CN117614396A - Current sensing amplifier circuit and input offset voltage correction method - Google Patents
Current sensing amplifier circuit and input offset voltage correction method Download PDFInfo
- Publication number
- CN117614396A CN117614396A CN202211725183.4A CN202211725183A CN117614396A CN 117614396 A CN117614396 A CN 117614396A CN 202211725183 A CN202211725183 A CN 202211725183A CN 117614396 A CN117614396 A CN 117614396A
- Authority
- CN
- China
- Prior art keywords
- current
- voltage
- input
- correction
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012937 correction Methods 0.000 title claims abstract description 190
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000003362 replicative effect Effects 0.000 claims description 13
- 230000002457 bidirectional effect Effects 0.000 claims description 10
- 230000010076 replication Effects 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 26
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/462—Indexing scheme relating to amplifiers the current being sensed
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
一种电流感测放大器电路及其输入偏移电压修正方法。该电流感测放大器电路包括:放大器,用以于正常操作模式中,根据第一输入端的第一输入电压与第二输入端的第二输入电压,而产生相关于待感测电流的输出电压;及电流源电路,用以于修正模式中,根据第一输入电压与参考电压而产生修正电流,且于正常操作模式中,提供修正电流以修正电流感测放大器电路所产生的输入偏移电压;电流源电路耦接于:第一电阻与非反相输入端之间、第二电阻与输出电压之间、第三电阻与非反相输入端之间或第四电阻与反相输入端之间。
A current sensing amplifier circuit and its input offset voltage correction method. The current sensing amplifier circuit includes: an amplifier configured to generate an output voltage related to the current to be sensed according to a first input voltage at a first input terminal and a second input voltage at a second input terminal in a normal operating mode; and The current source circuit is used to generate a correction current according to the first input voltage and the reference voltage in the correction mode, and to provide the correction current to correct the input offset voltage generated by the current sensing amplifier circuit in the normal operation mode; current The source circuit is coupled between: the first resistor and the non-inverting input terminal, the second resistor and the output voltage, the third resistor and the non-inverting input terminal, or the fourth resistor and the inverting input terminal.
Description
技术领域Technical field
本发明涉及一种电流感测放大器电路及其输入偏移电压修正方法,特别涉及一种可通过提供修正电流而修正输入偏移电压的电流感测放大器电路及其输入偏移电压修正方法。The present invention relates to a current sensing amplifier circuit and an input offset voltage correction method thereof, and in particular to a current sensing amplifier circuit capable of correcting an input offset voltage by providing a correction current and an input offset voltage correction method thereof.
背景技术Background technique
请参照图1A与图1B,图1A是显示现有技术电流感测放大器电路的输入偏移电压修正方法10的步骤流程图。图1B是显示现有技术的具有修正输入偏移电压功能的电流感测放大器电路11的示意图。在现有技术的电流感测放大器电路11中,因为电阻R11、R21、R31在制造过程中的误差所产生的输入偏移电压(offset referred to input,RTI),而导致电流感测放大器电路11的增益无法匹配,并与设计值有所误差,进而造成电流感测结果的错误。如图1A所示并参阅图1B,现有技术的电流感测放大器电路11具有两输入端Ni1与Ni2,并且加入参考电压Vref以使电流感测放大器电路11可感测双向电流。现有技术的电流感测放大器电路11采用调整内建可编程反馈电阻链Rcr的电阻值,以进行输入偏移电压的修正;如图1B所示,经过修正程序,电流感测放大器电路11视需要修正的输入偏移电压,而选择部分电阻值相对较小的电阻R41、R42、、、串联于输出端,以修正输入偏移电压。Please refer to FIGS. 1A and 1B . FIG. 1A is a step flow chart showing an input offset voltage correction method 10 of a current sensing amplifier circuit in the related art. FIG. 1B is a schematic diagram showing a current sensing amplifier circuit 11 with a function of correcting the input offset voltage in the related art. In the current sensing amplifier circuit 11 of the prior art, the input offset voltage (offset referred to input, RTI) generated by the resistors R11, R21, and R31 during the manufacturing process causes the current sensing amplifier circuit 11 to The gain cannot match and deviates from the design value, causing errors in current sensing results. As shown in FIG. 1A and referring to FIG. 1B , the current sensing amplifier circuit 11 of the prior art has two input terminals Ni1 and Ni2, and a reference voltage Vref is added so that the current sensing amplifier circuit 11 can sense bidirectional current. The current sense amplifier circuit 11 in the prior art adjusts the resistance value of the built-in programmable feedback resistor chain Rcr to correct the input offset voltage; as shown in Figure 1B, after the correction process, the current sense amplifier circuit 11 is The input offset voltage needs to be corrected, and some resistors R41, R42, with relatively small resistance values are selected to be connected in series to the output end to correct the input offset voltage.
相较于其他现有技术电流感测放大器电路(未示出),电流感测放大器电路11还包含耦接于参考电压Vref的电阻R31,电阻R31的一端耦接于参考电压Vref,另一端电连接于放大器的非反向输入端。设置耦接于参考电压Vref的电阻R31具有以下两个理由。Compared with other prior art current sensing amplifier circuits (not shown), the current sensing amplifier circuit 11 further includes a resistor R31 coupled to the reference voltage Vref. One end of the resistor R31 is coupled to the reference voltage Vref, and the other end of the resistor R31 is electrically connected to the reference voltage Vref. Connect to the non-inverting input of the amplifier. The resistor R31 coupled to the reference voltage Vref is provided for the following two reasons.
第一,若是没有参考电压Vref通过电阻R31而施加偏压于放大器的非反向输入端,在放大器的反向输入端与非反向输入端的共模电压电连接于相对较高的电压时,例如当电流感测放大器电路11应用于电源转换电路中的上桥电路,未设置耦接于参考电压Vref的电阻R31的电流感测放大器电路11,放大器的反向输入端与非反向输入端将会电连接于相对较高的电压,而使得放大器损坏,或是放大器必须采用耐高压元件而增加制造成本。设置耦接于参考电压Vref的电阻R31之后,就可以调整放大器的反向输入端与非反向输入端的共模电压为相对较低的电压,如此一来放大器就可以采用低压元件而不需要采用耐高压元件以降低成本,并避免放大器损坏。First, if there is no reference voltage Vref to apply a bias voltage to the non-inverting input terminal of the amplifier through the resistor R31, when the common mode voltage of the inverting input terminal and the non-inverting input terminal of the amplifier is electrically connected to a relatively high voltage, For example, when the current sensing amplifier circuit 11 is applied to the upper bridge circuit in a power conversion circuit and the current sensing amplifier circuit 11 is not provided with a resistor R31 coupled to the reference voltage Vref, the inverting input terminal and the non-inverting input terminal of the amplifier It will be electrically connected to a relatively high voltage, causing damage to the amplifier, or the amplifier must use high-voltage components, which increases manufacturing costs. After setting the resistor R31 coupled to the reference voltage Vref, the common mode voltage of the inverting input terminal and the non-inverting input terminal of the amplifier can be adjusted to a relatively low voltage. In this way, the amplifier can use low-voltage components without using High voltage resistant components to reduce costs and avoid amplifier damage.
第二,在正常操作模式中,电流感测放大器电路11的输入电压(Vin+及Vin-)与输出电压Vout关系式如下:Second, in the normal operation mode, the relationship between the input voltage (Vin+ and Vin-) of the current sensing amplifier circuit 11 and the output voltage Vout is as follows:
Vout=Vref+(Vin+-Vin-)*kVout=Vref+(Vin + -Vin - )*k
其中k为预设常数。where k is a preset constant.
当输入端Ni1的输入电压Vin+小于输入端Ni2的输入电压Vin-时,若无参考电压Vref施加偏压于放大器的非反向输入端(也就是参考电压Vref=0),则输出电压Vout依照上式应为负值,但在以内部供应电压到接地电位的电压降为电源而供应放大器的情况下,放大器实际上是无法产生负的输出电压Vout。因此,若输出电压Vout应为负值时只能输出零电位。参考电压Vref施加偏压于放大器的非反向输入端,可以使输出电压Vout位准偏移至正值,以适用于输入端Ni1的输入电压Vin+小于输入端Ni2的输入电压Vin-的情况。When the input voltage Vin+ of the input terminal Ni1 is less than the input voltage Vin- of the input terminal Ni2, if no reference voltage Vref applies a bias voltage to the non-inverting input terminal of the amplifier (that is, the reference voltage Vref=0), the output voltage Vout is in accordance with The above expression should be a negative value, but when the voltage drop from the internal supply voltage to the ground potential is used as the power supply to the amplifier, the amplifier cannot actually generate a negative output voltage Vout. Therefore, if the output voltage Vout should be a negative value, it can only output zero potential. The reference voltage Vref applies a bias voltage to the non-inverting input terminal of the amplifier, which can shift the level of the output voltage Vout to a positive value, which is suitable for the case where the input voltage Vin+ of the input terminal Ni1 is smaller than the input voltage Vin- of the input terminal Ni2.
详言之,请参阅图1A,输入偏移电压修正方法10用以修正现有技术的电流感测放大器电路11的输入偏移电压,包含以下步骤。于步骤101,短路可编程反馈电阻链Rcr(包含电阻R4a、R41、R42、、、的串联电阻)。在步骤101中,所谓短路可编程反馈电阻链Rcr,是指将开关SW4a导通,以将输出电压Vout与放大器的反相输入端短路。接着,于步骤102,施加二个不同的共模电压于输入端(即输入端Ni1与输入端Ni2),并分别测量于二个不同共模电压时的放大器的输出电压Vout,并计算两次输出电压Vout的差值而得到第一输出电压差。之后,于步骤103,移除短路(是指将开关SW4a关断)并测量可编程反馈电阻链Rcr中的未修正的反馈链电阻值。接续,于步骤104,在前述可编程反馈电阻链Rcr的未修正的反馈链电阻值情况下,施加前述二个不同的共模电压于输入端(即输入端Ni1与输入端Ni2),并再次分别测量于二个不同共模电压时的放大器的输出电压Vout,并计算两次输出电压的差值而得到第二输出电压差。接着,于步骤105,基于上述第一输出电压差、第二输出电压差及未修正的反馈链电阻值(0及Rcr)推导出线性方程式。之后,于步骤106,基于前述线性方程式而得到反馈电阻目标。接续,于步骤107,将可编程反馈电阻链Rcr修正(trim)为最接近该反馈电阻目标的可编程电阻组合以用于反馈链。接着,于步骤108,于正常操作中,基于可编程反馈电阻链Rcr的修正后的反馈链电阻值,而感测流经放大器的两个输入端的电流。上述现有技术的输入偏移电压修正方法10步骤繁琐且若有两个回路则所有步骤要再次重复繁琐的步骤。Specifically, please refer to FIG. 1A . The input offset voltage correction method 10 is used to correct the input offset voltage of the current sense amplifier circuit 11 of the related art, and includes the following steps. In step 101, the programmable feedback resistor chain Rcr (a series resistor including resistors R4a, R41, R42, ,) is short-circuited. In step 101, short-circuiting the programmable feedback resistor chain Rcr means turning on the switch SW4a to short-circuit the output voltage Vout and the inverting input terminal of the amplifier. Next, in step 102, two different common-mode voltages are applied to the input terminals (ie, input terminal Ni1 and input terminal Ni2), and the output voltage Vout of the amplifier at the two different common-mode voltages is measured respectively, and calculated twice. The difference between the output voltages Vout is used to obtain the first output voltage difference. Afterwards, in step 103, the short circuit is removed (meaning to turn off the switch SW4a) and the uncorrected feedback chain resistance value in the programmable feedback resistor chain Rcr is measured. Next, in step 104, under the condition of the uncorrected feedback chain resistance value of the programmable feedback resistor chain Rcr, the two different common mode voltages are applied to the input terminals (i.e., the input terminal Ni1 and the input terminal Ni2), and again Measure the output voltage Vout of the amplifier at two different common-mode voltages, and calculate the difference between the two output voltages to obtain the second output voltage difference. Next, in step 105, a linear equation is derived based on the first output voltage difference, the second output voltage difference and the uncorrected feedback chain resistance value (0 and Rcr). Then, in step 106, the feedback resistance target is obtained based on the aforementioned linear equation. Next, in step 107, the programmable feedback resistance chain Rcr is trimmed to a programmable resistance combination closest to the feedback resistance target for use in the feedback chain. Next, in step 108, during normal operation, the current flowing through the two input terminals of the amplifier is sensed based on the modified feedback chain resistance value of the programmable feedback resistor chain Rcr. The above-mentioned 10 steps of the input offset voltage correction method in the prior art are cumbersome, and if there are two loops, all the cumbersome steps must be repeated again.
图1B所示的现有技术的电流感测放大器电路11虽然可以双向感测电流,也就是可以在输入电压Vin+小于输入电压Vin-与输入电压Vin-小于输入电压Vin+两种情况下感测电流,但等效的输入偏移电压会随着输入电压Vin+与Vin-及/或参考电压Vref的改变而改变。因此,现有技术的电流感测放大器电路11在特定条件(例如,一具有特定位准的输入电压与参考电压的一种组合)下,进行输入偏移电压的修正,而得到一个固定的修正值,并根据该组合而调整可编程反馈电阻链Rcr的电阻值至对应的电阻值时,确实能补偿于该特定条件下所对应的输入偏移电压,而使得实际的输出电压与对应的输出电压期待值之间没有输出偏移电压(也就是输出偏移电压为0)。Although the current sensing amplifier circuit 11 of the prior art shown in FIG. 1B can sense current in both directions, that is, it can sense current in two situations: the input voltage Vin+ is less than the input voltage Vin- and the input voltage Vin- is less than the input voltage Vin+. , but the equivalent input offset voltage will change as the input voltages Vin+ and Vin- and/or the reference voltage Vref change. Therefore, the current sense amplifier circuit 11 of the prior art corrects the input offset voltage under specific conditions (for example, a combination of an input voltage with a specific level and a reference voltage) to obtain a fixed correction. value, and when adjusting the resistance value of the programmable feedback resistor chain Rcr to the corresponding resistance value according to this combination, it can indeed compensate for the corresponding input offset voltage under this specific condition, so that the actual output voltage is consistent with the corresponding output There is no output offset voltage between the expected voltage values (that is, the output offset voltage is 0).
然而,当输入电压及/或参考电压改变时(例如,输入电压与参考电压的第二种组合),输入偏移电压即随之改变,因此于另一种组合下,现有技术的电流感测放大器电路11的输出电压与所对应的输出电压期待值之间的输出偏移电压无法忽略(即输出偏移电压不为0),造成电流感测结果的错误。需说明的是“输出偏移电压”等于“输入偏移电压”乘上放大器的增益。However, when the input voltage and/or the reference voltage changes (for example, the second combination of the input voltage and the reference voltage), the input offset voltage changes accordingly. Therefore, under another combination, the current sensor of the prior art The output offset voltage between the output voltage of the amplifier circuit 11 and the corresponding expected value of the output voltage cannot be ignored (that is, the output offset voltage is not 0), causing errors in current sensing results. It should be noted that the "output offset voltage" is equal to the "input offset voltage" multiplied by the gain of the amplifier.
需注意的是,其他现有技术电流感测放大器电路若以固定的修正电流修正,也会发生上述情形,无论是“输出偏移电压”或是“输入偏移电压”都与输入电压Vin+与Vin-及/或参考电压Vref有关,也就是说,当输入电压Vin+与Vin-(也就是输入电压Vin+与Vin-的输入共模电压改变)及/或参考电压Vref改变时,“输出偏移电压”或是“输入偏移电压”就会跟着改变,也就会造成电流感测错误。因此,如果只用固定的修正电流修正输入偏移电压(而非与输入电压Vin+与Vin-及参考电压Vref成正比的修正电流),就会只能对准某一种输入电压Vin+与Vin-及参考电压Vref的组合(因为是在该种组合下得到的修正电流)。It should be noted that the above situation will also occur if other existing technology current sense amplifier circuits are corrected with a fixed correction current. Whether the "output offset voltage" or "input offset voltage" is the same as the input voltage Vin+ and Vin- and/or the reference voltage Vref are related, that is to say, when the input voltages Vin+ and Vin- (that is, the input common mode voltage of the input voltages Vin+ and Vin- change) and/or the reference voltage Vref changes, the "output offset Voltage" or "input offset voltage" will change accordingly, causing current sensing errors. Therefore, if only a fixed correction current is used to correct the input offset voltage (rather than a correction current proportional to the input voltages Vin+ and Vin- and the reference voltage Vref), only a certain input voltage Vin+ and Vin- can be aligned. and the reference voltage Vref (because it is the corrected current obtained under this combination).
其他相关现有技术如P.Horowitz and W.Hill,The Art ofElectronics.Cambridge,U.K.:Cambridge Univ.Press,1989,其是传统的电流侦测器,采用三组运算放大器进行整合,采用此架构的好处是提供高共模拒斥比(common-moderejection ratio,CMRR)和平衡高输入阻抗的常用仪表放大器电路,可以分为两个部分。输入级主要用作缓冲器,输出级是差分放大器,能提供高的差动增益。也可以通过调整单个电阻的电阻值来调整仪表放大器的差分增益。因为该单个电阻与电路中的其他电阻不同,该单个电阻的电阻值不需要与任何其他电阻匹配。但在采用此架构上对于系统偏移量以及在高共模电压输入时此架构并不适用。Other related existing technologies include P.Horowitz and W.Hill, The Art of Electronics.Cambridge, U.K.: Cambridge Univ.Press, 1989. It is a traditional current detector that uses three groups of operational amplifiers for integration. Using this architecture The advantage is that common instrumentation amplifier circuits that provide high common-mode rejection ratio (CMRR) and balanced high input impedance can be divided into two parts. The input stage is mainly used as a buffer, and the output stage is a differential amplifier that can provide high differential gain. You can also adjust the differential gain of the instrumentation amplifier by adjusting the resistance value of the individual resistors. Because this single resistor is different from the other resistors in the circuit, the resistance value of this single resistor does not need to match any other resistor. However, this architecture is not suitable for system offset and high common-mode voltage input.
另一种相关现有技术如Razvan Puscasu,Pavel Brinzoi,&LaurentiuCreosteanu,“A High Voltage Current Sense Amplifier With Extended Input CommonMode Range Based On A Low Voltage Operational Amplifier Cell”,此现有技术为了能克服电流侦测器在大范围的共模电压输入且能进行输入的双向电流的侦测,且其输入共模电压与电源无关的情况下所发展的电流侦测电路。但因为电阻在制造过程上的误差所产生的输入偏移电压,而导致整体的增益无法匹配,并与设计值有所误差,进而造成电流感测结果的错误。Another related prior art is Razvan Puscasu, Pavel Brinzoi, & Laurentiu Creosteanu, "A High Voltage Current Sense Amplifier With Extended Input CommonMode Range Based On A Low Voltage Operational Amplifier Cell". This prior art is designed to overcome the problem of current detectors. A current detection circuit developed under the condition that the input common mode voltage has a wide range of common mode voltage input and can detect the input bidirectional current, and the input common mode voltage has nothing to do with the power supply. However, due to the input offset voltage generated by errors in the resistor manufacturing process, the overall gain cannot match and deviates from the design value, thereby causing errors in the current sensing results.
另一种相关现有技术如R.C.Yen and P.R.Gray,“A MOS switched-capacitorinstrumentation amplifier,”IEEE J.Solid-State Circuits,vol.SC-17,pp.1008–1013,Dec.1982,在此现有技术的电流侦测器架构中,能使共模电压的输入范围增大,但却间接导致了整体的运算放大器在不同的共模电压输入下其运算放大器的输入偏移电压不同,在考虑了工艺偏移的现象,将会导致其输出电压的精准度下降,为了克服这点,电流侦测器采用电容开关技术(Chopper)的方式进行输入偏移电压抑制的设计。Another related prior art is R.C.Yen and P.R.Gray, "A MOS switched-capacitor instrumentation amplifier," IEEE J.Solid-State Circuits, vol.SC-17, pp.1008–1013, Dec.1982, published here. The technical current detector architecture can increase the input range of the common-mode voltage, but this indirectly leads to the different input offset voltages of the overall operational amplifier under different common-mode voltage inputs. When considering The phenomenon of process offset will lead to a decrease in the accuracy of its output voltage. In order to overcome this, the current detector uses capacitive switching technology (Chopper) to design input offset voltage suppression.
其他相关现有技术如“TI:INA213 Voltage Output,Low-or High-SideMeasurement,Bidirectional,Zero-Drift Series,Current-Shunt Monitors”、“OnSemiconductor:NCS199A1R,Current-Shunt Monitors,Voltage Output,Bidirectional,Zero-Drift,Low-or High-Side Current Sensing”、“SGMICRO:SGM8199 Voltage Output,High-or Low-Side Measurement,Bi-Directional Current Shunt Monitor”与“3PEAK:TP181,Zero-Drift,Bi-directional Current Sense Amplifier”。Other related existing technologies such as "TI: INA213 Voltage Output, Low-or High-Side Measurement, Bidirectional, Zero-Drift Series, Current-Shunt Monitors", "OnSemiconductor: NCS199A1R, Current-Shunt Monitors, Voltage Output, Bidirectional, Zero- Drift, Low-or High-Side Current Sensing", "SGMICRO: SGM8199 Voltage Output, High-or Low-Side Measurement, Bi-Directional Current Shunt Monitor" and "3PEAK: TP181, Zero-Drift, Bi-directional Current Sense Amplifier ".
有鉴于此,本发明即针对上述现有技术的不足,提出一种电流感测放大器电路及其输入偏移电压修正方法。In view of this, the present invention aims at the above-mentioned shortcomings of the prior art and proposes a current sensing amplifier circuit and an input offset voltage correction method thereof.
发明内容Contents of the invention
于一观点中,本发明提供了一种电流感测放大器电路,用以感测流经一感测电阻的一待感测电流,其中该感测电阻的两端对应耦接于该电流感测放大器电路的一第一输入端与一第二输入端,该电流感测放大器电路包括:一放大器,用以于一正常操作模式中,根据该第一输入端的一第一输入电压与该第二输入端的一第二输入电压,而产生相关于该待感测电流的一输出电压;一第一电阻,耦接于一参考电压与该放大器的一非反相输入端之间,其中该第一电阻的电阻值为一第一阻值加上一第一误差阻值;一第二电阻,耦接于该输出电压与该放大器的一反相输入端之间,其中该第二电阻的电阻值为该第一阻值减去该第一误差阻值;一第三电阻,耦接于该第一输入端与该非反相输入端之间,其中该第三电阻的电阻值为一第二阻值减去一第二误差阻值;一第四电阻,耦接于该第二输入端与该反相输入端之间,其中该第四电阻的电阻值为该第二阻值加上该第二误差阻值;以及一电流源电路,用以于一修正模式中,根据该第一输入电压、该第二输入电压或一输入共模电压与该参考电压而产生一修正电流,并且于该正常操作模式中,提供该修正电流以修正因该第一误差阻值与该第二误差阻值所产生的输入偏移(offset referred to input,RTI)电压;其中,该电流源电路耦接于:该第一电阻与该非反相输入端之间、该第二电阻与该输出电压之间、该第三电阻与该非反相输入端之间或该第四电阻与该反相输入端之间;其中,于该修正模式中,该第一输入端电连接于该第二输入端,以使该第一输入电压与该第二输入电压具有相同的电位。In one aspect, the present invention provides a current sensing amplifier circuit for sensing a current to be sensed flowing through a sensing resistor, wherein both ends of the sensing resistor are coupled to the current sensing circuit. A first input terminal and a second input terminal of the amplifier circuit. The current sensing amplifier circuit includes: an amplifier for operating in a normal operating mode according to a first input voltage of the first input terminal and the second input terminal. A second input voltage at the input terminal generates an output voltage related to the current to be sensed; a first resistor is coupled between a reference voltage and a non-inverting input terminal of the amplifier, wherein the first The resistance value of the resistor is a first resistance value plus a first error resistance value; a second resistor is coupled between the output voltage and an inverting input terminal of the amplifier, wherein the resistance value of the second resistor is the first resistance value minus the first error resistance value; a third resistor is coupled between the first input terminal and the non-inverting input terminal, wherein the resistance value of the third resistor is a second resistance minus a second error resistance; a fourth resistor, coupled between the second input terminal and the inverting input terminal, wherein the resistance value of the fourth resistor is the second resistance plus the a second error resistance; and a current source circuit for generating a correction current according to the first input voltage, the second input voltage or an input common mode voltage and the reference voltage in a correction mode, and in In the normal operation mode, the correction current is provided to correct the input offset (offset referred to input, RTI) voltage generated by the first error resistance and the second error resistance; wherein, the current source circuit is coupled Between: the first resistor and the non-inverting input terminal, between the second resistor and the output voltage, between the third resistor and the non-inverting input terminal or between the fourth resistor and the inverting input terminal wherein, in the correction mode, the first input terminal is electrically connected to the second input terminal, so that the first input voltage and the second input voltage have the same potential.
于一实施例中,该电流源电路包括:一第一电压转电流电路,用以转换该第一输入电压、该第二输入电压或该输入共模电压而产生一第一电流;一第二电压转电流电路,用以转换该参考电压而产生一第二电流;以及一修正电流产生电路,于该修正模式中,根据该第一电流与该第二电流,产生该修正电流,以使该输出电压等于或最接近该参考电压。In one embodiment, the current source circuit includes: a first voltage-to-current circuit for converting the first input voltage, the second input voltage or the input common-mode voltage to generate a first current; a second a voltage-to-current circuit for converting the reference voltage to generate a second current; and a correction current generation circuit for generating the correction current according to the first current and the second current in the correction mode, so that the The output voltage is equal to or closest to this reference voltage.
于一实施例中,该修正电流产生电路包括:一第一电流复制电路,用以复制该第一电流,而产生一第一复制电流;一第二电流复制电路,用以复制该第二电流,而产生一第二复制电流;一第一加法电路,用以执行减法运算,以将该第一复制电流减去该第二复制电流,而产生一第一减法结果;一第二加法电路,用以执行减法运算,以将该第二复制电流减去该第一复制电流,而产生一第二减法结果;一判断电路,用以于该第一复制电流高于该第二复制电流时,产生一第一使能信号,并于该第二复制电流高于该第一复制电流时,产生一第二使能信号;一第一电流修正电路,用以受使能于该第一使能信号,而修正该第一减法结果,以产生一第一修正电流;一第二电流修正电路,用以受使能于该第二使能信号,而修正该第二减法结果,以产生一第二修正电流;以及一第三加法电路,用以对该第一修正电流与该第二修正电流执行一加法运算,以产生该修正电流。In one embodiment, the modified current generating circuit includes: a first current replicating circuit for replicating the first current to generate a first replicating current; and a second current replicating circuit for replicating the second current. , to generate a second copy current; a first addition circuit for performing a subtraction operation to subtract the second copy current from the first copy current to generate a first subtraction result; a second addition circuit, Used to perform a subtraction operation to subtract the first copy current from the second copy current to generate a second subtraction result; a judgment circuit used to when the first copy current is higher than the second copy current, Generate a first enable signal, and when the second copy current is higher than the first copy current, generate a second enable signal; a first current correction circuit to be enabled by the first enable signal signal to modify the first subtraction result to generate a first correction current; a second current correction circuit to be enabled by the second enable signal to modify the second subtraction result to generate a first two correction currents; and a third addition circuit for performing an addition operation on the first correction current and the second correction current to generate the correction current.
于一实施例中,该第一电流复制电路与该第二电流复制电路分别包括至少一电流镜电路。In one embodiment, the first current replication circuit and the second current replication circuit each include at least one current mirror circuit.
于一实施例中,该参考电压用以调整该放大器的一输入共模电压,以使该电流感测放大器电路具有双向电流感测功能。In one embodiment, the reference voltage is used to adjust an input common mode voltage of the amplifier so that the current sensing amplifier circuit has a bidirectional current sensing function.
于一实施例中,该电流感测放大器电路还包括一电容开关电路(chopper),耦接于该非反相输入端与该反相输入端之间,用以抑制在不同的输入共模电压时所造成的输入偏移电压变化。In one embodiment, the current sense amplifier circuit further includes a capacitive switch circuit (chopper) coupled between the non-inverting input terminal and the inverting input terminal for suppressing voltage variation at different input common-mode voltages. The input offset voltage changes caused by the time.
于一实施例中,该输入偏移电压对应相关于该修正电流的一补偿项,且该补偿项不影响该放大器的增益误差(gain error)。In one embodiment, the input offset voltage corresponds to a compensation term related to the correction current, and the compensation term does not affect the gain error of the amplifier.
于一实施例中,该修正电流正比于该第一输入电压与该参考电压的差值、该第二输入电压与该参考电压的差值、或该第一输入电压与该第二输入电压的一输入共模电压与该参考电压的差值。In one embodiment, the correction current is proportional to the difference between the first input voltage and the reference voltage, the difference between the second input voltage and the reference voltage, or the difference between the first input voltage and the second input voltage. The difference between an input common-mode voltage and the reference voltage.
于一实施例中,该第一误差阻值小于该第一阻值的一半,且该第二误差阻值小于该第二阻值的一半。In one embodiment, the first error resistance is less than half of the first resistance, and the second error resistance is less than half of the second resistance.
于一实施例中,该电流源电路于该修正模式中,根据该第一输入电压与该参考电压,以二分逼近法、单斜率逼近法或逐步逼近法而产生该修正电流。In one embodiment, in the correction mode, the current source circuit generates the correction current using a bisection approximation method, a single slope approximation method or a stepwise approximation method according to the first input voltage and the reference voltage.
于另一观点中,本发明提供一种输入偏移电压修正方法,用以修正一电流感测放大器电路的输入偏移(offset referred to input,RTI)电压,该输入偏移电压修正方法包括:将该电流感测放大器电路的一第一输入端与一第二输入端电连接,以使该第一输入端的一第一输入电压与该第二输入端的一第二输入电压具有相同的电位;转换该第一输入电压、该第二输入电压或一输入共模电压而产生一第一电流;转换一参考电压而产生一第二电流;以及根据该第一电流与该第二电流,而产生一修正电流,以使该电流感测放大器电路的一输出电压等于或最接近该参考电压;其中该电流感测放大器电路的一第一电阻,耦接于该参考电压与该电流感测放大器电路的一放大器的一非反相输入端之间;其中于一正常操作模式中,提供该修正电流以修正该电流感测放大器电路所产生的该输入偏移电压。In another aspect, the present invention provides an input offset voltage correction method for correcting the input offset (offset referred to input, RTI) voltage of a current sensing amplifier circuit. The input offset voltage correction method includes: electrically connecting a first input terminal and a second input terminal of the current sensing amplifier circuit so that a first input voltage of the first input terminal and a second input voltage of the second input terminal have the same potential; converting the first input voltage, the second input voltage or an input common mode voltage to generate a first current; converting a reference voltage to generate a second current; and generating based on the first current and the second current A current is corrected so that an output voltage of the current sensing amplifier circuit is equal to or closest to the reference voltage; wherein a first resistor of the current sensing amplifier circuit is coupled between the reference voltage and the current sensing amplifier circuit between a non-inverting input terminal of an amplifier; wherein in a normal operating mode, the correction current is provided to correct the input offset voltage generated by the current sense amplifier circuit.
于一实施例中,根据该第一电流与该第二电流,而产生该修正电流,以使该电流感测放大器电路的该输出电压等于或最接近该参考电压的步骤包括:复制该第一电流,而产生一第一复制电流;复制该第二电流,而产生一第二复制电流;执行减法运算,以将该第一复制电流减去该第二复制电流,而产生一第一减法结果;执行减法运算,以将该第二复制电流减去该第一复制电流,而产生一第二减法结果;于该第一复制电流高于该第二复制电流时,产生一第一使能信号,并于该第二复制电流高于该第一复制电流时,产生一第二使能信号;根据该第一使能信号,而修正该第一减法结果,以产生一第一修正电流;根据该第二使能信号,而修正该第二减法结果,以产生一第二修正电流;以及对该第一修正电流与该第二修正电流执行一加法运算,以产生该修正电流。In one embodiment, the step of generating the correction current according to the first current and the second current so that the output voltage of the current sense amplifier circuit is equal to or closest to the reference voltage includes: copying the first current to generate a first copy current; copy the second current to generate a second copy current; perform a subtraction operation to subtract the second copy current from the first copy current to generate a first subtraction result ;Perform a subtraction operation to subtract the first copy current from the second copy current to generate a second subtraction result; when the first copy current is higher than the second copy current, generate a first enable signal , and when the second copy current is higher than the first copy current, a second enable signal is generated; according to the first enable signal, the first subtraction result is corrected to generate a first correction current; according to The second enable signal corrects the second subtraction result to generate a second correction current; and performs an addition operation on the first correction current and the second correction current to generate the correction current.
于一实施例中,该输入偏移电压修正方法还包括:以一电容开关电路(chopper),耦接于该电流感测放大器电路的该非反相输入端与一反相输入端之间,用以抑制在不同的输入共模电压时所造成的输入偏移电压变化。In one embodiment, the input offset voltage correction method further includes: using a capacitive switch circuit (chopper) coupled between the non-inverting input terminal and an inverting input terminal of the current sense amplifier circuit, It is used to suppress the input offset voltage changes caused by different input common mode voltages.
于一实施例中,该第一电阻的电阻值为一第一阻值加上一第一误差阻值;其中该电流感测放大器电路的一第二电阻,耦接于该输出电压与该放大器的一反相输入端之间,其中该第二电阻的电阻值为该第一阻值减去该第一误差阻值;其中该电流感测放大器电路的一第三电阻,耦接于该第一输入端与该非反相输入端之间,其中该第三电阻的电阻值为一第二阻值减去一第二误差阻值;其中该电流感测放大器电路的一第四电阻,耦接于该第二输入端与该反相输入端之间,其中该第四电阻的电阻值为该第二阻值加上该第二误差阻值;其中该输入偏移电压相关于该第一误差阻值与该第二误差阻值。In one embodiment, the resistance value of the first resistor is a first resistance value plus a first error resistance value; wherein a second resistor of the current sensing amplifier circuit is coupled between the output voltage and the amplifier between an inverting input terminal, wherein the resistance value of the second resistor is the first resistance value minus the first error resistance value; wherein a third resistor of the current sensing amplifier circuit is coupled to the first between an input terminal and the non-inverting input terminal, wherein the resistance value of the third resistor is a second resistance value minus a second error resistance value; wherein a fourth resistor of the current sensing amplifier circuit is coupled to is connected between the second input terminal and the inverting input terminal, wherein the resistance value of the fourth resistor is the second resistance value plus the second error resistance value; wherein the input offset voltage is related to the first error resistance and the second error resistance.
本发明的优点为本发明可使电流感测放大器电路具有双向电流感测功能,且可通过修正电流改善增益的精准度以减轻电阻工艺所造成的电阻不匹配。The advantage of the present invention is that the present invention can enable the current sensing amplifier circuit to have a bidirectional current sensing function, and can improve the accuracy of the gain by correcting the current to reduce the resistance mismatch caused by the resistor process.
以下将通过具体实施例详加说明,会更容易了解本发明的目的、技术内容、特点及其所实现的效果。The following will be described in detail through specific embodiments, which will make it easier to understand the purpose, technical content, characteristics and achieved effects of the present invention.
附图说明Description of drawings
图1A是显示现有技术电流感测放大器电路的输入偏移电压修正方法的步骤流程图。FIG. 1A is a step flow chart showing an input offset voltage correction method of a current sensing amplifier circuit in the related art.
图1B是显示现有技术的具有修正输入偏移电压功能的电流感测放大器电路的示意图。FIG. 1B is a schematic diagram showing a current sensing amplifier circuit with a function of correcting the input offset voltage in the related art.
图2A是根据本发明的一实施例显示电流感测放大器电路的电路示意图。FIG. 2A is a circuit schematic diagram showing a current sensing amplifier circuit according to an embodiment of the present invention.
图2B是根据本发明的另一实施例显示电流感测放大器电路的电路示意图。FIG. 2B is a circuit schematic diagram showing a current sensing amplifier circuit according to another embodiment of the present invention.
图3是根据本发明的一实施例显示电流源电路的方块示意图。FIG. 3 is a block diagram showing a current source circuit according to an embodiment of the present invention.
图4是根据本发明的一实施例显示电流源电路及其中的修正电流产生电路的电路方块图。FIG. 4 is a circuit block diagram showing a current source circuit and a correction current generating circuit therein according to an embodiment of the present invention.
图5是根据本发明的另一实施例显示修正电流产生电路的电路方块图。FIG. 5 is a circuit block diagram showing a correction current generating circuit according to another embodiment of the present invention.
图6是根据本发明的另一实施例显示电流源电路的电路方块图。FIG. 6 is a circuit block diagram showing a current source circuit according to another embodiment of the present invention.
图7是根据本发明的一实施例显示电流修正电路的电路示意图。FIG. 7 is a circuit schematic diagram showing a current correction circuit according to an embodiment of the present invention.
图8是根据本发明的一实施例显示本发明的电流感测放大器电路的参考电压与输入电压的差值相对于输入偏移电压及已知的电流感测放大器电路的参考电压与输入电压的差值相对于输入偏移电压的关系图。FIG. 8 shows the difference between the reference voltage and the input voltage of the current sensing amplifier circuit of the present invention relative to the input offset voltage and the reference voltage and the input voltage of the known current sensing amplifier circuit according to an embodiment of the present invention. Difference versus input offset voltage plot.
图9是根据本发明的一实施例显示本发明的电流感测放大器电路在不同的温度下参考电压与输入电压的差值相对于修正电流的关系图。FIG. 9 is a diagram showing the relationship between the difference between the reference voltage and the input voltage and the correction current of the current sensing amplifier circuit of the present invention at different temperatures according to an embodiment of the present invention.
图10是根据本发明的一实施例显示本发明的电流感测放大器电路在不同的温度下参考电压与输入电压的差值相对于输入偏移电压的关系图。FIG. 10 is a diagram showing the relationship between the difference between the reference voltage and the input voltage and the input offset voltage at different temperatures for the current sensing amplifier circuit of the present invention according to an embodiment of the present invention.
图11是根据本发明的一实施例显示本发明的电流感测放大器电路在不同的温度下电流修正电路所使用的修正代码相对于输入偏移电压的关系图。FIG. 11 is a diagram showing the relationship between the correction code used by the current correction circuit of the current sensing amplifier circuit of the present invention and the input offset voltage at different temperatures according to an embodiment of the present invention.
图12是根据本发明的一实施例显示本发明的电流感测放大器电路在不同的温度下电流修正电路所使用的修正代码相对于微分非线性的关系图。FIG. 12 is a diagram showing the relationship between the correction code used by the current correction circuit of the current sensing amplifier circuit of the present invention and the differential nonlinearity at different temperatures according to an embodiment of the present invention.
图13是根据本发明的一实施例显示本发明的电流感测放大器电路在不同的温度下电流修正电路所使用的修正代码相对于输出电压的关系图。FIG. 13 is a diagram showing the relationship between the correction code used by the current correction circuit of the current sensing amplifier circuit of the present invention and the output voltage at different temperatures according to an embodiment of the present invention.
图14是根据本发明的实施例显示本发明的输入偏移电压修正方法的步骤流程图。FIG. 14 is a flow chart showing the steps of the input offset voltage correction method of the present invention according to an embodiment of the present invention.
图15是根据本发明的实施例显示本发明的产生修正电流的步骤流程图。FIG. 15 is a flow chart showing the steps of generating a correction current according to an embodiment of the present invention.
图16是根据本发明的实施例显示本发明的电容开关电路抑制在不同的输入共模电压时所造成的输入偏移电压变化的步骤流程图。FIG. 16 is a flow chart showing the steps of the capacitive switch circuit of the present invention to suppress input offset voltage changes caused by different input common mode voltages according to an embodiment of the present invention.
图中符号说明Explanation of symbols in the figure
10:输入偏移电压修正方法10: Input offset voltage correction method
11:电流感测放大器电路11: Current sensing amplifier circuit
101~108:步骤20:电流感测放大器电路101~108: Step 20: Current sensing amplifier circuit
201:电流源电路201: Current source circuit
2011a,2011b:电压转电流电路2011a, 2011b: Voltage to Current Circuit
2012:修正电流产生电路2012: Revised current generation circuit
20121,20121a,20121b:电流复制电路20121, 20121a, 20121b: Current Replication Circuit
20122a,20122b,20122c:加法电路20122a, 20122b, 20122c: Adding circuit
20123,20123a,20123b:判断电路20123, 20123a, 20123b: Judgment circuit
20124a,20124b:电流修正电路20124a, 20124b: Current correction circuit
20125a,20125b,20126a,20126b:电流源20125a, 20125b, 20126a, 20126b: Current source
202:放大器202: Amplifier
203:第一电阻203: First resistor
204:第二电阻204: Second resistor
205:第三电阻205: Third resistor
206:第四电阻206: Fourth resistor
207:电容开关电路207: Capacitor switch circuit
30:输入偏移电压修正方法30: Input offset voltage correction method
301~306,3041~3048:步骤301~306, 3041~3048: steps
dR1:第一误差阻值dR1: first error resistance
dR2:第二误差阻值dR2: second error resistance
En1,En2:使能信号En1, En2: enable signal
Idn,Iup:电流Idn, Iup: current
-Ig1:负的第一电流-Ig1: negative first current
Ig2:第二电流Ig2: second current
-Ig2:负的第二电流-Ig2: negative second current
Igc1:第一复制电流Igc1: first copy current
Igc2:第二复制电流Igc2: second copy current
Imo1:第一减法结果Imo1: first subtraction result
Imo2:第二减法结果Imo2: second subtraction result
Is:待感测电流Is: current to be sensed
Itrim:修正电流Itrim: correct current
Itrim+:第一修正电流Itrim+: First modified current
Itrim-:第二修正电流Itrim-: Second modified current
Nd1:第一节点Nd1: first node
Nd2:第二节点Nd2: second node
Nd3:第三节点Nd3: The third node
Nd4:第四节点Nd4: fourth node
Ni1:(第一)输入端Ni1: (first) input terminal
Ni2:(第二)输入端Ni2: (second) input terminal
Np1,Np2,Np3,Ns:节点Np1, Np2, Np3, Ns: nodes
Q1~Qn,Qj1,Qj2,Qj3:开关Q1~Qn, Qj1, Qj2, Qj3: switch
Qm1,Qm2:晶体管Qm1, Qm2: transistor
R1:第一阻值R1: first resistance
R1b,R2b,R3b,R4b,RT,R11,R21,R31,R41,R42,R4a:电阻R1b, R2b, R3b, R4b, RT, R11, R21, R31, R41, R42, R4a: Resistors
R2:第二阻值R2: second resistance value
Rcr:可编程反馈电阻链Rcr: Programmable feedback resistor chain
Rs:感测电阻Rs: sensing resistance
SW1~SWn-1,SW4a:开关SW1~SWn-1, SW4a: switch
Vcom:输入共模电压Vcom: input common mode voltage
VDDA:高电位VDDA: high potential
Vgs1,Vgs2:栅极-源极电压Vgs1, Vgs2: gate-source voltage
Vin+:(第一)输入电压Vin+: (first) input voltage
Vin-:(第二)输入电压Vin-: (second) input voltage
Vout:输出电压Vout: output voltage
Vref:参考电压Vref: reference voltage
VSSA:低电位VSSA: low potential
具体实施方式Detailed ways
本发明中的附图均属示意,主要意在表示各电路间的耦接关系,以及各信号波形之间的关系,至于电路、信号波形与频率则并未依照比例绘制。The drawings in the present invention are all schematic, and are mainly intended to show the coupling relationship between various circuits and the relationship between various signal waveforms. As for the circuits, signal waveforms and frequencies, they are not drawn to scale.
图2A是根据本发明的一实施例显示电流感测放大器电路的电路示意图。如图2A所示,本发明的电流感测放大器电路20用以感测流经感测电阻Rs的待感测电流Is。感测电阻Rs的两端对应耦接于电流感测放大器电路20的第一输入端Ni1与第二输入端Ni2。电流感测放大器电路20包括电流源电路201、放大器202、第一电阻203、第二电阻204、第三电阻205及第四电阻206。放大器202用以于正常操作模式中,根据第一输入端Ni1的第一输入电压Vin+与第二输入端Ni2的第二输入电压Vin-,而产生相关于待感测电流Is的输出电压Vout。FIG. 2A is a circuit schematic diagram showing a current sensing amplifier circuit according to an embodiment of the present invention. As shown in FIG. 2A , the current sensing amplifier circuit 20 of the present invention is used to sense the current Is to be sensed flowing through the sensing resistor Rs. Two ends of the sensing resistor Rs are respectively coupled to the first input terminal Ni1 and the second input terminal Ni2 of the current sensing amplifier circuit 20 . The current sensing amplifier circuit 20 includes a current source circuit 201, an amplifier 202, a first resistor 203, a second resistor 204, a third resistor 205 and a fourth resistor 206. The amplifier 202 is used in the normal operation mode to generate an output voltage Vout related to the current Is to be sensed according to the first input voltage Vin+ of the first input terminal Ni1 and the second input voltage Vin- of the second input terminal Ni2.
第一电阻203耦接于参考电压Vref与放大器202的非反相输入端之间。第一电阻203的电阻值为第一阻值R1加上第一误差阻值dR1。第二电阻204耦接于输出电压Vout与放大器202的反相输入端之间。第二电阻204的电阻值为第一阻值R1减去第一误差阻值dR1。第三电阻205耦接于第一输入端Ni1与放大器202的非反相输入端之间。第三电阻205的电阻值为第二阻值R2减去第二误差阻值dR2。第四电阻206耦接于第二输入端Ni2与放大器202的反相输入端之间。第四电阻206的电阻值为第二阻值R2加上第二误差阻值dR2。The first resistor 203 is coupled between the reference voltage Vref and the non-inverting input terminal of the amplifier 202 . The resistance value of the first resistor 203 is the first resistance value R1 plus the first error resistance value dR1. The second resistor 204 is coupled between the output voltage Vout and the inverting input terminal of the amplifier 202 . The resistance value of the second resistor 204 is the first resistance value R1 minus the first error resistance value dR1. The third resistor 205 is coupled between the first input terminal Ni1 and the non-inverting input terminal of the amplifier 202 . The resistance value of the third resistor 205 is the second resistance value R2 minus the second error resistance value dR2. The fourth resistor 206 is coupled between the second input terminal Ni2 and the inverting input terminal of the amplifier 202 . The resistance value of the fourth resistor 206 is the second resistance value R2 plus the second error resistance value dR2.
请同时参照图2A及图3,电流源电路201用以于修正模式中,根据第一输入电压Vin+、第二输入电压Vin-或输入共模电压Vcom与参考电压Vref而产生修正电流Itrim,并且于正常操作模式中,提供修正电流Itrim以修正因第一误差阻值dR1与第二误差阻值dR2所产生电流感测放大器电路20的输入偏移(offset referred to input,RTI)电压。于一实施例中,电流源电路201耦接于:第一电阻203与非反相输入端之间的一第一节点Nd1、第二电阻204与输出电压Vout之间的一第二节点Nd2、第三电阻205与非反相输入端之间的一第三节点Nd3或第四电阻206与反相输入端之间的一第四节点Nd4。Please refer to FIG. 2A and FIG. 3 at the same time. The current source circuit 201 is used in the correction mode to generate the correction current Itrim according to the first input voltage Vin+, the second input voltage Vin- or the input common mode voltage Vcom and the reference voltage Vref, and In the normal operation mode, the correction current Itrim is provided to correct the input offset (offset referred to input, RTI) voltage of the current sense amplifier circuit 20 caused by the first error resistance dR1 and the second error resistance dR2. In one embodiment, the current source circuit 201 is coupled to: a first node Nd1 between the first resistor 203 and the non-inverting input terminal, a second node Nd2 between the second resistor 204 and the output voltage Vout, A third node Nd3 between the third resistor 205 and the non-inverting input terminal or a fourth node Nd4 between the fourth resistor 206 and the inverting input terminal.
于一实施例中,如图2A所示,电阻R1b、R2b、R3b及R4b可选择性分别耦接于放大器202的非反相输入端与电流源电路201之间、输出电压Vout与电流源电路201之间、放大器202的非反相输入端与电流源电路201之间及放大器202的反相输入端与电流源电路201之间。于修正模式中,第一输入端Ni1电连接于第二输入端Ni2,以使第一输入电压Vin+与第二输入电压Vin-具有相同的电位。参考电压Vref用以调整放大器202的输入共模电压,以使电流感测放大器电路20具有双向电流感测功能。In one embodiment, as shown in FIG. 2A , resistors R1b, R2b, R3b and R4b can be selectively coupled between the non-inverting input terminal of the amplifier 202 and the current source circuit 201, the output voltage Vout and the current source circuit respectively. 201, between the non-inverting input terminal of the amplifier 202 and the current source circuit 201, and between the inverting input terminal of the amplifier 202 and the current source circuit 201. In the correction mode, the first input terminal Ni1 is electrically connected to the second input terminal Ni2, so that the first input voltage Vin+ and the second input voltage Vin- have the same potential. The reference voltage Vref is used to adjust the input common mode voltage of the amplifier 202 so that the current sensing amplifier circuit 20 has a bidirectional current sensing function.
参照图2A及图6,在修正模式中,举例而言,电流源电路201耦接于第二电阻204与输出电压Vout之间的第二节点Nd2,且电阻R2b耦接于输出电压Vout与电流源电路201之间时,由于第一输入电压Vin+等于第二输入电压Vin-,则输出电压Vout如式(1)所示:Referring to FIG. 2A and FIG. 6 , in the correction mode, for example, the current source circuit 201 is coupled to the second node Nd2 between the second resistor 204 and the output voltage Vout, and the resistor R2b is coupled between the output voltage Vout and the current. When the source circuit 201 is between, since the first input voltage Vin+ is equal to the second input voltage Vin-, the output voltage Vout is as shown in equation (1):
其中m为所有电流镜及电流修正电路20124a及20124b的倍率。式(1)中为输入偏移电压,而/>为修正电流Itrim的补偿项,其对应相关于上述输入偏移电压,且该补偿项不影响放大器202的增益误差(gain error)。Where m is the magnification of all current mirrors and current correction circuits 20124a and 20124b. In formula (1) is the input offset voltage, and/> It is a compensation term for correcting the current Itrim, which is corresponding to the above-mentioned input offset voltage, and this compensation term does not affect the gain error of the amplifier 202.
如前所述的修正电流Itrim的补偿项可知,修正电流Itrim例如正比于第一输入电压Vin+与参考电压Vref的差值。请同时参阅图7,在修正模式中,在特定条件下(也就是选择一个参考电压Vref,并选择一个第一输入电压Vin+的组合),根据输出电压Vout与参考电压Vref的差值,逐步调整(即采用各种逼近法)电流修正电路20124a与20124b中各自的导通的晶体管的比例,以调整式(1)中的m值,当输出电压Vout等于或最接近参考电压Vref时所得到的m值,即为可使得式(1)中输入偏移电压与修正电流Itrim的补偿项相等或最接近的m值。在正常操作模式中,以所得到的m值设置电流修正电路20124a与20124b中各自的导通的晶体管的比例,即可使电流源电路201,提供修正电流Itrim以修正因第一误差阻值dR1与第二误差阻值dR2所产生的输入偏移电压。并且因为根据本发明所设置的电流修正电路20124a与20124b是针对m值,因此无论第一输入电压Vin+与参考电压Vref如何变化,电流源电路201都可以提供正确的修正电流Itrim补偿输入偏移电压,而不需要再次进入修正模式。As mentioned above, it can be seen from the compensation term of the correction current Itrim that the correction current Itrim is proportional to the difference between the first input voltage Vin+ and the reference voltage Vref, for example. Please refer to Figure 7 at the same time. In the correction mode, under specific conditions (that is, selecting a reference voltage Vref and selecting a combination of the first input voltage Vin+), the system is gradually adjusted according to the difference between the output voltage Vout and the reference voltage Vref. (That is, using various approximation methods) The ratio of the respective turned-on transistors in the current correction circuits 20124a and 20124b is used to adjust the m value in equation (1), which is obtained when the output voltage Vout is equal to or closest to the reference voltage Vref The m value is the m value that can make the compensation term of the input offset voltage and the correction current Itrim in equation (1) equal or closest. In the normal operating mode, the obtained m value is used to set the ratio of the respective conductive transistors in the current correction circuits 20124a and 20124b, so that the current source circuit 201 can provide the correction current Itrim to correct the first error resistance dR1 The input offset voltage generated by the second error resistance dR2. And because the current correction circuits 20124a and 20124b configured according to the present invention are for the m value, no matter how the first input voltage Vin+ and the reference voltage Vref change, the current source circuit 201 can provide the correct correction current Itrim to compensate for the input offset voltage. , without entering correction mode again.
需说明的是,本发明所修正的输入偏移电压,是指电流感测放大器电路的输入偏移电压,而非指其中的放大器的输入偏移电压。本发明特别根据电流感测放大器电路中,因为其中的电阻在制造过程中的误差所产生的输入偏移电压。It should be noted that the input offset voltage corrected in the present invention refers to the input offset voltage of the current sensing amplifier circuit, rather than the input offset voltage of the amplifier therein. The present invention is particularly concerned with input offset voltages in current sensing amplifier circuits due to errors in the manufacturing process of resistors therein.
在一种实施例中,修正电流Itrim正比于第一输入电压Vin+与参考电压Vref的差值、第二输入电压Vin-与参考电压Vref的差值、或第一输入电压Vin+与第二输入电压Vin-的一输入共模电压与该参考电压Vref的差值。In one embodiment, the correction current Itrim is proportional to the difference between the first input voltage Vin+ and the reference voltage Vref, the difference between the second input voltage Vin- and the reference voltage Vref, or the difference between the first input voltage Vin+ and the second input voltage. The difference between an input common mode voltage of Vin- and the reference voltage Vref.
在一种实施例中,第一误差阻值dR1远小于第一阻值R1,例如第一误差阻值dR1至少小于第一阻值R1的一半;且第二误差阻值dR2远小于第二阻值R2,例如第二误差阻值dR2至少小于第二阻值R2的一半。在理想的电流感测放大器电路20中,第一误差阻值dR1与第二误差阻值dR2为零,也就是说,在理想的电流感测放大器电路20中,第一电阻203的阻值与第二电阻204具有相同的阻值(即第一阻值R1);第三电阻205的阻值与第四电阻206具有相同的阻值(即第二阻值R2)。因为第一电阻203与第二电阻204在制造过程中的误差,而造成第一电阻203的电阻值为第一阻值R1加上第一误差阻值dR1且第二电阻204的电阻值为第一阻值R1减去第一误差阻值dR1。另外,因为第三电阻205与第四电阻206在制造过程中的误差,而造成第三电阻205的电阻值为第二阻值R2减去第二误差阻值dR2且第四电阻206的电阻值为第二阻值R2加上第二误差阻值dR2。In one embodiment, the first error resistance dR1 is much smaller than the first resistance R1. For example, the first error resistance dR1 is at least less than half of the first resistance R1; and the second error resistance dR2 is much smaller than the second resistance. The value R2, for example, the second error resistance value dR2 is at least less than half of the second resistance value R2. In the ideal current sensing amplifier circuit 20, the first error resistance dR1 and the second error resistance dR2 are zero. That is to say, in the ideal current sensing amplifier circuit 20, the resistance of the first resistor 203 is equal to The second resistor 204 has the same resistance value (ie, the first resistance value R1); the resistance value of the third resistor 205 and the fourth resistor 206 have the same resistance value (ie, the second resistance value R2). Due to the error in the manufacturing process of the first resistor 203 and the second resistor 204, the resistance value of the first resistor 203 is the first resistance value R1 plus the first error resistance value dR1, and the resistance value of the second resistor 204 is the first resistance value R1 plus the first error resistance value dR1. A resistance value R1 minus the first error resistance value dR1. In addition, due to errors in the manufacturing process of the third resistor 205 and the fourth resistor 206, the resistance value of the third resistor 205 is the second resistance value R2 minus the second error resistance value dR2 and the resistance value of the fourth resistor 206. Add the second error resistance dR2 to the second resistance R2.
在一种实施例中,电流源电路201于修正模式中,根据第一输入电压Vin+、第二输入电压Vin-或输入共模电压Vcom与参考电压Vref,以二分逼近法、单斜率逼近法或逐步逼近法而产生修正电流Itrim。In one embodiment, in the correction mode, the current source circuit 201 uses a bisection approximation method, a single slope approximation method or a method based on the first input voltage Vin+, the second input voltage Vin- or the input common mode voltage Vcom and the reference voltage Vref. The correction current Itrim is generated by the stepwise approximation method.
需说明的是,输入共模电压Vcom为第一输入电压Vin+与第二输入电压Vin-的平均,在一般的应用中,第一输入电压Vin+、第二输入电压Vin-或输入共模电压Vcom的位准非常接近,因此都可用以产生修正电流Itrim。It should be noted that the input common mode voltage Vcom is the average of the first input voltage Vin+ and the second input voltage Vin-. In general applications, the first input voltage Vin+, the second input voltage Vin- or the input common mode voltage Vcom The levels are very close, so both can be used to generate the correction current Itrim.
图2B是根据本发明的另一实施例显示电流感测放大器电路的电路示意图。本实施例类似于图2A的实施例,其差别在于本实施例还包括电容开关电路(chopper)207,其耦接于放大器202的非反相输入端与反相输入端之间,用以抑制在不同的输入共模电压时所造成的输入偏移电压变化。FIG. 2B is a circuit schematic diagram showing a current sensing amplifier circuit according to another embodiment of the present invention. This embodiment is similar to the embodiment of FIG. 2A. The difference is that this embodiment also includes a capacitor switch circuit (chopper) 207, which is coupled between the non-inverting input terminal and the inverting input terminal of the amplifier 202 to suppress Changes in input offset voltage caused by different input common-mode voltages.
图3是根据本发明的一实施例显示电流源电路的方块示意图。如图3所示,电流源电路201包括电压转电流电路2011a、电压转电流电路2011b及修正电流产生电路2012。电压转电流电路2011a用以转换第一输入电压Vin+、第二输入电压Vin-或输入共模电压Vcom而产生第一电流Ig1。电压转电流电路2011b用以转换参考电压Vref而产生第二电流Ig2。修正电流产生电路2012于修正模式中,根据第一电流Ig1与第二电流Ig2,产生修正电流Itrim,以使输出电压Vout等于或最接近参考电压Vref。FIG. 3 is a block diagram showing a current source circuit according to an embodiment of the present invention. As shown in FIG. 3 , the current source circuit 201 includes a voltage-to-current circuit 2011a, a voltage-to-current circuit 2011b, and a correction current generation circuit 2012. The voltage-to-current circuit 2011a is used to convert the first input voltage Vin+, the second input voltage Vin- or the input common-mode voltage Vcom to generate the first current Ig1. The voltage conversion circuit 2011b is used to convert the reference voltage Vref to generate the second current Ig2. In the correction mode, the correction current generation circuit 2012 generates the correction current Itrim according to the first current Ig1 and the second current Ig2, so that the output voltage Vout is equal to or closest to the reference voltage Vref.
图4是根据本发明的一实施例显示电流源电路及其中的修正电流产生电路的电路方块图。本实施例的电压转电流电路2011a及2011b类似于图3的电压转电流电路2011a及2011b,故省略其详细叙述。如图4所示,修正电流产生电路2012包括电流复制电路20121a及20121b、加法电路20122a、加法电路20122b、加法电路20122c、判断电路20123与电流修正电路20124a及20124b。电流复制电路20121a用以复制第一电流Ig1,而产生第一复制电流Igc1,而电流复制电路20121b用以复制第二电流Ig2,而产生第二复制电流Igc2。加法电路20122a用以执行减法运算,以将第一复制电流Igc1减去第二复制电流Igc2,而产生第一减法结果Imo1。加法电路20122b用以执行减法运算,以将第二复制电流Igc2减去第一复制电流Igc1,而产生第二减法结果Imo2。FIG. 4 is a circuit block diagram showing a current source circuit and a correction current generating circuit therein according to an embodiment of the present invention. The voltage-to-current circuits 2011a and 2011b of this embodiment are similar to the voltage-to-current circuits 2011a and 2011b of FIG. 3, so their detailed description is omitted. As shown in FIG. 4 , the correction current generation circuit 2012 includes current copy circuits 20121a and 20121b, an addition circuit 20122a, an addition circuit 20122b, an addition circuit 20122c, a judgment circuit 20123, and current correction circuits 20124a and 20124b. The current copy circuit 20121a is used to copy the first current Ig1 to generate the first copy current Igc1, and the current copy circuit 20121b is used to copy the second current Ig2 to generate the second copy current Igc2. The addition circuit 20122a is used to perform a subtraction operation to subtract the second copy current Igc2 from the first copy current Igc1 to generate a first subtraction result Imo1. The addition circuit 20122b is used to perform a subtraction operation to subtract the first copy current Igc1 from the second copy current Igc2 to generate a second subtraction result Imo2.
判断电路20123用以于第一复制电流Igc1高于第二复制电流Igc2时,产生使能信号En1,并于第二复制电流Igc2高于第一复制电流Igc1时,产生使能信号En2。电流修正电路20124a用以受使能于使能信号En1,而修正第一减法结果Imo1,以产生第一修正电流Itrim+。电流修正电路20124b用以受使能于使能信号En2,而修正第二减法结果Imo2,以产生第二修正电流Itrim-。加法电路20122c用以对第一修正电流Itrim+与第二修正电流Itrim-执行加法运算,以产生修正电流Itrim。于一实施例中,电流复制电路20121a与电流复制电路20121b分别包括至少一电流镜电路。判断电路20123的具体实施方式为本领域技术人员所熟知,在此不予赘述。The judgment circuit 20123 is used to generate the enable signal En1 when the first copy current Igc1 is higher than the second copy current Igc2, and to generate the enable signal En2 when the second copy current Igc2 is higher than the first copy current Igc1. The current correction circuit 20124a is enabled by the enable signal En1 and corrects the first subtraction result Imo1 to generate the first correction current Itrim+. The current correction circuit 20124b is enabled by the enable signal En2 and corrects the second subtraction result Imo2 to generate the second correction current Itrim-. The addition circuit 20122c is used to perform an addition operation on the first correction current Itrim+ and the second correction current Itrim- to generate the correction current Itrim. In one embodiment, the current replication circuit 20121a and the current replication circuit 20121b each include at least one current mirror circuit. The specific implementation of the judgment circuit 20123 is well known to those skilled in the art and will not be described in detail here.
图5是根据本发明的另一实施例显示修正电流产生电路的电路方块图。本实施例的判断电路20123类似于图4的判断电路20123,故省略其详细叙述。如图5所示,于本实施例中,加法电路20122a、加法电路20122b及加法电路20122c分别以电路直接耦接于节点Np1、Np2及Np3的方式加以实施。加法电路20122a的一端与接地电位之间耦接一电流源20125a,由此提供一从节点Np1流至接地电位的第二电流Ig2,其相当于从接地电位流至节点Np1的负的第二电流-Ig2,而加法电路20122a的另一端耦接至电流源20125b,由此提供一流入节点Np1的第一电流Ig1,进而通过加法电路20122a执行加法运算,而得到第一减法结果Imo1。加法电路20122b的一端与接地电位之间耦接一电流源20126a,由此提供一从节点Np2流至接地电位的第一电流Ig1,其相当于从接地电位流至节点Np2的负的第一电流-Ig1,而加法电路20122b的另一端耦接至电流源20126b,由此提供一流入节点Np2的第二电流Ig2,进而通过加法电路20122b执行加法运算,而得到第二减法结果Imo2。FIG. 5 is a circuit block diagram showing a correction current generating circuit according to another embodiment of the present invention. The judgment circuit 20123 of this embodiment is similar to the judgment circuit 20123 of Figure 4, so its detailed description is omitted. As shown in FIG. 5 , in this embodiment, the adding circuit 20122a, the adding circuit 20122b and the adding circuit 20122c are respectively implemented in a manner that the circuits are directly coupled to the nodes Np1, Np2 and Np3. A current source 20125a is coupled between one end of the adder circuit 20122a and the ground potential, thereby providing a second current Ig2 flowing from the node Np1 to the ground potential, which is equivalent to a negative second current flowing from the ground potential to the node Np1 -Ig2, and the other end of the adding circuit 20122a is coupled to the current source 20125b, thereby providing a first current Ig1 flowing into the node Np1, and then performing the addition operation through the adding circuit 20122a to obtain the first subtraction result Imo1. A current source 20126a is coupled between one end of the adder circuit 20122b and the ground potential, thereby providing a first current Ig1 flowing from the node Np2 to the ground potential, which is equivalent to the negative first current flowing from the ground potential to the node Np2. -Ig1, and the other end of the adding circuit 20122b is coupled to the current source 20126b, thereby providing a second current Ig2 flowing into the node Np2, and then performing the addition operation through the adding circuit 20122b to obtain the second subtraction result Imo2.
本实施例中的电流复制电路20121以一电流镜加以实施。本实施例中的电流修正电路20124a及20124b以修正倍率为1:1的开关加以实施,故得到的第一修正电流Itrim+具有第一电流Ig1减去第二电流Ig2的值,且得到的第二修正电流Itrim-具有第二电流Ig2减去第一电流Ig1的值且其流出节点Np3,其相当于流入节点Np3的负的第二修正电流Itrim-,亦即其值为第二电流Ig2减去第一电流Ig1的负值,进而通过加法电路20122c执行加法运算,而产生修正电流Itrim。应注意者为,电流修正电路20124a及20124b中的一者或两者也可以任何其他倍率的多个开关的组合加以实施。The current replication circuit 20121 in this embodiment is implemented as a current mirror. The current correction circuits 20124a and 20124b in this embodiment are implemented with switches with a correction ratio of 1:1, so the obtained first correction current Itrim+ has the value of the first current Ig1 minus the second current Ig2, and the obtained second The correction current Itrim- has the value of the second current Ig2 minus the first current Ig1 and flows out of the node Np3, which is equivalent to the negative second correction current Itrim- flowing into the node Np3, that is, its value is the second current Ig2 minus the value The negative value of the first current Ig1 is further added by the adder circuit 20122c to generate the correction current Itrim. It should be noted that one or both of the current correction circuits 20124a and 20124b can also be implemented with a combination of multiple switches at any other rate.
图6是根据本发明的另一实施例显示电流源电路的电路方块图。于本实施例中,如图6所示,电压转电流电路2011a包括电阻RT,而电压转电流电路2011b包括电阻RT。电流复制电路20121a及20121b分别包括至少一电流镜。于本实施例中,加法电路20122a及20122b以晶体管实施,而加法电路20122c以电路直接耦接的方法实施。于本实施例中,判断电路20123a及20123b包括至少一开关Qj1及Qj2。如图6所示,第一电流Ig1如式(2)所示:FIG. 6 is a circuit block diagram showing a current source circuit according to another embodiment of the present invention. In this embodiment, as shown in FIG. 6 , the voltage-to-current circuit 2011a includes a resistor RT, and the voltage-to-current circuit 2011b includes a resistor RT. The current replication circuits 20121a and 20121b each include at least one current mirror. In this embodiment, the adding circuits 20122a and 20122b are implemented by transistors, and the adding circuit 20122c is implemented by direct circuit coupling. In this embodiment, the judgment circuits 20123a and 20123b include at least one switch Qj1 and Qj2. As shown in Figure 6, the first current Ig1 is shown in formula (2):
其中RT为电阻RT的电阻值,Vgs1为晶体管Qm1的栅极-源极电压。同理,第二电流Ig2如式(3)所示:Among them, RT is the resistance value of resistor RT, and Vgs1 is the gate-source voltage of transistor Qm1. In the same way, the second current Ig2 is shown in equation (3):
其中Vgs2为晶体管Qm2的栅极-源极电压。如图6所示,通过加法电路20122a的减法运算,第一电流Ig1减去第二电流Ig2等于电流Iup,假设栅极-源极电压Vgs1等于栅极-源极电压Vgs2,则电流Iup如式(4)所示:Where Vgs2 is the gate-source voltage of transistor Qm2. As shown in Figure 6, through the subtraction operation of the adder circuit 20122a, the first current Ig1 minus the second current Ig2 is equal to the current Iup. Assuming that the gate-source voltage Vgs1 is equal to the gate-source voltage Vgs2, the current Iup is as follows: (4) shown:
电流Iup经过电流修正电路20124a加以修正后得到第一修正电流Itrim+。如图6所示,通过加法电路20122b的减法运算,第二电流Ig2减去第一电流Ig1等于电流Idn,假设栅极-源极电压Vgs1等于栅极-源极电压Vgs2,则电流Idn如式(5)所示:The current Iup is corrected by the current correction circuit 20124a to obtain the first corrected current Itrim+. As shown in Figure 6, through the subtraction operation of the adder circuit 20122b, the second current Ig2 minus the first current Ig1 is equal to the current Idn. Assuming that the gate-source voltage Vgs1 is equal to the gate-source voltage Vgs2, the current Idn is as follows: (5) shown:
电流Idn经过电流修正电路20124b加以修正后得到第二修正电流Itrim-。如同图5的实施例,第一修正电流Itrim+及第二修正电流Itrim-通过加法电路20122c执行加法运算,而产生修正电流Itrim。应注意者为,电流修正电路20124a及20124b中的一者或两者可以1:1的修正倍率或任何其他修正倍率的一或多个开关的组合加以实施。于本实施例中,假设修正倍率为m,且假设所有电流镜的倍率为1,则第一修正电流Itrim+及第二修正电流Itrim-分别如式(6)及(7)所示:The current Idn is corrected by the current correction circuit 20124b to obtain the second corrected current Itrim-. Like the embodiment of FIG. 5 , the first correction current Itrim+ and the second correction current Itrim- are added by the addition circuit 20122c to generate the correction current Itrim. It should be noted that one or both of the current correction circuits 20124a and 20124b may be implemented with a correction ratio of 1:1 or a combination of one or more switches with any other correction ratio. In this embodiment, assuming that the correction magnification is m, and assuming that the magnification of all current mirrors is 1, the first correction current Itrim+ and the second correction current Itrim- are as shown in equations (6) and (7) respectively:
于一实施例中,当第一电流Ig1减去第二电流Ig2的值大于0时,会使得开关Qj1的栅极信号切换为禁止位准且使得开关Qj2的栅极信号切换为使能位准,进而使得开关Qj2导通,而促使产生第一修正电流Itrim+。由于开关Qj1的栅极信号切换为禁止位准,故开关Qj1不导通,进而使得节点Ns耦接至接地电位,而促使开关Qj3的栅极信号切换为禁止位准,使得开关Qj3不导通,由此确保第一修正电流Itrim+为正值时,第二修正电流Itrim-为零。In one embodiment, when the value of the first current Ig1 minus the second current Ig2 is greater than 0, the gate signal of the switch Qj1 is switched to the disabled level and the gate signal of the switch Qj2 is switched to the enabled level. , thereby causing the switch Qj2 to be turned on, thereby causing the first correction current Itrim+ to be generated. Since the gate signal of the switch Qj1 is switched to the inhibit level, the switch Qj1 is not conductive, which causes the node Ns to be coupled to the ground potential, which causes the gate signal of the switch Qj3 to be switched to the inhibit level, causing the switch Qj3 to be non-conductive. , thereby ensuring that when the first correction current Itrim+ is positive, the second correction current Itrim- is zero.
图7是根据本发明的一实施例显示电流修正电路的电路示意图。本实施例为图4及6的电流修正电路20124b的一示范性实施例。图4及图6的电流修正电路20124a也可以类似方式加以实施。如图7所示,电流修正电路20124b包括一或多个栅极相互耦接的开关Q1~Qn。电流修正电路20124b会根据预定的修正倍率而调整开关SW1~SWn-1中导通的开关的数量,进而调整开关Q1~Qn-1中有发生作用的开关的数量,由此于修正模式中,所产生的修正电流Itrim,可使输出电压Vout等于或最接近参考电压Vref。决定调整开关SW1~SWn-1中导通的开关的数量的方式,例如可以采用二分逼近法、单斜率逼近法或逐步逼近法,而产生修正电流Itrim,可使输出电压Vout等于或最接近参考电压Vref。二分逼近法、单斜率逼近法与逐步逼近法为本领域技术人员所熟知,在此不予赘述。FIG. 7 is a circuit schematic diagram showing a current correction circuit according to an embodiment of the present invention. This embodiment is an exemplary embodiment of the current correction circuit 20124b of FIGS. 4 and 6 . The current correction circuit 20124a of Figures 4 and 6 can also be implemented in a similar manner. As shown in FIG. 7 , the current correction circuit 20124b includes one or more switches Q1˜Qn whose gates are coupled to each other. The current correction circuit 20124b adjusts the number of turned-on switches among the switches SW1 to SWn-1 according to the predetermined correction magnification, and then adjusts the number of active switches among the switches Q1 to Qn-1, so that in the correction mode, The generated correction current Itrim can make the output voltage Vout equal to or closest to the reference voltage Vref. Determine the way to adjust the number of turned-on switches in switches SW1~SWn-1. For example, you can use the bisection approximation method, the single slope approximation method or the step-by-step approximation method to generate the correction current Itrim, which can make the output voltage Vout equal to or closest to the reference Voltage Vref. The bisection approximation method, the single slope approximation method and the stepwise approximation method are well known to those skilled in the art and will not be described in detail here.
图8是根据本发明的一实施例显示本发明的电流感测放大器电路的参考电压与输入电压的差值相对于输入偏移电压及已知的电流感测放大器电路的参考电压与输入电压的差值相对于输入偏移电压的关系图。由图8可知,本发明相对于已知技术对修正输入偏移电压有显著的改善。FIG. 8 shows the difference between the reference voltage and the input voltage of the current sensing amplifier circuit of the present invention relative to the input offset voltage and the reference voltage and the input voltage of the known current sensing amplifier circuit according to an embodiment of the present invention. Difference versus input offset voltage plot. As can be seen from FIG. 8 , the present invention significantly improves the correction of the input offset voltage compared to the known technology.
图9是根据本发明的一实施例显示本发明的电流感测放大器电路在不同的温度下参考电压与输入电压的差值相对于修正电流的关系图。图10是根据本发明的一实施例显示本发明的电流感测放大器电路在不同的温度下参考电压与输入电压的差值相对于输入偏移电压的关系图。由图9及10可知,在不同温度下所产生的修正电流Itrim,仍可稳定地修正该输入偏移电压。FIG. 9 is a diagram showing the relationship between the difference between the reference voltage and the input voltage and the correction current of the current sensing amplifier circuit of the present invention at different temperatures according to an embodiment of the present invention. FIG. 10 is a diagram showing the relationship between the difference between the reference voltage and the input voltage and the input offset voltage at different temperatures for the current sensing amplifier circuit of the present invention according to an embodiment of the present invention. It can be seen from Figures 9 and 10 that the correction current Itrim generated at different temperatures can still correct the input offset voltage stably.
图11是根据本发明的一实施例显示本发明的电流感测放大器电路在不同的温度下电流修正电路所使用的修正代码相对于输入偏移电压的关系图。图12是根据本发明的一实施例显示本发明的电流感测放大器电路在不同的温度下电流修正电路所使用的修正代码相对于微分非线性的关系图。图13是根据本发明的一实施例显示本发明的电流感测放大器电路在不同的温度下电流修正电路所使用的修正代码相对于输出电压的关系图。图11~图13是显示当第一输入电压Vin+为26V且参考电压Vref为1V时,在不同的修正电流(以修正代码表示,不同修正代码表示不同的修正倍率)下的补偿结果。FIG. 11 is a diagram showing the relationship between the correction code used by the current correction circuit of the current sensing amplifier circuit of the present invention and the input offset voltage at different temperatures according to an embodiment of the present invention. FIG. 12 is a diagram showing the relationship between the correction code used by the current correction circuit of the current sensing amplifier circuit of the present invention and the differential nonlinearity at different temperatures according to an embodiment of the present invention. FIG. 13 is a diagram showing the relationship between the correction code used by the current correction circuit of the current sensing amplifier circuit of the present invention and the output voltage at different temperatures according to an embodiment of the present invention. Figures 11 to 13 show the compensation results under different correction currents (represented by correction codes, and different correction codes represent different correction magnifications) when the first input voltage Vin+ is 26V and the reference voltage Vref is 1V.
图14-图16是根据本发明的实施例显示本发明的输入偏移电压修正方法的步骤流程图。如图14所示,本发明的输入偏移电压修正方法30包括于步骤301,将该电流感测放大器电路的一第一输入端与一第二输入端电连接,以使该第一输入端的一第一输入电压与该第二输入端的一第二输入电压具有相同的电位。接着,于步骤302,转换该第一输入电压而产生一第一电流。之后,于步骤303,转换一参考电压而产生一第二电流。接续,于步骤304,根据该第一电流与该第二电流,而产生一修正电流,以使该电流感测放大器电路的一输出电压等于或最接近该参考电压。接着,于步骤305,于一正常操作模式中,提供该修正电流以修正该电流感测放大器电路所产生的该输入偏移电压。14 to 16 are step flow charts showing the input offset voltage correction method of the present invention according to embodiments of the present invention. As shown in FIG. 14 , the input offset voltage correction method 30 of the present invention includes, in step 301, electrically connecting a first input terminal and a second input terminal of the current sensing amplifier circuit, so that the first input terminal A first input voltage and a second input voltage of the second input terminal have the same potential. Next, in step 302, the first input voltage is converted to generate a first current. Then, in step 303, a reference voltage is converted to generate a second current. Next, in step 304, a correction current is generated according to the first current and the second current, so that an output voltage of the current sensing amplifier circuit is equal to or closest to the reference voltage. Next, in step 305, in a normal operation mode, the correction current is provided to correct the input offset voltage generated by the current sense amplifier circuit.
于一实施例中,如图15所示,步骤304包括步骤3041~3048。于步骤3041,复制该第一电流,而产生一第一复制电流。接着,于步骤3042,复制该第二电流,而产生一第二复制电流。接续,于步骤3043,执行减法运算,以将该第一复制电流减去该第二复制电流,而产生一第一减法结果。之后,于步骤3044,执行减法运算,以将该第二复制电流减去该第一复制电流,而产生一第二减法结果。接续,于步骤3045,于该第一复制电流高于该第二复制电流时,产生一第一使能信号,并于该第二复制电流高于该第一复制电流时,产生一第二使能信号。之后,于步骤3046,根据该第一使能信号,而修正该第一减法结果,以产生一第一修正电流。接着,于步骤3047,根据该第二使能信号,而修正该第二减法结果,以产生一第二修正电流。接续,于步骤3048,对该第一修正电流与该第二修正电流执行一加法运算,以产生该修正电流。于一实施例中,本发明的输入偏移电压修正方法30可还包括于步骤306,如图16所示,以一电容开关电路,耦接于该电流感测放大器电路的该非反相输入端与一反相输入端之间,用以抑制在不同的输入共模电压时所造成的输入偏移电压变化。In one embodiment, as shown in Figure 15, step 304 includes steps 3041-3048. In step 3041, the first current is copied to generate a first copy current. Then, in step 3042, the second current is copied to generate a second copy current. Next, in step 3043, a subtraction operation is performed to subtract the second copy current from the first copy current to generate a first subtraction result. Then, in step 3044, a subtraction operation is performed to subtract the first copy current from the second copy current to generate a second subtraction result. Next, in step 3045, when the first copy current is higher than the second copy current, a first enable signal is generated, and when the second copy current is higher than the first copy current, a second enable signal is generated. can signal. Then, in step 3046, the first subtraction result is corrected according to the first enable signal to generate a first correction current. Then, in step 3047, the second subtraction result is corrected according to the second enable signal to generate a second correction current. Next, in step 3048, an addition operation is performed on the first correction current and the second correction current to generate the correction current. In one embodiment, the input offset voltage correction method 30 of the present invention may further include step 306, as shown in FIG. 16, using a capacitive switch circuit coupled to the non-inverting input of the current sense amplifier circuit. terminal and an inverting input terminal to suppress changes in the input offset voltage caused by different input common-mode voltages.
如上所述,本发明提供了电流感测放大器电路及其输入偏移电压修正方法,其可使电流感测放大器电路具有双向电流感测功能,且可通过可调修正电流改善增益的精准度以减轻电阻工艺所造成的电阻不匹配。As mentioned above, the present invention provides a current sensing amplifier circuit and an input offset voltage correction method thereof, which can enable the current sensing amplifier circuit to have a bidirectional current sensing function, and can improve the accuracy of the gain through the adjustable correction current. Alleviating resistance mismatch caused by resistance process.
以上已针对较佳实施例来说明本发明,但以上所述,仅为使本领域技术人员易于了解本发明的内容,并非用来限定本发明的权利范围。所说明的各个实施例,并不限于单独应用,也可以组合应用,举例而言,两个或以上的实施例可以组合运用,而一实施例中的部分组成也可用以取代另一实施例中对应的组成部件。此外,在本发明的相同精神下,本领域技术人员可以想到各种等效变化以及各种组合,举例而言,本发明所称“根据某信号进行处理或运算或产生某输出结果”,不限于根据该信号的本身,也包含于必要时,将该信号进行电压电流转换、电流电压转换、及/或比例转换等,之后根据转换后的信号进行处理或运算产生某输出结果。由此可知,在本发明的相同精神下,本领域技术人员可以想到各种等效变化以及各种组合,其组合方式甚多,在此不一一列举说明。因此,本发明的范围应涵盖上述及其他所有等效变化。The present invention has been described above with reference to the preferred embodiments. However, the above description is only to make it easy for those skilled in the art to understand the content of the present invention, and is not intended to limit the scope of rights of the present invention. The various embodiments described are not limited to single application, but can also be used in combination. For example, two or more embodiments can be used in combination, and part of the components in one embodiment can also be used to replace those in another embodiment. Corresponding components. In addition, under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. For example, the present invention refers to "processing or computing according to a certain signal or generating a certain output result", and does not mean It is limited to the signal itself, but also includes performing voltage-to-current conversion, current-to-voltage conversion, and/or ratio conversion on the signal when necessary, and then processing or calculating to produce an output result based on the converted signal. It can be seen from this that under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. There are many combinations, and they are not listed here. Accordingly, the scope of the present invention is intended to cover the above and all other equivalent changes.
Claims (19)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202263373079P | 2022-08-22 | 2022-08-22 | |
US63/373,079 | 2022-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117614396A true CN117614396A (en) | 2024-02-27 |
Family
ID=89958423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211725183.4A Pending CN117614396A (en) | 2022-08-22 | 2022-12-30 | Current sensing amplifier circuit and input offset voltage correction method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117614396A (en) |
TW (1) | TWI839036B (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7956651B2 (en) * | 2009-09-10 | 2011-06-07 | Semiconductor Components Industries, Llc | Method for detecting a current and compensating for an offset voltage and circuit |
US8717051B2 (en) * | 2009-10-22 | 2014-05-06 | Intersil Americas Inc. | Method and apparatus for accurately measuring currents using on chip sense resistors |
JP5926081B2 (en) * | 2012-03-22 | 2016-05-25 | エスアイアイ・セミコンダクタ株式会社 | Sensor device |
US9899825B2 (en) * | 2016-05-16 | 2018-02-20 | Cypress Semiconductor Corporation | Adjustable over-current detector circuit for universal serial bus (USB) devices |
JP7106916B2 (en) * | 2018-03-23 | 2022-07-27 | 富士電機株式会社 | Operational amplifier circuit and current detection device using the same |
JP7289851B2 (en) * | 2018-04-17 | 2023-06-12 | オブシディアン センサーズ インコーポレイテッド | Readout circuit and method |
US10797033B2 (en) * | 2018-09-04 | 2020-10-06 | Micron Technology, Inc. | Apparatuses and methods for high sensitivity TSV resistance measurement circuit |
EP3893393A1 (en) * | 2020-04-06 | 2021-10-13 | ams AG | Peak comparator circuitry |
US11121665B1 (en) * | 2020-04-07 | 2021-09-14 | Nxp Usa, Inc. | Current measurement apparatus |
TWI755139B (en) * | 2020-11-03 | 2022-02-11 | 台達電子工業股份有限公司 | Signal sampling circuit for arc detection |
-
2022
- 2022-12-22 TW TW111149512A patent/TWI839036B/en active
- 2022-12-30 CN CN202211725183.4A patent/CN117614396A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TW202409577A (en) | 2024-03-01 |
TWI839036B (en) | 2024-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110196353B (en) | Current detection circuit, semiconductor device and semiconductor system | |
US9335778B2 (en) | Reference voltage generating circuit | |
JP5799786B2 (en) | Auto-zero amplifier and feedback amplifier circuit using the amplifier | |
US7906976B2 (en) | Switched capacitor measurement circuit for measuring the capacitance of an input capacitor | |
CN101118188A (en) | Temperature detection circuit and semiconductor device | |
JP2008017354A (en) | Offset voltage correcting circuit | |
WO2023274415A1 (en) | Power measurement circuit, chip and communication terminal | |
TWI445300B (en) | Square cell having wide dynamic range and power detector implementing same | |
CN101881984B (en) | Reference signal generator and method and system thereof | |
CN112737567B (en) | A superposition operation circuit and floating voltage digital-to-analog conversion circuit | |
JPWO2015178271A1 (en) | Pseudo resistance circuit and charge detection circuit | |
CN107612551A (en) | Noise reduction circuit and delta-sigma modulator | |
JP5454366B2 (en) | Power amplifier module and portable information terminal | |
US20230118374A1 (en) | Amplifier with low component count and accurate gain | |
TWI839036B (en) | Current sense amplifier circuit and trimming method of offset referred to input voltage | |
CN109150188B (en) | A current mode digital-to-analog converter output stage circuit with adjustable output common mode level | |
US10720890B1 (en) | High-speed high-accuracy amplifier and method thereof | |
CN117200713A (en) | Meter amplifier | |
JP2007187558A (en) | Temperature detection circuit | |
CN103809014B (en) | A kind of detector unit, testing circuit and detection method | |
CN109564139B (en) | Sensor device | |
US20170264309A1 (en) | Analog-to-digital converter having a switched capacitor circuit | |
US20240063767A1 (en) | Current sense amplifier circuit and trimming method of offset referred to input voltage | |
JP7192075B2 (en) | current sense amplifier | |
CN118937779A (en) | Overcurrent detection circuit, chip and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |