[go: up one dir, main page]

CN117634265B - Cylinder head unloading groove parameter determination method and related device - Google Patents

Cylinder head unloading groove parameter determination method and related device Download PDF

Info

Publication number
CN117634265B
CN117634265B CN202410105329.8A CN202410105329A CN117634265B CN 117634265 B CN117634265 B CN 117634265B CN 202410105329 A CN202410105329 A CN 202410105329A CN 117634265 B CN117634265 B CN 117634265B
Authority
CN
China
Prior art keywords
target
parameters
cylinder head
simulation
response surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410105329.8A
Other languages
Chinese (zh)
Other versions
CN117634265A (en
Inventor
李超
高进
马庆镇
李连升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weichai Power Co Ltd
Original Assignee
Weichai Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weichai Power Co Ltd filed Critical Weichai Power Co Ltd
Priority to CN202410105329.8A priority Critical patent/CN117634265B/en
Publication of CN117634265A publication Critical patent/CN117634265A/en
Application granted granted Critical
Publication of CN117634265B publication Critical patent/CN117634265B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

本申请提供了一种缸盖卸荷槽参数确定方法以及相关装置,该方法包括:获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。本申请设定目标响应面计算模型,基于缸盖中能够设置卸荷槽的目标区域的尺寸进行计算,能够快速确定目标卸荷槽参数,提高研发速度。

The present application provides a method for determining the parameters of a cylinder head unloading groove and a related device, the method comprising: obtaining the size parameters of a target area in the cylinder head, the target area being an area where an unloading groove can be set; determining the target unloading groove parameters according to the size parameters of the target area and a target response surface calculation model, the fatigue times corresponding to the target unloading groove parameters meeting the preset requirements. The present application sets a target response surface calculation model, and performs calculations based on the size of the target area in the cylinder head where an unloading groove can be set, so as to quickly determine the target unloading groove parameters and improve the research and development speed.

Description

缸盖卸荷槽参数确定方法以及相关装置Cylinder head unloading groove parameter determination method and related device

技术领域Technical Field

本申请涉及发动机领域,更具体的说,是涉及一种缸盖卸荷槽参数确定方法以及相关装置。The present application relates to the field of engines, and more specifically, to a method for determining parameters of a cylinder head unloading groove and a related device.

背景技术Background technique

发动机的缸盖处于高温高压的工作环境中,容易因为疲劳破坏而产生裂纹,进而造成漏水拉缸等故障,带来严重损失。为了提高缸盖的结构强度,在发动机两缸之间加工卸荷槽,使缸盖底板的热应力得以向两侧释放,从而提升缸盖的使用寿命。The cylinder head of the engine is in a high temperature and high pressure working environment, and is prone to cracks due to fatigue damage, which in turn causes failures such as water leakage and cylinder scuffing, resulting in serious losses. In order to improve the structural strength of the cylinder head, a relief groove is machined between the two cylinders of the engine so that the thermal stress of the cylinder head bottom plate can be released to both sides, thereby extending the service life of the cylinder head.

现有技术中,虽然技术人员提出了设置卸荷槽的方案,但没有提出卸荷槽的具体设计方法。技术人员根据经验设置卸荷槽的尺寸,包括卸荷槽的长度宽度和深度。如果尺寸设计不合理,缸盖的疲劳强度可能达不到产品要求。或者尺寸设计无法达到最优水平,导致缸盖的疲劳寿命偏低,裂纹风险仍较高。In the prior art, although technicians have proposed a solution to set up a relief groove, they have not proposed a specific design method for the relief groove. The technicians set the size of the relief groove based on experience, including the length, width and depth of the relief groove. If the size design is unreasonable, the fatigue strength of the cylinder head may not meet the product requirements. Or the size design cannot reach the optimal level, resulting in a low fatigue life of the cylinder head and a high risk of cracks.

发明内容Summary of the invention

有鉴于此,本申请提供了一种缸盖卸荷槽参数确定方法、装置和电子设备,如下:In view of this, the present application provides a method, device and electronic device for determining parameters of a cylinder head unloading groove, as follows:

一种缸盖卸荷槽参数确定方法,包括:A method for determining parameters of a cylinder head unloading groove comprises:

获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;Obtaining size parameters of a target area in the cylinder head, where the target area is an area where a relief groove can be set;

依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。According to the size parameters of the target area and the target response surface calculation model, the target unloading groove parameters are determined, and the fatigue times corresponding to the target unloading groove parameters meet the preset requirements.

可选的,上述的方法,所述依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数之前,还包括:Optionally, the above method, before determining the target unloading slot parameters according to the size parameters of the target area and the target response surface calculation model, further comprises:

获得初始响应面计算模型;Obtaining an initial response surface calculation model;

依据所述初始响应面计算模型,确定试验参数组数;Determining the number of test parameter groups according to the initial response surface calculation model;

依据所述目标区域的尺寸参数以及所述试验参数组数,确定试验参数集合,所述试验参数集合中包括至少四组试验参数,任意两组试验参数包括卸荷槽的尺寸不同;Determine a test parameter set according to the size parameter of the target area and the number of test parameter groups, wherein the test parameter set includes at least four groups of test parameters, and any two groups of test parameters include different sizes of the unloading groove;

控制预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合,所述仿真疲劳次数集合中的仿真疲劳次数个数与试验参数集合中的试验参数组数对应;Controlling a preset simulation model to simulate the test parameters of the test parameter set to obtain a simulation fatigue times set, wherein the number of simulation fatigue times in the simulation fatigue times set corresponds to the number of test parameter groups in the test parameter set;

依据所述仿真疲劳次数集合以及所述试验参数集合,确定目标响应面计算模型。A target response surface calculation model is determined according to the set of simulation fatigue times and the set of test parameters.

可选的,上述的方法,所述控制预设仿真模型对于所述试验参数集合的试验参数进行仿真,包括:Optionally, in the above method, the controlling the preset simulation model to simulate the test parameters of the test parameter set includes:

设定缸盖仿真环境信息,所述缸盖仿真环境信息表征缸盖环境达到边界条件;Setting cylinder head simulation environment information, wherein the cylinder head simulation environment information indicates that the cylinder head environment reaches a boundary condition;

基于所述缸盖仿真环境信息,控制所述预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合。Based on the cylinder head simulation environment information, the preset simulation model is controlled to simulate the test parameters of the test parameter set to obtain a set of simulated fatigue times.

可选的,上述的方法,所述试验参数集合中试验参数的组数大于等于待定系数的个数,所述依据所述仿真疲劳次数集合以及所述试验参数集合,确定目标响应面计算模型,包括:Optionally, in the above method, the number of groups of test parameters in the test parameter set is greater than or equal to the number of coefficients to be determined, and determining the target response surface calculation model based on the simulation fatigue number set and the test parameter set includes:

依据预设收敛规则,依据所述试验参数集合中的试验参数以及对应的仿真疲劳次数集合分别与初始响应面计算模型计算,得到目标系数;According to a preset convergence rule, the test parameters in the test parameter set and the corresponding simulation fatigue number set are calculated with the initial response surface calculation model to obtain the target coefficient;

依据所述目标系数和所述初始响应面计算模型,得到目标响应面计算模型。A target response surface calculation model is obtained according to the target coefficient and the initial response surface calculation model.

可选的,上述的方法,还包括:Optionally, the above method further includes:

控制预设仿真模型对于所述目标卸荷槽参数进行仿真,得到目标仿真疲劳次数;Controlling a preset simulation model to simulate the target unloading slot parameters to obtain a target simulation fatigue number;

若所述目标仿真疲劳次数小于预设阈值和/或所述目标仿真疲劳次数小于仿真疲劳次数集合中的任意仿真疲劳次数,增加试验参数组数,并返回执行所述依据所述目标区域的尺寸参数以及所述试验参数组数,确定试验参数集合步骤。If the target simulation fatigue number is less than a preset threshold and/or the target simulation fatigue number is less than any simulation fatigue number in the simulation fatigue number set, increase the number of test parameter groups, and return to execute the step of determining the test parameter set based on the size parameters of the target area and the number of test parameter groups.

可选的,上述的方法,还包括:Optionally, the above method further includes:

控制预设仿真模型对于所述目标卸荷槽参数进行仿真,得到目标仿真疲劳次数;Controlling a preset simulation model to simulate the target unloading slot parameters to obtain a target simulation fatigue number;

若所述目标仿真疲劳次数小于预设阈值和/或所述目标仿真疲劳次数小于仿真疲劳次数集合中的任意仿真疲劳次数,更新初始响应面计算模型,更新后的初始响应面计算模型的阶数大于更新前的初始响应面计算模型的阶数,并返回执行所述依据所述初始响应面计算模型,确定试验参数组数步骤。If the target simulation fatigue number is less than a preset threshold and/or the target simulation fatigue number is less than any simulation fatigue number in the simulation fatigue number set, the initial response surface calculation model is updated, the order of the updated initial response surface calculation model is greater than the order of the initial response surface calculation model before the update, and the process returns to execute the step of determining the number of test parameter groups based on the initial response surface calculation model.

可选的,上述的方法,所述获得缸盖中目标区域的尺寸参数,包括:Optionally, in the above method, obtaining the size parameters of the target area in the cylinder head includes:

基于第一目标螺栓和第二目标螺栓位置,获得第一距离,所述第一距离对应于卸荷槽的长度;Based on the first target bolt position and the second target bolt position, obtaining a first distance, wherein the first distance corresponds to a length of the unloading groove;

基于缸盖垫片上两缸密封带位置,获得的第二距离,所述第二距离对应于卸荷槽的宽度;A second distance is obtained based on the positions of the two cylinder sealing bands on the cylinder head gasket, wherein the second distance corresponds to the width of the unloading groove;

基于缸盖厚度,获得第三距离,所述第三距离对应于卸荷槽的深度相关。Based on the cylinder head thickness, a third distance is obtained, which corresponds to the depth of the relief groove.

一种缸盖卸荷槽参数确定装置,包括:A cylinder head unloading groove parameter determination device, comprising:

获得模块,用于获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;An acquisition module, used for acquiring the size parameters of a target area in the cylinder head, wherein the target area is an area where a relief groove can be set;

确定模块,用于依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。The determination module is used to determine the target unloading groove parameters according to the size parameters of the target area and the target response surface calculation model, and the fatigue times corresponding to the target unloading groove parameters meet the preset requirements.

一种电子设备,包括:An electronic device, comprising:

存储器、处理器;Memory, processor;

其中,存储器存储有处理程序;Wherein, the memory stores a processing program;

所述处理器用于加载并执行所述存储器存储的所述处理程序,以实现如上述任一项所述的缸盖卸荷槽参数确定方法的各步骤。The processor is used to load and execute the processing program stored in the memory to implement each step of the cylinder head unloading groove parameter determination method as described in any one of the above items.

一种可读存储介质,其上存储有计算机程序,所述计算机程序被处理器调用并执行,实现如上述任一项所述的缸盖卸荷槽参数确定方法的各步骤。A readable storage medium stores a computer program, wherein the computer program is called and executed by a processor to implement the steps of the cylinder head unloading groove parameter determination method as described in any one of the above items.

综上所述,本申请提供了一种缸盖卸荷槽参数确定方法以及相关装置,该方法包括:获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。本实施例中,设定目标响应面计算模型,基于缸盖中能够设置卸荷槽的目标区域的尺寸进行计算,能够快速确定目标卸荷槽参数,提高研发速度。In summary, the present application provides a method for determining the parameters of a cylinder head unloading groove and a related device, the method comprising: obtaining the size parameters of a target area in the cylinder head, the target area being an area where the unloading groove can be set; determining the target unloading groove parameters according to the size parameters of the target area and a target response surface calculation model, the fatigue times corresponding to the target unloading groove parameters meeting the preset requirements. In this embodiment, a target response surface calculation model is set, and calculation is performed based on the size of the target area in the cylinder head where the unloading groove can be set, so that the target unloading groove parameters can be quickly determined, thereby improving the research and development speed.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are merely embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on the provided drawings without creative work.

图1是本申请提供的一种缸盖卸荷槽参数确定方法实施例1的流程图;FIG1 is a flow chart of a cylinder head unloading groove parameter determination method embodiment 1 provided by the present application;

图2是本申请提供的一种缸盖卸荷槽参数确定方法实施例2的流程图;FIG2 is a flow chart of a cylinder head unloading groove parameter determination method embodiment 2 provided by the present application;

图3是本申请提供的一种缸盖卸荷槽参数确定方法实施例3的流程图;FIG3 is a flow chart of a cylinder head unloading groove parameter determination method embodiment 3 provided by the present application;

图4是本申请提供的一种缸盖卸荷槽参数确定方法实施例4的流程图;FIG4 is a flow chart of a cylinder head unloading groove parameter determination method embodiment 4 provided by the present application;

图5是本申请提供的一种缸盖卸荷槽参数确定方法实施例5的流程图;FIG5 is a flow chart of a cylinder head unloading groove parameter determination method embodiment 5 provided by the present application;

图6是本申请提供的一种缸盖卸荷槽参数确定方法实施例6的流程图;FIG6 is a flow chart of a cylinder head unloading groove parameter determination method embodiment 6 provided by the present application;

图7是本申请提供的一种缸盖卸荷槽参数确定方法实施例6中缸盖示意图;FIG7 is a schematic diagram of a cylinder head in Embodiment 6 of a method for determining parameters of a cylinder head unloading groove provided by the present application;

图8是本申请提供的一种缸盖卸荷槽参数确定方法实施例6中缸盖的截面示意图;FIG8 is a cross-sectional schematic diagram of a cylinder head in Embodiment 6 of a method for determining parameters of a cylinder head unloading groove provided by the present application;

图9是本申请提供的一种缸盖卸荷槽参数确定装置实施例的结构示意图。FIG9 is a schematic structural diagram of an embodiment of a cylinder head unloading groove parameter determination device provided in the present application.

具体实施方式Detailed ways

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will be combined with the drawings in the embodiments of the present application to clearly and completely describe the technical solutions in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of this application.

如图1所示的,为本申请提供的一种缸盖卸荷槽参数确定方法实施例1的流程图,该方法应用于一电子设备,该方法包括以下步骤:As shown in FIG. 1 , it is a flow chart of Embodiment 1 of a method for determining parameters of a cylinder head unloading groove provided by the present application. The method is applied to an electronic device, and the method comprises the following steps:

步骤S101:获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;Step S101: obtaining size parameters of a target area in a cylinder head, where the target area is an area where a relief groove can be set;

其中,缸盖中目标区域能够设置卸荷槽。Wherein, a relief groove can be provided in a target area in the cylinder head.

其中,获得该缸盖中该目标区域的尺寸参数。Wherein, the size parameters of the target area in the cylinder head are obtained.

具体的,该目标区域是缸盖中设置卸荷槽,与缸盖其他结构留有合理壁厚的区域范围。Specifically, the target area is an area where a relief groove is provided in the cylinder head and a reasonable wall thickness is left between the cylinder head and other structures.

例如,目标区域的深度需要保证卸荷槽与缸盖内部水套、油道等留有合理壁厚。For example, the depth of the target area needs to ensure that the unloading groove and the water jacket and oil channel inside the cylinder head have a reasonable wall thickness.

其中,后续实施例中会针对该获得目标区域的尺寸参数进行详细说明,本实施例中不做详述。The size parameters of the target area will be described in detail in the subsequent embodiments, which will not be described in detail in this embodiment.

步骤S102:依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。Step S102: determining target unloading groove parameters according to the size parameters of the target area and the target response surface calculation model, wherein the fatigue times corresponding to the target unloading groove parameters meet preset requirements.

其中,电子设备中预设有目标响应面计算模型。Among them, a target response surface calculation model is preset in the electronic device.

其中,该目标区域的尺寸是该卸荷槽设置的长度、宽度和高度的上限值。The size of the target area is the upper limit of the length, width and height of the unloading groove.

相应的,基于目标区域的尺寸参数以及目标响应面计算模型,基于该计算模型,进行分析计算得到目标卸荷槽参数。Correspondingly, based on the size parameters of the target area and the target response surface calculation model, the target unloading slot parameters are obtained by analysis and calculation based on the calculation model.

其中,该目标卸荷槽参数对应的疲劳次数是满足预设要求的,该预设要求具体是该目标响应面计算模型确定的最大疲劳次数。The fatigue times corresponding to the target unloading slot parameters meet preset requirements, and the preset requirements are specifically the maximum fatigue times determined by the target response surface calculation model.

其中,该目标响应面计算模型是一个计算公式模型,采用该计算公式模型进行分析计算,能够基于该目标区域的尺寸参数快速进行大量的试验。The target response surface calculation model is a calculation formula model. By using the calculation formula model for analysis and calculation, a large number of tests can be quickly carried out based on the size parameters of the target area.

具体的,该响应面计算模型是选取的合适的优化算法确定的,具体是基于该优化算法进行优化计算,以目标区域的尺寸参数为边界,以响应面模型所得的疲劳次数最大为目标进行迭代计算,且要求疲劳次数应满足预设要求。Specifically, the response surface calculation model is determined by selecting a suitable optimization algorithm, and specifically, an optimization calculation is performed based on the optimization algorithm, with the size parameters of the target area as the boundary and the maximum number of fatigue times obtained by the response surface model as the target for iterative calculation, and the fatigue times are required to meet preset requirements.

可选的,优化算法可使用遗传算法。Optionally, the optimization algorithm may use a genetic algorithm.

其中,在确定疲劳次数最大时对应的目标卸荷槽参数是当前最优的设置参数。Among them, the target unloading slot parameters corresponding to the maximum fatigue times are the current optimal setting parameters.

由于相对于进行仿真的速度,计算公式模型的计算过程速度很快,能够快速确定该目标卸荷槽参数。Since the calculation process of the calculation formula model is very fast compared to the speed of the simulation, the target unloading tank parameters can be quickly determined.

综上,本实施例提供的一种缸盖卸荷槽参数确定方法,包括:获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。本实施例中,设定目标响应面计算模型,基于缸盖中能够设置卸荷槽的目标区域的尺寸进行计算,能够快速确定目标卸荷槽参数,提高研发速度。In summary, the present embodiment provides a method for determining the parameters of a cylinder head unloading groove, comprising: obtaining the size parameters of a target area in the cylinder head, the target area being an area where the unloading groove can be set; determining the target unloading groove parameters according to the size parameters of the target area and a target response surface calculation model, wherein the fatigue times corresponding to the target unloading groove parameters meet preset requirements. In the present embodiment, a target response surface calculation model is set, and calculation is performed based on the size of the target area in the cylinder head where the unloading groove can be set, so that the target unloading groove parameters can be determined quickly, thereby improving the research and development speed.

如图2所示的,为本申请提供的一种缸盖卸荷槽参数确定方法实施例2的流程图,该方法包括以下步骤:As shown in FIG. 2 , it is a flow chart of Embodiment 2 of a method for determining parameters of a cylinder head unloading groove provided by the present application. The method comprises the following steps:

步骤S201:获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;Step S201: obtaining size parameters of a target area in a cylinder head, where the target area is an area where a relief groove can be set;

其中,步骤S201与实施例1中的相应步骤一致,本实施例中不做赘述。Among them, step S201 is consistent with the corresponding step in Example 1 and is not described in detail in this embodiment.

步骤S202:获得初始响应面计算模型;Step S202: obtaining an initial response surface calculation model;

其中,技术人员根据实际情况选择初始响应面计算模型。Among them, technicians select the initial response surface calculation model according to actual conditions.

其中,该初始响应面计算模型可以选择一阶、或者二阶。The initial response surface calculation model can be selected as first order or second order.

其中,该初始响应面计算模型中的参数未定,本实施例中是针对该确定参数得到目标响应面计算模型的过程进行的说明。The parameters in the initial response surface calculation model are not determined, and this embodiment describes the process of determining the parameters to obtain the target response surface calculation model.

其中,该初始响应面计算模型是以卸荷槽的长度、宽度和深度为因子,以缸盖疲劳强度为目标设计的。The initial response surface calculation model is designed with the length, width and depth of the unloading groove as factors and the fatigue strength of the cylinder head as the target.

例如,一阶的初始响应面计算模型如下:For example, the first-order initial response surface calculation model is as follows:

其中,λ表示缸盖疲劳强度,β是待定系数,Ki分别表示长度L宽度W和高度H三个因子。Among them, λ represents the fatigue strength of the cylinder head, β is the unknown coefficient, and Ki represents the three factors of length L, width W and height H respectively.

其中,该模型中,有四个待定系数,β0、β1、β2和β3There are four undetermined coefficients in this model, β 0 , β 1 , β 2 and β 3 .

步骤S203:依据所述初始响应面计算模型,确定试验参数组数;Step S203: determining the number of test parameter groups according to the initial response surface calculation model;

其中,依据该初始响应面计算模型中的待定系数个数,确定试验参数组数。The number of test parameter groups is determined according to the number of undetermined coefficients in the initial response surface calculation model.

其中,为了对于该初始响应面计算模型中的待定系数进行求解,需要设置多个试验参数。In order to solve the undetermined coefficients in the initial response surface calculation model, multiple test parameters need to be set.

例如,该待定系数是4个,需要设置至少4组试验参数。For example, if the number of undetermined coefficients is 4, at least 4 groups of test parameters need to be set.

步骤S204:依据所述目标区域的尺寸参数以及所述试验参数组数,确定试验参数集合;Step S204: determining a test parameter set according to the size parameter of the target area and the number of test parameter groups;

其中,所述试验参数集合中包括至少四组试验参数,任意两组试验参数包括卸荷槽的尺寸不同。The test parameter set includes at least four groups of test parameters, and any two groups of test parameters include different sizes of the unloading groove.

其中,一组试验参数包括卸荷槽的长度、宽度和高度三个数值。Among them, a set of test parameters includes three values: the length, width and height of the unloading groove.

其中,该目标区域的尺寸参数是设置试验参数中卸荷槽的长度、宽度和高度的上限值,在该上限值范围内,选择多组试验参数。The size parameter of the target area is the upper limit value of the length, width and height of the unloading groove in the test parameters. Within the range of the upper limit value, multiple groups of test parameters are selected.

其中,依据前述步骤中确定的试验参数组数,在该目标区域的尺寸参数范围内,确定相应组数的试验参数,每组试验参数中的卸荷槽的尺寸不同。According to the number of test parameter groups determined in the aforementioned steps, a corresponding number of test parameters are determined within the size parameter range of the target area, and the size of the unloading slot in each group of test parameters is different.

步骤S205:控制预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合;Step S205: controlling a preset simulation model to simulate the test parameters of the test parameter set to obtain a set of simulated fatigue times;

其中,所述仿真疲劳次数集合中的仿真疲劳次数个数与试验参数集合中的试验参数组数对应。The number of simulation fatigue times in the simulation fatigue times set corresponds to the number of test parameter groups in the test parameter set.

其中,预设仿真模型是预先搭建的缸盖有限元模型,通过该预设仿真模型实现对于试验参数进行仿真。The preset simulation model is a pre-built cylinder head finite element model, through which the test parameters are simulated.

具体的,控制该预设仿真模型对于该各组试验参数进行仿真,得到仿真疲劳次数,各个仿真疲劳次数组合得到仿真疲劳次数集合。Specifically, the preset simulation model is controlled to simulate each group of test parameters to obtain a simulated fatigue number, and each simulated fatigue number is combined to obtain a simulated fatigue number set.

其中,一个仿真疲劳次数对应一组试验参数。Among them, one simulation fatigue number corresponds to a set of test parameters.

具体的,该步骤S205包括:Specifically, step S205 includes:

步骤S2051:设定缸盖仿真环境信息,所述缸盖仿真环境信息表征缸盖环境达到边界条件;Step S2051: setting cylinder head simulation environment information, wherein the cylinder head simulation environment information indicates that the cylinder head environment reaches a boundary condition;

其中,该仿真环境信息是模仿缸盖在发动机运行时的环境。The simulation environment information simulates the environment of the cylinder head when the engine is running.

具体的,参考发送机的实际运行路谱,带入缸盖温度最高时的边界条件,该边界条件是发动机运行的苛刻工况,该工况下,缸盖的热应力最大,低周疲劳次数最小。Specifically, referring to the actual operating spectrum of the engine, the boundary condition when the cylinder head temperature is the highest is introduced. This boundary condition is a harsh operating condition of the engine. Under this operating condition, the thermal stress of the cylinder head is the largest and the number of low-cycle fatigue is the smallest.

步骤S2052:基于所述缸盖仿真环境信息,控制所述预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合。Step S2052: Based on the cylinder head simulation environment information, control the preset simulation model to simulate the test parameters of the test parameter set to obtain a set of simulated fatigue times.

其中,基于该缸盖仿真环境,控制该仿真模型对于试验参数集合中的各组试验参数进行仿真,实现了在苛刻工况下的仿真。Among them, based on the cylinder head simulation environment, the simulation model is controlled to simulate each group of test parameters in the test parameter set, thereby realizing simulation under harsh working conditions.

步骤S206:依据所述仿真疲劳次数集合以及所述试验参数集合,确定目标响应面计算模型;Step S206: determining a target response surface calculation model according to the simulation fatigue times set and the test parameter set;

其中,基于仿真得到的仿真疲劳次数集合以及该试验参数集合,将该两组数据带入初始响应面计算模型中,得到模型系数,确定目标响应面计算模型。Among them, based on the simulated fatigue number set and the test parameter set obtained by simulation, the two sets of data are brought into the initial response surface calculation model to obtain the model coefficients and determine the target response surface calculation model.

其中,若该试验参数集合中的试验参数组数与模型系数个数相同,则可以直接计算得到系数的取值,将该系数带入初始响应面计算模型中,得到目标响应面计算模型。Among them, if the number of test parameter groups in the test parameter set is the same as the number of model coefficients, the value of the coefficient can be directly calculated, and the coefficient can be brought into the initial response surface calculation model to obtain the target response surface calculation model.

其中,若该试验参数集合中的试验参数组数大于模型系数个数,需要进一步处理,已得到目标响应面计算模型,后续实施例中针对该情况进行了详细说明,本实施例中不做详述。Among them, if the number of test parameter groups in the test parameter set is greater than the number of model coefficients, further processing is required to obtain the target response surface calculation model. This situation is described in detail in the subsequent embodiments and will not be described in detail in this embodiment.

步骤S207:依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。Step S207: Determine target unloading groove parameters according to the size parameters of the target area and the target response surface calculation model, and the fatigue times corresponding to the target unloading groove parameters meet the preset requirements.

其中,步骤S207与实施例1中的相应步骤一致,本实施例中不做赘述。Among them, step S207 is consistent with the corresponding step in Example 1 and is not described in detail in this embodiment.

综上,本实施例提供的一种缸盖卸荷槽参数确定方法,还包括:获得初始响应面计算模型;依据所述初始响应面计算模型,确定试验参数组数;依据所述目标区域的尺寸参数以及所述试验参数组数,确定试验参数集合,所述试验参数集合中包括至少四组试验参数,任意两组试验参数包括卸荷槽的尺寸不同;控制预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合,所述仿真疲劳次数集合中的仿真疲劳次数个数与试验参数集合中的试验参数组数对应;依据所述仿真疲劳次数集合以及所述试验参数集合,确定目标响应面计算模型。本实施例中,基于对于试验参数进行有限次数的仿真,得到仿真疲劳次数集合,进而基于该仿真疲劳次数集合以及试验参数集合进行计算可以确定目标响应面计算模型,明确了确定目标响应面计算模型的过程。In summary, the cylinder head unloading groove parameter determination method provided in the present embodiment also includes: obtaining an initial response surface calculation model; determining the number of test parameter groups based on the initial response surface calculation model; determining a test parameter set based on the size parameters of the target area and the number of test parameter groups, wherein the test parameter set includes at least four groups of test parameters, and any two groups of test parameters include different sizes of the unloading groove; controlling a preset simulation model to simulate the test parameters of the test parameter set to obtain a simulation fatigue times set, wherein the number of simulation fatigue times in the simulation fatigue times set corresponds to the number of test parameter groups in the test parameter set; determining a target response surface calculation model based on the simulation fatigue times set and the test parameter set. In the present embodiment, based on a limited number of simulations of the test parameters, a simulation fatigue times set is obtained, and then the target response surface calculation model can be determined based on the simulation fatigue times set and the test parameter set, and the process of determining the target response surface calculation model is clarified.

如图3所示的,为本申请提供的一种缸盖卸荷槽参数确定方法实施例3的流程图,该方法包括以下步骤:As shown in FIG. 3 , it is a flow chart of Embodiment 3 of a method for determining parameters of a cylinder head unloading groove provided by the present application. The method comprises the following steps:

步骤S301:获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;Step S301: obtaining size parameters of a target area in a cylinder head, where the target area is an area where a relief groove can be set;

步骤S302:获得初始响应面计算模型;Step S302: obtaining an initial response surface calculation model;

步骤S303:依据所述初始响应面计算模型,确定试验参数组数;Step S303: determining the number of test parameter groups according to the initial response surface calculation model;

步骤S304:依据所述目标区域的尺寸参数以及所述试验参数组数,确定试验参数集合;Step S304: determining a test parameter set according to the size parameter of the target area and the number of test parameter groups;

步骤S305:控制预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合;Step S305: controlling a preset simulation model to simulate the test parameters of the test parameter set to obtain a set of simulated fatigue times;

其中,步骤S301-305与实施例2中的相应步骤一致,本实施例中不做赘述。Among them, steps S301-305 are consistent with the corresponding steps in Example 2 and are not described in detail in this embodiment.

步骤S306:依据预设拟合规则,依据所述试验参数集合中的试验参数以及对应的仿真疲劳次数集合分别与初始响应面计算模型计算,得到目标系数;Step S306: according to a preset fitting rule, the test parameters in the test parameter set and the corresponding simulation fatigue times set are respectively calculated with the initial response surface calculation model to obtain the target coefficient;

其中,该试验参数集合中试验参数的组数大于等于初始响应面计算模型中待定系数的个数。The number of groups of test parameters in the test parameter set is greater than or equal to the number of undetermined coefficients in the initial response surface calculation model.

其中,若该试验参数的组数等于初始响应面计算模型中待定系数的个数时,将该试验参数作为输入值、对应的仿真疲劳次数作为输出值,代入该初始响应面计算模型,得到多个包含待定系数的公式,基于该多个公式计算,可以得到各个待定系数的取值。Among them, if the number of groups of the test parameters is equal to the number of undetermined coefficients in the initial response surface calculation model, the test parameters are used as input values and the corresponding simulation fatigue times are used as output values, and are substituted into the initial response surface calculation model to obtain multiple formulas containing undetermined coefficients. Based on the calculation of these multiple formulas, the values of each undetermined coefficient can be obtained.

其中,该试验参数集合中的试验参数个数会大于该初始响应面计算模型中待定系数的个数,则需要采用拟合规则,在结合试验参数、对应的疲劳仿真次数以及初始响应面计算模型,确定一组待定系数的取值,该待定系数的取值能够使得每组试验参数对应的预测疲劳次数与对应的仿真疲劳次数间误差的平方和最小,该待定系数的取值为作为目标系数。Among them, the number of test parameters in the test parameter set will be greater than the number of undetermined coefficients in the initial response surface calculation model. It is necessary to adopt a fitting rule to determine a set of values of undetermined coefficients by combining the test parameters, the corresponding fatigue simulation times and the initial response surface calculation model. The values of the undetermined coefficients can minimize the sum of squares of the errors between the predicted fatigue times corresponding to each set of test parameters and the corresponding simulated fatigue times. The values of the undetermined coefficients are taken as the target coefficients.

例如,该初始响应面计算模型采用一阶公式,该试验参数分别是卸荷槽的长度L、宽度W和高度H,对应的仿真疲劳次数为λ,将该组数据带入初始响应面计算模型,得到多组方程,对于多组方程求解,得到待定系数β0、β1、β2和β3的取值。For example, the initial response surface calculation model adopts a first-order formula, the test parameters are the length L, width W and height H of the unloading groove, and the corresponding simulation fatigue number is λ. This set of data is brought into the initial response surface calculation model to obtain multiple sets of equations. The multiple sets of equations are solved to obtain the values of the unknown coefficients β 0 , β 1 , β 2 and β 3 .

步骤S307:依据所述目标系数和所述初始响应面计算模型,得到目标响应面计算模型;Step S307: obtaining a target response surface calculation model according to the target coefficient and the initial response surface calculation model;

其中,将该确定了数值的目标系数替换初始响应面计算模型中的待定系数,得到目标响应面计算模型。The target coefficients with determined values are used to replace the undetermined coefficients in the initial response surface calculation model to obtain the target response surface calculation model.

其中,由于该目标响应面计算模型的预测结果能够尽量贴近预设仿真模型的仿真结果,能够保证采用目标响应面计算模型预测的结果与仿真结果几乎一致,但是,采用该目标响应面计算模型进行计算所需的时间远远少于仿真时间,降低了确定目标卸荷槽参数的耗时。Among them, since the prediction results of the target response surface calculation model can be as close as possible to the simulation results of the preset simulation model, it can ensure that the results predicted by the target response surface calculation model are almost consistent with the simulation results. However, the time required for calculation using the target response surface calculation model is much less than the simulation time, which reduces the time spent on determining the target unloading tank parameters.

步骤S308:依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。Step S308: Determine target unloading groove parameters according to the size parameters of the target area and the target response surface calculation model, and the fatigue times corresponding to the target unloading groove parameters meet the preset requirements.

其中,步骤S308与实施例2中的相应步骤一致,本实施例中不做赘述。Among them, step S308 is consistent with the corresponding step in Example 2 and is not described in detail in this embodiment.

综上,本实施例提供的一种缸盖卸荷槽参数确定方法,所述试验参数集合中试验参数的组数大于等于待定系数的个数,该方法,包括:依据预设收敛规则,依据所述试验参数集合中的试验参数以及对应的仿真疲劳次数集合分别与初始响应面计算模型计算,得到目标系数;依据所述目标系数和所述初始响应面计算模型,得到目标响应面计算模型。本实施例中,基于数学计算即可得到目标响应面计算模型,过程简单易行。In summary, the present embodiment provides a method for determining the parameters of the cylinder head unloading groove, wherein the number of groups of test parameters in the test parameter set is greater than or equal to the number of coefficients to be determined, and the method comprises: according to a preset convergence rule, the test parameters in the test parameter set and the corresponding set of simulated fatigue times are respectively calculated with the initial response surface calculation model to obtain the target coefficient; according to the target coefficient and the initial response surface calculation model, the target response surface calculation model is obtained. In the present embodiment, the target response surface calculation model can be obtained based on mathematical calculation, and the process is simple and easy.

如图4所示的,为本申请提供的一种缸盖卸荷槽参数确定方法实施例4的流程图,该方法包括以下步骤:As shown in FIG. 4 , it is a flow chart of Embodiment 4 of a method for determining parameters of a cylinder head unloading groove provided by the present application. The method comprises the following steps:

步骤S401:获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;Step S401: obtaining size parameters of a target area in a cylinder head, where the target area is an area where a relief groove can be set;

步骤S402:获得初始响应面计算模型;Step S402: obtaining an initial response surface calculation model;

步骤S403:依据所述初始响应面计算模型,确定试验参数组数;Step S403: determining the number of test parameter groups according to the initial response surface calculation model;

步骤S404:依据所述目标区域的尺寸参数以及所述试验参数组数,确定试验参数集合;Step S404: determining a test parameter set according to the size parameter of the target area and the number of test parameter groups;

步骤S405:控制预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合;Step S405: controlling a preset simulation model to simulate the test parameters of the test parameter set to obtain a set of simulated fatigue times;

步骤S406:依据所述仿真疲劳次数集合以及所述试验参数集合,确定目标响应面计算模型;Step S406: determining a target response surface calculation model according to the set of simulation fatigue times and the set of test parameters;

步骤S407:依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数;Step S407: determining target unloading tank parameters according to the size parameters of the target area and the target response surface calculation model;

其中,步骤S401-407与实施例2中的相应步骤一致,本实施例中不做赘述。Among them, steps S401-407 are consistent with the corresponding steps in Example 2 and are not described in detail in this embodiment.

步骤S408:控制预设仿真模型对于所述目标卸荷槽参数进行仿真,得到目标仿真疲劳次数;Step S408: controlling a preset simulation model to simulate the target unloading slot parameters to obtain a target simulation fatigue number;

其中,在确定了目标卸荷槽参数后,由于目标响应面计算模型的预测结果与预设仿真模型的仿真结果可能有差距,因此,本实施例中进一步基于预设仿真模型对于该目标卸荷槽参数是否为最优参数进行确定。Among them, after determining the target unloading tank parameters, since the prediction results of the target response surface calculation model may be different from the simulation results of the preset simulation model, in this embodiment, it is further determined whether the target unloading tank parameters are optimal parameters based on the preset simulation model.

具体的,控制预设仿真模型对于该目标卸荷槽参数进行仿真,得到目标仿真疲劳次数。Specifically, the preset simulation model is controlled to simulate the target unloading slot parameters to obtain the target simulation fatigue times.

其中,预设阈值可以是经验值,具体是设置的经验疲劳次数,可以是缸盖的疲劳次数下限。The preset threshold may be an empirical value, specifically a set empirical fatigue count, or may be a lower limit of the fatigue count of the cylinder head.

其中,将该目标仿真疲劳次数与预设阈值进行比对,若该目标仿真疲劳次数大于预设阈值,表征缸盖设定该目标卸荷槽参数能够达到的疲劳次数是大于疲劳次数下限的。Among them, the target simulation fatigue number is compared with a preset threshold. If the target simulation fatigue number is greater than the preset threshold, it indicates that the fatigue number that can be achieved by setting the target unloading groove parameters of the cylinder head is greater than the lower limit of the fatigue number.

其中,将该目标仿真疲劳次数与前述步骤中的仿真疲劳次数集合中每个仿真疲劳次数进行比对,若该目标仿真疲劳次数均大于该仿真疲劳次数集合中的每个仿真疲劳次数,可以确定该目标卸荷槽参数是当前最优的参数。Among them, the target simulation fatigue number is compared with each simulation fatigue number in the simulation fatigue number set in the previous step. If the target simulation fatigue number is greater than each simulation fatigue number in the simulation fatigue number set, it can be determined that the target unloading slot parameter is the current optimal parameter.

步骤S409:若所述目标仿真疲劳次数小于预设阈值和/或所述目标仿真疲劳次数小于仿真疲劳次数集合中的任意仿真疲劳次数,增加试验参数组数;Step S409: if the target simulation fatigue number is less than a preset threshold and/or the target simulation fatigue number is less than any simulation fatigue number in the simulation fatigue number set, increase the number of test parameter groups;

并返回执行步骤S404。And return to execute step S404.

其中,若该目标仿真疲劳次数小于该预设阈值,表征缸盖设定该卸荷槽参数达到的疲劳次数小于疲劳次数下限,则表征该目标响应面计算模型计算得到的目标卸荷槽参数不是最优参数。Among them, if the target simulation fatigue number is less than the preset threshold, indicating that the fatigue number reached by setting the unloading groove parameters of the cylinder head is less than the lower limit of the fatigue number, then the target unloading groove parameters calculated by the target response surface calculation model are not optimal parameters.

其中,若该目标仿真疲劳次数小于该仿真疲劳次数集合中的任意仿真疲劳次数,表征缸盖设定该卸荷槽参数达到的疲劳次数不是最大的,该目标响应面计算模型计算得到的目标卸荷槽参数不是最优参数。Among them, if the target simulation fatigue number is less than any simulation fatigue number in the simulation fatigue number set, it means that the fatigue number achieved by setting the unloading groove parameters of the cylinder head is not the largest, and the target unloading groove parameters calculated by the target response surface calculation model are not optimal parameters.

具体的,若该目标响应面计算模型计算得到的目标卸荷槽参数不是最优参数,表征该目标响应面计算模型误差较大,需要对于该目标响应面计算模型进一步优化。Specifically, if the target unloading tank parameters calculated by the target response surface calculation model are not optimal parameters, it indicates that the target response surface calculation model has a large error and needs to be further optimized.

具体的,增加试验参数组数,以使得降低目标响应面计算模型与预设仿真模型之间的误差。Specifically, the number of test parameter groups is increased so as to reduce the error between the target response surface calculation model and the preset simulation model.

具体的,可以参考前述实施例4中的过程,降低目标响应面计算模型与预设仿真模型之间的误差,本实施例中不做赘述。Specifically, the error between the target response surface calculation model and the preset simulation model can be reduced by referring to the process in the aforementioned embodiment 4, which will not be described in detail in this embodiment.

综上,本实施例提供的一种缸盖卸荷槽参数确定方法,还包括:控制预设仿真模型对于所述目标卸荷槽参数进行仿真,得到目标仿真疲劳次数;若所述目标仿真疲劳次数小于预设阈值和/或所述目标仿真疲劳次数小于仿真疲劳次数集合中的任意仿真疲劳次数,增加试验参数组数,并返回执行所述依据所述目标区域的尺寸参数以及所述试验参数组数,确定试验参数集合步骤。本实施例中,还控制预设仿真模型对于目标卸荷槽参数进行仿真,确定目标响应面计算模型的预测准确度,若该目标卸荷槽参数的目标仿真疲劳次数小于预设阈值和/或小于仿真疲劳次数集合中的任意疲劳次数,确定目标响应面计算模型的预测准确度较低,该目标卸荷槽参数不是最优位置,对于该目标响应面计算模型进行参数优化,以基于优化后的目标响应面计算模型确定目标卸荷槽参数,以提高预测结果的准确度。In summary, the cylinder head unloading groove parameter determination method provided in the present embodiment also includes: controlling the preset simulation model to simulate the target unloading groove parameter to obtain the target simulation fatigue number; if the target simulation fatigue number is less than the preset threshold and/or the target simulation fatigue number is less than any simulation fatigue number in the simulation fatigue number set, increasing the number of test parameter groups, and returning to execute the step of determining the test parameter set based on the size parameters of the target area and the number of test parameter groups. In the present embodiment, the preset simulation model is also controlled to simulate the target unloading groove parameter to determine the prediction accuracy of the target response surface calculation model. If the target simulation fatigue number of the target unloading groove parameter is less than the preset threshold and/or less than any fatigue number in the simulation fatigue number set, it is determined that the prediction accuracy of the target response surface calculation model is low, and the target unloading groove parameter is not the optimal position. The target response surface calculation model is parameter optimized to determine the target unloading groove parameter based on the optimized target response surface calculation model to improve the accuracy of the prediction result.

如图5所示的,为本申请提供的一种缸盖卸荷槽参数确定方法实施例5的流程图,该方法包括以下步骤:As shown in FIG. 5 , it is a flow chart of Embodiment 5 of a method for determining parameters of a cylinder head unloading groove provided by the present application. The method comprises the following steps:

步骤S501:获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;Step S501: obtaining size parameters of a target area in a cylinder head, where the target area is an area where a relief groove can be set;

步骤S502:获得初始响应面计算模型;Step S502: obtaining an initial response surface calculation model;

步骤S503:依据所述初始响应面计算模型,确定试验参数组数;Step S503: determining the number of test parameter groups according to the initial response surface calculation model;

步骤S504:依据所述目标区域的尺寸参数以及所述试验参数组数,确定试验参数集合;Step S504: determining a test parameter set according to the size parameter of the target area and the number of test parameter groups;

步骤S505:控制预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合;Step S505: controlling a preset simulation model to simulate the test parameters of the test parameter set to obtain a set of simulated fatigue times;

步骤S506:依据所述仿真疲劳次数集合以及所述试验参数集合,确定目标响应面计算模型;Step S506: determining a target response surface calculation model according to the simulation fatigue times set and the test parameter set;

步骤S507:依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数;Step S507: determining target unloading slot parameters according to the size parameters of the target area and the target response surface calculation model;

其中,步骤S501-507与实施例2中的相应步骤一致,本实施例中不做赘述。Among them, steps S501-507 are consistent with the corresponding steps in Example 2 and are not described in detail in this embodiment.

步骤S508:控制预设仿真模型对于所述目标卸荷槽参数进行仿真,得到目标仿真疲劳次数;Step S508: controlling a preset simulation model to simulate the target unloading slot parameters to obtain a target simulation fatigue number;

其中,该步骤S508的解释,请参考实施例4中的相应步骤,本实施例中不做赘述。For the explanation of step S508, please refer to the corresponding steps in Example 4, which will not be described in detail in this embodiment.

步骤S509:若所述目标仿真疲劳次数小于预设阈值和/或所述目标仿真疲劳次数小于仿真疲劳次数集合中的任意仿真疲劳次数,更新初始响应面计算模型,更新后的初始响应面计算模型的阶数大于更新前的初始响应面计算模型的阶数;Step S509: if the target simulation fatigue number is less than a preset threshold and/or the target simulation fatigue number is less than any simulation fatigue number in the simulation fatigue number set, updating the initial response surface calculation model, and the order of the updated initial response surface calculation model is greater than the order of the initial response surface calculation model before the update;

并返回执行步骤S503。And return to execute step S503.

其中,若该目标仿真疲劳次数小于该预设阈值,表征缸盖设定该卸荷槽参数达到的疲劳次数小于疲劳次数下限,则表征该目标响应面计算模型计算得到的目标卸荷槽参数不是最优参数。Among them, if the target simulation fatigue number is less than the preset threshold, indicating that the fatigue number reached by setting the unloading groove parameters of the cylinder head is less than the lower limit of the fatigue number, then the target unloading groove parameters calculated by the target response surface calculation model are not optimal parameters.

其中,若该目标仿真疲劳次数小于该仿真疲劳次数集合中的任意仿真疲劳次数,表征缸盖设定该卸荷槽参数达到的疲劳次数不是最大的,该目标响应面计算模型计算得到的目标卸荷槽参数不是最优参数。Among them, if the target simulation fatigue number is less than any simulation fatigue number in the simulation fatigue number set, it means that the fatigue number achieved by setting the unloading groove parameters of the cylinder head is not the largest, and the target unloading groove parameters calculated by the target response surface calculation model are not optimal parameters.

具体的,若该目标响应面计算模型计算得到的目标卸荷槽参数不是最优参数,表征该目标响应面计算模型误差较大,需要对于该目标响应面计算模型进一步优化。Specifically, if the target unloading tank parameters calculated by the target response surface calculation model are not optimal parameters, it indicates that the target response surface calculation model has a large error and needs to be further optimized.

具体的,更新初始响应面计算模型,提高计算模型的阶数,以使得降低目标响应面计算模型与预设仿真模型之间的误差。Specifically, the initial response surface calculation model is updated and the order of the calculation model is increased so as to reduce the error between the target response surface calculation model and the preset simulation model.

其中,计算模型的阶数越高,其涉及的待定系数越多,因此需要的试验参数组数越多,相应的,仿真次数越多,计算次数越多,响应面计算模型越准确。Among them, the higher the order of the calculation model, the more undetermined coefficients it involves, and therefore the more test parameter groups are required. Correspondingly, the more simulation times and calculation times are, the more accurate the response surface calculation model is.

例如,从一阶的初始响应面计算模型更新为二阶的初始响应面计算模型。For example, the first-order initial response surface calculation model is updated to the second-order initial response surface calculation model.

二阶的初始响应面计算模型如下:The second-order initial response surface calculation model is as follows:

其中,λ表示缸盖疲劳强度,β是待定系数,Ki和Kj分别表示长度L宽度W和高度H三个因子。Among them, λ represents the fatigue strength of the cylinder head, β is the unknown coefficient, and Ki and Kj represent the three factors of length L, width W and height H respectively.

其中,该模型中,有10个待定系数,分别是β0、β1、β2、β3、β11、β12、β13、β22、β23、β33Among them, there are 10 unknown coefficients in this model, namely β 0 , β 1 , β 2 , β 3 , β 11 , β 12 , β 13 , β 22 , β 23 , and β 33 .

其中,在确定了高阶的初始响应面计算模型后,返回执行步骤S602,以实现确定该高阶的初始响应面计算模型的系数,进而确定新的目标响应面计算模型,以降低目标响应面计算模型与预设仿真模型之间的误差。After the high-order initial response surface calculation model is determined, the process returns to step S602 to determine the coefficients of the high-order initial response surface calculation model, and then determines a new target response surface calculation model to reduce the error between the target response surface calculation model and the preset simulation model.

综上,本实施例提供的一种缸盖卸荷槽参数确定方法,还包括:控制预设仿真模型对于所述目标卸荷槽参数进行仿真,得到目标仿真疲劳次数;若所述目标仿真疲劳次数小于预设阈值和/或所述目标仿真疲劳次数小于仿真疲劳次数集合中的任意仿真疲劳次数,更新初始响应面计算模型,更新后的初始响应面计算模型的阶数大于更新前的初始响应面计算模型的阶数,并返回执行所述依据所述初始响应面计算模型,确定试验参数组数步骤。本实施例中,还控制预设仿真模型对于目标卸荷槽参数进行仿真,确定目标响应面计算模型的预测准确度,若该目标卸荷槽参数的目标仿真疲劳次数小于预设阈值和/或小于仿真疲劳次数集合中的任意疲劳次数,确定目标响应面计算模型的预测准确度较低,该目标卸荷槽参数不是最优位置,选择更高阶的初始响应面模型,并重新确定该初始响应面模型的参数,实现优化响应面模型,以基于优化后的响应面模型确定目标卸荷槽参数,以提高预测结果的准确度。In summary, the present embodiment provides a method for determining the parameters of the cylinder head unloading groove, further comprising: controlling the preset simulation model to simulate the target unloading groove parameters to obtain the target simulation fatigue times; if the target simulation fatigue times are less than the preset threshold and/or the target simulation fatigue times are less than any simulation fatigue times in the simulation fatigue times set, updating the initial response surface calculation model, the order of the updated initial response surface calculation model is greater than the order of the initial response surface calculation model before the update, and returning to execute the step of determining the number of test parameter groups according to the initial response surface calculation model. In the present embodiment, the preset simulation model is also controlled to simulate the target unloading groove parameters to determine the prediction accuracy of the target response surface calculation model. If the target simulation fatigue times of the target unloading groove parameters are less than the preset threshold and/or less than any fatigue times in the simulation fatigue times set, it is determined that the prediction accuracy of the target response surface calculation model is low, and the target unloading groove parameters are not in the optimal position, a higher-order initial response surface model is selected, and the parameters of the initial response surface model are re-determined to optimize the response surface model, so as to determine the target unloading groove parameters based on the optimized response surface model, so as to improve the accuracy of the prediction results.

如图6所示的,为本申请提供的一种缸盖卸荷槽参数确定方法实施例6的流程图,该方法包括以下步骤:As shown in FIG. 6 , it is a flow chart of Embodiment 6 of a method for determining parameters of a cylinder head unloading groove provided by the present application. The method comprises the following steps:

步骤S601:基于第一目标螺栓和第二目标螺栓位置,获得第一距离,所述第一距离对应于卸荷槽的长度;Step S601: obtaining a first distance based on the first target bolt and the second target bolt positions, wherein the first distance corresponds to the length of the unloading groove;

其中,基于缸盖上各个结构的尺寸,对其目标区域的尺寸参数进行确定。Among them, based on the size of each structure on the cylinder head, the size parameters of its target area are determined.

其中,在缸盖的进水孔位置和出水孔位置内侧,分别设置有两个螺栓,第一目标螺栓和第二目标螺栓。Among them, two bolts, a first target bolt and a second target bolt, are respectively arranged inside the water inlet hole and the water outlet hole of the cylinder cover.

具体的,基于该第一目标螺栓和第二目标螺栓的位置,获得第一距离,该第一距离具体是两个目标螺栓之间去掉必须的合理壁厚的距离。Specifically, based on the positions of the first target bolt and the second target bolt, a first distance is obtained. The first distance is specifically the distance between the two target bolts minus the necessary reasonable wall thickness.

其中,该第一距离对应于卸荷槽长度,在后续确定试验参数时,在该第一距离范围内选择试验卸荷槽长度。The first distance corresponds to the length of the unloading groove, and when determining the test parameters later, the test unloading groove length is selected within the range of the first distance.

具体的,可以按照设定的第一梯度,依次选择多个卸荷槽长度值。Specifically, a plurality of unloading groove length values may be selected in sequence according to the set first gradient.

步骤S602:基于缸盖垫片上两缸密封带位置,获得的第二距离,所述第二距离对应于卸荷槽的宽度;Step S602: obtaining a second distance based on the positions of the two cylinder sealing bands on the cylinder head gasket, wherein the second distance corresponds to the width of the unloading groove;

其中,在缸盖垫片上两缸密封带之间,获得第二距离,该第二距离具体是该缸盖垫片上两缸密封带之间去掉必须的合理壁厚的距离。A second distance is obtained between the two cylinder sealing bands on the cylinder head gasket, and the second distance is specifically the distance between the two cylinder sealing bands on the cylinder head gasket minus the necessary reasonable wall thickness.

其中,该第二距离对应于卸荷槽宽度,在后续确定试验参数时,在该第二距离范围内选择试验卸荷槽宽度。The second distance corresponds to the unloading groove width, and when determining the test parameters later, the test unloading groove width is selected within the second distance range.

具体的,可以按照设定的第二梯度,依次选择多个卸荷槽宽度值。Specifically, a plurality of unloading groove width values may be selected in sequence according to the set second gradient.

步骤S603:基于缸盖厚度,获得第三距离,所述第三距离对应于卸荷槽的深度相关;Step S603: based on the cylinder head thickness, obtaining a third distance, wherein the third distance corresponds to the depth of the unloading groove;

其中,缸盖厚度是卸荷槽深度的上限,该卸荷槽深度不能超过缸盖厚度。Among them, the cylinder head thickness is the upper limit of the unloading groove depth, and the unloading groove depth cannot exceed the cylinder head thickness.

具体的,该卸荷槽深度跟加工工艺相关,通常宽度越大加工深度越大,最深时应保证卸荷槽与缸盖内部水套、油道等留有合理壁厚。Specifically, the depth of the unloading groove is related to the processing technology. Generally, the greater the width, the greater the processing depth. When it is the deepest, it should ensure that a reasonable wall thickness is left between the unloading groove and the water jacket and oil channel inside the cylinder head.

图7为缸盖底面视图,图8为图7中A-A截面的剖视图,请结合图7和图8,缸盖包括:缸盖1、缸盖底面2、排气门孔3、进气门孔4、火花塞孔5、缸盖螺栓孔6、鼻梁区7、缸盖进水孔8、缸盖出水孔9、缸盖回油孔10、缸间卸荷槽11。其中,L表示卸荷槽长度,W表示卸荷槽宽度,H表示卸荷槽深度。FIG7 is a bottom view of the cylinder head, and FIG8 is a cross-sectional view of the A-A section in FIG7. Please combine FIG7 and FIG8, the cylinder head includes: cylinder head 1, cylinder head bottom surface 2, exhaust valve hole 3, intake valve hole 4, spark plug hole 5, cylinder head bolt hole 6, nose bridge area 7, cylinder head water inlet hole 8, cylinder head water outlet hole 9, cylinder head oil return hole 10, and inter-cylinder unloading groove 11. Among them, L represents the unloading groove length, W represents the unloading groove width, and H represents the unloading groove depth.

其中,缸盖1与机体、活塞组成发动机的燃烧室,燃烧室内气体燃烧产生高温高压气体,作用在缸盖底面2上,使缸盖底面产生较大的热应力。缸盖底面2上有排气门孔3与进气门孔4,分别与缸盖排气道、进气道相连。排气门孔3和进气门孔4的中间,设置有火花塞孔5,用于安装火花塞。排气门孔3、进气门孔4以及火花塞孔5的存在,使缸盖底面各部位刚度不一。当缸盖底面2因受热而变形时,容易在各气门孔的中部连接位置,即鼻梁区7产生应力集中。如果应力无法得到有效释放,则容易产生疲劳裂纹。各气门孔的外侧有多个缸盖螺栓孔6,缸盖螺栓穿过缸盖螺栓孔6将缸盖1与机体连接起来。为了降低缸盖底面2的温度,缸盖1上还设置有缸盖进水孔8和缸盖出水孔9,冷却水通过各水孔在缸盖1内部流动,对缸盖进行冷却。缸盖外侧还设置有缸盖回油孔10,缸盖罩内的机油通过缸盖回油孔10流回发动机油底壳。在缸盖各缸的中间连接区域设置有缸间卸荷槽11,通过缸间卸荷槽11的变形,释放鼻梁区7的热应力,降低缸盖裂纹风险。Among them, the cylinder head 1, the engine body and the piston form the combustion chamber of the engine. The combustion of the gas in the combustion chamber generates high-temperature and high-pressure gas, which acts on the bottom surface 2 of the cylinder head, causing large thermal stress on the bottom surface of the cylinder head. There are exhaust valve holes 3 and intake valve holes 4 on the bottom surface 2 of the cylinder head, which are connected to the exhaust duct and intake duct of the cylinder head respectively. In the middle of the exhaust valve hole 3 and the intake valve hole 4, a spark plug hole 5 is provided for installing the spark plug. The existence of the exhaust valve hole 3, the intake valve hole 4 and the spark plug hole 5 makes the rigidity of each part of the bottom surface of the cylinder head different. When the bottom surface 2 of the cylinder head is deformed due to heat, stress concentration is likely to occur at the middle connection position of each valve hole, that is, the nose bridge area 7. If the stress cannot be effectively released, fatigue cracks are likely to occur. There are multiple cylinder head bolt holes 6 on the outside of each valve hole, and the cylinder head bolts pass through the cylinder head bolt holes 6 to connect the cylinder head 1 to the engine body. In order to reduce the temperature of the bottom surface 2 of the cylinder head, the cylinder head 1 is also provided with a cylinder head water inlet hole 8 and a cylinder head water outlet hole 9. Cooling water flows inside the cylinder head 1 through the water holes to cool the cylinder head. A cylinder head oil return hole 10 is also provided on the outside of the cylinder head. The oil in the cylinder head cover flows back to the engine oil pan through the cylinder head oil return hole 10. An inter-cylinder unloading groove 11 is provided in the middle connection area of each cylinder of the cylinder head. Through the deformation of the inter-cylinder unloading groove 11, the thermal stress of the nose bridge area 7 is released, reducing the risk of cylinder head cracks.

步骤S604:依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。Step S604: Determine target unloading groove parameters according to the size parameters of the target area and the target response surface calculation model, and the fatigue times corresponding to the target unloading groove parameters meet the preset requirements.

其中,步骤S704与实施例1中的相应步骤一致,本实施例中不做赘述。Among them, step S704 is consistent with the corresponding step in Example 1 and is not described in detail in this embodiment.

综上,本实施例提供的一种缸盖卸荷槽参数确定方法,包括:基于第一目标螺栓和第二目标螺栓位置,获得第一距离,所述第一距离对应于卸荷槽的长度;基于缸盖垫片上两缸密封带位置,获得的第二距离,所述第二距离对应于卸荷槽的宽度;基于缸盖厚度,获得第三距离,所述第三距离对应于卸荷槽的深度相关。本实施例中,依据缸盖的具体结构,确定缸盖中的目标区域参数,为后续目标响应面计算模型计算得到目标卸荷槽参数提供基础。In summary, the present embodiment provides a method for determining the parameters of the cylinder head unloading groove, including: obtaining a first distance based on the first target bolt and the second target bolt positions, the first distance corresponding to the length of the unloading groove; obtaining a second distance based on the positions of the two cylinder sealing bands on the cylinder head gasket, the second distance corresponding to the width of the unloading groove; obtaining a third distance based on the cylinder head thickness, the third distance corresponding to the depth of the unloading groove. In the present embodiment, the target area parameters in the cylinder head are determined according to the specific structure of the cylinder head, providing a basis for the subsequent target response surface calculation model to calculate the target unloading groove parameters.

与上述本申请提供的一种缸盖卸荷槽参数确定方法实施例相对应的,本申请还提供了应用该缸盖卸荷槽参数确定方法的装置实施例。Corresponding to the above-mentioned embodiment of a method for determining parameters of a cylinder head unloading groove provided by the present application, the present application also provides an embodiment of a device applying the method for determining parameters of a cylinder head unloading groove.

如图9所示的为本申请提供的一种缸盖卸荷槽参数确定装置实施例的结构示意图,该装置包括以下结构:获得模块901和确定模块902;FIG9 is a schematic diagram of a cylinder head unloading groove parameter determination device embodiment provided by the present application, the device includes the following structures: an acquisition module 901 and a determination module 902;

其中,获得模块901,用于获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;Wherein, the obtaining module 901 is used to obtain the size parameters of the target area in the cylinder head, where the target area is an area where the unloading groove can be set;

其中,确定模块902,用于依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。The determination module 902 is used to determine the target unloading groove parameters according to the size parameters of the target area and the target response surface calculation model, and the fatigue times corresponding to the target unloading groove parameters meet the preset requirements.

可选的,所述依据所述目标区域的尺寸参数以及预设响应面计算模型,得到目标卸荷槽参数之前,还包括:Optionally, before obtaining the target unloading slot parameters according to the size parameters of the target area and the preset response surface calculation model, the method further includes:

模型获得模块,用于获得初始响应面计算模型;A model acquisition module is used to obtain an initial response surface calculation model;

组数确定模块,用于依据所述初始响应面计算模型,确定试验参数组数;A group number determination module is used to determine the number of test parameter groups according to the initial response surface calculation model;

试验参数确定模块,用于依据所述目标区域的尺寸参数以及所述试验参数组数,确定试验参数集合,所述试验参数集合中包括至少四组试验参数,任意两组试验参数包括卸荷槽的尺寸不同;A test parameter determination module, used to determine a test parameter set according to the size parameter of the target area and the number of test parameter groups, wherein the test parameter set includes at least four groups of test parameters, and any two groups of test parameters include different sizes of unloading slots;

控制模块,用于控制预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合,所述仿真疲劳次数集合中的仿真疲劳次数个数与试验参数集合中的试验参数组数对应;A control module, used for controlling a preset simulation model to simulate the test parameters of the test parameter set to obtain a simulation fatigue times set, wherein the number of simulation fatigue times in the simulation fatigue times set corresponds to the number of test parameter groups in the test parameter set;

模型确定模块,用于依据所述仿真疲劳次数集合以及所述试验参数集合,确定目标响应面计算模型。The model determination module is used to determine the target response surface calculation model according to the simulation fatigue number set and the test parameter set.

可选的,所述控制模块,具体用于:Optionally, the control module is specifically used to:

设定缸盖仿真环境信息,所述缸盖仿真环境信息表征缸盖环境达到边界条件;Setting cylinder head simulation environment information, wherein the cylinder head simulation environment information indicates that the cylinder head environment reaches a boundary condition;

基于所述缸盖仿真环境信息,控制所述预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合。Based on the cylinder head simulation environment information, the preset simulation model is controlled to simulate the test parameters of the test parameter set to obtain a set of simulated fatigue times.

可选的,模型确定模块,用于:Optionally, a model determination module is used to:

依据所述仿真疲劳次数集合、所述试验参数集合以及所述初始响应面计算模型,得到第一系数;Obtaining a first coefficient according to the set of simulated fatigue times, the set of test parameters, and the initial response surface calculation model;

依据所述第一系数和所述初始响应面计算模型,得到目标响应面计算模型。A target response surface calculation model is obtained according to the first coefficient and the initial response surface calculation model.

可选的,模型确定模块,还用于:Optionally, the model determination module is also used to:

基于所述试验参数集合中试验参数的组数大于第一系数的个数,依据所述试验参数集合中的试验参数和所述目标响应面计算模型,得到预测疲劳次数集合;Based on the number of groups of test parameters in the test parameter set being greater than the number of the first coefficient, a set of predicted fatigue times is obtained according to the test parameters in the test parameter set and the target response surface calculation model;

依据所述预测疲劳次数集合和所述仿真疲劳次数集合,得到第二系数;Obtaining a second coefficient according to the predicted fatigue times set and the simulated fatigue times set;

基于所述第二系数更新所述目标响应面计算模型的第一系数。The first coefficients of the target response surface calculation model are updated based on the second coefficients.

可选的,控制模块,还用于:Optionally, the control module is also used to:

控制预设仿真模型对于所述目标卸荷槽参数进行仿真,得到目标仿真疲劳次数;Controlling a preset simulation model to simulate the target unloading slot parameters to obtain a target simulation fatigue number;

若所述目标仿真疲劳次数小于预设阈值和/或所述目标仿真疲劳次数小于仿真疲劳次数集合中的任意仿真疲劳次数,增加试验参数组数,并返回触发试验参数确定模块。If the target simulation fatigue times is less than a preset threshold and/or the target simulation fatigue times is less than any simulation fatigue times in the simulation fatigue times set, the number of test parameter groups is increased, and the trigger test parameter determination module is returned.

可选的,控制模块,还用于:Optionally, the control module is also used to:

控制预设仿真模型对于所述目标卸荷槽参数进行仿真,得到目标仿真疲劳次数;Controlling a preset simulation model to simulate the target unloading slot parameters to obtain a target simulation fatigue number;

若所述目标仿真疲劳次数小于预设阈值和/或所述目标仿真疲劳次数小于仿真疲劳次数集合中的任意仿真疲劳次数,更新初始响应面计算模型,更新后的初始响应面计算模型的阶数大于更新前的初始响应面计算模型的阶数,并返回触发组数确定模块。If the target simulation fatigue number is less than a preset threshold and/or the target simulation fatigue number is less than any simulation fatigue number in the simulation fatigue number set, the initial response surface calculation model is updated, the order of the updated initial response surface calculation model is greater than the order of the initial response surface calculation model before the update, and the trigger group number determination module is returned.

可选的,获得模块,具体用于:Optionally, obtain the module, specifically for:

基于第一目标螺栓和第二目标螺栓位置,获得第一距离,所述第一距离对应于卸荷槽的长度;Based on the first target bolt position and the second target bolt position, obtaining a first distance, wherein the first distance corresponds to a length of the unloading groove;

基于缸盖垫片上两缸密封带位置,获得的第二距离,所述第二距离对应于卸荷槽的宽度;A second distance is obtained based on the positions of the two cylinder sealing bands on the cylinder head gasket, wherein the second distance corresponds to the width of the unloading groove;

基于缸盖厚度,获得第三距离,所述第三距离对应于卸荷槽的深度相关。Based on the cylinder head thickness, a third distance is obtained, which corresponds to the depth of the relief groove.

需要说明的是,本实施例中提供的一种缸盖卸荷槽参数确定装置实施例中的各个组成结构的功能解释,请参考前述方法实施例中的解释,本实施例中不做赘述。It should be noted that, for the functional explanation of each component structure in the cylinder head unloading groove parameter determination device embodiment provided in this embodiment, please refer to the explanation in the aforementioned method embodiment, and it will not be repeated in this embodiment.

综上,本实施例提供的一种缸盖卸荷槽参数确定装置,包括:获得模块,用于获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;确定模块,用于依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。本实施例中,设定目标响应面计算模型,基于缸盖中能够设置卸荷槽的目标区域的尺寸进行计算,能够快速确定目标卸荷槽参数,提高研发速度。In summary, the cylinder head unloading groove parameter determination device provided in this embodiment includes: an acquisition module for obtaining the size parameters of a target area in the cylinder head, the target area being an area where the unloading groove can be set; a determination module for determining the target unloading groove parameters based on the size parameters of the target area and a target response surface calculation model, wherein the fatigue times corresponding to the target unloading groove parameters meet the preset requirements. In this embodiment, the target response surface calculation model is set, and the calculation is performed based on the size of the target area in the cylinder head where the unloading groove can be set, so that the target unloading groove parameters can be quickly determined, thereby improving the research and development speed.

与上述本申请提供的一种缸盖卸荷槽参数确定方法实施例相对应的,本申请还提供了与该缸盖卸荷槽参数确定方法相应的电子设备以及可读存储介质。Corresponding to the above-mentioned embodiment of a method for determining parameters of a cylinder head unloading groove provided by the present application, the present application also provides electronic equipment and a readable storage medium corresponding to the method for determining parameters of a cylinder head unloading groove.

其中,该电子设备,包括:存储器、处理器;The electronic device includes: a memory and a processor;

其中,存储器存储有处理程序;Wherein, the memory stores a processing program;

所述处理器用于加载并执行所述存储器存储的所述处理程序,以实现如上述任一项所述的缸盖卸荷槽参数确定方法的各步骤。The processor is used to load and execute the processing program stored in the memory to implement each step of the cylinder head unloading groove parameter determination method as described in any one of the above items.

具体该电子设备的实现缸盖卸荷槽参数确定方法,参考前述缸盖卸荷槽参数确定方法实施例即可。For the specific implementation of the cylinder head unloading groove parameter determination method of the electronic device, reference may be made to the aforementioned cylinder head unloading groove parameter determination method embodiment.

其中,该可读存储介质,其上存储有计算机程序,所述计算机程序被处理器调用并执行,实现如上述任一项所述的缸盖卸荷槽参数确定方法的各步骤。The readable storage medium stores a computer program thereon, and the computer program is called and executed by a processor to implement the steps of the cylinder head unloading groove parameter determination method as described in any one of the above items.

具体该可读存储介质存储的计算机程序执行实现缸盖卸荷槽参数确定方法,参考前述缸盖卸荷槽参数确定方法实施例即可。Specifically, the computer program stored in the readable storage medium is executed to implement the cylinder head unloading groove parameter determination method, and reference may be made to the aforementioned cylinder head unloading groove parameter determination method embodiment.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例提供的装置而言,由于其与实施例提供的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。In this specification, each embodiment is described in a progressive manner, and each embodiment focuses on the differences from other embodiments. The same or similar parts between the embodiments can be referred to each other. For the device provided in the embodiment, since it corresponds to the method provided in the embodiment, the description is relatively simple, and the relevant parts can be referred to the method part.

对所提供的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所提供的原理和新颖特点相一致的最宽的范围。The above description of the provided embodiments enables professionals and technicians in the field to implement or use the present application. Various modifications to these embodiments will be apparent to professionals and technicians in the field, and the general principles defined herein can be implemented in other embodiments without departing from the spirit or scope of the present application. Therefore, the present application will not be limited to the embodiments shown herein, but will conform to the widest range consistent with the principles and novel features provided herein.

Claims (9)

1.一种缸盖卸荷槽参数确定方法,其特征在于,包括:1. A method for determining parameters of a cylinder head unloading groove, characterized by comprising: 获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;Obtaining size parameters of a target area in the cylinder head, where the target area is an area where a relief groove can be set; 获得初始响应面计算模型;Obtaining an initial response surface calculation model; 依据所述初始响应面计算模型,确定试验参数组数;Determining the number of test parameter groups according to the initial response surface calculation model; 依据所述目标区域的尺寸参数以及所述试验参数组数,确定试验参数集合,所述试验参数集合中包括至少四组试验参数,任意两组试验参数包括卸荷槽的尺寸不同;Determine a test parameter set according to the size parameter of the target area and the number of test parameter groups, wherein the test parameter set includes at least four groups of test parameters, and any two groups of test parameters include different sizes of the unloading groove; 控制预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合,所述仿真疲劳次数集合中的仿真疲劳次数个数与试验参数集合中的试验参数组数对应;Controlling a preset simulation model to simulate the test parameters of the test parameter set to obtain a simulation fatigue times set, wherein the number of simulation fatigue times in the simulation fatigue times set corresponds to the number of test parameter groups in the test parameter set; 依据所述仿真疲劳次数集合以及所述试验参数集合,确定目标响应面计算模型;Determining a target response surface calculation model according to the set of simulated fatigue times and the set of test parameters; 依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。According to the size parameters of the target area and the target response surface calculation model, the target unloading groove parameters are determined, and the fatigue times corresponding to the target unloading groove parameters meet the preset requirements. 2.根据权利要求1所述的缸盖卸荷槽参数确定方法,其特征在于,所述控制预设仿真模型对于所述试验参数集合的试验参数进行仿真,包括:2. The cylinder head unloading groove parameter determination method according to claim 1, characterized in that the control preset simulation model simulates the test parameters of the test parameter set, comprising: 设定缸盖仿真环境信息,所述缸盖仿真环境信息表征缸盖环境达到边界条件;Setting cylinder head simulation environment information, wherein the cylinder head simulation environment information indicates that the cylinder head environment reaches a boundary condition; 基于所述缸盖仿真环境信息,控制所述预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合。Based on the cylinder head simulation environment information, the preset simulation model is controlled to simulate the test parameters of the test parameter set to obtain a set of simulated fatigue times. 3.根据权利要求1所述的缸盖卸荷槽参数确定方法,其特征在于,所述试验参数集合中试验参数的组数大于等于待定系数的个数,所述依据所述仿真疲劳次数集合以及所述试验参数集合,确定目标响应面计算模型,包括:3. The method for determining the parameters of the cylinder head unloading groove according to claim 1, characterized in that the number of groups of test parameters in the test parameter set is greater than or equal to the number of coefficients to be determined, and the target response surface calculation model is determined based on the simulation fatigue number set and the test parameter set, comprising: 依据预设拟合规则,依据所述试验参数集合中的试验参数以及对应的仿真疲劳次数集合分别与初始响应面计算模型计算,得到目标系数;According to a preset fitting rule, the test parameters in the test parameter set and the corresponding simulation fatigue number set are calculated with the initial response surface calculation model to obtain the target coefficient; 依据所述目标系数和所述初始响应面计算模型,得到目标响应面计算模型。A target response surface calculation model is obtained according to the target coefficient and the initial response surface calculation model. 4.根据权利要求1所述的缸盖卸荷槽参数确定方法,其特征在于,还包括:4. The method for determining cylinder head unloading groove parameters according to claim 1, further comprising: 控制预设仿真模型对于所述目标卸荷槽参数进行仿真,得到目标仿真疲劳次数;Controlling a preset simulation model to simulate the target unloading slot parameters to obtain a target simulation fatigue number; 若所述目标仿真疲劳次数小于预设阈值和/或所述目标仿真疲劳次数小于仿真疲劳次数集合中的任意仿真疲劳次数,增加试验参数组数,并返回执行所述依据所述目标区域的尺寸参数以及所述试验参数组数,确定试验参数集合步骤。If the target simulation fatigue number is less than a preset threshold and/or the target simulation fatigue number is less than any simulation fatigue number in the simulation fatigue number set, increase the number of test parameter groups, and return to execute the step of determining the test parameter set based on the size parameters of the target area and the number of test parameter groups. 5.根据权利要求1所述的缸盖卸荷槽参数确定方法,其特征在于,还包括:5. The method for determining cylinder head unloading groove parameters according to claim 1, further comprising: 控制预设仿真模型对于所述目标卸荷槽参数进行仿真,得到目标仿真疲劳次数;Controlling a preset simulation model to simulate the target unloading slot parameters to obtain a target simulation fatigue number; 若所述目标仿真疲劳次数小于预设阈值和/或所述目标仿真疲劳次数小于仿真疲劳次数集合中的任意仿真疲劳次数,更新初始响应面计算模型,更新后的初始响应面计算模型的阶数大于更新前的初始响应面计算模型的阶数,并返回执行所述依据所述初始响应面计算模型,确定试验参数组数步骤。If the target simulation fatigue number is less than a preset threshold and/or the target simulation fatigue number is less than any simulation fatigue number in the simulation fatigue number set, the initial response surface calculation model is updated, the order of the updated initial response surface calculation model is greater than the order of the initial response surface calculation model before the update, and the process returns to execute the step of determining the number of test parameter groups based on the initial response surface calculation model. 6.根据权利要求1所述的缸盖卸荷槽参数确定方法,其特征在于,所述获得缸盖中目标区域的尺寸参数,包括:6. The method for determining the parameters of the cylinder head unloading groove according to claim 1, characterized in that the step of obtaining the size parameters of the target area in the cylinder head comprises: 基于第一目标螺栓和第二目标螺栓位置,获得第一距离,所述第一距离对应于卸荷槽的长度;Based on the first target bolt position and the second target bolt position, obtaining a first distance, wherein the first distance corresponds to a length of the unloading groove; 基于缸盖垫片上两缸密封带位置,获得的第二距离,所述第二距离对应于卸荷槽的宽度;A second distance is obtained based on the positions of the two cylinder sealing bands on the cylinder head gasket, wherein the second distance corresponds to the width of the unloading groove; 基于缸盖厚度,获得第三距离,所述第三距离对应于卸荷槽的深度相关。Based on the cylinder head thickness, a third distance is obtained, which corresponds to the depth of the relief groove. 7.一种缸盖卸荷槽参数确定装置,其特征在于,包括:7. A cylinder head unloading groove parameter determination device, characterized by comprising: 获得模块,用于获得缸盖中目标区域的尺寸参数,所述目标区域是能够设置卸荷槽的区域;An acquisition module, used for acquiring the size parameters of a target area in the cylinder head, wherein the target area is an area where a relief groove can be set; 模型获得模块,用于获得初始响应面计算模型;A model acquisition module is used to obtain an initial response surface calculation model; 组数确定模块,用于依据所述初始响应面计算模型,确定试验参数组数;A group number determination module is used to determine the number of test parameter groups according to the initial response surface calculation model; 试验参数确定模块,用于依据所述目标区域的尺寸参数以及所述试验参数组数,确定试验参数集合,所述试验参数集合中包括至少四组试验参数,任意两组试验参数包括卸荷槽的尺寸不同;A test parameter determination module, used to determine a test parameter set according to the size parameter of the target area and the number of test parameter groups, wherein the test parameter set includes at least four groups of test parameters, and any two groups of test parameters include different sizes of unloading grooves; 控制模块,用于控制预设仿真模型对于所述试验参数集合的试验参数进行仿真,得到仿真疲劳次数集合,所述仿真疲劳次数集合中的仿真疲劳次数个数与试验参数集合中的试验参数组数对应;A control module, used for controlling a preset simulation model to simulate the test parameters of the test parameter set to obtain a simulation fatigue times set, wherein the number of simulation fatigue times in the simulation fatigue times set corresponds to the number of test parameter groups in the test parameter set; 模型确定模块,用于依据所述仿真疲劳次数集合以及所述试验参数集合,确定目标响应面计算模型;A model determination module, used to determine a target response surface calculation model according to the set of simulated fatigue times and the set of test parameters; 确定模块,用于依据所述目标区域的尺寸参数以及目标响应面计算模型,确定目标卸荷槽参数,所述目标卸荷槽参数对应的疲劳次数满足预设要求。The determination module is used to determine the target unloading groove parameters according to the size parameters of the target area and the target response surface calculation model, and the fatigue times corresponding to the target unloading groove parameters meet the preset requirements. 8.一种电子设备,其特征在于,包括:8. An electronic device, comprising: 存储器、处理器;Memory, processor; 其中,存储器存储有处理程序;Wherein, the memory stores a processing program; 所述处理器用于加载并执行所述存储器存储的所述处理程序,以实现如权利要求1-6任一项所述的缸盖卸荷槽参数确定方法的各步骤。The processor is used to load and execute the processing program stored in the memory to implement each step of the cylinder head unloading groove parameter determination method as described in any one of claims 1-6. 9.一种可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器调用并执行,实现如权利要求1-6任一项所述的缸盖卸荷槽参数确定方法的各步骤。9. A readable storage medium, characterized in that a computer program is stored thereon, and the computer program is called and executed by a processor to implement the steps of the cylinder head unloading groove parameter determination method according to any one of claims 1 to 6.
CN202410105329.8A 2024-01-25 2024-01-25 Cylinder head unloading groove parameter determination method and related device Active CN117634265B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410105329.8A CN117634265B (en) 2024-01-25 2024-01-25 Cylinder head unloading groove parameter determination method and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410105329.8A CN117634265B (en) 2024-01-25 2024-01-25 Cylinder head unloading groove parameter determination method and related device

Publications (2)

Publication Number Publication Date
CN117634265A CN117634265A (en) 2024-03-01
CN117634265B true CN117634265B (en) 2024-05-17

Family

ID=90034237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410105329.8A Active CN117634265B (en) 2024-01-25 2024-01-25 Cylinder head unloading groove parameter determination method and related device

Country Status (1)

Country Link
CN (1) CN117634265B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2711393Y (en) * 2004-09-29 2005-07-20 广西玉柴机器股份有限公司 Unloading groove for cylinder cap of four-valve diesel engine
CN107992693A (en) * 2017-12-08 2018-05-04 中国北方发动机研究所(天津) A kind of cylinder head reliable life evaluation method
CN114970237A (en) * 2022-04-21 2022-08-30 中国第一汽车股份有限公司 Method for improving fatigue endurance simulation precision of stabilizer bar system
CN117309341A (en) * 2023-09-15 2023-12-29 潍柴动力股份有限公司 Cylinder liner fatigue testing device and cylinder liner testing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9483605B2 (en) * 2013-03-14 2016-11-01 United Technologies Corporation Probabilistic high cycle fatigue (HCF) design optimization process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2711393Y (en) * 2004-09-29 2005-07-20 广西玉柴机器股份有限公司 Unloading groove for cylinder cap of four-valve diesel engine
CN107992693A (en) * 2017-12-08 2018-05-04 中国北方发动机研究所(天津) A kind of cylinder head reliable life evaluation method
CN114970237A (en) * 2022-04-21 2022-08-30 中国第一汽车股份有限公司 Method for improving fatigue endurance simulation precision of stabilizer bar system
CN117309341A (en) * 2023-09-15 2023-12-29 潍柴动力股份有限公司 Cylinder liner fatigue testing device and cylinder liner testing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Optimization of Piston Grooves, Bridges on Cylinder Head, and Inlet Valve Masking of Home-Fueled Diesel Engine by Response Surface Methodology;Mathad R. Indudhar;《MDPI》;20211215;全文 *
基于结构耦合矩阵的主动再制造优化设计;宋守许;汪伟;柯庆镝;;计算机集成制造系统;20170430(第04期);全文 *
基于缸盖等效构件模型的热机疲劳寿命预测与优化设计方法;杨文军;《中国机械工程》;20231017;第3004-3014页 *

Also Published As

Publication number Publication date
CN117634265A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
CN108984920B (en) Direct fluid-solid coupling heat transfer analysis method for engine cooling water jacket
US9183328B2 (en) Method and apparatus for modeling interactions of the fluid with system boundaries in fluid dynamic systems
Grande et al. Design Procedure For Robust Design Of CV EGR Coolers Against Thermal Fatigue
CN103034744A (en) Simulation method of temperature field of cylinder head of low-speed diesel engine
US20020177985A1 (en) Computer system and method for radial cooled bucket optimization
CN116070534B (en) Optimization method, device, equipment and medium for liquid cooling plate in lithium battery energy storage system
US20250232089A1 (en) Method and apparatus for simulating thermal stress of casting mold during service process, and storage medium
CN117634265B (en) Cylinder head unloading groove parameter determination method and related device
CN115130203A (en) Flow field simulation method and device, nonvolatile storage medium and computer equipment
CN113901602B (en) Calculation method of wall temperature of porous heat shield based on partition similarity
CN112782974B (en) Control parameter calibration method
CN110750937B (en) Method, device and equipment for determining valve clearance
CN114676525B (en) A method and system for simulating and predicting heat release of engine water jacket
CN116822299B (en) Rapid calculation method for thermal stress of aeroengine flame tube under service load course
Annabattula et al. Sizing of coolant passages in an ic engine using a design of experiments approach
CN113673057B (en) Design analysis method for cooling water jacket of diesel engine based on CAE simulation technology
Jahangirian et al. A multi-physics 3D modeling methodology for multi-cylinder diesel engine thermal management and fatigue life prediction
CN113806854A (en) Calculation method for heat exchange in turbine blade air film hole
Lee et al. Thermal analysis of a liquid-petroleum-liquid injection engine piston using the inverse heat conduction method
Zenkin et al. Multicriteria optimization of the diesel engine piston cooling gallery
CN114065571B (en) Low cycle fatigue life analysis method for engine cylinder head model
Parashar et al. Reverse multi-objective robust design optimization (r-mordo) using chaos collocation based robustness quantification for engine calibration
CN118153329A (en) Method, device, equipment and storage medium for determining vibration stress
Sangeorzan et al. Development of a one-dimensional engine thermal management model to predict piston and oil temperatures
Chang et al. Development of 4-Cylinder 2.0 L Gasoline Engine Cooling System Using 3-D CAE

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant