[go: up one dir, main page]

CN117621044A - Control method and robot system - Google Patents

Control method and robot system Download PDF

Info

Publication number
CN117621044A
CN117621044A CN202311110663.4A CN202311110663A CN117621044A CN 117621044 A CN117621044 A CN 117621044A CN 202311110663 A CN202311110663 A CN 202311110663A CN 117621044 A CN117621044 A CN 117621044A
Authority
CN
China
Prior art keywords
control
coordinate system
robot
conversion function
target position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311110663.4A
Other languages
Chinese (zh)
Inventor
元吉正树
石塚谅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN117621044A publication Critical patent/CN117621044A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

本发明提供具有高的位置精度的控制方法及机器人系统。控制方法是确定机器人的相对于目标位置的控制位置的控制方法,其包括:真实基准位置获取步骤,获取三点以上的理想坐标系中的真实基准位置;第一控制基准位置获取步骤,获取机器人的控制点位于各个真实基准位置时的第一机器人控制坐标系中的第一控制基准位置;第一转换函数获取步骤,根据真实基准位置和第一控制基准位置获取第一转换函数,该第一转换函数用于将第一机器人控制坐标系中的控制位置在理想坐标系中转换为目标位置;以及控制位置确定步骤,使用第一转换函数将第一机器人控制坐标系中的控制位置转换为理想坐标系中的目标位置,并根据目标位置确定新的控制位置。

The present invention provides a control method and a robot system with high position accuracy. The control method is a control method for determining the control position of the robot relative to the target position, which includes: a real reference position acquisition step to obtain the real reference position in an ideal coordinate system of more than three points; a first control reference position acquisition step to obtain the robot The first control reference position in the first robot control coordinate system when the control points are located at each real reference position; the first conversion function acquisition step is to obtain the first conversion function according to the real reference position and the first control reference position. The conversion function is used to convert the control position in the first robot control coordinate system into the target position in the ideal coordinate system; and the control position determination step uses the first conversion function to convert the control position in the first robot control coordinate system into the ideal coordinate system. The target position in the coordinate system, and determine the new control position based on the target position.

Description

控制方法及机器人系统Control method and robot system

技术领域Technical field

本发明涉及控制方法及机器人系统。The invention relates to a control method and a robot system.

背景技术Background technique

例如,专利文献1中记载的机器人系统为如下所述的构成:在真实坐标系中设定多个作业原点,基于照相机的拍摄图像针对多个作业原点分别获取测量位置,基于测量位置对各作业原点的位置信息进行校正,从而来提高机器人的动作精度。For example, the robot system described in Patent Document 1 has a structure in which a plurality of work origins are set in a real coordinate system, measurement positions are acquired for each of the plurality of work origins based on images captured by a camera, and each work is measured based on the measurement positions. The position information of the origin is corrected to improve the robot's movement accuracy.

专利文献1:日本特开2018-134695号公报Patent Document 1: Japanese Patent Application Publication No. 2018-134695

在控制位置的确定方法中,除了如专利文献1那样将真实坐标系中的目标位置转换为机器人控制坐标系来确定控制位置的方法之外,还有如直接示教那样将控制位置直接指定在机器人控制坐标系中的方法。以下,为了便于说明,将前者的方法也称为第一确定方法,将后者的方法也称为第二确定方法。Among the methods for determining the control position, in addition to the method of converting the target position in the real coordinate system into the robot control coordinate system to determine the control position as in Patent Document 1, there is also the method of directly specifying the control position on the robot such as direct teaching. Methods that control the coordinate system. Hereinafter, for convenience of explanation, the former method is also referred to as the first determination method, and the latter method is also referred to as the second determination method.

在此,在确定了第一机器人控制坐标系中的控制位置之后,随着维护等引起的机构参数的变化而机器人控制坐标系产生了变化的情况下,必须将已经确定的控制位置校正为与新的机器人控制坐标系对应的值。在利用第一确定方法确定了控制位置的情况下,只要将真实坐标系中的目标位置转换为第二机器人控制坐标系,便能够确定新的控制位置。Here, after the control position in the first robot control coordinate system is determined, if the robot control coordinate system changes due to changes in mechanism parameters caused by maintenance, etc., the determined control position must be corrected to be equal to The value corresponding to the new robot control coordinate system. When the control position is determined using the first determination method, a new control position can be determined as long as the target position in the real coordinate system is converted into the second robot control coordinate system.

相对于此,在利用第二确定方法确定控制位置的情况下,不具有与控制位置对应的真实坐标系中的目标位置,因此,无法使用与第一确定方法相同的方法进行向第二机器人控制坐标系的转换。因此,有可能无法实现动作精度的提高。On the other hand, when the control position is determined using the second determination method, there is no target position in the real coordinate system corresponding to the control position. Therefore, it is impossible to control the second robot using the same method as the first determination method. Coordinate system transformation. Therefore, there is a possibility that the operation accuracy cannot be improved.

发明内容Contents of the invention

本发明的控制方法是确定机器人的相对于目标位置的控制位置的控制方法,包括:真实基准位置获取步骤,获取三点以上的理想坐标系中的真实基准位置;第一控制基准位置获取步骤,获取所述机器人的控制点位于各个所述真实基准位置时的第一机器人控制坐标系中的第一控制基准位置;第一转换函数获取步骤,基于所述真实基准位置和所述第一控制基准位置获取第一转换函数,所述第一转换函数表示所述第一机器人控制坐标系中的所述控制位置与所述理想坐标系中的所述目标位置的对应关系;以及控制位置确定步骤,使用所述第一转换函数将所述第一机器人控制坐标系中的所述控制位置转换为所述理想坐标系中的所述目标位置,并基于所述目标位置确定新的所述控制位置。The control method of the present invention is a control method for determining the control position of the robot relative to the target position, and includes: a real reference position acquisition step to obtain the real reference position in an ideal coordinate system of more than three points; a first control reference position acquisition step, Obtaining the first control reference position in the first robot control coordinate system when the control point of the robot is located at each of the real reference positions; a first conversion function acquisition step, based on the real reference position and the first control reference Position acquisition first conversion function, the first conversion function represents the corresponding relationship between the control position in the first robot control coordinate system and the target position in the ideal coordinate system; and a control position determination step, The control position in the first robot control coordinate system is converted to the target position in the ideal coordinate system using the first conversion function, and the new control position is determined based on the target position.

本发明的机器人系统具有机器人以及控制所述机器人的驱动的控制装置,所述控制装置确定所述机器人的相对于目标位置的控制位置,在所述机器人系统中,所述控制装置获取三点以上的理想坐标系中的真实基准位置;获取所述机器人的控制点位于各个所述真实基准位置时的第一机器人控制坐标系中的第一控制基准位置;基于所述真实基准位置和所述第一控制基准位置获取表示所述第一机器人控制坐标系中的所述控制位置与所述理想坐标系中的所述目标位置的对应关系的第一转换函数;并且,使用所述第一转换函数将所述第一机器人控制坐标系中的所述控制位置转换为所述理想坐标系中的所述目标位置,并基于所述目标位置确定新的所述控制位置。The robot system of the present invention has a robot and a control device that controls the drive of the robot. The control device determines the control position of the robot relative to a target position. In the robot system, the control device acquires three or more points. the real reference position in the ideal coordinate system; obtain the first control reference position in the first robot control coordinate system when the control point of the robot is located at each of the real reference positions; based on the real reference position and the third A control reference position obtains a first conversion function that represents the corresponding relationship between the control position in the first robot control coordinate system and the target position in the ideal coordinate system; and, using the first conversion function The control position in the first robot control coordinate system is converted into the target position in the ideal coordinate system, and the new control position is determined based on the target position.

附图说明Description of drawings

图1是优选实施方式所涉及的机器人系统的构成图。FIG. 1 is a block diagram of a robot system according to a preferred embodiment.

图2是示出架台的使用方法的图。FIG. 2 is a diagram showing how to use the stand.

图3是示出架台的变形例的图。FIG. 3 is a diagram showing a modification of the stand.

图4是控制装置的框图。Fig. 4 is a block diagram of the control device.

图5是示出机器人的位置控制的误差的图。FIG. 5 is a diagram showing errors in position control of the robot.

图6是示出控制方法的流程图。FIG. 6 is a flowchart showing a control method.

图7是示出机器人动作的一个例子的图。FIG. 7 is a diagram showing an example of robot operation.

图8是示出用于控制位置确定的图形的图。FIG. 8 is a diagram showing a graph for controlling position determination.

图9是示出用于控制位置确定的图形的图。FIG. 9 is a diagram showing a graph for controlling position determination.

图10是示出用于控制位置确定的图形的图。FIG. 10 is a diagram showing a graph for controlling position determination.

附图标记说明Explanation of reference signs

10机器人系统,2机器人,21基座,22机械臂,221臂,222臂,223臂,224臂,225臂,226臂,23末端执行器,3控制装置,31处理器,310控制位置确定部,32存储器,33接口电路,34输入设备,35显示部,5架台,51定位夹具,53定位夹具,531基板,532壁部,54定位辅助工具,CD控制位置校正数据,CP1第一控制基准位置,CP11第一控制基准位置,CP12第一控制基准位置,CP13第一控制基准位置,CP14第一控制基准位置,CP2第二控制基准位置,CP21第二控制基准位置,CP22第二控制基准位置,CP23第二控制基准位置,CP24第二控制基准位置,G图形,G1图形,G2图形,J1关节,J2关节,J3关节,J4关节,J5关节,J6关节,MP动作程序,RP真实基准位置,RP1真实基准位置,RP2真实基准位置,RP3真实基准位置,RP4真实基准位置,S1真实基准位置获取步骤,S2第一控制基准位置获取步骤,S3第一转换函数获取步骤,S4目标位置等获取步骤,S5第一控制位置确定步骤,S6机器人控制坐标系确认步骤,S7第二控制基准位置获取步骤,S8第二转换函数获取步骤,S9第二控制位置确定步骤,S10机器人控制步骤,TCP控制点。10 robot system, 2 robot, 21 base, 22 robotic arm, 221 arm, 222 arm, 223 arm, 224 arm, 225 arm, 226 arm, 23 end effector, 3 control device, 31 processor, 310 control position determination Department, 32 memory, 33 interface circuit, 34 input device, 35 display unit, 5 stage, 51 positioning fixture, 53 positioning fixture, 531 base plate, 532 wall part, 54 positioning auxiliary tool, CD control position correction data, CP1 first control Reference position, CP11 first control reference position, CP12 first control reference position, CP13 first control reference position, CP14 first control reference position, CP2 second control reference position, CP21 second control reference position, CP22 second control reference position Position, CP23 second control reference position, CP24 second control reference position, G graphic, G1 graphic, G2 graphic, J1 joint, J2 joint, J3 joint, J4 joint, J5 joint, J6 joint, MP action program, RP real datum Position, RP1 real reference position, RP2 real reference position, RP3 real reference position, RP4 real reference position, S1 real reference position acquisition step, S2 first control reference position acquisition step, S3 first conversion function acquisition step, S4 target position, etc. Acquisition step, S5 first control position determination step, S6 robot control coordinate system confirmation step, S7 second control reference position acquisition step, S8 second conversion function acquisition step, S9 second control position determination step, S10 robot control step, TCP control points.

具体实施方式Detailed ways

以下,根据附图所示的实施方式对本发明的控制方法及机器人系统进行详细说明。Hereinafter, the control method and robot system of the present invention will be described in detail based on the embodiments shown in the drawings.

图1是优选实施方式所涉及的机器人系统的构成图。图2是示出架台的使用方法的图。图3是示出架台的变形例的图。图4是控制装置的框图。图5是示出机器人的位置控制的误差的图。图6是示出控制方法的流程图。图7是示出机器人动作的一个例子的图。图8至图10分别是示出用于控制位置确定的图形的图。FIG. 1 is a block diagram of a robot system according to a preferred embodiment. FIG. 2 is a diagram showing how to use the stand. FIG. 3 is a diagram showing a modification of the stand. Fig. 4 is a block diagram of the control device. FIG. 5 is a diagram showing errors in position control of the robot. FIG. 6 is a flowchart showing a control method. FIG. 7 is a diagram showing an example of robot operation. 8 to 10 are diagrams respectively showing graphs for controlling position determination.

图1所示的机器人系统1具有机器人2、控制机器人2的驱动的控制装置3、以及架台5。需要说明,图1中图示了规定三维空间的正交坐标系的三个轴、即X轴、Y轴、Z轴。X轴及Y轴是水平方向的轴,Z轴是铅垂方向的轴。以下,将该三维空间(真实空间)也称为“理想坐标系”。The robot system 1 shown in FIG. 1 includes a robot 2, a control device 3 for controlling the drive of the robot 2, and a gantry 5. In addition, FIG. 1 illustrates the three axes of the orthogonal coordinate system defining the three-dimensional space, that is, the X-axis, the Y-axis, and the Z-axis. The X-axis and Y-axis are horizontal axes, and the Z-axis is a vertical axis. Hereinafter, this three-dimensional space (real space) is also called an "ideal coordinate system."

如图1所示,机器人2是具有六个驱动轴的六轴垂直多关节机器人。机器人2具有基座21、转动自如地连结于基座21的机械臂22、以及安装于机械臂22的前端的末端执行器23。另外,机械臂22是转动自如地连结有多个臂221、222、223、224、225、226的机械臂,具备六个关节J1、J2、J3、J4、J5、J6。这六个关节J1~J6中的关节J2、J3、J5分别是弯曲关节,关节J1、J4、J6分别是扭转关节。As shown in Figure 1, Robot 2 is a six-axis vertical multi-jointed robot with six drive axes. The robot 2 has a base 21 , a robot arm 22 rotatably connected to the base 21 , and an end effector 23 attached to the front end of the robot arm 22 . In addition, the robot arm 22 is a robot arm in which a plurality of arms 221, 222, 223, 224, 225, and 226 are rotatably connected, and has six joints J1, J2, J3, J4, J5, and J6. Among these six joints J1 to J6, joints J2, J3, and J5 are bending joints respectively, and joints J1, J4, and J6 are torsion joints respectively.

在关节J1、J2、J3、J4、J5、J6处分别设置有未图示的电机和编码器。在机器人系统1运转期间,控制装置3针对各关节J1~J6执行使编码器的输出所表示的关节的旋转角度与控制位置一致的伺服控制(反馈控制)。由此,能够使机器人2成为所希望的姿势。Motors and encoders (not shown) are respectively provided at joints J1, J2, J3, J4, J5, and J6. While the robot system 1 is operating, the control device 3 executes servo control (feedback control) for each of the joints J1 to J6 so that the rotation angle of the joint indicated by the output of the encoder coincides with the control position. This allows the robot 2 to assume a desired posture.

末端执行器23可以根据使机器人2进行的作业而适当地选择。另外,在末端执行器23的前端部设定有机器人2的控制点TCP。控制点TCP的位置能够任意地设定,但是,为了使用后述的定位夹具51来确定控制点TCP的位置,优选如本实施方式这样将控制点TCP设定于末端执行器23的前端部。The end effector 23 can be appropriately selected depending on the work to be performed by the robot 2 . In addition, the control point TCP of the robot 2 is set at the front end of the end effector 23 . The position of the control point TCP can be set arbitrarily. However, in order to determine the position of the control point TCP using the positioning jig 51 described below, it is preferable to set the control point TCP at the front end of the end effector 23 as in this embodiment.

以上,对机器人2进行了说明,但是,机器人2的构成并无特别限定。例如,也可以为SCARA机器人(水平多关节机器人)、具备两只上述机械臂22的双臂机器人等。另外,也可以为基座21未被固定的自走式的机器人。The robot 2 has been described above, but the structure of the robot 2 is not particularly limited. For example, it may be a SCARA robot (horizontal multi-jointed robot), a dual-arm robot including two of the above-mentioned robotic arms 22, or the like. Alternatively, the robot may be a self-propelled robot in which the base 21 is not fixed.

架台5是在获取用于减少机器人2的位置偏离的第一转换函数及第二转换函数时使用,在机器人作业期间不使用。The gantry 5 is used when acquiring the first conversion function and the second conversion function for reducing the position deviation of the robot 2 and is not used during the robot operation.

对机器人2的位置偏离进行简单的说明,在机器人系统1中,控制装置3基于从未图示的主计算机等接收到的目标位置控制机器人2的驱动。具体而言,控制装置3基于各臂221~226的长度、各关节J1~J6的旋转轴原点、各关节J1~J6的平行度及正交度等设计上的机构参数算出控制点TCP的位置,并控制机器人2的驱动以使控制点TCP与目标位置一致。The position deviation of the robot 2 will be briefly explained. In the robot system 1 , the control device 3 controls the driving of the robot 2 based on a target position received from a host computer or the like (not shown). Specifically, the control device 3 calculates the position of the control point TCP based on design mechanism parameters such as the length of each arm 221 to 226, the origin of the rotation axis of each joint J1 to J6, and the parallelism and orthogonality of each joint J1 to J6. , and control the driving of robot 2 so that the control point TCP is consistent with the target position.

但是,有时会因为部件偏差、组装偏差等使实际的机构参数偏离设计上的机构参数。这样,当实际的机构参数产生偏离时,计算上的控制点TCP的位置偏离实际的控制点TCP的位置,因此,即使在控制上使控制点TCP与目标位置一致,实际上控制点TCP也会偏离目标位置。需要说明,以下将该偏离也称为“位置控制的误差”。However, sometimes the actual mechanism parameters deviate from the designed mechanism parameters due to component deviations, assembly deviations, etc. In this way, when the actual mechanism parameters deviate, the calculated position of the control point TCP deviates from the actual position of the control point TCP. Therefore, even if the control point TCP is controlled to be consistent with the target position, the actual control point TCP will not deviation from the target position. It should be noted that this deviation is also referred to as “position control error” below.

因此,在机器人系统1中,构成为获取转换函数,该转换函数表示理想坐标系与机器人控制坐标系的对应关系,并用于减少位置控制的误差。架台5是用于获取该转换函数的道具。如图1所示,架台5具有四个定位夹具51。各定位夹具51是在进行控制点TCP的定位时使用的夹具。需要说明,定位夹具51的数量只要为三个以上便无特别限定。Therefore, the robot system 1 is configured to obtain a conversion function that expresses the correspondence between the ideal coordinate system and the robot control coordinate system and is used to reduce errors in position control. Platform 5 is a prop used to obtain this conversion function. As shown in FIG. 1 , the stand 5 has four positioning clamps 51 . Each positioning jig 51 is a jig used when positioning the control point TCP. It should be noted that the number of positioning jigs 51 is not particularly limited as long as it is three or more.

另外,在定位夹具51的前端设定有真实基准位置RP。需要说明,预先测定理想坐标系中的各定位夹具51的真实基准位置RP之间的三维位置关系。而且,如图2所示,通过使机器人2的控制点TCP与真实基准位置RP接触,能够获取此时的机器人控制坐标系中的控制位置作为与真实基准位置RP对应的控制基准位置。In addition, a real reference position RP is set at the front end of the positioning jig 51 . It should be noted that the three-dimensional positional relationship between the real reference positions RP of each positioning jig 51 in the ideal coordinate system is measured in advance. Furthermore, as shown in FIG. 2 , by bringing the control point TCP of the robot 2 into contact with the real reference position RP, the control position in the robot control coordinate system at that time can be obtained as the control reference position corresponding to the real reference position RP.

需要说明,作为定位夹具,并无特别限定,例如,也可以使用图3所示那样的定位夹具53。定位夹具53具有平板状的基板531、以及设置于基板531之上的L字状的壁部532。壁部532呈直角弯曲,在壁部532的弯曲部与基板531的表面接触的点上设定有真实基准位置RP。另一方面,在机械臂22的前端连接有定位辅助工具54。该定位辅助工具54具有长方体状的形状,在其底面的顶点处设定有控制点TCP。It should be noted that the positioning jig is not particularly limited. For example, a positioning jig 53 as shown in FIG. 3 may also be used. The positioning jig 53 has a flat base plate 531 and an L-shaped wall portion 532 provided on the base plate 531 . The wall portion 532 is curved at a right angle, and a true reference position RP is set at a point where the curved portion of the wall portion 532 contacts the surface of the substrate 531 . On the other hand, a positioning auxiliary tool 54 is connected to the front end of the robot arm 22 . This positioning aid 54 has a rectangular parallelepiped shape, and a control point TCP is set at the vertex of its bottom surface.

通过使控制点TCP与定位夹具53的真实基准位置RP接触,能够获取此时的机器人控制坐标系的控制位置作为与真实基准位置RP对应的控制基准位置。另外,由于在定位夹具53与定位辅助工具54在三个面相互接触的状态下也唯一地确定机器人2的控制点TCP的姿势,因此,能够获取此时的机器人控制坐标系的控制姿势作为与真实基准位置RP处的真实姿势对应的控制基准姿势。By bringing the control point TCP into contact with the real reference position RP of the positioning jig 53, the control position of the robot control coordinate system at this time can be acquired as the control reference position corresponding to the real reference position RP. In addition, since the posture of the control point TCP of the robot 2 is uniquely determined even when the positioning jig 53 and the positioning auxiliary tool 54 are in contact with each other on three surfaces, the control posture of the robot control coordinate system at this time can be obtained as The control reference posture corresponding to the real posture at the real reference position RP.

需要说明,也可以不使用上述那样的定位夹具51、53,而使用三维测定器来获取机器人控制坐标系的真实基准位置和控制基准位置。在这种情况下,首先,使用机器人控制坐标系的控制基准位置对机器人2的控制点TCP进行定位,在该状态下,利用三维位置测定器测定控制点TCP的理想坐标系中的三维位置并设为真实基准位置RP。It should be noted that instead of using the positioning fixtures 51 and 53 as described above, a three-dimensional measuring device may be used to obtain the real reference position and the control reference position of the robot control coordinate system. In this case, first, the control point TCP of the robot 2 is positioned using the control reference position of the robot control coordinate system. In this state, the three-dimensional position of the control point TCP in the ideal coordinate system is measured using a three-dimensional position measuring device. Set to the true reference position RP.

控制装置3控制机器人2的驱动。如图4所示,控制装置3例如由计算机构成,具有处理器31、存储器32、接口电路33、与接口电路33连接的输入设备34以及显示部35。The control device 3 controls the driving of the robot 2 . As shown in FIG. 4 , the control device 3 is composed of, for example, a computer, and has a processor 31 , a memory 32 , an interface circuit 33 , an input device 34 connected to the interface circuit 33 , and a display unit 35 .

处理器31作为确定机器人2的控制位置的控制位置确定部310而发挥功能。控制位置确定部310的功能通过处理器31执行保存于存储器32的计算机程序来实现。但是,也可以利用硬件电路来实现控制位置确定部310的功能的一部分或者全部。The processor 31 functions as a control position determination unit 310 that determines the control position of the robot 2 . The function of the control position determination unit 310 is realized by the processor 31 executing a computer program stored in the memory 32 . However, a part or all of the functions of the control position determination unit 310 may be implemented using hardware circuits.

存储器32中保存有控制位置校正数据CD、以及动作程序MP。另外,控制位置校正数据CD包括后述的图形G、第一、第二转换函数A11、A12、A2。另外,动作程序MP由使机器人2进行动作的多个动作命令构成。The memory 32 stores the control position correction data CD and the operation program MP. In addition, the control position correction data CD includes a graph G, which will be described later, and first and second conversion functions A11, A12, and A2. In addition, the operation program MP is composed of a plurality of operation instructions for causing the robot 2 to operate.

接着,基于图5对机器人2的位置控制的误差进行说明。在图5的左侧示出机器人控制坐标系中的控制位置,在右侧示出理想坐标系中的位置控制的误差。“机器人控制坐标系”是指表现用于控制机器人2的动作命令中使用的机器人2的位置、姿势的坐标系。Next, errors in position control of the robot 2 will be described based on FIG. 5 . The left side of FIG. 5 shows the control position in the robot control coordinate system, and the right side shows the position control error in the ideal coordinate system. The “robot control coordinate system” refers to a coordinate system expressing the position and posture of the robot 2 used in motion commands for controlling the robot 2 .

在图5所示的例子中,设想在机器人控制坐标系中在X方向及Y方向上以30mm间隔设定了控制位置的状态,理想坐标系中绘制的箭头示出了位置控制的误差。即、箭头的起点是目标位置,箭头的前侧是包含误差的控制点TCP。但是,为了便于图示,将误差量放大200倍来绘制箭头的长度。In the example shown in FIG. 5 , it is assumed that the control positions are set at intervals of 30 mm in the X direction and Y direction in the robot control coordinate system. The arrows drawn in the ideal coordinate system show errors in position control. That is, the starting point of the arrow is the target position, and the front side of the arrow is the control point TCP including the error. However, for ease of illustration, the length of the arrow is drawn with the error amount magnified 200 times.

为了减少这样的位置控制的误差,以往,使用如下所述的方法:使用转换系数等将理想坐标系中的目标位置转换为机器人控制坐标系中的控制位置,并基于该控制位置控制机器人2的驱动。In order to reduce errors in such position control, conventionally, a method has been used in which the target position in the ideal coordinate system is converted into a control position in the robot control coordinate system using a conversion coefficient or the like, and the robot 2 is controlled based on the control position. drive.

然而,在这样的方法中,会产生如下所述的问题。如前文所述,由于各臂221~226的长度、各关节J1~J6的旋转轴原点、各关节J1~J6的平行度及正交度等实际的机构参数偏离设计上的机构参数,从而在机器人控制坐标系与理想坐标系之间产生偏离。另外,在更换了关节J1~J6、臂221~226的情况下,当改变了机器人2的设置场所时、改变了末端执行器23时,机构参数有可能因为环境温度等而发生变化。这样,当机构参数发生变化时,机器人控制坐标系也随之发生变化。以下,为了便于说明,将变化前的机器人控制坐标系也称为第一机器人控制坐标系,将变化后的机器人控制坐标系也称为第二机器人控制坐标系。However, in such a method, problems described below arise. As mentioned above, since the actual mechanism parameters such as the length of each arm 221 to 226, the origin of the rotation axis of each joint J1 to J6, the parallelism and orthogonality of each joint J1 to J6 deviate from the designed mechanism parameters, the There is a deviation between the robot control coordinate system and the ideal coordinate system. In addition, when the joints J1 to J6 and the arms 221 to 226 are replaced, when the installation location of the robot 2 is changed, or when the end effector 23 is changed, the mechanism parameters may change due to ambient temperature or the like. In this way, when the mechanism parameters change, the robot control coordinate system also changes. Hereinafter, for convenience of explanation, the robot control coordinate system before the change is also called the first robot control coordinate system, and the robot control coordinate system after the change is also called the second robot control coordinate system.

在此,在机器人控制坐标系中的控制位置的确定方法中,除了将理想坐标系中的目标位置转换为机器人控制坐标系中的控制位置的方法之外,还有如直接示教那样在机器人控制坐标系中直接设定控制位置的方法。需要说明,以下,为了便于说明,将前者的方法也称为第一确定方法,将后者的方法也称为第二确定方法。Here, among the methods for determining the control position in the robot control coordinate system, in addition to the method of converting the target position in the ideal coordinate system into the control position in the robot control coordinate system, there is also the method of directly teaching in the robot control A method to directly set the control position in the coordinate system. It should be noted that, below, for convenience of explanation, the former method is also referred to as the first determination method, and the latter method is also referred to as the second determination method.

当在通过这样的方法确定了第一机器人控制坐标系中的控制位置之后,因为上述各种因素而使机器人控制坐标系从第一机器人控制坐标系变化为第二机器人控制坐标系时,若基于原样的控制位置、即第一机器人控制坐标系中的控制位置控制机器人2的驱动,则会产生位置控制的误差。因此,必须将第一机器人控制坐标系中的控制位置校正为第二机器人控制坐标系中的控制位置。After the control position in the first robot control coordinate system is determined in this way, when the robot control coordinate system changes from the first robot control coordinate system to the second robot control coordinate system due to the above-mentioned various factors, if based on If the driving of the robot 2 is controlled with the original control position, that is, the control position in the first robot control coordinate system, position control errors will occur. Therefore, the control position in the first robot control coordinate system must be corrected to the control position in the second robot control coordinate system.

在利用第一确定方法确定了控制位置的情况下,该控制位置具有理想坐标系中的目标位置,因此,若将该目标位置转换为第二机器人控制坐标系中的控制位置,则能够确定第二机器人控制坐标系中的新的控制位置。相对于此,在利用第二确定方法确定了控制位置的情况下,该控制位置不具有理想坐标系中的目标位置,因此,无法使用与第一确定方法相同的方法进行向第二机器人控制坐标系的转换。因此,机器人系统1构成为:即使在利用第二确定方法确定了控制位置的情况下,也能够利用与第一确定方法相同的方法确定第二机器人控制坐标系中的新的控制位置。由此,可以有效地减少位置控制的误差。以下,对于控制装置3对机器人2的控制方法进行说明。When the control position is determined using the first determination method, the control position has a target position in the ideal coordinate system. Therefore, if the target position is converted into a control position in the second robot control coordinate system, the third robot control position can be determined. The new control position in the second robot control coordinate system. On the other hand, when the control position is determined using the second determination method, the control position does not have a target position in the ideal coordinate system. Therefore, the control coordinates for the second robot cannot be determined using the same method as the first determination method. system conversion. Therefore, the robot system 1 is configured to determine a new control position in the second robot control coordinate system using the same method as the first determination method even when the control position is determined using the second determination method. As a result, position control errors can be effectively reduced. Hereinafter, a method of controlling the robot 2 by the control device 3 will be described.

如图6所示,机器人2的控制方法包括真实基准位置获取步骤S1、第一控制基准位置获取步骤S2、第一转换函数获取步骤S3、目标位置等获取步骤S4、第一控制位置确定步骤S5、机器人控制坐标系确认步骤S6、第二控制基准位置获取步骤S7、第二转换函数获取步骤S8、第二控制位置确定步骤S9、以及机器人控制步骤S10。以下,依次对这些各步骤S1~S10进行说明。As shown in Figure 6, the control method of the robot 2 includes the step of obtaining the real reference position S1, the step of obtaining the first control reference position S2, the step of obtaining the first conversion function S3, the step of obtaining the target position, etc. S4, and the step of determining the first control position S5. , robot control coordinate system confirmation step S6, second control reference position acquisition step S7, second conversion function acquisition step S8, second control position determination step S9, and robot control step S10. Hereinafter, these steps S1 to S10 will be described in sequence.

真实基准位置获取步骤S1Real reference position acquisition step S1

在真实基准位置获取步骤S1中,控制位置确定部310获取三点以上的理想坐标系中的真实基准位置RP。如前文所述,在本实施方式中,架台5具有四个定位夹具51,在其前端设定有真实基准位置RP。因此,在本实施方式中,如图7所示,控制位置确定部310获取四个真实基准位置RP1、RP2、RP3、RP4。In the real reference position acquisition step S1, the control position determination unit 310 acquires the real reference position RP in the ideal coordinate system at three or more points. As mentioned above, in this embodiment, the stand 5 has four positioning fixtures 51, and the real reference position RP is set at the front end. Therefore, in the present embodiment, as shown in FIG. 7 , the control position determination unit 310 acquires four real reference positions RP1, RP2, RP3, and RP4.

第一控制基准位置获取步骤S2First control reference position acquisition step S2

在第一控制基准位置获取步骤S2中,控制位置确定部310获取控制点TCP位于真实基准位置RP时的第一机器人控制坐标系中的第一控制基准位置CP1。具体而言,首先,控制位置确定部310使控制点TCP位于真实基准位置RP1。接着,控制位置确定部310获取控制点TCP位于真实基准位置RP1时的控制点TCP在第一机器人控制坐标系中的位置、即第一控制基准位置CP11。控制位置确定部310针对其它的真实基准位置RP2、RP3、RP4也进行同样的作业,获取第一控制基准位置CP12、CP13、CP14。通过以上作业,控制位置确定部310获取四个第一控制基准位置CP11、CP12、CP13、CP14。In the first control reference position acquisition step S2, the control position determination unit 310 acquires the first control reference position CP1 in the first robot control coordinate system when the control point TCP is located at the real reference position RP. Specifically, first, the control position determination unit 310 positions the control point TCP at the true reference position RP1. Next, the control position determination unit 310 acquires the position of the control point TCP in the first robot control coordinate system when the control point TCP is located at the real reference position RP1, that is, the first control reference position CP11. The control position determination unit 310 also performs the same operation for the other real reference positions RP2, RP3, and RP4, and acquires the first control reference positions CP12, CP13, and CP14. Through the above operations, the control position determination unit 310 acquires four first control reference positions CP11, CP12, CP13, and CP14.

第一转换函数获取步骤S3First conversion function acquisition step S3

在第一转换函数获取步骤S3中,首先,如图8所示,控制位置确定部310在理想坐标系内设定以三个真实基准位置RP为顶点的三角形的图形G。需要说明,如前文所述,在真实基准位置获取步骤S1中获取了四个真实基准位置RP1~RP4,因此,在本实施方式中,由四个真实基准位置RP1~RP4包围的区域被剖分为两个三角形的图形G1、G2。作为剖分方法,例如可以使用狄洛尼三角形剖分等任意的剖分方法。In the first conversion function acquisition step S3, first, as shown in FIG. 8, the control position determination unit 310 sets a triangular figure G with three real reference positions RP as vertices in an ideal coordinate system. It should be noted that, as mentioned above, four real reference positions RP1 to RP4 are obtained in the real reference position acquisition step S1. Therefore, in this embodiment, the area surrounded by the four real reference positions RP1 to RP4 is divided. are two triangle figures G1 and G2. As the decomposition method, for example, any decomposition method such as Delaoni triangle decomposition can be used.

接着,如图9所示,控制位置确定部310求出表示各图形G1、G2内的目标位置与控制位置的对应关系的第一转换函数。需要说明,控制位置确定部310求出第一转换函数A11和第一转换函数A12作为第一转换函数,该第一转换函数A11是将理想坐标系中的目标位置转换为机器人控制坐标系中的控制位置的函数,该第一转换函数A12是将机器人控制坐标系中的控制位置转换为理想坐标系中的目标位置的函数。第一转换函数A12是第一转换函数A11的逆转换函数。Next, as shown in FIG. 9 , the control position determination unit 310 obtains a first conversion function indicating the correspondence between the target position and the control position in each of the graphics G1 and G2. It should be noted that the control position determination unit 310 obtains the first conversion function A11 and the first conversion function A12 as the first conversion function. The first conversion function A11 converts the target position in the ideal coordinate system into the robot control coordinate system. A function of the control position. The first conversion function A12 is a function that converts the control position in the robot control coordinate system into the target position in the ideal coordinate system. The first conversion function A12 is the inverse conversion function of the first conversion function A11.

图形G1中的第一转换函数A11是基于图形G1的顶点、即真实基准位置RP1、RP2、RP3和与它们对应的第一控制基准位置CP11、CP12、CP13之差而求出的。另外,图形G2中的第一转换函数A11是基于图形G2的顶点、即真实基准位置RP2、RP3、RP4和与它们对应的第一控制基准位置CP12、CP13、CP14之差而求出的。另外,第一转换函数A12能够根据所求出的第一转换函数A11求出。第一转换函数A11、A12能够分别由以下的式子表示。The first conversion function A11 in the graph G1 is obtained based on the difference between the vertices of the graph G1, that is, the real reference positions RP1, RP2, RP3 and their corresponding first control reference positions CP11, CP12, CP13. In addition, the first conversion function A11 in the graph G2 is obtained based on the difference between the vertices of the graph G2, that is, the real reference positions RP2, RP3, and RP4, and their corresponding first control reference positions CP12, CP13, and CP14. In addition, the first conversion function A12 can be obtained from the obtained first conversion function A11. The first conversion functions A11 and A12 can each be expressed by the following equations.

Pctrl=A11·Preal……(1)Pctrl=A11·Preal……(1)

Preal=A12·Pctrl……(5)Preal=A12·Pctrl……(5)

式中的Pctrl是第一机器人控制坐标系中的控制位置,Preal是理想坐标系中的目标位置。另外,Xctrl是第一机器人控制坐标系中的控制位置的X坐标,Yctrl是第一机器人控制坐标系中的控制位置的Y坐标。另外,Xreal是理想坐标系中的目标位置的X坐标,Yreal是理想坐标系中的目标位置的Y坐标。另外,A11、A12是第一转换函数,且是表示仿射转换的转换式。另外,a11、a12、a21、a22、b1、b2分别为系数,按第一转换函数A11、A12及图形G1、G2而各不相同。通过使用这样的第一转换函数A11,能够容易且高精度地将目标位置Preal转换为控制位置Pctrl。另外,通过使用第一转换函数A12,可以容易且高精度地将控制位置Pctrl转换为目标位置Preal。Pctrl in the formula is the control position in the first robot control coordinate system, and Preal is the target position in the ideal coordinate system. In addition, Xctrl is the X coordinate of the control position in the first robot control coordinate system, and Yctrl is the Y coordinate of the control position in the first robot control coordinate system. In addition, Xreal is the X coordinate of the target position in the ideal coordinate system, and Yreal is the Y coordinate of the target position in the ideal coordinate system. In addition, A11 and A12 are the first conversion functions and are conversion expressions representing affine conversion. In addition, a11, a12, a21, a22, b1, and b2 are coefficients respectively, which are different according to the first conversion functions A11 and A12 and the graphics G1 and G2. By using such first conversion function A11, the target position Preal can be converted into the control position Pctrl easily and with high accuracy. In addition, by using the first conversion function A12, the control position Pctrl can be converted into the target position Preal easily and with high accuracy.

使用了这样的第一转换函数A11、A12的转换是基于平行移动及旋转移动以外的方法的坐标转换运算。The conversion using such first conversion functions A11 and A12 is a coordinate conversion operation based on a method other than parallel movement and rotational movement.

需要说明,图形G的形状也可以不是三角形,第一转换函数也可以不是仿射转换。例如,也可以将图形G设为四边形,将第一转换函数设为投影转换。另外,也可以剖分为多种多边形混合存在的状态,并按每个图形G来改变第一转换函数。另外,也可以将图形G设为立体图形。第一转换函数也可以构成为转换式,也可以由查找表这样的其它形式构成。It should be noted that the shape of the graph G does not need to be a triangle, and the first transformation function does not need to be an affine transformation. For example, the graph G may be a quadrilateral, and the first transformation function may be projection transformation. Alternatively, the polygons may be divided into a state in which a plurality of polygons are mixed, and the first conversion function may be changed for each graph G. In addition, the graphic G may be a three-dimensional graphic. The first conversion function may be configured as a conversion formula, or may be configured in another form such as a lookup table.

目标位置等获取步骤S4Target position, etc. acquisition step S4

在目标位置等获取步骤S4中,控制位置确定部310接收控制点TCP的目标位置或控制位置的输入。目标位置例如能够由作业者使用输入设备34作为理想坐标系中的位置来输入。另外,控制位置例如能够由作业者通过直接示教等直接作为机器人控制坐标系中的位置来输入。需要说明,在作业者创建动作程序MP且在其中的动作指令中记述有控制点TCP的目标位置、控制位置的情况下,控制位置确定部310也可以通过获取动作程序MP的动作指令中包含的目标位置、控制位置来执行本步骤。In the target position and the like acquisition step S4, the control position determination unit 310 receives an input of the target position or the control position of the control point TCP. The target position can be input as a position in the ideal coordinate system by the operator using the input device 34, for example. In addition, the control position can be directly input by the operator as a position in the robot control coordinate system, for example, through direct teaching or the like. It should be noted that when the operator creates the operation program MP and describes the target position and the control position of the control point TCP in the operation instructions, the control position determination unit 310 may also acquire the operation instructions included in the operation program MP. Target position and control position to perform this step.

需要说明,以下,以如下所述的情况为例进行说明:如下述表1所示,接收目标位置Q1、Q2和控制位置P3,并将按照目标位置Q1、目标位置Q2、控制位置P3的顺序转一圈的机器人动作设为一个循环,且将该循环重复规定次数。It should be noted that below, the following situation is taken as an example: as shown in Table 1 below, target positions Q1, Q2 and control position P3 are received, and the order of target position Q1, target position Q2, and control position P3 is The robot motion of one revolution is set as one cycle, and the cycle is repeated a specified number of times.

表1Table 1

第一控制位置确定步骤S5First control position determination step S5

在第一控制位置确定步骤S5中,控制位置确定部310针对目标位置Q1、Q2进行以下的处理。控制位置确定部310首先从图形G1、G2选择包含目标位置Q1的对象图形。接着,控制位置确定部310使用与所选择的对象图形对应的第一转换函数A11算出相对于目标位置Q1的第一机器人控制坐标系中的控制位置。若目标位置Q1位于图形G1内,则使用与图形G1对应的第一转换函数A11算出相对于目标位置Q1的第一机器人控制坐标系中的控制位置。另外,若目标位置Q1位于图形G2内,则使用与图形G2对应的第一转换函数A11算出相对于目标位置Q1的第一机器人控制坐标系中的控制位置。在这种情况下,例如,通过使用上述式(1),向Preal输入目标位置Q1的坐标值,能够算出Pctrl作为相对于目标位置Q1的控制位置。In the first control position determination step S5, the control position determination unit 310 performs the following processing on the target positions Q1 and Q2. The control position determination unit 310 first selects an object graphic including the target position Q1 from the graphics G1 and G2. Next, the control position determination unit 310 calculates the control position in the first robot control coordinate system relative to the target position Q1 using the first conversion function A11 corresponding to the selected object figure. If the target position Q1 is located within the graph G1, then the first conversion function A11 corresponding to the graph G1 is used to calculate the control position in the first robot control coordinate system relative to the target position Q1. In addition, if the target position Q1 is located within the graph G2, the control position in the first robot control coordinate system relative to the target position Q1 is calculated using the first conversion function A11 corresponding to the graph G2. In this case, for example, by using the above-mentioned equation (1) and inputting the coordinate value of the target position Q1 into Preal, Pctrl can be calculated as the control position relative to the target position Q1.

同样地,控制位置确定部310首先从图形G1、G2选择包含目标位置Q2的对象图形。接着,控制位置确定部310使用与所选择的对象图形对应的第一转换函数A11算出相对于目标位置Q2的第一机器人控制坐标系中的控制位置。若目标位置Q2位于图形G1内,则使用与图形G1对应的第一转换函数A11算出相对于目标位置Q2的第一机器人控制坐标系中的控制位置。另外,若目标位置Q2位于图形G2内,则使用与图形G2对应的第一转换函数A11算出相对于目标位置Q2的第一机器人控制坐标系中的控制位置。在这种情况下,例如,通过使用上述式(1),向Preal输入目标位置Q2的坐标值,能够算出Pctrl作为相对于目标位置Q2的控制位置。Similarly, the control position determination unit 310 first selects an object graphic including the target position Q2 from the graphics G1 and G2. Next, the control position determination unit 310 calculates the control position in the first robot control coordinate system relative to the target position Q2 using the first conversion function A11 corresponding to the selected object figure. If the target position Q2 is located within the graph G1, the first conversion function A11 corresponding to the graph G1 is used to calculate the control position in the first robot control coordinate system relative to the target position Q2. In addition, if the target position Q2 is located within the graph G2, the first conversion function A11 corresponding to the graph G2 is used to calculate the control position in the first robot control coordinate system relative to the target position Q2. In this case, for example, by using the above-mentioned equation (1) and inputting the coordinate value of the target position Q2 into Preal, Pctrl can be calculated as the control position relative to the target position Q2.

通过以上内容,如下述表2所示,得到目标位置Q1、Q2的第一机器人控制坐标系中的控制位置P1、P2。Through the above content, as shown in Table 2 below, the control positions P1 and P2 in the first robot control coordinate system of the target positions Q1 and Q2 are obtained.

表2Table 2

接着,控制位置确定部310使用通过上述方法算出的目标位置Q1、Q2的第一机器人控制坐标系中的控制位置P1、P2、以及目标位置等获取步骤S4中获得的控制位置P3来创建动作指令。需要说明,在预先创建了包含动作指令的动作程序MP的情况下,能够通过将动作指令中包含的目标位置替换为如上所述确定的控制位置来执行该处理。Next, the control position determination unit 310 uses the control positions P1 and P2 in the first robot control coordinate system of the target positions Q1 and Q2 calculated by the above method and the target position to obtain the control position P3 obtained in step S4 to create an action command. . It should be noted that when the motion program MP including the motion command is created in advance, this process can be executed by replacing the target position included in the motion command with the control position determined as described above.

机器人控制坐标系确认步骤S6Robot control coordinate system confirmation step S6

在机器人控制坐标系确认步骤S6中,控制位置确定部310确认机器人控制坐标系是否仍为第一机器人控制坐标系。当仍为第一机器人控制坐标系时,控制位置确定部310转移至机器人控制步骤S10。相对于此,当机器人控制坐标系从第一机器人控制坐标系变化为第二机器人控制坐标系时,控制位置确定部310转移至第二控制基准位置获取步骤S7。In the robot control coordinate system confirmation step S6, the control position determination unit 310 confirms whether the robot control coordinate system is still the first robot control coordinate system. When it is still the first robot control coordinate system, the control position determination unit 310 shifts to the robot control step S10. In contrast, when the robot control coordinate system changes from the first robot control coordinate system to the second robot control coordinate system, the control position determination unit 310 shifts to the second control reference position acquisition step S7.

第二控制基准位置获取步骤S7Second control reference position acquisition step S7

在第二控制基准位置获取步骤S7中,控制位置确定部310获取控制点TCP位于真实基准位置RP时的第二机器人控制坐标系中的第二控制基准位置CP2。具体而言,首先,控制位置确定部310使控制点TCP位于真实基准位置RP1。接着,如图10所示,控制位置确定部310获取控制点TCP位于真实基准位置RP1时的控制点TCP的第二机器人控制坐标系中的位置、即第二控制基准位置CP21。控制位置确定部310针对其它的真实基准位置RP2、RP3、RP4也进行同样的作业,获取第二控制基准位置CP22、CP23、CP24。通过以上作业,控制位置确定部310获取四个第二控制基准位置CP21、CP22、CP23、CP24。In the second control reference position acquisition step S7, the control position determination unit 310 acquires the second control reference position CP2 in the second robot control coordinate system when the control point TCP is located at the real reference position RP. Specifically, first, the control position determination unit 310 positions the control point TCP at the true reference position RP1. Next, as shown in FIG. 10 , the control position determination unit 310 acquires the position of the control point TCP in the second robot control coordinate system when the control point TCP is located at the real reference position RP1, that is, the second control reference position CP21. The control position determination unit 310 also performs the same operation for the other real reference positions RP2, RP3, and RP4, and acquires the second control reference positions CP22, CP23, and CP24. Through the above operations, the control position determination unit 310 acquires four second control reference positions CP21, CP22, CP23, and CP24.

第二转换函数获取步骤S8Second conversion function acquisition step S8

在第二转换函数获取步骤S8中,如图10所示,控制位置确定部310求出表示各图形G1、G2内的目标位置与控制位置的对应关系的第二转换函数A2。图形G1中的第二转换函数A2是基于图形G1的顶点、即真实基准位置RP1、RP2、RP3和与它们对应的第二控制基准位置CP21、CP22、CP23之差而求出的。另外,图形G2中的第二转换函数A2是基于图形G2的顶点、即真实基准位置RP2、RP3、RP4和与它们对应的第二控制基准位置CP22、CP23、CP24之差而求出的。第二转换函数A2能够由以下的式子表示。In the second conversion function acquisition step S8, as shown in FIG. 10, the control position determination unit 310 obtains the second conversion function A2 indicating the correspondence between the target position and the control position in each of the graphics G1 and G2. The second conversion function A2 in the graph G1 is obtained based on the difference between the vertices of the graph G1, that is, the real reference positions RP1, RP2, RP3 and their corresponding second control reference positions CP21, CP22, CP23. In addition, the second conversion function A2 in the graph G2 is obtained based on the difference between the vertices of the graph G2, that is, the real reference positions RP2, RP3, and RP4, and their corresponding second control reference positions CP22, CP23, and CP24. The second conversion function A2 can be expressed by the following equation.

Pctrl=A2·Preal……(9)Pctrl=A2·Preal……(9)

式中的Pctrl是第二机器人控制坐标系中的控制位置,Preal是理想坐标系中的目标位置。另外,Xctrl是第二机器人控制坐标系中的控制位置的X坐标,Yctrl是第二机器人控制坐标系中的控制位置的Y坐标。另外,Xreal是理想坐标系中的目标位置的X坐标,Yreal是理想坐标系中的目标位置的Y坐标。另外,A2是第二转换函数,且是表示仿射转换的转换式。另外,a11、a12、a21、a22、b1、b2分别是系数,按图形G1、G2而各不相同。需要说明,这些系数也可以与第一转换函数A11中使用的系数不同。通过使用这样的第二转换函数A2,能够容易且高精度地将目标位置Preal转换为控制位置Pctrl。Pctrl in the formula is the control position in the second robot control coordinate system, and Preal is the target position in the ideal coordinate system. In addition, Xctrl is the X coordinate of the control position in the second robot control coordinate system, and Yctrl is the Y coordinate of the control position in the second robot control coordinate system. In addition, Xreal is the X coordinate of the target position in the ideal coordinate system, and Yreal is the Y coordinate of the target position in the ideal coordinate system. In addition, A2 is the second conversion function, and is a conversion expression expressing affine conversion. In addition, a11, a12, a21, a22, b1, and b2 are coefficients respectively, which are different according to the graphs G1 and G2. It should be noted that these coefficients may also be different from the coefficients used in the first conversion function A11. By using such second conversion function A2, the target position Preal can be converted into the control position Pctrl easily and with high accuracy.

第二控制位置确定步骤S9Second control position determination step S9

在第二控制位置确定步骤S9中,确定相对于目标位置等获取步骤S4中接收到的目标位置Q1、Q2及控制位置P3的第二机器人控制坐标系中的控制位置。In the second control position determination step S9, the control position in the second robot control coordinate system relative to the target positions Q1, Q2 and the control position P3 received in the target position acquisition step S4 is determined.

控制位置确定部310针对目标位置Q1、Q2进行以下的处理。控制位置确定部310与上述第一控制位置确定步骤S5同样地,使用与图形G1对应的第二转换函数A2算出相对于目标位置Q1的第二机器人控制坐标系中的控制位置P10。同样地,使用与图形G2对应的第二转换函数A2算出相对于目标位置Q2的第二机器人控制坐标系中的控制位置P20。将其结果示于下述表3。The control position determination unit 310 performs the following processing on the target positions Q1 and Q2. Similar to the first control position determination step S5 described above, the control position determination unit 310 calculates the control position P10 in the second robot control coordinate system relative to the target position Q1 using the second conversion function A2 corresponding to the graph G1. Similarly, the control position P20 in the second robot control coordinate system relative to the target position Q2 is calculated using the second conversion function A2 corresponding to the graph G2. The results are shown in Table 3 below.

表3table 3

另外,控制位置确定部310针对控制位置P3进行以下的处理。如前文所述,控制位置P3被直接设定在第一机器人控制坐标系中,因此,不具有理想坐标系中的目标位置。因此,控制位置确定部310首先使用第一转换函数A12求出控制位置P3的理想坐标系中的目标位置Q3。在这种情况下,例如,通过使用上述式(5),向Pctrl输入控制位置P3的坐标值,能够算出Preal作为理想坐标系中的目标位置Q3。In addition, the control position determination unit 310 performs the following processing on the control position P3. As mentioned above, the control position P3 is directly set in the first robot control coordinate system, and therefore does not have a target position in an ideal coordinate system. Therefore, the control position determination unit 310 first obtains the target position Q3 in the ideal coordinate system of the control position P3 using the first conversion function A12. In this case, for example, by using the above equation (5) and inputting the coordinate value of the control position P3 to Pctrl, Preal can be calculated as the target position Q3 in the ideal coordinate system.

接着,控制位置确定部310从图形G1、G2选择包含目标位置Q3的对象图形。接着,控制位置确定部310使用与所选择的对象图形对应的第二转换函数A2算出相对于目标位置Q3的第二机器人控制坐标系中的控制位置P30。在这种情况下,通过使用上述式(9),向Preal输入目标位置Q3的坐标值,能够算出Pctrl作为控制位置P30。由此,能够高精度地算出第二机器人控制坐标系中的控制位置P30。将其结果示于下述表4。Next, the control position specifying unit 310 selects an object graphic including the target position Q3 from the graphics G1 and G2. Next, the control position determination unit 310 calculates the control position P30 in the second robot control coordinate system relative to the target position Q3 using the second conversion function A2 corresponding to the selected object figure. In this case, by using the above equation (9) and inputting the coordinate value of the target position Q3 into Preal, Pctrl can be calculated as the control position P30. Thereby, the control position P30 in the second robot control coordinate system can be calculated with high accuracy. The results are shown in Table 4 below.

表4Table 4

接着,控制位置确定部310使用通过上述方法算出的第二机器人控制坐标系中的控制位置P10、P20、P30来创建动作指令。需要说明,在预先创建了包含动作指令的动作程序MP的情况下,能够通过将动作指令中包含的目标位置、控制位置替换为如上所述确定的控制位置来执行该处理。如以上所述,目标位置Q1、Q2以及控制位置P3被替换为第二机器人控制坐标系中的新的控制位置P10、P20、P30。Next, the control position determination unit 310 creates an action command using the control positions P10, P20, and P30 in the second robot control coordinate system calculated by the above method. It should be noted that when the motion program MP including the motion command is created in advance, this process can be executed by replacing the target position and the control position included in the motion command with the control position determined as described above. As described above, the target positions Q1 and Q2 and the control position P3 are replaced with new control positions P10, P20 and P30 in the second robot control coordinate system.

需要说明,除了如上所述将第一机器人控制坐标系中的控制位置P3直接转换为第二机器人控制坐标系中的新的控制位置P30的情况以外,还设想从第一机器人控制坐标系中的控制位置P3起使其进行相对移动而转换为第二机器人控制坐标系中的新的控制位置P30的情况。作为此处所说的相对移动,例如可以举出朝向X轴方向、Y轴方向的平行移动、绕Z轴的旋转移动等。在这样的情况下,控制位置确定部310首先使用第一转换函数A12求出控制位置P3的理想坐标系中的目标位置Q3。接着,对目标位置Q3加上相对移动量而求出目标位置Q3’。在此,相对移动量是指从规定位置起的移动量,对目标位置Q3加上相对移动量而求出目标位置Q3’是指对目标位置Q3的坐标(x3,y3,z3)加上移动量而求出目标位置Q3’的坐标。而且,之后,使用第二转换函数A2将目标位置Q3’转换为第二机器人控制坐标系中的控制位置P30。这样,通过对目标位置Q3加上相对移动量而非控制位置P3,能够高精度地算出第二机器人控制坐标系中的控制位置P30。It should be noted that, in addition to the situation where the control position P3 in the first robot control coordinate system is directly converted to the new control position P30 in the second robot control coordinate system as described above, it is also envisaged that the control position P3 in the first robot control coordinate system is converted from the control position P3 in the second robot control coordinate system. A case where the control position P3 is relatively moved and converted to a new control position P30 in the second robot control coordinate system. Examples of the relative movement here include parallel movement in the X-axis direction and the Y-axis direction, rotational movement around the Z-axis, and the like. In this case, the control position determination unit 310 first obtains the target position Q3 in the ideal coordinate system of the control position P3 using the first conversion function A12. Next, the relative movement amount is added to the target position Q3 to obtain the target position Q3'. Here, the relative movement amount refers to the movement amount from a predetermined position, and adding the relative movement amount to the target position Q3 to obtain the target position Q3' means adding the movement to the coordinates (x3, y3, z3) of the target position Q3. Calculate the coordinates of the target position Q3' by measuring. Moreover, after that, the target position Q3' is converted into the control position P30 in the second robot control coordinate system using the second conversion function A2. In this way, by adding the relative movement amount instead of the control position P3 to the target position Q3, the control position P30 in the second robot control coordinate system can be calculated with high accuracy.

机器人控制步骤S10Robot control step S10

在机器人控制步骤S10中,控制位置确定部310使用所创建的包含动作指令的最新的动作程序MP控制机器人2的驱动。当机器人动作的一个循环结束时,控制位置确定部310判定机器人动作是否达到了规定次数。若已达到,则停止机器人2的驱动,若未达到,则返回机器人控制坐标系确认步骤S6。需要说明,每当返回机器人控制坐标系确认步骤S6时,现状的机器人控制坐标系变为第一机器人控制坐标系,变化后的机器人控制坐标成为第二机器人控制坐标系。In the robot control step S10 , the control position determination unit 310 controls the driving of the robot 2 using the created latest motion program MP including the motion command. When one cycle of robot movement ends, the control position determination unit 310 determines whether the robot movement has reached a predetermined number of times. If it has been reached, the driving of the robot 2 will be stopped. If it has not been reached, it will return to the robot control coordinate system confirmation step S6. It should be noted that every time the robot control coordinate system confirmation step S6 is returned, the current robot control coordinate system becomes the first robot control coordinate system, and the changed robot control coordinates become the second robot control coordinate system.

根据如上所述的控制方法,针对在第一机器人控制坐标系中直接设定的控制位置P3,算出了理想坐标系中的目标位置Q3。因此,对于控制位置P3,也能够利用与目标位置Q1、Q2相同的方法确定新的机器人控制坐标系中的控制位置。因此,成为能够利用简单的方法有效地减少位置精度的误差且能够发挥优异的动作精度的机器人系统1。According to the control method as described above, the target position Q3 in the ideal coordinate system is calculated for the control position P3 directly set in the first robot control coordinate system. Therefore, for the control position P3, the control position in the new robot control coordinate system can also be determined using the same method as the target positions Q1 and Q2. Therefore, the robot system 1 can effectively reduce errors in position accuracy using a simple method and can exhibit excellent operation accuracy.

另外,在不将第一机器人控制坐标系中的控制位置P3转换为第二机器人控制坐标系中的新的控制位置P30而是使其进行相对移动的情况下,也优选对理想坐标系中的目标位置O3加上相对移动量。这是为了防止若在第一机器人控制坐标系中加了相对移动量,则与理想坐标系中的量存在差异,从而无法成为所希望的相对移动量。具体而言,使用第一转换函数A12求出控制位置P3的理想坐标系中的目标位置Q3。接着,对目标位置Q3加上相对移动量而求出目标位置Q3’。而且,之后,使用第一转换函数A11将目标位置Q3’转换为第一机器人控制坐标系中的控制位置P3’。这样,通过对目标位置Q3加上相对移动量而非控制位置P3,能够高精度地加上相对移动量。In addition, when the control position P3 in the first robot control coordinate system is not converted to a new control position P30 in the second robot control coordinate system but is relatively moved, it is also preferable to convert the control position P3 in the ideal coordinate system to a new control position P30 in the second robot control coordinate system. The target position O3 plus the relative movement amount. This is to prevent that if the relative movement amount is added to the first robot control coordinate system, it will be different from the amount in the ideal coordinate system, so that the desired relative movement amount cannot be obtained. Specifically, the first conversion function A12 is used to find the target position Q3 in the ideal coordinate system of the control position P3. Next, the relative movement amount is added to the target position Q3 to obtain the target position Q3'. Moreover, after that, the first conversion function A11 is used to convert the target position Q3' into the control position P3' in the first robot control coordinate system. In this way, by adding the relative movement amount to the target position Q3 instead of the control position P3, the relative movement amount can be added with high accuracy.

以上,对机器人系统1进行了说明。如前文所述,这样的机器人系统1的控制方法是确定机器人2的相对于目标位置的控制位置的控制方法,包括:真实基准位置获取步骤S1,获取三点以上的理想坐标系中的真实基准位置RP;第一控制基准位置获取步骤S2,获取机器人2的控制点TCP位于各真实基准位置RP时的第一机器人控制坐标系中的第一控制基准位置CP1;第一转换函数获取步骤S3,基于真实基准位置RP和第一控制基准位置CP1获取第一转换函数A12,该第一转换函数A12表示第一机器人控制坐标系中的控制位置与理想坐标系中的目标位置的对应关系;以及作为控制位置确定步骤的第二控制位置确定步骤S9,使用第一转换函数A12将第一机器人控制坐标系中的控制位置P3转换为理想坐标系中的目标位置Q3,并基于目标位置Q3确定新的控制位置P30。根据这样的控制方法,对于在第一机器人控制坐标系中直接设定的控制位置P3,也能够利用与设定于理想坐标系的目标位置Q1、Q2相同的方法确定新的机器人控制坐标系中的控制位置P30。因此,成为能够利用简单的方法有效地减少位置精度的误差且能够发挥优异的动作精度的机器人系统1。The robot system 1 has been described above. As mentioned above, the control method of such a robot system 1 is to determine the control position of the robot 2 relative to the target position, including: the real reference position acquisition step S1, obtaining the real reference in the ideal coordinate system at more than three points position RP; the first control reference position acquisition step S2, obtains the first control reference position CP1 in the first robot control coordinate system when the control point TCP of the robot 2 is located at each real reference position RP; the first conversion function acquisition step S3, The first conversion function A12 is obtained based on the real reference position RP and the first control reference position CP1. The first conversion function A12 represents the corresponding relationship between the control position in the first robot control coordinate system and the target position in the ideal coordinate system; and as The second control position determination step S9 of the control position determination step uses the first conversion function A12 to convert the control position P3 in the first robot control coordinate system into the target position Q3 in the ideal coordinate system, and determines a new position based on the target position Q3. Control position P30. According to this control method, the control position P3 directly set in the first robot control coordinate system can also be determined in the new robot control coordinate system using the same method as the target positions Q1 and Q2 set in the ideal coordinate system. Control position P30. Therefore, the robot system 1 can effectively reduce errors in position accuracy using a simple method and can exhibit excellent operation accuracy.

另外,如前文所述,第一机器人控制坐标系中的控制位置P3直接设定在第一机器人控制坐标系中。这样,对于不具有理想坐标系中的目标位置的控制位置P3,也能够利用与目标位置Q1、Q2同样的方法确定新的机器人控制坐标系中的控制位置P30。因此,控制位置的计算变得容易。In addition, as mentioned above, the control position P3 in the first robot control coordinate system is directly set in the first robot control coordinate system. In this way, for the control position P3 that does not have a target position in the ideal coordinate system, the control position P30 in the new robot control coordinate system can be determined using the same method as the target positions Q1 and Q2. Therefore, the calculation of the control position becomes easy.

另外,如前文所述,在设定控制位置的机器人控制坐标系从第一机器人控制坐标系变更为第二机器人控制坐标系时,在第二控制位置确定步骤S9之前包括:第二控制基准位置获取步骤S7,获取控制点TCP位于真实基准位置RP时的第二机器人控制坐标系中的第二控制基准位置CP2;以及第二转换函数获取步骤S8,基于真实基准位置RP和第二控制基准位置CP2获取将理想坐标系中的目标位置转换为第二机器人控制坐标系中的控制位置的第二转换函数A2,在第二控制位置确定步骤S9中,在使用第一转换函数A12将第一机器人控制坐标系中的控制位置P3转换为理想坐标系中的目标位置Q3之后,使用第二转换函数A2转换为第二机器人控制坐标系中的新的控制位置P30。由此,能够高精度地算出第二机器人控制坐标系中的控制位置P30。In addition, as mentioned above, when the robot control coordinate system for setting the control position is changed from the first robot control coordinate system to the second robot control coordinate system, the second control reference position is included before the second control position determination step S9 Obtaining step S7, obtaining the second control reference position CP2 in the second robot control coordinate system when the control point TCP is located at the real reference position RP; and second conversion function obtaining step S8, based on the real reference position RP and the second control reference position CP2 obtains the second conversion function A2 that converts the target position in the ideal coordinate system to the control position in the second robot control coordinate system. In the second control position determination step S9, the first robot is converted to the target position using the first conversion function A12. After the control position P3 in the control coordinate system is converted to the target position Q3 in the ideal coordinate system, the second conversion function A2 is used to convert it into a new control position P30 in the second robot control coordinate system. Thereby, the control position P30 in the second robot control coordinate system can be calculated with high accuracy.

另外,如前文所述,在第一控制位置确定步骤S5或第二控制位置确定步骤S9中,使用第一转换函数A12将第一机器人控制坐标系中的控制位置P3转换为理想坐标系中的目标位置Q3,并对目标位置Q3加上相对移动量,之后,使用第一转换函数A11转换为第一机器人控制坐标系中的控制位置P3’或者使用第二转换函数A2转换为第二机器人控制坐标系中的新的控制位置P30。由此,能够高精度地加上相对移动量。In addition, as mentioned above, in the first control position determination step S5 or the second control position determination step S9, the first conversion function A12 is used to convert the control position P3 in the first robot control coordinate system into the ideal coordinate system. Target position Q3, and add the relative movement amount to the target position Q3, and then use the first conversion function A11 to convert to the control position P3' in the first robot control coordinate system or use the second conversion function A2 to convert to the second robot control The new control position P30 in the coordinate system. This makes it possible to add the relative movement amount with high accuracy.

另外,如前文所述,在第一转换函数获取步骤S3中,在理想坐标系内设定以三个以上的真实基准位置RP为顶点的至少一个图形G,求出表示图形G内的目标位置与控制位置的对应关系的第一转换函数A11、A12。由此,能够高精度地算出第一机器人控制坐标系中的控制位置。In addition, as mentioned above, in the first conversion function acquisition step S3, at least one graph G with three or more real reference positions RP as vertices is set in the ideal coordinate system, and the target position within the graph G is obtained. The first conversion functions A11 and A12 corresponding to the control position. As a result, the control position in the first robot control coordinate system can be calculated with high accuracy.

另外,如前文所述,机器人系统1具有机器人2以及控制机器人2的驱动的控制装置3,控制装置3确定机器人2的相对于目标位置的控制位置,在该机器人系统1中,控制装置3获取理想坐标系中的真实基准位置RP,获取机器人2的控制点TCP位于真实基准位置RP时的第一机器人控制坐标系中的第一控制基准位置CP1,基于真实基准位置RP和第一控制基准位置CP1获取表示第一机器人控制坐标系中的控制位置与理想坐标系中的目标位置的对应关系的第一转换函数A12,使用第一转换函数A12将第一机器人控制坐标系中的控制位置P3转换为理想坐标系中的目标位置Q3,基于目标位置Q3确定新的控制位置P30。根据这样的构成,对于直接设定在第一机器人控制坐标系中的控制位置P3,也能够利用与设定于理想坐标系的目标位置Q1、Q2相同的方法来确定新的机器人控制坐标系中的控制位置P30。因此,成为能够利用简单的方法有效地减少位置精度的误差且能够发挥优异的动作精度的机器人系统1。In addition, as mentioned above, the robot system 1 includes the robot 2 and the control device 3 that controls the driving of the robot 2. The control device 3 determines the control position of the robot 2 relative to the target position. In this robot system 1, the control device 3 obtains The real reference position RP in the ideal coordinate system, obtains the first control reference position CP1 in the first robot control coordinate system when the control point TCP of the robot 2 is located at the real reference position RP, based on the real reference position RP and the first control reference position CP1 obtains the first conversion function A12 that represents the correspondence between the control position in the first robot control coordinate system and the target position in the ideal coordinate system, and uses the first conversion function A12 to convert the control position P3 in the first robot control coordinate system. is the target position Q3 in the ideal coordinate system, and the new control position P30 is determined based on the target position Q3. According to this configuration, the control position P3 directly set in the first robot control coordinate system can be determined in the new robot control coordinate system using the same method as the target positions Q1 and Q2 set in the ideal coordinate system. Control position P30. Therefore, the robot system 1 can effectively reduce errors in position accuracy using a simple method and can exhibit excellent operation accuracy.

以上,基于图示的实施方式对本发明的控制方法及机器人系统进行了说明,但是,本发明并不限定于此。各部分的构成可以替换为具有同样的功能的任意构成。另外,也可以对本发明附加其它任意的构成物。As mentioned above, the control method and the robot system of the present invention have been described based on the illustrated embodiments. However, the present invention is not limited thereto. The configuration of each part can be replaced with any configuration having the same function. In addition, other arbitrary structures may be added to the present invention.

Claims (6)

1. A control method characterized by determining a control position of a robot with respect to a target position, the control method comprising:
a real reference position obtaining step of obtaining real reference positions in an ideal coordinate system of three or more points;
a first control reference position obtaining step of obtaining a first control reference position in a first robot control coordinate system when a control point of the robot is located at each of the real reference positions;
a first conversion function obtaining step of obtaining a first conversion function based on the real reference position and the first control reference position, the first conversion function representing a correspondence between the control position in the first robot control coordinate system and the target position in the ideal coordinate system; and
a control position determining step of converting the control position in the first robot control coordinate system into the target position in the ideal coordinate system using the first conversion function, and determining a new control position based on the target position.
2. The control method according to claim 1, wherein,
the control position in the first robot control coordinate system is set directly in the first robot control coordinate system.
3. The control method according to claim 1, wherein,
when the robot control coordinate system for setting the control position is changed from the first robot control coordinate system to the second robot control coordinate system,
the control method includes, before the control position determining step:
a second control reference position acquisition step of acquiring a second control reference position in the second robot control coordinate system when the control point is located at the real reference position; and
a second conversion function obtaining step of obtaining a second conversion function based on the real reference position and the second control reference position, the second conversion function converting the target position in the ideal coordinate system to the control position in the second robot control coordinate system,
in the control position determining step, after converting the control position in the first robot control coordinate system to the target position in the ideal coordinate system using the first conversion function, the control position is converted to a new control position in the second robot control coordinate system using the second conversion function.
4. The control method according to claim 1, wherein,
in the control position determining step, a relative movement amount, which is a movement amount from a prescribed position, is added to the target position converted in the control position determining step, thereby determining a new control position.
5. The control method according to claim 1, wherein,
in the first conversion function obtaining step, at least one pattern having three or more of the real reference positions as vertices is set in the ideal coordinate system, and the first conversion function indicating the correspondence between the target position and the control position in the pattern is obtained.
6. A robot system comprising a robot and a control device for controlling driving of the robot, wherein the control device determines a control position of the robot with respect to a target position,
the control device
Acquiring real reference positions in an ideal coordinate system with more than three points;
acquiring a first control reference position in a first robot control coordinate system when the control point of the robot is positioned at each real reference position;
acquiring a first conversion function representing a correspondence relationship between the control position in the first robot control coordinate system and the target position in the ideal coordinate system based on the real reference position and the first control reference position; and, in addition, the processing unit,
the control position in the first robot control coordinate system is converted to the target position in the ideal coordinate system using the first conversion function, and a new control position is determined based on the target position.
CN202311110663.4A 2022-08-31 2023-08-30 Control method and robot system Pending CN117621044A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-137619 2022-08-31
JP2022137619A JP2024033790A (en) 2022-08-31 2022-08-31 Control method and robot system

Publications (1)

Publication Number Publication Date
CN117621044A true CN117621044A (en) 2024-03-01

Family

ID=90022357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311110663.4A Pending CN117621044A (en) 2022-08-31 2023-08-30 Control method and robot system

Country Status (2)

Country Link
JP (1) JP2024033790A (en)
CN (1) CN117621044A (en)

Also Published As

Publication number Publication date
JP2024033790A (en) 2024-03-13

Similar Documents

Publication Publication Date Title
US8155789B2 (en) Device, method, program and recording medium for robot offline programming
JP5670416B2 (en) Robot system display device
CN114670188B (en) Method for determining control position of robot and robot system
JP2018001393A (en) Robot device, robot control method, program and recording medium
JP2004094399A (en) Control process for multi-joint manipulator and its control program as well as its control system
JP4613955B2 (en) Rotation axis calculation method, program creation method, operation method, and robot apparatus
JP2011036956A (en) Accuracy adjusting method for robot and robot
JP7384653B2 (en) Control device for robot equipment that controls the position of the robot
JP2013131149A (en) Parameter correction method and control system
CN113799115B (en) Coordinate correction method of robot arm
JP6705017B2 (en) Target position correction method for work robot
CN117621044A (en) Control method and robot system
JP7431518B2 (en) Robot system and robot system control method
JP2703767B2 (en) Robot teaching data creation method
JP7657936B2 (en) ROBOT CONTROL DEVICE, ROBOT CONTROL SYSTEM, AND ROBOT CONTROL METHOD
CN117584115A (en) Control method and robot system
TWI710441B (en) Coordinate calibration method of manipulator
JP6628170B1 (en) Measurement system and measurement method
CN117584114A (en) Control method and robot system
JP2022177476A (en) Robot control device and control method
JP2021186929A (en) Multi-axis robot control method
JP2000094370A (en) Inclination measuring method of work surface of robot and measuring device thereof
JP2001018182A (en) Robot mechanism calibration calculation method and system
TWI746004B (en) Origin calibration method of manipulator
JP2692043B2 (en) How to create robot teaching data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination