder, a change indicator and a random number generator. The decoder is coupled to the current source module and receives the digital input signal. The change indicator is coupled to the decoder and provides an indication signal to the decoder. The random number generator is coupled to the change indicator and provides a random number signal to the change indicator. The change indicator generates an indication signal according to the random number signal, and the decoder generates a control signal to the current source module according to the digital input signal and the indication signal, so that the current source module generates an analog output signal corresponding to the digital input signal according to the control signal.
本发明实施例的数模转换器的操作方法包括以下步骤:通过随机数生成器提供随机数信号;通过变更指示器根据随机数信号产生指示信号;通过解码器接收数字输入信号以及指示信号;通过解码器根据数字输入信号以及指示信号产生控制信号至电流源模块;以及通过电流源模块根据控制信号产生对应于数字输入信号的模拟输出信号。The operating method of the digital-to-analog converter in the embodiment of the present invention includes the following steps: providing a random number signal through a random number generator; generating an indication signal according to the random number signal through a change indicator; receiving a digital input signal and an indication signal through a decoder; The decoder generates a control signal to the current source module according to the digital input signal and the indication signal; and the current source module generates an analog output signal corresponding to the digital input signal according to the control signal.
本发明的数模转换器及其操作方法可利用随机数信号产生指示信号,并通过解码器根据数字输入信号以及指示信号产生的控制信号,以使电流源模块根据控制信号所产生的模拟输出信号可具有较低的杂散分量干扰的影响。The digital-to-analog converter and its operating method of the present invention can use a random number signal to generate an indication signal, and use a decoder to generate a control signal based on the digital input signal and the indication signal, so that the current source module generates an analog output signal based on the control signal. Can have lower impact of spurious component interference.
附图说明Description of drawings
图1是本发明的一实施例的数模转换器的电路示意图;Figure 1 is a schematic circuit diagram of a digital-to-analog converter according to an embodiment of the present invention;
图2是本发明的一实施例的数模转换器的操作方法的流程图;Figure 2 is a flow chart of an operating method of a digital-to-analog converter according to an embodiment of the present invention;
图3是本发明一实施例的随机数生成器的电路示意图;Figure 3 is a schematic circuit diagram of a random number generator according to an embodiment of the present invention;
图4是本发明的一实施例的变更指示器的电路示意图;Figure 4 is a circuit schematic diagram of a change indicator according to an embodiment of the present invention;
图5是图4中随机数信号以及变更指示器所产生的输出信号的波形示意图;Figure 5 is a schematic waveform diagram of the output signal generated by the random number signal and the change indicator in Figure 4;
图6是本发明的一实施例的解码器以及电流源模块的电路示意图;Figure 6 is a schematic circuit diagram of the decoder and current source module according to an embodiment of the present invention;
图7A是本发明的一实施例的数模转换器的操作范例图;FIG. 7A is an operation example diagram of a digital-to-analog converter according to an embodiment of the present invention;
图7B是本发明的另一实施例的数模转换器的操作范例图;FIG. 7B is an operation example diagram of a digital-to-analog converter according to another embodiment of the present invention;
图8A至图8D是本发明的一实施例的控制信号的操作范例图。8A to 8D are operation example diagrams of control signals according to an embodiment of the present invention.
附图标记说明Explanation of reference signs
100:数模转换器100: Digital-to-analog converter
110:解码器110: Decoder
111:解码电路111: Decoding circuit
112:控制电路112: Control circuit
120:随机数生成器120: Random number generator
130:变更指示器130: Change indicator
131_1~131_P:D型触发器131_1~131_P: D type flip-flop
140:电流源模块140: Current source module
310-1~310-8:位移缓冲器310-1~310-8: Displacement buffer
320:逻辑门320: Logic gate
510、520:箭头510, 520: Arrow
601~603:编码数组601~603: Encoding array
610:逻辑电路610: Logic circuit
810:虚拟位810: virtual bit
Din:数字输入信号Din: digital input signal
D1~D7:位移缓冲器的输出端D1~D7: Output terminal of displacement buffer
CS:控制信号CS: control signal
CLK:频率信号CLK: frequency signal
RNS:随机数信号RNS: random number signal
SP:指示信号SP: indicator signal
Aout:模拟输出信号Aout: Analog output signal
S210~S250:步骤S210~S250: steps
CK:频率输入端CK: frequency input terminal
RE:重置端RE: Reset terminal
IN:输入端IN: input terminal
OUT:输出端OUT: output terminal
RS:重置信号RS: reset signal
EN_1~EN_P、EN_1~EN_8:输出信号EN_1~EN_P, EN_1~EN_8: output signal
T11~T14:时段T11~T14: time period
T1~T6:周期T1~T6: period
D1、D1-1、D1-2、D1’、D1”、D2、D2’、D2”、F1、F1’、F1”、F2、F2’、F2”:位位置C1_1~C1_N、C2_1~C2_N、CM_1~CM_N:电流源D1, D1-1, D1-2, D1', D1", D2, D2', D2", F1, F1', F1", F2, F2', F2": bit positions C1_1~C1_N, C2_1~C2_N, CM_1~CM_N: current source
具体实施方式Detailed ways
现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同元件符号在附图和描述中用来表示相同或相似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numbers are used in the drawings and description to refer to the same or similar parts.
图1是本发明的一实施例的数模转换器的电路示意图。参考图1,数模转换器(Digital to Analog Converter,DAC)100包括解码器110、随机数生成器120、变更指示器130以及电流源模块140。在本实施例中,解码器110耦接变更指示器130以及电流源模块140。随机数生成器120耦接变更指示器130。在本实施例中,随机数生成器120可提供随机数信号RNS至变更指示器130,以使变更指示器130可根据随机数信号RNS产生指示信号SP。应注意的是,本实施例的变更指示器130可直接传递随机数信号或通过逻辑运算提供多组简化的指示信号SP,而本发明并不限制指示信号SP的信号实现方式。解码器110可接收数字输入信号Din以及变更指示器130提供的指示信号SP,以产生对应的控制信号CS至电流源模块140。电流源模块140可根据控制信号CS产生对应的模拟输出信号Aout。在本实施例中,数字输入信号Din可例如包括对应于一进制编码(Thermal code)以及二进制编码(Binarycode)的至少其中一者的编码,但本发明并不限于此。本实施例的数模转换器100可实现一种具有随机移位的动态组件匹配(randomly-shifted Dynamic Element Matching,RS-DEM)功能的数模转换器。FIG. 1 is a schematic circuit diagram of a digital-to-analog converter according to an embodiment of the present invention. Referring to FIG. 1 , a digital to analog converter (DAC) 100 includes a decoder 110 , a random number generator 120 , a change indicator 130 and a current source module 140 . In this embodiment, the decoder 110 is coupled to the change indicator 130 and the current source module 140 . The random number generator 120 is coupled to the change indicator 130 . In this embodiment, the random number generator 120 can provide the random number signal RNS to the change indicator 130, so that the change indicator 130 can generate the indication signal SP according to the random number signal RNS. It should be noted that the change indicator 130 of this embodiment can directly transmit a random number signal or provide multiple sets of simplified indication signals SP through logical operations, and the present invention does not limit the signal implementation method of the indication signal SP. The decoder 110 can receive the digital input signal Din and the indication signal SP provided by the change indicator 130 to generate a corresponding control signal CS to the current source module 140 . The current source module 140 can generate a corresponding analog output signal Aout according to the control signal CS. In this embodiment, the digital input signal Din may, for example, include a code corresponding to at least one of a thermal code and a binary code, but the invention is not limited thereto. The digital-to-analog converter 100 of this embodiment can implement a digital-to-analog converter with a randomly-shifted dynamic element matching (RS-DEM) function.
在本实施例中,解码器110可为动态组件匹配(Dynamic Element Matching,DEM)解码器。在本实施例中,随机数生成器120可为伪随机数生成器(Pseudo Random NumberGenerator,PRNG)或其他类型的随机数生成器,并且所产生的随机数信号可例如包括伪随机数二进制数列(pseudo-random binary sequence,PRBS)。在本实施例中,电流源模块140可进一步包括依序设置的多个电流源,并且这些电流源可形成电流源数组(array),例如形成1×M的电流源数组、形成N×M的电流源数组或形成多维的电流源数组,其中M与N为正整数。并且,在本实施例中,数模转换器100可例如由二进制加权数模转换器(Binary-weighted DAC)(由二进制编码(Binary code)控制)、分段数模转换器(Segmented DAC)(由一进制编码(Thermal code)控制)或两者结合的电路架构来实现。在一实施例中,若数模转换器100是由分段数模转换器的电路架构所实现,则这些电流源所提供的多个输出电流的电流值可大致相同。In this embodiment, the decoder 110 may be a dynamic element matching (Dynamic Element Matching, DEM) decoder. In this embodiment, the random number generator 120 may be a pseudo-random number generator (Pseudo Random Number Generator, PRNG) or other types of random number generators, and the generated random number signal may, for example, include a pseudo-random number binary sequence ( pseudo-random binary sequence (PRBS). In this embodiment, the current source module 140 may further include a plurality of current sources arranged in sequence, and these current sources may form a current source array (array), for example, a 1×M current source array, an N×M current source array, or an N×M current source array. The current source array may form a multi-dimensional current source array, where M and N are positive integers. Moreover, in this embodiment, the digital-to-analog converter 100 may be, for example, a binary-weighted digital-to-analog converter (Binary-weighted DAC) (controlled by a binary code), a segmented digital-to-analog converter (Segmented DAC) ( It is implemented by a circuit architecture controlled by unary code (Thermal code) or a combination of both. In one embodiment, if the digital-to-analog converter 100 is implemented by a segmented digital-to-analog converter circuit architecture, the current values of the multiple output currents provided by these current sources may be substantially the same.
在本实施例中,解码器110可根据数字输入信号Din来决定要致能(开启)电流源模块140中的电流源致能数量,并且可根据指示信号SP来决定要致能的电流源对象。应注意的是,指示信号SP可根据依周期改变而循环地指示不同电流源对象来提供电流输出。并且,由于指示信号SP根据随机数信号RNS而产生,因此指示信号SP可具有随机性地指示变化。举例而言,在第一周期中,指示信号SP可指示第一电流源、第二电流源以及第三电流源提供电流输出。接着,在第二周期中,指示信号SP可指示第二电流源、第三电流源以及第四电流源提供电流输出。再接着,在第三周期中,指示信号SP可仍指示第二电流源、第三电流源以及第四电流源提供电流输出。换言之,其指示致能的电流源对象具有非固定的变化结果(非每次都顺移从下一个电流源开始选择,并且其具体操作方式将由以下实施例详细说明的)。如此一来,本实施例的电流源模块140可有效地输出对应于数字输入信号Din的数字值的模拟输出信号Aout,并且可具有较低的杂散分量干扰的影响,而可具有较佳的积分非线性度(Integral Non-Linearity,INL)以及无杂散动态范围(Spurious Free Dynamic Range,SFDR)的表现。In this embodiment, the decoder 110 can determine the number of current sources to be enabled (turn on) in the current source module 140 according to the digital input signal Din, and can determine the current source object to be enabled according to the indication signal SP. . It should be noted that the indication signal SP can cyclically instruct different current source objects to provide current output according to periodic changes. Furthermore, since the indication signal SP is generated according to the random number signal RNS, the indication signal SP can indicate changes with randomness. For example, in the first period, the indication signal SP may instruct the first current source, the second current source and the third current source to provide current output. Then, in the second period, the indication signal SP may instruct the second current source, the third current source and the fourth current source to provide current output. Then, in the third period, the indication signal SP may still instruct the second current source, the third current source and the fourth current source to provide current output. In other words, it indicates that the enabled current source object has a non-fixed change result (the selection does not start from the next current source every time, and its specific operation method will be explained in detail in the following embodiments). In this way, the current source module 140 of this embodiment can effectively output the analog output signal Aout corresponding to the digital value of the digital input signal Din, and can have lower influence of spurious component interference, and can have better Integral Non-Linearity (INL) and Spurious Free Dynamic Range (SFDR) performance.
图2是本发明的一实施例的数模转换器的操作方法的流程图。参考图1以及图2,数模转换器100可例如执行如以下步骤S210~S250。在本实施例中,数模转换器100可在一(操作)周期中接收数字输入信号Din。在步骤S210,数模转换器100可通过随机数生成器120提供随机数信号RNS。在本实施例中,随机数信号RNS可例如由分别对应于不同周期的随机发生的脉冲波形所组成,其中例如发生脉冲波形则代表数值“1”,并且未发生脉冲波形则代表数值“0”。FIG. 2 is a flow chart of an operating method of a digital-to-analog converter according to an embodiment of the present invention. Referring to FIG. 1 and FIG. 2 , the digital-to-analog converter 100 may, for example, perform the following steps S210 to S250. In this embodiment, the digital-to-analog converter 100 may receive the digital input signal Din in one (operation) cycle. In step S210, the digital-to-analog converter 100 may provide a random number signal RNS through the random number generator 120. In this embodiment, the random number signal RNS may, for example, be composed of randomly occurring pulse waveforms respectively corresponding to different periods, wherein, for example, the occurrence of a pulse waveform represents the value "1", and the non-occurrence of the pulse waveform represents the value "0" .
在步骤S220,数模转换器100可通过变更指示器130根据随机数信号RNS产生指示信号SP。在本实施例中,变更指示器130可根据随机数信号RNS决定指示信号SP的选择起始数值是否维持与前一周期的选择起始数值相同,或与前一周期的选择起始数值不同。在本实施例中,随机数信号RNS可为1位信号。当变更指示器130根据随机数信号RNS决定指示信号SP的选择起始数值与前一周期的选择起始数值不同时(随机数信号RNS在此周期例如具有数值“1”),变更指示器130选择起始数值为前一周期的选择起始数值加1的结果。当变更指示器130根据随机数信号RNS决定指示信号SP的选择起始数值与前一周期的选择起始维持(keep)数值相同时(随机数信号RNS在此周期例如具有数值“0”),变更指示器130选择起始数值为前一周期的选择起始数值。应注意的是,变更指示器130可直接实现上述流程,也可搭配反相器、延迟电路或其他相关电路来同时产生多组不同的随机数变化的指示信号SP。In step S220 , the digital-to-analog converter 100 may generate the indication signal SP according to the random number signal RNS through the change indicator 130 . In this embodiment, the change indicator 130 can determine whether the selection starting value of the indication signal SP remains the same as the selection starting value of the previous cycle or is different from the selection starting value of the previous cycle according to the random number signal RNS. In this embodiment, the random number signal RNS may be a 1-bit signal. When the change indicator 130 determines according to the random number signal RNS that the selection starting value of the indication signal SP is different from the selection starting value of the previous period (the random number signal RNS has the value "1" in this period, for example), the change indicator 130 The selection starting value is the result of adding 1 to the selection starting value of the previous period. When the change indicator 130 determines according to the random number signal RNS that the selection start value of the indication signal SP is the same as the selection start keep value of the previous cycle (the random number signal RNS has the value "0" in this cycle, for example), The selection start value of the change indicator 130 is the selection start value of the previous cycle. It should be noted that the change indicator 130 can directly implement the above process, or can be used with an inverter, a delay circuit or other related circuits to simultaneously generate multiple sets of different random number change indication signals SP.
在步骤S230,数模转换器100可通过解码器110接收数字输入信号Din以及指示信号SP。在步骤S240,数模转换器100可通过解码器110根据数字输入信号Din以及指示信号SP产生控制信号CS至电流源模块140。在本实施例中,解码器110可根据数字输入信号Din的编码所对应的数值(例如是十进制数值,但本发明并不限于此数值类型)来决定电流源致能数量。另一方面,解码器110除了可从基于固定的电流源作为起始选择对象以选择到所需多个电流源的作法以外,亦可根据指示信号SP的选择起始数值来决定电流源模块140中的多个电流源的其中一者作为起始选择对象。举例来说,应用本实施例者可通过指示信号SP的选择起始数值来选择电流源模块140中的多个电流源的其中一者作为起始选择对象,并根据前述电流源致能数量而基于前述起始选择对象的电流源来依序地选择到其他电流源,以使这些被选择到的电流源被致能而提供电流输出。因此,解码器110可根据前述电流源致能数量以及前述选择起始数值来产生控制信号CS。在本实施例中,控制信号CS可例如包括多个致能信号(或开关切换信号),以用于致能(或开启)电流源模块140中的对应的多个电流源的至少其中一者。In step S230, the digital-to-analog converter 100 may receive the digital input signal Din and the indication signal SP through the decoder 110. In step S240 , the digital-to-analog converter 100 may generate the control signal CS to the current source module 140 according to the digital input signal Din and the indication signal SP through the decoder 110 . In this embodiment, the decoder 110 can determine the number of enabled current sources according to the value corresponding to the encoding of the digital input signal Din (for example, a decimal value, but the present invention is not limited to this value type). On the other hand, in addition to selecting multiple required current sources based on a fixed current source as the initial selection object, the decoder 110 can also determine the current source module 140 based on the selection starting value of the indication signal SP. One of the multiple current sources in is used as the initial selection object. For example, the user of this embodiment can select one of the multiple current sources in the current source module 140 as the initial selection object by indicating the selection starting value of the signal SP, and select the current source according to the enabling number of the current source. Based on the current source of the initial selection object, other current sources are sequentially selected, so that these selected current sources are enabled to provide current output. Therefore, the decoder 110 can generate the control signal CS according to the aforementioned current source enabling quantity and the aforementioned selection starting value. In this embodiment, the control signal CS may, for example, include a plurality of enable signals (or switch signals) for enabling (or turning on) at least one of the corresponding plurality of current sources in the current source module 140 .
在步骤S250,数模转换器100可通过电流源模块140根据控制信号CS产生对应于数字输入信号Din的模拟输出信号Aout。在本实施例中,电流源模块140中的被致能的多个电流源的至少其中一者可提供电流输出,并且电流源模块140可将这些随机被致能的电流源的电流输出进行合并(电流值相加),以产生模拟输出信号Aout(即对应于这些被致能的电流源的电流输出的电流值相加结果)。如此一来,本实施例的操作方法以及数模转换器100可产生具有较佳的积分非线性度以及无杂散动态范围的模拟输出信号Aout。In step S250 , the digital-to-analog converter 100 may generate an analog output signal Aout corresponding to the digital input signal Din according to the control signal CS through the current source module 140 . In this embodiment, at least one of the multiple enabled current sources in the current source module 140 can provide a current output, and the current source module 140 can combine the current outputs of these randomly enabled current sources. (current value addition) to generate the analog output signal Aout (ie, the current value addition result corresponding to the current output of these enabled current sources). In this way, the operating method and the digital-to-analog converter 100 of this embodiment can generate an analog output signal Aout with better integral nonlinearity and spurious-free dynamic range.
图3是本发明一实施例的随机数生成器的电路示意图。图3提供本发明实施例中随机数生成器120的一种范例,其为7位伪随机数生成器,且具备1位的输出位作为随机数信号RNS。详细来说,图3随机数生成器120包括多个位移缓冲器310-1~310-8以及逻辑门(logicgate)320。位移缓冲器310-1~310-8是以D型触发器(D-flip flop)实现,位移缓冲器310-1~310-7分别具备输出端D1~F7、时序端以及输入端。位移缓冲器310-1~310-8的时序端耦接频率信号CLK。位移缓冲器310-8的输出端产生随机数信号RNS。位移缓冲器310-1~310-7相互以串连方式排列。逻辑门320可以是XOR闸或XNOR闸,逻辑门320用以将位移缓冲器310-1~310-7中部分的位移缓冲器的输出端(图3中例如是位移缓冲器310-6~310-7的输出端D6、D7)的信号回馈传回到位移缓冲器310-1~310-7的第一级(即,位移缓冲器310-1)的输入端。“7位”伪随机数生成器是指随机数生成器120中具备7个1位的位移缓冲器来产生随机数信号RNS。对于7位伪随机数生成器而言,将会在127个周期后使得输出随机数信号RNS的信号样式重复。应用本实施例者可依其需求调整图3随机数生成器120中位移缓冲器的数量来调整其内部的位数量,例如可调整为8位、16位等的随机数生成器120。特别说明的是,本实施例随机数生成器120中位移缓冲器310-1~310-7的最末级(即,位移缓冲器310-8)所提供的随机数信号RNS为1位信号。FIG. 3 is a schematic circuit diagram of a random number generator according to an embodiment of the present invention. FIG. 3 provides an example of the random number generator 120 in the embodiment of the present invention. It is a 7-bit pseudo-random number generator and has 1 output bit as the random number signal RNS. In detail, the random number generator 120 in FIG. 3 includes a plurality of shift buffers 310-1 to 310-8 and a logic gate 320. The displacement buffers 310-1 to 310-8 are implemented as D-flip flops. The displacement buffers 310-1 to 310-7 respectively have output terminals D1 to F7, a timing terminal and an input terminal. Timing terminals of the displacement buffers 310-1 to 310-8 are coupled to the frequency signal CLK. The output terminal of the displacement buffer 310-8 generates a random number signal RNS. The displacement buffers 310-1 to 310-7 are arranged in series with each other. The logic gate 320 may be an XOR gate or an The signal feedback from the output terminals D6 and D7 of -7 is transmitted back to the input terminal of the first stage of the displacement buffers 310-1 to 310-7 (ie, the displacement buffer 310-1). A "7-bit" pseudo-random number generator means that the random number generator 120 has seven 1-bit displacement buffers to generate the random number signal RNS. For a 7-bit pseudo-random number generator, the signal pattern of the output random number signal RNS will be repeated after 127 cycles. Those who apply this embodiment can adjust the number of displacement buffers in the random number generator 120 in FIG. 3 to adjust the number of internal bits according to their needs. For example, the random number generator 120 can be adjusted to 8-bit, 16-bit, etc. It is particularly noted that the random number signal RNS provided by the last stage of the displacement buffers 310-1 to 310-7 (ie, the displacement buffer 310-8) in the random number generator 120 of this embodiment is a 1-bit signal.
图4是本发明的一实施例的变更指示器130的电路示意图。参考图4,本实施例为本发明的变更指示器的一种范例实施例。在本实施例中,变更指示器130可包括依序排列的多个D型触发器131_P、131_1~131_(P-1),其中P为正整数。在本实施例中,D型触发器131_1~131_P各别的输入端IN耦接对应的前一级的D型触发器的输出端OUT。D型触发器131_1~131_P各别的频率输入端CK接收随机数信号RNS。D型触发器131_2~131_P各别的重置端RE接收重置信号RS,并且D型触发器131_1(第一级)的设定端SET接收重置信号RS。本实施例中,D型触发器131_1(第一级)的输出端OUT输出具有相应脉冲波形(可以数值“1”来表示)的输出信号EN_1。本实施例的指示信号SP是由D型触发器131_2~131_P各别输出端OUT上的输出信号EN_1~EN_P组成,且将于下述描述说明。FIG. 4 is a circuit schematic diagram of the change indicator 130 according to an embodiment of the present invention. Referring to FIG. 4 , this embodiment is an exemplary embodiment of the change indicator of the present invention. In this embodiment, the change indicator 130 may include a plurality of D-type flip-flops 131_P, 131_1˜131_(P-1) arranged in sequence, where P is a positive integer. In this embodiment, the respective input terminals IN of the D-type flip-flops 131_1˜131_P are coupled to the corresponding output terminal OUT of the D-type flip-flop of the previous stage. The respective frequency input terminals CK of the D-type flip-flops 131_1 to 131_P receive the random number signal RNS. The respective reset terminals RE of the D-type flip-flops 131_2 to 131_P receive the reset signal RS, and the setting terminal SET of the D-type flip-flop 131_1 (first stage) receives the reset signal RS. In this embodiment, the output terminal OUT of the D-type flip-flop 131_1 (first stage) outputs an output signal EN_1 with a corresponding pulse waveform (which can be represented by the value "1"). The indication signal SP in this embodiment is composed of the output signals EN_1˜EN_P on the respective output terminals OUT of the D-type flip-flops 131_2˜131_P, and will be described below.
D型触发器131_1~131_P的输出信号EN_1~EN_P可依序排列而组成指示信号SP,并且以具有相应脉冲波形(可以数值“1”来表示)的输出信号所对应的级数来决定指示信号SP的选择起始数值。换句话说,本实施例的指示信号SP是由输出信号EN_1~EN_P组成,亦即,指示信号SP=[EN_P,EN_(P-1),…,EN_1]。The output signals EN_1 ~ EN_P of the D-type flip-flops 131_1 ~ 131_P can be arranged in sequence to form the indication signal SP, and the indication signal is determined by the level corresponding to the output signal with the corresponding pulse waveform (which can be represented by the value "1") The selection starting value of SP. In other words, the indication signal SP in this embodiment is composed of the output signals EN_1˜EN_P, that is, the indication signal SP=[EN_P, EN_(P-1),..., EN_1].
在本实施例中,D型触发器131_1~131_P的数量可对应于电流源的数量。例如,对于1×M的电流源数组来说,P等于M。又例如,对于N×M的电流源数组来说,N×M的电流源数组可分两组做二维控制,其中一组P等于N并搭配内部电路控制N行的移位行为,并且另一组P等于M并搭配内部电路控制M列的移位行为。甚至,D型触发器131_1~131_P还可应用于更多维度(例如3维以上)的电流源数组。In this embodiment, the number of D-type flip-flops 131_1˜131_P may correspond to the number of current sources. For example, for a 1×M array of current sources, P equals M. For another example, for an N×M current source array, the N×M current source array can be divided into two groups for two-dimensional control. One group P equals N and is equipped with an internal circuit to control the shifting behavior of N rows, and the other group A set of P is equal to M and is matched with an internal circuit to control the shifting behavior of M columns. Even, the D-type flip-flops 131_1 to 131_P can be applied to current source arrays with more dimensions (eg, more than 3 dimensions).
举例而言,当变更指示器130开始运作时,在第一周期中,重置信号RS可例如具有启动脉冲(可以数值“1”来表示),并且D型触发器131_1的输出端可输出具有相应脉冲波形(可以数值“1”来表示)的输出信号EN_1,其中D型触发器131_2~131_P的输出信号EN_2~EN_P无脉冲波形(可以数值“0”来表示)。换句话说,在作为重置阶段或是初始阶段的第一周期,输出信号EN_1设定为数值“1”,输出信号EN_2~EN_P则设定为数值“0”。因此,在第一周期中,指示信号SP可具有对应于数值“000000…001”的信号波形,并且对应的十进制数值为“1”(本发明的指示信号SP的数值类型不限于此)。For example, when the change indicator 130 starts to operate, in the first period, the reset signal RS may have a start pulse (which may be represented by a value of “1”), and the output end of the D-type flip-flop 131_1 may output a The output signal EN_1 of the corresponding pulse waveform (which can be represented by the value "1"), among which the output signals EN_2 ~ EN_P of the D-type flip-flops 131_2 ~ 131_P have no pulse waveform (which can be represented by the value "0"). In other words, in the first period which is the reset phase or the initial phase, the output signal EN_1 is set to the value "1", and the output signals EN_2 to EN_P are set to the value "0". Therefore, in the first cycle, the indication signal SP may have a signal waveform corresponding to the value "000000...001", and the corresponding decimal value is "1" (the value type of the indication signal SP of the present invention is not limited to this).
在第二周期中,若D型触发器131_2的输出端接收到前一级的D型触发器131_1的输出信号EN_1(可以数值“1”来表示),并且随机数信号RNS可例如具有脉冲波形(可以数值“1”来表示),则D型触发器131_2的输出端可输出具有相应脉冲波形(可以数值“1”来表示)的输出信号EN_2,其中D型触发器131_1、131_3~131_P的输出信号EN_1、EN_3~EN_P无脉冲波形(可以数值“0”来表示)。因此,在第二周期中,指示信号SP可具有对应于数值“000000…010”的信号波形,并且对应的十进制数值为“2”。In the second cycle, if the output terminal of the D-type flip-flop 131_2 receives the output signal EN_1 of the previous stage D-type flip-flop 131_1 (which can be represented by the value "1"), and the random number signal RNS can, for example, have a pulse waveform (can be represented by the value "1"), then the output terminal of the D-type flip-flop 131_2 can output an output signal EN_2 with a corresponding pulse waveform (can be represented by the value "1"), where the D-type flip-flops 131_1, 131_3~131_P The output signals EN_1, EN_3~EN_P have no pulse waveform (can be represented by the value "0"). Therefore, in the second period, the indication signal SP may have a signal waveform corresponding to the value "000000...010", and the corresponding decimal value is "2".
反之,在第二周期中,若D型触发器131_2的输出端接收到前一级的D型触发器131_1的输出信号EN_1(可以数值“1”来表示),并且随机数信号RNS可例如不具有脉冲波形(可以数值“0”来表示),则D型触发器131_1的输出端可维持输出具有相应脉冲波形(可以数值“1”来表示)的输出信号EN_1,其中D型触发器131_2~131_P的输出信号EN_2~EN_P无脉冲波形(可以数值“0”来表示)。因此,在第二周期中,指示信号SP可维持前周期对应于数值“000000…001”的信号波形,并且对应的十进制数值为“1”。以此类推,若输出信号EN_3发生具有相应脉冲波形(可以数值“1”来表示)的情况,则当前指示信号SP所指示的选择起始数值为“3”(十进制)。On the contrary, in the second cycle, if the output terminal of the D-type flip-flop 131_2 receives the output signal EN_1 of the previous stage D-type flip-flop 131_1 (which can be represented by the value "1"), and the random number signal RNS can, for example, not has a pulse waveform (can be represented by a value of "0"), then the output end of the D-type flip-flop 131_1 can maintain the output signal EN_1 with a corresponding pulse waveform (can be represented by a value of "1"), wherein the D-type flip-flop 131_2~ The output signals EN_2~EN_P of 131_P have no pulse waveform (can be represented by the value "0"). Therefore, in the second period, the indication signal SP can maintain the signal waveform corresponding to the value "000000...001" in the previous period, and the corresponding decimal value is "1". By analogy, if the output signal EN_3 has a corresponding pulse waveform (which can be represented by the value "1"), then the selection starting value indicated by the current indication signal SP is "3" (decimal system).
图5是图4中随机数信号RNS以及变更指示器130所产生的输出信号EN_1~EN_8的波形示意图。在此假设图4中的P为”8”,图4变更指示器130便包括依序排列的多个D型触发器131_1~131_8,且图5呈现随机数信号RNS以及D型触发器131_1~131_8的输出信号EN_1~EN_8,以更清楚说明本实施例。当随机数信号RNS的数值为”0”时,前一级正位于致能状态的输出信号EN_1~EN_8其中一者将会于下一时段继续地位于致能状态。例如,请参考图5时段T11与T12或是时段T13与T14。于时段T11中,输出信号EN_7为位于致能状态且此时随机数信号RNS的数值为”1”。接着,因为时段T12中随机数信号RNS的数值变为”0”,时段T11中位于致能状态的输出信号EN_7将会在时段T12中继续位于致能状态,如箭头510所示。相似地,时段T13与T14中,因为时段T13中随机数信号RNS的数值从”1”变为”0”,时段T13中正位于致能状态的输出信号EN_4将会在时段T14中继续位于致能状态,如箭头520所示。FIG. 5 is a schematic waveform diagram of the random number signal RNS and the output signals EN_1˜EN_8 generated by the change indicator 130 in FIG. 4 . Assume that P in FIG. 4 is “8”, the change indicator 130 in FIG. 4 includes a plurality of D-type flip-flops 131_1˜131_8 arranged in sequence, and FIG. 5 shows the random number signal RNS and the D-type flip-flops 131_1˜131_8. The output signals EN_1~EN_8 of 131_8 are used to explain this embodiment more clearly. When the value of the random number signal RNS is "0", one of the output signals EN_1 to EN_8 of the previous stage that is in the enabled state will continue to be in the enabled state in the next period. For example, please refer to the time periods T11 and T12 or the time periods T13 and T14 in FIG. 5 . In the period T11, the output signal EN_7 is in the enabled state and the value of the random number signal RNS is "1". Then, because the value of the random number signal RNS becomes "0" in the period T12, the output signal EN_7 in the enabled state in the period T11 will continue to be in the enabled state in the period T12, as shown by arrow 510. Similarly, in periods T13 and T14, because the value of the random number signal RNS changes from "1" to "0" in period T13, the output signal EN_4 that is in the enabled state in period T13 will continue to be in the enabled state in period T14. status, as indicated by arrow 520.
图6是本发明的一实施例的解码器以及电流源模块的电路示意图。参考图1以及图6,图1的解码器110以及电流源模块140可实现如图6所示电路架构,但本发明并不限于此。在本实施例中,解码器110可包括解码电路111以及控制电路112。电流源模块140可包括二维架构的多个电流源C1_1~CM_N(即N×M的电流源数组)。电流源C1_1~CM_N耦接相同电压VDD。解码电路111可用于接收数字输入信号Din,并且对数字输入信号Din进行译码。举例而言,数字输入信号Din可例如是二进制编码,并且经由解码电路111译码后可例如产生对应于一进制编码的多个数值的多个译码信号,并提供至控制电路112。控制电路112可接收所述多个译码信号以及指示信号SP来决定产生控制信号CS。应注意的是,控制信号CS可例如包括多个致能信号,并且这些致能信号用于分别操作电流源C1_1~CM_N是否开启以提供电流,并且被开启的电流源的电流经加总后即产生模拟输出信号Aout。FIG. 6 is a schematic circuit diagram of a decoder and a current source module according to an embodiment of the present invention. Referring to FIG. 1 and FIG. 6 , the decoder 110 and the current source module 140 of FIG. 1 can implement the circuit architecture shown in FIG. 6 , but the present invention is not limited thereto. In this embodiment, the decoder 110 may include a decoding circuit 111 and a control circuit 112. The current source module 140 may include a plurality of current sources C1_1˜CM_N in a two-dimensional architecture (ie, an N×M current source array). The current sources C1_1˜CM_N are coupled to the same voltage VDD. The decoding circuit 111 may be configured to receive the digital input signal Din and decode the digital input signal Din. For example, the digital input signal Din may be a binary code, and after being decoded by the decoding circuit 111 , a plurality of decoded signals corresponding to multiple values of the unary code may be generated and provided to the control circuit 112 . The control circuit 112 may receive the plurality of decoding signals and the indication signal SP to determine to generate the control signal CS. It should be noted that the control signal CS may, for example, include multiple enable signals, and these enable signals are used to respectively operate whether the current sources C1_1 to CM_N are turned on to provide current, and the currents of the turned on current sources are summed. Generates an analog output signal Aout.
应注意的是,本实施例的电流源模块140是以由一进制编码(Thermal code)控制的分段数模转换器为例,因此每一群组的电流源具有相同数量N的电流值。即,电流源C1_1~C1_N的数量与电流值总量皆相同于电流源C2_1~C2_N的数量与电流值总量。然而,在一实施例中,电流源模块140也可以由二进制编码(Binary code)控制的二进制加权数模转换器来实现,因此每一群组的电流源可具备不同的电流值,或是,在每个电流源皆产生相同电流值的情况下,每一群组的电流源可具备不同的数量。例如,在每个电流源皆产生相同电流值的情况下,第一组电流源可包括8个电流源C1_1~C1_8。第二组电流源可包括4个电流源C2_1~C2_4(因8×(1/2)=4)。第三组电流源可包括2个电流源C3_1~C3_2(因8×(1/2)^2=2)。第四组电流源可包括1个电流源C4_1(因8×(1/2)^3=1)。前述每组电流源的差异是因应用本实施例者通过其他编码进行控制,从而适应性地调整每组电流源所产生的电流值,例如,除了前述以由一进制编码进行控制以外,还可利用二进制编码进行控制。It should be noted that the current source module 140 of this embodiment is an example of a segmented digital-to-analog converter controlled by a thermal code, so the current sources in each group have the same number N of current values. . That is, the number and the total current value of the current sources C1_1˜C1_N are the same as the number and the total current value of the current sources C2_1˜C2_N. However, in one embodiment, the current source module 140 can also be implemented by a binary weighted digital-to-analog converter controlled by a binary code, so that the current sources of each group can have different current values, or, In the case where each current source produces the same current value, each group of current sources can have a different number. For example, in the case where each current source generates the same current value, the first group of current sources may include eight current sources C1_1˜C1_8. The second group of current sources may include four current sources C2_1˜C2_4 (because 8×(1/2)=4). The third group of current sources may include two current sources C3_1˜C3_2 (because 8×(1/2)^2=2). The fourth group of current sources may include 1 current source C4_1 (because 8×(1/2)^3=1). The aforementioned difference between each group of current sources is due to the fact that the user of this embodiment controls through other codes to adaptively adjust the current value generated by each group of current sources. For example, in addition to the aforementioned control by unary codes, there are also Can be controlled using binary coding.
图7A是本发明的一实施例的数模转换器的操作范例图。参考图1、图6以及图7A,本实施例以N为”1”且M为”8”的1×8的电流源数组为范例。电流源模块140可例如包括如图6所示的电流源C1_1、C2_1~CM_1(即,图6中N为”1”且M为”8”所对应的电流源),并且电流源C1_1、C2_1~C8_1的每一个可例如用于提供电流值I的电流输出。换句话说,图6中CM_1在M为8的情况下即是C8_1。先说明的是,本实施例的电流值I仅用于说明电流相加结果,而非实际电流源的输出结果,实际各电流源所提供的电流值可具有些微差异。FIG. 7A is an operation example diagram of a digital-to-analog converter according to an embodiment of the present invention. Referring to FIG. 1 , FIG. 6 and FIG. 7A , this embodiment takes a 1×8 current source array in which N is “1” and M is “8” as an example. The current source module 140 may, for example, include current sources C1_1, C2_1˜CM_1 as shown in FIG. 6 (that is, the current source corresponding to N is “1” and M is “8” in FIG. 6), and the current sources C1_1, C2_1 Each of ~C8_1 may, for example, be used to provide a current output of current value I. In other words, CM_1 in Figure 6 is C8_1 when M is 8. It should be noted that the current value I in this embodiment is only used to illustrate the current addition result, rather than the output result of the actual current source. The actual current values provided by each current source may have slight differences.
如图7A所示,在周期T1的期间,假设随机数生成器120提供数值为“0”的随机数信号RNS至变更指示器130,并且变更指示器130可产生对应于数值(选择起始数值)为“3”(十进制)的指示信号SP。当解码器110接收到数值为“011”的编码(以Binary code的编码为例)的数字输入信号Din时,解码器110的解码电路111可对数字输入信号Din进行译码,以产生相应的译码信号。由于数字输入信号Din的编码所对应的十进制数值为“3”,因此电流源致能数量为3个。并且,由于指示信号SP的数值为“3”,因此解码器110的控制电路112可决定从第3个电流源(例如电流源C3_1)开始选择3个电流源(例如电流源C3_1、C4_1、C5_1)来致能,而产生如图7A所示在周期T1的期间的编码为“00111000”的控制信号CS。由于对应于控制信号CS的第3~5个位位置的数值为“1”,因此代表第3~5个电流源(例如电流源C3_1、C4_1、C5_1)将被致能而提供电流输出。对此,模拟输出信号Aout在周期T1的期间可例如具有3×I的电流值。As shown in FIG. 7A , during the period T1 , it is assumed that the random number generator 120 provides a random number signal RNS with a value of “0” to the change indicator 130 , and the change indicator 130 can generate a value corresponding to the value (select the starting value). ) is the indication signal SP of "3" (decimal system). When the decoder 110 receives the digital input signal Din with a code of “011” (taking Binary code as an example), the decoding circuit 111 of the decoder 110 can decode the digital input signal Din to generate a corresponding Decode the signal. Since the decimal value corresponding to the encoding of the digital input signal Din is "3", the number of enabled current sources is 3. Moreover, since the value of the indication signal SP is "3", the control circuit 112 of the decoder 110 can decide to select three current sources (for example, current sources C3_1, C4_1, C5_1) starting from the third current source (for example, current source C3_1). ) to enable, and generate a control signal CS coded as “00111000” during the period T1 as shown in FIG. 7A . Since the values corresponding to the 3rd to 5th bit positions of the control signal CS are "1", it means that the 3rd to 5th current sources (eg, current sources C3_1, C4_1, C5_1) will be enabled to provide current output. In this regard, the analog output signal Aout may, for example, have a current value of 3×I during the period T1.
在周期T2的期间,假设随机数生成器120提供数值为“1”的随机数信号RNS至变更指示器130,并且变更指示器130可产生对应于数值(选择起始数值)为“4”(十进制)的指示信号SP(选择起始数值为前一周期的选择起始数值加1的结果)。当解码器110仍接收到数值为“011”的编码的数字输入信号Din时,解码器110的解码电路111可对数字输入信号Din进行译码,以产生相应的译码信号。然而,数字输入信号Din的编码所对应的十进制数值仍为“3”,因此电流源致能数量为3个。并且,由于指示信号SP的数值为“4”(移位“3”至“4”),因此解码器110的控制电路112可决定从第4个电流源(例如电流源C4_1)开始选择3个电流源(例如电流源C4_1、C5_1、C6_1)来致能,而产生如图7A所示在周期T2的期间的编码为“00011100”的控制信号CS。对此,对应于控制信号CS的第4~6个位位置的数值为“1”,因此代表第4~6个电流源(例如电流源C4_1、C5_1、C6_1)将被致能而提供电流输出。对此,模拟输出信号Aout在周期T2的期间可例如具有3×I的电流值During the period T2, it is assumed that the random number generator 120 provides the random number signal RNS with a value of "1" to the change indicator 130, and the change indicator 130 can generate a value corresponding to the value (selection starting value) of "4" ( decimal) indication signal SP (the selection starting value is the result of adding 1 to the selection starting value of the previous cycle). When the decoder 110 still receives the encoded digital input signal Din with a value of “011”, the decoding circuit 111 of the decoder 110 may decode the digital input signal Din to generate a corresponding decoded signal. However, the decimal value corresponding to the encoding of the digital input signal Din is still "3", so the number of enabled current sources is three. Furthermore, since the value of the indication signal SP is “4” (shifted from “3” to “4”), the control circuit 112 of the decoder 110 can decide to select three current sources starting from the fourth one (for example, the current source C4_1). Current sources (such as current sources C4_1, C5_1, C6_1) are enabled to generate a control signal CS coded as “00011100” during the period T2 as shown in FIG. 7A. In this regard, the value corresponding to the 4th to 6th bit positions of the control signal CS is "1", thus indicating that the 4th to 6th current sources (such as current sources C4_1, C5_1, C6_1) will be enabled to provide current output. . In this regard, the analog output signal Aout may, for example, have a current value of 3×I during the period T2
在周期T3的期间,假设随机数生成器120提供数值为“0”的随机数信号RNS至变更指示器130,并且变更指示器130可产生对应于数值(选择起始数值)为“4”(十进制)的指示信号SP(选择起始数值与前一周期的选择起始维持(keep)数值相同)。当解码器110仍接收到数值为“011”的编码的数字输入信号Din时,解码器110的解码电路111可对数字输入信号Din进行译码,以产生相应的译码信号。然而,数字输入信号Din的编码所对应的十进制数值仍为“3”,因此电流源致能数量为3个。由于指示信号SP的数值为“4”(未移位),解码器110的控制电路112维持从第4个电流源(例如电流源C4_1)开始选择3个电流源(例如电流源C4_1、C5_1、C6_1)来致能,而产生如图7A所示在周期T3的期间的编码为“00011100”的控制信号CS。对此,对应于控制信号CS的第4~6个位位置的数值为“1”,因此代表第4~6个电流源(例如电流源C4_1、C5_1、C6_1)将被致能而提供电流输出。对此,模拟输出信号Aout在周期T3的期间可例如具有3×I的电流值During the period T3, it is assumed that the random number generator 120 provides the random number signal RNS with a value of "0" to the change indicator 130, and the change indicator 130 can generate a value corresponding to the value (selected starting value) of "4" ( decimal) indication signal SP (the selection start value is the same as the selection start maintenance (keep) value of the previous cycle). When the decoder 110 still receives the encoded digital input signal Din with the value “011”, the decoding circuit 111 of the decoder 110 may decode the digital input signal Din to generate a corresponding decoded signal. However, the decimal value corresponding to the encoding of the digital input signal Din is still "3", so the number of enabled current sources is three. Since the value of the indication signal SP is “4” (not shifted), the control circuit 112 of the decoder 110 continues to select three current sources (for example, current sources C4_1, C5_1, C5_1, C6_1) is enabled to generate a control signal CS coded as “00011100” during the period T3 as shown in FIG. 7A. In this regard, the value corresponding to the 4th to 6th bit positions of the control signal CS is "1", thus indicating that the 4th to 6th current sources (such as current sources C4_1, C5_1, C6_1) will be enabled to provide current output. . In this regard, the analog output signal Aout may, for example, have a current value of 3×I during the period T3
以此类推,在周期T4的期间,指示信号SP的数值为“4”(未移位)。解码器110的控制电路112可决定从第4个电流源(例如电流源C4_1)开始选择3个电流源(例如电流源C4_1、C5_1、C6_1)来致能,而产生如图7A所示在周期T4的期间的编码为“00011100”的控制信号CS。对应于控制信号CS的第4~6个位位置的数值为“1”,因此代表第4~6个电流源(例如电流源C4_1、C5_1、C6_1)将被致能而提供电流输出。对此,模拟输出信号Aout在周期T4的期间可例如具有3×I的电流值。By analogy, during the period T4, the value of the indication signal SP is "4" (not shifted). The control circuit 112 of the decoder 110 may decide to select three current sources (for example, current sources C4_1, C5_1, C6_1) starting from the fourth current source (for example, current source C4_1) to enable, resulting in a cycle as shown in FIG. 7A The period of T4 is coded as the control signal CS of “00011100”. The value corresponding to the 4th to 6th bit positions of the control signal CS is "1", thus representing that the 4th to 6th current sources (eg, current sources C4_1, C5_1, C6_1) will be enabled to provide current output. In this regard, the analog output signal Aout may, for example, have a current value of 3×I during the period T4.
以此类推,在周期T5的期间,指示信号SP的数值为“5”(移位“4”至“5”)。解码器110的控制电路112可决定从第5个电流源(例如电流源C5_1)开始选择3个电流源(例如电流源C5_1、C6_1、C7_1)来致能,而产生如图7A所示在周期T5的期间的编码为“00001110”的控制信号CS。对此,对应于控制信号CS的第5~7个位位置的数值为“1”,因此代表第5~7个电流源(例如电流源C5_1、C6_1、C7_1)将被致能而提供电流输出。对此,模拟输出信号Aout在周期T5的期间可例如具有3×I的电流值。By analogy, during the period T5, the value of the indication signal SP is "5" (shifted from "4" to "5"). The control circuit 112 of the decoder 110 may decide to select three current sources (for example, current sources C5_1, C6_1, C7_1) starting from the fifth current source (for example, current source C5_1) to enable, resulting in a cycle as shown in FIG. 7A The period of T5 is coded as the control signal CS of “00001110”. In this regard, the value corresponding to the 5th to 7th bit position of the control signal CS is "1", thus indicating that the 5th to 7th current sources (such as current sources C5_1, C6_1, C7_1) will be enabled to provide current output. . In this regard, the analog output signal Aout may, for example, have a current value of 3×I during the period T5.
以此类推,在周期T6的期间,指示信号SP的数值为“6”(移位“5”至“6”)。解码器110的控制电路112可决定从第6个电流源(例如电流源C6_1)开始选择3个电流源(例如电流源C6_1、C7_1、C8_1)来致能,而产生如图7A所示在周期T6的期间的编码为“00000111”的控制信号CS。对此,对应于控制信号CS的第6~8个位位置的数值为“1”,因此代表第6~8个电流源(例如电流源C6_1、C7_1、C8_1)将被致能而提供电流输出。对此,模拟输出信号Aout在周期T6的期间可例如具有3×I的电流值。By analogy, during the period T6, the value of the indication signal SP is "6" (shifted from "5" to "6"). The control circuit 112 of the decoder 110 can decide to select three current sources (for example, current sources C6_1, C7_1, C8_1) starting from the sixth current source (for example, current source C6_1) to enable, resulting in a cycle as shown in FIG. 7A The period of T6 is coded as the control signal CS of “00000111”. In this regard, the value corresponding to the 6th to 8th bit position of the control signal CS is "1", thus indicating that the 6th to 8th current sources (such as current sources C6_1, C7_1, C8_1) will be enabled to provide current output. . In this regard, the analog output signal Aout may, for example, have a current value of 3×I during the period T6.
图7B是本发明的另一实施例的数模转换器的操作范例图。参考图1、图6以及图7B,本实施例以1×8的电流源数组为范例。电流源模块140可例如包括如图6所示的电流源C1_1、C2_1~C8_1,并且电流源C1_1、C2_1~C8_1的每一个例如可用于提供电流值I的电流输出。FIG. 7B is an operation example diagram of a digital-to-analog converter according to another embodiment of the present invention. Referring to FIG. 1 , FIG. 6 and FIG. 7B , this embodiment uses a 1×8 current source array as an example. The current source module 140 may, for example, include current sources C1_1, C2_1˜C8_1 as shown in FIG. 6 , and each of the current sources C1_1, C2_1˜C8_1 may be used to provide a current output of a current value I, for example.
如图7B所示,在周期T1的期间,假设随机数生成器120提供数值为“0”的随机数信号RNS至变更指示器130,并且变更指示器130可产生对应于数值(选择起始数值)为“3”(十进制)的指示信号SP。当解码器110接收到数值为“011”的编码(以Binary code的编码为例)的数字输入信号Din时,解码器110的解码电路111可对数字输入信号Din进行译码,以产生相应的译码信号。由于数字输入信号Din的编码所对应的十进制数值为“3”,因此电流源致能数量为3个。并且,由于指示信号SP的数值为“3”,因此解码器110的控制电路112可决定从第3个电流源(例如电流源C3_1)开始选择3个电流源(例如电流源C3_1、C4_1、C5_1)来致能,而产生如图7B所示在周期T1的期间的编码为“00111000”的控制信号CS。对此,对应于控制信号CS的第3~5个位位置的数值为“1”,因此代表第3~5个电流源(例如电流源C3_1、C4_1、C5_1)将被致能而提供电流输出。对此,模拟输出信号Aout在周期T1的期间可例如具有3×I的电流值。As shown in FIG. 7B , during the period T1 , it is assumed that the random number generator 120 provides a random number signal RNS with a value of “0” to the change indicator 130 , and the change indicator 130 can generate a value corresponding to the value (select the starting value). ) is the indication signal SP of "3" (decimal system). When the decoder 110 receives the digital input signal Din with a code of “011” (taking Binary code as an example), the decoding circuit 111 of the decoder 110 can decode the digital input signal Din to generate a corresponding Decode the signal. Since the decimal value corresponding to the encoding of the digital input signal Din is "3", the number of enabled current sources is 3. Moreover, since the value of the indication signal SP is "3", the control circuit 112 of the decoder 110 can decide to select three current sources (for example, current sources C3_1, C4_1, C5_1) starting from the third current source (for example, current source C3_1). ) to enable, and generate the control signal CS coded as “00111000” during the period T1 as shown in FIG. 7B. In this regard, the value corresponding to the 3rd to 5th bit position of the control signal CS is "1", thus indicating that the 3rd to 5th current sources (such as current sources C3_1, C4_1, C5_1) will be enabled to provide current output. . In this regard, the analog output signal Aout may, for example, have a current value of 3×I during the period T1.
在周期T2的期间,假设随机数生成器120提供数值为“1”的随机数信号RNS至变更指示器130,并且变更指示器130可产生对应于数值(选择起始数值)为“4”(十进制)的指示信号SP(选择起始数值为前一周期的选择起始数值加1的结果)。当解码器110接收到数值为“101”的编码的数字输入信号Din时,解码器110的解码电路111可对数字输入信号Din进行译码,以产生相应的译码信号。然而,数字输入信号Din的编码所对应的十进制数值为“5”,因此电流源致能数量为5个。并且,由于指示信号SP的数值为“4”(移位“3”至“4”),因此解码器110的控制电路112可决定从第4个电流源(例如电流源C4_1)开始选择5个电流源(例如电流源C4_1、C5_1、C6_1、C7_1、C8_1)来致能,而产生如图7B所示在周期T2的期间的编码为“00011111”的控制信号CS。对此,对应于控制信号CS的第4~8个位位置的数值为“1”,因此代表第4~8个电流源(例如电流源C4_1、C5_1、C6_1、C7_1、C8_1)将被致能而提供电流输出。对此,模拟输出信号Aout在周期T2的期间可例如具有5×I的电流值。During the period T2, it is assumed that the random number generator 120 provides the random number signal RNS with a value of "1" to the change indicator 130, and the change indicator 130 can generate a value corresponding to the value (selection starting value) of "4" ( decimal) indication signal SP (the selection starting value is the result of adding 1 to the selection starting value of the previous cycle). When the decoder 110 receives the encoded digital input signal Din with a value of “101”, the decoding circuit 111 of the decoder 110 may decode the digital input signal Din to generate a corresponding decoded signal. However, the decimal value corresponding to the encoding of the digital input signal Din is "5", so the number of enabled current sources is 5. Moreover, since the value of the indication signal SP is "4" (shifted from "3" to "4"), the control circuit 112 of the decoder 110 can decide to select 5 starting from the 4th current source (for example, the current source C4_1). Current sources (such as current sources C4_1, C5_1, C6_1, C7_1, C8_1) are enabled to generate a control signal CS coded as “00011111” during the period T2 as shown in FIG. 7B. In this regard, the value corresponding to the 4th to 8th bit positions of the control signal CS is "1", thus indicating that the 4th to 8th current sources (such as current sources C4_1, C5_1, C6_1, C7_1, C8_1) will be enabled. And provide current output. In this regard, the analog output signal Aout may, for example, have a current value of 5×I during the period T2.
在周期T3的期间,假设随机数生成器120提供数值为“0”的随机数信号RNS至变更指示器130,并且变更指示器130可产生对应于数值(选择起始数值)为“4”(十进制)的指示信号SP(选择起始数值与前一周期的选择起始维持(keep)数值相同)。当解码器110接收到数值为“010”的编码的数字输入信号Din时,解码器110的解码电路111可对数字输入信号Din进行译码,以产生相应的译码信号。然而,数字输入信号Din的编码所对应的十进制数值为“2”,因此电流源致能数量为2个。并且,由于指示信号SP的数值为“4”(未移位),因此解码器110的控制电路112可决定从第4个电流源(例如电流源C4_1)开始选择2个电流源(例如电流源C4_1、C5_1)来致能,而产生如图7B所示在周期T3的期间的编码为“00011000”的控制信号CS。对此,对应于控制信号CS的第4~5个位位置的数值为“1”,因此代表第4~5个电流源(例如电流源C4_1、C5_1)将被致能而提供电流输出。对此,模拟输出信号Aout在周期T3的期间可例如具有2×I的电流值。During the period T3, it is assumed that the random number generator 120 provides the random number signal RNS with a value of "0" to the change indicator 130, and the change indicator 130 can generate a value corresponding to the value (selected starting value) of "4" ( decimal) indication signal SP (the selection start value is the same as the selection start maintenance (keep) value of the previous cycle). When the decoder 110 receives the encoded digital input signal Din with a value of “010”, the decoding circuit 111 of the decoder 110 may decode the digital input signal Din to generate a corresponding decoded signal. However, the decimal value corresponding to the encoding of the digital input signal Din is "2", so the number of enabled current sources is 2. Moreover, since the value of the indication signal SP is "4" (not shifted), the control circuit 112 of the decoder 110 can decide to select two current sources (such as the current source C4_1) starting from the fourth current source (such as the current source C4_1). C4_1, C5_1) to enable, and generate the control signal CS coded as “00011000” during the period T3 as shown in FIG. 7B. In this regard, the value corresponding to the 4th to 5th bit positions of the control signal CS is "1", thus representing that the 4th to 5th current sources (eg, current sources C4_1 and C5_1) will be enabled to provide current output. In this regard, the analog output signal Aout may, for example, have a current value of 2×I during the period T3.
以此类推,在周期T4的期间,指示信号SP的数值为“4”(未移位)。解码器110的控制电路112可决定从第4个电流源(例如电流源C4_1)开始选择7个电流源(例如电流源C4_1、C5_1、C6_1、C7_1、C8_1、C1_1、C2_1)来致能,而产生如图7B所示在周期T4的期间的编码为“11011111”的控制信号CS。对此,对应于控制信号CS的第1~2、4~8个位位置的数值为“1”,因此代表第1~2、4~8个电流源(例如电流源C1_1、C2_1、C4_1、C5_1、C6_1、C7_1、C8_1)将被致能而提供电流输出。对此,模拟输出信号Aout在周期T3的期间可例如具有7×I的电流值。By analogy, during the period T4, the value of the indication signal SP is "4" (not shifted). The control circuit 112 of the decoder 110 may decide to select seven current sources (for example, current sources C4_1, C5_1, C6_1, C7_1, C8_1, C1_1, C2_1) starting from the fourth current source (for example, current source C4_1) to enable, and The control signal CS coded as "11011111" during the period T4 as shown in FIG. 7B is generated. In this regard, the values corresponding to the 1st to 2nd and 4th to 8th bit positions of the control signal CS are "1", therefore representing the 1st to 2nd and 4th to 8th current sources (for example, current sources C1_1, C2_1, C4_1, C5_1, C6_1, C7_1, C8_1) will be enabled to provide current output. In this regard, the analog output signal Aout may, for example, have a current value of 7×I during the period T3.
以此类推,在周期T5的期间,指示信号SP的数值为“5”(移位“4”至“5”)。解码器110的控制电路112可决定从第5个电流源(例如电流源C5_1)开始选择7个电流源(例如电流源C5_1、C6_1、C7_1、C8_1、C1_1、C2_1、C3_1)来致能,而产生如图7B所示在周期T5的期间的编码为“11101111”的控制信号CS。对此,对应于控制信号CS的第1~3、5~8个位位置的数值为“1”,因此代表第1~3、5~8个电流源(例如电流源C1_1、C2_1、C3_1、C5_1、C6_1、C7_1、C8_1)将被致能而提供电流输出。对此,模拟输出信号Aout在周期T5的期间可例如具有7×I的电流值。By analogy, during the period T5, the value of the indication signal SP is "5" (shifted from "4" to "5"). The control circuit 112 of the decoder 110 may decide to select seven current sources (such as current sources C5_1, C6_1, C7_1, C8_1, C1_1, C2_1, C3_1) starting from the fifth current source (such as current source C5_1) to enable, and A control signal CS coded as "11101111" during the period T5 as shown in FIG. 7B is generated. In this regard, the values corresponding to the 1st to 3rd and 5th to 8th bit positions of the control signal CS are "1", therefore representing the 1st to 3rd and 5th to 8th current sources (for example, current sources C1_1, C2_1, C3_1, C5_1, C6_1, C7_1, C8_1) will be enabled to provide current output. In this regard, the analog output signal Aout may, for example, have a current value of 7×I during the period T5.
以此类推,在周期T6的期间,指示信号SP的数值为“6”(移位“5”至“6”)。解码器110的控制电路112可决定从第6个电流源(例如电流源C6_1)开始选择7个电流源(例如电流源C6_1、C7_1、C8_1、C1_1、C2_1、C3_1、C4_1)来致能,而产生如图7B所示在周期T6的期间的编码为“11110111”的控制信号CS。对此,对应于控制信号CS的第1~4、6~8个位位置的数值为“1”,因此代表第1~4、6~8个电流源(例如电流源C1_1、C2_1、C3_1、C4_1、C6_1、C7_1、C8_1)将被致能而提供电流输出。对此,模拟输出信号Aout在周期T6的期间可例如具有7×I的电流值。By analogy, during the period T6, the value of the indication signal SP is "6" (shifted from "5" to "6"). The control circuit 112 of the decoder 110 may decide to select seven current sources (for example, current sources C6_1, C7_1, C8_1, C1_1, C2_1, C3_1, C4_1) starting from the sixth current source (for example, current source C6_1) to enable, and A control signal CS coded as "11110111" during the period T6 as shown in FIG. 7B is generated. In this regard, the values corresponding to the 1st to 4th and 6th to 8th bit positions of the control signal CS are "1", therefore representing the 1st to 4th and 6th to 8th current sources (for example, current sources C1_1, C2_1, C3_1, C4_1, C6_1, C7_1, C8_1) will be enabled to provide current output. In this regard, the analog output signal Aout may, for example, have a current value of 7×I during the period T6.
本发明实施例在以前述随机移位方法下还采用虚拟动态组件匹配(Pseudo DEM;PDEM),在控制信号CS的编码中增加一虚拟位810,此虚拟位位于数字输入信号Din的编码所指位位置的前一个位,且此虚拟位810的数值维持为”0”。详细来说,从图7B的周期T5与T6可看出,就算是数字输入信号Din的编码所对应的二进制(十进制)数值为”111(7)”,控制信号CS的编码分别为“11101111”、“1110111”,也就是,控制信号CS的编码并非全部为”1”,是因为具备数值”0”的虚拟位810。如此一来,本发明实施例的控制信号CS在随机移位的情形下仍然与前一级的控制信号CS有所不同,从而使得本发明实施例不会连续出现相同的输入值,使本实施例仍然可通过动态组件匹配法以随机数变化改变开启电流源的位置,从而避免动态组件匹配法失去效用。The embodiment of the present invention also uses virtual dynamic component matching (Pseudo DEM; PDEM) under the aforementioned random shifting method, and adds a virtual bit 810 to the encoding of the control signal CS. This virtual bit is located at the encoding of the digital input signal Din. bit position, and the value of this virtual bit 810 remains "0". Specifically, it can be seen from the periods T5 and T6 in Figure 7B that even if the binary (decimal) value corresponding to the encoding of the digital input signal Din is "111(7)", the encoding of the control signal CS is "11101111" respectively. , "1110111", that is, the encoding of the control signal CS is not all "1", because it has a dummy bit 810 with a value of "0". In this way, the control signal CS of the embodiment of the present invention is still different from the control signal CS of the previous stage in the case of random shifting, so that the same input value does not appear continuously in the embodiment of the present invention, making this implementation For example, the dynamic component matching method can still be used to change the position of the current source with random number changes, thereby preventing the dynamic component matching method from losing effectiveness.
回到图1,本发明的电流源模块140可以由单维度至多维度的电流源数组来实现,其中每一维度可包括多个电流源。随机数信号RNS可包括多个数值。指示信号SP可包括多个选择起始数值。变更指示器130可根据这些数值分别决定指示信号SP的这些选择起始数值是否维持与前一周期的选择起始数值相同,或与前一周期的选择起始数值不同。解码器110可根据这些选择起始数值来分别决定电流源数组的多个维度的其中一个维度作为起始选择对象。数字输入信号Din可包括多组编码。解码器110可根据数字输入信号Din的多组编码所分别对应的数值(例如十进制数值)来决定电流源数组的多个维度分别的电流致能数量。例如,图7A与图7B为本发明一实施例中以单维度的1×8电流源数组来实现。图8A至图8D则是本发明的一实施例的控制信号的操作范例图,其以两个维度的8×8电流源数组来实现仅具备一进制编码(thermometer code)功能的数模转换器。一进制编码亦可以称为是一元码(unary code)。应用本实施例者可依其需求,将电流源数组扩展为更多维度,例如,3、4、甚至5个维度的电流源数组。Returning to FIG. 1 , the current source module 140 of the present invention can be implemented by a single-dimensional to multi-dimensional current source array, where each dimension can include multiple current sources. The random number signal RNS may include multiple values. The indication signal SP may include a plurality of selection starting values. The change indicator 130 can respectively determine based on these values whether the selected starting values of the indicating signal SP remain the same as the selected starting values of the previous cycle, or are different from the selected starting values of the previous cycle. The decoder 110 can respectively determine one of the multiple dimensions of the current source array as the starting selection object according to these selection starting values. The digital input signal Din may include multiple sets of codes. The decoder 110 can determine the number of current enablements in multiple dimensions of the current source array according to values corresponding to multiple sets of codes of the digital input signal Din (eg, decimal values). For example, FIG. 7A and FIG. 7B are implemented with a single-dimensional 1×8 current source array in an embodiment of the present invention. 8A to 8D are operation example diagrams of control signals according to an embodiment of the present invention, which uses a two-dimensional 8×8 current source array to implement digital-to-analog conversion with only a thermometer code function. device. Unary coding can also be called unary code. Users of this embodiment can expand the current source array to more dimensions according to their needs, for example, 3, 4, or even 5-dimensional current source arrays.
在图8A至图8D的本实施例中可同时参考图1以及图6,此实施例是以电流源模块140具有两个维度的电流源数组为例(即N为8且M为8的N×M(8×8)的电流源数组)。并且,先说明的是,随机数信号RNS可包括第一数值以及第二数值。指示信号SP可包括第一选择起始数值以及第二选择起始数值。变更指示器130可根据第一数值决定指示信号SP的第一选择起始数值是否维持与前一周期的第一选择起始数值相同,或与前一周期的第一选择起始数值不同。变更指示器130可根据第二数值决定指示信号SP的第二选择起始数值是否维持与前一周期的第二选择起始数值相同,或与前一周期的第二选择起始数值不同。In the embodiment of FIGS. 8A to 8D , reference may be made to FIG. 1 and FIG. 6 simultaneously. In this embodiment, the current source module 140 has a two-dimensional current source array as an example (ie, N is 8 and M is N of 8. ×M (8×8) current source array). Moreover, it should be noted that the random number signal RNS may include a first numerical value and a second numerical value. The indication signal SP may include a first selection starting value and a second selection starting value. The change indicator 130 can determine whether the first selection starting value of the indication signal SP remains the same as the first selection starting value of the previous period or is different from the first selection starting value of the previous period according to the first value. The change indicator 130 may determine whether the second selection starting value of the indication signal SP remains the same as the second selection starting value of the previous period or is different from the second selection starting value of the previous period according to the second value.
在本实施例中,解码器110可根据第一选择起始数值来决定这些电流源在第一维度上的起始选择对象,即例如选择其中一者横列(row)作为一行起始选择对象,并且解码器110可根据解码器根据第二选择起始数值来决定这些电流源在第二维度上的起始选择对象,即例如选择其中一者直行(column)作为一列起始选择对象。In this embodiment, the decoder 110 can determine the starting selection object of these current sources in the first dimension according to the first selection starting value, that is, for example, selecting one of the rows as the starting selection object of a row, And the decoder 110 can determine the initial selection object of these current sources in the second dimension according to the second selection starting value, that is, for example, select one of the rows (column) as the initial selection object of a column.
在本实施例中,数字输入信号Din可包括第一组编码以及第二组编码。解码器110可根据数字输入信号Din的第一组编码所对应的数值(例如十进制数值)以及二组编码所对应的数值(例如十进制数值)来决定这些电流源的电流致能数量。于部分实施例中,第一组编码所对应的数值(例如十进制数值)可用于控制在第一维度上这些电流源的电流致能数量,第二组编码所对应的数值(例如十进制数值)则用于控制在第二维度上这些电流源的电流致能数量。于本发明的一实施例中,也可以用其他的逻辑方式来决定这些电流源的电流致能数量,例如图8A至图8D的实施例。In this embodiment, the digital input signal Din may include a first set of codes and a second set of codes. The decoder 110 can determine the current enabling quantities of these current sources according to the values corresponding to the first set of codes (eg, decimal values) and the values corresponding to the second set of codes (eg, decimal values) of the digital input signal Din. In some embodiments, the values corresponding to the first set of codes (such as decimal values) can be used to control the current enabling quantity of these current sources in the first dimension, and the values corresponding to the second set of codes (such as decimal values) are Used to control the amount of current enable for these current sources in the second dimension. In an embodiment of the present invention, other logic methods can also be used to determine the current enabling quantities of these current sources, such as the embodiments of FIG. 8A to FIG. 8D .
本实施例使用8×8电流源数组实现,并且还可附加一个固定致能的电流源来用于调整接近电流平衡点的中间代码。例如,当32个电流源为致能而另32个电流源为禁能时,本实施例会额外具备常态性致能的电流源来避免所产生的电流恰好为中间值,从而使十进制编码能够更为靠近中心点。也就是说,当使用8×8电流源数组时,本实施例还会额外增加一个固定启用的电流源,因此会使用到65个电流源来实现8×8电流源数组,而非64个电流源。This embodiment is implemented using an 8×8 current source array, and a fixedly enabled current source can also be attached to adjust the intermediate code close to the current balance point. For example, when 32 current sources are enabled and the other 32 current sources are disabled, this embodiment will have an additional normally enabled current source to prevent the generated current from being exactly the middle value, so that the decimal encoding can be more accurate. is close to the center point. That is to say, when using an 8×8 current source array, this embodiment will also add an additional fixedly enabled current source, so 65 current sources will be used to implement the 8×8 current source array instead of 64 current sources. source.
参考图1、图6以及图8A,本实施例以8×8的电流源数组为范例。电流源模块140可例如包括如图6所示的电流源C1_1~C8_8,并且电流源C1_1~C8_8的每一个例如可用于提供电流值I的电流输出。控制信号CS可包括编码数组601的编码信息。本发明实施例可采用以下说明的逻辑方式,利用数字输入信号Din所转换的位位置的编码来选择对应的电流源。如前所述,本实施例的数字输入信号Din包括第一组编码以及第二组编码。第一组编码与第二组编码可利用二进制编码呈现。为方便说明本实施例的图8A至图8D,在此将第一组编码与第二组编码分别转换为横列(row)上位位置(如,位位置D1至F1)的十进制编码以及直行(column)上位位置(如,位位置D2至F2)的十进制编码。Referring to FIG. 1 , FIG. 6 and FIG. 8A , this embodiment takes an 8×8 current source array as an example. The current source module 140 may include, for example, current sources C1_1˜C8_8 as shown in FIG. 6 , and each of the current sources C1_1˜C8_8 may, for example, be used to provide a current output of a current value I. The control signal CS may include encoding information of the encoding array 601 . Embodiments of the present invention may use the logic method described below to select the corresponding current source by using the encoding of the bit position converted by the digital input signal Din. As mentioned above, the digital input signal Din of this embodiment includes a first set of codes and a second set of codes. The first set of codes and the second set of codes can be presented using binary codes. In order to facilitate the explanation of FIGS. 8A to 8D of this embodiment, the first set of codes and the second set of codes are converted into decimal codes and column codes at the upper position of the row (for example, bit positions D1 to F1). ) decimal encoding of the upper position (e.g., bit positions D2 to F2).
在此以图8A作为本实施例的初始情形,第一组编码与第二组编码皆为二进制编码”000”,因此无论是横列上位位置(如,位位置D1至F1)还是直行上位位置(如,位位置D2至F2)的十进制编码皆为”00000000”。第一组编码中,横列上位位置D1为最低有效位(LSB)的”0”,且横列上位位置F1为最高有效位(MSB)的”0”。第二组编码中,直行上位位置D2的首个位为最低有效位(LSB),且直行上位位置F2表示为最高有效位(MSB)。Taking Figure 8A as the initial situation of this embodiment, the first set of codes and the second set of codes are both binary codes "000", so whether it is the upper position of the row (for example, the bit positions D1 to F1) or the upper position of the straight line ( For example, the decimal codes of bit positions D2 to F2) are all "00000000". In the first set of codes, the column upper position D1 is the "0" of the least significant bit (LSB), and the column upper position F1 is the "0" of the most significant bit (MSB). In the second set of codes, the first bit of the straight upper position D2 is the least significant bit (LSB), and the straight upper position F2 is expressed as the most significant bit (MSB).
图8B中第一组编码(二进制编码”001”)被转换为十进制的”1”,因此横列上位位置(如,位位置D1、D1-1、D1-2至F1)的十进制编码为”10000000”,其中位位置D1为最低有效位(LSB)的”1”且位位置F1为最高有效位(MSB)的”0”。In Figure 8B, the first group of codes (binary code "001") is converted into decimal "1", so the decimal code of the upper position of the row (for example, bit positions D1, D1-1, D1-2 to F1) is "10000000" ”, where bit position D1 is a “1” of the least significant bit (LSB) and bit position F1 is a “0” of the most significant bit (MSB).
另一方面,图8B中第二组编码(二进制编码”011”)被转换为十进制的”3”,因此直行上位位置(如,位位置D2至F2)的十进制编码为”11100000”。位位置D2的三个位为”111”,且位位置D2的首个位为最低有效位(LSB)。位位置F2表示为最高有效位(MSB),且为”0”。On the other hand, the second group of codes (binary code "011") in Figure 8B is converted into decimal "3", so the decimal code of the straight upper position (for example, bit positions D2 to F2) is "11100000". The three bits at bit position D2 are "111", and the first bit at bit position D2 is the least significant bit (LSB). Bit position F2 represents the most significant bit (MSB) and is "0".
编码数组601中对于每一横列上位位置的编码以及每一直行上位位置的编码用来对应所选择的电流源。以图8A为例,本实施例会先行确认横列上位位置的编码,例如,依序确认位位置D1、D1-1、D1-2至F1。当横列上位位置(如,位位置D1)的编码为”1”时,表示该位位置D1相对应的直行上的所有电流源被致能(开启)。例如,图8A的位位置D1至F1皆为”0”,因此图8A编码数组601并无整个直行皆为”1”的情形。图8B编码数组601中,与位位置D1相对应的、编码数组601中第一个直行皆为”1”。The encoding of the upper position of each row and the encoding of the upper position of each row in the encoding array 601 are used to correspond to the selected current source. Taking FIG. 8A as an example, this embodiment will first confirm the encoding of the upper position of the row, for example, confirm the bit positions D1, D1-1, D1-2 to F1 in sequence. When the encoding of the upper position of the column (for example, bit position D1) is "1", it means that all current sources on the column corresponding to the bit position D1 are enabled (turned on). For example, the bit positions D1 to F1 in Figure 8A are all "0", so there is no situation where the entire row of the encoding array 601 in Figure 8A is "1". In the encoding array 601 of Figure 8B, the first row in the encoding array 601 corresponding to the bit position D1 is all "1".
另一方面,当横列上位位置(如,位位置D1-1)的编码为首次出现的”0”时,表示该位位置相对应的直行上的所有电流源会依照直行上位位置(如,位位置D2至F2)的编码来使一部分的电流源被致能(开启),另一部分的电流源未被致能(未开启)。请见图8A编码数组601与位位置D1相对应的直行,该直行所有的编码与直行上位位置(位位置D2至F2)皆同为”0”。另一方面,请见图8B编码数组601与位位置D1-1相对应的直行,该直行中前三个编码为”1”,该直行的其余编码为”0”,因此该直行的编码与位位置D2至F2的编码完全相同。当横列上位位置((如,位位置D1-2)的编码为非首次出现的”0”时,与位位置D1-2相对应的多个直行的编码皆为”0”,则表示对应的电流源未被致能(未开启)。因此,图8A编码数组601呈现出所有的电流源皆不开启,也就是图4中电流源皆为禁能;图8B编码数组601呈现8+3=11个需开启的电流源,从而开启共11组电流源。On the other hand, when the encoding of the upper position of the row (for example, bit position D1-1) is "0" that appears for the first time, it means that all current sources on the row corresponding to the bit position will follow the upper position of the row (for example, bit position D1-1). The coding of positions D2 to F2) enables part of the current sources to be enabled (turned on) and other parts of the current sources to be disabled (not turned on). Please see the row corresponding to the bit position D1 of the encoding array 601 in Figure 8A. All the codes in the row and the upper position of the row (bit positions D2 to F2) are all "0". On the other hand, please see the row corresponding to the bit position D1-1 of the encoding array 601 in Figure 8B. The first three codes in the row are "1", and the remaining codes in the row are "0". Therefore, the coding of the row is the same as The coding of bit positions D2 to F2 is identical. When the code at the upper position of the column (e.g., bit position D1-2) is "0" that does not appear for the first time, and the codes of multiple rows corresponding to bit position D1-2 are all "0", it means that the corresponding The current sources are not enabled (not turned on). Therefore, the encoding array 601 in Figure 8A shows that all current sources are not turned on, that is, the current sources in Figure 4 are all disabled; the encoding array 601 in Figure 8B shows 8+3= 11 current sources need to be turned on, thus turning on a total of 11 groups of current sources.
本发明实施例便是利用前述逻辑方式来利用数字输入信号Din所转换的位位置的编码来选择对应的电流源。应用本实施例可选择性地判断横列上位位置((如,位位置D1、D1-1、D1-2)的编码为首次、或第二次、或第X次出现的”0”而对应的直行的编码来与位位置D2至F2的编码完全相同,从而实现本发明实施例,而不仅限前述逻辑方式。The embodiment of the present invention uses the aforementioned logic method to select the corresponding current source using the encoding of the bit position converted by the digital input signal Din. This embodiment can be used to selectively determine whether the encoding of the upper position of the row (e.g., bit position D1, D1-1, D1-2) is the first, second, or Xth occurrence of "0". The coding of the straight row is exactly the same as the coding of the bit positions D2 to F2, so as to realize the embodiment of the present invention, and is not limited to the foregoing logical method.
回到本实施例,如图8B所示,在第一周期中,假设随机数生成器120提供具有第一数值为“0”以及第二数值为“0”的随机数信号RNS至变更指示器130,并且变更指示器130可产生对应于数值(第一选择起始数值)为“1”(十进制)以及对应于数值(第二选择起始数值)为“1”(十进制)的指示信号SP。如前所述,当解码器110接收到具有数值为“001”的第一组编码(以二进制编码为例)以及数值为“011”的第二组编码(以二进制编码为例)的数字输入信号Din时,解码器110的解码电路111可对数字输入信号Din进行译码,以产生相应的译码信号。由于需致能的总电流源个数为8+3=11个,如此一来,数字输入信号Din的第一组编码所对应的十进制数值为“1”以表示一行8个一组电流源的开启,并且数字输入信号Din的第二组编码所对应的十进制数值为“3”以表示负责3组电流源的开启。并且,由于指示信号SP的数值为“1”(第一选择起始数值)以及“1”(第二选择起始数值),因此解码器110可决定将第1行中第1-8列的全部8组电流源(例如电流源C1_1~C1_8)致能,并且决定将第2行中第1-3列的电流源致能,亦即,从第2行中第1个电流源开始选择3个电流源(例如电流源C2_1~C2_3)来致能,而产生如图8B所示在第一周期的期间内对应于编码数组601的控制信号CS。Returning to this embodiment, as shown in FIG. 8B , in the first cycle, it is assumed that the random number generator 120 provides a random number signal RNS with a first value of “0” and a second value of “0” to the change indicator. 130, and the change indicator 130 may generate an indication signal SP corresponding to the value (the first selection starting value) being "1" (decimal) and corresponding to the value (the second selection starting value) being "1" (decimal). . As mentioned above, when the decoder 110 receives a digital input having a first set of codes with a value of "001" (taking a binary code as an example) and a second set of codes with a value of "011" (taking a binary code as an example) When the signal Din is received, the decoding circuit 111 of the decoder 110 may decode the digital input signal Din to generate a corresponding decoded signal. Since the total number of current sources that need to be enabled is 8+3=11, the decimal value corresponding to the first group of codes of the digital input signal Din is "1" to represent a group of 8 current sources in a row. is turned on, and the decimal value corresponding to the second set of codes of the digital input signal Din is "3" to indicate that it is responsible for turning on 3 sets of current sources. Furthermore, since the value of the indication signal SP is "1" (the first selection starting value) and "1" (the second selection starting value), the decoder 110 can decide to convert the values of columns 1-8 in the first row. All 8 groups of current sources (such as current sources C1_1 ~ C1_8) are enabled, and it is decided to enable the current sources in columns 1-3 in row 2, that is, select 3 starting from the first current source in row 2 A current source (for example, current sources C2_1˜C2_3) is enabled to generate a control signal CS corresponding to the encoding array 601 during the first cycle as shown in FIG. 8B .
对此,在本实施例中,对应于第一组编码中横列上位位置D1的数值为“1”,代表第1行的第1~8个电流源(例如电流源C1_1~C1_8)将被致能而提供电流输出。并且,对应于第二组编码中直行上位位置D2的数值为“111”,代表第2行的第1~3个电流源(例如电流源C2_1~C2_3)将被致能而提供电流输出。如此一来,模拟输出信号Aout在第一周期的期间可例如具有11×I的电流值,且若合并加入的第65组固定开启的电流源计算,则总电流值为11×I+I=12×I。In this regard, in this embodiment, the value corresponding to the upper position D1 of the row in the first group of codes is "1", which means that the 1st to 8th current sources (for example, current sources C1_1 to C1_8) in the 1st row will be triggered. Can provide current output. Moreover, the value corresponding to the straight upper position D2 in the second group of codes is "111", which means that the first to third current sources (for example, current sources C2_1 to C2_3) in the second row will be enabled to provide current output. In this way, the analog output signal Aout can, for example, have a current value of 11×I during the first cycle, and if calculated by incorporating the 65th group of fixedly turned on current sources added, the total current value is 11×I+I= 12×I.
接着,参考图1以及图8C。如图8C所示,在第二周期中,假设随机数生成器120提供具有第一数值为“0”以及第二数值为“1”的随机数信号RNS至变更指示器130,因此变更指示器130会产生对应于数值(第一选择起始数值)为“1”(十进制)以及对应于数值(第二选择起始数值)为“2”(十进制)的指示信号SP。当解码器110接收到具有数值为“001”的第一组编码以及数值为“011”的第二组编码的数字输入信号Din时,解码器110的解码电路111可对数字输入信号Din进行译码,以产生相应的译码信号。在本实施例中,数字输入信号Din的第一组编码所对应的十进制数值为“1”以表示一整行8个一组电流源的开启,并且数字输入信号Din的第二组编码所对应的十进制数值为“3”以表示3组电流源的开启。并且,由于指示信号SP的数值为“1”(第一选择起始数值)以及“2”(第二选择起始数值),因此解码器110可决定第1行的全部电流源(例如电流源C1_1~C1_8)都被致能,并且从第2行第2列的电流源开始选择3个电流源(例如电流源C2_2~C2_4)来致能(例如是由前述段机制而从第一组编码中横列上位位置D1’的下个位位置以及第二组编码中直行上位位置D2’所标示的对应电流源),而产生如图8C所示在第二周期的期间内对应于编码数组602的控制信号CS。Next, refer to FIG. 1 and FIG. 8C. As shown in FIG. 8C , in the second cycle, it is assumed that the random number generator 120 provides a random number signal RNS with a first value of “0” and a second value of “1” to the change indicator 130 , so the change indicator 130 will generate an indication signal SP corresponding to the value (first selected starting value) being "1" (decimal) and corresponding to the value (second selected starting value) being "2" (decimal). When the decoder 110 receives the digital input signal Din having a first set of codes with a value of “001” and a second set of codes with a value of “011”, the decoding circuit 111 of the decoder 110 may interpret the digital input signal Din. code to generate the corresponding decoded signal. In this embodiment, the decimal value corresponding to the first set of codes of the digital input signal Din is "1" to indicate the activation of a group of 8 current sources in a whole row, and the second set of codes of the digital input signal Din corresponds to The decimal value is "3" to indicate the opening of 3 groups of current sources. Furthermore, since the values of the indication signal SP are “1” (the first selection starting value) and “2” (the second selection starting value), the decoder 110 can determine all the current sources (for example, current sources) in the first row. C1_1~C1_8) are all enabled, and 3 current sources (such as current sources C2_2~C2_4) are selected starting from the current source in row 2 and column 2 to enable (for example, from the first group of codes by the aforementioned segment mechanism The next bit position of the middle row upper position D1' and the corresponding current source marked by the straight row upper position D2' in the second group of codes), and generate a signal corresponding to the code array 602 during the second cycle as shown in Figure 8C control signal CS.
对此,在本实施例中,对应于第一组编码中横列上位位置D1’的数值为“1”,且对应于第一组编码中横列上位位置F1’的数值“0”则维持(keep)相同位置(因为随机数信号RNS的第一数值为“0”),因此,代表第1行的第1~8个电流源(例如电流源C1_1~C1_8)将被致能而提供电流输出。在本实施例中,对应于第二组编码中直行上第2~4列位位置D2’的数值为“1”,并且原先在第二组编码中直行上第8列的位位置的默认数值“0”(如图8B位位置F2)循环位移到图8C的第二组编码中直行上第1列的位位置F2’(因为随机数信号RNS的第二数值为“1”)。因此,代表第2行的第2~4个电流源(例如电流源C2_2~C2_4)将被致能而提供电流输出。如此一来,模拟输出信号Aout在第二周期的期间可例如具有11×I的电流值,但由与图8B相比为不同位置的电流源所提供,且若合并加入的第65组固定开启的电流源计算,则总电流值为11×I+I=12×I。In this regard, in this embodiment, the value corresponding to the upper position D1' of the row in the first set of codes is "1", and the value "0" corresponding to the upper position F1' of the row in the first set of codes is maintained (keep ) at the same position (because the first value of the random number signal RNS is “0”), therefore, the 1st to 8th current sources (such as current sources C1_1 to C1_8) representing row 1 will be enabled to provide current output. In this embodiment, the value corresponding to the bit position D2' of the 2nd to 4th columns in the second group of codes is "1", and the original default value of the bit position of the 8th column in the second group of codes is "0" (bit position F2 in Figure 8B) is cyclically shifted to bit position F2' in the first column of the second set of codes in Figure 8C (because the second value of the random number signal RNS is "1"). Therefore, the 2nd to 4th current sources (eg, current sources C2_2 to C2_4) representing row 2 will be enabled to provide current output. In this way, the analog output signal Aout may have, for example, a current value of 11×I during the second cycle, but it is provided by a current source at a different position compared to FIG. 8B , and if the 65th group added is fixedly turned on Calculating the current source, the total current value is 11×I+I=12×I.
或者,参考图1以及图8D。如图8D所示,在第二周期中,假设随机数生成器120提供具有第一数值为“1”以及第二数值为“0”的随机数信号RNS至变更指示器130,并且变更指示器130可产生对应于数值(第一选择起始数值)为“2”(十进制)以及对应于数值(第二选择起始数值)为“1”(十进制)的指示信号SP。当解码器110接收到具有数值为“001”的第一组编码以及数值为“011”的第二组编码的数字输入信号Din时,解码器110的解码电路111可对数字输入信号Din进行译码,以产生相应的译码信号。在本实施例中,数字输入信号Din的第一组编码所对应的十进制数值为“1”,以表示会有一整行8个一组电流源的开启,并且数字输入信号Din的第二组编码所对应的十进制数值为“3”以表示3组电流源的开启。并且,由于指示信号SP的数值为“2”(第一选择起始数值)以及“1”(第二选择起始数值),因此解码器110可决定第2行的全部电流源(例如电流源C2_1~C2_8)都被致能,并且第3行中第1至3列的电流元被控制致能,亦即,第3行中从第1个电流源开始选择3个电流源(例如电流源C3_1~C3_3)来致能,而产生如图8D所示在第二周期的期间内对应于编码数组603的控制信号CS。Or, refer to Figure 1 and Figure 8D. As shown in FIG. 8D , in the second period, it is assumed that the random number generator 120 provides a random number signal RNS with a first value of “1” and a second value of “0” to the change indicator 130 , and the change indicator 130 may generate an indication signal SP corresponding to the value (the first selection starting value) being "2" (decimal) and corresponding to the value (the second selection starting value) being "1" (decimal). When the decoder 110 receives the digital input signal Din having a first set of codes with a value of “001” and a second set of codes with a value of “011”, the decoding circuit 111 of the decoder 110 may interpret the digital input signal Din. code to generate the corresponding decoded signal. In this embodiment, the decimal value corresponding to the first set of codes of the digital input signal Din is "1", which indicates that a group of eight current sources in a row will be turned on, and the second set of codes of the digital input signal Din The corresponding decimal value is "3" to indicate the activation of 3 sets of current sources. Furthermore, since the values of the indication signal SP are “2” (the first selection starting value) and “1” (the second selection starting value), the decoder 110 can determine all the current sources (for example, current sources) in the second row. C2_1~C2_8) are all enabled, and the current elements in columns 1 to 3 in row 3 are controlled and enabled, that is, 3 current sources are selected starting from the first current source in row 3 (for example, current source C3_1~C3_3) to enable, and generate the control signal CS corresponding to the encoding array 603 during the second period as shown in FIG. 8D.
对此,在本实施例中,对应于第一组编码中横列上第2行位位置D1”的数值为“1”,原先在第一组编码中横列上第8行的位位置的默认数值“0”(如图8A位位置F1)循环位移到图8D的第一组编码中横列上第1行的位位置F1”(因为随机数信号RNS的第一数值为“1”)。因此,代表第2行的第1~8个电流源(例如电流源C2_1~C2_8)将被致能而提供电流输出。并且,对应于第二组编码中直行上第1~3列的位位置D2”的数值皆为“1”,且对应于第二组编码中直行上位位置F2”的数值“0”则维持(keep)相同位置(因为随机数信号RNS的第二数值为“0”),因此,代表第3行的第1~3个电流源(例如电流源C3_1~C3_3)将被致能而提供电流输出。如此一来,模拟输出信号Aout在第二周期的期间可例如具有11I的电流值,但由与图8B、图8C相比为不同位置的电流源所提供,且若合并加入的第65组固定开启的电流源计算,则总电流值为11×I+I=12×I。In this regard, in this embodiment, the value corresponding to the bit position D1" of the second row on the horizontal column in the first group of codes is "1". Originally, the default value of the bit position D1" on the eighth row of the first group of codes was "0" (bit position F1 in Figure 8A) is cyclically shifted to bit position F1" in row 1 of the first set of codes in Figure 8D (because the first value of the random number signal RNS is "1"). Therefore, the 1st to 8th current sources (eg, current sources C2_1 to C2_8) representing row 2 will be enabled to provide current output. Moreover, the values corresponding to the bit positions D2" of the first to third columns in the second group of codes are all "1", and the values "0" corresponding to the position F2" in the second group of codes remain ( keep) at the same position (because the second value of the random number signal RNS is "0"), therefore, the 1st to 3rd current sources (such as current sources C3_1 to C3_3) representing the 3rd row will be enabled to provide current output. . In this way, the analog output signal Aout may, for example, have a current value of 11I during the second period, but it is provided by a current source at a different position compared with FIG. 8B and FIG. 8C , and if the 65th group added is fixed Calculating the current source that is turned on, the total current value is 11×I+I=12×I.
综上所述,本发明的数模转换器及其操作方法可通过变更指示器利用随机数信号产生指示信号,并且可通过解码器可根据数字输入信号以及指示信号产生对应控制信号,以随时间(操作周期)变化的随机性位移选择方式来致能多个电流源的至少其中一者。因此,本发明的数模转换器所产生的模拟输出信号可具有较佳的积分非线性度以及无杂散动态范围的表现。In summary, the digital-to-analog converter and its operating method of the present invention can generate an indication signal by using a random number signal by changing the indicator, and can generate a corresponding control signal according to the digital input signal and the indication signal through the decoder, so as to change the control signal over time. A random displacement selection method that changes (operating cycle) enables at least one of the plurality of current sources. Therefore, the analog output signal generated by the digital-to-analog converter of the present invention can have better integral nonlinearity and spurious-free dynamic range performance.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present invention, but not to limit it. Although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features can be equivalently replaced; and these modifications or substitutions do not deviate from the essence of the corresponding technical solutions from the technical solutions of the embodiments of the present invention. scope.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211021421.3A CN117674842A (en) | 2022-08-24 | 2022-08-24 | Digital-to-analog converter and method of operating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211021421.3A CN117674842A (en) | 2022-08-24 | 2022-08-24 | Digital-to-analog converter and method of operating the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117674842A true CN117674842A (en) | 2024-03-08 |
Family
ID=90064669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211021421.3A Pending CN117674842A (en) | 2022-08-24 | 2022-08-24 | Digital-to-analog converter and method of operating the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117674842A (en) |
-
2022
- 2022-08-24 CN CN202211021421.3A patent/CN117674842A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5404142A (en) | Data-directed scrambler for multi-bit noise shaping D/A converters | |
US9859911B1 (en) | Successive approximation register analog-to-digital converter and analog-to-digital signal conversion method thereof | |
US20140070968A1 (en) | Reducing the effect of elements mismatch in a sar adc | |
Shen et al. | Random swapping dynamic element matching technique for glitch energy minimization in current-steering DAC | |
US6476748B1 (en) | Method and apparatus for cyclic return to zero techniques for digital to analog convertors | |
CN101567692A (en) | Method for matching parallel high-speed dynamic elements | |
US20210159906A1 (en) | Analog to digital converter | |
JP4836736B2 (en) | Digital / analog conversion circuit | |
US8872687B1 (en) | Digital to analog converting method and converter insensitive to code-dependent distortions | |
KR20060135074A (en) | Improvement of Error Reduction Rate in Digital-to-Analog Converter and Digital-to-Analog Converter | |
CN111245439A (en) | Dynamic element matching circuit and method applied to digital-to-analog converter | |
CN104852734B (en) | The zero dynamic element matching encoder that time relaxation interweaves | |
TWI825942B (en) | Digital-to-analog converter and operation method thereof | |
EP1150433B1 (en) | Flash type analog-to-digital converter | |
CN117674842A (en) | Digital-to-analog converter and method of operating the same | |
KR100398013B1 (en) | Selection circuit, d/a converter and a/d converter | |
EP0135274A2 (en) | Digital-to-analog converter | |
US6897797B2 (en) | Digital to analog converter with integral intersymbol interference cancellation | |
CN116436460A (en) | Thermometer decoding circuit of digital-to-analog converter and digital-to-analog converter | |
CN110912560B (en) | Multimode oversampling analog-to-digital converter with reconfigurable data weighted average | |
Bellavin et al. | Study of Bubble Errors Conversion in a Modified ROM Encoder | |
JP3723362B2 (en) | Flash analog / digital converter | |
TWI495271B (en) | Method of dynamic element matching and an apparatus thereof | |
JPH04129332A (en) | Successive approximation a/d converter | |
CN111181556B (en) | Random multiphase clock generating circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |