CN117563001A - Application of galectin-1 as immune checkpoint in preparation of tumor immunotherapy medicament and medicament - Google Patents
Application of galectin-1 as immune checkpoint in preparation of tumor immunotherapy medicament and medicament Download PDFInfo
- Publication number
- CN117563001A CN117563001A CN202311529867.1A CN202311529867A CN117563001A CN 117563001 A CN117563001 A CN 117563001A CN 202311529867 A CN202311529867 A CN 202311529867A CN 117563001 A CN117563001 A CN 117563001A
- Authority
- CN
- China
- Prior art keywords
- cells
- tumor
- lactose
- gal
- b4galt1
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 413
- 108010001498 Galectin 1 Proteins 0.000 title claims abstract description 222
- 238000009169 immunotherapy Methods 0.000 title claims abstract description 36
- 239000003814 drug Substances 0.000 title claims abstract description 34
- 102000037982 Immune checkpoint proteins Human genes 0.000 title claims abstract description 21
- 108091008036 Immune checkpoint proteins Proteins 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 102000000795 Galectin 1 Human genes 0.000 title claims 13
- 210000004027 cell Anatomy 0.000 claims abstract description 441
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims abstract description 267
- 239000008101 lactose Substances 0.000 claims abstract description 257
- 210000001744 T-lymphocyte Anatomy 0.000 claims abstract description 231
- 230000000694 effects Effects 0.000 claims abstract description 76
- 102100034668 Alpha-lactalbumin Human genes 0.000 claims abstract description 69
- 210000002865 immune cell Anatomy 0.000 claims abstract description 59
- 230000008685 targeting Effects 0.000 claims abstract description 33
- 230000000259 anti-tumor effect Effects 0.000 claims abstract description 17
- 101000946384 Homo sapiens Alpha-lactalbumin Proteins 0.000 claims abstract 14
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 249
- 102100026349 Beta-1,4-galactosyltransferase 1 Human genes 0.000 claims description 128
- 108090000623 proteins and genes Proteins 0.000 claims description 110
- 101150019683 B4galt1 gene Proteins 0.000 claims description 87
- 239000013598 vector Substances 0.000 claims description 53
- 102000004169 proteins and genes Human genes 0.000 claims description 44
- 239000008194 pharmaceutical composition Substances 0.000 claims description 29
- 229940079593 drug Drugs 0.000 claims description 22
- 230000002018 overexpression Effects 0.000 claims description 22
- KFEUJDWYNGMDBV-LODBTCKLSA-N N-acetyllactosamine Chemical compound O[C@@H]1[C@@H](NC(=O)C)[C@H](O)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KFEUJDWYNGMDBV-LODBTCKLSA-N 0.000 claims description 19
- HESSGHHCXGBPAJ-UHFFFAOYSA-N N-acetyllactosamine Natural products CC(=O)NC(C=O)C(O)C(C(O)CO)OC1OC(CO)C(O)C(O)C1O HESSGHHCXGBPAJ-UHFFFAOYSA-N 0.000 claims description 19
- 239000004480 active ingredient Substances 0.000 claims description 19
- 230000027455 binding Effects 0.000 claims description 19
- 108020004999 messenger RNA Proteins 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 18
- 230000002829 reductive effect Effects 0.000 claims description 18
- 241000700605 Viruses Species 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 15
- 239000002299 complementary DNA Substances 0.000 claims description 14
- 210000000822 natural killer cell Anatomy 0.000 claims description 14
- 239000003623 enhancer Substances 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 10
- -1 milk-N-disaccharide Chemical compound 0.000 claims description 9
- KFEUJDWYNGMDBV-UHFFFAOYSA-N (N-Acetyl)-glucosamin-4-beta-galaktosid Natural products OC1C(NC(=O)C)C(O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 KFEUJDWYNGMDBV-UHFFFAOYSA-N 0.000 claims description 8
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 8
- 229930006000 Sucrose Natural products 0.000 claims description 8
- 239000005720 sucrose Substances 0.000 claims description 8
- 101150026520 Lalba gene Proteins 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 208000037966 cold tumor Diseases 0.000 claims description 7
- 239000013604 expression vector Substances 0.000 claims description 7
- 208000037967 hot tumor Diseases 0.000 claims description 7
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 7
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims description 6
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 claims description 6
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 claims description 6
- 229960002949 fluorouracil Drugs 0.000 claims description 6
- 230000002779 inactivation Effects 0.000 claims description 6
- 229920001184 polypeptide Polymers 0.000 claims description 6
- 230000004060 metabolic process Effects 0.000 claims description 5
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 claims description 4
- 239000012634 fragment Substances 0.000 claims description 4
- 239000002502 liposome Substances 0.000 claims description 4
- 229960000485 methotrexate Drugs 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 4
- 239000013603 viral vector Substances 0.000 claims description 4
- PDUNULQKKRPSLU-LTEQSDMASA-N (3r,4r,5s,6r)-5-[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-methoxyoxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,4-triol Chemical compound CO[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O PDUNULQKKRPSLU-LTEQSDMASA-N 0.000 claims description 3
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 claims description 3
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 claims description 3
- ZTTRCZJSZGZSTB-XGWBRSPTSA-N 3-O-beta-D-galactopyranosyl-D-arabinose Chemical compound OC[C@@H](O)[C@H]([C@H](O)C=O)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O ZTTRCZJSZGZSTB-XGWBRSPTSA-N 0.000 claims description 3
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 claims description 3
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 claims description 3
- 108010006654 Bleomycin Proteins 0.000 claims description 3
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 3
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 claims description 3
- XXPXYPLPSDPERN-UHFFFAOYSA-N Ecteinascidin 743 Natural products COc1cc2C(NCCc2cc1O)C(=O)OCC3N4C(O)C5Cc6cc(C)c(OC)c(O)c6C(C4C(S)c7c(OC(=O)C)c(C)c8OCOc8c37)N5C XXPXYPLPSDPERN-UHFFFAOYSA-N 0.000 claims description 3
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 claims description 3
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 claims description 3
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 claims description 3
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 claims description 3
- 229930012538 Paclitaxel Natural products 0.000 claims description 3
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 claims description 3
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 claims description 3
- 239000002246 antineoplastic agent Substances 0.000 claims description 3
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 claims description 3
- FHNIYFZSHCGBPP-ABBMIVAOSA-N beta-D-Gal-(1->4)-beta-D-Glc-OMe Chemical compound O[C@@H]1[C@@H](O)[C@H](OC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 FHNIYFZSHCGBPP-ABBMIVAOSA-N 0.000 claims description 3
- 229960001561 bleomycin Drugs 0.000 claims description 3
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 claims description 3
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 claims description 3
- 229960001467 bortezomib Drugs 0.000 claims description 3
- BMQGVNUXMIRLCK-OAGWZNDDSA-N cabazitaxel Chemical compound O([C@H]1[C@@H]2[C@]3(OC(C)=O)CO[C@@H]3C[C@@H]([C@]2(C(=O)[C@H](OC)C2=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=3C=CC=CC=3)C[C@]1(O)C2(C)C)C)OC)C(=O)C1=CC=CC=C1 BMQGVNUXMIRLCK-OAGWZNDDSA-N 0.000 claims description 3
- 229960001573 cabazitaxel Drugs 0.000 claims description 3
- 229960004562 carboplatin Drugs 0.000 claims description 3
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 claims description 3
- 229960004316 cisplatin Drugs 0.000 claims description 3
- 229960004397 cyclophosphamide Drugs 0.000 claims description 3
- 229960003901 dacarbazine Drugs 0.000 claims description 3
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 claims description 3
- 229960000975 daunorubicin Drugs 0.000 claims description 3
- 238000012217 deletion Methods 0.000 claims description 3
- 230000037430 deletion Effects 0.000 claims description 3
- 229960003668 docetaxel Drugs 0.000 claims description 3
- 229960004679 doxorubicin Drugs 0.000 claims description 3
- 229960001904 epirubicin Drugs 0.000 claims description 3
- 229960005420 etoposide Drugs 0.000 claims description 3
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 claims description 3
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 claims description 3
- 229960005277 gemcitabine Drugs 0.000 claims description 3
- 229960000908 idarubicin Drugs 0.000 claims description 3
- 230000000495 immunoinflammatory effect Effects 0.000 claims description 3
- 230000001024 immunotherapeutic effect Effects 0.000 claims description 3
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 claims description 3
- 229960004768 irinotecan Drugs 0.000 claims description 3
- JCQLYHFGKNRPGE-FCVZTGTOSA-N lactulose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 JCQLYHFGKNRPGE-FCVZTGTOSA-N 0.000 claims description 3
- 229960000511 lactulose Drugs 0.000 claims description 3
- PFCRQPBOOFTZGQ-UHFFFAOYSA-N lactulose keto form Natural products OCC(=O)C(O)C(C(O)CO)OC1OC(CO)C(O)C(O)C1O PFCRQPBOOFTZGQ-UHFFFAOYSA-N 0.000 claims description 3
- 229960004961 mechlorethamine Drugs 0.000 claims description 3
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical class ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 claims description 3
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 claims description 3
- 229960001924 melphalan Drugs 0.000 claims description 3
- 229960004857 mitomycin Drugs 0.000 claims description 3
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 claims description 3
- 229960001156 mitoxantrone Drugs 0.000 claims description 3
- 239000002105 nanoparticle Substances 0.000 claims description 3
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 claims description 3
- 229960001756 oxaliplatin Drugs 0.000 claims description 3
- 229960001592 paclitaxel Drugs 0.000 claims description 3
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 3
- 229960004964 temozolomide Drugs 0.000 claims description 3
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 claims description 3
- 229960000303 topotecan Drugs 0.000 claims description 3
- PKVRCIRHQMSYJX-AIFWHQITSA-N trabectedin Chemical compound C([C@@]1(C(OC2)=O)NCCC3=C1C=C(C(=C3)O)OC)S[C@@H]1C3=C(OC(C)=O)C(C)=C4OCOC4=C3[C@H]2N2[C@@H](O)[C@H](CC=3C4=C(O)C(OC)=C(C)C=3)N(C)[C@H]4[C@@H]21 PKVRCIRHQMSYJX-AIFWHQITSA-N 0.000 claims description 3
- 229960000977 trabectedin Drugs 0.000 claims description 3
- 241000701161 unidentified adenovirus Species 0.000 claims description 3
- 229960000653 valrubicin Drugs 0.000 claims description 3
- ZOCKGBMQLCSHFP-KQRAQHLDSA-N valrubicin Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)CCCC)[C@H]1C[C@H](NC(=O)C(F)(F)F)[C@H](O)[C@H](C)O1 ZOCKGBMQLCSHFP-KQRAQHLDSA-N 0.000 claims description 3
- 229960003048 vinblastine Drugs 0.000 claims description 3
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 claims description 3
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 claims description 3
- 229960004528 vincristine Drugs 0.000 claims description 3
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 claims description 3
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 claims description 3
- 229960004355 vindesine Drugs 0.000 claims description 3
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 claims description 3
- 229960002066 vinorelbine Drugs 0.000 claims description 3
- 239000004005 microsphere Substances 0.000 claims description 2
- 239000002955 immunomodulating agent Substances 0.000 claims 7
- 230000000091 immunopotentiator Effects 0.000 claims 6
- 229940127089 cytotoxic agent Drugs 0.000 claims 2
- 101000766145 Homo sapiens Beta-1,4-galactosyltransferase 1 Proteins 0.000 claims 1
- 239000002671 adjuvant Substances 0.000 claims 1
- 229960000390 fludarabine Drugs 0.000 claims 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 claims 1
- 210000001035 gastrointestinal tract Anatomy 0.000 claims 1
- 102100021736 Galectin-1 Human genes 0.000 abstract description 212
- 241000699670 Mus sp. Species 0.000 abstract description 113
- 238000011282 treatment Methods 0.000 abstract description 60
- 201000011510 cancer Diseases 0.000 abstract description 25
- 230000006044 T cell activation Effects 0.000 abstract description 13
- 230000015572 biosynthetic process Effects 0.000 abstract description 13
- 238000003786 synthesis reaction Methods 0.000 abstract description 11
- 230000003915 cell function Effects 0.000 abstract description 10
- 230000002708 enhancing effect Effects 0.000 abstract description 5
- 108010070158 Lactose synthase Proteins 0.000 abstract description 4
- 230000025098 protein galactosylation Effects 0.000 abstract description 3
- 206010027476 Metastases Diseases 0.000 abstract description 2
- 230000009401 metastasis Effects 0.000 abstract description 2
- 238000002560 therapeutic procedure Methods 0.000 abstract description 2
- 231100000331 toxic Toxicity 0.000 abstract description 2
- 230000002588 toxic effect Effects 0.000 abstract description 2
- 230000021633 leukocyte mediated immunity Effects 0.000 abstract 1
- 230000014509 gene expression Effects 0.000 description 140
- 101710120061 Beta-1,4-galactosyltransferase 1 Proteins 0.000 description 127
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 110
- 238000002347 injection Methods 0.000 description 64
- 239000007924 injection Substances 0.000 description 64
- 238000000034 method Methods 0.000 description 49
- 210000004881 tumor cell Anatomy 0.000 description 49
- 230000012010 growth Effects 0.000 description 43
- 238000002474 experimental method Methods 0.000 description 41
- 238000000338 in vitro Methods 0.000 description 41
- 239000000243 solution Substances 0.000 description 41
- 238000000684 flow cytometry Methods 0.000 description 40
- 235000018102 proteins Nutrition 0.000 description 40
- 108091033409 CRISPR Proteins 0.000 description 39
- 238000010186 staining Methods 0.000 description 38
- 230000004614 tumor growth Effects 0.000 description 37
- 230000002147 killing effect Effects 0.000 description 36
- 238000004458 analytical method Methods 0.000 description 34
- 210000003462 vein Anatomy 0.000 description 34
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 description 33
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 33
- 230000001965 increasing effect Effects 0.000 description 31
- 238000012216 screening Methods 0.000 description 29
- 101000834898 Homo sapiens Alpha-synuclein Proteins 0.000 description 28
- 101000652359 Homo sapiens Spermatogenesis-associated protein 2 Proteins 0.000 description 28
- 230000006870 function Effects 0.000 description 28
- 230000002401 inhibitory effect Effects 0.000 description 28
- 239000000047 product Substances 0.000 description 27
- 241000699666 Mus <mouse, genus> Species 0.000 description 25
- 238000003501 co-culture Methods 0.000 description 25
- 230000037361 pathway Effects 0.000 description 25
- 238000012546 transfer Methods 0.000 description 24
- 108020005004 Guide RNA Proteins 0.000 description 23
- 238000001727 in vivo Methods 0.000 description 23
- 238000010276 construction Methods 0.000 description 22
- 108010025953 succinyl-WGA Proteins 0.000 description 21
- 238000010354 CRISPR gene editing Methods 0.000 description 20
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 20
- 230000004913 activation Effects 0.000 description 20
- 108010053791 erythrina lectin Proteins 0.000 description 20
- 208000015181 infectious disease Diseases 0.000 description 20
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 20
- 238000002054 transplantation Methods 0.000 description 20
- 230000001105 regulatory effect Effects 0.000 description 19
- 241000713666 Lentivirus Species 0.000 description 18
- 230000004083 survival effect Effects 0.000 description 18
- 101000609767 Dromaius novaehollandiae Ovalbumin Proteins 0.000 description 17
- 230000002441 reversible effect Effects 0.000 description 17
- 238000012163 sequencing technique Methods 0.000 description 17
- 102000007563 Galectins Human genes 0.000 description 16
- 108010046569 Galectins Proteins 0.000 description 16
- 238000001990 intravenous administration Methods 0.000 description 15
- 238000007920 subcutaneous administration Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 14
- 102000015636 Oligopeptides Human genes 0.000 description 14
- 108010038807 Oligopeptides Proteins 0.000 description 14
- 108091027967 Small hairpin RNA Proteins 0.000 description 14
- 239000003153 chemical reaction reagent Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 230000019491 signal transduction Effects 0.000 description 14
- 239000004055 small Interfering RNA Substances 0.000 description 14
- 102000004856 Lectins Human genes 0.000 description 13
- 108090001090 Lectins Proteins 0.000 description 13
- 108091027544 Subgenomic mRNA Proteins 0.000 description 13
- 210000004369 blood Anatomy 0.000 description 13
- 239000008280 blood Substances 0.000 description 13
- 238000010367 cloning Methods 0.000 description 13
- 239000002523 lectin Substances 0.000 description 13
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical group CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 13
- OZFAFGSSMRRTDW-UHFFFAOYSA-N (2,4-dichlorophenyl) benzenesulfonate Chemical compound ClC1=CC(Cl)=CC=C1OS(=O)(=O)C1=CC=CC=C1 OZFAFGSSMRRTDW-UHFFFAOYSA-N 0.000 description 12
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- 238000011746 C57BL/6J (JAX™ mouse strain) Methods 0.000 description 12
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 12
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 239000003112 inhibitor Substances 0.000 description 12
- 230000002601 intratumoral effect Effects 0.000 description 12
- 238000010253 intravenous injection Methods 0.000 description 12
- 239000002609 medium Substances 0.000 description 12
- 230000035897 transcription Effects 0.000 description 12
- 238000013518 transcription Methods 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 11
- 238000011529 RT qPCR Methods 0.000 description 10
- 108020004459 Small interfering RNA Proteins 0.000 description 10
- 239000002585 base Substances 0.000 description 10
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 10
- 229950010131 puromycin Drugs 0.000 description 10
- 230000022534 cell killing Effects 0.000 description 9
- 230000028993 immune response Effects 0.000 description 9
- 210000000987 immune system Anatomy 0.000 description 9
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 9
- 239000006228 supernatant Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 229920000936 Agarose Polymers 0.000 description 8
- 108010002350 Interleukin-2 Proteins 0.000 description 8
- 102000000588 Interleukin-2 Human genes 0.000 description 8
- 101710163270 Nuclease Proteins 0.000 description 8
- 238000003559 RNA-seq method Methods 0.000 description 8
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 8
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000003636 conditioned culture medium Substances 0.000 description 8
- 230000001419 dependent effect Effects 0.000 description 8
- 239000001963 growth medium Substances 0.000 description 8
- 230000008595 infiltration Effects 0.000 description 8
- 238000001764 infiltration Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 8
- 206010009944 Colon cancer Diseases 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 7
- 239000011616 biotin Substances 0.000 description 7
- 229960002685 biotin Drugs 0.000 description 7
- 235000020958 biotin Nutrition 0.000 description 7
- 150000001720 carbohydrates Chemical class 0.000 description 7
- 235000014633 carbohydrates Nutrition 0.000 description 7
- 208000029742 colonic neoplasm Diseases 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 125000002519 galactosyl group Chemical group C1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 7
- 238000010199 gene set enrichment analysis Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000004949 mass spectrometry Methods 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 210000003071 memory t lymphocyte Anatomy 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 6
- 241000702421 Dependoparvovirus Species 0.000 description 6
- 102100039558 Galectin-3 Human genes 0.000 description 6
- 102000008070 Interferon-gamma Human genes 0.000 description 6
- 108010074328 Interferon-gamma Proteins 0.000 description 6
- 108010052285 Membrane Proteins Proteins 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 208000020990 adrenal cortex carcinoma Diseases 0.000 description 6
- 208000007128 adrenocortical carcinoma Diseases 0.000 description 6
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical group OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 230000008045 co-localization Effects 0.000 description 6
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 6
- 238000011577 humanized mouse model Methods 0.000 description 6
- 230000036039 immunity Effects 0.000 description 6
- 229960003130 interferon gamma Drugs 0.000 description 6
- 201000005249 lung adenocarcinoma Diseases 0.000 description 6
- 201000001441 melanoma Diseases 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 150000003384 small molecules Chemical class 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 229930195727 α-lactose Natural products 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 5
- 108700031361 Brachyury Proteins 0.000 description 5
- 102100031780 Endonuclease Human genes 0.000 description 5
- 108010001517 Galectin 3 Proteins 0.000 description 5
- 102100031351 Galectin-9 Human genes 0.000 description 5
- 101710121810 Galectin-9 Proteins 0.000 description 5
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 description 5
- 102000037984 Inhibitory immune checkpoint proteins Human genes 0.000 description 5
- 108091008026 Inhibitory immune checkpoint proteins Proteins 0.000 description 5
- 102000004407 Lactalbumin Human genes 0.000 description 5
- 108090000942 Lactalbumin Proteins 0.000 description 5
- 102000018697 Membrane Proteins Human genes 0.000 description 5
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 5
- 208000005718 Stomach Neoplasms Diseases 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 5
- 101150063416 add gene Proteins 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000007405 data analysis Methods 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 238000013230 female C57BL/6J mice Methods 0.000 description 5
- 206010017758 gastric cancer Diseases 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 210000005259 peripheral blood Anatomy 0.000 description 5
- 239000011886 peripheral blood Substances 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 201000011549 stomach cancer Diseases 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000005909 tumor killing Effects 0.000 description 5
- 241001430294 unidentified retrovirus Species 0.000 description 5
- 235000021241 α-lactalbumin Nutrition 0.000 description 5
- JVJGCCBAOOWGEO-RUTPOYCXSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-4-amino-2-[[(2s,3s)-2-[[(2s,3s)-2-[[(2s)-2-azaniumyl-3-hydroxypropanoyl]amino]-3-methylpentanoyl]amino]-3-methylpentanoyl]amino]-4-oxobutanoyl]amino]-3-phenylpropanoyl]amino]-4-carboxylatobutanoyl]amino]-6-azaniumy Chemical compound OC[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O)CC1=CC=CC=C1 JVJGCCBAOOWGEO-RUTPOYCXSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 102000001554 Hemoglobins Human genes 0.000 description 4
- 108010054147 Hemoglobins Proteins 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 238000012404 In vitro experiment Methods 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 206010038019 Rectal adenocarcinoma Diseases 0.000 description 4
- 239000006285 cell suspension Substances 0.000 description 4
- 229940044683 chemotherapy drug Drugs 0.000 description 4
- 230000009137 competitive binding Effects 0.000 description 4
- 230000002860 competitive effect Effects 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 108010030074 endodeoxyribonuclease MluI Proteins 0.000 description 4
- 238000000556 factor analysis Methods 0.000 description 4
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 4
- 229930182830 galactose Natural products 0.000 description 4
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 230000037451 immune surveillance Effects 0.000 description 4
- 238000012750 in vivo screening Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 208000032839 leukemia Diseases 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 230000003472 neutralizing effect Effects 0.000 description 4
- 238000004393 prognosis Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 201000001281 rectum adenocarcinoma Diseases 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 238000011277 treatment modality Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WSVLPVUVIUVCRA-KPKNDVKVSA-N Alpha-lactose monohydrate Chemical compound O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O WSVLPVUVIUVCRA-KPKNDVKVSA-N 0.000 description 3
- 238000011725 BALB/c mouse Methods 0.000 description 3
- GUBGYTABKSRVRQ-DCSYEGIMSA-N Beta-Lactose Chemical compound OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-DCSYEGIMSA-N 0.000 description 3
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 108010042407 Endonucleases Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 241001450606 Fissurella volcano Species 0.000 description 3
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 3
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 3
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 description 3
- 101001117317 Homo sapiens Programmed cell death 1 ligand 1 Proteins 0.000 description 3
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 3
- 102000003812 Interleukin-15 Human genes 0.000 description 3
- 108090000172 Interleukin-15 Proteins 0.000 description 3
- 108010002586 Interleukin-7 Proteins 0.000 description 3
- 102000000704 Interleukin-7 Human genes 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- 101150064011 Lnpep gene Proteins 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 102000000447 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Human genes 0.000 description 3
- 108010055817 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Proteins 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 239000012980 RPMI-1640 medium Substances 0.000 description 3
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- 230000030741 antigen processing and presentation Effects 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 229940109239 creatinine Drugs 0.000 description 3
- 239000003145 cytotoxic factor Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000000779 depleting effect Effects 0.000 description 3
- 150000002016 disaccharides Chemical class 0.000 description 3
- 238000010201 enrichment analysis Methods 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 230000002489 hematologic effect Effects 0.000 description 3
- 230000036737 immune function Effects 0.000 description 3
- 230000006054 immunological memory Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 150000002597 lactoses Chemical class 0.000 description 3
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 201000010225 mixed cell type cancer Diseases 0.000 description 3
- 208000029638 mixed neoplasm Diseases 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229960002621 pembrolizumab Drugs 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 230000001875 tumorinhibitory effect Effects 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- 229930195724 β-lactose Natural products 0.000 description 3
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 2
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 2
- QCXJEYYXVJIFCE-UHFFFAOYSA-N 4-acetamidobenzoic acid Chemical compound CC(=O)NC1=CC=C(C(O)=O)C=C1 QCXJEYYXVJIFCE-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 2
- 108010082126 Alanine transaminase Proteins 0.000 description 2
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 2
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 2
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 108010074708 B7-H1 Antigen Proteins 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 101100067708 Caenorhabditis elegans galt-1 gene Proteins 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 108010078791 Carrier Proteins Proteins 0.000 description 2
- 241000700198 Cavia Species 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- 102000004420 Creatine Kinase Human genes 0.000 description 2
- 108010042126 Creatine kinase Proteins 0.000 description 2
- 101150083434 Dpm3 gene Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 206010014733 Endometrial cancer Diseases 0.000 description 2
- 206010014759 Endometrial neoplasm Diseases 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 241000079420 Fluda Species 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 229930186217 Glycolipid Natural products 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 241001272567 Hominoidea Species 0.000 description 2
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 2
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 2
- 206010023825 Laryngeal cancer Diseases 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 208000032271 Malignant tumor of penis Diseases 0.000 description 2
- 108010090665 Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase Proteins 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 101150093077 Mgat2 gene Proteins 0.000 description 2
- 108700011259 MicroRNAs Proteins 0.000 description 2
- 208000003445 Mouth Neoplasms Diseases 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 2
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 2
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 101710160107 Outer membrane protein A Proteins 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 208000002471 Penile Neoplasms Diseases 0.000 description 2
- 206010034299 Penile cancer Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241000282405 Pongo abelii Species 0.000 description 2
- 108010048233 Procalcitonin Proteins 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 208000015634 Rectal Neoplasms Diseases 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000006052 T cell proliferation Effects 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 206010062129 Tongue neoplasm Diseases 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 238000001261 affinity purification Methods 0.000 description 2
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 210000003503 anal sac Anatomy 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000000823 artificial membrane Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical group OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 2
- 229930189065 blasticidin Natural products 0.000 description 2
- 201000007983 brain glioma Diseases 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 238000000432 density-gradient centrifugation Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 201000004101 esophageal cancer Diseases 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 150000008195 galaktosides Chemical class 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229940097043 glucuronic acid Drugs 0.000 description 2
- 229960002989 glutamic acid Drugs 0.000 description 2
- 210000003714 granulocyte Anatomy 0.000 description 2
- 238000005534 hematocrit Methods 0.000 description 2
- 201000005787 hematologic cancer Diseases 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000010212 intracellular staining Methods 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 229960005386 ipilimumab Drugs 0.000 description 2
- 201000010982 kidney cancer Diseases 0.000 description 2
- 206010023841 laryngeal neoplasm Diseases 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 238000001325 log-rank test Methods 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000002679 microRNA Substances 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000009456 molecular mechanism Effects 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- XTEGVFVZDVNBPF-UHFFFAOYSA-N naphthalene-1,5-disulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1S(O)(=O)=O XTEGVFVZDVNBPF-UHFFFAOYSA-N 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 229960003301 nivolumab Drugs 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- PXQPEWDEAKTCGB-UHFFFAOYSA-N orotic acid Chemical compound OC(=O)C1=CC(=O)NC(=O)N1 PXQPEWDEAKTCGB-UHFFFAOYSA-N 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 238000013149 parallel artificial membrane permeability assay Methods 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 210000004986 primary T-cell Anatomy 0.000 description 2
- CWCXERYKLSEGEZ-KDKHKZEGSA-N procalcitonin Chemical compound C([C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)NCC(O)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCSC)NC(=O)[C@H]1NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@@H](N)CSSC1)[C@@H](C)O)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 CWCXERYKLSEGEZ-KDKHKZEGSA-N 0.000 description 2
- 230000013587 protein N-linked glycosylation Effects 0.000 description 2
- 230000004952 protein activity Effects 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 206010038038 rectal cancer Diseases 0.000 description 2
- 201000001275 rectum cancer Diseases 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 201000006134 tongue cancer Diseases 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000011222 transcriptome analysis Methods 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical compound NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 description 1
- LXMBXZRLTPSWCR-XBLONOLSSA-N (2s,3r,4r,5r)-4-[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexane-1,2,3,5,6-pentol;hydrate Chemical compound O.OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O LXMBXZRLTPSWCR-XBLONOLSSA-N 0.000 description 1
- FVVCFHXLWDDRHG-UPLOTWCNSA-N (2s,3r,4s,5r,6r)-2-[(2r,3s,4r,5r,6r)-6-[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](CO)O1 FVVCFHXLWDDRHG-UPLOTWCNSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical compound CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 1
- SJJCQDRGABAVBB-UHFFFAOYSA-N 1-hydroxy-2-naphthoic acid Chemical compound C1=CC=CC2=C(O)C(C(=O)O)=CC=C21 SJJCQDRGABAVBB-UHFFFAOYSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N 2,3,4,5-tetrahydroxypentanal Chemical compound OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- COFFWUSSQYARLB-UHFFFAOYSA-N 2-[4-(bromomethyl)phenoxy]acetic acid Chemical compound OC(=O)COC1=CC=C(CBr)C=C1 COFFWUSSQYARLB-UHFFFAOYSA-N 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-L 2-oxoglutarate(2-) Chemical compound [O-]C(=O)CCC(=O)C([O-])=O KPGXRSRHYNQIFN-UHFFFAOYSA-L 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- UOQHWNPVNXSDDO-UHFFFAOYSA-N 3-bromoimidazo[1,2-a]pyridine-6-carbonitrile Chemical compound C1=CC(C#N)=CN2C(Br)=CN=C21 UOQHWNPVNXSDDO-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- WUBBRNOQWQTFEX-UHFFFAOYSA-N 4-aminosalicylic acid Chemical compound NC1=CC=C(C(O)=O)C(O)=C1 WUBBRNOQWQTFEX-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 101710186708 Agglutinin Proteins 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 235000011330 Armoracia rusticana Nutrition 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 102000049320 CD36 Human genes 0.000 description 1
- 108010045374 CD36 Antigens Proteins 0.000 description 1
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 101150087313 Cd8a gene Proteins 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 102100032049 E3 ubiquitin-protein ligase LRSAM1 Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 102100023882 Endoribonuclease ZC3H12A Human genes 0.000 description 1
- 101710112715 Endoribonuclease ZC3H12A Proteins 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- 102100027581 Forkhead box protein P3 Human genes 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108010015899 Glycopeptides Proteins 0.000 description 1
- 102000002068 Glycopeptides Human genes 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 101100220044 Homo sapiens CD34 gene Proteins 0.000 description 1
- 101000861452 Homo sapiens Forkhead box protein P3 Proteins 0.000 description 1
- 101000959820 Homo sapiens Interferon alpha-1/13 Proteins 0.000 description 1
- 101000979342 Homo sapiens Nuclear factor NF-kappa-B p105 subunit Proteins 0.000 description 1
- 101000987581 Homo sapiens Perforin-1 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000653540 Homo sapiens Transcription factor 7 Proteins 0.000 description 1
- 101710146024 Horcolin Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 101150013399 ITGA1 gene Proteins 0.000 description 1
- 101150011508 Ighg1 gene Proteins 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 231100000111 LD50 Toxicity 0.000 description 1
- 101710189395 Lectin Proteins 0.000 description 1
- 101710179758 Mannose-specific lectin Proteins 0.000 description 1
- 101710150763 Mannose-specific lectin 1 Proteins 0.000 description 1
- 101710150745 Mannose-specific lectin 2 Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108020005196 Mitochondrial DNA Proteins 0.000 description 1
- 101100218437 Mus musculus B4galt1 gene Proteins 0.000 description 1
- 101001042452 Mus musculus Galectin-1 Proteins 0.000 description 1
- 101001055166 Mus musculus Interleukin-15 Proteins 0.000 description 1
- 101001043827 Mus musculus Interleukin-2 Proteins 0.000 description 1
- 101001043808 Mus musculus Interleukin-7 Proteins 0.000 description 1
- 101100467873 Mus musculus Rc3h1 gene Proteins 0.000 description 1
- 101000648740 Mus musculus Tumor necrosis factor Proteins 0.000 description 1
- 101100268066 Mus musculus Zap70 gene Proteins 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 102100023050 Nuclear factor NF-kappa-B p105 subunit Human genes 0.000 description 1
- 108010075205 OVA-8 Proteins 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 102100028467 Perforin-1 Human genes 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 239000012979 RPMI medium Substances 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 101150073296 SELL gene Proteins 0.000 description 1
- 101150017725 SRP68 gene Proteins 0.000 description 1
- 101150045565 Socs1 gene Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 230000033540 T cell apoptotic process Effects 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 102100030627 Transcription factor 7 Human genes 0.000 description 1
- 108700029229 Transcriptional Regulatory Elements Proteins 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 241000857212 Varanus nebulosus Species 0.000 description 1
- 101150092897 ZC3H12A gene Proteins 0.000 description 1
- 101710185494 Zinc finger protein Proteins 0.000 description 1
- 102100023597 Zinc finger protein 816 Human genes 0.000 description 1
- MIOPJNTWMNEORI-OMNKOJBGSA-N [(4s)-7,7-dimethyl-3-oxo-4-bicyclo[2.2.1]heptanyl]methanesulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-OMNKOJBGSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-UHFFFAOYSA-N acide pyroglutamique Natural products OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 229960000250 adipic acid Drugs 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 239000000910 agglutinin Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- AEMOLEFTQBMNLQ-WAXACMCWSA-N alpha-D-glucuronic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-WAXACMCWSA-N 0.000 description 1
- 125000000266 alpha-aminoacyl group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229960004909 aminosalicylic acid Drugs 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 230000005809 anti-tumor immunity Effects 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 1
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 1
- 108010022308 beta-1,4-galactosyltransferase I Proteins 0.000 description 1
- HMQPEDMEOBLSQB-RCBHQUQDSA-N beta-D-Galp-(1->3)-alpha-D-GlcpNAc Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HMQPEDMEOBLSQB-RCBHQUQDSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- LSPHULWDVZXLIL-QUBYGPBYSA-N camphoric acid Chemical compound CC1(C)[C@H](C(O)=O)CC[C@]1(C)C(O)=O LSPHULWDVZXLIL-QUBYGPBYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- JGPOSNWWINVNFV-UHFFFAOYSA-N carboxyfluorescein diacetate succinimidyl ester Chemical compound C=1C(OC(=O)C)=CC=C2C=1OC1=CC(OC(C)=O)=CC=C1C2(C1=C2)OC(=O)C1=CC=C2C(=O)ON1C(=O)CCC1=O JGPOSNWWINVNFV-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229940040387 citrus pectin Drugs 0.000 description 1
- 239000009194 citrus pectin Substances 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 238000011220 combination immunotherapy Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- KZNICNPSHKQLFF-UHFFFAOYSA-N dihydromaleimide Natural products O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- AFAXGSQYZLGZPG-UHFFFAOYSA-N ethanedisulfonic acid Chemical compound OS(=O)(=O)CCS(O)(=O)=O AFAXGSQYZLGZPG-UHFFFAOYSA-N 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000004700 fetal blood Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 108091012750 galactoside binding proteins Proteins 0.000 description 1
- LRBQNJMCXXYXIU-QWKBTXIPSA-N gallotannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@H]2[C@@H]([C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-QWKBTXIPSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 229960005219 gentisic acid Drugs 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229950006191 gluconic acid Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 210000000777 hematopoietic system Anatomy 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 238000000703 high-speed centrifugation Methods 0.000 description 1
- 102000057041 human TNF Human genes 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229960000443 hydrochloric acid Drugs 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229940071870 hydroiodic acid Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000008629 immune suppression Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000035992 intercellular communication Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- NBQNWMBBSKPBAY-UHFFFAOYSA-N iodixanol Chemical compound IC=1C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C(I)C=1N(C(=O)C)CC(O)CN(C(C)=O)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NBQNWMBBSKPBAY-UHFFFAOYSA-N 0.000 description 1
- 229960004359 iodixanol Drugs 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229940045996 isethionic acid Drugs 0.000 description 1
- 238000010829 isocratic elution Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 229930191176 lacto-N-biose Natural products 0.000 description 1
- 229940099563 lactobionic acid Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 238000000464 low-speed centrifugation Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229940098895 maleic acid Drugs 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229940099690 malic acid Drugs 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N mandelic acid Chemical compound OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- HOVAGTYPODGVJG-UHFFFAOYSA-N methyl beta-galactoside Natural products COC1OC(CO)C(O)C(O)C1O HOVAGTYPODGVJG-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 230000007896 negative regulation of T cell activation Effects 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229960005010 orotic acid Drugs 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000007427 paired t-test Methods 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000008823 permeabilization Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000013630 prepared media Substances 0.000 description 1
- 210000001978 pro-t lymphocyte Anatomy 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000012474 protein marker Substances 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000005227 renal system Anatomy 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000022120 response to tumor cell Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229940116353 sebacic acid Drugs 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000007447 staining method Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229960004274 stearic acid Drugs 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000012536 storage buffer Substances 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 230000005851 tumor immunogenicity Effects 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 230000002100 tumorsuppressive effect Effects 0.000 description 1
- 238000007492 two-way ANOVA Methods 0.000 description 1
- 238000001195 ultra high performance liquid chromatography Methods 0.000 description 1
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0646—Natural killers cells [NK], NKT cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7016—Disaccharides, e.g. lactose, lactulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/45—Transferases (2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0008—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
- C12Y204/01038—Beta-N-acetylglucosaminylglycopeptide beta-1,4-galactosyltransferase (2.4.1.38)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Biotechnology (AREA)
- Animal Behavior & Ethology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Wood Science & Technology (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hematology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Developmental Biology & Embryology (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Physics & Mathematics (AREA)
- Dermatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
本申请要求于2022年11月16日提交的中国发明专利申请号2022114354538以及于2022年11月16日提交的中国发明专利申请号2022114593007的优先权,它们中的每一个据此全文以引用方式并入本文以用于所有目的。This application claims priority from Chinese invention patent application number 2022114354538, filed on November 16, 2022, and Chinese invention patent application number 2022114593007, filed on November 16, 2022, each of which is hereby incorporated by reference in its entirety. incorporated herein for all purposes.
技术领域Technical field
本发明属于医药和肿瘤治疗领域,特别是提供了半乳糖凝集素-1作为一种免疫检查点在制备肿瘤免疫治疗药物中的应用以及该药物。The invention belongs to the fields of medicine and tumor treatment, and in particular provides the application of galectin-1 as an immune checkpoint in the preparation of tumor immunotherapy drugs and the drug.
背景技术Background technique
肿瘤免疫是迄今为止最为有效的肿瘤治疗方法;尤其是利用生物大分子或小分子对肿瘤免疫检查点(如PD1,PDL1,CTLA-4等)的靶向抑制,已经在多种肿瘤的治疗中表现良好效果;肿瘤免疫检查点抑制剂治疗在应用中也暴露出一些亟待解决的关键问题;比如,其只对一部分肿瘤类型有较好疗效,而对其他一些肿瘤类型无效;甚至是对同一类肿瘤的不同患者的疗效也存在显著差异性;对肿瘤免疫作用机制的深入研究将为解决这些问题提供新思路;另一方面,肿瘤免疫检查点抑制剂治疗的高昂费用是限制其实际应用的主要障碍;例如,在中国政府医疗集采政策和生产厂商激烈竞争的共同作用下,anti-PD1抗体治疗的年度费用已经从数十万美元降到了数万人民币,但仍然是大部分肿瘤患者家庭的沉重负担;放眼全球,如何为肿瘤患者提供可以承担的肿瘤免疫治疗更是迫在眉睫的任务。Tumor immunity is by far the most effective cancer treatment method; in particular, the use of biological macromolecules or small molecules to target tumor immune checkpoints (such as PD1, PDL1, CTLA-4, etc.) has been used in the treatment of various tumors. showed good results; the application of tumor immune checkpoint inhibitor therapy has also exposed some key problems that need to be solved; for example, it only has good efficacy on some tumor types, but is ineffective on other tumor types; even on the same type of tumor There are also significant differences in the efficacy of different patients with tumors; in-depth research on the mechanism of tumor immunity will provide new ideas to solve these problems; on the other hand, the high cost of tumor immune checkpoint inhibitor treatment is the main limitation limiting its practical application Obstacles; for example, due to the combined effect of the Chinese government’s centralized medical procurement policy and fierce competition among manufacturers, the annual cost of anti-PD1 antibody treatment has dropped from hundreds of thousands of US dollars to tens of thousands of RMB, but it is still affordable for most families of cancer patients. A heavy burden; looking around the world, how to provide affordable tumor immunotherapy for tumor patients is an urgent task.
抗体是肿瘤免疫检查点抑制剂的主要生物大分子,其对生产和保存都要求很高,导致价格昂贵;已有一些在研肿瘤免疫检查点的小分子抑制剂,或者是生产复杂,或者是由于靶向性不佳导致副作用较多。Antibodies are the main biological macromolecules of tumor immune checkpoint inhibitors, which have high requirements for production and storage, resulting in high prices. There are already some small molecule inhibitors of tumor immune checkpoints under development, or the production is complex or difficult. There are many side effects due to poor targeting.
半乳糖凝集素作为半乳糖苷结合蛋白家族,具有强大的免疫调节活性(Rabinovich等人综述,J LeukBiol.,2002,71:741-752)。特别是galectin-1是T细胞反应的负调节剂,可诱导T细胞凋亡(Perillo,N L et al.,自然,1995,378(6558):736-739)。Galectin-1也由活化的T细胞分泌,从而充当T细胞活化的自我调节剂,抑制抗原诱导的T细胞增殖(Blaser C.等人,Euro.JImmunal,1998,28:2311-2319)。Galectins, as a family of galactoside-binding proteins, have powerful immunomodulatory activities (reviewed by Rabinovich et al., J Leuk Biol., 2002, 71:741-752). In particular, galectin-1 is a negative regulator of T cell responses and can induce T cell apoptosis (Perillo, N L et al., Nature, 1995, 378(6558):736-739). Galectin-1 is also secreted by activated T cells, thereby acting as an autoregulator of T cell activation and inhibiting antigen-induced T cell proliferation (Blaser C. et al., Euro. JImmunal, 1998, 28:2311-2319).
但是现有技术对半乳糖凝集素抑制剂的理解还十分宽泛,认为其可以用于致病性感染、自身免疫性疾病、移植排斥、移植物抗宿主病、过敏、炎性疾病以及癌症和肿瘤,并没有发现其在肿瘤免疫治疗中的特殊意义。However, the current understanding of galectin inhibitors is still very broad, and it is believed that they can be used for pathogenic infections, autoimmune diseases, transplant rejection, graft-versus-host disease, allergies, inflammatory diseases, and cancers and tumors. , and its special significance in tumor immunotherapy has not been found.
因鉴于此,特提出此发明。In view of this, this invention is proposed.
发明内容Contents of the invention
本发明令人惊奇地发现,在肿瘤组织中的癌细胞可以将异常高水平的半乳糖凝集素-1转移到邻近免疫细胞表面,尤其是肿瘤靶向的细胞毒性T细胞。肿瘤来源的半乳糖凝集素-1与细胞毒性T细胞表面的半乳糖基化蛋白结合,以调节T细胞的活化和功能。而乳糖、N-乙酰乳糖胺可以竞争性地结合这些T细胞上的来自肿瘤细胞的半乳糖凝集素,能够使T细胞恢复其杀伤能力。这一发现使得半乳糖苷凝集素及其抑制剂在对于肿瘤的治疗中有着相对于一般的炎症治疗有着尤其突出的意义。尤其是乳糖,在肠胃之外不被降解,可以与T淋巴细胞表面的Gal-1结合位点竞争性地结合Gal-1,阻断肿瘤细胞分泌的异常高水平的Gal-1于临近的T淋巴细胞的结合,挽救T淋巴细胞的功能。从而使得半乳糖苷凝集素,尤其是Gal-1可以作为一种新的免疫检查点被用于肿瘤的治疗中。The present invention surprisingly found that cancer cells in tumor tissue can transfer abnormally high levels of galectin-1 to the surface of adjacent immune cells, especially tumor-targeting cytotoxic T cells. Tumor-derived galectin-1 binds to galactosylated proteins on the surface of cytotoxic T cells to regulate T cell activation and function. Lactose and N-acetyllactosamine can competitively bind to galectin from tumor cells on these T cells, allowing the T cells to restore their killing ability. This discovery makes galectin and its inhibitors particularly significant in the treatment of tumors compared with general inflammation treatments. Lactose, in particular, is not degraded outside the intestines and stomach and can competitively bind Gal-1 to the Gal-1 binding site on the surface of T lymphocytes, blocking the abnormally high levels of Gal-1 secreted by tumor cells from adjacent T lymphocytes. The combination of lymphocytes rescues the function of T lymphocytes. Therefore, galectin, especially Gal-1, can be used as a new immune checkpoint in the treatment of tumors.
本发明从分子机制入手,创新性地发现靶向肿瘤免疫检查点的新机制和靶点,并筛选天然产物用于调节肿瘤免疫,最终为肿瘤免疫治疗提供新的方法。The present invention starts from the molecular mechanism, innovatively discovers new mechanisms and targets targeting tumor immune checkpoints, and screens natural products for regulating tumor immunity, ultimately providing new methods for tumor immunotherapy.
本发明令人惊讶地发现,敲除了B4GALT1的CD8+T细胞的活化水平于靶细胞杀伤活性均显著增强;在体内外肿瘤浸润实验中,B4GALT1基因敲除的OT-1T细胞肿瘤中具有更快的增殖速度,由此导致显著的肿瘤生长抑制。β-1,4-半乳糖基转移酶1(β-1,4-galatosyltransferase 1,B4GALT1)是N-聚糖生物合成通路中的关键酶,其失活在体外和体内均可导致CD8+T细胞的TCR活化和功能增强。值得一提的是,本发明发现,在肿瘤细胞中,B4GALT1的失活可通过调节干扰素γ信号通路和抗原呈递促进CD8+T细胞介导的免疫杀伤作用。The present invention surprisingly found that the activation level and target cell killing activity of CD8 + T cells with B4GALT1 knocked out were significantly enhanced; in in vivo and in vitro tumor infiltration experiments, B4GALT1 gene knocked out OT-1 T cells in tumors had faster proliferation rate, resulting in significant tumor growth inhibition. β-1,4-galactosyltransferase 1 (B4GALT1) is a key enzyme in the N-glycan biosynthesis pathway. Its inactivation can lead to CD8 + T both in vitro and in vivo TCR activation and function enhancement of cells. It is worth mentioning that the present invention found that in tumor cells, inactivation of B4GALT1 can promote CD8 + T cell-mediated immune killing by regulating the interferon gamma signaling pathway and antigen presentation.
本发明进一步发现,在小鼠结肠癌细胞系MC38肿瘤中抑制B4GALT1的活性,并在体外和体内层面分别探究其免疫应答能力(数据未在本文中展示),结果显示:The present invention further found that the activity of B4GALT1 was inhibited in the mouse colon cancer cell line MC38 tumor, and its immune response ability was explored in vitro and in vivo (data not shown in this article). The results showed:
(1)在B4GALT1基因敲除的MC38中,IFNγ、TNFα、IFNα信号通路均显著上调。近几年在肿瘤细胞内进行的CRISPR/Cas9筛选研究已经证明,这些信号通路在肿瘤免疫治疗中起到重要作用。同时,经IFNγ处理后,敲除B4GALT1的MC38细胞的B2m表达水平和对OVA抗原的呈递都显著增强。(1) In MC38 with B4GALT1 gene knockout, IFNγ, TNFα, and IFNα signaling pathways were all significantly up-regulated. CRISPR/Cas9 screening studies in tumor cells in recent years have proven that these signaling pathways play an important role in tumor immunotherapy. At the same time, after IFNγ treatment, the B2m expression level and OVA antigen presentation of B4GALT1-knocked out MC38 cells were significantly enhanced.
(2)体外杀伤实验显示,敲除MC38细胞中的B4GALT1基因可以增强OT-1T细胞的特异性体外杀伤功能。在此过程中,本发明注意到,相较于与对照MC38细胞共培养,当与敲除B4GALT1的MC38细胞共培养后,OT-1T细胞中的IFNγ表达水平明显增加。(2) In vitro killing experiments show that knocking out the B4GALT1 gene in MC38 cells can enhance the specific in vitro killing function of OT-1T cells. During this process, the present inventors noticed that the IFNγ expression level in OT-1T cells increased significantly when co-cultured with B4GALT1 knockout MC38 cells compared with co-culture with control MC38 cells.
(3)在体内肿瘤生长实验中,本发明发现,就野生型小鼠的皮下肿瘤而言,B4GALT1敲除的MC38肿瘤生长速度相较于对照组显著减慢,而在免疫缺陷的NPG(NOD-PrkdcscidIL2rgnull)小鼠中却并未观察到这一现象。为了进一步了解是哪一类型的免疫细胞介导这一肿瘤免疫应答,本发明分别用特定抗体将野生型小鼠体内的不同免疫细胞清除后再进行皮下植入,最终发现清除CD8+和CD4+T细胞可以显著恢复敲除B4GALT1的MC38肿瘤的生长速度,其中CD8+T细胞清除后尤为明显;但清除自然杀伤细胞却不能恢复其生长速率。(3) In the in vivo tumor growth experiment, the present invention found that in terms of subcutaneous tumors in wild-type mice, the growth rate of MC38 tumors with B4GALT1 knockout was significantly slower than that in the control group, while in immunodeficient NPG (NOD -PrkdcscidIL2rgnull) mice but this phenomenon was not observed. In order to further understand which type of immune cells mediates this tumor immune response, the present invention used specific antibodies to eliminate different immune cells in wild-type mice and then implanted them subcutaneously. Finally, it was found that CD8 + and CD4 + were eliminated T cells can significantly restore the growth rate of MC38 tumors with B4GALT1 knockout, especially after deletion of CD8 + T cells; however, deletion of natural killer cells cannot restore the growth rate.
这说明无论在体外和体内层面,B4GALT1敲除的MC38肿瘤细胞均可增强免疫应答活性,且CD8+T细胞在这一过程中起主要作用。This shows that B4GALT1 knockout MC38 tumor cells can enhance immune response activity both in vitro and in vivo, and CD8 + T cells play a major role in this process.
本发明发现,外源性表达LALBA可在肿瘤细胞中分泌乳糖,且这一过程以来于B4GALT1的活性。α-乳白蛋白(LactalbuminAlpha,LALBA)可与B4GALT形成异源二聚体以参与乳糖合成的功能。LALBA在肿瘤细胞内的过表达可以促进肿瘤细胞对免疫细胞的应答,从而抑制肿瘤生长。即使只有一部分肿瘤细胞过表达LALBA,也能发挥肿瘤生长抑制作用。此外,用编码LALBA的慢病毒或者腺相关病毒进行肿瘤原位注射,同样可以实现抑制肿瘤的效果,且该肿瘤完全消退的小鼠可以建立对肿瘤的免疫记忆,再次植入该肿瘤时不会形成可见肿瘤。但是突变型LALBA过表达的肿瘤细胞不产生乳糖,且对肿瘤生长无明显抑制作用。The present invention found that exogenous expression of LALBA can secrete lactose in tumor cells, and this process is dependent on the activity of B4GALT1. α-Lactalbumin Alpha (LALBA) can form a heterodimer with B4GALT to participate in lactose synthesis. Overexpression of LALBA in tumor cells can promote the response of tumor cells to immune cells, thereby inhibiting tumor growth. Even if only a part of tumor cells overexpress LALBA, it can still exert a tumor growth inhibitory effect. In addition, orthotopic injection of tumors with lentivirus or adeno-associated virus encoding LALBA can also achieve the effect of inhibiting tumors, and mice with complete tumor regression can establish an immune memory of the tumor and will not be re-implanted with the tumor. Visible tumors form. However, tumor cells overexpressing mutant LALBA do not produce lactose and have no significant inhibitory effect on tumor growth.
本发明创造性地发现,在肿瘤组织中存在一种现象,癌细胞可以将异常高水平的半乳糖凝集素-1转移到邻近免疫细胞表面,尤其是肿瘤靶向的细胞毒性T细胞。随后,肿瘤来源的半乳糖凝集素-1与细胞毒性T细胞表面的半乳糖基化蛋白发生相互作用,以调节T细胞的活化和功能。本发明通过anti-Gal-1抗体染色,证实了乳糖处理可以将Gal-1从OT-ⅠT细胞表面去除,同时,也减少了MC38细胞表面的Gal-1水平。并且发现乳糖可显著提高从肿瘤中分离得到的竭耗CD8+PD-1+T细胞的Ifnγ和Tnfα的表达。The present invention creatively discovered that there is a phenomenon in tumor tissue, in which cancer cells can transfer abnormally high levels of galectin-1 to the surface of adjacent immune cells, especially tumor-targeted cytotoxic T cells. Subsequently, tumor-derived galectin-1 interacts with galactosylated proteins on the surface of cytotoxic T cells to regulate T cell activation and function. Through anti-Gal-1 antibody staining, the present invention confirms that lactose treatment can remove Gal-1 from the surface of OT-ⅠT cells, and at the same time, it also reduces the level of Gal-1 on the surface of MC38 cells. And it was found that lactose could significantly increase the expression of Ifnγ and Tnfα in exhausted CD8 + PD-1 + T cells isolated from tumors.
本发明进一步还发现,通过竞争性地结合这些T细胞上的来自肿瘤细胞的半乳糖凝集素,能够使T细胞恢复其杀伤能力。The present invention further found that by competitively binding to tumor cell-derived galectin on these T cells, the T cells can be restored to their killing ability.
本发明还发现,乳糖作为一种β-半乳糖苷,在CD8+T细胞和肿瘤细胞中均能干扰N-糖基组的功能。通过尾静脉注射乳糖,发现乳糖溶液可以显著抑制“热”肿瘤的生长,且CD8+T细胞在这一抑制过程中起到重要重用。转录组测序分析显示,乳糖处理可以促进肿瘤特异性CD8+T细胞的增殖并增强其功能。通过构建人免疫系统的人源化小鼠,人体肿瘤立体培养条件下证实了乳糖在人的肿瘤免疫中起到的激活作用。The present invention also found that lactose, as a β-galactoside, can interfere with the function of the N-glycosyl group in both CD8 + T cells and tumor cells. Lactose was injected through the tail vein and it was found that the lactose solution could significantly inhibit the growth of "hot" tumors, and CD8 + T cells played an important role in this inhibitory process. Transcriptome sequencing analysis showed that lactose treatment can promote the proliferation and enhance the function of tumor-specific CD8 + T cells. By constructing humanized mice with the human immune system, the activating role of lactose in human tumor immunity was confirmed under three-dimensional culture conditions of human tumors.
本发明还依次在重构了人免疫系统的人源化小鼠体内、人体肿瘤离体培养条件下证实了乳糖在人的肿瘤免疫中所起到的作用,这些都为乳糖的临床应用提供了可能性。更重要的是,由于乳糖价廉易得,在世界范围内产量极高,若能直接或与其他治疗手段结合,用于肿瘤的临床治疗,将为众多癌症患者提供一条新的途径,且将极大降低肿瘤治疗的经济成本。The present invention also successively confirmed the role of lactose in human tumor immunity in humanized mice with reconstructed human immune systems and under in vitro culture conditions of human tumors. These all provide insights into the clinical application of lactose. possibility. More importantly, since lactose is cheap and easy to obtain, with extremely high production worldwide, if it can be used directly or combined with other treatments for clinical treatment of tumors, it will provide a new way for many cancer patients and will Greatly reduce the economic cost of tumor treatment.
但在本发明中发现,只有经静脉注射的乳糖才能发挥肿瘤生长抑制作用,而经口服或腹腔注射均未观察到显著效果,这或许是由于口服或腹腔注射难以在肿瘤内达到足够高的有效浓度;另一方面,只有在植瘤后早期开始注射才可观察到稳定的抑制效果,在植瘤晚期,乳糖注射并无显著疗效,这提示在临床应用中单一使用乳糖可能无法使中晚期肿瘤得到抑制。此外,经静脉注射的乳糖会在血液中通过肾脏系统被迅速消耗,并经尿液排出体外,因此本发明需每两天进行一次乳糖注射,这一不足之处或许可通过将乳糖与蛋白载体偶联后再进行注射来弥补,本发明正对这一方法进行测试,期待利用载体蛋白使血液中的乳糖浓度维持相对较长的时间,从而减少注射频率。However, in the present invention, it was found that only intravenous injection of lactose can exert a tumor growth inhibitory effect, while no significant effect was observed via oral or intraperitoneal injection. This may be because oral or intraperitoneal injection is difficult to achieve a sufficiently high effectiveness within the tumor. concentration; on the other hand, a stable inhibitory effect can only be observed when the injection is started early after tumor transplantation. In the late stage of tumor transplantation, lactose injection has no significant effect, which suggests that the single use of lactose in clinical applications may not be able to inhibit the treatment of intermediate and advanced tumors. be suppressed. In addition, lactose injected intravenously will be rapidly consumed in the blood through the renal system and excreted from the body through urine. Therefore, the present invention requires lactose injection every two days. This shortcoming may be solved by combining lactose with a protein carrier. Injection is performed after coupling to compensate. The present invention is testing this method, hoping to use carrier proteins to maintain the lactose concentration in the blood for a relatively long time, thereby reducing the frequency of injections.
半乳糖凝集素是保守的半乳糖基化结合蛋白家族,在正常生理过程以及包括肿瘤在内的各种病理过程中调节着免疫细胞的功能。本发明的研究结果表明,癌细胞可以将异常高水平的半乳糖凝集素-1转移到邻近免疫细胞表面,尤其是肿瘤靶向的细胞毒性T细胞。随后,肿瘤来源的半乳糖凝集素-1与细胞毒性T细胞表面的半乳糖基化蛋白发生相互作用,以调节T细胞的活化和功能。本发明进行了一系列Gal-1转移实验,结果表明细胞间接近、细胞表面半乳糖基化水平和细胞表面Gal-1水平是细胞间Gal-1转移的主要驱动力。这提示了一种未被关注和定义的细胞间通讯方式,即邻近依赖性细胞间蛋白扩散(proximity-dependent intercellularprotein spreading,PDICPS)。Gal-1与其半乳糖基化靶标的低亲和力结合是这种邻近依赖性细胞间蛋白扩散的内在特征。Galectins are a family of conserved galactosylation-binding proteins that regulate immune cell functions during normal physiological processes as well as various pathological processes, including tumors. The present findings demonstrate that cancer cells can transfer abnormally high levels of galectin-1 to the surface of neighboring immune cells, particularly tumor-targeting cytotoxic T cells. Subsequently, tumor-derived galectin-1 interacts with galactosylated proteins on the surface of cytotoxic T cells to regulate T cell activation and function. The present invention conducted a series of Gal-1 transfer experiments, and the results show that cell-to-cell proximity, cell surface galactosylation level and cell surface Gal-1 level are the main driving forces for intercellular Gal-1 transfer. This suggests an unattended and undefined method of intercellular communication, namely proximity-dependent intercellular protein spreading (PDICPS). The low-affinity binding of Gal-1 to its galactosylation target is an intrinsic feature of this proximity-dependent intercellular protein diffusion.
靶向这种新的免疫检查点将是肿瘤免疫治疗的新策略。一方面,敲除B4GATL1减少蛋白半乳糖基化可以显著降低肿瘤转移到T细胞上的Gal-1水平,从而增强T细胞的活化和功能。另一方面,乳糖及其衍生物可以通过竞争癌细胞和免疫细胞表面的Gal-1来抑制该免疫检查点。Targeting this new immune checkpoint will be a new strategy for tumor immunotherapy. On the one hand, knocking out B4GATL1 to reduce protein galactosylation can significantly reduce the level of Gal-1 transferred from tumors to T cells, thereby enhancing T cell activation and function. On the other hand, lactose and its derivatives can inhibit this immune checkpoint by competing for Gal-1 on the surface of cancer cells and immune cells.
用小分子靶向这种新的免疫检查点将是一种可行的肿瘤免疫治疗策略。含有半乳糖苷的乳糖及相关衍生物可以通过竞争癌细胞和免疫细胞表面的Gal-1来抑制该免疫检查点。特别是乳糖,作为一种结构模拟的竞争性半乳糖凝集素抑制剂,经系统性静脉注射到不同肿瘤负荷小鼠的循环系统内,可以有效抑制肿瘤的生长。然而本发明惊奇地发现乳糖仅在免疫原性较强的“热”肿瘤中起到激活抗肿瘤免疫的作用,在免疫原性较弱的“冷”肿瘤中则没有明显作用。这侧面印证了乳糖抑制肿瘤生长的主要机制依赖于免疫系统的同时也提示了乳糖治疗“冷”肿瘤可能需要联合增强肿瘤免疫原性的措施。为了进一步探究乳糖作为免疫检查点抑制剂的潜能,本发明在人源化小鼠中植入人胃癌SGC7901肿瘤,观察到系统性静脉注射乳糖可显著抑制SGC7901肿瘤的生长。随后,在手术切除患者肿瘤的体外培养模型中,乳糖处理表现出了和anti-PD-1帕博利珠单抗处理相似的免疫应答。另外,在人工膜渗透性实验中,乳糖体现出的低渗性也说明了在体内发挥肿瘤抑制作用的是乳糖本身而不是其降解产物。综合各项实验分析发现,乳糖通过竞争CD8+T细胞上的Gal-1而激活肿瘤中浸润的CD8+T细胞,解除Gal-1对T细胞活化的抑制。Targeting this new immune checkpoint with small molecules will be a feasible strategy for tumor immunotherapy. Lactose and related derivatives containing galactosides can inhibit this immune checkpoint by competing for Gal-1 on the surface of cancer cells and immune cells. In particular, lactose, as a structurally simulated competitive galectin inhibitor, can effectively inhibit tumor growth through systemic intravenous injection into the circulation system of mice with different tumor burdens. However, the present invention surprisingly found that lactose only plays a role in activating anti-tumor immunity in "hot" tumors with strong immunogenicity, but has no obvious effect in "cold" tumors with weak immunogenicity. This confirms that the main mechanism of lactose inhibiting tumor growth depends on the immune system, and also suggests that the treatment of "cold" tumors with lactose may require combined measures to enhance tumor immunogenicity. In order to further explore the potential of lactose as an immune checkpoint inhibitor, the present invention implanted human gastric cancer SGC7901 tumors into humanized mice and observed that systemic intravenous injection of lactose can significantly inhibit the growth of SGC7901 tumors. Subsequently, in an in vitro culture model of surgically removed patient tumors, lactose treatment demonstrated immune responses similar to anti-PD-1 pembrolizumab treatment. In addition, in the artificial membrane permeability experiment, the hypotonicity of lactose also shows that it is lactose itself, not its degradation products, that exerts the tumor inhibitory effect in the body. Comprehensive experimental analysis found that lactose activates CD8 + T cells infiltrating in tumors by competing for Gal-1 on CD8 + T cells and relieves Gal-1's inhibition of T cell activation.
本领域人员知晓,Galon和Bruni将肿瘤的分类扩展为四类(参见Galon,J.和Bruni,D.,Approaches to treat immune hot,altered and cold tumors withcombination immunotherapies”,Nature Reviews Drug Discovery(18),March 2019,197-218):热的、改变型-排斥性的、改变型-免疫抑制性的和冷的,以方便研究和交流。具体而言,类别分层基于肿瘤部位内免疫细胞的类型、密度和位置。作者根据免疫浸润而不是癌症类型对肿瘤分类,评分系统(“免疫评分(Immunoscore)”)基于肿瘤中心和侵袭性边缘处两种淋巴细胞群体(CD3和CD8)的量化。评分范围从I0(低密度,如两个区域中都没有两种细胞类型)到I4(两个位置中都有高密度的免疫细胞类型)。I4肿瘤被认为是“热的”而I0肿瘤被认为是“冷的”。据报道,肿瘤进展(T期)和侵袭(N期)依赖于这种预先存在的适应性肿瘤内免疫。更经常地,研究人员现在正在研究肿瘤中免疫细胞的性质、密度、免疫功能方向和分布。Those in the art know that Galon and Bruni expanded the classification of tumors into four categories (see Galon, J. and Bruni, D., Approaches to treat immune hot, altered and cold tumors with combination immunotherapies", Nature Reviews Drug Discovery (18), March 2019,197-218): hot, altered-repellent, altered-immunosuppressive, and cold to facilitate research and communication. Specifically, the category stratification is based on the type of immune cells within the tumor site , density, and location. The authors classified tumors according to immune infiltration rather than cancer type, and the scoring system ("Immunoscore") is based on the quantification of two lymphocyte populations (CD3 and CD8) at the tumor center and invasive margins. Score Ranges from I0 (low density, as in neither cell type is present in either area) to I4 (high density of immune cell types in both locations). I4 tumors are considered "hot" while I0 tumors are is "cold." It has been reported that tumor progression (T stage) and invasion (N stage) depend on this pre-existing adaptive intratumoral immunity. More often, researchers are now studying the nature of immune cells in tumors, Density, immune function direction and distribution.
如Galon所报道,热免疫肿瘤的基本特征是(i)高度的T细胞和细胞毒性T细胞浸润及(ii)检查点活化或T-细胞功能受损。As reported by Galon, the essential characteristics of thermal immune tumors are (i) high T cell and cytotoxic T cell infiltration and (ii) checkpoint activation or impaired T-cell function.
进一步地,本发明为了证实乳糖中的半乳糖基是结合凝集素和半乳糖凝集素的主要功能基团,本发明通过凝集素竞争染色实验测试了乳糖,蔗糖、N-乙酰乳糖胺(LacNAc)和乳糖-BSA(牛血清蛋白)。由于不含有半乳糖基部分,蔗糖对于ECL,sWGA和Gal-1均未表现出竞争结合性质。与乳糖相比,LacNAc可以更有效地与细胞表面糖组中的β-半乳糖苷竞争ECL和Gal-1的结合,但也能在较高浓度下与sWGA结合。在小鼠体内,静脉注射LacNAc显示出对MC38肿瘤生长的抑制作用。由于血液中的乳糖会通过肾脏迅速排出体外,为了稳定其在血液中的浓度,本发明通过高温将乳糖偶联到BSA上,这可能会改善药物动力学,延缓其在体内的代谢与排泄。Furthermore, in order to confirm that the galactosyl group in lactose is the main functional group binding lectin and galectin, the present invention tested lactose, sucrose, and N-acetyllactosamine (LacNAc) through a lectin competition staining experiment. and lactose-BSA (bovine serum albumin). Since it does not contain a galactosyl moiety, sucrose does not exhibit competitive binding properties for ECL, sWGA and Gal-1. Compared with lactose, LacNAc can compete more effectively with β-galactosides in the cell surface glycome for ECL and Gal-1 binding, but can also bind to sWGA at higher concentrations. In mice, intravenous injection of LacNAc showed an inhibitory effect on MC38 tumor growth. Since lactose in the blood is quickly excreted from the body through the kidneys, in order to stabilize its concentration in the blood, the present invention couples lactose to BSA through high temperature, which may improve pharmacokinetics and delay its metabolism and excretion in the body.
基于上述发现,本申请提供了如下的技术方案。Based on the above findings, this application provides the following technical solutions.
一方面,本发明提供了半乳糖凝集素-1(Gal-1,galectin-1)作为一种T细胞免疫检查点在制备肿瘤免疫治疗药物组合物中的应用。In one aspect, the present invention provides the use of galectin-1 (Gal-1, galectin-1) as a T cell immune checkpoint in the preparation of tumor immunotherapy pharmaceutical compositions.
所述肿瘤是具有免疫炎性的肿瘤。The tumor is an immunoinflammatory tumor.
所述应用包括:选择至少一种半乳糖凝集素-1靶向结合物或其衍生物作为所述药物的活性成分;和/或,选择一种天然的半乳糖凝集素-1靶向结合物,让所述肿瘤的细胞过表达该靶向结合物的前体;和/或,确定肿瘤微环境中的免疫细胞表面的半乳糖凝集素-1结合位点,使该结合位点减少、缺失或失活。The application includes: selecting at least one galectin-1 targeted conjugate or a derivative thereof as the active ingredient of the drug; and/or selecting a natural galectin-1 targeted conjugate , allowing the tumor cells to overexpress the precursor of the targeted conjugate; and/or, determining the galectin-1 binding site on the surface of immune cells in the tumor microenvironment, so that the binding site is reduced or deleted or inactivated.
所述药物组合物选自如下的药物组合物:The pharmaceutical composition is selected from the following pharmaceutical compositions:
(1)所述药物组合物的活性成分至少包括一种半乳糖凝集素-1靶向结合物或其衍生物;(1) The active ingredient of the pharmaceutical composition includes at least one galectin-1 targeted conjugate or a derivative thereof;
(2)所述药物组合物包含一种免疫增强剂,该免疫增强剂包含过表达半乳糖凝集素-1靶向结合物的载体,或过表达半乳糖凝集素-1靶向结合物前体的促进剂;(2) The pharmaceutical composition includes an immune enhancer, which includes a vector that overexpresses a galectin-1 targeted conjugate, or a precursor that overexpresses a galectin-1 targeted conjugate. accelerator;
(3)所述药物组合物包含一种修饰的免疫细胞,所述免疫细胞表面的半乳糖凝集素-1结合位点减少、缺失或失活。(3) The pharmaceutical composition includes a modified immune cell in which the galectin-1 binding site on the surface of the immune cell is reduced, deleted or inactivated.
所述半乳糖凝集素-1靶向结合物通常选自多核苷酸、多肽、抗体、脂质或碳水化合物。在某些有利的实施方案中,半乳糖凝集素-1靶向结合物为可溶形式。The galectin-1 targeting conjugate is generally selected from polynucleotides, polypeptides, antibodies, lipids or carbohydrates. In certain advantageous embodiments, the galectin-1 targeting conjugate is in a soluble form.
优选的,所述肿瘤是实体瘤。优选的,所述实体瘤具有免疫原性。在一些实施方式中,所述实体瘤的内部和/或边缘有高度的T淋巴细胞浸润,在一些实施方式中,所述肿瘤还进一步具有T淋巴细胞功能受损的特征。优选的,所述T淋巴细胞是CD3+T淋巴细胞和/或CD8+T淋巴细胞。Preferably, the tumor is a solid tumor. Preferably, the solid tumor is immunogenic. In some embodiments, the solid tumor has a high degree of T lymphocyte infiltration in the interior and/or edges. In some embodiments, the tumor is further characterized by impaired T lymphocyte function. Preferably, the T lymphocytes are CD3 + T lymphocytes and/or CD8 + T lymphocytes.
在一些实施方式中,所述肿瘤是乳腺癌、胰头癌、结肠癌、黑色素瘤等。In some embodiments, the tumor is breast cancer, pancreatic head cancer, colon cancer, melanoma, etc.
在一些实施方式中,所述肿瘤是已经对PD-1和/或PD-L1治疗产生耐药性的肿瘤。In some embodiments, the tumor is a tumor that has become resistant to PD-1 and/or PD-L1 treatment.
优选的,所述药物组合物的剂型是注射制剂,例如静脉注射制剂、皮下注射制剂、皮内、肌肉注射制剂或瘤内注射制剂等。在一个具体实施方式中,所述剂型是静脉注射制剂。Preferably, the dosage form of the pharmaceutical composition is an injection preparation, such as intravenous injection preparation, subcutaneous injection preparation, intradermal injection preparation, intramuscular injection preparation or intratumoral injection preparation, etc. In a specific embodiment, the dosage form is an intravenous formulation.
在一些实施方式中,半乳糖凝集素-1靶向结合物是碳水化合物或含碳水化合物的分子,包括但不限于:二糖,其非限制性实例包括乳糖、乳果糖、乳糖蔗糖、甲基β-乳糖苷、D-半乳糖、4-O-β-D-吡喃半乳糖基-D-吡喃甘露糖苷、3-O-β-D-吡喃半乳糖基-D-阿拉伯糖、2'-O-甲基乳糖、乳-N-二糖、N-乙酰乳糖胺和硫代二吡喃半乳糖苷;较大的糖类,例如包含聚乳糖胺的分子;以及合成抑制剂,例如硫代二半乳糖苷和糖聚合物。有利地,碳水化合物或含碳水化合物的分子在施用组合物的宿主中是不可代谢的。在某些实施方案中,半乳糖凝集素-1靶向结合物选自N-乙酰基-乳糖胺、β-乳糖基-硫代白蛋白、柑橘果胶、D-乳糖醇一水合物、乳糖酸、苄基4-O-β-D-吡喃半乳糖基-β-D-吡喃葡萄糖苷、甲基4-O-β-D-吡喃半乳糖苷-β-D-吡喃葡萄糖苷、2-甲基-β-D-半乳糖(1→4)D-葡萄糖、甲氧乙基硫乙基2acetamido-2-deoxy-4-O-β-D吡喃半乳糖苷-β-D-吡喃葡萄糖苷,羧乙基硫乙基2乙酰氨基-2-脱氧4-O-β-D吡喃半乳糖苷-β-D-吡喃葡萄糖苷-BSA偶联物,4-硝基苯基2-乙酰氨基-2-脱氧-3-O-β-D吡喃半乳糖苷-β-D-吡喃葡萄糖苷和N-丙基-β-乳糖苷。In some embodiments, the galectin-1 targeting conjugate is a carbohydrate or carbohydrate-containing molecule, including but not limited to: a disaccharide, non-limiting examples of which include lactose, lactulose, lactose sucrose, methyl β-Lactopyranoside, D-galactose, 4-O-β-D-galactopyranosyl-D-mannopyranoside, 3-O-β-D-galactopyranosyl-D-arabinose, 2'-O-methyllactose, lacto-N-disose, N-acetylactosamine, and thiodigalactopyranoside; larger sugars, such as molecules containing polylactosamine; and synthesis inhibitors, Examples include thiogalactopyranosides and sugar polymers. Advantageously, the carbohydrate or carbohydrate-containing molecule is not metabolizable in the host to which the composition is administered. In certain embodiments, the galectin-1 targeting conjugate is selected from the group consisting of N-acetyl-lactosamine, β-lactosyl-thioalbumin, citrus pectin, D-lactitol monohydrate, lactose Acid, benzyl 4-O-β-D-galactopyranosyl-β-D-glucopyranoside, methyl 4-O-β-D-galactopyranoside-β-D-glucopyranoside Glycoside, 2-methyl-β-D-galactose(1→4)D-glucose, methoxyethylthioethyl 2acetamido-2-deoxy-4-O-β-D galactopyranoside-β- D-glucopyranoside, carboxyethylthioethyl 2-acetamido-2-deoxy4-O-β-D galactopyranoside-β-D-glucopyranoside-BSA conjugate, 4-nitrate Phenyl 2-acetamido-2-deoxy-3-O-β-D-galactopyranoside-β-D-glucopyranoside and N-propyl-β-lactopyranoside.
优选的,所述碳水化合物或含碳水化合物的分子在施用组合物的宿主中是不可代谢的。Preferably, the carbohydrate or carbohydrate-containing molecule is not metabolizable in the host to which the composition is administered.
优选的,所述半乳糖凝集素-1靶向结合物是β-半乳糖苷。Preferably, the galectin-1 targeted binder is β-galactoside.
在一些实施方式中,所述β-半乳糖苷选自乳糖、乳果糖、乳糖蔗糖、甲基β-乳糖苷、甲基β-乳糖苷、4-O-β-D-吡喃半乳糖基-D-吡喃甘露糖苷、3-O-β-D-吡喃半乳糖基-D-阿拉伯糖、2'-O-甲基乳糖、乳-N-二糖、N-乙酰乳糖胺、β-D-硫代吡喃半乳糖苷。In some embodiments, the β-galactoside is selected from the group consisting of lactose, lactulose, lactosucrose, methyl β-lactoside, methyl β-lactoside, 4-O-β-D-galactopyranosyl -D-mannopyranoside, 3-O-β-D-galactopyranosyl-D-arabinose, 2'-O-methyllactose, lacto-N-biose, N-acetyllactosamine, β -D-Thiogalactopyranoside.
在一些实施方式中,β-半乳糖苷是乳糖;在一些实施方式中,β-半乳糖苷是乳糖-肽,例如乳糖-BSA;在一些实施方式中,β-半乳糖苷是LacNAc。In some embodiments, the beta-galactoside is lactose; in some embodiments, the beta-galactoside is a lactose-peptide, such as lactose-BSA; in some embodiments, the beta-galactoside is LacNAc.
在一些具体实施方式中,所述β-半乳糖苷是乳糖(Lactose)。所述乳糖在所述药物组合物中的浓度是5mM-400mM。In some embodiments, the β-galactoside is lactose. The concentration of lactose in the pharmaceutical composition is 5mM-400mM.
在一些实施方式中,所述药物包含乳糖和其衍生物的混合物。In some embodiments, the medicament contains a mixture of lactose and derivatives thereof.
在一些实施方式中,所述乳糖为乳糖和/或其水合物。在一些实施方式中,所述乳糖为α-乳糖和/或β-乳糖;在另一些实施方式中,所述乳糖为α-乳糖的水合物;在一些实施方式中,所述乳糖为α-乳糖和α乳糖水合物的混合物;在一些实施方式中,所述乳糖为β-乳糖;在一些实施方式中,所述乳糖为α-乳糖、β-乳糖、α乳糖水合物的一种或两种以上的混合物。In some embodiments, the lactose is lactose and/or hydrates thereof. In some embodiments, the lactose is α-lactose and/or β-lactose; in other embodiments, the lactose is a hydrate of α-lactose; in some embodiments, the lactose is α-lactose. A mixture of lactose and α-lactose hydrate; in some embodiments, the lactose is β-lactose; in some embodiments, the lactose is one or two of α-lactose, β-lactose, and α-lactose hydrate. A mixture of more than one species.
所述乳糖的衍生物为其在药学上可接受的衍生物,该衍生物可以具有与化合物本身相同的母体核心结构,并且可以在所述药物施用过程中成为乳糖或与乳糖有相似功能的分子,例如所述药物通过诸如水解等反应产生与原始化合物具有相同或相似活性的分子。该衍生物可以是乳糖的特定共价修饰产物,也可以是具有相似半乳糖功能基团的其他二糖或多糖或小分子。The derivative of lactose is a pharmaceutically acceptable derivative, which may have the same parent core structure as the compound itself, and may become lactose or a molecule with similar functions to lactose during the administration of the drug , for example, the drug produces molecules with the same or similar activity as the original compound through reactions such as hydrolysis. The derivative can be a specific covalent modification product of lactose or other disaccharides or polysaccharides or small molecules with similar galactose functional groups.
优选的,乳糖的药学上可接受的衍生物可以特别是指其简单的衍生物,并且尤其是指其低级酯,低级醚,低级烷基取代基,药用盐和低级酰胺中的一种,即,通过羧酸,醇的缩合获得的衍生物。与母体化合物具有1至6个,优选2至6个或2至4个碳原子的胺。Preferably, the pharmaceutically acceptable derivatives of lactose may particularly refer to its simple derivatives, and particularly refer to one of its lower esters, lower ethers, lower alkyl substituents, pharmaceutically acceptable salts and lower amides, That is, derivatives obtained by the condensation of carboxylic acids and alcohols. Amines having 1 to 6, preferably 2 to 6 or 2 to 4 carbon atoms with the parent compound.
在一些实施方式中,所述乳糖的药学上可接受的衍生物是其盐,乳糖的药学上可接受的盐可以通过常规化学方法从母体化合物合成,例如用Pharmaceutical Salts:Properties,Selection andUse,P Heinrich Stahl(Editor),Camille G.Wermuth(Editor),ISBN:3-90639-026-8,Hardcover,388pages,August2002中的方法合成的盐。通常,可以通过使化合物的游离碱与水、有机溶剂或两者的混合溶液中的酸;通常,可以使用非水介质,例如乙醚,乙酸乙酯,乙醇,异丙醇或乙腈。In some embodiments, the pharmaceutically acceptable derivative of lactose is a salt thereof. The pharmaceutically acceptable salt of lactose can be synthesized from the parent compound by conventional chemical methods, such as using Pharmaceutical Salts: Properties, Selection and Use, P Salt synthesized by the method in Heinrich Stahl (Editor), Camille G. Wermuth (Editor), ISBN: 3-90639-026-8, Hardcover, 388 pages, August 2002. Typically, this can be done by making the free base of the compound an acid in a solution with water, an organic solvent, or a mixture of both; typically, a non-aqueous medium can be used, such as diethyl ether, ethyl acetate, ethanol, isopropanol, or acetonitrile.
可以用各种酸(无机酸和有机酸)制备酸加成盐。酸加成盐的实例可以包括由酸制备的盐,所述酸可以选自乙酸、2,2-二氯乙酸、己二酸、藻酸、抗坏血酸(例如L-抗坏血酸)、L-天冬氨酸、苯磺酸、苯甲酸、4-乙酰氨基苯甲酸、丁酸、(+)-樟脑酸、樟脑磺酸、(+)-(1S)-樟脑-10-磺酸、癸酸、己酸酸、辛酸、肉桂酸、柠檬酸、环酰胺酸、十二烷基磺酸、乙烷1,2-二磺酸、乙磺酸、2-羟基乙磺酸、甲酸、富马酸、半乳糖酸、龙胆酸、葡庚酸、D-葡萄糖酸、葡萄糖醛酸(例如D-葡萄糖醛酸)、谷氨酸(例如L-谷氨酸)、α-酮戊二酸、乙醇酸、马尿酸、氢溴酸、盐酸、氢碘酸、羟乙基磺酸、(+)-L-乳酸、(+)-DL-乳酸、乳糖酸、马来酸、苹果酸、(-)-L-马里c酸、丙二酸、(±)-DL-扁桃酸、甲磺酸、萘-2-磺酸、萘-1,5-二磺酸、1-羟基-2-萘甲酸、烟酸、硝酸、油酸酸、乳清酸、草酸、棕榈酸、棕榈酸、磷酸、丙酸、L-焦谷氨酸、水杨酸、4-氨基水杨酸、癸二酸、硬脂酸、琥珀酸、硫酸、单宁酸((+)-L-酒石酸、硫氰酸、对甲苯磺酸、十一碳烯酸和戊酸、以及酰基氨基酸。Acid addition salts can be prepared with various acids (inorganic and organic). Examples of acid addition salts may include salts prepared from acids that may be selected from acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid (e.g., L-ascorbic acid), L-aspartic acid Acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, butyric acid, (+)-camphoric acid, camphorsulfonic acid, (+)-(1S)-camphor-10-sulfonic acid, capric acid, caproic acid Acid, caprylic acid, cinnamic acid, citric acid, cyclic acid, dodecyl sulfonic acid, ethane 1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactose Acid, gentisic acid, glucuronic acid, D-gluconic acid, glucuronic acid (such as D-glucuronic acid), glutamic acid (such as L-glutamic acid), alpha-ketoglutarate, glycolic acid, horseradish Uric acid, hydrobromic acid, hydrochloric acid, hydroiodic acid, isethionic acid, (+)-L-lactic acid, (+)-DL-lactic acid, lactobionic acid, maleic acid, malic acid, (-)-L- Mariic acid, malonic acid, (±)-DL-mandelic acid, methanesulfonic acid, naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, Nitric acid, oleic acid, orotic acid, oxalic acid, palmitic acid, palmitic acid, phosphoric acid, propionic acid, L-pyroglutamic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid Acids, sulfuric acid, tannic acid ((+)-L-tartaric acid, thiocyanic acid, p-toluenesulfonic acid, undecenoic acid and valeric acid, and acyl amino acids.
所述乳糖或其药学上可接受的衍生物可能包含一个以上不对称中心,并且因此可以以各种立体异构形式存在,例如以对映体和/或非对映体存在。因此,本发明的乳糖或药学上可接受的衍生物及其组合可以为单独的对映体、非对映体或几何异构体的形式,或者可以为立体异构体的混合物的形式。The lactose or pharmaceutically acceptable derivatives thereof may contain more than one asymmetric center and may therefore exist in various stereoisomeric forms, for example as enantiomers and/or diastereomers. Thus, the lactose or pharmaceutically acceptable derivatives and combinations thereof of the present invention may be in the form of individual enantiomers, diastereomers or geometric isomers, or may be in the form of mixtures of stereoisomers.
所述药物包含乳糖和/或其药学上可接受的衍生物。在一些实施方式中,所述药物中乳糖或其衍生物是水以外的唯一有效成分。在一些实施方式中,所述药物还包含药学上可接受的辅料。在一些实施方式中,所述药物为药物组合物。The medicament contains lactose and/or its pharmaceutically acceptable derivatives. In some embodiments, lactose or its derivatives is the only active ingredient other than water in the drug. In some embodiments, the medicament further contains pharmaceutically acceptable excipients. In some embodiments, the drug is a pharmaceutical composition.
在一些实施方式中,所述β-半乳糖苷的衍生物是乳糖与多肽的缀合物,所述多肽是能够识别肿瘤表面特异性抗原的抗体或抗体片段,和/或,所述多肽与乳糖的缀合物减缓了乳糖的代谢速度,延长机体内乳糖有效浓度的维持时间,更进一步的,一些多肽与乳糖偶联后还能进一步增强乳糖与Gal-1的结合能力,一个示例性的多肽是BSA。In some embodiments, the β-galactoside derivative is a conjugate of lactose and a polypeptide, the polypeptide is an antibody or antibody fragment capable of recognizing a tumor surface specific antigen, and/or, the polypeptide is with Lactose conjugates slow down the metabolism of lactose and prolong the maintenance time of the effective concentration of lactose in the body. Furthermore, conjugation of some polypeptides with lactose can further enhance the binding ability of lactose to Gal-1. An exemplary The peptide is BSA.
优选的,所述药物组合物是注射制剂,所述药物组合物通过选自静脉内、皮下、皮内、肠胃外和肌肉内的至少一种途径进行注射。在一个具体实施方式中,所述药物组合物是静脉注射制剂。Preferably, the pharmaceutical composition is an injection preparation, and the pharmaceutical composition is injected through at least one route selected from the group consisting of intravenous, subcutaneous, intradermal, parenteral and intramuscular. In a specific embodiment, the pharmaceutical composition is an intravenous formulation.
在一些实施方式中,所述免疫增强剂包含过表达半乳糖凝集素-1靶向结合物的载体,所述半乳糖凝集素-1靶向结合物是半乳糖凝集素1抗体。In some embodiments, the immune enhancer comprises a vector overexpressing a galectin-1 targeting conjugate that is a galectin-1 antibody.
在一些实施方式中,所述半乳糖凝集素-1靶向结合物前体是α-乳清蛋白(LALBA)。In some embodiments, the galectin-1 targeting conjugate precursor is alpha-lactalbumin (LALBA).
在一些实施方式中,所述免疫增强剂包括α-乳清蛋白(LALBA)促进剂。所述促进剂选自:提高LALBA水平的物质、增强LALBA活性的物质和/或延缓LALBA代谢的物质。例如,所述促进剂选自:天然纯化物质、经修饰的天然纯化物质、半合成物质、化学合成物质;例如,所述促进剂源自哺乳动物;例如,所述促进剂源自:人、非人灵长类动物(例如猩猩、猿)、啮齿动物(例如大鼠、小鼠、豚鼠)、宠物(例如猫、狗)、家畜(例如马、牛、羊、猪、兔)。In some embodiments, the immune enhancer includes alpha-lactalbumin (LALBA) booster. The accelerator is selected from the group consisting of substances that increase LALBA levels, substances that enhance LALBA activity and/or substances that retard LALBA metabolism. For example, the accelerator is selected from: natural purified substances, modified natural purified substances, semi-synthetic substances, chemically synthesized substances; for example, the accelerator is derived from mammals; for example, the accelerator is derived from: humans, Non-human primates (such as orangutans, apes), rodents (such as rats, mice, guinea pigs), pets (such as cats, dogs), domestic animals (such as horses, cattle, sheep, pigs, rabbits).
所述促进剂选自:LALBA的过表达载体、携带LALBA基因的纳米颗粒、携带LALBA或其过表达载体的病毒载体、PEG修饰蛋白、蛋白微球、包裹LALBA的脂质体、携带LALBA的细胞外囊泡。The promoter is selected from: LALBA overexpression vector, nanoparticles carrying LALBA gene, viral vector carrying LALBA or its overexpression vector, PEG modified protein, protein microspheres, liposomes encapsulating LALBA, cells carrying LALBA External vesicle.
LALBA为选自下组的物质:LALBA基因、LALBA的mRNA、cDNA、LALBA蛋白或前述任一种的活性片段;LALBA is a substance selected from the following group: LALBA gene, LALBA mRNA, cDNA, LALBA protein or active fragment of any of the foregoing;
所述LALBA来自哺乳动物,如人。The LALBA is derived from mammals, such as humans.
所述增强剂包含于药物组合物或药盒中,例如形式适于通过选自下组方式给予的药物组合物或药盒:口服、注射(例如直接裸DNA或蛋白质注射法、脂质体包裹DNA、RNA或蛋白质注射法)、金包被基因枪轰击法、繁殖缺陷细菌携带质粒DNA法、复制缺陷腺病毒携带目的DNA法或目的基因所编码蛋白质、电致孔、经静脉、肺部、黏膜、鼻腔、腹腔内、颅内、瘤内、舌下、颊部、透皮给药;和/或所述药物组合物或药盒还进一步包括其他抗肿瘤活性成分或与其他抗肿瘤活性成分联合使用,例如所述其他抗肿瘤活性成分选自:肿瘤免疫治疗剂、化疗药物;例如所述其他抗肿瘤活性成分选自:伊匹单抗、纳武单抗。其中所述化疗药物为选自以下的药物:环磷酰胺、曲贝替定、替莫唑胺、美法仑、达卡巴嗪、奥沙利铂、甲氨蝶呤、米托蒽醌、吉西他滨、5-氟尿嘧啶(5-FU)、博莱霉素、多柔比星、柔红霉素、表柔比星、伊达比星、戊柔比星、紫杉醇、卡巴他赛、多西他赛、拓扑替康、伊立替康、依托泊苷、卡铂、顺铂、硼替佐米、长春碱、长春新碱、长春地辛、长春瑞滨、亚丝醌、氮芥、丝裂霉素C、氟达拉滨、胞嘧啶阿拉伯糖苷;及其组合。The enhancer is comprised in a pharmaceutical composition or kit, e.g. in a form suitable for administration by a means selected from the group consisting of oral administration, injection (e.g. direct naked DNA or protein injection, liposome encapsulation) DNA, RNA or protein injection method), gold-coated gene gun bombardment method, reproduction-deficient bacteria carrying plasmid DNA method, replication-deficient adenovirus carrying target DNA method or protein encoded by the target gene, electroporation, transvenous, lung, Mucosal, nasal, intraperitoneal, intracranial, intratumoral, sublingual, buccal, transdermal administration; and/or the pharmaceutical composition or kit further includes other anti-tumor active ingredients or is combined with other anti-tumor active ingredients When used in combination, for example, the other anti-tumor active ingredients are selected from: tumor immunotherapy agents and chemotherapy drugs; for example, the other anti-tumor active ingredients are selected from: ipilimumab and nivolumab. The chemotherapy drug is selected from the following drugs: cyclophosphamide, trabectedin, temozolomide, melphalan, dacarbazine, oxaliplatin, methotrexate, mitoxantrone, gemcitabine, 5- Fluorouracil (5-FU), bleomycin, doxorubicin, daunorubicin, epirubicin, idarubicin, valrubicin, paclitaxel, cabazitaxel, docetaxel, topote Can, irinotecan, etoposide, carboplatin, cisplatin, bortezomib, vinblastine, vincristine, vindesine, vinorelbine, serquinone, nitrogen mustard, mitomycin C, fluda Labine, cytosine arabinoside; and combinations thereof.
所述免疫增强剂是肿瘤免疫治疗增强剂。The immune enhancer is a tumor immunotherapy enhancer.
所述的修饰的免疫细胞表面半乳糖基化水平被降低、缺失或失活。The modified immune cell surface galactosylation level is reduced, deleted or inactivated.
优选的,所述修饰的免疫细胞不表达有活性的B4GALT1蛋白。Preferably, the modified immune cells do not express active B4GALT1 protein.
更优选的,所述修饰的免疫细胞的B4GALT1基因被敲除或被抑制。More preferably, the B4GALT1 gene of the modified immune cells is knocked out or inhibited.
进一步的,所述B4GALT1基因被抑制是指B4GALT1基因沉默、失活或者表达受到抑制,具体地,可以是指B4GALT1基因不启动转录、转录过程被抑制、B4GALT1 mRNA被降解、B4GALT1蛋白被降解,也可以是B4GALT1的抑制基因被激活、抑制B4GALT1表达的蛋白被激活、促进B4GALT1基因表达的因子或蛋白的表达被抑制。Further, the suppression of the B4GALT1 gene means that the B4GALT1 gene is silenced, inactivated or the expression is inhibited. Specifically, it can mean that the B4GALT1 gene does not initiate transcription, the transcription process is inhibited, the B4GALT1 mRNA is degraded, and the B4GALT1 protein is degraded, or It can be that the inhibitory gene of B4GALT1 is activated, the protein that inhibits the expression of B4GALT1 is activated, or the expression of factors or proteins that promote the expression of the B4GALT1 gene is inhibited.
在一些具体实施方式中,所述免疫细胞包含抑制B4GALT1转录或表达的所述抑制B4GALT1基因的试剂包含抑制B4GALT1转录或表达的siRNA或shRNA;在一些具体实施方式中,所述免疫细胞包含包含编码一种shRNA的碱基序列,优选的,所述shRNA可被细胞加工成抑制B4GALT1转录或表达的siRNA;优选的,所述碱基序列为导入的外源序列,优选的,所述碱基序列被整合在所述免疫细胞的基因组上。In some specific embodiments, the immune cells comprise an agent that inhibits the transcription or expression of B4GALT1 and the agent that inhibits the B4GALT1 gene includes siRNA or shRNA that inhibits the transcription or expression of B4GALT1; in some specific embodiments, the immune cells comprise a gene encoding A base sequence of shRNA. Preferably, the shRNA can be processed by cells into siRNA that inhibits the transcription or expression of B4GALT1. Preferably, the base sequence is an introduced exogenous sequence. Preferably, the base sequence Integrated into the genome of the immune cells.
在一个具体实施方式中,所述免疫细胞中包含抑制B4GALT1转录或表达的siRNA或shRNA。In a specific embodiment, the immune cells contain siRNA or shRNA that inhibits the transcription or expression of B4GALT1.
在一些具体实施方式中,所述免疫细胞的基因组中包含编码所述shRNA的碱基序列。In some specific embodiments, the genome of the immune cell contains a base sequence encoding the shRNA.
在一些实施方式中,所述的免疫细胞来自人或非人哺乳动物。In some embodiments, the immune cells are from humans or non-human mammals.
在一些实施方式中,所述细胞是T细胞、B细胞或NK细胞。In some embodiments, the cell is a T cell, B cell, or NK cell.
在一些实施方式中,所述免疫细胞为CD8+T细胞。In some embodiments, the immune cells are CD8 + T cells.
在一些实施方式中,所述细胞为TCR-T细胞或TCR-NK细胞,较佳地为TCR-T细胞。In some embodiments, the cells are TCR-T cells or TCR-NK cells, preferably TCR-T cells.
一方面,本发明提供了一种肿瘤免疫治疗药物,其活性成分包含至少一种如前所述的半乳糖凝集素-1靶向结合物。In one aspect, the present invention provides a tumor immunotherapy drug, the active ingredient of which includes at least one galectin-1 targeted conjugate as described above.
一方面,本发明提供了一种免疫增强剂,其是本发明第一方面所述的免疫增强剂。一方面,本发明提供了一种包括该免疫增强剂的肿瘤免疫治疗药物。In one aspect, the present invention provides an immune enhancer, which is the immune enhancer described in the first aspect of the present invention. In one aspect, the present invention provides a tumor immunotherapy drug including the immune enhancer.
一方面,本发明提供了一种修饰的免疫细胞,其是本发明第一方面所述的修饰的免疫细胞。一方面,本发明提供一种包括该修饰的免疫细胞的肿瘤免疫治疗药物。In one aspect, the invention provides a modified immune cell, which is the modified immune cell described in the first aspect of the invention. In one aspect, the present invention provides a tumor immunotherapy drug including the modified immune cells.
一方面,本发明提供了β-1,4-半乳糖转移酶(beta-1,4-galactosyltransferase1)(B4GALT1)基因/蛋白的新用途,所述新用途为在制备肿瘤免疫治疗药物中的应用。On the one hand, the present invention provides a new use of beta-1,4-galactosyltransferase1 (B4GALT1) gene/protein, and the new use is application in the preparation of tumor immunotherapy drugs .
进一步的,所述药物选自如下试剂:Further, the drug is selected from the following reagents:
a)敲除/抑制B4GALT1基因或抑制B4GALT1蛋白的试剂;和/或,a) Reagents that knock out/inhibit the B4GALT1 gene or inhibit the B4GALT1 protein; and/or,
b)B4GALT1基因被敲除或被抑制的免疫细胞。b) Immune cells in which the B4GALT1 gene has been knocked out or suppressed.
所述免疫细胞是T细胞、B细胞或NK细胞。在一些实施方式中,所述免疫细胞为TCR-T或TCR-NK细胞,优选的,所述免疫细胞为TCR-T。The immune cells are T cells, B cells or NK cells. In some embodiments, the immune cells are TCR-T or TCR-NK cells. Preferably, the immune cells are TCR-T.
进一步的,所述敲除为完全敲除或敲低B4GALT1基因。优选的,所述敲除为完全敲除。Further, the knockout is complete knockout or knockdown of the B4GALT1 gene. Preferably, the knockout is complete knockout.
进一步的,所述敲除B4GALT1基因是指将靶细胞基因组中B4GALT1基因序列全部敲除或部分敲除,使之不能编码B4GALT1蛋白或者不能正确编码有功能的B4GALT1蛋白。例如在一些实施方式中,B4GALT1基因的全长被敲除;在一些实施方式中,从B4GALT1基因起始密码子到终止密码子之间的序列被敲除或突变;在一些实施方式中,B4GALT1基因的一个或多个外显子的全部或部分被敲除;在一些实施方式中,B4GALT1基因的转录调控元件,如启动子序列被敲除。Furthermore, the knockout of the B4GALT1 gene refers to knocking out all or part of the B4GALT1 gene sequence in the genome of the target cell, so that it cannot encode the B4GALT1 protein or cannot correctly encode the functional B4GALT1 protein. For example, in some embodiments, the full length of the B4GALT1 gene is knocked out; in some embodiments, the sequence from the start codon to the stop codon of the B4GALT1 gene is knocked out or mutated; in some embodiments, B4GALT1 All or part of one or more exons of the gene are knocked out; in some embodiments, the transcriptional regulatory elements of the B4GALT1 gene, such as the promoter sequence, are knocked out.
在一些实施方式中,所述敲除B4GALT1基因的试剂包含一种靶向B4GALT1基因的核酸分子以及由该核酸分子引导的核酸酶。优选的,所述核酸分子为引导RNA(gRNA)。在一些实施方式中,所述核酸酶为CRISPR nuclease。优选的,所述核酸酶是Cas9。可选的,所述试剂还包含筛选标记基因。In some embodiments, the reagent for knocking out the B4GALT1 gene includes a nucleic acid molecule targeting the B4GALT1 gene and a nuclease guided by the nucleic acid molecule. Preferably, the nucleic acid molecule is guide RNA (gRNA). In some embodiments, the nuclease is a CRISPR nuclease. Preferably, the nuclease is Cas9. Optionally, the reagent also contains a screening marker gene.
在一些实施方式中,所述敲除B4GALT1基因的试剂包含一种靶向B4GALT1基因的核酸分子以及编码核酸内切酶的mRNA。优选的,所述核酸分子为sgRNA。在一些实施方式中,所述核酸酶为CRISPR nuclease。优选的,所述核酸酶是Cas9。In some embodiments, the agent for knocking out the B4GALT1 gene includes a nucleic acid molecule targeting the B4GALT1 gene and an mRNA encoding an endonuclease. Preferably, the nucleic acid molecule is sgRNA. In some embodiments, the nuclease is a CRISPR nuclease. Preferably, the nuclease is Cas9.
在一些实施方式中,所述敲除B4GALT1基因的试剂包含编码靶向B4GALT1基因的蛋白和编码核酸内切酶的重组核酸分子。在一些具体实施方式中,所述编码靶向B4GALT1基因的蛋白为TAL蛋白,在另一些具体实施方式中,编码靶向B4GALT1基因的蛋白为锌指蛋白。所述核酸酶优选为FokI。In some embodiments, the reagent for knocking out the B4GALT1 gene includes a recombinant nucleic acid molecule encoding a protein targeting the B4GALT1 gene and encoding an endonuclease. In some embodiments, the protein encoding the B4GALT1 gene is a TAL protein, and in other embodiments, the protein encoding the B4GALT1 gene is a zinc finger protein. The nuclease is preferably FokI.
优选的,所述敲除B4GALT1基因的试剂还包含递送载体,所述递送载体如上所述的靶向B4GALT1基因的gRNA和核酸内切酶或其编码mRNA,或者将如上所述的靶向B4GALT1基因的重组核酸分子递送到靶细胞中。所述递送载体选自但不限于细胞、病毒、脂质体、纳米颗粒、囊泡、铁蛋白等载体。所述细胞优选红细胞或间充质干细胞。所述病毒递送载体优选腺病毒或慢病毒递送载体。Preferably, the reagent for knocking out the B4GALT1 gene further includes a delivery vector, which is a gRNA and endonuclease targeting the B4GALT1 gene or its encoding mRNA as described above, or will target the B4GALT1 gene as described above. Delivery of recombinant nucleic acid molecules into target cells. The delivery carrier is selected from, but is not limited to, cells, viruses, liposomes, nanoparticles, vesicles, ferritin and other carriers. The cells are preferably erythrocytes or mesenchymal stem cells. The viral delivery vector is preferably an adenovirus or lentiviral delivery vector.
进一步的,所述抑制B4GALT1基因是指使B4GALT1基因沉默或者受到抑制,方法包括激活B4GALT1的抑制基因、激活抑制B4GALT1表达的蛋白、导入抑制B4GALT1转录或表达的siRNA、激活促进B4GALT1 mRNA降解的microRNA、导入促进B4GALT1蛋白降解的分子、抑制促进B4GALT1表达的因子及蛋白的表达。Further, the suppression of the B4GALT1 gene refers to silencing or inhibiting the B4GALT1 gene. The method includes activating the inhibitory gene of B4GALT1, activating the protein that inhibits the expression of B4GALT1, introducing siRNA that inhibits the transcription or expression of B4GALT1, activating microRNA that promotes the degradation of B4GALT1 mRNA, and introducing Molecules that promote B4GALT1 protein degradation and inhibit factors and protein expression that promote B4GALT1 expression.
所述抑制B4GALT1基因的试剂选自激活B4GALT1的抑制基因的试剂、激活抑制B4GALT1表达的蛋白的试剂、抑制B4GALT1转录或表达的siRNA及shRNA、促进B4GALT1 mRNA降解的microRNA、促进B4GALT1蛋白降解的分子和抑制促进B4GALT1表达的因子及蛋白中的一种或两种以上。The reagents that inhibit the B4GALT1 gene are selected from reagents that activate the inhibitory gene of B4GALT1, reagents that activate proteins that inhibit the expression of B4GALT1, siRNA and shRNA that inhibit the transcription or expression of B4GALT1, microRNA that promotes the degradation of B4GALT1 mRNA, molecules that promote the degradation of B4GALT1 protein, and Inhibit one or more than two factors and proteins that promote B4GALT1 expression.
在一些实施方式中,所述抑制B4GALT1基因的试剂包含抑制B4GALT1转录或表达的siRNA或shRNA,或者包含一种siRNA表达载体;在一些实施方式中,所述表达载体包含编码一种shRNA的碱基序列,优选的,所述shRNA可被细胞加工成抑制B4GALT1转录或表达的siRNA。优选的,所述碱基序列能够能够整合在宿主细胞基因组中。In some embodiments, the agent that inhibits the B4GALT1 gene includes siRNA or shRNA that inhibits the transcription or expression of B4GALT1, or an siRNA expression vector; in some embodiments, the expression vector includes bases encoding an shRNA. sequence, preferably, the shRNA can be processed by cells into siRNA that inhibits the transcription or expression of B4GALT1. Preferably, the base sequence can be integrated into the host cell genome.
在一些实施方式中,所述抑制B4GALT1基因的试剂还包含递送载体,优选的,所述递送载体是质粒或病毒载体。In some embodiments, the agent for inhibiting the B4GALT1 gene further includes a delivery vector. Preferably, the delivery vector is a plasmid or a viral vector.
在一个实施方式中,所述免疫细胞中包含抑制B4GALT1转录或表达的siRNA或shRNA。In one embodiment, the immune cells contain siRNA or shRNA that inhibits the transcription or expression of B4GALT1.
在一些实施方式中,所述免疫细胞的基因组中包含编码所述一种shRNA的碱基序列,所述shRNA可被细胞加工成抑制B4GALT1转录或表达的siRNA。In some embodiments, the genome of the immune cell contains a base sequence encoding the shRNA, and the shRNA can be processed by the cell into siRNA that inhibits the transcription or expression of B4GALT1.
在一些实施方式中,所述抑制B4GALT1蛋白活性的试剂包含能够使B4GALT1蛋白失活的小分子化合物。In some embodiments, the agent that inhibits B4GALT1 protein activity includes a small molecule compound capable of inactivating B4GALT1 protein.
优选的,所述B4GALT1基因为人或非人哺乳动物B4GALT1基因。Preferably, the B4GALT1 gene is a human or non-human mammalian B4GALT1 gene.
优选的,所述药物为液态制剂。进一步优选的,所述药物的剂型为注射剂。Preferably, the drug is a liquid preparation. Further preferably, the dosage form of the drug is injection.
优选的,所述药物组合物为液态制剂。进一步优选的,所述药物组合物的剂型为注射剂。Preferably, the pharmaceutical composition is a liquid preparation. Further preferably, the dosage form of the pharmaceutical composition is an injection.
本发明所述“肿瘤”包括良性肿瘤或恶性肿瘤,但优选地是指恶性肿瘤。可选的,所述肿瘤可以为冷肿瘤或热肿瘤,优选的,所述肿瘤为热肿瘤。"Tumor" in the present invention includes benign tumors or malignant tumors, but preferably refers to malignant tumors. Optionally, the tumor can be a cold tumor or a hot tumor. Preferably, the tumor is a hot tumor.
优选的,本发明所述肿瘤选自下组:血液肿瘤、实体瘤、或其组合。在另一优选例中,所述血液肿瘤选自下组:急性髓细胞白血病(AML)、多发性骨髓瘤(MM)、慢性淋巴细胞白血病(CLL)、急性淋巴白血病(ALL)、弥漫性大B细胞淋巴瘤(DLBCL)、或其组合。Preferably, the tumor of the present invention is selected from the following group: hematological tumors, solid tumors, or combinations thereof. In another preferred embodiment, the blood tumor is selected from the following group: acute myeloid leukemia (AML), multiple myeloma (MM), chronic lymphocytic leukemia (CLL), acute lymphoblastic leukemia (ALL), diffuse leukemia B-cell lymphoma (DLBCL), or combinations thereof.
在一些具体实施方式中,所述实体瘤选自下组:肿瘤,肺癌、食管癌、骨肉瘤、乳腺癌、子宫内膜癌、胃癌、结肠癌、直肠癌、黑色素瘤、前列腺癌、肝癌、鼻咽癌、脑胶质瘤、白血病、淋巴瘤、口腔癌、喉癌、舌癌、膀胱癌、肾癌、阴茎癌、胰腺癌、宫颈癌、卵巢癌中的至少一种。In some embodiments, the solid tumor is selected from the group consisting of: tumors, lung cancer, esophageal cancer, osteosarcoma, breast cancer, endometrial cancer, gastric cancer, colon cancer, rectal cancer, melanoma, prostate cancer, liver cancer, At least one of nasopharyngeal cancer, brain glioma, leukemia, lymphoma, oral cancer, laryngeal cancer, tongue cancer, bladder cancer, kidney cancer, penile cancer, pancreatic cancer, cervical cancer, and ovarian cancer.
在一个具体实施方式中,所述实体瘤为结肠癌,在另一个具体实施方式中,所述实体瘤为黑色素瘤。In one embodiment, the solid tumor is colon cancer, and in another embodiment, the solid tumor is melanoma.
一方面,本发明提供了一种用于肿瘤免疫治疗的联合药物组合物,其活性成分至少包括:On the one hand, the present invention provides a combined pharmaceutical composition for tumor immunotherapy, the active ingredients of which at least include:
(1)如前所述半乳糖凝集素-1靶向结合物或其衍生物、所述的免疫增强剂和所述修饰的免疫细胞中的一种或两种以上的组合;(1) One or a combination of two or more of the galectin-1 targeted conjugates or derivatives thereof, the immune enhancer and the modified immune cells as described above;
(2)至少一种诱导冷肿瘤转变为热肿瘤的成分。(2) At least one component that induces the transformation of cold tumors into hot tumors.
优选的,所述半乳糖凝集素-1靶向结合物是乳糖,在一些实施方式中,所述衍生物是糖肽,在一些实施方式中,所述衍生物是乳糖在药学上可接受的盐。Preferably, the galectin-1 targeted conjugate is lactose. In some embodiments, the derivative is a glycopeptide. In some embodiments, the derivative is lactose and is pharmaceutically acceptable. Salt.
在一些实施方式中,所述药物组合物还包括药学上可接受的载体。In some embodiments, the pharmaceutical composition further includes a pharmaceutically acceptable carrier.
所述联合药物组合物还进一步包括其他抗肿瘤活性成分或与其他抗肿瘤活性成分联合使用,例如所述其他抗肿瘤活性成分选自:肿瘤免疫治疗剂、化疗药物;例如所述其他抗肿瘤活性成分选自:伊匹单抗、纳武单抗。其中所述化疗药物为选自以下的药物:环磷酰胺、曲贝替定、替莫唑胺、美法仑、达卡巴嗪、奥沙利铂、甲氨蝶呤、米托蒽醌、吉西他滨、5-氟尿嘧啶(5-FU)、博莱霉素、多柔比星、柔红霉素、表柔比星、伊达比星、戊柔比星、紫杉醇、卡巴他赛、多西他赛、拓扑替康、伊立替康、依托泊苷、卡铂、顺铂、硼替佐米、长春碱、长春新碱、长春地辛、长春瑞滨、亚丝醌、氮芥、丝裂霉素C、氟达拉滨、胞嘧啶阿拉伯糖苷;及其组合。The combined pharmaceutical composition further includes other anti-tumor active ingredients or is used in combination with other anti-tumor active ingredients. For example, the other anti-tumor active ingredients are selected from: tumor immunotherapy agents and chemotherapy drugs; for example, the other anti-tumor active ingredients Ingredients selected from: ipilimumab, nivolumab. The chemotherapy drug is selected from the following drugs: cyclophosphamide, trabectedin, temozolomide, melphalan, dacarbazine, oxaliplatin, methotrexate, mitoxantrone, gemcitabine, 5- Fluorouracil (5-FU), bleomycin, doxorubicin, daunorubicin, epirubicin, idarubicin, valrubicin, paclitaxel, cabazitaxel, docetaxel, topote Can, irinotecan, etoposide, carboplatin, cisplatin, bortezomib, vinblastine, vincristine, vindesine, vinorelbine, serquinone, nitrogen mustard, mitomycin C, fluda Labine, cytosine arabinoside; and combinations thereof.
本发明提供了一种肿瘤治疗方法,该方法包括给受试者施药来达到抑制肿瘤或消除肿瘤细胞的作用,所述药物的活性成分包含半乳糖凝集素抑制剂。优选的,所述半乳糖凝集素抑制剂是半乳糖凝集素-1抑制剂。进一步优选的,所述半乳糖凝集素-1抑制剂是一种β-D-半乳糖苷。The present invention provides a method for treating tumors, which method includes administering medicine to a subject to achieve the effect of inhibiting tumors or eliminating tumor cells, and the active ingredient of the medicine includes a galectin inhibitor. Preferably, the galectin inhibitor is a galectin-1 inhibitor. Further preferably, the galectin-1 inhibitor is a β-D-galactoside.
一方面,本发明提供了一种肿瘤免疫治疗方法,所述方法包括如下步骤:将如前所述的半乳糖凝集素-1靶向结合物递送到受试者的肿瘤免疫微环境中。In one aspect, the present invention provides a tumor immunotherapy method, which method includes the following steps: delivering the galectin-1 targeted conjugate as described above into the tumor immune microenvironment of the subject.
在一些实施方式中,所述药物的施与方式为注射。其中治疗有效量的化合物的治疗有效量包括药物组合物。In some embodiments, the drug is administered by injection. A therapeutically effective amount of a compound thereof includes pharmaceutical compositions.
优选的,所述药物组合物通过选自静脉内、皮下、皮内、肠胃外、肌肉内和瘤内的至少一种途径进行活化。更优选的,所述亚欧五通过静脉注射给药。Preferably, the pharmaceutical composition is activated by at least one route selected from the group consisting of intravenous, subcutaneous, intradermal, parenteral, intramuscular and intratumoral. More preferably, the Eurasia 5 is administered via intravenous injection.
在一些实施方式中,所述药物组合物与至少一种其他治疗方式联合给药。In some embodiments, the pharmaceutical composition is administered in combination with at least one other treatment modality.
在一些实施方式中,所述其他治疗模式的化合物选自放射疗法、化学疗法和手术及其组合。In some embodiments, the compounds of the other treatment modalities are selected from the group consisting of radiation therapy, chemotherapy, and surgery, and combinations thereof.
一方面,本发明提供了一种肿瘤免疫治疗方法,所述方法包括如下步骤:让如前所述的免疫增强剂和/或如前所述的修饰的免疫细胞与受试者的肿瘤细胞接触。In one aspect, the present invention provides a tumor immunotherapy method, which method includes the following steps: contacting the immune enhancer as described above and/or the modified immune cells as described above with the subject's tumor cells. .
在一些实施方式中,所述药物的施与方式为注射。In some embodiments, the drug is administered by injection.
优选的,所述药物组合物通过选自静脉内、皮下、皮内、肠胃外、肌肉内和瘤内的至少一种途径进行活化。更优选的,所述注射是瘤内注射。Preferably, the pharmaceutical composition is activated by at least one route selected from the group consisting of intravenous, subcutaneous, intradermal, parenteral, intramuscular and intratumoral. More preferably, the injection is an intratumoral injection.
在一些实施方式中,所述药物组合物与至少一种其他治疗方式联合给药。In some embodiments, the pharmaceutical composition is administered in combination with at least one other treatment modality.
在一些实施方式中,所述其他治疗模式的化合物选自放射疗法、化学疗法和手术及其组合。In some embodiments, the compounds of the other treatment modalities are selected from the group consisting of radiation therapy, chemotherapy, and surgery, and combinations thereof.
本发明所述“肿瘤”包括良性肿瘤或恶性肿瘤,但优选地是指恶性肿瘤。可选的,所述肿瘤可以为冷肿瘤或热肿瘤,优选的,所述肿瘤为热肿瘤。"Tumor" in the present invention includes benign tumors or malignant tumors, but preferably refers to malignant tumors. Optionally, the tumor can be a cold tumor or a hot tumor. Preferably, the tumor is a hot tumor.
优选的,本发明所述肿瘤选自下组:血液肿瘤、实体瘤、或其组合。在另一优选例中,所述血液肿瘤选自下组:急性髓细胞白血病(AML)、多发性骨髓瘤(MM)、慢性淋巴细胞白血病(CLL)、急性淋巴白血病(ALL)、弥漫性大B细胞淋巴瘤(DLBCL)、或其组合。Preferably, the tumor of the present invention is selected from the following group: hematological tumors, solid tumors, or combinations thereof. In another preferred embodiment, the blood tumor is selected from the following group: acute myeloid leukemia (AML), multiple myeloma (MM), chronic lymphocytic leukemia (CLL), acute lymphoblastic leukemia (ALL), diffuse leukemia B-cell lymphoma (DLBCL), or combinations thereof.
在一些具体实施方式中,所述实体瘤选自下组:肿瘤,肺癌、食管癌、骨肉瘤、乳腺癌、子宫内膜癌、胃癌、结肠癌、直肠癌、黑色素瘤、前列腺癌、肝癌、鼻咽癌、脑胶质瘤、白血病、淋巴瘤、口腔癌、喉癌、舌癌、膀胱癌、肾癌、阴茎癌、胰腺癌、宫颈癌、卵巢癌中的至少一种。In some embodiments, the solid tumor is selected from the group consisting of: tumors, lung cancer, esophageal cancer, osteosarcoma, breast cancer, endometrial cancer, gastric cancer, colon cancer, rectal cancer, melanoma, prostate cancer, liver cancer, At least one of nasopharyngeal cancer, brain glioma, leukemia, lymphoma, oral cancer, laryngeal cancer, tongue cancer, bladder cancer, kidney cancer, penile cancer, pancreatic cancer, cervical cancer, and ovarian cancer.
在一些实施方式中,所述肿瘤是对PD-1/PD-L1抗体已产生耐药性的肿瘤。In some embodiments, the tumor is a tumor that has developed resistance to PD-1/PD-L1 antibodies.
在一个具体实施方式中,所述肿瘤为结肠癌;在一个具体实施方式中,所述肿瘤为黑色素瘤;在一个具体实施方式中,所述肿瘤为胃癌。In one embodiment, the tumor is colon cancer; in one embodiment, the tumor is melanoma; in one embodiment, the tumor is gastric cancer.
优选的,所述肿瘤来源于对免疫治疗应答不良或需要改善免疫治疗应答的对象。Preferably, the tumor originates from a subject who has a poor response to immunotherapy or needs to improve the response to immunotherapy.
更优选的,所述对象或所述受试者选自下组:具有获得性免疫缺陷或受损的肿瘤患者;肿瘤免疫治疗无效或效果不佳或预期效果不佳的肿瘤患者;正在接受、将接受或已接受肿瘤免疫治疗的患者;或具有前述两种或更多种情况的肿瘤患者;和/或所述对象为哺乳动物,例如人、非人灵长类动物(例如猩猩、猿)、啮齿动物(例如大鼠、小鼠、豚鼠)、宠物(例如猫、狗)、家畜(例如马、牛、羊、猪、兔)。More preferably, the subject or the subject is selected from the following group: tumor patients with acquired immune deficiency or impairment; tumor patients for whom tumor immunotherapy is ineffective or has poor results or has poor expected results; patients who are receiving, Patients who will receive or have received tumor immunotherapy; or tumor patients with two or more of the aforementioned conditions; and/or the subjects are mammals, such as humans, non-human primates (such as orangutans, apes) , rodents (such as rats, mice, guinea pigs), pets (such as cats, dogs), livestock (such as horses, cattle, sheep, pigs, rabbits).
本发明创造有如下有益效果:The invention has the following beneficial effects:
本发明的研究结果表明,癌细胞可以将异常高水平的半乳糖凝集素-1转移到邻近免疫细胞表面,尤其是肿瘤靶向的细胞毒性T细胞。随后,肿瘤来源的半乳糖凝集素-1与细胞毒性T细胞表面的半乳糖基化蛋白发生相互作用,以调节T细胞的活化和功能。The present findings demonstrate that cancer cells can transfer abnormally high levels of galectin-1 to the surface of neighboring immune cells, particularly tumor-targeting cytotoxic T cells. Subsequently, tumor-derived galectin-1 interacts with galactosylated proteins on the surface of cytotoxic T cells to regulate T cell activation and function.
靶向这种新的免疫检查点将是肿瘤免疫治疗的新策略。一方面,敲除B4GATL1减少蛋白半乳糖基化可以显著降低肿瘤转移到T细胞上的Gal-1水平,从而增强T细胞的活化和功能。另一方面,乳糖及其衍生物可以通过竞争癌细胞和免疫细胞表面的Gal-1来抑制该免疫检查点。Targeting this new immune checkpoint will be a new strategy for tumor immunotherapy. On the one hand, knocking out B4GATL1 to reduce protein galactosylation can significantly reduce the level of Gal-1 transferred from tumors to T cells, thereby enhancing T cell activation and function. On the other hand, lactose and its derivatives can inhibit this immune checkpoint by competing for Gal-1 on the surface of cancer cells and immune cells.
用小分子靶向这种新的免疫检查点将是一种可行的肿瘤免疫治疗策略。含有半乳糖苷的乳糖及相关衍生物可以通过竞争癌细胞和免疫细胞表面的Gal-1来抑制该免疫检查点。特别是乳糖,作为一种结构模拟的竞争性半乳糖凝集素抑制剂,经系统性静脉注射到不同肿瘤负荷小鼠的循环系统内,可以有效抑制肿瘤的生长。大分子(例如BSA)和乳糖的偶联可增强与Gal-1的结合能力,并且有可能协助延长机体内乳糖有效浓度的维持时间。乳糖为奶制品中的天然产物,在牛乳中含量约为4.8%;乳糖可以从牛乳中大量制备,工艺成熟,方法简单,成本低廉;目前中国高纯度的乳糖(99%以上)的年产量在数万吨,其主要作为药品的添加剂和成型剂使用;乳糖相比于anti-PD1抗体的生产方法要简单很多,生产成本更是低了几个数量级,用于肿瘤免疫治疗的前景远大。Targeting this new immune checkpoint with small molecules will be a feasible strategy for tumor immunotherapy. Lactose and related derivatives containing galactosides can inhibit this immune checkpoint by competing for Gal-1 on the surface of cancer cells and immune cells. In particular, lactose, as a structurally simulated competitive galectin inhibitor, can effectively inhibit tumor growth through systemic intravenous injection into the circulation system of mice with different tumor burdens. The conjugation of macromolecules (such as BSA) and lactose can enhance the binding ability to Gal-1 and may help prolong the maintenance of effective lactose concentrations in the body. Lactose is a natural product in dairy products, with a content of about 4.8% in milk. Lactose can be prepared in large quantities from milk with mature technology, simple method and low cost. Currently, the annual output of high-purity lactose (more than 99%) in China is Tens of thousands of tons, it is mainly used as an additive and molding agent for drugs; the production method of lactose is much simpler than that of anti-PD1 antibodies, and the production cost is several orders of magnitude lower. It has great prospects for tumor immunotherapy.
另外,在小鼠肿瘤中过表达乳糖合成酶成分LALBA,可实现肿瘤微环境中乳糖的从头合成,进而增强CD8+T细胞介导的免疫反应。结合乳糖的抗肿瘤功效和经济成本,将为癌症治疗提供一种广泛可行的思路。In addition, overexpression of the lactose synthase component LALBA in mouse tumors can achieve de novo synthesis of lactose in the tumor microenvironment, thereby enhancing the immune response mediated by CD8 + T cells. Combining the anti-tumor efficacy and economic cost of lactose will provide a widely feasible idea for cancer treatment.
附图说明Description of the drawings
图1展示了体外和体内的CRISPR/Cas9筛选鉴定调控PD1表达和CD8+T细胞功能的基因的结果,其中:Figure 1 shows the results of in vitro and in vivo CRISPR/Cas9 screens to identify genes that regulate PD1 expression and CD8 + T cell function, where:
A.利用小鼠原代CD8+T进行体内和体外CRISPR/Cas9筛选的示意图;A. Schematic diagram of in vivo and in vitro CRISPR/Cas9 screening using mouse primary CD8 + T cells;
B.火山图展示CRISPR/Cas9全基因组体外筛选的结果;B. Volcano plot shows the results of CRISPR/Cas9 genome-wide in vitro screening;
C.筛选结果中候选基因的验证结果;分别用流式细胞术检测细胞表面PD1的平均荧光强度(MFI)和RT-qPCR检测PD1mRNA的表达;C. Verification results of candidate genes in the screening results; flow cytometry was used to detect the mean fluorescence intensity (MFI) of PD1 on the cell surface and RT-qPCR was used to detect the expression of PD1 mRNA;
D.基因富集分析(GSEA)全基因组筛选中被富集的KEGG通路;D. KEGG pathways enriched in the genome-wide screening of gene enrichment analysis (GSEA);
E.火山图展示使用定制的小型文库进行体外CRISPR/Cas9筛选的结果;E. Volcano plot showing the results of in vitro CRISPR/Cas9 screening using a custom mini-library;
F.火山图展示使用定制的小型文库进行体内CRISPR/Cas9筛选的结果;F. Volcano plot showing the results of in vivo CRISPR/Cas9 screening using a customized mini-library;
图2表明在T细胞中敲除B4GALT1可以增强TCR信号和T细胞抗肿瘤功能Figure 2 shows that knocking out B4GALT1 in T cells can enhance TCR signaling and T cell anti-tumor function.
A.CD8+T细胞中敲除B4GALT1基因后PD1的表达增加;分别用流式细胞术检测细胞表面PD1的平均荧光强度(MFI)和RT-qPCR检测PD1mRNA的表达;A. The expression of PD1 increased after knocking out the B4GALT1 gene in CD8 + T cells; flow cytometry was used to detect the mean fluorescence intensity (MFI) of PD1 on the cell surface and RT-qPCR was used to detect the expression of PD1 mRNA;
B.过表达小鼠B4GALT1的短或长亚型cDNA可回补B4GALT1敲除诱导的PD1高表达表型;B. Overexpression of the short or long isoform cDNA of B4GALT1 in mice can complement the high PD1 expression phenotype induced by B4GALT1 knockout;
C.在与B16F10-OVA细胞共培养后,敲除CD8+T细胞中的B4GALT1会增加IL2、TNFα和IFNγ的表达;利用RT-qPCR检测IL2和IFNγmRNA的表达;利用酶联免疫吸附试验(ELISA)检测培养基中分泌的TNFα和IFNγ含量;C. After co-culture with B16F10-OVA cells, knocking out B4GALT1 in CD8 + T cells will increase the expression of IL2, TNFα and IFNγ; RT-qPCR was used to detect the expression of IL2 and IFNγ mRNA; enzyme-linked immunosorbent assay (ELISA) was used ) Detect the secreted TNFα and IFNγ content in the culture medium;
D.敲除T细胞中的B4GALT1会增强体外杀伤B16F10-OVA细胞的能力;D. Knocking out B4GALT1 in T cells will enhance the ability to kill B16F10-OVA cells in vitro;
E.热图展示B4GALT1敲除和对照OT-1细胞与肿瘤细胞共培养后差异表达的基因;参与TCR信号通路的基因标注在热图的左侧;E. The heat map shows the differentially expressed genes between B4GALT1 knockout and control OT-1 cells after co-culture with tumor cells; genes involved in the TCR signaling pathway are marked on the left side of the heat map;
F.火山图展示B4GALT1敲除OT-1细胞与肿瘤细胞共培养后显著上调和显著下调的基因(pvalue<0.01);图中用深灰色标注了TCR信号通路的基因;火山图中标注了表达差异最显著的和一些TCR通路中基因的名字;F. Volcano plot shows the significantly up-regulated and significantly down-regulated genes (pvalue<0.01) after B4GALT1 knockout OT-1 cells were co-cultured with tumor cells; the genes of the TCR signaling pathway are marked in dark gray in the figure; the expression is marked in the volcano plot The most significant differences and the names of some genes in the TCR pathway;
G.火山图展示B4GALT1敲除OT-1细胞与肿瘤细胞共培养后显著富集的KEGG通路;在火山图中标注了其中一些被显著富集的通路的名字;G. Volcano plot shows the significantly enriched KEGG pathways after B4GALT1 knockout OT-1 cells were co-cultured with tumor cells; the names of some of the significantly enriched pathways are marked in the volcano plot;
H.B4GALT1敲除的OT-1细胞在体内抑制B16F10-OVA肿瘤生长能力更强;H.B4GALT1 knockout OT-1 cells have a stronger ability to inhibit B16F10-OVA tumor growth in vivo;
I.注射B4GALT1敲除的OT-1小鼠中B16F10-OVA肿瘤更小;I. B16F10-OVA tumors were smaller in OT-1 mice injected with B4GALT1 knockout;
J.OT-1细胞中敲除B4GALT1可增加其在B16F10-OVA肿瘤中的数目;J. Knocking out B4GALT1 in OT-1 cells can increase its number in B16F10-OVA tumors;
图中数据均用平均值±标准误差(SEM)展示;The data in the figures are displayed as mean ± standard error (SEM);
图3表明了表面肿瘤微环境中B4GALT1的表达和肿瘤浸润的CD8+T细胞与肿瘤患者的预后相关,其中:Figure 3 demonstrates that B4GALT1 expression and tumor-infiltrating CD8 + T cells in the surface tumor microenvironment are associated with tumor patient prognosis, where:
A.TCGA队列中所有原发性肿瘤样本的B4GALT1表达水平(左)和用CD8a标准化后B4GALT1表达水平(右)的Kaplan-Meier生存曲线;A. Kaplan-Meier survival curve of B4GALT1 expression levels (left) and B4GALT1 expression levels normalized by CD8a (right) for all primary tumor samples in the TCGA cohort;
B.TCGA队列中所有原发性肿瘤样本中具有不同B4GALT1表达水平的患者的CD8a表达水平与总生存期之间的关联;B. Association between CD8a expression levels and overall survival in patients with different B4GALT1 expression levels in all primary tumor samples in the TCGA cohort;
C.TCGA队列中所有原发性肾上腺皮质癌(ACC)、急性髓系白血病(LAML)、肺腺癌(LUAD)和直肠腺(READ)肿瘤样本中具有不同CD8a表达水平的患者的B4GALT1表达水平与总生存期之间的关联;C. B4GALT1 expression levels in patients with different CD8a expression levels in all primary adrenocortical carcinoma (ACC), acute myeloid leukemia (LAML), lung adenocarcinoma (LUAD), and rectal gland (READ) tumor samples in the TCGA cohort Association with overall survival;
D.TCGA队列中所有原发性肾上腺皮质癌(ACC)、急性髓系白血病(LAML)、肺腺癌(LUAD)和直肠腺(READ)肿瘤样本中具有不同B4GALT1表达水平的患者的CD8a表达水平与总生存期之间的关联;D. CD8a expression levels in patients with different B4GALT1 expression levels in all primary adrenocortical carcinoma (ACC), acute myeloid leukemia (LAML), lung adenocarcinoma (LUAD), and rectal gland (READ) tumor samples in the TCGA cohort Association with overall survival;
所有生存曲线的p-value通过双边对数秩检验计算(two-sidedLog-ranktest)得到;The p-value of all survival curves is calculated by two-sided Log-rank test;
图4表明肿瘤细胞中敲除B4GALT1可增强机体对肿瘤细胞的免疫监视反应,其中:Figure 4 shows that knocking out B4GALT1 in tumor cells can enhance the body’s immune surveillance response to tumor cells, where:
A.MC38细胞中敲除B4GALT1基因可抑制其在野生型小鼠中的生长;A. Knocking out the B4GALT1 gene in MC38 cells can inhibit their growth in wild-type mice;
B.MC38细胞中敲除B4GALT1基因不影响其在免疫缺陷NPG小鼠中的生长;B. Knocking out the B4GALT1 gene in MC38 cells does not affect their growth in immunodeficient NPG mice;
C.B4GALT1敲除的MC38细胞在CD8+T,CD4+T或NK细胞清除的野生型小鼠中的生长曲线;C. Growth curve of B4GALT1 knockout MC38 cells in wild-type mice depleted of CD8+T, CD4+T or NK cells;
D.热图展示了对照MC38细胞与B4GALT1敲除的MC38细胞之间差异表达的基因;D. Heat map shows differentially expressed genes between control MC38 cells and B4GALT1 knockout MC38 cells;
E.火山图展示B4GALT1敲除后MC38细胞中显著上调和显著下调的基因(pvalue<0.01);图中用深灰色标注了干扰素γ信号通路的基因;火山图中标注了表达差异最显著的和一些干扰素γ通路中基因的名字;E. The volcano plot shows the significantly up-regulated and significantly down-regulated genes in MC38 cells after B4GALT1 knockout (pvalue<0.01); the genes of the interferon γ signaling pathway are marked in dark gray in the figure; the volcano plot marks the genes with the most significant expression differences. and the names of some genes in the interferon gamma pathway;
F.火山图展示B4GALT1敲除后MC38细胞中显著富集的HALLMARKER基因集;在火山图中标注了差异表达最显著的通路的名字;F. Volcano plot shows the significantly enriched HALLMARKER gene set in MC38 cells after B4GALT1 knockout; the name of the most significantly differentially expressed pathway is marked in the volcano plot;
G.与对照MC38细胞相比,B4GALT1敲除的MC38细胞在IFNγ处理后B2m的表达升高;G. Compared with control MC38 cells, the expression of B2m in B4GALT1 knockout MC38 cells increased after IFNγ treatment;
H.与对照MC38细胞相比,B4GALT1敲除的MC38细胞在IFNγ处理后呈递Ova肽段的能力增强;H. Compared with control MC38 cells, B4GALT1 knockout MC38 cells have an enhanced ability to present Ova peptides after IFNγ treatment;
I.敲除MC38细胞中的B4GALT1基因可使其更易被OT-1T细胞杀伤;I. Knocking out the B4GALT1 gene in MC38 cells can make them more susceptible to killing by OT-1T cells;
J.与敲除B4GALT1的MC38细胞共培养后,OT-1T细胞中的IFNγ表达水平明显增加;J. After co-culture with MC38 cells knocking out B4GALT1, the expression level of IFNγ in OT-1T cells increased significantly;
图中数据均用平均值±标准误差(SEM)展示;The data in the figures are displayed as mean ± standard error (SEM);
图5表明瘤内表达α-乳清蛋白(LALBA)可在肿瘤细胞中产生乳糖并激活肿瘤免疫应答,其中:Figure 5 shows that intratumoral expression of α-lactalbumin (LALBA) can produce lactose in tumor cells and activate tumor immune responses, where:
A.MC38细胞中过表达LALBA可促进乳糖的合成;LC-MS检测细胞中乳糖的含量;A. Overexpression of LALBA in MC38 cells can promote the synthesis of lactose; LC-MS detects the content of lactose in cells;
B.LC-MS检测培养基中乳糖的含量;B. LC-MS detects the lactose content in the culture medium;
C.在MC38细胞中过表达LALBA,可抑制其在野生型小鼠中的生长;C. Overexpression of LALBA in MC38 cells can inhibit its growth in wild-type mice;
D.MC38细胞中过表达LALBA基因不影响其在免疫缺陷NPG小鼠中的生长;D. Overexpression of LALBA gene in MC38 cells does not affect their growth in immunodeficient NPG mice;
E.MC38-GFP细胞在MC38-LALBA肿瘤完全消退的小鼠和同年龄未注射过的野生型小鼠中的生长曲线;E. Growth curve of MC38-GFP cells in mice with complete regression of MC38-LALBA tumors and uninjected wild-type mice of the same age;
F.MC38肿瘤原位注射编码LALBA的慢病毒可抑制肿瘤生长;箭头指示了病毒注射时间;F. Orthotopic injection of lentivirus encoding LALBA into MC38 tumors can inhibit tumor growth; the arrow indicates the time of virus injection;
G.MC38肿瘤原位注射编码LALBA的慢病毒后,肿瘤浸润的CD8+T细胞中IFNγ阳性的比例升高;After orthotopic injection of lentivirus encoding LALBA into G.MC38 tumors, the proportion of IFNγ-positive cells among tumor-infiltrating CD8+ T cells increased;
H.再次接种的MC38细胞不能在经编码LALBA慢病毒注射处理后肿瘤完全消退的小鼠中生长;H. Re-inoculated MC38 cells cannot grow in mice whose tumors completely regressed after injection of LALBA-encoding lentivirus;
I.MC38肿瘤原位注射编码LALBA的AAV病毒可抑制肿瘤生长;箭头指示了病毒注射时间;I. Orthotopic injection of AAV encoding LALBA into MC38 tumors can inhibit tumor growth; the arrow indicates the time of virus injection;
J.MC38肿瘤原位注射编码LALBA的AAV病毒后,肿瘤浸润的CD8+T细胞中PD1阳性的比例升高;After orthotopic injection of AAV encoding LALBA into J.MC38 tumors, the proportion of PD1-positive cells among tumor-infiltrating CD8+ T cells increased;
K.MC38肿瘤原位注射编码LALBA的AAV病毒后,肿瘤浸润的CD8+T细胞中IFNγ阳性的比例升高;After K.MC38 tumors were injected with AAV encoding LALBA in situ, the proportion of IFNγ-positive cells among tumor-infiltrating CD8+ T cells increased;
图中数据均用平均值±标准误差(SEM)展示;The data in the figures are displayed as mean ± standard error (SEM);
图6表明尾静脉注射乳糖溶液可增强小鼠抗肿瘤功能,其中:Figure 6 shows that tail vein injection of lactose solution can enhance the anti-tumor function of mice, where:
A.尾静脉注射乳糖溶液对MC38肿瘤在野生型小鼠中生长的影响;A. The effect of tail vein injection of lactose solution on the growth of MC38 tumors in wild-type mice;
B.MC38荷瘤小鼠经尾静脉注射乳糖溶液后,肿瘤浸润的CD8+T细胞中PD1阳性的比例升高;B. After MC38 tumor-bearing mice were injected with lactose solution through the tail vein, the proportion of PD1-positive tumor-infiltrating CD8+ T cells increased;
C.MC38荷瘤小鼠经尾静脉注射乳糖溶液后,肿瘤浸润的CD8+T细胞中IFNγ阳性的比例升高;C. After MC38 tumor-bearing mice were injected with lactose solution through the tail vein, the proportion of IFNγ-positive cells in tumor-infiltrating CD8+T cells increased;
D.尾静脉注射乳糖溶液对MC38肿瘤在免疫缺陷NPG小鼠中生长的影响;D. The effect of tail vein injection of lactose solution on the growth of MC38 tumors in immunodeficient NPG mice;
E-G.尾静脉注射乳糖溶液对MC38细胞在CD8+T(E),CD4+T(F)或NK(G)细胞清除的野生型小鼠中生长的影响;E-G. Effect of tail vein injection of lactose solution on the growth of MC38 cells in wild-type mice depleted of CD8+T(E), CD4+T(F) or NK(G) cells;
H.尾静脉注射乳糖溶液对4T1肿瘤在野生型BALB/c小鼠中生长的影响;H. Effect of tail vein injection of lactose solution on the growth of 4T1 tumors in wild-type BALB/c mice;
I.尾静脉注射乳糖溶液对CT26肿瘤在野生型BALB/c小鼠中生长的影响;I. The effect of tail vein injection of lactose solution on the growth of CT26 tumors in wild-type BALB/c mice;
J.尾静脉注射乳糖溶液对B16F10肿瘤在野生型C57BL/6J小鼠中生长的影响;J. Effect of tail vein injection of lactose solution on the growth of B16F10 tumors in wild-type C57BL/6J mice;
K.尾静脉注射乳糖溶液对B16F10-OVA肿瘤在野生型C57BL/6J小鼠中生长的影响;K. Effect of tail vein injection of lactose solution on the growth of B16F10-OVA tumors in wild-type C57BL/6J mice;
L.尾静脉注射乳糖溶液SGC7901肿瘤在免疫系统人源化的NPG小鼠中生长的影响;L. Effects of tail vein injection of lactose solution SGC7901 on tumor growth in NPG mice with humanized immune systems;
M.SGC7901荷瘤免疫系统人源化小鼠经尾静脉注射乳糖溶液后,肿瘤浸润的人源CD8+T细胞中IFNγ阳性的比例升高;After M.SGC7901 tumor-bearing humanized mice with immune systems were injected with lactose solution through the tail vein, the proportion of IFNγ-positive tumor-infiltrating human CD8+ T cells increased;
N.尾静脉注射乳糖溶液SGC7901肿瘤在免疫系统缺陷的NPG小鼠中生长的影响;N. Effect of tail vein injection of lactose solution SGC7901 on tumor growth in NPG mice with defective immune system;
图中数据均用平均值±标准误差(SEM)展示;The data in the figures are displayed as mean ± standard error (SEM);
图7展示了全基因组筛选鉴定了N-glycan合成通路调控CD8+T细胞中PD1的表达,其中:Figure 7 shows that a genome-wide screen identified the N-glycan synthesis pathway regulating PD1 expression in CD8+ T cells, where:
A.N-glycan合成通路示意图;图中标明了在全基因组筛选中鉴定到的基因;A. Schematic diagram of the N-glycan synthesis pathway; the genes identified in the genome-wide screen are marked in the figure;
B.N-glycan合成通路相关基因在全基因组筛选结果中的分布情况;实线表示所有基因;长虚线表示N-glycan合成通路中的基因;短虚线表示阴性对照gRNA;B. The distribution of genes related to the N-glycan synthesis pathway in the genome-wide screening results; the solid line represents all genes; the long dotted line represents the genes in the N-glycan synthesis pathway; the short dotted line represents the negative control gRNA;
C.流式细胞术检测OT-1细胞中分别敲除B4GALT1,Mgat2,Dpm3基因后PD1的表达情况。C. Flow cytometry was used to detect the expression of PD1 in OT-1 cells after knocking out B4GALT1, Mgat2, and Dpm3 genes respectively.
图8展示了B4GALT1敲除对OT-1细胞在肿瘤中的功能的影响,其中:Figure 8 shows the effect of B4GALT1 knockdown on the function of OT-1 cells in tumors, where:
A.移植24小时后,检测B4GALT1敲除对OT-1细胞浸润肿瘤能力的影响;A. 24 hours after transplantation, detect the effect of B4GALT1 knockout on the ability of OT-1 cells to infiltrate tumors;
B.CFSE信号指示B4GALT1敲除可增强OT-1细胞在肿瘤中的增殖能力;B. CFSE signal indicates that B4GALT1 knockout can enhance the proliferation ability of OT-1 cells in tumors;
图中数据均用平均值±标准误差(SEM)展示;NS表示没有显著差异;The data in the figure are displayed as mean ± standard error (SEM); NS means no significant difference;
图9表明肿瘤微环境中B4GALT1的表达和肿瘤浸润的CD8+T细胞与肿瘤患者的预后相关,其中:Figure 9 shows that the expression of B4GALT1 and tumor-infiltrating CD8+ T cells in the tumor microenvironment are related to the prognosis of tumor patients, where:
A.热图展示了TCGA队列中不同原发性肿瘤样本的B4GALT1表达水平(左)和用CD8a标准化后B4GALT1表达水平(右)与总生存期之间的关联;ALL-TCGA:表示TCGA队列中所有原发性肿瘤样本;A. Heat map showing the association between B4GALT1 expression levels (left) and B4GALT1 expression levels (right) normalized to CD8a and overall survival in different primary tumor samples in the TCGA cohort; ALL-TCGA: represents the TCGA cohort. All primary tumor samples;
B.热图展示了TCGA队列中原发性肿瘤样本中具有不同CD8a表达水平(左侧是CD8a高表达;右侧是CD8a低表达)的患者的B4GALT1表达水平与总生存期之间的关联;ALL-TCGA:表示TCGA队列中所有原发性肿瘤样本;B. Heat map shows the association between B4GALT1 expression levels and overall survival in patients with different CD8a expression levels in primary tumor samples in the TCGA cohort (left, CD8a high expression; right, CD8a low expression); ALL-TCGA: represents all primary tumor samples in the TCGA cohort;
C.热图展示了TCGA队列中原发性肿瘤样本中具有不同B4GALT1表达水平(左侧是B4GALT1高表达;右侧是B4GALT1低表达)的患者的CD8a表达水平与总生存期之间的关联;ALL-TCGA:表示TCGA队列中所有原发性肿瘤样本;C. Heat map shows the association between CD8a expression levels and overall survival in patients with different B4GALT1 expression levels in primary tumor samples in the TCGA cohort (left, B4GALT1 high expression; right, B4GALT1 low expression); ALL-TCGA: represents all primary tumor samples in the TCGA cohort;
图10为流式细胞检测证明在野生型小鼠中成功清除了CD8+T(A),CD4+T(B)和NK(C)细胞;Figure 10 shows the flow cytometry test demonstrating the successful elimination of CD8+T (A), CD4+T (B) and NK (C) cells in wild-type mice;
图11展示了在部分MC38细胞中过表达LALBA可抑制MC38肿瘤在野生型小鼠中的生长;Figure 11 shows that overexpression of LALBA in some MC38 cells can inhibit the growth of MC38 tumors in wild-type mice;
图12展示了MC38瘤内分别注射编码LALBA-D107A(A)和LALBA-A126K(B)两种LALBA突变体的慢病毒对MC38肿瘤在野生型小鼠中生长的影响;Figure 12 shows the effect of intratumoral injection of lentivirus encoding two LALBA mutants, LALBA-D107A (A) and LALBA-A126K (B), into MC38 tumors on the growth of MC38 tumors in wild-type mice;
图13.展示了凝集素染色检测B4GALT1敲除和LALBA过表达对细胞整体N-糖组的影响,其中:Figure 13. Shows the effects of lectin staining to detect B4GALT1 knockout and LALBA overexpression on the overall N-glycome of cells, where:
A.展示了溶液中乳糖浓度的增加可竞争性阻断ECL(左)对MC38细胞的染色,而对sWGA(右)的染色没有影响;A. Demonstrates that increasing the concentration of lactose in the solution can competitively block the staining of MC38 cells by ECL (left), but has no effect on the staining of sWGA (right);
B.展示了B4GALT1敲除和LALBA过表达对MC38细胞上ECL和sWGA平均荧光强度(MFI)的影响;B. Shows the effects of B4GALT1 knockdown and LALBA overexpression on the mean fluorescence intensity (MFI) of ECL and sWGA on MC38 cells;
C.展示了B4GALT1敲除和LALBA过表达对CD8+T细胞上ECL和sWGA平均荧光强度(MFI)的影响;C. Shows the effects of B4GALT1 knockdown and LALBA overexpression on ECL and sWGA mean fluorescence intensity (MFI) on CD8+ T cells;
说明:MC38细胞是在不经胰酶消化的情况下直接从板子上刮下用于ECL和sWGA染色实验;Note: MC38 cells were scraped directly from the plate without trypsin digestion for ECL and sWGA staining experiments;
图14展示了尾静脉注射不同剂量乳糖溶液对MC38肿瘤在野生型小鼠中生长的影响。Figure 14 shows the effect of tail vein injection of different doses of lactose solution on the growth of MC38 tumors in wild-type mice.
两天一次尾静脉注射50mM、250mM和400mM乳糖溶液对MC38肿瘤在野生型小鼠中生长的影响;Effects of tail vein injection of 50mM, 250mM and 400mM lactose solutions once every two days on the growth of MC38 tumors in wild-type mice;
图15展示了尾静脉注射乳糖溶液和anti-PD1(PDCD1)联合给药对MC38肿瘤在野生型小鼠中生长的影响;Figure 15 shows the effect of tail vein injection of lactose solution and anti-PD1 (PDCD1) combined on the growth of MC38 tumors in wild-type mice;
图16展示了尾静脉注射乳糖溶液和anti-PDL1(CD274)联合给药对MC38肿瘤在野生型小鼠中生长的影响;Figure 16 shows the effect of tail vein injection of lactose solution and anti-PDL1 (CD274) combined on the growth of MC38 tumors in wild-type mice;
图17展示了RNA-seq分析乳糖处理对野生型小鼠中MC38肿瘤转录组的影响,其中:Figure 17 shows RNA-seq analysis of the effect of lactose treatment on the MC38 tumor transcriptome in wild-type mice, where:
A.热图展示了经乳糖处理后肿瘤中差异表达的基因;图中左侧标注了干扰素γ信号通路的基因;A. The heat map shows the differentially expressed genes in tumors after lactose treatment; the genes of the interferon gamma signaling pathway are marked on the left side of the figure;
B.火山图展示经乳糖处理后MC38肿瘤中显著上调和显著下调的基因(pvalue<0.05);图中用深灰色标注了干扰素γ信号通路的基因;火山图中标注了表达差异最显著的和一些干扰素γ通路中基因的名字;B. The volcano plot shows the genes that were significantly up-regulated and significantly down-regulated in MC38 tumors after lactose treatment (pvalue<0.05); the genes of the interferon γ signaling pathway are marked in dark gray in the figure; the volcano plot marks the genes with the most significant expression differences. and the names of some genes in the interferon gamma pathway;
C.火山图展示乳糖处理后MC38肿瘤中显著富集的HALLMARKER基因集;在火山图中标注了差异表达最显著的通路的名字;C. Volcano plot shows the HALLMARKER gene set that is significantly enriched in MC38 tumors after lactose treatment; the name of the most significantly differentially expressed pathway is marked in the volcano plot;
D-F:对照和乳糖处理后肿瘤样本的转录特征分析;D-F: Transcriptional profile analysis of control and lactose-treated tumor samples;
图中数据均用平均值±标准误差(SEM)展示;The data in the figures are displayed as mean ± standard error (SEM);
图18为对照和乳糖处理后肿瘤浸润T细胞的单细胞转录组分析,其中:Figure 18 shows single-cell transcriptome analysis of tumor-infiltrating T cells after control and lactose treatment, where:
A.单细胞转录组分析和TCR分析流程图;A. Single cell transcriptome analysis and TCR analysis flow chart;
B.从对照及乳糖处理肿瘤样本中分离得到的13839个CD3阳性的T细胞可在t-SNE图中被分为8群(C0-C7);B. 13839 CD3-positive T cells isolated from control and lactose-treated tumor samples can be divided into 8 groups (C0-C7) in the t-SNE plot;
C.t-SNE图分别展示了从对照(左)和乳糖(右)处理肿瘤样本中分离得到的CD3阳性的T细胞在8群中的分布情况;C.t-SNE diagram shows the distribution of CD3-positive T cells isolated from control (left) and lactose-treated (right) tumor samples in 8 populations respectively;
D.t-SNE图展示了所有细胞中Cd8a(左)和Cd4(右)的表达情况;D.t-SNE plot shows the expression of Cd8a (left) and Cd4 (right) in all cells;
E.定义每个T细胞群的标记基因;E. Define marker genes for each T cell population;
F.从对照及乳糖处理肿瘤样本中分离得到的T细胞在不同群中的分布情况;F. Distribution of T cells isolated from control and lactose-treated tumor samples in different populations;
图19对照和乳糖处理后肿瘤浸润T细胞的单细胞TCR测序分析,其中:Figure 19 Single-cell TCR sequencing analysis of tumor-infiltrating T cells after control and lactose treatment, where:
A.克隆稳态空间在对照和乳糖处理样品中使用CDR3氨基酸序列进行克隆型识别;A. Clone steady-state space uses CDR3 amino acid sequences for clonotype identification in control and lactose-treated samples;
B.利用CDR3氨基酸序列进行克隆型识别,在对照和乳糖处理样品中特定克隆型所占的相对比例;B. Use the CDR3 amino acid sequence to identify clonotypes, and the relative proportion of specific clonotypes in control and lactose-treated samples;
C.在对照和乳糖处理样品中基于Shannon,InvSimpson,Chao和ACEC. Based on Shannon, InvSimpson, Chao and ACE in control and lactose treated samples
(abundance-basedcoverageestimator)指数的TCR多样性分析;TCR diversity analysis of (abundance-basedcoverageestimator) index;
D.最大T细胞克隆,CN1,在对照和乳糖处理后样品中的分布情况;D. Distribution of the largest T cell clone, CN1, in control and lactose-treated samples;
E.最大T细胞克隆,CN1,在对照和乳糖样品中不同群中的分布情况;E. Distribution of the largest T cell clone, CN1, among different populations in control and lactose samples;
图20:表明在免疫系统人源化的NPG小鼠中,尾静脉注射乳糖显示出与派姆单抗(pembrolizumab,anti-humanPD1抗体)类似的抑制SGC7901生长的效果;Figure 20: Shows that in NPG mice with humanized immune systems, tail vein injection of lactose shows a similar effect to pembrolizumab (anti-humanPD1 antibody) in inhibiting the growth of SGC7901;
图21A、B、C对小鼠短期和长期静脉乳糖给药的安全性和毒性评估,其中Figure 21A, B, and C evaluate the safety and toxicity of short-term and long-term intravenous lactose administration in mice, where
A.静脉注射乳糖对野生型小鼠血液/血清生化和血液学参数的短期(注射后24小时)影响;A. Short-term (24 hours after injection) effects of intravenous lactose on blood/serum biochemical and hematological parameters in wild-type mice;
B.静脉注射乳糖对野生型小鼠血液/血清生化和血液学参数的长期(经12次尾静脉注射给药,经24天后检测)影响;B. Long-term effects of intravenous lactose on blood/serum biochemical and hematological parameters of wild-type mice (administered through 12 tail vein injections and measured after 24 days);
C.在23天内监测静脉注射乳糖或PBS注射对小鼠体重的影响;C. Monitor the effect of intravenous lactose or PBS injection on the body weight of mice within 23 days;
图22过表达LALBA的慢病毒载体的结构图;Figure 22 Structural diagram of lentiviral vector overexpressing LALBA;
图23过表达LALBA的腺病毒载体的结构图;Figure 23 Structural diagram of an adenoviral vector overexpressing LALBA;
图24pMSCV-CD19 scFv-IRES-RFP质粒的结构图;Figure 24 Structural diagram of pMSCV-CD19 scFv-IRES-RFP plasmid;
图25CRISPR/Cas9敲除OT-ⅠT细胞中的B4galt1可改变凝集素的结合;Figure 25 CRISPR/Cas9 knockout of B4galt1 in OT-IT cells can change lectin binding;
图26Galectins在OT-ⅠT细胞和MC38肿瘤细胞中的表达情况;Figure 26 Expression of Galectins in OT-IT cells and MC38 tumor cells;
图27OT-ⅠT细胞表面Gal-1的产生不依赖于TCR激活;Figure 27 The production of Gal-1 on the surface of OT-Ⅰ T cells does not depend on TCR activation;
图28OT-ⅠT细胞表面Gal-1来自MC38细胞;Figure 28 Gal-1 on the surface of OT-IT cells comes from MC38 cells;
图29Gal-1从MC38细胞转移到OT-ⅠT细胞需要近距离接触;Figure 29 The transfer of Gal-1 from MC38 cells to OT-ⅠT cells requires close contact;
图30B4galt1敲除T细胞的抗体活化不受Gal-1影响;Figure 30B4 Antibody activation of galt1 knockout T cells is not affected by Gal-1;
图31野生型和B4galt1敲除OT-ⅠT细胞与野生型和Gal-1敲除MC38的杀伤实验Figure 31 Killing experiments of wild type and B4galt1 knockout OT-Ⅰ T cells and wild type and Gal-1 knockout MC38
图32体内肿瘤微环境中Gal-1从肿瘤细胞转移到浸润CD8+T细胞上;Figure 32 Gal-1 is transferred from tumor cells to infiltrating CD8+ T cells in the tumor microenvironment in vivo;
图33Gal-1敲除MC38肿瘤的生长受到宿主免疫系统CD8+和CD4+T细胞的抑制;Figure 33 The growth of Gal-1 knockout MC38 tumors is inhibited by CD8+ and CD4+ T cells of the host immune system;
图34流式细胞术分析小鼠脾脏、外周血和MC38肿瘤中CD8+T细胞表面Gal-1的表达;Figure 34 Flow cytometry analysis of Gal-1 expression on the surface of CD8+ T cells in mouse spleen, peripheral blood and MC38 tumors;
图35Gal-1敲除MC38肿瘤浸润CD8+T细胞表面Gal-1水平降低;Figure 35Gal-1 knockout MC38 tumor-infiltrating CD8+ T cells have reduced levels of Gal-1 on the surface;
图36重组Gal-1蛋白的纯化与活性测试;Figure 36 Purification and activity testing of recombinant Gal-1 protein;
图37对野生型和B4galt1敲除的OT-ⅠT细胞中Gal-1结合蛋白的鉴定分析;Figure 37 Identification and analysis of Gal-1 binding proteins in wild-type and B4galt1 knockout OT-ⅠT cells;
图38蛋白质免疫印迹验证CD8β及其他B4galt在T细胞膜蛋白中的底物;Figure 38 Western blotting verifies the substrates of CD8β and other B4galt in T cell membrane proteins;
图39Gal-1结合并调节TCR-CD8共定位;Figure 39Gal-1 binds and regulates TCR-CD8 co-localization;
图40B4galt1和CD8分别在OT-ⅠT细胞和hCD19-CAR T细胞中的作用;Figure 40B4 The roles of galt1 and CD8 in OT-Ⅰ T cells and hCD19-CAR T cells respectively;
图41乳糖可显著增强OT-ⅠT细胞对肿瘤细胞的特异性杀伤;Figure 41 Lactose can significantly enhance the specific killing of tumor cells by OT-IT cells;
图42乳糖处理可去除体外杀伤系统中OT-ⅠT细胞表面的Gal-1;Figure 42 Lactose treatment can remove Gal-1 on the surface of OT-ⅠT cells in the in vitro killing system;
图43乳糖逆转Gal-1对OT-ⅠT细胞活性的抑制作用;Figure 43 Lactose reverses the inhibitory effect of Gal-1 on OT-ⅠT cell activity;
图44乳糖可去除体内肿瘤浸润T细胞表面的Gal-1并增强T细胞毒性;Figure 44 Lactose can remove Gal-1 on the surface of tumor-infiltrating T cells in vivo and enhance T cell toxicity;
图45静脉注射乳糖可抑制野生型小鼠体内MC38肿瘤的生长;Figure 45 Intravenous injection of lactose can inhibit the growth of MC38 tumors in wild-type mice;
图46静脉注射乳糖对不同类型肿瘤的影响;Figure 46 The effect of intravenous lactose on different types of tumors;
图47乳糖的平行人工膜渗透性实验;Figure 47 Parallel artificial membrane permeability experiment of lactose;
图48乳糖及其衍生物的特性。Figure 48 Properties of lactose and its derivatives.
具体实施方式Detailed ways
下面通过具体的实施例对本发明做进一步说明,但是并不因此将本发明限制在所述的实施例范围之中。The present invention will be further described below through specific embodiments, but the present invention is not limited to the scope of the described embodiments.
1.实验材料、试剂、仪器1. Experimental materials, reagents, and instruments
为了更清楚地阐述本发明,特此将列出了本发明采用的如下的实验材料、试剂、仪器,未列出的均是本领域常规的材料、试剂或仪器,且可以通过正常商业化购买得到。In order to explain the present invention more clearly, the following experimental materials, reagents, and instruments used in the present invention are hereby listed. Those not listed are all conventional materials, reagents, or instruments in this field, and can be obtained through normal commercial purchases. .
1.1实验材料1.1 Experimental materials
(1)pKLV-U6-sgRNA-PGK-puro2ABFP(Addgene#50946)从Addgene购买。(1) pKLV-U6-sgRNA-PGK-puro2ABFP (Addgene#50946) was purchased from Addgene.
(2)pMSCV-IRES-GFP(Addgene#20672)从Addgene购买。(2) pMSCV-IRES-GFP (Addgene#20672) was purchased from Addgene.
(3)pMSCV-CD19 scFv-IRES-RFP质粒来自北京生命科学研究所邵峰实验室。(3) The pMSCV-CD19 scFv-IRES-RFP plasmid was from Shao Feng’s laboratory at the Beijing Institute of Life Sciences.
(4)lenti-EF1α相关质粒通过lenti-U6 sgRNA-EF1α-IRES-GFP或lenti-EF1α-puro empty构建。(4) The lenti-EF1α related plasmid is constructed by lenti-U6 sgRNA-EF1α-IRES-GFP or lenti-EF1α-puro empty.
(5)小鼠Gal-1基因cDNA(mm39 ENSMUST00000089377.6)从小鼠T细胞cDNA文库中扩增获得。(5) Mouse Gal-1 gene cDNA (mm39 ENSMUST00000089377.6) was amplified from the mouse T cell cDNA library.
(6)小鼠B4galt1基因cDNA小鼠T细胞cDNA文库中扩增获得。(6) Mouse B4galt1 gene cDNA was amplified from the mouse T cell cDNA library.
(7)Trans1-T1化转感受态细胞购自北京全式金生物技术股份有限公司,货号CD501-02。(7) Trans1-T1 transfection competent cells were purchased from Beijing Quanshijin Biotechnology Co., Ltd., product number CD501-02.
(8)DH10B-Plus电转感受态细胞购自上海唯地生物技术有限公司,货号DE1072M。(8) DH10B-Plus electroporated competent cells were purchased from Shanghai Vidy Biotechnology Co., Ltd., product number DE1072M.
(9)人胚胎肾HEK293T细胞系:从Life Technologies公司购买。(9) Human embryonic kidney HEK293T cell line: purchased from Life Technologies.
(10)小鼠杂交瘤PK136细胞系:购自美国典型培养物保藏中心ATCC。(10) Mouse hybridoma PK136 cell line: purchased from American Type Culture Collection, ATCC.
(11)C57BL/6J小鼠:购自北京维通利华公司。(11) C57BL/6J mice: purchased from Beijing Vitong Lever Company.
(12)BALB/c小鼠:购自北京维通利华公司。(12) BALB/c mice: purchased from Beijing Vitong Lever Company.
(13)B-NDG(NOD.CB17-PrkdcscidIl2rgtm1/Bcgen)小鼠:购自百奥赛图(北京)医药科技股份有限公司。(13) B-NDG (NOD.CB17-Prkdc scid Il2rg tm1 /Bcgen) mice: purchased from Biocytogen (Beijing) Pharmaceutical Technology Co., Ltd.
(14)肽-N-糖苷酶F(PNGase F):从NEB公司购买,货号P0704S。(14) Peptide-N-glycosidase F (PNGase F): purchased from NEB Company, product number P0704S.
(15)重组小鼠白介素2(rIL-2):从BioLegend购买,货号575404。(15) Recombinant mouse interleukin 2 (rIL-2): purchased from BioLegend, Cat. No. 575404.
(16)重组小鼠白介素7(rIL-7):从BioLegend购买,货号577804。(16) Recombinant mouse interleukin 7 (rIL-7): purchased from BioLegend, product number 577804.
(17)重组小鼠白介素15(rIL-15):从BioLegend购买,货号566304。(17) Recombinant mouse interleukin 15 (rIL-15): purchased from BioLegend, Cat. No. 566304.
(18)OVA寡肽(SIINFEKL):购自生工生物工程(上海)股份有限公司,货号T510212。(18) OVA oligopeptide (SIINFEKL): purchased from Sangon Bioengineering (Shanghai) Co., Ltd., product number T510212.
(19)Polybrene:从Sigma公司购买,货号S2667。(19) Polybrene: Purchased from Sigma Company, item number S2667.
(20)α-乳糖水合物:从Sigma公司购买,货号L3625(L3625-1KG,Lot#SLCD8654)。(20) α-Lactose hydrate: purchased from Sigma Company, item number L3625 (L3625-1KG, Lot#SLCD8654).
(21)胶原酶Ⅳ:从Sigma公司购买,货号V900893。(21) Collagenase IV: purchased from Sigma Company, product number V900893.
(22)抗小鼠CD3e抗体anti-mouse CD3e(克隆号:145-2C11),从eBioscience购买,货号14-0031-82。(22) Anti-mouse CD3e antibody anti-mouse CD3e (clone number: 145-2C11), purchased from eBioscience, product number 14-0031-82.
(23)抗小鼠CD28抗体Ultra-LEAFTMPurified anti-mouse CD28(克隆号:37.51):从BioLegend购买,货号102116。(23) Anti-mouse CD28 antibody Ultra-LEAF TM Purified anti-mouse CD28 (clone number: 37.51): purchased from BioLegend, product number 102116.
(24)抗小鼠PD-1抗体PE anti-mouse CD279(克隆号:RMP1-30):从BioLegend购买,货号109104。(24) Anti-mouse PD-1 antibody PE anti-mouse CD279 (clone number: RMP1-30): purchased from BioLegend, product number 109104.
(25)抗小鼠PD-1抗体APC anti-mouse CD279(克隆号:RMP1-30):从BioLegend购买,货号109112。(25) Anti-mouse PD-1 antibody APC anti-mouse CD279 (clone number: RMP1-30): purchased from BioLegend, product number 109112.
(26)抗小鼠Gal-1抗体PE conjugated:从bio-techne R&D购买,货号IC1245P。(26) Anti-mouse Gal-1 antibody PE conjugated: purchased from bio-techne R&D, product number IC1245P.
(27)抗小鼠干扰素γ抗体FITC anti-mouse IFNγ(克隆号:XMG1.2):从BioLegend购买,货号505806。(27) Anti-mouse IFNγ antibody FITC anti-mouse IFNγ (clone number: XMG1.2): purchased from BioLegend, product number 505806.
(28)抗小鼠CD8aAPC anti-mouse CD8a(克隆号:53-6.7):从eBioscience购买,货号17-0081-83。(28) Anti-mouse CD8aAPC anti-mouse CD8a (clone number: 53-6.7): purchased from eBioscience, catalog number 17-0081-83.
(29)抗小鼠TCR Vα2单克隆抗体PE conjugated(克隆号:B20.1):从BDBiosciences购买,货号553289。(29) Anti-mouse TCR Vα2 monoclonal antibody PE conjugated (clone number: B20.1): purchased from BDBiosciences, product number 553289.
(30)生物素化小鼠CD8a单克隆抗体Biotin anti-mouse CD8a(克隆号:53-6.7):从BioLegend购买,货号100704。(30) Biotin anti-mouse CD8a monoclonal antibody (clone number: 53-6.7): purchased from BioLegend, product number 100704.
(31)抗小鼠CD8β抗体(克隆号:EPR22331-54):从abcam购买,货号ab228965。(31) Anti-mouse CD8β antibody (clone number: EPR22331-54): purchased from abcam, catalog number ab228965.
(32)生物素化刺桐凝集素(Biotin ECL):从VectorLaboratories购买,货号B-1145-5。(32) Biotin ECL: purchased from Vector Laboratories, product number B-1145-5.
(33)生物素化琥珀酰小麦胚芽凝集素(Biotin sWGA):从VectorLaboratories购买,货号B-1025S-5。(33) Biotinylated succinyl wheat germ agglutinin (Biotin sWGA): purchased from Vector Laboratories, product number B-1025S-5.
(34)生物素化小鼠半乳糖基凝集素(Biotin-rGal-1,):由实验室制备(Gal-1为mm39ENSMUST00000089377.6所示的序列)。(34) Biotinylated mouse galactosyl lectin (Biotin-rGal-1,): prepared in the laboratory (Gal-1 is the sequence shown in mm39ENSMUST00000089377.6).
(35)PE链霉亲和素:从BioLegend购买,货号405204。(35) PE Streptavidin: Purchased from BioLegend, Cat. No. 405204.
(36)抗小鼠NK1.1抗体:利用小鼠杂交瘤细胞PK136纯化得到。(36) Anti-mouse NK1.1 antibody: purified using mouse hybridoma cell PK136.
(37)抗小鼠CD8α抗体(克隆号:2.43):从BioXCell购买,货号BE0061。(37) Anti-mouse CD8α antibody (clone number: 2.43): purchased from BioXCell, product number BE0061.
(38)抗小鼠CD4抗体(克隆号:GK1.5):从BioXCell购买,货号BE0003-1。(38) Anti-mouse CD4 antibody (clone number: GK1.5): purchased from BioXCell, product number BE0003-1.
(39)抗小鼠Ly9抗体:从abcam购买,货号ab252931。(39) Anti-mouse Ly9 antibody: purchased from abcam, catalog number ab252931.
(40)抗小鼠Igf2γ抗体:从Sino Biological购买,货号107533-T40。(40) Anti-mouse Igf2γ antibody: purchased from Sino Biological, Cat. No. 107533-T40.
(41)抗小鼠Itga1抗体:从Solarbio购买,货号K002895P。(41) Anti-mouse Itga1 antibody: purchased from Solarbio, Cat. No. K002895P.
(42)抗小鼠Ighg1抗体:从Solarbio购买,货号K111394P。(42) Anti-mouse Ighg1 antibody: purchased from Solarbio, Cat. No. K111394P.
(43)抗小鼠Lnpep抗体:从Santa Cruz购买,货号sc-365300。(43) Anti-mouse Lnpep antibody: purchased from Santa Cruz, Cat. No. sc-365300.
(44)抗小鼠Sell抗体:从Santa Cruz购买,货号sc-390756。(44) Anti-mouse Sell antibody: purchased from Santa Cruz, Cat. No. sc-390756.
(45)抗小鼠IgG 680RD荧光二抗:从LI-COR购买,货号P/N 926-68072(45) Anti-mouse IgG 680RD fluorescent secondary antibody: purchased from LI-COR, Cat. No. P/N 926-68072
(46)抗小鼠IgG 800RD荧光二抗:从LI-COR购买,货号P/N 926-32210(46) Anti-mouse IgG 800RD fluorescent secondary antibody: purchased from LI-COR, Cat. No. P/N 926-32210
(47)抗兔IgG 680RD荧光二抗:从LI-COR购买,货号P/N 926-68071(47) Anti-rabbit IgG 680RD fluorescent secondary antibody: purchased from LI-COR, Cat. No. P/N 926-68071
(48)抗兔IgG 800RD荧光二抗:从LI-COR购买,货号P/N 926-32211(48) Anti-rabbit IgG 800RD fluorescent secondary antibody: purchased from LI-COR, Cat. No. P/N 926-32211
(49)抗人CD8αAPC anti-human CD8α:从BioLegend,购买,货号300912。(49) Anti-human CD8α APC anti-human CD8α: purchased from BioLegend, Cat. No. 300912.
(50)ImProm-ⅡTMReverse Transcriptase:Promega公司,货号A3803。(50) ImProm-Ⅱ TM Reverse Transcriptase: Promega Company, product number A3803.
(51)随机六聚体引物(RandomHexamer Primer):购自Thermo Scientific,货号51709。(51) Random Hexamer Primer: purchased from Thermo Scientific, Cat. No. 51709.
1.2酶联免疫吸附测定(Elisa)试剂1.2 Enzyme-linked immunosorbent assay (Elisa) reagent
(1)小鼠TNFαElisa试剂盒:爱博泰克生物(ABclonal),货号RK00027。(1) Mouse TNFα Elisa kit: ABclonal, product number RK00027.
(2)小鼠IFNγElisa试剂盒:爱博泰克生物(ABclonal),货号RK00019。(2) Mouse IFNγElisa kit: ABclonal, product number RK00019.
(3)人TNFαElisa试剂盒:爱博泰克生物(ABclonal),货号RK00030。(3) Human TNFα Elisa kit: ABclonal, product number RK00030.
(4)人IFNγElisa试剂盒:爱博泰克生物(ABclonal),货号RK00015。(4) Human IFNγElisa kit: ABclonal, product number RK00015.
1.3实验仪器1.3 Experimental instruments
(1)流式细胞仪:BDAccuriTM C6,BD FACSAriaⅡ,BD FACSAriaⅢ,BD FACSAriaFusion。(1) Flow cytometer: BDAccuriTM C6, BD FACSAria II, BD FACSAria III, BD FACSAriaFusion.
(2)酶标仪:PerkinElmer EnSpire Multimode Plate Reader。(2) Microplate reader: PerkinElmer EnSpire Multimode Plate Reader.
2、实验方法2. Experimental methods
为了更清楚地阐述本发明,特此将列出了本发明采用的如下的实验方法,未列出的均是本领域技术人员已知的常规实验方法。In order to explain the present invention more clearly, the following experimental methods used in the present invention are listed here. Those not listed are routine experimental methods known to those skilled in the art.
(1)构建载体MSCV-U6 sgRNA-PGK-PURO-2A-BFP。(1) Construction of vector MSCV-U6 sgRNA-PGK-PURO-2A-BFP.
骨架载体:MSCV-U6gRNA-PGK-Puro-2a-BFP,用BbsⅠ酶切。Backbone vector: MSCV-U6gRNA-PGK-Puro-2a-BFP, digested with BbsⅠ.
正向引物:5’-CACCG+20nt sgRNA序列-3’Forward primer: 5’-CACCG+20nt sgRNA sequence-3’
反向引物:5’-AAAC+20nt sgRNA序列+C-3’Reverse primer: 5’-AAAC+20nt sgRNA sequence+C-3’
克隆方法:T4连接。Cloning method: T4 connection.
(2)构建载体PKLV-U6 sgRNA-PGK-PURO-2A-BFP。(2) Construct the vector PKLV-U6 sgRNA-PGK-PURO-2A-BFP.
骨架载体:PKLV-U6gRNA-PGK-Puro-2a-BFP,用BbsⅠ酶切。Backbone vector: PKLV-U6gRNA-PGK-Puro-2a-BFP, digested with BbsⅠ.
正向引物:5’-CACCG+20nt sgRNA序列-3’Forward primer: 5’-CACCG+20nt sgRNA sequence-3’
反向引物:5’-AAAC+20nt sgRNA序列+C-3’Reverse primer: 5’-AAAC+20nt sgRNA sequence+C-3’
克隆方法:T4连接。Cloning method: T4 connection.
(3)构建载体lenti-U6 sgRNA-EF1α-Gal-1-EGFP fusion。(3) Construct the vector lenti-U6 sgRNA-EF1α-Gal-1-EGFP fusion.
第一步:构建MSCV-EF1α-Gal-1-IRES-GFP。Step one: Construct MSCV-EF1α-Gal-1-IRES-GFP.
骨架载体:MSCV-EF1α-Lalba-IRES-GFP,用BsiWⅠ和EcoRⅠ酶切。Backbone vector: MSCV-EF1α-Lalba-IRES-GFP, digested with BsiWⅠ and EcoRⅠ.
PCR模板:小鼠T细胞cDNA文库。PCR template: mouse T cell cDNA library.
正向引物:5’-CCATTTCAGGTGTCGTGACGTACGTGCCACCATGGCCTGTGGTCTGGTCG-3’(SEQID NO:6)Forward primer: 5’-CCATTTCAGGTGTCGTGACGTACGTGCCACCATGGCCTGTGGTCTGGTCG-3’(SEQID NO:6)
反向引物:5’-ACGTTAGGGGGGGGGGGCGGAATTCTCACTCAAAGGCCACGCAC-3’(SEQ IDNO:7)Reverse primer: 5’-ACGTTAGGGGGGGGGGCGGAATTCTCACTCAAAGGCCACGCAC-3’ (SEQ IDNO: 7)
克隆方法:Gibson组装。Cloning method: Gibson assembly.
Gibson组装体系:30ng酶切载体,10ng PCR产物,2.5μL2×Gibson,加双蒸水补至5μL,50℃连接15分钟。Gibson assembly system: 30ng digested vector, 10ng PCR product, 2.5μL 2×Gibson, add double distilled water to make up to 5μL, ligate at 50°C for 15 minutes.
第二步:构建lenti-U6 sgRNA-EF1α-Gal-1-IRES-GFP。Step 2: Construct lenti-U6 sgRNA-EF1α-Gal-1-IRES-GFP.
骨架载体:lenti-U6 sgRNA-EF1α-IRES-GFP,用BamHⅠ和MluⅠ酶切。Backbone vector: lenti-U6 sgRNA-EF1α-IRES-GFP, digested with BamHI and MluI.
片段模板:MSCV-EF1α-Galectin1-IRES-GFP,用BamHⅠ和MluⅠ酶切。Fragment template: MSCV-EF1α-Galectin1-IRES-GFP, digested with BamHI and MluI.
克隆方法:T4连接。Cloning method: T4 connection.
第三步:构建目标载体。Step 3: Build the target vector.
骨架载体:lenti-U6 sgRNA-EF1α-Gal-1-IRES-GFP,用XcmⅠ和MluⅠ酶切。Backbone vector: lenti-U6 sgRNA-EF1α-Gal-1-IRES-GFP, digested with XcmⅠ and MluⅠ.
第一轮PCR模板:lenti-U6 sgRNA-EF1α-Gal-1-IRES-GFPFirst round PCR template: lenti-U6 sgRNA-EF1α-Gal-1-IRES-GFP
正向引物:5’-AGACTTCAAGATTAAGTGCGTGGCCTTTGAGATGGTGAGCAAGGGCGAGG-3’(SEQID NO:8)Forward primer: 5’-AGACTTCAAGATTAAGTGCGTGGCCTTTGAGATGGTGAGCAAGGGCGAGG-3’(SEQID NO:8)
反向引物:5’-AATCCAGAGGTTGATTGTCG-3’(SEQ ID NO:9)Reverse primer: 5’-AATCCAGAGGTTGATTGTCG-3’ (SEQ ID NO: 9)
第二轮PCR模板:上一轮PCR产物。Second round PCR template: the product of the previous round of PCR.
正向引物:5’Forward primer: 5’
-CCTCAACATGGAGGCCATCAACTACATGGCGGCGGATGGAGACTTCAAGATTAAGTGC-3’(SEQ IDNO:10)-CCTCAACATGGAGGCCATCAACTACATGGCGGCGGATGGAGACTTCAAGATTAAGTGC-3’(SEQ IDNO:10)
反向引物:5’-AATCCAGAGGTTGATTGTCG-3’(SEQ ID NO:11)Reverse primer: 5’-AATCCAGAGGTTGATTGTCG-3’ (SEQ ID NO: 11)
克隆方法:Gibson组装。Cloning method: Gibson assembly.
(4)构建载体:lenti-EF1α-puro-2A-OVA(4) Construction vector: lenti-EF1α-puro-2A-OVA
骨架载体:lenti-EF1α-puro empty,用BamHⅠ和MluⅠ酶切。Backbone vector: lenti-EF1α-puro empty, digested with BamHI and MluI.
PCR模板1:MSCV-U6 sgRNA-PGK-PURO-2A-BFPPCR template 1: MSCV-U6 sgRNA-PGK-PURO-2A-BFP
正向引物:5’-TGGTGCATGACCCGCAAGCC-3’(SEQ ID NO:12)Forward primer: 5’-TGGTGCATGACCCGCAAGCC-3’ (SEQ ID NO: 12)
反向引物:5’-TGGGCCAGGATTCTCCTCCA-3’(SEQ ID NO:13)Reverse primer: 5’-TGGGCCAGGATTCTCCTCCA-3’ (SEQ ID NO: 13)
PCR模板2:全合成的OVA寡肽序列载体。PCR template 2: fully synthetic OVA oligopeptide sequence vector.
正向引物:5’-ACGTGGAGGAGAATCCTGGCCCAAGCACCAGGACACAAATAAATAAGG-3’(SEQID NO:14)Forward primer: 5’-ACGTGGAGGAGAATCCTGGCCCAAGCACCAGGACACAAATAAATAAGG-3’(SEQID NO:14)
反向引物:5’-CCAGAGGTTGATTGTCGACTTAACGCGTTTAAGGGGAAACACA TCTGCCAAAG-3’(SEQ ID NO:15)Reverse primer: 5’-CCAGAGGTTGATTGTCGACTTAACGCGTTTAAGGGGAAACACA TCTGCCAAAG-3’(SEQ ID NO:15)
克隆方法:Gibson组装。Cloning method: Gibson assembly.
(5)构建载体:MSCV-U6 sgB4galt1-PGK-PURO-2A-B4GALT1 CDS(两个转录本分别克隆,PCR模板2正向引物不同)(5) Construction vector: MSCV-U6 sgB4galt1-PGK-PURO-2A-B4GALT1 CDS (the two transcripts are cloned separately, and the PCR template 2 forward primers are different)
骨架载体:MSCV-U6 sgB4GALT1-PGK-Puro-2a-BFP,用BamHⅠ和SalⅠ酶切。Backbone vector: MSCV-U6 sgB4GALT1-PGK-Puro-2a-BFP, digested with BamHI and SalI.
PCR模板1:MSCV-U6 sgB4GALT1-PGK-Puro-2a-BFPPCR template 1: MSCV-U6 sgB4GALT1-PGK-Puro-2a-BFP
正向引物:5’-GTCCTAGCAATTTTTTTGGATCCAATTCT-3’(SEQ ID NO:16)Forward primer: 5’-GTCCTAGCAATTTTTTTGGATCCAATTCT-3’ (SEQ ID NO: 16)
反向引物:5’-TGGGCCAGGATTCTCCTCC-3’(SEQ ID NO:17)Reverse primer: 5’-TGGGCCAGGATTCTCCTCC-3’ (SEQ ID NO: 17)
PCR模板2:小鼠T细胞的cDNA文库。PCR template 2: cDNA library of mouse T cells.
正向引物:5’-TGGAGGAGAATCCTGGCCCAATGAGGTTTCGTGAGCAGTTCC-3’(长转录本)(SEQ ID NO:18)Forward primer: 5’-TGGAGGAGAATCCTGGCCCAATGAGGTTTCGTGAGCAGTTCC-3’ (long transcript) (SEQ ID NO: 18)
5’-TGGAGGAGAATCCTGGCCCAATGCCGGGCGCGACCCTG-3’(短转录本)(SEQ ID NO:19)5’-TGGAGGAGAATCCTGGCCCAATGCCGGGCGCGACCCTG-3’ (short transcript) (SEQ ID NO: 19)
反向引物:5’-CCTTTGGAGTATTGGATGCAAATAATACAGCCAGT-3’(SEQ ID NO:20)Reverse primer: 5’-CCTTTGGAGTATTGGATGCAAATAATACAGCCAGT-3’ (SEQ ID NO: 20)
PCR模板3:小鼠T细胞的cDNA文库。PCR template 3: cDNA library of mouse T cells.
正向引物:5’-CTGGCTGTATTATTTGCATCCAATACTCCAAAGG-3’(SEQ ID NO:21)Forward primer: 5’-CTGGCTGTATTATTTGCATCCAATACTCCAAAGG-3’ (SEQ ID NO: 21)
反向引物:5’Reverse primer: 5’
-TCGATAAGCTTGGCTGCAGGTCGACCTATCTCGGTGTCCCGATGTCCACTGTG-3’(SEQ ID NO:22)-TCGATAAGCTTGGCTGCAGGTCGACCTATCTCGGTGTCCCGATGTCCACTGTG-3’ (SEQ ID NO: 22)
克隆方法:Gibson组装。Cloning method: Gibson assembly.
(6)构建载体:pQE-80-Gal-1opti(6) Construction vector: pQE-80-Gal-1opti
骨架载体:pQE-80-Tn5,用BamHⅠ和HindⅡ酶切。Backbone vector: pQE-80-Tn5, digested with BamHI and HindII.
PCR模板:全合成的经密码子优化的小鼠Gelctin-1序列载体。PCR template: fully synthetic codon-optimized mouse Gelctin-1 sequence vector.
正向引物:5’-TCGCATCACCATCACCATCACGGATCCATGGCCTGCGGCCTGGTGG-3’(SEQ IDNO:23)Forward primer: 5’-TCGCATCACCATCACCATCACGGATCCATGGCCTGCGGCCTGGTGG-3’ (SEQ IDNO: 23)
反向引物:5’-GGAGTCCAAGCTCAGCTAATTAAGCTTTTATTCAAAGGCCACGCATT-3’(SEQ IDNO:24)Reverse primer: 5’-GGAGTCCAAGTCCAGCTAATTAAGCTTTTATTCAAAGGCCACGCATT-3’ (SEQ IDNO: 24)
克隆方法:Gibson组装。Cloning method: Gibson assembly.
(7)构建载体:pMSCV-CD19 scFv(FMC63)-IRES-RFP-U6 sgRNA(7) Construction vector: pMSCV-CD19 scFv(FMC63)-IRES-RFP-U6 sgRNA
骨架载体:pMSCV-CD19 scFv-IRES-RFP,用ClaⅠ酶切。Backbone vector: pMSCV-CD19 scFv-IRES-RFP, digested with ClaⅠ.
PCR模板:MSCV-U6 sgB4galt1-PGK-PURO-2A-B4GALT1 CDS。PCR template: MSCV-U6 sgB4galt1-PGK-PURO-2A-B4GALT1 CDS.
正向引物:5’-CGTCGACCTGCAGCCAAGCTTATCGATGAGGGCCTATTTCCCATGAT-3’(SEQ IDNO:25)Forward primer: 5’-CGTCGACCTGCAGCCAAGCTTATCGATGAGGGCCTATTTCCCATGAT-3’(SEQ IDNO:25)
反向引物:5’-CTAAATAAAATCTTTTATTTTATCGATcAAAAAAATTGCTAGGACCGGC-3’Reverse primer: 5’-CTAAATAAAATCTTTTATTTTATCGATcAAAAAAATTGCTAGGACCGGC-3’
(SEQ ID NO:26)(SEQ ID NO:26)
克隆方法:Gibson组装。Cloning method: Gibson assembly.
(8)构建载体:lenti-SFFV-NYESO-1-T2A-BFP-U6 shRNA(8) Construction vector: lenti-SFFV-NYESO-1-T2A-BFP-U6 shRNA
骨架载体:lenti-SFFV-NY-ESO-1-T2A-BFP-U6 sgRNA,用BamBⅠ和XhoⅠ酶切。Backbone vector: lenti-SFFV-NY-ESO-1-T2A-BFP-U6 sgRNA, digested with BamBI and XhoI.
PCR模板1:MSCV-CD19 scFv-IRES-RFP-U6 shRNA。PCR template 1: MSCV-CD19 scFv-IRES-RFP-U6 shRNA.
正向引物:5’-GTCGACCTGCAGCCAAGCTT-3’(SEQ ID NO:27)Forward primer: 5’-GTCGACCTGCAGCCAAGCTT-3’ (SEQ ID NO: 27)
反向引物:5’-GATTGTCGACGGATCCTCTAGACTCGAGATCGCCATTTGTCTCGAGGT-3’Reverse primer: 5’-GATTGTCGACGGATCCTCTAGACTCGAGATCGCCATTTGTCTCGAGGT-3’
(SEQ ID NO:28)(SEQ ID NO:28)
PCR模板2:lenti-SFFV-NY-ESO-1-T2A-BFP-U6 sgRNA。PCR template 2: lenti-SFFV-NY-ESO-1-T2A-BFP-U6 sgRNA.
正向引物:5’-CCAACGGCCCTGTGATGCA-3’(SEQ ID NO:29)Forward primer: 5’-CCAACGGCCCTGTGATGCA-3’ (SEQ ID NO: 29)
反向引物:5’-AAGCTTGGCTGCAGGTCGACTCAATTAAGCTTGTGCCCCAG-3’(SEQ ID NO:30)Reverse primer: 5’-AAGCTTGGCTGCAGGTCGACTCAATTAAGCTTGTGCCCCAG-3’ (SEQ ID NO: 30)
克隆方法:Gibson组装。Cloning method: Gibson assembly.
(9)构建载体:pMSCV-Biggest clone TCRA-2A-TCRN-IRES-GFP(9) Construction vector: pMSCV-Biggest clone TCRA-2A-TCRN-IRES-GFP
骨架载体:pMSCV-IRES-RFP,用EcoRⅠ和XhoⅠ酶切。Backbone vector: pMSCV-IRES-RFP, digested with EcoRI and XhoI.
片段模板:全合成的Biggest clone载体,用EcoRⅠ和XhoⅠ酶切。Fragment template: fully synthetic Biggest clone vector, digested with EcoRⅠ and XhoⅠ.
克隆方法:T4连接。Cloning method: T4 connection.
(10)构建B16F10-OVA细胞系(10) Construction of B16F10-OVA cell line
用lenti-EF1α-puro-2A-OVA载体包装慢病毒,病毒液无需浓缩直接感染B16F10细胞系。感染后48小时,加入2μg/mL的嘌呤霉素进行感染阳性筛选,由于筛选过程中有死细胞和碎片产生,需要及时更换培养基或传代。筛选4~5天后,可通过流式细胞术检测B16F10表面OVA寡肽的呈递,约7天后,B16F10-OVA细胞系即可获得足够扩增,分装冻存足量备用。The lenti-EF1α-puro-2A-OVA vector is used to package the lentivirus, and the virus liquid can be directly infected into the B16F10 cell line without concentration. 48 hours after infection, add 2 μg/mL puromycin for positive screening for infection. Since dead cells and debris are produced during the screening process, the culture medium needs to be replaced or passaged in time. After 4 to 5 days of screening, the presentation of OVA oligopeptides on the B16F10 surface can be detected by flow cytometry. After about 7 days, the B16F10-OVA cell line can be sufficiently amplified and can be aliquoted and frozen in sufficient quantities for later use.
(11)构建MC38-Cas9细胞系(11) Construction of MC38-Cas9 cell line
用lenti-EF1α-Cas9-2A-blast载体包装慢病毒,由于载体较大,病毒滴度较低,所以病毒需要经过离心浓缩后感染MC38细胞系。感染后48小时,加入10μg/mL的杀稻瘟菌素进行感染阳性筛选,同样筛选过程中死细胞和碎片产生需要及时更换培养基或传代。筛选大约10天后,MC38-Cas9细胞系即可获得足够扩增,分装冻存足量备用。The lenti-EF1α-Cas9-2A-blast vector is used to package lentivirus. Since the vector is large and the virus titer is low, the virus needs to be centrifuged and concentrated before infecting the MC38 cell line. 48 hours after infection, add 10 μg/mL blasticidin for positive screening for infection. During the same screening process, dead cells and debris require timely replacement of the culture medium or passage. After about 10 days of screening, the MC38-Cas9 cell line can be sufficiently amplified and can be aliquoted and frozen for later use.
(12)构建MC38-B2m KO、Gal-1 KO、B2m/Gal-1 DKO细胞系(12) Construction of MC38-B2m KO, Gal-1 KO, B2m/Gal-1 DKO cell lines
pKLV-U6 sgB2m-PGK-PURO-2A-BFP,pKLV-U6 sgGal-1-PGK-PURO-2A-BFP,pKLV-U6sgB2m/sgGal-1-PGK-PURO-2A-BFP以及pKLV-U6 sgEmpty-PGK-PURO-2A-BFP(无靶向sgRNA空载作为对照)共4个载体分别包装慢病毒,病毒液无需浓缩直接感染MC38-Cas9细胞系。感染后48小时,加入5μg/mL的嘌呤霉素和10μg/mL的杀稻瘟菌素进行感染阳性筛选,同样筛选过程中死细胞和碎片产生需要及时更换培养基或传代。筛选大约7天后,各个敲除细胞系及对照细胞系即可获得足够扩增,分装冻存足量备用。pKLV-U6 sgB2m-PGK-PURO-2A-BFP, pKLV-U6 sgGal-1-PGK-PURO-2A-BFP, pKLV-U6sgB2m/sgGal-1-PGK-PURO-2A-BFP and pKLV-U6 sgEmpty-PGK -PURO-2A-BFP (without targeting sgRNA empty as a control), a total of 4 vectors package lentivirus respectively, and the virus liquid can directly infect the MC38-Cas9 cell line without concentration. 48 hours after infection, add 5 μg/mL puromycin and 10 μg/mL blasticidin for positive screening for infection. During the same screening process, the production of dead cells and debris requires timely replacement of the culture medium or passage. After about 7 days of screening, each knockout cell line and control cell line can be sufficiently amplified, and sufficient amounts can be aliquoted and frozen for later use.
(13)构建MC38-Gal-1-EGFP和MC38-IRES-EGFP细胞系(13) Construction of MC38-Gal-1-EGFP and MC38-IRES-EGFP cell lines
用lenti-U6 sgRNA-EF1α-Gal-1-EGFP fusion和lenti-U6 sgRNA-EF1α-IRES-GFP(对照)2个载体分别包装慢病毒,病毒液无需浓缩直接感染MC38-Cas9细胞系。感染后48小时,利用流式细胞术分选GFP阳性细胞。分选约7天后,Gal-1表达细胞系及对照细胞系即可获得足够扩增,分装冻存足量备用。Two vectors, lenti-U6 sgRNA-EF1α-Gal-1-EGFP fusion and lenti-U6 sgRNA-EF1α-IRES-GFP (control), were used to package the lentivirus respectively. The virus liquid was directly infected with the MC38-Cas9 cell line without concentration. 48 hours after infection, GFP-positive cells were sorted using flow cytometry. After about 7 days of sorting, Gal-1 expressing cell lines and control cell lines can be sufficiently amplified, and sufficient amounts can be aliquoted and frozen for later use.
(14)记忆T细胞的激活与过继转移(14) Activation and adoptive transfer of memory T cells
第2~7天为记忆T细胞的分化培养阶段,若感染的病毒含有嘌呤霉素抗性,则从感染后48小时(第3天)开始加入嘌呤霉素进行筛选,浓度为3μg/mL;若感染的病毒不含嘌呤霉素抗性但含有荧光蛋白表达,则可以在感染后48小时(第3天)或延后时间利用流式细胞术进行荧光标记分选。感染阳性细胞经过筛选4天后(第7天),则可将T细胞与呈递OVA寡肽的肿瘤细胞进行共培养(无需添加嘌呤霉素),即记忆T细胞的激活,其中T细胞与肿瘤细胞的比例为3:1或其他指定比例。T细胞的过继转移前,先用CFSE标记T细胞以区别于小鼠体内T细胞,将标记好的细胞经尾静脉注射入B16F10-OVA荷瘤小鼠(荷瘤第14天),每只小鼠植入2×106细胞。Days 2 to 7 are the differentiation and culture stage of memory T cells. If the infected virus contains puromycin resistance, puromycin will be added for screening starting from 48 hours after infection (day 3) at a concentration of 3 μg/mL; If the infected virus does not contain puromycin resistance but expresses fluorescent proteins, flow cytometry can be used to perform fluorescent labeling sorting at 48 hours after infection (day 3) or at a later time. After 4 days of screening of infected positive cells (day 7), T cells can be co-cultured with tumor cells presenting OVA oligopeptide (no need to add puromycin), that is, activation of memory T cells, in which T cells and tumor cells The ratio is 3:1 or other specified ratio. Before the adoptive transfer of T cells, CFSE was used to label T cells to distinguish them from T cells in mice. The labeled cells were injected into B16F10-OVA tumor-bearing mice through the tail vein (on the 14th day of tumor-bearing). Mice were implanted with 2 × 10 6 cells.
(15)体外杀伤实验:OT-ⅠT细胞靶向肿瘤细胞(15) In vitro killing experiment: OT-IT cells target tumor cells
将B16F10-OVA细胞和B16F10细胞分别标记为CFSEhi(2.5mM)和CFSElo(50nM),然后按指定比例与T细胞共培养于96孔板中。只含有肿瘤细胞,不含有T细胞的样品作为对照。培养24小时后,用流式细胞仪检测CFSEhi和CFSElo两群的比例。特异性杀伤率计算公式:[1-(含T细胞的样品CFSEhi/CFSElo)/(仅含肿瘤细胞的样品CFSEhi/CFSElo)]×100%。对于MC38细胞杀伤实验,在收集细胞前,加入OVA寡肽到部分MC38细胞中至终浓度100ng/mL,37℃培养3小时。后续步骤与B16F10细胞杀伤实验基本相同,将孵育过OVA寡肽的MC38细胞,即OVApulsedMC38,与没有孵育过OVA寡肽的MC38细胞,分别标记为CFSEhi与CFSElo,随后按比例混合与T细胞进行共培养。B16F10-OVA cells and B16F10 cells were labeled with CFSE hi (2.5mM) and CFSE lo (50nM) respectively, and then co-cultured with T cells in a 96-well plate at the specified ratio. Samples containing only tumor cells and no T cells served as controls. After 24 hours of culture, flow cytometry was used to detect the ratio of CFSE hi and CFSE lo populations. Specific killing rate calculation formula: [1-(Sample containing T cells CFSE hi /CFSE lo )/(Sample containing only tumor cells CFSE hi /CFSE lo )]×100%. For the MC38 cell killing experiment, before collecting the cells, add OVA oligopeptide to some MC38 cells to a final concentration of 100ng/mL and incubate at 37°C for 3 hours. The subsequent steps are basically the same as the B16F10 cell killing experiment. MC38 cells that have been incubated with OVA oligopeptide, namely OVApulsedMC38, and MC38 cells that have not been incubated with OVA oligopeptide are marked as CFSE hi and CFSE lo respectively, and then mixed with T cells in proportion. Perform co-culture.
(16)乳糖处理OT-ⅠT细胞的杀伤实验(16) Killing experiment of OT-Ⅰ T cells treated with lactose
准备条件培养基:50%不含细胞因子的新鲜T细胞培养基和50%MC38条件培养基。用上述条件培养基配制含0mM,20mM乳糖的培养基,再将配好的培养基用于OT-ⅠT细胞靶向肿瘤细胞的杀伤实验。Prepare conditioned medium: 50% cytokine-free fresh T cell medium and 50% MC38 conditioned medium. Use the above conditioned medium to prepare a medium containing 0mM and 20mM lactose, and then use the prepared medium for the killing experiment of OT-ⅠT cells targeting tumor cells.
(17)抗原特异性T细胞的构建:Anti-CD19-CART细胞的构建(17) Construction of antigen-specific T cells: Construction of Anti-CD19-CART cells
采用小鼠CD8+T细胞分离试剂盒从Cas9-EGFP敲入小鼠的脾脏中纯化CD8+T细胞。CD8 + T cells were purified from the spleens of Cas9-EGFP knock-in mice using a mouse CD8 + T cell isolation kit.
第0天,在含有20ng/mL IL-2的RPMI 1640完全培养基中,用anti-CD3(1μg/mL和anti-CD28(0.5μg/mL)刺激CD8+T细胞24小时。第1天,通过Percoll分离液富集活化的CD8+T细胞,于24孔板中用载有anti-CD19-CAR和sgRNA表达单元的逆转录病毒对富集T细胞进行离心感染,加入8μg/mL Polybrene,2000g 30℃离心1小时,升速加速度为1,降速加速度为0。第3天对感染阳性(RFP+)细胞进行流式分选并进一步培养,培养条件与前述记忆T细胞相同。第7天用表达anti-CD19-CAR的T细胞与Nalm6细胞混合进行体外杀伤实验。On day 0, CD8 + T cells were stimulated with anti-CD3 (1 μg/mL) and anti-CD28 (0.5 μg/mL) for 24 hours in RPMI 1640 complete medium containing 20 ng/mL IL-2. Day 1 Activated CD8 + T cells were enriched through Percoll isolation solution, and the enriched T cells were centrifugally infected with retrovirus carrying anti-CD19-CAR and sgRNA expression units in a 24-well plate. Add 8 μg/mL Polybrene, 2000g Centrifuge at 30°C for 1 hour, with the rising acceleration as 1 and the falling acceleration as 0. On the 3rd day, the infection-positive (RFP + ) cells were flow cytometrically sorted and further cultured. The culture conditions were the same as the aforementioned memory T cells. Day 7 T cells expressing anti-CD19-CAR were mixed with Nalm6 cells to perform in vitro killing experiments.
(18)抗原特异性T细胞的构建:NY-ESO-1特异性TCRT细胞的构建(18) Construction of antigen-specific T cells: Construction of NY-ESO-1 specific TCRT cells
NY-ESO-1特异性TCR T细胞构建流程参考人原代T细胞的分离、培养和感染方法。感染3天后,对感染阳性(BFP+)细胞进行流式分选并继续培养扩增。转导7天后,将表达NY-ESO-1特异性TCR的T细胞与A375细胞混合进行体外杀伤实验。The construction process of NY-ESO-1-specific TCR T cells refers to the isolation, culture and infection methods of human primary T cells. Three days after infection, the infection-positive (BFP + ) cells were flow sorted and cultured and expanded. Seven days after transduction, T cells expressing NY-ESO-1-specific TCR were mixed with A375 cells for in vitro killing experiments.
(19)抗原特异性T细胞的构建:Biggest clone TCR T细胞的构建(19) Construction of antigen-specific T cells: Construction of Biggest clone TCR T cells
Biggest clone TCR T细胞构建流程与anti-CD19-CAR T细胞构建流程一致。感染时,用载有biggest clone TCR和sgRNA表达单元的逆转录病毒对富集T细胞进行离心感染。第3天对感染阳性(GFP+)细胞进行流式分选并进一步培养,培养条件与前述记忆T细胞相同。第7天用表达biggest clone TCR的T细胞与MC38细胞混合进行体外杀伤实验。The Biggest clone TCR T cell construction process is consistent with the anti-CD19-CAR T cell construction process. During infection, enriched T cells are centrifugally infected with retrovirus carrying the largest clone TCR and sgRNA expression unit. On the third day, the infection-positive (GFP + ) cells were flow sorted and further cultured. The culture conditions were the same as the aforementioned memory T cells. On the 7th day, T cells expressing the largest clone TCR were mixed with MC38 cells for in vitro killing experiments.
(20)建立小鼠皮下肿瘤模型(20) Establishing a mouse subcutaneous tumor model
收集细胞,用DPBS清洗两遍以去除残留的培养基,用40μm滤膜过滤细胞,按所需细胞数量进行分装。Collect the cells, wash them twice with DPBS to remove residual culture medium, filter the cells with a 40 μm filter, and aliquot according to the required number of cells.
表1小鼠皮下肿瘤植入细胞数量Table 1 Number of cells implanted in mouse subcutaneous tumors
植瘤前一天剃掉小鼠背部一侧的毛。植瘤时,吸取细胞悬液前需进行混匀,用1mL注射器吸取100μL细胞悬液,挑起背部无毛部位的皮肤刺入0.5cm进行注射,可见皮下鼓起一个小包,拔出针头前需要将枕头旋转半周防止细胞液外溢。植瘤后7天左右,使用电子游标卡尺测量肿瘤的长和宽,每2~3天测量一次。肿瘤体积计算公式:1/2×长×宽×宽。The hair on one side of the mouse's back was shaved one day before tumor transplantation. When transplanting tumors, the cell suspension needs to be mixed before aspirating. Use a 1mL syringe to absorb 100μL of cell suspension. Pick up the skin on the hairless part of the back and insert it 0.5cm for injection. A small bag can be seen under the skin. This needs to be done before pulling out the needle. Rotate the pillow half a circle to prevent cell fluid from leaking out. About 7 days after tumor transplantation, use electronic vernier calipers to measure the length and width of the tumor every 2 to 3 days. Tumor volume calculation formula: 1/2×length×width×width.
植瘤后1天,用DPBS配制250mM乳糖溶液,用0.22μm滤膜过滤。使用1mL注射器给每只荷瘤小鼠经尾静脉注射200μL乳糖溶液,对照组注射200μLDPBS,每两天一次,直至第21天。对于LacNAc处理,每隔一天静脉注射配制于DPBS中的LacNAc(20mM,200μL),对照组注射200μLDPBS,直至第21天。One day after tumor transplantation, prepare a 250mM lactose solution with DPBS and filter it with a 0.22μm filter. Each tumor-bearing mouse was injected with 200 μL of lactose solution through the tail vein using a 1mL syringe, and the control group was injected with 200 μL of LDPBS once every two days until the 21st day. For LacNAc treatment, LacNAc (20 mM, 200 μL) in DPBS was injected intravenously every other day, and the control group was injected with 200 μL DPBS until day 21.
(21)小鼠体内NK细胞、CD4+T细胞、CD8+T细胞的清除(21) Elimination of NK cells, CD4+T cells, and CD8+T cells in mice
NK细胞的清除:用DPBS稀释anti-NK1.1抗体,终浓度为100μg/200μL。以植瘤当日为第0天,在第-3、-1、6和第8天,小鼠腹腔注射100μg稀释后的抗体。CD4+T细胞的清除:用DPBS稀释anti-CD4抗体,终浓度为400μg/200μL。以植瘤当日为第0天,在第-2、-1、6和第7天,小鼠腹腔注射400μg稀释后的抗体。CD8+T细胞的清除:用DPBS稀释anti-CD8a抗体,终浓度为250μg/200μL。以植瘤当日为第0天,在第-2、-1、6和第7天,小鼠腹腔注射250μg稀释后的抗体。Depletion of NK cells: Dilute anti-NK1.1 antibody with DPBS to a final concentration of 100μg/200μL. Taking the day of tumor transplantation as day 0, mice were intraperitoneally injected with 100 μg of diluted antibody on days -3, -1, 6, and 8. Depletion of CD4 + T cells: Dilute anti-CD4 antibody with DPBS to a final concentration of 400μg/200μL. Taking the day of tumor transplantation as day 0, mice were intraperitoneally injected with 400 μg of diluted antibody on days -2, -1, 6, and 7. Depletion of CD8 + T cells: Dilute anti-CD8a antibody with DPBS to a final concentration of 250μg/200μL. Taking the day of tumor transplantation as day 0, mice were intraperitoneally injected with 250 μg of diluted antibody on days -2, -1, 6, and 7.
(22)重组Gal-1蛋白纯化:(22) Purification of recombinant Gal-1 protein:
克隆表达测试:将原核表达质粒pQE-80-Gal-1opti转化到BL21感受态中,均匀涂布到含有氨苄的琼脂糖平板上。挑取5个单克隆分别放到含氨苄的LB培养基中,37℃摇床过夜培养。将菌液按照1:100接种到含氨苄的LB培养基中,37℃摇床培养。约2小时左右,检测菌液600nm OD值,约为0.7~0.8,即停止培养。冰上降温1~2分钟,然后加入IPTG至终浓度0.25mM,在18℃摇床中培养17小时。诱导表达后,收集菌体,用DPBS洗一遍,用大肠杆菌裂解液重悬菌体并超声破碎。取少量裂解菌液,加入5×SDS上样缓冲液,100℃煮10分钟,随后进行蛋白质电泳。Cloning expression test: Transform the prokaryotic expression plasmid pQE-80-Gal-1opti into the BL21 competent state, and spread it evenly on an agarose plate containing ampicillin. Pick 5 single clones and put them into LB medium containing ampicillin, and culture them overnight on a shaking table at 37°C. The bacterial solution was inoculated into LB medium containing ampicillin at a ratio of 1:100 and cultured on a shaking table at 37°C. In about 2 hours, detect the 600nm OD value of the bacterial solution, which is about 0.7 to 0.8, and then stop culturing. Cool down on ice for 1 to 2 minutes, then add IPTG to a final concentration of 0.25mM, and incubate in a shaker at 18°C for 17 hours. After induction of expression, the cells were collected, washed with DPBS, resuspended in E. coli lysis buffer and disrupted by sonication. Take a small amount of lysed bacterial solution, add 5×SDS loading buffer, cook at 100°C for 10 minutes, and then perform protein electrophoresis.
重组Gal-1蛋白纯化:选取的单克隆菌株进行扩大培养,可扩至500mL。活化及诱导表达步骤同克隆表达测试。诱导表达17小时后,4℃9600g离心15分钟,收集菌体,从此步骤开始在冰上操作。(1)用预冷的DPBS洗一遍,加入80mL大肠杆菌裂解液重悬,进行超声破碎,15秒开,15秒关,超声半小时至一小时,直至菌液变澄清。期间一定要在冰水混合物中进行降温。将裂解菌液转移至超速离心管内,4℃21600g离心20分钟。离心期间,将2mL Ni-NTA用裂解液清洗两遍,需低速离心防止镍标琼脂糖珠损坏。将裂解菌液上清与Ni-NTA混合,4℃缓慢颠倒混合孵育2小时。将孵育完的Ni-NTA转移至层析柱内,待液体差不多流尽,用十倍柱体积的镍柱清洗液洗一遍。待液体流尽后,加入10mL镍柱洗脱液,期间用1.5mL离心管接收洗脱液,每管400~500μL。使用Nanodrop,按顺序检测每管蛋白质浓度。将含有较高浓度蛋白质的离心管内的液体收集在一起,装入透析袋。透析三次,前两次各两小时,第三次透析过夜。将透析后的蛋白液分装到1.5mL离心管中,用Bradford蛋白测定法测定浓度,置于4℃备用或-80℃冻存。Purification of recombinant Gal-1 protein: The selected monoclonal strain is expanded and cultured to 500mL. The activation and induction expression steps are the same as those for cloning expression test. After inducing expression for 17 hours, centrifuge at 9600g for 15 minutes at 4°C to collect the cells. From this step onwards, operate on ice. (1) Wash once with pre-cooled DPBS, add 80 mL of E. coli lysate and resuspend, conduct ultrasonic disruption, turn on for 15 seconds, off for 15 seconds, and sonicate for half an hour to one hour until the bacterial solution becomes clear. Be sure to cool down in a mixture of ice and water during this period. Transfer the lysed bacterial solution to an ultracentrifuge tube and centrifuge at 21600g for 20 minutes at 4°C. During centrifugation, wash 2mL Ni-NTA twice with lysis buffer. Low-speed centrifugation is required to prevent damage to the nickel-labeled agarose beads. Mix the supernatant of the lysed bacterial solution and Ni-NTA, and incubate for 2 hours at 4°C with slow inversion and mixing. Transfer the incubated Ni-NTA to the chromatography column. When the liquid is almost gone, wash it with ten times the column volume of nickel column cleaning solution. After the liquid has drained out, add 10 mL of nickel column eluent. During this period, use a 1.5 mL centrifuge tube to receive the eluate, 400 to 500 μL per tube. Using Nanodrop, detect protein concentration in each tube sequentially. The liquids in the centrifuge tubes containing higher concentrations of protein are collected together and put into dialysis bags. Dialysis was performed three times, the first two were two hours each, and the third was overnight. Dispense the dialyzed protein solution into 1.5 mL centrifuge tubes, determine the concentration using the Bradford protein assay, and store at 4°C for later use or frozen at -80°C.
重组Gal-1蛋白活性测试:收集体外培养的小鼠原代T细胞,分装至1.5mL离心管内,每管5×105细胞。加入待检测的重组Gal-1蛋白并混合均匀,室温孵育10分钟。用DPBS洗两遍。按照常规细胞表面抗原抗体染色方法进行anti-Gal-1染色。流式细胞仪检测,指标一为anti-Gal-1的染色强度,指标二为FSC或SSC所展示的T细胞结团程度。Recombinant Gal-1 protein activity test: Collect mouse primary T cells cultured in vitro and aliquot them into 1.5 mL centrifuge tubes, with 5 × 10 5 cells in each tube. Add the recombinant Gal-1 protein to be detected, mix evenly, and incubate at room temperature for 10 minutes. Wash twice with DPBS. Anti-Gal-1 staining was performed according to conventional cell surface antigen and antibody staining methods. For flow cytometry detection, the first indicator is the staining intensity of anti-Gal-1, and the second indicator is the degree of T cell clumping displayed by FSC or SSC.
(23)质谱与分析(23)Mass spectrometry and analysis
质谱仪为配备纳米nano-ESI离子源的LTQ ORBITRAP Velos质谱仪(ThermoFisherScientific,San Jose,CA,USA)中。质谱仪以数据依赖模式运行,每个周期进行一次MS扫描,然后进行十次HCD(高能碰撞解离)MS/MS扫描。使用Proteome Discoverer(version1.4,网址:https://www.thermofisher.com/hk/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectr ometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software.html)对原始数据进行处理,得到所有鉴定蛋白的肽谱匹配(peptide spectrummatches,PSM)原始强度表,用R包DEqMS进行进一步分析。对原始强度值进行log2变换,每个PSM减去log2强度的中位数,得到相对log2比率。然后通过贝叶斯算法对蛋白差异表达进行计算。差异表达蛋白按P<0.05标准筛选。这些蛋白使用R包ClusterProfiler(3.12.0版本)进行功能富集分析。The mass spectrometer was an LTQ ORBITRAP Velos mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with a nano-ESI ion source. The mass spectrometer was operated in data-dependent mode, with one MS scan per cycle followed by ten HCD (High Energy Collision Dissociation) MS/MS scans. Use Proteome Discoverer (version1.4, URL: https://www.thermofisher.com/hk/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectr ometry-lc-ms/lc-ms-software /multi-omics-data-analysis/proteome-discoverer-software.html) processed the original data to obtain the original intensity table of peptide spectrum matches (PSM) of all identified proteins, and used the R package DEqMS for further analysis. The raw intensity values were log2 transformed and the median log2 intensity was subtracted from each PSM to obtain the relative log2 ratio. The protein differential expression was then calculated using the Bayesian algorithm. Differentially expressed proteins were screened according to P<0.05 standard. These proteins were subjected to functional enrichment analysis using the R package ClusterProfiler (version 3.12.0).
(24)Gal-1转移实验(24)Gal-1 transfer assay
通过T细胞与MC38细胞共培养进行Gal-1转移实验。OT-ⅠT细胞与野生型或敲除Gal-1的MC38细胞在条件培养基(50%不含细胞因子的新鲜T细胞培养基和50%野生型或Gal-1敲除的MC38细胞条件培养基)中按2:1或指定比例共培养8小时,随后通过流式细胞术检测细胞表面Gal-1的水平。在Boyden chamber中进行Gal-1转移实验。将OT-ⅠT细胞接种于Boyden chamber的上隔室、MC38细胞接种于下隔室,或者将OT-ⅠT细胞与MC38细胞一起接种于下隔室,培养8小时后通过流式细胞术检测细胞表面Gal-1的水平。在低熔点琼脂糖凝胶中进行Gal-1转移实验。预先将MC38细胞接种于孔板中,待其附着后加入溶解于培养基中的低熔点琼脂糖,凝固后将OT-ⅠT细胞添加到琼脂糖层上,或者直接添加到无琼脂糖层覆盖的MC38细胞上,培养8小时后通过流式细胞术检测细胞表面Gal-1的水平。Gal-1 transfer experiments were performed by co-culture of T cells and MC38 cells. OT-ⅠT cells were compared with wild-type or Gal-1 knockout MC38 cells in conditioned medium (50% fresh T cell medium without cytokines and 50% wild-type or Gal-1 knockout MC38 cells conditioned medium ) in 2:1 or specified ratio for 8 hours, and then the level of Gal-1 on the cell surface was detected by flow cytometry. Gal-1 transfer experiments were performed in Boyden chamber. OT-IT cells were seeded in the upper compartment of Boyden chamber, MC38 cells were seeded in the lower compartment, or OT-IT cells and MC38 cells were seeded in the lower compartment together, and the cell surface was detected by flow cytometry after 8 hours of culture. Gal-1 levels. Gal-1 transfer experiments were performed in low-melting agarose gels. Inoculate MC38 cells in the well plate in advance, add low melting point agarose dissolved in the culture medium after they are attached, and after solidification, add OT-IT cells to the agarose layer, or add them directly to the agarose layer without covering it. On MC38 cells, the level of Gal-1 on the cell surface was detected by flow cytometry after 8 hours of culture.
(25)荧光共振能量转移(FRET)(25) Fluorescence resonance energy transfer (FRET)
(1)重组Gal-1处理:在100μL DPBS中,用2.5μg重组Gal-1处理1.2×106野生型或B4galt1敲除的记忆T细胞,室温孵育10分钟,随后用DPBS洗两遍。(1) Recombinant Gal-1 treatment: Treat 1.2×10 6 wild-type or B4galt1 knockout memory T cells with 2.5 μg recombinant Gal-1 in 100 μL DPBS, incubate at room temperature for 10 minutes, and then wash twice with DPBS.
(2)乳糖处理:在重组Gal-1处理期间添加20mM乳糖同时孵育。(2) Lactose treatment: 20mM lactose was added during recombinant Gal-1 treatment while incubating.
(3)抗体孵育:重组Gal-1和乳糖处理结束后,将T细胞与PE-anti-Vα2和APC-anti-CD8α抗体在4℃孵育30分钟。每种样品需设置四组染色,包括两种抗体分别各一组,两种抗体同时染色组以及无抗体组。(3) Antibody incubation: After treatment with recombinant Gal-1 and lactose, the T cells were incubated with PE-anti-Vα2 and APC-anti-CD8α antibodies for 30 minutes at 4°C. Each sample needs to be set up with four groups of staining, including one group for each of the two antibodies, a group stained with two antibodies at the same time, and a group without antibodies.
(4)染色后用细胞固定液在4℃固定10分钟,洗一遍即可用流式细胞仪检测。(4) After staining, use cell fixative to fix at 4°C for 10 minutes, wash once and then use flow cytometer for detection.
(5)检测PE,APC以及FRET通道的平均荧光强度值,通过公式计算出TCR-CD8 FRET单位。(5) Detect the average fluorescence intensity value of PE, APC and FRET channels, and calculate the TCR-CD8 FRET unit through the formula.
(26)小鼠肿瘤模型、药物处理及过继性转移实验(26) Mouse tumor model, drug treatment and adoptive transfer experiments
4×105的B16F10-OVA细胞经皮下注射植入雌性C57BL/6J小鼠体内;注射7天后,将肿瘤大小相似的荷瘤小鼠随机分为两组,然后分别经尾静脉注射2×106转染过B4GALT1sgRNA或对照RNA的OT-1T细胞;随后用游标卡尺每两天测量一次肿瘤大小;肿瘤体积计算方法:宽×宽×长×1/2;4 × 10 5 B16F10-OVA cells were subcutaneously injected into female C57BL/6J mice; 7 days after injection, tumor-bearing mice with similar tumor sizes were randomly divided into two groups, and then 2 × 10 cells were injected through the tail vein. 6. OT-1T cells transfected with B4GALT1sgRNA or control RNA; then use a vernier caliper to measure the tumor size every two days; tumor volume calculation method: width × width × length × 1/2;
乳糖处理:MC38(1×106细胞)、B16F1O(4×105细胞)、B16F10-OVA(4×105细胞)、B16F10-Control(4×105细胞)、4T1(4×105细胞)、CT26(4×105细胞)和SGC7901(5×106细胞)细胞经皮下注射植入雌性C57BL/6J或NPG小鼠体内;如无特殊说明,则从植瘤后第二天开始,对每只荷瘤小鼠,每隔一天经尾静脉注射一剂200μl溶于PBS的250mM乳糖溶液(注射至第21天);Lactose treatment: MC38 (1×10 6 cells), B16F1O (4×10 5 cells), B16F10-OVA (4×10 5 cells), B16F10-Control (4×10 5 cells), 4T1 (4×10 5 cells) ), CT26 (4×10 5 cells) and SGC7901 (5×10 6 cells) cells were injected subcutaneously into female C57BL/6J or NPG mice; unless otherwise specified, starting from the day after tumor transplantation, For each tumor-bearing mouse, a dose of 200 μl of 250 mM lactose solution dissolved in PBS was injected through the tail vein every other day (injection to day 21);
联合治疗:在肿瘤植入后的第6、9、12天,腹腔注射200μl用PBS稀释后总量为100μg的抗PD1(CloneRMP1-14,BioXCell,BE0146)或PDL1(Clone10 F.9G2,BioXCell,BE0101)抗体;Combination therapy: On days 6, 9, and 12 after tumor implantation, intraperitoneally inject 200 μl of anti-PD1 (CloneRMP1-14, BioXCell, BE0146) or PDL1 (Clone10 F.9G2, BioXCell, BioXCell, BE0101) Antibody;
CD8+T细胞、CD4+T细胞及NK细胞的清除:在植瘤前3天和前1天,腹腔注射200μl用PBS稀释后总量为100μg的NK抗体;在植瘤前2天和前1天,腹腔注射200μl用PBS稀释后总量为250μg的CD8抗体(Clone2.43,BioXCell,BE0061);在植瘤前2天和前1天,腹腔注射200μl用PBS稀释后总量为400μg的CD4抗体(CloneGK1.5,BioXCell,BE0003-1);Depletion of CD8 + T cells, CD4 + T cells and NK cells: 3 days and 1 day before tumor transplantation, intraperitoneally inject 200 μl of NK antibody diluted with PBS for a total amount of 100 μg; 2 days and 1 day before tumor transplantation On the first day, 200 μl of CD8 antibody (Clone2.43, BioXCell, BE0061) diluted in PBS was intraperitoneally injected to a total amount of 250 μg; 2 days and 1 day before tumor transplantation, 200 μl of CD4 diluted in PBS to a total amount of 400 μg was injected intraperitoneally. Antibody (CloneGK1.5, BioXCell, BE0003-1);
MC38二次接种肿瘤模型:1×106的MC38-GFP细胞或MC38-LALBA过表达的细胞经皮下注射植入雌性C57BL/6J小鼠体内;植瘤21天后,对MC38-LALBA肿瘤完全消失的小鼠二次接种1×106的MC38-GFP细胞;对照组为未接种过MC38-GFP细胞的同龄雌性C57BL/6J小鼠;MC38 secondary inoculation tumor model: 1×10 6 MC38-GFP cells or MC38-LALBA overexpressing cells were subcutaneously injected into female C57BL/6J mice; 21 days after tumor transplantation, the MC38-LALBA tumors completely disappeared Mice were inoculated twice with 1 × 10 6 MC38-GFP cells; the control group was female C57BL/6J mice of the same age that had not been inoculated with MC38-GFP cells;
MC38-GFP/MC38-LALBA混合肿瘤模型:MC38-GFP和MC38-LALBA细胞以9:1或1:1的比例混合后,经皮下注射在雌性C57BL/6J小鼠体内植入总量为1×106的细胞;对照组为皮下注射1×106MC38-GFP细胞的同龄小鼠;MC38-GFP/MC38-LALBA mixed tumor model: MC38-GFP and MC38-LALBA cells were mixed at a ratio of 9:1 or 1:1, and then injected subcutaneously into female C57BL/6J mice with a total implantation volume of 1× 10 6 cells; the control group was mice of the same age injected subcutaneously with 1×10 6 MC38-GFP cells;
(27)人源化小鼠(27)Humanized mice
对3-4周龄的NPG小鼠进行半致死剂量为120cGy的辐照,然后经尾静脉注射入人CD34+的脐带血细胞;移植12周后,检测外周血中人CD45+的细胞以确定人造血系统的重建;在造血干细胞植入13周后,将5×106SGC7901细胞皮下植入小鼠体内,从植瘤后第二天开始,对每只荷瘤小鼠,每隔一天经尾静脉注射一剂200μl溶于PBS的250mM乳糖溶液,对照组注射等体积的PBS缓冲液;植瘤10天后,每周注射两剂抗人PD1抗体(Pembrolizumab,Selleck,Cat#A2005)(10mg/kg);每2-3天测量一次肿瘤大小。NPG mice aged 3-4 weeks were irradiated with a semi-lethal dose of 120 cGy, and then human CD34+ umbilical cord blood cells were injected through the tail vein; 12 weeks after transplantation, human CD45+ cells in peripheral blood were detected to determine the artificial hematopoietic system. Reconstruction; 13 weeks after hematopoietic stem cell implantation, 5×10 6 SGC7901 cells were subcutaneously implanted into mice. Starting from the second day after tumor implantation, each tumor-bearing mouse was injected through the tail vein every other day. One dose of 200μl 250mM lactose solution dissolved in PBS, the control group was injected with an equal volume of PBS buffer; 10 days after tumor transplantation, two doses of anti-human PD1 antibody (Pembrolizumab, Selleck, Cat#A2005) (10mg/kg) were injected weekly; Tumor size was measured every 2-3 days.
(28)离体记忆T细胞的培养、感染和过继性转移(28) Culture, infection and adoptive transfer of memory T cells in vitro
第0天,从6-8周龄的Cas9-EGFP/OT-1雌性小鼠中分离脾脏细胞,并在含有IL2(10ng/ml)和SIINFEKL肽段(10ng/ml)的RPMI完全培养基(RPMI 1640,10%FBS,20mMHEPES,1mM丙酮酸钠,100μg/ml盘尼西林)中培养24小时;第1天,用Percoll密度梯度离心的方式富集得到被激活的Cas9-EGFP/OT-1T细胞,随后在24孔板中加入细胞悬液、逆转录病毒和8μg/ml的polybrene并离心感染(2,000g,30℃,1h,升降速的加速度为最小);离心后,将培养板至于37℃恒温CO2培养箱中培养5h,然后将培养基换为含有IL2(2ng/ml),IL7(2.5ng/ml)和IL15(10ng/ml)的RPMI完全培养基,细胞密度为3×105/ml;感染两天后(第3天),用3μg/ml puromycin筛选4天;第7天,细胞可用于共培养或过继性转移实验。On day 0, spleen cells were isolated from 6-8 week old Cas9-EGFP/OT-1 female mice and cultured in RPMI complete medium containing IL2 (10ng/ml) and SIINFEKL peptide (10ng/ml). RPMI 1640, 10% FBS, 20mMHEPES, 1mM sodium pyruvate, 100μg/ml penicillin) for 24 hours; on day 1, activated Cas9-EGFP/OT-1T cells were enriched by Percoll density gradient centrifugation. Then add cell suspension, retrovirus and 8μg/ml polybrene to the 24-well plate and centrifuge the infection (2,000g, 30℃, 1h, the acceleration of rising and falling speed is minimum); after centrifugation, keep the culture plate at a constant temperature of 37℃ Cultivate in a CO 2 incubator for 5 hours, and then change the medium to RPMI complete medium containing IL2 (2ng/ml), IL7 (2.5ng/ml) and IL15 (10ng/ml). The cell density is 3×10 5 / ml; two days after infection (day 3), select with 3 μg/ml puromycin for 4 days; on day 7, cells are ready for co-culture or adoptive transfer experiments.
(29)肿瘤浸润型淋巴细胞(TIL)的分离(29) Isolation of tumor-infiltrating lymphocytes (TIL)
在六孔板中加入5ml含2%FBS及50U/ml IV型胶原酶(Invitrogen,V900893)的RPMI培养基,然后将B16F10-OVA、MC38、SGC7901肿瘤在上述溶液中剪成小块,37℃孵育1h;将消化后的悬液用70μm滤膜过滤,PBS洗三遍后即可用于抗体染色和流式分析。Add 5 ml of RPMI medium containing 2% FBS and 50 U/ml type IV collagenase (Invitrogen, V900893) to a six-well plate, and then cut the B16F10-OVA, MC38, and SGC7901 tumors into small pieces in the above solution and incubate at 37°C. Incubate for 1 hour; filter the digested suspension with a 70 μm filter membrane, wash it three times with PBS, and then use it for antibody staining and flow cytometric analysis.
(30)肿瘤内T细胞的浸润和增殖(30) Infiltration and proliferation of T cells in tumors
Puromycin筛选4天后,用CFSE(carboxyfluorescein diacetate succinimidylester,Invitrogen)标记被感染的OT-1T细胞,然后将2×106标记后的细胞尾静脉注射入荷瘤(B16F10-OVA)14天的小鼠体内;植入后24h和第6天,分别用流式细胞术检测CFSE的强度。After 4 days of puromycin selection, the infected OT-1T cells were labeled with CFSE (carboxyfluorescein diacetate succinimidylester, Invitrogen), and then 2 × 10 6 labeled cells were injected into the tail vein of mice bearing tumors (B16F10-OVA) for 14 days; The intensity of CFSE was detected by flow cytometry at 24 h and 6 days after implantation.
(31)逆转录病毒全基因组CRISPR/Cas9文库构建(31) Retroviral whole genome CRISPR/Cas9 library construction
全基因组CRISPR敲除文库(1000000096)购自Addgene公司;用引物对F:5'-GGCTTTATATATCTTGTGGAAAGGACGAAACACCG-3’(SEQ ID NO:3)和R:5'-CTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC-3'(SEQ ID NO:4)PCR扩增gRNA区域,经Gibson反应构入MSCV-gRNA-PGK-PURO-2A-BFP载体。The whole genome CRISPR knockout library (1000000096) was purchased from Addgene; the primer pair F: 5'-GGCTTTATATATCTTGTGGAAAGGACGAAACACCG-3' (SEQ ID NO: 3) and R: 5'-CTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC-3' (SEQ ID NO: 4) The gRNA region was amplified by PCR and constructed into the MSCV-gRNA-PGK-PURO-2A-BFP vector through Gibson reaction.
(32)逆转录病毒定制小文库构建(32)Construction of customized mini libraries of retroviruses
根据全基因组敲除筛选结果,共筛选出1398个基因;根据gRNA的表现,平均每个基因从初始文库中选择3个gRNA,共添加105个基因间对照gRNA;合成含有gRNA序列的寡核苷酸(定制序列芯片),经PCR扩增,通过Gibson反应克隆到MSCV-gRNA-PGK-PURO-2A-BFP载体。Based on the genome-wide knockout screening results, a total of 1398 genes were screened; based on the performance of gRNA, an average of 3 gRNAs were selected from the initial library for each gene, and a total of 105 intergenic control gRNAs were added; oligonucleotides containing gRNA sequences were synthesized acid (customized sequence chip), amplified by PCR, and cloned into the MSCV-gRNA-PGK-PURO-2A-BFP vector through Gibson reaction.
(33)CRISPR/Cas9筛选(33)CRISPR/Cas9 screening
对于体外PD1表达筛选,在OT-1T-cell培养的第6天,将3x106B16F10-OVA细胞铺在含DMEM(DMEM+10%FBS+Pen/Strep)的15cm的培养皿中;在第7天,用含IL2(2ng/ml)、IL7(2.5ng/ml)和IL15(10ng/ml)的完全RPMI 1640培养基重悬嘌呤霉素筛选后的OT-1T细胞至最终浓度为每毫升6x105个细胞,并按T细胞:B16F10-OVA细胞比例为4:1添加到B16F10-OVA细胞中;细胞在37℃共培养过夜;收集CD8+T细胞,用PE抗PD1在2%FBS/PBS中冰上染色30分钟;BD FACSAria分选出PD1+表达强度最高和最低5%的细胞;For in vitro PD1 expression screening, on the 6th day of OT-1T-cell culture, 3x10 6 B16F10-OVA cells were spread in a 15cm culture dish containing DMEM (DMEM+10% FBS+Pen/Strep); on the 7th day On the next day, the puromycin-selected OT-1T cells were resuspended in complete RPMI 1640 medium containing IL2 (2ng/ml), IL7 (2.5ng/ml) and IL15 (10ng/ml) to a final concentration of 6x10 per ml. 5 cells were added to B16F10-OVA cells at a T cell:B16F10-OVA cell ratio of 4:1; cells were co-cultured at 37°C overnight; CD8 + T cells were collected and used with PE anti-PD1 in 2% FBS/PBS Stain on ice for 30 minutes; BD FACSAria sorting cells with the highest and lowest 5% PD1+ expression intensity;
对于定制的二级小文库的体内筛选,在4天的嘌呤霉素筛选后,保存2x106个被感染的OT-1T细胞作为起始输入样本(每个sgRNA大约有269X细胞覆盖);经文库感染的OT-1T细胞(每只受体小鼠2x106细胞)通过静脉被转移到携带B16F10-OVA肿瘤的小鼠体内;总共有24只小鼠被用作受体;在移植后7天,B16F10-OVA肿瘤被消化成单细胞悬液,并用生物素抗小鼠CD8a(Biolegend,100704)和链霉亲和素磁珠分离肿瘤中浸润的CD8+T细胞;同时,取每个肿瘤单细胞悬液的1/20体积进行OT-1染色,以估计每个肿瘤中浸润的OT-1T细胞数量;每个肿瘤共收集1x104~1×105OT-1T细胞。For in vivo screening of custom secondary minilibraries, save 2x10 infected OT-1T cells as starting input sample (approximately 269X cell coverage per sgRNA) after 4 days of puromycin screening; library Infected OT-1 T cells ( 2x10 cells per recipient mouse) were transferred intravenously into B16F10-OVA tumor-bearing mice; a total of 24 mice were used as recipients; 7 days after transplantation, B16F10-OVA tumors were digested into single-cell suspensions, and biotin anti-mouse CD8a (Biolegend, 100704) and streptavidin magnetic beads were used to isolate the infiltrating CD8 + T cells in the tumors; at the same time, single cells from each tumor were removed 1/20 volume of the suspension was stained for OT-1 to estimate the number of infiltrating OT-1T cells in each tumor; a total of 1x104 to 1x10 5 OT-1T cells were collected from each tumor.
(34)测序文库制备(34) Sequencing library preparation
采用酚/氯仿抽提法提取基因组DNA;采用Titanium Taq DNA聚合酶(Clontech,639242)进行首轮PCR扩增sgRNA区;第二轮PCR为每个样本添加接头序列和测序标签;最后进行Nova-seq150-bp双端测序(Illumina)。Genomic DNA was extracted using phenol/chloroform extraction method; Titanium Taq DNA polymerase (Clontech, 639242) was used to perform the first round of PCR to amplify the sgRNA region; the second round of PCR added adapter sequences and sequencing tags to each sample; finally, Nova- seq150-bp paired-end sequencing (Illumina).
(35)筛选结果分析(35) Screening result analysis
原始数据使用序列整理工具进行预处理,使用工具Cutadapt(版本3.4)去除接头序列和工具FLASH(版本1.2.11)对双端测序序列进行合并;首先使用MAGeCK(版本0.5.9.5)对CRISPR/Cas9筛选数据进行分析,MAGeCK“count”命令生成样本的gRNA计数并将其原始读数合并至计数矩阵中;接下来,使用MAGeCK“test”命令的默认设置(可以从https://sourceforge.net/projects/mageck/获得)来识别排名靠前的正向或反向的grna或基因;基因集富集分析是使用R语言clusterProfiler包(版本3.12.0)的GSEA()函数的默认参数执行的;KEGG数据库可在R语言包msigdbr包(版本The raw data were preprocessed using sequence sorting tools, and the tool Cutadapt (version 3.4) was used to remove adapter sequences and the tool FLASH (version 1.2.11) was used to merge paired-end sequencing sequences; first, MAGeCK (version 0.5.9.5) was used to perform CRISPR/Cas9 To filter the data for analysis, the MAGeCK "count" command generates gRNA counts for the samples and merges their raw reads into a count matrix; next, use the default settings of the MAGeCK "test" command (available from https://sourceforge.net/projects /mageck/obtained) to identify the top forward or reverse gRNAs or genes; gene set enrichment analysis was performed using the default parameters of the GSEA() function of the R language clusterProfiler package (version 3.12.0); KEGG The database is available in the R language package msigdbr package (version
7.5.1)(https://igordot.github.io/msigdbr/)的“C2”类别中找到。7.5.1)(https://igordot.github.io/msigdbr/) found in the "C2" category.
(36)流式细胞术(36)Flow cytometry
细胞表面抗原染色时,细胞在冰上2%的FBS/PBS中染色30分钟;细胞内染色根据厂商说明,使用固定/通透试剂盒(BD Biosciences)进行;使用了以下抗体:APC抗小鼠CD8a(Invitrogen,17-0081-83),PE抗小鼠CD279(PD-1)(BioLegend,109104),APC抗小鼠CD279(PD-1)(BioLegend,109112),FITC抗小鼠IFNγ(BioLegend,505806),APC抗小鼠β2-微球蛋白(BioLegend,154506),APC抗小鼠H2Db(BioLegend,111513),APC抗小鼠OVA257-264(SIINFEKL)(Invitrogen,17-5743-82),FITC抗小鼠CD3(BioLegend,100204),PE-链霉亲和素(peolegend,405203),生物素化刺桐凝集素(B-1145-5),生物素化琥珀酰小麦胚芽凝集素(B-1025S-5),APC抗人CD8a(BioLegend,300912),PE抗人IFNγ(BioLegend,506507),FITC抗小鼠TCRVα2(BioLegend,127806);使用BD FACSAria仪器进行流式细胞实验,FlowJo分析数据。For cell surface antigen staining, cells were stained in 2% FBS/PBS on ice for 30 min; intracellular staining was performed using a fixation/permeabilization kit (BD Biosciences) according to the manufacturer's instructions; the following antibodies were used: APC anti-mouse CD8a (Invitrogen, 17-0081-83), PE anti-mouse CD279 (PD-1) (BioLegend, 109104), APC anti-mouse CD279 (PD-1) (BioLegend, 109112), FITC anti-mouse IFNγ (BioLegend , 505806), APC anti-mouse β2-microglobulin (BioLegend, 154506), APC anti-mouse H2Db (BioLegend, 111513), APC anti-mouse OVA257-264 (SIINFEKL) (Invitrogen, 17-5743-82), FITC anti-mouse CD3 (BioLegend, 100204), PE-streptavidin (peolegend, 405203), biotinylated Erythrina lectin (B-1145-5), biotinylated succinyl wheat germ agglutinin (B -1025S-5), APC anti-human CD8a (BioLegend, 300912), PE anti-human IFNγ (BioLegend, 506507), FITC anti-mouse TCRVα2 (BioLegend, 127806); use BD FACSAria instrument for flow cytometry experiments, and FlowJo to analyze the data .
(37)酶联免疫吸附测定(37)Enzyme-linked immunosorbent assay
OT-1T细胞(3x105/ml)与B16F10-OVA细胞在含有IL2(2ng/ml)、IL7(2.5ng/ml)和IL15(10ng/ml)的培养基下,37℃共培养8小时;共培养后收集上清;ELISA试剂盒检测共培养上清中的TNFα和IFNγ(ABclona,Cat#RK00027,Cat#RK00019);每个样品有两个重复。OT-1T cells (3x10 5 /ml) and B16F10-OVA cells were co-cultured in a medium containing IL2 (2ng/ml), IL7 (2.5ng/ml) and IL15 (10ng/ml) at 37°C for 8 hours; Collect the supernatant after co-culture; ELISA kit detects TNFα and IFNγ in the co-culture supernatant (ABclona, Cat#RK00027, Cat#RK00019); each sample has two replicates.
(38)体外杀伤实验(38) In vitro killing experiment
对于OT-1T细胞体外杀伤实验,用CFSEhi(2.5mM)和CFSElo(50nM)分别标记B16F10-OVA细胞和B16F10细胞,然后按指定比例与OT-1T细胞在96孔板中共培养;对照组为未添加OT-1T细胞的肿瘤细胞;孵育24小时后,用流式细胞仪检测CFSEhi和CFSElo两群细胞的比例;For the in vitro killing experiment of OT-1T cells, B16F10-OVA cells and B16F10 cells were labeled with CFSEhi (2.5mM) and CFSElo (50nM) respectively, and then co-cultured with OT-1T cells in a 96-well plate at the specified ratio; the control group was not Add OT-1T cells to tumor cells; after 24 hours of incubation, use flow cytometry to detect the ratio of two groups of cells, CFSEhi and CFSElo;
对于MC38体外杀伤实验,在37℃下用100ng/ml的Ovapeptide(SIINFEKL)处理MC38细胞3小时,然后与OT-1T细胞共培养;For MC38 in vitro killing experiments, MC38 cells were treated with 100ng/ml Ovapeptide (SIINFEKL) at 37°C for 3 hours, and then co-cultured with OT-1T cells;
特异性杀伤率计算公式为[1-(含T细胞的CFSEhi/CFSElo)/(仅含肿瘤细胞的CFSEhi/CFSElo)]×100%。The specific killing rate calculation formula is [1-(CFSEhi/CFSElo containing T cells)/(CFSEhi/CFSElo containing only tumor cells)] × 100%.
(39)用液相色谱法-质谱联用(LC-MS)进行乳糖定量(39) Lactose quantification using liquid chromatography-mass spectrometry (LC-MS)
细胞样品制备:收集细胞后用PBS洗两遍;每2×106细胞加入400μl甲醇/乙腈混合溶液(甲醇:乙腈:水=4:4:2),充分混匀,于-80℃放置1h,随后在4℃14,000g离心15分钟;将离心后的上清转移至新管中,重复上述步骤,最终所得上清可用于质谱定量分析。Cell sample preparation: Collect cells and wash them twice with PBS; add 400 μl of methanol/acetonitrile mixed solution (methanol: acetonitrile: water = 4:4:2) for every 2×10 6 cells, mix thoroughly, and place at -80°C for 1 hour , then centrifuge at 14,000g for 15 minutes at 4°C; transfer the centrifuged supernatant to a new tube, repeat the above steps, and the final supernatant can be used for mass spectrometry quantitative analysis.
细胞培养基样品制备:收集细胞上清后用0.45μm滤膜过滤以除去细胞碎片,然后加入2.5倍体积的甲醇,充分混匀2分钟后13,000rpm离心15分钟;最终所得上清可用于质谱定量分析。Cell culture medium sample preparation: collect the cell supernatant and filter it with a 0.45 μm filter to remove cell debris, then add 2.5 times the volume of methanol, mix thoroughly for 2 minutes and centrifuge at 13,000 rpm for 15 minutes; the final supernatant can be used for mass spectrometry quantification analyze.
100mM的乳糖溶液用50%甲醇水溶液稀释为100、200、500、1000、2000、5000、10000nM后用作标准品;标准品溶液与上述制备好的样品转移至LC样品瓶中以待分析;LC-MS分析在配备有Thermo Q Exactive HF-X混合四极杆-Orbitrap质谱仪的ThermoVanquishUHPLC上以负ESI模式进行;使用WatersAcquity UPLC BEHAmide色谱柱(1.7μm,2.1×100mm),在35℃柱温下,在30%流动相A(5mM甲酸铵水溶液)和70%流动相B(乙腈)的等度洗脱下实现分离;流速为0.3ml/min,进样体积为10μl,每次进样的运行时间为5min。The 100mM lactose solution was diluted with 50% methanol aqueous solution to 100, 200, 500, 1000, 2000, 5000, 10000nM and used as a standard; the standard solution and the sample prepared above were transferred to an LC sample bottle for analysis; LC -MS analysis was performed on a ThermoVanquish UHPLC equipped with a Thermo Q Exactive HF-X hybrid quadrupole-Orbitrap mass spectrometer in negative ESI mode; using a WatersAcquity UPLC BEHAmide column (1.7 μm, 2.1 × 100 mm) at 35°C column temperature , separation was achieved under isocratic elution of 30% mobile phase A (5mM ammonium formate aqueous solution) and 70% mobile phase B (acetonitrile); the flow rate was 0.3ml/min, the injection volume was 10μl, and each injection run The time is 5min.
使用以下ESI源设置在m/z66.7至1000范围内进行全扫描质谱采集:喷雾电压:2.5kV;辅助燃气加热器温度:380℃;毛细管温度:320℃;鞘气流速:10个单位;MS1扫描参数包括分辨率60000、AGCtarget3e6和最大进样时间200ms;使用Thermo Xcalibur软件(4.2版)进行数据处理,并使用乳糖的[M+FA]-加合物(m/z387.1138)进行定量。Full scan mass spectrometry acquisition was performed over the m/z 66.7 to 1000 range using the following ESI source settings: spray voltage: 2.5kV; auxiliary gas heater temperature: 380°C; capillary temperature: 320°C; sheath gas flow rate: 10 units; MS1 scan parameters included resolution 60000, AGCtarget3e6 and maximum injection time 200ms; Thermo Xcalibur software (version 4.2) was used for data processing and [M+FA]-adduct of lactose (m/z387.1138) for quantitation .
(40)RT-Qpcr(40)RT-QPCR
使用试剂(Ambion,Cat#15596018)提取RNA;利用ImProm-IITM逆转录酶系统(Promega,Cat#A3801)合成cDNA,每次反应使用100ngRNA;采用/>PremixExTaqTM(Takara,Cat#RR420A)进行qPCR反应,每个20ul反应体积用1μlcDNA;用GAPDH标准化相对基因表达水平。use Reagent (Ambion, Cat#15596018) was used to extract RNA; the ImProm-II TM reverse transcriptase system (Promega, Cat#A3801) was used to synthesize cDNA, and 100ng RNA was used in each reaction; using /> qPCR reactions were performed using PremixExTaq ™ (Takara, Cat#RR420A), using 1 μl cDNA per 20 ul reaction volume; relative gene expression levels were normalized with GAPDH.
(41)TCGA(癌症基因组地图)数据分析(41) TCGA (Cancer Genome Map) data analysis
从TCGA官方网站(https://gdcportal.nci.nih.gov/)下载所有肿瘤类型的转录组表达谱和临床数据;为了将B4GALT1基因表达量通过CD8a基因归一化,本发明将B4GALT1的表达值除以对应样本样本中CD8a的表达值;后续生存分析和HR值计算通过R语言survival包(3.3.1版本)和survminer包(0.4.9版本)实现,病人的分组使用基因表达量中位数作为分组标准,生存曲线的比较采用双侧Log-rank检验并绘制Kaplan-Meier曲线。Download the transcriptome expression profiles and clinical data of all tumor types from the TCGA official website (https://gdcportal.nci.nih.gov/); in order to normalize the B4GALT1 gene expression by the CD8a gene, the present invention The value is divided by the expression value of CD8a in the corresponding sample sample; subsequent survival analysis and HR value calculation are implemented through the R language survival package (version 3.3.1) and survminer package (version 0.4.9), and the median gene expression amount is used to group the patients. Number was used as the grouping standard, and survival curves were compared using the two-sided Log-rank test and Kaplan-Meier curves were drawn.
(42)RNA-seq数据分析(42)RNA-seq data analysis
在NovaSeq6000S4平台上进行转录组双端150bp测序;使用TopHat(版本2.1.1)5将原始数据映射到小鼠基因组(mm10);使用HTSeq(版本1.99.2)计算基因读值,并使用cufflinks(版本2.2.1)进行归一化计算;用R语言DESeq2包(版本1.22.2)计算差异表达基因,并以P-value0.05或0.01作为筛选标准;使用R语言ClusterProfiler包(版本3.12.0)enricher()函数对差异表达基因进行功能富集分析;特征性基因集使用对应样本中基因的平均基因表达水平来估算;补充表7列出了每个特征性基因集所涉及的完整基因列表。Transcriptome paired-end 150bp sequencing was performed on the NovaSeq6000S4 platform; raw data were mapped to the mouse genome (mm10) using TopHat (version 2.1.1)5; gene reads were calculated using HTSeq (version 1.99.2) and cufflinks ( Version 2.2.1) for normalization calculation; use R language DESeq2 package (version 1.22.2) to calculate differentially expressed genes, and use P-value 0.05 or 0.01 as the screening criterion; use R language ClusterProfiler package (version 3.12.0 )enricher() function performs functional enrichment analysis on differentially expressed genes; characteristic gene sets are estimated using the average gene expression levels of genes in the corresponding samples; Supplementary Table 7 lists the complete list of genes involved in each characteristic gene set .
(43)单细胞RNA-seq样品制备(43)Single cell RNA-seq sample preparation
使用CD3阳性基因筛选三对经PBS或乳糖处理的样本的MC38肿瘤细胞;讲每个样本相同数量的CD3阳性细胞混合并进行流式细胞筛选;以5×105-1×106细胞/ml的密度重悬CD3阳性细胞,细胞存活率为85%;按照10×Genomics官网提供的方法使用5'V(D)J和基因表达平台制备单细胞文库后在NovaSeq6000S4平台进行测序。Use the CD3-positive gene to screen MC38 tumor cells in three pairs of samples treated with PBS or lactose; mix the same number of CD3-positive cells from each sample and perform flow cytometry screening; use 5×10 5 -1×10 6 cells/ml CD3-positive cells were resuspended at a density of 85%, and the cell survival rate was 85%; single-cell libraries were prepared using 5'V(D)J and gene expression platforms according to the methods provided by the 10×Genomics official website, and then sequenced on the NovaSeq6000S4 platform.
(44)TCR数据质控和分析(44)TCR data quality control and analysis
使用最新小鼠参考基因组(refdata-gex-mm10-2020-A,10×Genomics)和CellRangervdj命令(版本7.0.0)默认参数对原始数据进行分析处理;然后使用R语言scRepertoire包(版本1.2.0)处理中间结果并生成输出文件(filtered_contig_annotations.csv),最后本发明定义的阳性细胞共14,851个,其中6,914个来自PBS样本,7,937个来自LAC样本,进一步分析结果在图19中展示。The original data were analyzed and processed using the latest mouse reference genome (refdata-gex-mm10-2020-A, 10×Genomics) and the default parameters of the CellRangervdj command (version 7.0.0); then the R language scRepertoire package (version 1.2.0 ) process the intermediate results and generate the output file (filtered_contig_annotations.csv). Finally, there are 14,851 positive cells defined by the present invention, of which 6,914 are from PBS samples and 7,937 are from LAC samples. The results of further analysis are shown in Figure 19.
(45)单细胞RNA-seq数据的质控、过滤及分析(45) Quality control, filtering and analysis of single-cell RNA-seq data
使用最新小鼠参考基因组(refdata-gex-mm10-2020-A,10×Genomics)和CellRanger命令(版本7.0.0)默认参数对原始数据进行组装分析;测序饱和度约为60%,每个细胞的测序深度约为25,000个序列;如前面已发表的文章中描述,本发明将检测到基因数量异常、线粒体基因的计数异常的细胞剔除;最终,从2个文库中保留了19,334个细胞,其中13,839个细胞同时拥有T细胞受体测序数据和单细胞转录组测序数据;R语言Seurat包(版本2.3.4)用于进一步分析;对于细胞分群结果,使用FindClusters()函数以0.5的分辨率将细胞分成10组。Assembly analysis of raw data was performed using the latest mouse reference genome (refdata-gex-mm10-2020-A, 10×Genomics) and CellRanger command (version 7.0.0) default parameters; sequencing saturation was approximately 60%, per cell The sequencing depth is about 25,000 sequences; as described in previously published articles, the present invention will eliminate cells with abnormal gene numbers and abnormal mitochondrial gene counts; ultimately, 19,334 cells were retained from the two libraries, of which 13,839 cells have both T-cell receptor sequencing data and single-cell transcriptome sequencing data; R language Seurat package (version 2.3.4) was used for further analysis; for cell clustering results, the FindClusters() function was used at a resolution of 0.5 Cells were divided into 10 groups.
(46)血液样本血液生化分析(46)Blood sample blood biochemical analysis
血液标本(500μl)采集于EDTA包被的试管中;取一部分血液用于评价血液学参数:血液分析仪(TEK-IIMINI血液分析仪)中测定白细胞(WBC)、淋巴细胞(LYM)、中间细胞(MID)、粒细胞(GRA)、红细胞(RBC)、血红蛋白(HGB)、血细胞比容(HCT)、平均红细胞体积(MCV)、平均红细胞血红蛋白(MCH)、平均红细胞血红蛋白浓度(MCHC)、红细胞分布宽度-标准差(RDW-SD)、红细胞分布-变异系数(RDW-CV)、血小板(PLT)、降钙素原(PCT)、平均血小板体积(MPV)、血小板分布宽度(PDW);剩余样品离心(1500g,室温10分钟),取上清液进行生化参数分析:用全自动临床生化分析仪(BeckmanCoulterAU5800)测定丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、碱性磷酸酶(ALP)、肌酐(CR)、血尿素氮(BUN)、乳酸脱氢酶(LDH)、肌酸激酶(CK)、葡萄糖(GLU)、无机磷(Pi)。Blood samples (500 μl) were collected in EDTA-coated test tubes; a portion of the blood was taken for evaluation of hematological parameters: white blood cells (WBC), lymphocytes (LYM), and intermediate cells were measured in a hematology analyzer (TEK-IIMINI hematology analyzer). (MID), granulocyte (GRA), red blood cell (RBC), hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red blood cells Distribution width-standard deviation (RDW-SD), red blood cell distribution-coefficient of variation (RDW-CV), platelets (PLT), procalcitonin (PCT), mean platelet volume (MPV), platelet distribution width (PDW); remaining The sample was centrifuged (1500g, room temperature for 10 minutes), and the supernatant was taken for biochemical parameter analysis: alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphate were measured with a fully automatic clinical biochemical analyzer (BeckmanCoulterAU5800). enzyme (ALP), creatinine (CR), blood urea nitrogen (BUN), lactate dehydrogenase (LDH), creatine kinase (CK), glucose (GLU), inorganic phosphorus (Pi).
(47)数据分析(47)Data analysis
所有的统计学分析都使用R语言版本4.1.0进行;显著性分析均采用双尾配对T检验来确定统计学意义(*P<0.05,**P<0.01;***P<0.001;NS不显著)与函数t.test();双因子方差分析均采用aov()函数计算;图中均显示的平均值和标准误差(SEM),其中标准误差值使用函数sem()计算。All statistical analyzes were performed using R language version 4.1.0; significance analyzes were performed using two-tailed paired T tests to determine statistical significance (*P<0.05, **P<0.01; ***P<0.001; NS Not significant) and the function t.test(); two-factor analysis of variance is calculated using the aov() function; the average and standard error (SEM) are shown in the figures, where the standard error value is calculated using the function sem().
(48)数据获取(48)Data acquisition
本文所使用的原始测序数据已保存至国家基因组科学数据中心,课题号是PRJCA010494,登录网址:https://ngdc.cncb.ac.cn/search/?dbId=&q=PRJCA010494;所有肿瘤类型的转录组数据和临床数据则从美国国家癌症研究所和美国人类基因组研究所数据中心(https://gdc-portal.nci.nih.gov/)下载。The original sequencing data used in this article has been saved to the National Genome Science Data Center, the project number is PRJCA010494, and the login website is: https://ngdc.cncb.ac.cn/search/? dbId=&q=PRJCA010494; transcriptome data and clinical data of all tumor types were downloaded from the National Cancer Institute and Human Genome Research Institute Data Center (https://gdc-portal.nci.nih.gov/).
乳糖处理荷瘤小鼠:α-乳糖购自Sigma-Aldrich(L3625-1KG,Lot#SLCD8654);250mMα-乳糖的配制:每0.09g乳糖粉末用1mLPBS(C14190500BT,LOT#8121493)溶解,至完全溶解后用0.22μm的滤膜过滤;MC38(1×106细胞)、B16F1O(4×105细胞)、B16F10-OVA(4×105细胞)、B16F10-Control(4×105细胞)、4T1(4×105细胞)、CT26(4×105细胞)和SGC7901(5×106细胞)细胞经皮下注射植入雌性C57BL/6J或NPG小鼠体内;从植瘤后第二天开始,对每只荷瘤小鼠,每隔一天经尾静脉注射一剂200μl溶于PBS的250mM乳糖溶液(注射至第21天)。Lactose treatment of tumor-bearing mice: α-lactose was purchased from Sigma-Aldrich (L3625-1KG, Lot#SLCD8654); preparation of 250mM α-lactose: Dissolve every 0.09g lactose powder with 1mL PBS (C14190500BT, LOT#8121493) until completely dissolved Then filter with a 0.22μm filter; MC38 (1×10 6 cells), B16F1O (4×10 5 cells), B16F10-OVA (4×10 5 cells), B16F10-Control (4×10 5 cells), 4T1 (4×10 5 cells), CT26 (4×10 5 cells) and SGC7901 (5×10 6 cells) cells were subcutaneously injected into female C57BL/6J or NPG mice; starting from the day after tumor transplantation, For each tumor-bearing mouse, a dose of 200 μl of 250 mM lactose solution dissolved in PBS was injected through the tail vein every other day (injection to day 21).
其他未列出的均为常规的实验方法。Others not listed are conventional experimental methods.
实施例1:通过体外和体内CRISPR/Cas9筛选确定CD8+T细胞中调控PD1表达和TCR激活的基因和通路Example 1: Identification of genes and pathways regulating PD1 expression and TCR activation in CD8 + T cells through in vitro and in vivo CRISPR/Cas9 screening
发明人建立了一个体外全基因组CRISPR/Cas9筛选系统,以识别在小鼠原代CD8+T细胞中调节PD1表达的基因和通路(图1A);简言之,预先用卵清蛋白(Ova)肽刺激来自Cas9-EGFP/OT-1小鼠的脾脏CD8+T细胞,再利用逆转录病毒将靶向全基因组的向导RNA(gRNA)文库感染进细胞;经过嘌呤霉素选择后,通过与B16F10-OVA细胞共培养来激活记忆CD8+T细胞;用流式细胞仪富集PD1高表达和PD1低表达的细胞;二代测序揭示了这些细胞亚群以及起始细胞中单个gRNA在全基因组文库中的分布;如图1B所示,PDCD1和已确定的PD1调控因子,如SATB1和FUT8,作为阳性对照,成功被筛选出来;大多数排名靠前的候选基因都通过了FACS和RT-qPCR单独验证(图1C);基因集富集分析(GSEA)鉴定出数条KEGG(KyotoEncyclopedia ofGenes and Genomes)通路,显著参与调控CD8+T细胞中PD1的表达(图1D);TCR激活通路中的已知基因(如CD3d、Zap70和Lat)排在PD1调控候选基因列表中的前面;出乎意料的是,结果显示参与蛋白运输通路的基因(如Srp14、Srp68、Sec16A)和氨酰基tRNA生物合成的基因(如Mars、Hars2、Eprs)在PD1低表达群中也显著富集;最后,发明人筛选到并验证了N-聚糖生物合成中的各种成分,包括B4GALT1、Mgat2和Dpm3,它们可以负调控PD1的表达(图1C-D和图7)。The inventors established an in vitro genome-wide CRISPR/Cas9 screening system to identify genes and pathways that regulate PD1 expression in mouse primary CD8 + T cells (Figure 1A); briefly, ovalbumin (Ova) was used in advance The peptide stimulates splenic CD8 + T cells from Cas9-EGFP/OT-1 mice, and then uses retrovirus to infect the cells with a guide RNA (gRNA) library targeting the whole genome; after puromycin selection, the cells are treated with B16F10 -OVA cell co-culture to activate memory CD8 + T cells; flow cytometry was used to enrich cells with high PD1 expression and low PD1 expression; next-generation sequencing revealed these cell subpopulations as well as individual gRNAs in the starting cells in the whole genome library The distribution in Verification (Figure 1C); Gene set enrichment analysis (GSEA) identified several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, which are significantly involved in regulating the expression of PD1 in CD8 + T cells (Figure 1D); known genes in the TCR activation pathway Genes (such as CD3d, Zap70 and Lat) were ranked high in the list of candidate genes for PD1 regulation; unexpectedly, the results showed genes involved in protein trafficking pathways (such as Srp14, Srp68, Sec16A) and genes involved in aminoacyl tRNA biosynthesis (such as Mars, Hars2, Eprs) were also significantly enriched in the PD1 low expression group; finally, the inventors screened and verified various components in N-glycan biosynthesis, including B4GALT1, Mgat2 and Dpm3, which can negatively Regulate the expression of PD1 (Figure 1C-D and Figure 7).
为了高通量验证候选基因,并试验其在肿瘤微环境中的潜在功能(图1A),发明人合成了一个定制gRNA文库,包含从全基因组筛选中得到的4617个靶向首选候选基因的gRNA和105个基因间对照gRNA;将gRNA文库感染的Cas9-EGFP/OT-1记忆CD8+T细胞在体外重新激活或移植到皮下接种了B16F10-OVA肿瘤的野生型C57BL/6J小鼠中,在体内筛选调节CD8+T细胞功能的基因;7天后从肿瘤中收集T细胞进行gRNA测序;使Socs1、Regnase-1(Zc3h12a)、Rc3h1和CD36失活的gRNA,引起了同系鼠中B16F10-OVA肿瘤里浸润OT-1T细胞的数量增加(图1F);图1E-F表明编码β-1,4-半乳糖转移酶1的B4GALT1失活后在体外和体内筛选中均显示出显著的表型。To high-throughput validate candidate genes and test their potential functions in the tumor microenvironment (Figure 1A), the inventors synthesized a custom gRNA library containing 4617 gRNAs targeting preferred candidate genes derived from a genome-wide screen and 105 intergenic control gRNA; gRNA library-infected Cas9-EGFP/OT-1 memory CD8 + T cells were reactivated in vitro or transplanted into wild-type C57BL/6J mice subcutaneously inoculated with B16F10-OVA tumors. In vivo screening for genes that regulate CD8 + T cell function; T cells were collected from tumors after 7 days for gRNA sequencing; gRNAs that inactivate Socs1, Regnase-1 (Zc3h12a), Rc3h1, and CD36 caused B16F10-OVA tumors in syngeneic mice The number of infiltrating OT-1 T cells increased (Figure 1F); Figure 1E-F shows that inactivation of B4GALT1 encoding β-1,4-galactosyltransferase 1 showed significant phenotypes in both in vitro and in vivo screens.
实施例2:敲除CD8+T细胞中的B4GALT1可激活TCR信号,增强T细胞介导的肿瘤免疫治疗Example 2: Knocking out B4GALT1 in CD8 + T cells can activate TCR signaling and enhance T cell-mediated tumor immunotherapy
感染靶向B4GALT1的不同gRNAs的Cas9-EGFP/OT-1CD8+T细胞,在与B16F10-OVA细胞共培养前后,其细胞表面PD1蛋白和PD1mRNA水平均显著升高(图2A和图7C);这些表型可以通过过表达小鼠B4GALT1的短或长亚型cDNA得到回补(图2B),表明了对抑制TCR激活的应答并非由于B4GALT1配体诱导的信号转导,而是因为其生物合成功能;此外,在与B16F10-OVA共培养后,B4GALT1敲除的OT-1T细胞表现出T细胞活化和细胞毒性标志物IFN,IL2和TNF的表达增强,以及体外靶细胞杀伤活性增强(图2C-D);全基因组RNA测序分析证实,与B16F10-OVA细胞共培养后,B4GALT1敲除的CD8+T细胞增强了TCR激活(图2E-G);对照gRNA和靶向B4GALT1gRNA感染的CD8+T细胞之间的差异表达基因(DEGs)的基因集富集分析(GSEA)显示,TCR信号通路位于显著改变的通路前列(图2G)。The cell surface PD1 protein and PD1 mRNA levels of Cas9-EGFP/OT-1CD8 + T cells infected with different gRNAs targeting B4GALT1 were significantly increased before and after co-culture with B16F10-OVA cells (Figure 2A and Figure 7C); these The phenotype could be complemented by overexpressing the short or long isoform cDNA of mouse B4GALT1 (Fig. 2B), indicating that the response to inhibition of TCR activation is not due to B4GALT1 ligand-induced signaling but rather to its biosynthetic function. ; In addition, after co-culture with B16F10-OVA, B4GALT1 knockout OT-1T cells showed enhanced expression of T cell activation and cytotoxicity markers IFN, IL2 and TNF, as well as enhanced target cell killing activity in vitro (Figure 2C- D); Whole-genome RNA sequencing analysis confirmed that B4GALT1 knockout CD8 + T cells had enhanced TCR activation after co-culture with B16F10-OVA cells (Figure 2E-G); CD8 + T cells infected with control gRNA and targeting B4GALT1 gRNA Gene set enrichment analysis (GSEA) of differentially expressed genes (DEGs) showed that the TCR signaling pathway was at the forefront of significantly altered pathways (Figure 2G).
将B16F10-OVA细胞接种到野生型小鼠皮下,B4GALT1gRNA感染的OT-1T细胞比对照gRNA感染的细胞具有显著更高的肿瘤杀伤活性(图2H-I);肿瘤浸润淋巴细胞(TILs)分析显示,感染B4GALT1gRNA时肿瘤中有更多浸润的OT-1T细胞(图2J);这些结果表明,抑制蛋白N-glycome可以增强CD8+T细胞的功能以及B4GALT1可能是增强CAR-T细胞活性的潜在靶点。B16F10-OVA cells were inoculated subcutaneously into wild-type mice, and B4GALT1gRNA-infected OT-1T cells had significantly higher tumor killing activity than control gRNA-infected cells (Figure 2H-I); tumor-infiltrating lymphocytes (TILs) analysis showed that , there were more infiltrating OT-1 T cells in tumors when infected with B4GALT1gRNA (Fig. 2J); these results suggest that the inhibitory protein N-glycome can enhance the function of CD8 + T cells and that B4GALT1 may be a potential target to enhance CAR-T cell activity. point.
B16F10-OVA肿瘤中,静脉注射24小时后B4GALT1gRNA感染的OT-1T细胞的浸润数量与对照gRNA感染的细胞浸润数量相似(图8A),说明B4GALT1对OT-1T细胞的浸润没有显著影响;另一方面,在稍后的时间点(注射6天后)进行CFSE(羧基荧光素琥珀酰亚胺酯)分析显示,B4GALT1失活后增强了肿瘤内OT-1T细胞增殖(图8B)。In B16F10-OVA tumors, the number of infiltration of B4GALT1gRNA-infected OT-1T cells 24 hours after intravenous injection was similar to that of control gRNA-infected cells (Figure 8A), indicating that B4GALT1 has no significant effect on the infiltration of OT-1T cells; another On the other hand, CFSE (carboxyfluorescein succinimide ester) analysis at a later time point (6 days after injection) showed that B4GALT1 inactivation enhanced intratumoral OT-1 T cell proliferation (Fig. 8B).
实施例3:肿瘤微环境中B4GALT1的表达和肿瘤浸润的CD8+T细胞与人类患者的预后相关性实验Example 3: Experiment on the correlation between the expression of B4GALT1 in the tumor microenvironment and tumor-infiltrating CD8 + T cells and the prognosis of human patients
为了研究B4GALT1在人类癌症患者中的潜在临床相关性,发明人分析了TheCancer GenomeAtlas中的癌症样本。虽然B4GALT1的表达水平与TCGA收集的所有原发肿瘤样本的总体生存获益无关,但将CD8a的表达水平标准化后,Kaplan-Meier曲线显示B4GALT1低表达患者的生存期显著更久(图3A和图9A);另一方面,发明人先将所有肿瘤样本分为B4GALT1低表达和B4GALT1高表达组;B4GALT1低表达组中CD8a的高表达与较长的总体生存期呈正相关,而B4GALT1高表达组则无此相关性(图3B和图9C);在肾上腺皮质癌(ACC)、急性髓系白血病(LAML)、肺腺癌(LUAD)和直肠腺癌(READ)的数据集中,与CD8a低表达组的患者相比,CD8a高表达组的患者中可以看到B4GALT1的低表达水平与较长的总生存期正相关(图3C和图9B);正相反,相比于B4GALT1高表达组的患者,在B4GALT1低表达组的患者中,较高的CD8a表达水平与较好的总体生存期正相关(图3D和图9C);结果表明,B4GALT1在肿瘤微环境中的表达水平和肿瘤中浸润的CD8+T细胞与癌症患者的预后相关。To investigate the potential clinical relevance of B4GALT1 in human cancer patients, the inventors analyzed cancer samples in The Cancer Genome Atlas. Although the expression level of B4GALT1 was not associated with an overall survival benefit in all primary tumor samples collected by TCGA, after normalizing the expression level of CD8a, Kaplan-Meier curves showed that patients with low B4GALT1 expression had significantly longer survival (Figure 3A and Figure 3 9A); On the other hand, the inventor first divided all tumor samples into B4GALT1 low expression and B4GALT1 high expression groups; high expression of CD8a in the B4GALT1 low expression group was positively correlated with longer overall survival, while the B4GALT1 high expression group was There was no such correlation (Figure 3B and Figure 9C); in the data sets of adrenocortical carcinoma (ACC), acute myeloid leukemia (LAML), lung adenocarcinoma (LUAD), and rectal adenocarcinoma (READ), with the CD8a low expression group Compared with the patients in the CD8a high expression group, it can be seen that the low expression level of B4GALT1 is positively correlated with longer overall survival (Figure 3C and Figure 9B); on the contrary, compared with the patients in the B4GALT1 high expression group, Among patients in the B4GALT1 low expression group, higher CD8a expression levels were positively correlated with better overall survival (Figure 3D and Figure 9C); the results showed that the expression level of B4GALT1 in the tumor microenvironment and the CD8 infiltration in the tumor + T cells are associated with prognosis in cancer patients.
实施例4:在肿瘤细胞中抑制B4GALT1的活性可增强IFNγ信号通路及其免疫监视应答Example 4: Inhibiting the activity of B4GALT1 in tumor cells can enhance the IFNγ signaling pathway and its immune surveillance response
发明人认为在免疫细胞和肿瘤细胞中靶向同一基因或通路可以协同作用,以增强肿瘤免疫治疗的效果;此外,肿瘤内B4GALT1的表达主要取决于恶性肿瘤细胞而非CD8+T细胞;出乎意料的是,当发明人利用CRISPR/Cas9系统,在MC38肿瘤内对调控肿瘤细胞对于免疫监视的抵抗性和敏感性相关的基因和通路进行体内筛选实验时,发明人发现,B4GALT1可被筛选出来;在野生型C57BL/6J小鼠中,相比对照组细胞,皮下植入的已敲除B4GALT1的MC38肿瘤的生长速度明显降低,而在免疫缺陷的NPG(NOD-Prkdcscid IL2rgnull)小鼠中并没有明显区别(图4A-B);如果用特定抗体将野生型小鼠体内的不同免疫细胞清除后再进行皮下植入,发明人发现清除CD8+和CD4+T细胞可以显著恢复B4GALT1缺失的MC38肿瘤的生长速度,但清除自然杀伤(NK)细胞却不能恢复其生长速率(图4C,图10);上述结果表明,在野生型小鼠中,CD8+T细胞在控制B4GALT1敲除的MC38肿瘤的生长过程中起主要作用。The inventor believes that targeting the same gene or pathway in immune cells and tumor cells can work synergistically to enhance the effect of tumor immunotherapy; in addition, the expression of B4GALT1 in tumors mainly depends on malignant tumor cells rather than CD8 + T cells; unexpectedly Unexpectedly, when the inventors used the CRISPR/Cas9 system to conduct in vivo screening experiments in MC38 tumors for genes and pathways related to the resistance and sensitivity of tumor cells to immune surveillance, the inventors found that B4GALT1 could be screened out. ; In wild-type C57BL/6J mice, compared with control cells, the growth rate of subcutaneously implanted MC38 tumors with B4GALT1 knockout was significantly reduced, while in immunodeficient NPG (NOD-Prkdcscid IL2rgnull) mice, the growth rate was significantly reduced. There is no obvious difference (Figure 4A-B); if specific antibodies are used to eliminate different immune cells in wild-type mice and then implanted subcutaneously, the inventors found that depleting CD8 + and CD4+ T cells can significantly restore B4GALT1-deficient MC38 tumor growth rate, but depletion of natural killer (NK) cells did not restore its growth rate (Figure 4C, Figure 10); the above results indicate that in wild-type mice, CD8 + T cells play an important role in controlling B4GALT1 knockout MC38 tumors. plays a major role in the growth process.
发明人对敲除B4GALT1的MC38细胞和对照细胞进行了RNA测序分析,结果显示,IFNα、IFNγ以及TNFα信号通路均显著上调(图4D-F);经过IFNγ处理后,与对照细胞相比,B4GALT1敲除的MC38细胞内,B2m表达水平和Ova抗原呈递都显著增强(图4G-H);同时,敲除MC38细胞中的B4GALT1基因可以增强OT-1T细胞的特异性体外杀伤功能(图4I);值得注意的是,相较于与对照MC38细胞共培养,当与敲除B4GALT1的MC38细胞共培养后,OT-1T细胞中的IFNγ表达水平明显增加(图4J)。The inventors performed RNA sequencing analysis on B4GALT1-knocked-out MC38 cells and control cells. The results showed that the IFNα, IFNγ, and TNFα signaling pathways were all significantly up-regulated (Figure 4D-F); after IFNγ treatment, compared with control cells, B4GALT1 In knockout MC38 cells, B2m expression level and Ova antigen presentation were significantly enhanced (Figure 4G-H); at the same time, knockout of the B4GALT1 gene in MC38 cells can enhance the specific in vitro killing function of OT-1T cells (Figure 4I) ; Notably, IFNγ expression levels in OT-1T cells were significantly increased when co-cultured with B4GALT1 knockout MC38 cells compared with co-culture with control MC38 cells (Figure 4J).
实施例5:外源性表达α-乳清蛋白(LALBA)可在肿瘤细胞中产生乳糖并激活肿瘤免疫应答Example 5: Exogenous expression of α-lactalbumin (LALBA) can produce lactose in tumor cells and activate tumor immune response
除了与N-糖基组的结合功能外,B4GALT1还可以在乳腺组织中与LALBA形成异二聚体从而合成乳糖;发明人假设,在肿瘤细胞中外源性过表达LALBA可以改变内源性B4GALT1在乳糖生物合成过程中的催化活性;因此,LALBA或许可以在肿瘤细胞中竞争性降低B4GALT1的正常功能;此外,从头合成乳糖也可以抑制B4GALT1的活性,并干扰肿瘤细胞以及瘤内CD8+T细胞的N-糖基化功能;乳糖是由半乳糖和葡萄糖连接而成的二糖,可以模拟半乳糖化的寡聚糖或蛋白;体外实验表明,在糖蛋白和糖脂中,乳糖可以竞争并干扰β-半乳糖苷的功能,比如与凝集素的相互作用。In addition to its binding function with N-glycosyl groups, B4GALT1 can also form heterodimers with LALBA in breast tissue to synthesize lactose; the inventors hypothesized that exogenous overexpression of LALBA in tumor cells can change the expression of endogenous B4GALT1 in breast tissue. catalytic activity in lactose biosynthesis; therefore, LALBA may be able to competitively reduce the normal function of B4GALT1 in tumor cells; in addition, de novo synthesis of lactose can also inhibit the activity of B4GALT1 and interfere with tumor cells and intratumoral CD8 + T cells. N-glycosylation function; Lactose is a disaccharide connected by galactose and glucose, which can simulate galactosylated oligosaccharides or proteins; in vitro experiments show that lactose can compete and interfere with glycoproteins and glycolipids. Functions of β-galactopyranoside, such as interaction with lectins.
发明人构建了两种LALBA过表达载体(LALBAOE),其中LALBA基因选自Genebank中ID号为16770的序列的cDNA区域:1918-2349,构建的慢病毒载体的结构如图22所示,其碱基序列如SEQ ID NO:1所示,构建的过表达LALBA的腺病毒载体的结构如图23所示,其碱基序列如SEQ ID NO:2所示。The inventor constructed two LALBA overexpression vectors (LALBAOE), in which the LALBA gene was selected from the cDNA region of the sequence with ID number 16770 in Genebank: 1918-2349. The structure of the constructed lentiviral vector is shown in Figure 22. Its base The base sequence is shown in SEQ ID NO: 1. The structure of the constructed adenoviral vector overexpressing LALBA is shown in Figure 23, and its base sequence is shown in SEQ ID NO: 2.
慢病毒是通过慢病毒表达载体、psPAX2和pMD2.G共转染HEK-293T细胞包装而成的;转染48h后,收集细胞上清并用0.45μm的过滤以除去细胞碎片;病毒可直接用于感染,也可经高速离心浓缩(4℃107,000g离心2.5h)后用PBS重悬并用于体内实验;同时还设置了如下对照:所携带的LALBA基因上进行D107A或A126K的定点突变的慢病毒,A126K的定点突变为A126K:GCC→AAG;D107A的定点突变为D107A:GAT→GCC。Lentivirus is packaged by co-transfection of HEK-293T cells with lentiviral expression vector, psPAX2 and pMD2.G; 48 hours after transfection, the cell supernatant was collected and filtered with 0.45 μm to remove cell debris; the virus can be used directly infection, it can also be concentrated by high-speed centrifugation (centrifuged at 107,000g for 2.5 hours at 4°C) and then resuspended in PBS and used for in vivo experiments; at the same time, the following controls were also set: lentivirus carrying site-directed mutation of D107A or A126K on the LALBA gene , the site-directed mutation of A126K is A126K:GCC→AAG; the site-directed mutation of D107A is D107A:GAT→GCC.
8型腺相关病毒(AAV)是利用表达慢病毒表达载体(LALBA-IRES-GFP)或GFP的AAV病毒载体制备的;首先用AAV载体、包装质粒和腺相关病毒辅助质粒共转染HEK-293T细胞,72h后,收集培养基和细胞分别用于沉淀和裂解,随后用碘克沙醇进行密度梯度离心;最后将纯化后的病毒进行超速离心,并用PBS稀释,用于后续实验。Adeno-associated virus type 8 (AAV) is prepared using an AAV viral vector expressing lentiviral expression vector (LALBA-IRES-GFP) or GFP; first, HEK-293T is co-transfected with the AAV vector, packaging plasmid and adeno-associated virus helper plasmid After 72 hours, the culture medium and cells were collected for precipitation and lysis respectively, followed by density gradient centrifugation with iodixanol; finally, the purified virus was ultracentrifuged and diluted with PBS for subsequent experiments.
1×106的MC38细胞经皮下注射植入雌性C57BL/6J小鼠体内;植瘤9天后,对肿瘤大小相似的小鼠进行瘤内病毒注射,注射时间为植瘤后第9、12、15天;慢病毒及腺相关病毒的滴度是通过在MC38细胞中进行梯度稀释而测定的;在每剂注射中,相同单位的慢病毒或腺相关病毒(可在体外感染8×104MC38细胞的病毒量)将被注射入肿瘤内;每3天测一次肿瘤大小至第24天。1×10 6 MC38 cells were subcutaneously injected into female C57BL/6J mice; 9 days after tumor transplantation, mice with tumors of similar size were injected with intratumoral viruses at 9, 12, and 15 days after tumor transplantation. days; lentivirus and adeno-associated virus titers were determined by serial dilutions in MC38 cells; in each injection, the same unit of lentivirus or adeno-associated virus (a virus that can infect 8 × 104 MC38 cells in vitro amount) will be injected into the tumor; tumor size will be measured every 3 days until day 24.
如图5A-B所示,利用慢病毒在MC38细胞中过表达LALBA可以促进乳糖的从头合成与分泌,且这一过程依赖于B4GALT1的表达;如果在LALBA基因上进行D107A或A126K的定点突变,乳糖合成酶便会失活;当在野生型小鼠的皮下植入过表达LALBA的MC38细胞时,与B4GALT1敲除的MC38肿瘤类似,肿瘤的生长速度明显低于对照细胞(仅表达GFP)(图5C);重要的是,当MC38肿瘤过表达LALBA时,发明人在超过50%的小鼠中看到了肿瘤的完全消退(CR代表完全相应(Completeresponse));与此相反,在免疫缺陷的NPG小鼠中,过表达LALBA的MC38肿瘤与仅表达GFP的对照细胞在肿瘤生长速度上并无明显区别(图5D);随后,发明人在上述肿瘤完全消退的小鼠中重新植入MC38对照细胞,与同年龄未注射过的野生型小鼠相比,MC38-LALBA肿瘤完全消退的小鼠对MC38对照细胞具有完全抗性,说明肿瘤特异性的免疫记忆已被建立(图5E);同时,发明人也在野生型小鼠中皮下植入过表达LALBA与对照MC38细胞的混合物,混合比例为1:1或1:9;如图11所示,在对照细胞中加入LALBA过表达的MC38可以显著抑制肿瘤生长(1:1混合的肿瘤中,6/22肿瘤完全消退;1:9混合的肿瘤中,3/22肿瘤完全消退);上述结果表明,在肿瘤细胞中部分或完全过表达LALBA,均可增强对肿瘤的免疫抑制并形成免疫记忆。As shown in Figure 5A-B, overexpression of LALBA in MC38 cells using lentivirus can promote the de novo synthesis and secretion of lactose, and this process depends on the expression of B4GALT1; if D107A or A126K site-directed mutation is performed on the LALBA gene, Lactose synthase will be inactivated; when MC38 cells overexpressing LALBA were implanted subcutaneously in wild-type mice, similar to B4GALT1 knockout MC38 tumors, the tumor growth rate was significantly lower than that of control cells (expressing only GFP) ( Figure 5C); Importantly, when MC38 tumors overexpressed LALBA, the inventors saw complete tumor regression (CR standing for Complete response) in more than 50% of mice; in contrast, in immunodeficient mice In NPG mice, there was no significant difference in tumor growth rate between MC38 tumors overexpressing LALBA and control cells expressing only GFP (Figure 5D); subsequently, the inventors re-implanted MC38 controls in mice whose tumors had completely regressed. Compared with uninjected wild-type mice of the same age, mice with complete regression of MC38-LALBA tumors were completely resistant to MC38 control cells, indicating that tumor-specific immune memory has been established (Figure 5E); at the same time , the inventor also subcutaneously implanted a mixture of overexpressed LALBA and control MC38 cells in wild-type mice, with a mixing ratio of 1:1 or 1:9; as shown in Figure 11, LALBA overexpressed MC38 was added to the control cells. Can significantly inhibit tumor growth (among 1:1 mixed tumors, 6/22 tumors completely regressed; among 1:9 mixed tumors, 3/22 tumors completely regressed); the above results show that it is partially or completely overexpressed in tumor cells LALBA, both can enhance immune suppression against tumors and form immune memory.
为了在肿瘤内实现LALBA的过表达,发明人瘤内注射了编码GFP对照或LALBA的慢病毒;如图5F所示,在三次瘤内注射LALBA慢病毒后,野生型小鼠的MC38肿瘤生长速度被显著抑制(4/10肿瘤完全消退),而突变型LALBA(D107A和A126K)则无明显抑制作用(图12,箭头指示了病毒注射时间);流式分析显示,LALBA慢病毒注射过的肿瘤内,IFNγ+CD8+T细胞的数目明显增多(图5G);此外,LALBA慢病毒注射后肿瘤完全消退的小鼠对对照MC38细胞具有完全抗性(图5H);最后,当用腺相关病毒(AAV)在MC38肿瘤内过表达LALBA时,发明人可以观察到相似的肿瘤抑制作用(图5I-K);流式分析显示,AAV-LALBA注射过的肿瘤内,肿瘤浸润性CD8+T细胞可表达更高水平的IFNγ和PD1。In order to achieve overexpression of LALBA in tumors, the inventors injected lentivirus encoding GFP control or LALBA into tumors; as shown in Figure 5F, after three intratumoral injections of LALBA lentivirus, the growth rate of MC38 tumors in wild-type mice increased. was significantly inhibited (4/10 tumors completely regressed), while mutant LALBA (D107A and A126K) had no obvious inhibitory effect (Figure 12, the arrow indicates the time of virus injection); flow cytometry analysis showed that tumors injected with LALBA lentivirus Within, the number of IFNγ+CD8+T cells increased significantly (Figure 5G); in addition, mice whose tumors completely regressed after LALBA lentivirus injection were completely resistant to control MC38 cells (Figure 5H); finally, when adeno-associated virus was used When (AAV) overexpressed LALBA in MC38 tumors, the inventors could observe similar tumor inhibitory effects (Figure 5I-K); flow cytometry analysis showed that tumor-infiltrating CD8 + T cells increased in AAV-LALBA-injected tumors. Can express higher levels of IFNγ and PD1.
发明人用生物素标记的凝集素进行流式细胞染色,包括Erythrina cristagalli凝集素(ECL)和succinyl-wheatgerm凝集素(sWGA),这两种凝集素可分别衡量细胞表面的末端β-半乳糖苷酶和β-N-乙酰葡糖胺的表达水平。对MC38细胞来讲,乳糖可阻断ECL的染色,但对sWGA的染色无影响(图13A);B4GALT1敲除的MC38细胞表面会表达略高水平的ECL,而sWGA的表达则会大幅增加;结果表明,LALBA过表达MC38细胞表面的ECL和sWGA的表达均会显著增加(图13B);另一方面,在CD8+T细胞中敲除B4GALT1则会显著降低ECL的表达,同时增强sWGA的表达(图13C)。The inventors performed flow cytometry staining with biotin-labeled lectins, including Erythrina cristagalli lectin (ECL) and succinyl-wheatgerm lectin (sWGA), which can respectively measure terminal β-galactosides on the cell surface. enzyme and β-N-acetylglucosamine expression levels. For MC38 cells, lactose can block the staining of ECL, but has no effect on the staining of sWGA (Figure 13A); B4GALT1 knockout MC38 cells will express a slightly higher level of ECL on the surface, while the expression of sWGA will be significantly increased; The results showed that the expression of ECL and sWGA on the surface of LALBA-overexpressing MC38 cells significantly increased (Figure 13B); on the other hand, knocking out B4GALT1 in CD8 + T cells significantly reduced the expression of ECL and enhanced the expression of sWGA. (Figure 13C).
实施例6:作为结构上模拟N-糖基组的竞争性抑制剂,乳糖可在体内增强肿瘤的免疫监视作用Example 6: As a competitive inhibitor that structurally mimics the N-glycosyl group, lactose can enhance tumor immune surveillance in vivo
上述结果表明,在CD8+T细胞和肿瘤细胞中,用乳糖干扰N-糖基组的功能可以以协同作用的方式激活肿瘤免疫应答;在野生型小鼠皮下植入MC38肿瘤后,发明人通过尾静脉每两天注射一次乳糖;与PBS对照相比,乳糖可显著降低MC38肿瘤的生长速度,同时增强肿瘤内CD8+T细胞表面PD1和IFNγ的表达(图6A-C,图14);当发明人用免疫缺陷的NPG小鼠进行同样处理时,注射乳糖的MC38肿瘤生长速度与PBS对照并无明显区别(图6D);在野生型小鼠中清除CD8+T细胞后,乳糖会失去对MC38肿瘤的抑制作用,而清除CD4+T细胞或NK细胞则不会影响乳糖对肿瘤生长的抑制作用(图6E-G);此外,在用anti-PD1或anti-PDL1抗体处理的MC38肿瘤中,尾静脉注射乳糖不会再进一步增强对肿瘤的抑制作用(图15,图16)。The above results show that in CD8 + T cells and tumor cells, interfering with the function of the N-glycosyl group with lactose can activate the tumor immune response in a synergistic manner; after subcutaneously implanting MC38 tumors in wild-type mice, the inventors Lactose was injected into the tail vein every two days; compared with PBS control, lactose could significantly reduce the growth rate of MC38 tumors and at the same time enhance the expression of PD1 and IFNγ on the surface of CD8 + T cells within the tumor (Figure 6A-C, Figure 14); when When the inventors performed the same treatment with immunodeficient NPG mice, the growth rate of MC38 tumors injected with lactose was not significantly different from that of the PBS control (Figure 6D); after depleting CD8 + T cells in wild-type mice, lactose lost its ability to control tumor growth. The inhibitory effect of MC38 tumors, while depletion of CD4 + T cells or NK cells did not affect the inhibitory effect of lactose on tumor growth (Figure 6E-G); furthermore, in MC38 tumors treated with anti-PD1 or anti-PDL1 antibodies , tail vein injection of lactose will not further enhance the inhibitory effect on tumors (Figure 15, Figure 16).
发明人将野生型小鼠的MC38皮下肿瘤经乳糖或对照(PBS)处理后进行细胞群转录组测序分析,最终发现585个显著上调的基因和528个显著下调的基因(图17A-B);出乎意料的是,其中最显著富集的HALLMARK通路(图17C),例如IFNγ、低氧通路、经由NFκB的TNFα信号通路及Myctargets(V1andV2),与B4GALT1敲除的MC38细胞中显著富集的通路(图4F)是一致的;基因表达特征分析(图17E-F)显示,乳糖处理过的肿瘤具有显著高表达的Tfh细胞特征、T细胞正向富集特征及细胞毒性T细胞特征。The inventor performed cell population transcriptome sequencing analysis on MC38 subcutaneous tumors of wild-type mice after treatment with lactose or control (PBS), and finally found 585 significantly up-regulated genes and 528 significantly down-regulated genes (Figure 17A-B); Unexpectedly, the most significantly enriched HALLMARK pathways (Figure 17C), such as IFNγ, hypoxia pathway, TNFα signaling pathway via NFκB, and Myctargets (V1andV2), were significantly enriched in B4GALT1 knockout MC38 cells. The pathways (Figure 4F) were consistent; gene expression signature analysis (Figure 17E-F) showed that lactose-treated tumors had significantly high expression of Tfh cell signatures, T cell positive enrichment signatures, and cytotoxic T cell signatures.
为了进一步剖析乳糖对肿瘤微环境,尤其是肿瘤浸润性T细胞的潜在影响,发明人将乳糖和PBS处理后的MC38肿瘤样品中CD3阳性的T细胞分选出来,随后进行单细胞转录组测序和TCR测序(图18,图19);结果显示,经乳糖处理后,效应/耗竭性记忆CD8+T细胞(C0:CD8+PD1+PRF1+)的比例从26.0%增加至40.1%,而祖T细胞/未分化的CD8+T细胞(C2:CD8+TCF7+SELL+)与调节性CD4+T细胞(C1:CD4+AREG+FOXP3+)则分别由19.7%降至11.8%、由23.5%降至14.2%(图18F);TCR克隆类型分析结果表明,乳糖处理过的肿瘤与对照组相比具有显著增大的TCR克隆(图19A-C);其中最大的TCR克隆为CN1(CDR3:TRA;TRB=CAIDPYNQGKLIF;CASSPGQGYAEQFF),这一克隆可靶向MC38细胞的特异性新抗原(ASMTNMELMin theAdpgk gene),经乳糖处理后,其比例由2.3%增至35.1%(图19D-E);综上所述,细胞群和单细胞转录组测序分析结果均表明,乳糖处理可促进肿瘤特异性CD8+T细胞的增殖并增强其功能。In order to further analyze the potential impact of lactose on the tumor microenvironment, especially tumor-infiltrating T cells, the inventors sorted out CD3-positive T cells from MC38 tumor samples treated with lactose and PBS, and then performed single-cell transcriptome sequencing and TCR sequencing (Figure 18, Figure 19); the results showed that after lactose treatment, the proportion of effector/exhaustive memory CD8 + T cells (C0: CD8 + PD1 + PRF1 +) increased from 26.0% to 40.1%, while progenitor T cells /Undifferentiated CD8 + T cells (C2: CD8 + TCF7+SELL+) and regulatory CD4 + T cells (C1: CD4+AREG+FOXP3+) dropped from 19.7% to 11.8% and from 23.5% to 14.2% respectively. (Figure 18F); TCR clone type analysis results showed that lactose-treated tumors had significantly increased TCR clones compared with the control group (Figure 19A-C); the largest TCR clone was CN1 (CDR3: TRA; TRB = CAIDPYNQGKLIF; CASSPGQGYAEQFF), this clone can target the specific neoantigen of MC38 cells (ASMTNMELMin theAdpgk gene). After lactose treatment, its proportion increased from 2.3% to 35.1% (Figure 19D-E); in summary, Both cell population and single-cell transcriptome sequencing analysis showed that lactose treatment promoted the proliferation and enhanced the function of tumor-specific CD8 + T cells.
在野生型小鼠中,尾静脉注射乳糖不会对4T1和CT26这类“冷肿瘤”的生长产生明显影响(图6H-I);与对照组相比,在B16F10细胞中外源性过表达Ova可显著增强肿瘤对乳糖处理的敏感度(图6J-K),这是由于Ova的表达使得原本的B16F10“冷肿瘤”转变为“热肿瘤”。In wild-type mice, tail vein injection of lactose did not have a significant effect on the growth of "cold tumors" such as 4T1 and CT26 (Figure 6H-I); compared with the control group, exogenous overexpression of Ova in B16F10 cells The sensitivity of tumors to lactose treatment can be significantly enhanced (Figure 6J-K). This is due to the expression of Ova that transforms the original B16F10 "cold tumor" into a "hot tumor".
与此同时,发明人在移植了人类免疫细胞的NPG小鼠皮下植入SGC7901人胃癌细胞,随后尾静脉注射乳糖或PBS;与anti-PD1抗体处理的小鼠(图20)类似,乳糖可显著降低人源化小鼠中SGC7901肿瘤的生长速度(图6L);经乳糖处理后,SGC7901肿瘤中含有更高比例的IFNγ+的肿瘤浸润性人CD8+T细胞(图6M);与此相对,在未移植人类免疫细胞的NPG小鼠中,乳糖并未起到肿瘤抑制作用(图6N)。At the same time, the inventor subcutaneously implanted SGC7901 human gastric cancer cells into NPG mice transplanted with human immune cells, and then injected lactose or PBS into the tail vein; similar to anti-PD1 antibody-treated mice (Figure 20), lactose can significantly Reduced the growth rate of SGC7901 tumors in humanized mice (Figure 6L); after lactose treatment, SGC7901 tumors contained a higher proportion of IFNγ+ tumor-infiltrating human CD8 + T cells (Figure 6M); in contrast, In NPG mice not transplanted with human immune cells, lactose did not exert a tumor suppressive effect (Fig. 6N).
最后,发明人对野生型C57BL/6J小鼠经尾静脉注射乳糖后的安全性进行了评估;如图21A、B、C所示,短期(24小时)或长期(24天)每两天一次的乳糖注射均未产生明显的毒副作用。Finally, the inventors evaluated the safety of wild-type C57BL/6J mice after lactose injection through the tail vein; as shown in Figure 21A, B, and C, short-term (24 hours) or long-term (24 days) once every two days None of the lactose injections produced any obvious toxic side effects.
实施例7:B4galt1通过肿瘤来源Gal-1调控CD8+T细胞杀伤能力Example 7: B4galt1 regulates the killing ability of CD8 + T cells through tumor-derived Gal-1
1.B4galt1催化CD8半乳糖苷化并通过Gal-1调控TCR-CD8共定位1.B4galt1 catalyzes CD8 galactosylation and regulates TCR-CD8 co-localization through Gal-1
为了进一步剖析B4galt1调控T细胞活化的分子机制,本发明首先使用生物素标记的赤藓凝集素(ECL)和丁二酰小麦胚芽凝集素(sWGA)进行流式细胞染色,分别分析了细胞表面βGal和βGlcNAc的表达。敲除B4galt1的OT-ⅠT细胞ECL染色强度有轻微的降低,sWGA染色强度有明显的升高(图25A-B)。令人惊讶的是,用生物素标记的重组半乳糖凝集素-1(rGal-1)染色的结果显示,对照组和B4galt1敲除的OT-ⅠT细胞之间存在非常显著的差异(图25C)。In order to further analyze the molecular mechanism of B4galt1 regulating T cell activation, the present invention first used biotin-labeled erythritol agglutinin (ECL) and succinyl wheat germ agglutinin (sWGA) for flow cytometry staining, and analyzed the cell surface βGal respectively. and expression of βGlcNAc. The ECL staining intensity of OT-Ⅰ T cells with B4galt1 knockout was slightly reduced, and the sWGA staining intensity was significantly increased (Figure 25A-B). Surprisingly, the results of staining with biotin-labeled recombinant galectin-1 (rGal-1) showed very significant differences between control and B4galt1 knockout OT-Ⅰ T cells (Figure 25C) .
图25中,A.B4galt1敲除细胞和对照OT-ⅠT细胞与生物素化ECL孵育,然后用链霉亲和素-PE染色。虚线表示细胞未经凝集素孵育,仅用链霉亲和素-PE染色。用流式细胞仪测定各样品的平均荧光强度值(MFI)。B.B4galt1敲除细胞和对照OT-ⅠT细胞与生物素化sWGA孵育,然后用链霉亲和素-PE染色。C.B4galt1敲除细胞和对照OT-ⅠT细胞与生物素化重组Gal-1孵育,然后用链霉亲和素-PE染色。虚线表示细胞未经凝集素孵育,仅用链霉亲和素-PE染色。In Figure 25, A.B4galt1 knockout cells and control OT-IT cells were incubated with biotinylated ECL and then stained with streptavidin-PE. The dashed line indicates cells that were not incubated with lectin and stained only with streptavidin-PE. The mean fluorescence intensity value (MFI) of each sample was measured using flow cytometry. B. B4galt1 knockout cells and control OT-IT cells were incubated with biotinylated sWGA and then stained with streptavidin-PE. C. B4galt1 knockout cells and control OT-IT cells were incubated with biotinylated recombinant Gal-1 and then stained with streptavidin-PE. The dashed line indicates cells that were not incubated with lectin and stained only with streptavidin-PE.
RNA测序分析显示,半乳糖凝集素-1、-3、-9(Gal-1、Gal-3、Gal-9)是OT-ⅠT细胞和MC38细胞中表达最多的半乳糖凝集素(图26A)。细胞内流式染色证实所有这些凝集素在OT-ⅠT细胞和MC38细胞中均有较高表达。然而,细胞表面染色显示Gal-1、-3和-9仅在MC38细胞表面表达,在OT-ⅠT细胞的表面并不存在(图26B),通过比较MC38细胞表面染色和胞内染色强度发现,相比Gal-3和Gal-9,Gal-1在MC38细胞表面的分布更为显著(图26C)。RNA sequencing analysis showed that galectin-1, -3, and -9 (Gal-1, Gal-3, Gal-9) were the most expressed galectins in OT-ⅠT cells and MC38 cells (Figure 26A) . Intracellular flow staining confirmed that all these lectins were highly expressed in OT-ⅠT cells and MC38 cells. However, cell surface staining showed that Gal-1, -3 and -9 were only expressed on the surface of MC38 cells and did not exist on the surface of OT-ⅠT cells (Figure 26B). By comparing the intensity of MC38 cell surface staining and intracellular staining, it was found that Compared with Gal-3 and Gal-9, the distribution of Gal-1 on the surface of MC38 cells was more significant (Fig. 26C).
图26中,A.FPKM表示OT-ⅠT细胞与MC38细胞中各种半乳糖凝集素mRNA的表达水平,来自RNA测序分析。B.OT-ⅠT细胞与MC38细胞表面和胞内半乳糖凝集素-1、-3、-9的流式细胞染色与分析。C.MC38细胞表面和胞内半乳糖凝集素-1、-3、-9染色的平均荧光强度值并计算表面与胞内强度的比值。In Figure 26, A.FPKM represents the expression levels of various galectin mRNAs in OT-IT cells and MC38 cells, derived from RNA sequencing analysis. B. Flow cytometric staining and analysis of surface and intracellular galectin-1, -3, and -9 of OT-ⅠT cells and MC38 cells. C. Average fluorescence intensity values of MC38 cell surface and intracellular galectin-1, -3, and -9 staining and calculate the ratio of surface to intracellular intensity.
2.CD8+T细胞表面Gal-1来自邻近的肿瘤细胞2. Gal-1 on the surface of CD8 + T cells comes from adjacent tumor cells
为探索CD8+T细胞表面Gal-1的来源,将OT-ⅠT细胞与OVA寡肽处理或未处理的MC38细胞共培养后,OT-ⅠT细胞表面Gal-1染色均显著增加且无明显差异,这一结果提示TCR受体与MHC-Ⅰ/OVA复合物之间的相互作用,或者说TCR的激活并不是T细胞表面出现Gal-1所必要的(图27A)。另一方面,在没有MC38细胞的情况下,单独使用anti-CD3/anti-CD28抗体去激活OT-ⅠT细胞也并不能增加其表面Gal-1染色(图27A)。与此相一致的是,在缺乏MC38细胞共培养的情况下,与野生型对照相比,B4galt1敲除的OT-ⅠT细胞在anti-CD3/anti-CD28抗体刺激下并没有表现出显著增强的T细胞活化标志(图27B)。综上所述,OT-ⅠT细胞表面的Gal-1染色增加很可能来自共培养的肿瘤细胞。In order to explore the source of Gal-1 on the surface of CD8 + T cells, after co-culture of OT-Ⅰ T cells with OVA oligopeptide-treated or untreated MC38 cells, the Gal-1 staining on the surface of OT-Ⅰ T cells increased significantly without significant difference. This result suggests that the interaction between the TCR receptor and the MHC-I/OVA complex, or the activation of TCR, is not necessary for the appearance of Gal-1 on the surface of T cells (Figure 27A). On the other hand, in the absence of MC38 cells, using anti-CD3/anti-CD28 antibodies alone to activate OT-IT cells did not increase their surface Gal-1 staining (Figure 27A). Consistent with this, in the absence of MC38 cell co-culture, B4galt1 knockout OT-Ⅰ T cells did not exhibit significantly enhanced activity upon stimulation with anti-CD3/anti-CD28 antibodies compared with wild-type controls. T cell activation markers (Figure 27B). In summary, the increased Gal-1 staining on the surface of OT-IT cells is likely to come from co-cultured tumor cells.
图27中,A.用anti-CD3/anti-CD28抗体激活或未处理的OT-ⅠT细胞,以及与OVA寡肽预处理MC38细胞或未处理MC38共培的OT-ⅠT细胞,分别用anti-Gal-1抗体染色。虚线表示同型对照抗体染色。B.B4galt1敲除细胞和对照OT-ⅠT细胞经anti-CD3/anti-CD28抗体激活。采用定量RT-qPCR检测Ifnγ和TnfαmRNA表达水平。In Figure 27, A. OT-Ⅰ T cells activated or untreated with anti-CD3/anti-CD28 antibodies, and OT-Ⅰ T cells co-cultured with OVA oligopeptide-pretreated MC38 cells or untreated MC38, respectively treated with anti- Gal-1 antibody staining. Dashed line indicates isotype control antibody staining. B. B4galt1 knockout cells and control OT-Ⅰ T cells were activated by anti-CD3/anti-CD28 antibodies. Quantitative RT-qPCR was used to detect the expression levels of Ifnγ and Tnfα mRNA.
为确定OT-ⅠT细胞表面的Gal-1是来自共培养的肿瘤细胞,本发明将OT-ⅠT细胞分别与野生型和Gal-1敲除的MC38细胞共培养,发现仅与野生型MC38细胞共培养的OT-ⅠT细胞表面的Gal-1染色有显著增加(图28A)。然后,本发明用培养过野生型或Gal-1敲除MC38细胞的条件培养基作为OT-ⅠT细胞与MC38共培养的培养基,发现只有存在野生型MC38细胞的情况下才能增加OT-ⅠT细胞表面的Gal-1染色,仅有野生型条件培养基的情况下是不能的(图28B)。通过设置MC38细胞与OT-ⅠT细胞不同比例的共培养体条件,发现OT-ⅠT细胞表面Gal-1染色的强度随MC38细胞比例的增加而增加(图28C-D)。In order to determine that Gal-1 on the surface of OT-IT cells comes from co-cultured tumor cells, the present invention co-cultured OT-IT cells with wild-type and Gal-1 knockout MC38 cells, and found that only co-cultured with wild-type MC38 cells Gal-1 staining on the surface of cultured OT-IT cells increased significantly (Fig. 28A). Then, the present invention uses the conditioned medium that has been cultured with wild-type or Gal-1 knockout MC38 cells as the medium for co-culture of OT-ⅠT cells and MC38. It is found that only in the presence of wild-type MC38 cells can OT-ⅠT cells be increased. Gal-1 staining on the surface was not possible with only wild-type conditioned medium (Fig. 28B). By setting co-culture conditions with different ratios of MC38 cells and OT-ⅠT cells, it was found that the intensity of Gal-1 staining on the surface of OT-ⅠT cells increased with the increase in the proportion of MC38 cells (Figure 28C-D).
图28中,A.与敲除Gal-1的MC38细胞共培养,与野生型MC38细胞共培养以及未与MC38细胞共培养的OT-ⅠT细胞,分别用anti-Gal-1抗体染色。B.OT-ⅠT细胞与野生型或敲除Gal-1的MC38细胞,在不同MC38细胞条件培养基中,以2:1的细胞比例共培养8小时。用anti-Gal-1抗体染色并用流式细胞仪检细胞表面Gal-1的平均荧光强度。C.OT-ⅠT细胞与MC38细胞按0:10、1:10、1:2、2:1、10:1和10:0的比例进行共培养,再用anti-Gal-1抗染色。D.流式细胞仪检测不同比例共培养后OT-ⅠT细胞与MC38细胞表面Gal-1的平均荧光强度。In Figure 28, A. OT-IT cells co-cultured with Gal-1 knockout MC38 cells, co-cultured with wild-type MC38 cells, and not co-cultured with MC38 cells were stained with anti-Gal-1 antibodies respectively. B. OT-IT cells and wild-type or Gal-1 knockout MC38 cells were co-cultured in different MC38 cell conditioned media at a cell ratio of 2:1 for 8 hours. Stain with anti-Gal-1 antibody and detect the average fluorescence intensity of Gal-1 on the cell surface using flow cytometry. C. OT-ⅠT cells and MC38 cells were co-cultured at the ratio of 0:10, 1:10, 1:2, 2:1, 10:1 and 10:0, and then stained with anti-Gal-1. D. Flow cytometry detects the average fluorescence intensity of Gal-1 on the surface of OT-ⅠT cells and MC38 cells after co-culture at different ratios.
进一步探索,当OT-ⅠT细胞和MC38细胞被Boyden chamber中的隔膜(图29A)或者一层薄的低熔点琼脂糖膜(图29B)从物理空间上分离后,Gal-1蛋白便不能有效地从MC38细胞转移到OT-ⅠT细胞上了,这一实验证据表明细胞间近距离接触对Gal-1的转移是必要的。不同于以往表面蛋白的细胞间转移机制,例如胞啃作用、外泌体运输和纳米管道穿梭,本发明将该过程命名为邻近依赖性细胞间蛋白扩散(proximity-dependentintercellularprotein spreading,PDICPS)。Further exploration revealed that when OT-IT cells and MC38 cells were physically separated by a separator in the Boyden chamber (Figure 29A) or a thin layer of low-melting point agarose membrane (Figure 29B), the Gal-1 protein could not effectively Transferred from MC38 cells to OT-IT cells, this experimental evidence indicates that close contact between cells is necessary for the transfer of Gal-1. Different from previous cell-to-cell transfer mechanisms of surface proteins, such as cytosis, exosome transport and nanotube shuttling, the present invention names this process as proximity-dependent intercellular protein spreading (PDICPS).
图29中,A.将OT-ⅠT细胞接种于Boyden Chamber上隔室(i),或同时将MC38细胞接种于下隔室(ii),或与MC38细胞一起接种于下隔室(iii)。8小时后用anti-Gal-1抗体染色并用流式细胞仪检细胞表面Gal-1的平均荧光强度。B.在MC38细胞附着于培养皿底部后加入含低熔点琼脂糖的培养基。然后将OT-ⅠT细胞添加到培养皿底部(i),或琼脂糖层上方(ii),或直接添加到MC38细胞(iii)上。用anti-Gal-1抗体染色并用流式细胞仪检细胞表面Gal-1的平均荧光强度。In Figure 29, A. OT-IT cells were seeded in the upper compartment (i) of Boyden Chamber, or MC38 cells were seeded in the lower compartment (ii) at the same time, or together with MC38 cells in the lower compartment (iii). After 8 hours, the cells were stained with anti-Gal-1 antibody and flow cytometry was used to detect the average fluorescence intensity of Gal-1 on the cell surface. B. After MC38 cells attach to the bottom of the culture dish, add medium containing low melting point agarose. OT-IT cells were then added to the bottom of the culture dish (i), or above the agarose layer (ii), or directly onto MC38 cells (iii). Stain with anti-Gal-1 antibody and detect the average fluorescence intensity of Gal-1 on the cell surface using flow cytometry.
3.B4galt1通过Gal-1调控CD8+T细胞杀伤能力3.B4galt1 regulates the killing ability of CD8 + T cells through Gal-1
通过检测细胞毒性因子TNFα与IFNγ的RNA水平,本发明发现在野生型OT-ⅠT细胞中添加外源性重组Gal-1蛋白,可以显著抑制anti-CD3/anti-CD28抗体对T细胞的激活,而在B4galt1敲除的OT-ⅠT细胞中则没有抑制作用(图30A)。在没有OVA寡肽预处理的情况下,相比于和野生型MC38细胞共培养的OT-ⅠT细胞,和Gal-1敲除MC38细胞共培养的OT-ⅠT细胞表现出anti-CD3/anti-CD28抗体活化的增强(图30B)。同样,B4galt1敲除的OT-ⅠT细胞在这种条件下则未表现出T细胞活化水平增强。By detecting the RNA levels of cytotoxic factors TNFα and IFNγ, the present invention found that adding exogenous recombinant Gal-1 protein to wild-type OT-Ⅰ T cells can significantly inhibit the activation of T cells by anti-CD3/anti-CD28 antibodies. However, there was no inhibitory effect in B4galt1 knockout OT-IT cells (Figure 30A). In the absence of OVA oligopeptide pretreatment, OT-ⅠT cells co-cultured with Gal-1 knockout MC38 cells showed anti-CD3/anti- Enhancement of CD28 antibody activation (Figure 30B). Similarly, B4galt1 knockout OT-Ⅰ T cells did not show enhanced T cell activation levels under this condition.
图30中,A.重组Gal-1处理(2.5μg/mL)可显著降低野生型OT-ⅠT细胞(1×105个细胞/mL)经anti-CD3/anti-CD28抗体激活TCR后的Tnfα和IfnγmRNA的表达水平,而对B4galt1敲除的OT-ⅠT细胞无显著影响。p-value来自双尾T检验;B.与和野生型MC38细胞共培养相比,和Gal-1敲除的MC38细胞共培养后,可提高经anti-CD3/anti-CD28抗体激活的野生型OT-ⅠT细胞中Tnfα和IfnγmRNA的表达水平,而对B4galt1敲除的OT-ⅠT细胞无显著影响。In Figure 30, A. Recombinant Gal-1 treatment (2.5 μg/mL) can significantly reduce Tnfα in wild-type OT-Ⅰ T cells (1×10 5 cells/mL) after TCR activation by anti-CD3/anti-CD28 antibodies. and IfnγmRNA expression levels, but had no significant effect on B4galt1 knockout OT-ⅠT cells. The p-value comes from the two-tailed T test; B. Compared with co-culture with wild-type MC38 cells, co-culture with Gal-1 knockout MC38 cells can increase the number of wild-type cells activated by anti-CD3/anti-CD28 antibodies. The expression levels of Tnfα and Ifnγ mRNA in OT-ⅠT cells had no significant effect on B4galt1 knockout OT-ⅠT cells.
从肿瘤细胞杀伤功能上来看,本发明比较了野生型和B4galt1敲除OT-ⅠT细胞分别对野生型MC38和Gal-1敲除的MC38的特异性杀伤程度(图31A),发现与Gal-1敲除MC38相比,野生型MC38细胞对B4galt1敲除OT-ⅠT细胞介导的特异性杀伤比野生型OT-ⅠT细胞更敏感(图31B)。这些结果证明了肿瘤细胞转移给T细胞表面的Gal-1在调节其细胞活化、细胞毒性中有着重要作用,而在Gal-1的存在下,B4galt1的敲除才能发挥作用。From the perspective of tumor cell killing function, the present invention compared the specific killing degree of wild-type and B4galt1 knockout OT-Ⅰ T cells against wild-type MC38 and Gal-1 knockout MC38 respectively (Figure 31A), and found that the specific killing effect of wild-type MC38 and Gal-1 knockout MC38 was similar to that of Gal-1. Compared with knocking out MC38, wild-type MC38 cells are more sensitive to specific killing mediated by B4galt1 knockout OT-Ⅰ T cells than wild-type OT-Ⅰ T cells (Figure 31B). These results prove that Gal-1 transferred from tumor cells to the surface of T cells plays an important role in regulating their cell activation and cytotoxicity. Only in the presence of Gal-1 can the knockout of B4galt1 play a role.
图31中,A.分别用B4galt1敲除和野生型OT-ⅠT细胞杀伤用OVA寡肽预处理后的野生型(左图)和Gal-1敲除(右图)MC38细胞。p-value来自双尾T检验;B.计算靶细胞分别为野生型和Gal-1敲除MC38细胞时,B4galt1敲除的OT-ⅠT细胞杀伤能力与野生型OT-ⅠT细胞杀伤能力的倍数变化。计算使用2:1(T细胞:MC38细胞)比例时的数据。In Figure 31, A. B4galt1 knockout and wild-type OT-IT cells were used to kill wild-type (left picture) and Gal-1 knockout (right picture) MC38 cells pretreated with OVA oligopeptide, respectively. p-value comes from two-tailed T test; B. Calculate the fold change of the killing ability of B4galt1 knockout OT-ⅠT cells and the killing ability of wild-type OT-ⅠT cells when the target cells are wild-type and Gal-1 knockout MC38 cells respectively. . Data were calculated using a ratio of 2:1 (T cells:MC38 cells).
随后,本发明想知道体内肿瘤微环境中,是否同样可以发生肿瘤细胞Gal-1转移到浸润T细胞表面上并抑制其免疫反应这一事件。于是本发明在MC38细胞中过表达了Gal-1-EGFP融合蛋白,以追踪Gal-1在体内肿瘤中的转移。通过流式细胞术检测荧光,和对照肿瘤相比,本发明发现浸润在Gal-1-EGFP MC38肿瘤中的CD8+T细胞有着显著增强的总GFP信号(图32A)和表面GFP信号(图32B)。Subsequently, the present invention wanted to know whether the transfer of Gal-1 from tumor cells to the surface of infiltrating T cells and inhibiting their immune response can also occur in the tumor microenvironment in vivo. Therefore, the present invention overexpressed Gal-1-EGFP fusion protein in MC38 cells to track the metastasis of Gal-1 in tumors in vivo. Fluorescence was detected by flow cytometry. Compared with control tumors, the present invention found that CD8 + T cells infiltrating in Gal-1-EGFP MC38 tumors had significantly enhanced total GFP signals (Figure 32A) and surface GFP signals (Figure 32B ).
图32中,A.将外源性表达Gal-1-EGFP融合蛋白或对照EGFP蛋白的MC38细胞皮下接种于野生型C57BL/6J小鼠。3周后,肿瘤浸润的CD8+T细胞仅在Gal-1-EGFP肿瘤中显示有明显GFP信号。B.仅在Gal-1-EGFP肿瘤中,肿瘤浸润的CD8+T细胞表面anti-GFP抗体染色显示有明显GFP信号。In Figure 32, A. MC38 cells exogenously expressing Gal-1-EGFP fusion protein or control EGFP protein were inoculated subcutaneously into wild-type C57BL/6J mice. After 3 weeks, tumor-infiltrating CD8 + T cells showed significant GFP signals only in Gal-1-EGFP tumors. B. Only in Gal-1-EGFP tumors, anti-GFP antibody staining on the surface of tumor-infiltrating CD8 + T cells showed obvious GFP signals.
此外,与野生型MC38细胞相比,Gal-1敲除MC38细胞的皮下肿瘤生长在野生型C57BL/6J小鼠中进展极其缓慢(图33A),但在免疫缺陷的NPG(NOD-PrkdcscidIl2rgnull)小鼠中生长情况正常(图33B)。通过特异性中和抗体清除小鼠体内不同类型的免疫细胞(图33C),再进行皮下接种Gal-1敲除MC38细胞到免疫缺失的小鼠中,本发明发现CD8+和CD4+T细胞的清除可显著恢复Gal-1敲除MC38肿瘤的生长,但清除NK细胞没有作用(图33D)。MHC-Ⅰ复合物组分B2m的敲除也可以恢复野生型小鼠中Gal-1敲除MC38肿瘤的生长(图33E)。这些结果说明了Gal-1敲除MC38肿瘤的生长受到宿主免疫系统CD8+和CD4+T细胞的抑制,也就是说Gal-1可能介导了T细胞在体内肿瘤中的活性抑制。Furthermore, subcutaneous tumor growth of Gal-1 knockout MC38 cells progressed extremely slowly in wild-type C57BL/6J mice compared with wild-type MC38 cells (Fig. 33A), but in immunodeficient NPG (NOD-Prkdc scid Il2rg Growth was normal in null ) mice (Fig. 33B). By clearing different types of immune cells in mice with specific neutralizing antibodies (Figure 33C), and then subcutaneously inoculating Gal-1 knockout MC38 cells into immune-deficient mice, the present invention found that CD8 + and CD4 + T cells Depletion significantly restored the growth of Gal-1 knockout MC38 tumors, but depletion of NK cells had no effect (Fig. 33D). Knockout of MHC-I complex component B2m also restored the growth of Gal-1 knockout MC38 tumors in wild-type mice (Fig. 33E). These results indicate that the growth of Gal-1 knockout MC38 tumors is inhibited by CD8 + and CD4 + T cells of the host immune system, which means that Gal-1 may mediate the suppression of T cell activity in tumors in vivo.
图33中,A.将Gal-1敲除MC38细胞和野生型MC38细胞皮下接种于野生型C57BL/6J小鼠并监测肿瘤生长大小。p-value来自双因素方差分析;B.将Gal-1敲除MC38细胞和野生型MC38细胞皮下接种于免疫缺陷的NPG(NOD-PrkdcscidIl2rgnull)小鼠并监测肿瘤生长大小。p-value来自双因素方差分析;C.流式细胞术分析显示,不同中和抗体成功地去除了野生型小鼠外周血样本中的CD8+T细胞(左)、CD4+T细胞(中)和NK细胞(右);D.将Gal-1敲除MC38细胞皮下接种于CD8+T细胞、CD4+T细胞和NK细胞缺失的野生型小鼠并监测肿瘤生长大小。p-value来自双因素方差分析;E.将Gal-1/B2m双敲除和Gal-1单敲除MC38细胞皮下接种于野生型C57BL/6J小鼠并监测肿瘤生长大小。p-value来自双因素方差分析。In Figure 33, A. Gal-1 knockout MC38 cells and wild-type MC38 cells were subcutaneously inoculated into wild-type C57BL/6J mice and the tumor growth size was monitored. p-value comes from two-factor analysis of variance; B. Gal-1 knockout MC38 cells and wild-type MC38 cells were subcutaneously inoculated into immunodeficient NPG (NOD-Prkdc scid Il2rg null ) mice and the tumor growth size was monitored. p-value comes from two-factor analysis of variance; C. Flow cytometry analysis shows that different neutralizing antibodies successfully removed CD8 + T cells (left) and CD4 + T cells (middle) in peripheral blood samples of wild-type mice. and NK cells (right); D. Gal-1 knockout MC38 cells were subcutaneously inoculated into wild-type mice lacking CD8 + T cells, CD4 + T cells, and NK cells, and tumor growth size was monitored. The p-value comes from two-factor analysis of variance; E. Gal-1/B2m double knockout and Gal-1 single knockout MC38 cells were subcutaneously inoculated into wild-type C57BL/6J mice and the tumor growth size was monitored. The p-value comes from a two-way ANOVA.
根据之前体外实验结果进行猜想,内源性Gal-1在体内不同组织中的免疫细胞上的分布情况或许有所不同。因此本发明检测了野生型小鼠体内的CD8+T细胞表面的内源性Gal-1染色。从野生型C57BL/6J小鼠中取脾脏、外周血和皮下肿瘤,用anti-CD8和anti-Gal-1或同型对照抗体染色,用流式细胞仪检测不同组织中CD8+T细胞表面Gal-1的表达情况,结果如图34所示,野生型小鼠的外周血和脾脏的CD8+T细胞上几乎检测不到表面Gal-1的存在,而肿瘤浸润的CD8+T细胞主要为PD-1阳性,即竭耗的CD8+T细胞,其表面Gal-1染色呈阳性。Based on the results of previous in vitro experiments, it is speculated that the distribution of endogenous Gal-1 on immune cells in different tissues in the body may be different. Therefore, the present invention detects endogenous Gal-1 staining on the surface of CD8 + T cells in wild-type mice. Spleens, peripheral blood and subcutaneous tumors were taken from wild-type C57BL/6J mice, stained with anti-CD8 and anti-Gal-1 or isotype control antibodies, and flow cytometry was used to detect Gal- on the surface of CD8 + T cells in different tissues. 1 expression, the results are shown in Figure 34. The presence of surface Gal-1 is almost undetectable on CD8 + T cells in the peripheral blood and spleen of wild-type mice, while the tumor-infiltrating CD8 + T cells are mainly PD- 1 positive, that is, exhausted CD8 + T cells, whose surface stains positive for Gal-1.
并且,用B2m敲除和Gal-1/B2m双敲除MC38细胞皮下接种于野生型C57BL/6J小鼠。3周后,取肿瘤并用anti-CD8a和anti-Gal-1抗体染色。结果显示,与B2m敲除的MC38肿瘤相比,在Gal-1/B2m双敲除的MC38肿瘤中,CD8+T细胞表面Gal-1信号显著降低,提示MC38肿瘤是体内CD8+T细胞表面Gal-1的来源(图35),得到与体外实验结果类似的结论。Furthermore, B2m knockout and Gal-1/B2m double knockout MC38 cells were subcutaneously inoculated into wild-type C57BL/6J mice. After 3 weeks, tumors were harvested and stained with anti-CD8a and anti-Gal-1 antibodies. The results showed that compared with B2m knockout MC38 tumors, in Gal-1/B2m double knockout MC38 tumors, the Gal-1 signal on the surface of CD8 + T cells was significantly reduced, suggesting that MC38 tumors are caused by the Gal-1 signal on the surface of CD8 + T cells in vivo. -1 source (Figure 35), a conclusion similar to the in vitro experimental results was obtained.
实施例7在体内外实验中证实半乳糖凝集素-1(Gal-1)可以从肿瘤细胞转移至邻近的CD8+T细胞表面并抑制其激活及肿瘤杀伤能力,但当T细胞中B4GALT1基因失活后,Gal-1转移显著减少且对CD8+T细胞的抑制能力下降。以上结果证明了一种新的免疫检查点机制,本发明或许可以用小分子来抑制肿瘤来源Gal-1结合到邻近CD8+T细胞表面,以此增强肿瘤免疫功能。Example 7 demonstrated in in vivo and in vitro experiments that galectin-1 (Gal-1) can be transferred from tumor cells to the surface of adjacent CD8 + T cells and inhibit their activation and tumor killing ability. However, when the B4GALT1 gene in T cells is deleted, After survival, Gal-1 transfer was significantly reduced and its ability to suppress CD8 + T cells decreased. The above results prove a new immune checkpoint mechanism. The present invention may use small molecules to inhibit the binding of tumor-derived Gal-1 to the surface of adjacent CD8 + T cells, thereby enhancing tumor immune function.
实施例8:B4galt1通过细胞表面Gal-1调控TCR-CD8共定位Example 8: B4galt1 regulates TCR-CD8 co-localization through cell surface Gal-1
为了鉴定B4galt1在CD8+T细胞表面的底物,本发明想利用β-半乳糖苷与Gal-1的亲和性,通过Pulldown的方式,收集细胞膜上的半乳糖基化蛋白,借助蛋白质质谱的方法,鉴定及比较野生型和B4galt1敲除CD8+T细胞的蛋白丰度,从而找到B4galt1的底物。In order to identify the substrate of B4galt1 on the surface of CD8 + T cells, the present invention wants to use the affinity of β-galactoside and Gal-1 to collect galactosylated proteins on the cell membrane through Pulldown, and use protein mass spectrometry to Methods: To identify and compare the protein abundance of wild-type and B4galt1 knockout CD8 + T cells to find the substrate of B4galt1.
首先需要纯化大量重组Gal-1蛋白,利用大肠杆菌表达系统,将带有His标签的过表达载体转入表达菌株BL21,在小规模测试表达后挑选表达量可观的单克隆,随后进行大规模纯化,如图36A,泳道从左往右依次为表达菌株裂解上清液、Ni-NTA亲和纯化柱流出液、Ni-NTA亲和纯化柱清洗液、蛋白洗脱液、蛋白Marker以及定量对照蛋白BSA。目的蛋白大小与预估一致且条带明显。大量重组Gal-1(~16kD)被洗脱下来,透析到保存缓冲液或是偶联缓冲液中备用。First, a large amount of recombinant Gal-1 protein needs to be purified. The overexpression vector with His tag is transferred into the expression strain BL21 using the E. coli expression system. After the small-scale expression test, single clones with considerable expression amounts are selected, and then large-scale purification is performed. , Figure 36A, the lanes from left to right are the expression strain lysis supernatant, Ni-NTA affinity purification column effluent, Ni-NTA affinity purification column cleaning solution, protein eluate, protein Marker and quantitative control protein BSA. The size of the target protein was consistent with the prediction and the band was obvious. A large amount of recombinant Gal-1 (~16kD) is eluted and dialyzed into a storage buffer or coupling buffer for later use.
图36B.将0.5μg商用重组Gal-1蛋白或实验室纯化重组Gal-1蛋白分别与OT-ⅠT细胞孵育,然后用anti-Gal-1抗体染色,流式细胞仪检测。图36C.OT-ⅠT细胞分别与不同来源、不同量的重组Gal-1蛋白孵育后进行anti-Gal-1抗体染色,检测平均荧光强度。Figure 36B. 0.5 μg of commercial recombinant Gal-1 protein or laboratory purified recombinant Gal-1 protein was incubated with OT-ⅠT cells respectively, and then stained with anti-Gal-1 antibody and detected by flow cytometry. Figure 36C. OT-IT cells were incubated with recombinant Gal-1 proteins from different sources and in different amounts and then stained with anti-Gal-1 antibodies to detect the average fluorescence intensity.
在正式实验前,本发明对纯化得到的重组Gal-1蛋白进行活性测试,利用了其结合T细胞表面蛋白并能被anti-Gal-1抗体检测的特性。将0.5μg商用重组Gal-1蛋白或实验室纯化重组Gal-1蛋白分别与OT-ⅠT细胞孵育,然后用anti-Gal-1抗体染色,流式细胞仪检测,根据流式染色结果(图36B),将OT-ⅠT细胞分别与不同来源、不同量的重组Gal-1蛋白孵育后进行anti-Gal-1抗体染色,结果显示实验室纯化的重组Gal-1的结合活性与商业化的重组Gal-1类似(图36B-C)。随后,利用NHS-活化的Sepahrose,与纯化的重组Gal-1蛋白进行孵育偶联得到重组Gal-1-Sepharose。Before the formal experiment, the present invention conducted an activity test on the purified recombinant Gal-1 protein, taking advantage of its characteristics of binding to T cell surface proteins and being detectable by anti-Gal-1 antibodies. Incubate 0.5 μg of commercial recombinant Gal-1 protein or laboratory-purified recombinant Gal-1 protein with OT-ⅠT cells respectively, then stain with anti-Gal-1 antibody, and detect by flow cytometry. According to the flow cytometry staining results (Figure 36B ), OT-ⅠT cells were incubated with recombinant Gal-1 proteins from different sources and in different amounts and then stained with anti-Gal-1 antibodies. The results showed that the binding activity of laboratory-purified recombinant Gal-1 was comparable to that of commercial recombinant Gal-1. -1 is similar (Fig. 36B-C). Subsequently, NHS-activated Sepahrose was used to incubate and couple with purified recombinant Gal-1 protein to obtain recombinant Gal-1-Sepharose.
1.B4galt1催化CD8半乳糖苷化并通过Gal-1调控TCR-CD8共定位1.B4galt1 catalyzes CD8 galactosylation and regulates TCR-CD8 co-localization through Gal-1
使用重组Gal-1-Sepharose从OT-ⅠT细胞的膜蛋白提取物中富集Gal-1结合蛋白,再用乳糖溶液洗脱下来,将得到的蛋白进行质谱分析来鉴定种类及丰度。对野生型和B4galt1敲除的OT-ⅠT细胞之间存在显著差异的蛋白进行分析发现,TCRα/β(OT-Ⅰ)和CD8α/β均位于前列(图37A)。KEGG分析显示,TCR信号通路显著富集(图37B)。这说明在B4galt1敲除的OT-ⅠT细胞中,TCR与CD8蛋白的半乳糖基化显著减少。Recombinant Gal-1-Sepharose was used to enrich Gal-1 binding proteins from membrane protein extracts of OT-IT cells, and then eluted with lactose solution. The resulting proteins were subjected to mass spectrometry analysis to identify the species and abundance. Analysis of proteins with significant differences between wild-type and B4galt1 knockout OT-Ⅰ T cells found that TCRα/β (OT-Ⅰ) and CD8α/β were both at the forefront (Figure 37A). KEGG analysis showed that the TCR signaling pathway was significantly enriched (Figure 37B). This shows that in B4galt1 knockout OT-Ⅰ T cells, the galactosylation of TCR and CD8 protein is significantly reduced.
图37A.火山图展示野生型和B4galt1敲除的OT-ⅠT细胞膜蛋白中鉴定的Gal-1结合蛋白。TCR信号通路中的蛋白用下划线标记。p-value来自DEqMS(版本1.8.0)中的Limma。图37B.条形图展示B4galt1敲除OT-ⅠT细胞中发生显著变化的KEGG通路。Figure 37A. Volcano plot showing Gal-1 binding proteins identified in wild-type and B4galt1 knockout OT-IT cell membrane proteins. Proteins in the TCR signaling pathway are underlined. The p-value is from Limma in DEqMS (version 1.8.0). Figure 37B. Bar graph showing the KEGG pathways that were significantly changed in B4galt1 knockout OT-I T cells.
过蛋白质免疫印迹实验验证了B4Galt1敲除T细胞中Gal-1与CD8结合减少(图38A)。有趣的是,CD8β蛋白在SDS-PAGE中的迁移速率在野生型和B4galt1敲除T细胞的膜蛋白之间是不同的,这表明CD8β是B4galt1的直接底物(图38A)。事实上,用肽-N-糖苷酶F(PNGase F)处理以切割蛋白质上的所有糖基化,CD8β蛋白的迁移差异则会消失(图38B)。Western immunoblotting experiments verified that the binding of Gal-1 to CD8 in B4Galt1 knockout T cells was reduced (Figure 38A). Interestingly, the migration rate of CD8β protein in SDS-PAGE was different between membrane proteins of wild-type and B4galt1 knockout T cells, indicating that CD8β is a direct substrate of B4galt1 (Fig. 38A). In fact, upon treatment with peptide-N-glycosidase F (PNGase F) to cleave all glycosylation on the protein, the migration difference of the CD8β protein disappeared (Figure 38B).
图38A.蛋白免疫印迹实验验证pulldown-MS数据分析中的排在前十的基因。相比于野生型OT-ⅠT细胞,CD8b、Itgal、Ly9和Lnpep蛋白迁移速率在B4galt1敲除OT-ⅠT细胞中明显变快。图38B.PNGase F消化蛋白糖链后,野生型与B4galt1敲除OT-ⅠT细胞中CD8b、Itgal、Ly9和Lnpep蛋白的迁移速率一致。Figure 38A. Western blotting experiment validates the top ten genes in pulldown-MS data analysis. Compared with wild-type OT-Ⅰ T cells, the migration rate of CD8b, Itgal, Ly9 and Lnpep proteins was significantly faster in B4galt1 knockout OT-Ⅰ T cells. Figure 38B. After PNGase F digests protein sugar chains, the migration rates of CD8b, Itgal, Ly9 and Lnpep proteins in wild-type and B4galt1 knockout OT-Ⅰ T cells are consistent.
通过荧光共振能量转移(FRET)实验测量了TCR和CD8之间的相互作用(图39A)。如图39B所示,将重组Gal-1添加到野生型OT-ⅠT细胞中,TCR-CD8之间的FRET信号显著降低,乳糖处理可以逆转这种表型。而对于敲除B4galt1的OT-ⅠT细胞,重组Gal-1对TCR-CD8 FRET的影响则不显著。The interaction between TCR and CD8 was measured by fluorescence resonance energy transfer (FRET) experiments (Figure 39A). As shown in Figure 39B, when recombinant Gal-1 was added to wild-type OT-Ⅰ T cells, the FRET signal between TCR-CD8 was significantly reduced, and lactose treatment could reverse this phenotype. For OT-Ⅰ T cells with B4galt1 knockout, the effect of recombinant Gal-1 on TCR-CD8 FRET was not significant.
图39A.检测TCR-CD8之间荧光共振能量转移示意图;图39B.野生型和B4galt1敲除OT-ⅠT细胞用重组Gal-1或重组Gal-1+乳糖处理后FRET unit的相对倍数变化。Figure 39A. Schematic diagram of detecting fluorescence resonance energy transfer between TCR-CD8; Figure 39B. Relative fold change of FRET unit after wild-type and B4galt1 knockout OT-Ⅰ T cells were treated with recombinant Gal-1 or recombinant Gal-1+lactose.
2.B4galt1调控T细胞杀伤依赖于CD82. B4galt1 regulates T cell killing dependent on CD8
通过细胞杀伤实验本发明发现,B4galt1的失活影响TCR-T细胞介导的靶细胞杀伤,但并不会影响CAR-T介导的靶细胞杀伤,同样CD8敲除也不会影响CAR-T杀伤,这提示了B4galt1通过Gal-1调控T细胞肿瘤杀伤功能的表型是依赖于CD8的(图40A-D)。Through cell killing experiments, the present invention found that the inactivation of B4galt1 affects the target cell killing mediated by TCR-T cells, but does not affect the target cell killing mediated by CAR-T. Similarly, CD8 knockout does not affect CAR-T. killing, which suggests that the phenotype of B4galt1 regulating T cell tumor killing function through Gal-1 is dependent on CD8 (Figure 40A-D).
图40A.CRISPR/Cas9敲除OT-ⅠT细胞中的B4galt1可显著提高对B16F10-OVA细胞的体外特异性杀伤活性。图40B.CRISPR/Cas9敲除OT-ⅠT细胞中的CD8a可显著降低对B16F10-OVA细胞的体外特异性杀伤活性。图40C.CRISPR/Cas9敲除hCD19-CAR T细胞中的B4galt1不影响对Nalm6细胞的体外杀伤活性。图40D.CRISPR/Cas9敲除hCD19-CAR T细胞中的CD8a不影响对Nalm6细胞的体外杀伤活性。Figure 40A. CRISPR/Cas9 knockout of B4galt1 in OT-ⅠT cells can significantly improve the specific killing activity against B16F10-OVA cells in vitro. Figure 40B. CRISPR/Cas9 knocking out CD8a in OT-ⅠT cells can significantly reduce the specific killing activity against B16F10-OVA cells in vitro. Figure 40C. CRISPR/Cas9 knockout of B4galt1 in hCD19-CAR T cells does not affect the in vitro killing activity of Nalm6 cells. Figure 40D. CRISPR/Cas9 knockout of CD8a in hCD19-CAR T cells does not affect the in vitro killing activity of Nalm6 cells.
实施例8通过比较野生型和B4GALT1敲除CD8+T细胞在重组Gal-1pulldown-MS及TCR-CD8FRET中的表型,本发明证实了CD8作为B4GALT1的催化底物,与TCR之间的共定位受到T细胞表面Gal-1的影响,即B4GALT1通过Gal-1抑制了TCR-CD8互作介导的TCR激活。Example 8 By comparing the phenotypes of wild-type and B4GALT1 knockout CD8 + T cells in recombinant Gal-1 pulldown-MS and TCR-CD8 FRET, the present invention confirmed the co-localization between CD8 as a catalytic substrate of B4GALT1 and TCR Affected by Gal-1 on the surface of T cells, B4GALT1 inhibits TCR activation mediated by TCR-CD8 interaction through Gal-1.
实施例9:乳糖通过竞争细胞表面Gal-1增强CD8+T细胞抗肿瘤能力Example 9: Lactose enhances the anti-tumor ability of CD8 + T cells by competing for Gal-1 on the cell surface
1.乳糖作为Gal-1竞争性抑制剂可增强CD8+T细胞活性1. Lactose, as a competitive inhibitor of Gal-1, can enhance CD8 + T cell activity
在乳腺中,B4GALT1与LALBA相互作用形成乳糖合成酶,将半乳糖转移到葡萄糖上生成乳糖。体外实验表明,乳糖中的半乳糖部分可以竞争和干扰糖蛋白、糖脂中β-半乳糖苷的功能。由此本发明提出假设,乳糖及其衍生物可能是一类新的免疫检查点抑制剂,通过竞争掉CD8+T细胞表面的Gal-1而增强T细胞抗肿瘤免疫功能。In the mammary gland, B4GALT1 interacts with LALBA to form lactose synthase, which transfers galactose to glucose to generate lactose. In vitro experiments show that the galactose part of lactose can compete with and interfere with the function of β-galactoside in glycoproteins and glycolipids. Therefore, the present invention hypothesizes that lactose and its derivatives may be a new class of immune checkpoint inhibitors that enhance the anti-tumor immune function of T cells by competing for Gal-1 on the surface of CD8 + T cells.
在体外培养条件下,乳糖可以显著增强OT-ⅠT细胞对OVA寡肽预处理的MC38细胞的特异性杀伤功能(图41A)。并且,在这种体外杀伤系统中,乳糖显著增加了OT-ⅠT细胞中细胞毒性因子如Ifnγ和Tnfα的表达,表明T细胞活化增强(图41B)。另一方面,在anti-CD3/anti-CD28抗体刺激但缺乏外源性Gal-1的情况下,乳糖处理不能显著影响OT-ⅠT细胞的Ifnγ和Tnfα的表达(图41C)。Under in vitro culture conditions, lactose can significantly enhance the specific killing function of OT-IT cells against MC38 cells pretreated with OVA oligopeptide (Figure 41A). Moreover, in this in vitro killing system, lactose significantly increased the expression of cytotoxic factors such as Ifnγ and Tnfα in OT-I T cells, indicating enhanced T cell activation (Figure 41B). On the other hand, in the presence of anti-CD3/anti-CD28 antibody stimulation but in the absence of exogenous Gal-1, lactose treatment could not significantly affect the expression of Ifnγ and Tnfα in OT-I T cells (Fig. 41C).
图41A.乳糖处理增加了OT-ⅠT细胞对OVA寡肽预处理后MC38细胞的体外特异性杀伤活性。图41B.乳糖处理增加了与OVA寡肽预处理的MC38细胞共培养后OT-ⅠT细胞中Tnfα和Ifnγ的表达。采用定量RT-qPCR检测Tnfα和IfnγmRNA的相对表达量。图41C.乳糖处理对anti-CD3/anti-CD28抗体刺激的OT-ⅠT细胞Tnfα和IfnγmRNA表达无显著影响。采用定量RT-qPCR法检测Tnfα和IfnγmRNA的相对表达量。Figure 41A. Lactose treatment increases the in vitro specific killing activity of OT-IT cells against MC38 cells pretreated with OVA oligopeptide. Figure 41B. Lactose treatment increases the expression of Tnfα and Ifnγ in OT-ⅠT cells after co-culture with OVA oligopeptide-pretreated MC38 cells. Quantitative RT-qPCR was used to detect the relative expression of Tnfα and Ifnγ mRNA. Figure 41C. Lactose treatment has no significant effect on the expression of Tnfα and Ifnγ mRNA in OT-Ⅰ T cells stimulated by anti-CD3/anti-CD28 antibodies. Quantitative RT-qPCR method was used to detect the relative expression of Tnfα and Ifnγ mRNA.
在上述体外杀伤系统中,本发明通过anti-Gal-1抗体染色,证实了乳糖处理可以将Gal-1从OT-ⅠT细胞表面去除,同时,也减少了MC38细胞表面的Gal-1水平(图42A-C)。In the above-mentioned in vitro killing system, the present invention confirmed that lactose treatment can remove Gal-1 from the surface of OT-IT cells through anti-Gal-1 antibody staining, and at the same time, it also reduced the level of Gal-1 on the surface of MC38 cells (Figure 42A-C).
图42A.OT-ⅠT细胞与MC38细胞以2:1的比例共培养8小时的代表性流式细胞术检测图。图42B.在OT-ⅠT细胞与MC38细胞共培养后添加乳糖孵育,用anti-Gal-1抗体染色,采用流式细胞术检测MC38细胞表面Gal-1的平均荧光强度。图42C.在OT-ⅠT细胞与MC38细胞共培养后添加乳糖孵育,用anti-Gal-1抗体染色,采用流式细胞术检测OT-ⅠT细胞表面Gal-1的平均荧光强度。Figure 42A. Representative flow cytometry detection chart of OT-IT cells and MC38 cells co-cultured at a ratio of 2:1 for 8 hours. Figure 42B. After co-culture of OT-IT cells and MC38 cells, lactose was added for incubation, stained with anti-Gal-1 antibody, and flow cytometry was used to detect the average fluorescence intensity of Gal-1 on the surface of MC38 cells. Figure 42C. After co-culture of OT-IT cells and MC38 cells, lactose was added for incubation, stained with anti-Gal-1 antibody, and flow cytometry was used to detect the average fluorescence intensity of Gal-1 on the surface of OT-IT cells.
为进一步验证乳糖的作用机理,本发明通过添加外源性重组Gal-1或是与MC38共培养使OT-ⅠT细胞获得Gal-1,发现OT-ⅠT细胞的活性均会受到明显抑制,此时用乳糖处理则可以逆转Gal-1对OT-ⅠT细胞活性的抑制作用(图43A-B)。In order to further verify the mechanism of action of lactose, the present invention allows OT-ⅠT cells to obtain Gal-1 by adding exogenous recombinant Gal-1 or co-culturing with MC38. It is found that the activity of OT-ⅠT cells will be significantly inhibited. Treatment with lactose can reverse the inhibitory effect of Gal-1 on OT-ⅠT cell activity (Figure 43A-B).
图43A.重组Gal-1处理降低anti-CD3/anti-CD28抗体刺激后OT-ⅠT细胞中TNFα的表达,而该抑制作用可以通过乳糖处理逆转。采用定量RT-qPCR法检测TnfαmRNA的相对表达量。图43B.在OT-ⅠT细胞与野生型或Gal-1敲除MC38细胞共培养后,在添加乳糖或不加乳糖的情况下进行anti-CD3/anti-CD28抗体刺激。采用定量RT-qPCR检测Tnfα和IfnγmRNA的相对表达量。Figure 43A. Recombinant Gal-1 treatment reduces the expression of TNFα in OT-Ⅰ T cells after anti-CD3/anti-CD28 antibody stimulation, and this inhibitory effect can be reversed by lactose treatment. Quantitative RT-qPCR method was used to detect the relative expression of TnfαmRNA. Figure 43B. After co-culture of OT-IT cells with wild-type or Gal-1 knockout MC38 cells, anti-CD3/anti-CD28 antibody stimulation was performed with or without the addition of lactose. Quantitative RT-qPCR was used to detect the relative expression of Tnfα and Ifnγ mRNA.
为探索乳糖在体内的作用,本发明用不同浓度乳糖溶液处理从体内MC38肿瘤中消化得到的细胞,再通过anti-Gal-1染色与流式细胞术,本发明发现乳糖同样可以明显减少浸润T细胞表面的Gal-1水平(图44A)。并且,乳糖可显著提高从肿瘤中分离得到的竭耗CD8+PD-1+T细胞的Ifnγ和Tnfα的表达(图44B)。In order to explore the role of lactose in the body, the present invention used lactose solutions of different concentrations to treat cells digested from MC38 tumors in vivo, and then through anti-Gal-1 staining and flow cytometry, the present invention found that lactose can also significantly reduce infiltrating T Gal-1 levels on the cell surface (Figure 44A). Moreover, lactose could significantly increase the expression of Ifnγ and Tnfα in exhausted CD8 + PD-1 + T cells isolated from tumors (Fig. 44B).
图44A.从MC38肿瘤中分离得到的细胞用不同浓度乳糖处理,以竞争掉MC38肿瘤浸润CD8+T细胞表面的Gal-1。用流式细胞仪测定Gal-1的平均荧光强度。图44B.从MC38肿瘤中分离得到的细胞用不同浓度乳糖处理,添加anti-CD3/anti-CD28抗体刺激MC38肿瘤浸润CD8+T细胞Tnfα和Ifnγ的表达。采用定量RT-qPCR检测Tnfα和IfnγmRNA表达水平。Figure 44A. Cells isolated from MC38 tumors were treated with different concentrations of lactose to compete for Gal-1 on the surface of MC38 tumor-infiltrating CD8 + T cells. The average fluorescence intensity of Gal-1 was measured using flow cytometry. Figure 44B. Cells isolated from MC38 tumors were treated with different concentrations of lactose, and anti-CD3/anti-CD28 antibodies were added to stimulate the expression of Tnfα and Ifnγ in MC38 tumor-infiltrating CD8 + T cells. Quantitative RT-qPCR was used to detect the expression levels of Tnfα and Ifnγ mRNA.
2.乳糖可增强体内CD8+T细胞的活性并抑制肿瘤生长2. Lactose can enhance the activity of CD8+ T cells in the body and inhibit tumor growth
为了探索乳糖在生物体内对肿瘤的作用,本发明每两天给皮下接种MC38肿瘤的野生型小鼠尾静脉注射一次乳糖溶液并监测肿瘤生长情况。结果显示,与PBS对照组相比,乳糖注射显著抑制了MC38肿瘤的生长(图45A),并且增加了肿瘤中IFNγ阳性CD8+T细胞的数量(图45B)。另一方面,当实验鼠为免疫缺陷的NPG小鼠时,乳糖抑制肿瘤的作用便不存在(图45C)。用中和抗体清除野生型小鼠中CD8+T细胞可显著降低乳糖注射对MC38肿瘤的作用,当用中和抗体清除CD4+T细胞和NK细胞时,对乳糖抑制肿瘤作用的降低程度则较小(图45D)。对于B2m敲除的MC38肿瘤,乳糖治疗也没有明显效果(图45E)。这提示了乳糖在体内肿瘤中的作用很大程度上依赖于CD8+T细胞。In order to explore the effect of lactose on tumors in vivo, the present invention injected lactose solution into the tail vein of wild-type mice subcutaneously inoculated with MC38 tumors every two days and monitored tumor growth. The results showed that compared with the PBS control group, lactose injection significantly inhibited the growth of MC38 tumors (Figure 45A) and increased the number of IFNγ-positive CD8 + T cells in the tumors (Figure 45B). On the other hand, when the experimental mice were immunodeficient NPG mice, the tumor-inhibitory effect of lactose was absent (Fig. 45C). Depleting CD8 + T cells in wild-type mice with neutralizing antibodies can significantly reduce the effect of lactose injection on MC38 tumors. When neutralizing antibodies are used to deplete CD4 + T cells and NK cells, the degree of reduction in the anti-tumor effect of lactose is smaller. Small (Fig. 45D). For B2m knockout MC38 tumors, lactose treatment also had no obvious effect (Figure 45E). This suggests that the role of lactose in tumors in vivo is largely dependent on CD8 + T cells.
图45中,A.静脉注射乳糖对C57BL/6J野生型小鼠皮下MC38肿瘤生长的影响。B.静脉注射乳糖增加MC38肿瘤浸润IFNγ+CD8+T细胞的百分比。C.静脉注射乳糖对免疫缺陷的NPG(NOD-PrkdcscidIl2rgnull)小鼠皮下MC38肿瘤生长的影响。D.静脉注射乳糖对CD8+T细胞、CD4+T细胞或NK细胞缺失的C57BL/6J野生型小鼠MC38肿瘤生长的影响。E.静脉注射乳糖对C57BL/6J野生型小鼠B2m敲除MC38肿瘤生长的影响。In Figure 45, A. The effect of intravenous lactose on the growth of subcutaneous MC38 tumors in C57BL/6J wild-type mice. B. Intravenous lactose increases the percentage of MC38 tumor-infiltrating IFNγ + CD8 + T cells. C. Effect of intravenous lactose on subcutaneous MC38 tumor growth in immunodeficient NPG (NOD-Prkdc scid Il2rg null ) mice. D. Effect of intravenous lactose on MC38 tumor growth in C57BL/6J wild-type mice lacking CD8 + T cells, CD4 + T cells or NK cells. E. Effect of intravenous lactose injection on B2m knockout MC38 tumor growth in C57BL/6J wild-type mice.
为检测乳糖对其他不同类型的肿瘤是否有作用,本发明在野生型同系鼠中分别皮下接种了乳腺癌细胞系4T1和小鼠结肠癌细胞系CT26,再通过静脉注射乳糖,结果显示乳糖治疗并没有显著影响4T1和CT26肿瘤的生长(图46A-B)。这两种肿瘤被认为是免疫“冷”肿瘤,对免疫治疗反应较弱。随后,本发明在野生型同系鼠中分别皮下接种了B16F10-Puro与B16F10-OVA两个黑色素瘤细胞系,以B16F10-Puro作为对照细胞系,外源性过表达OVA蛋白使得B16F10细胞由“冷”肿瘤转变为“热”肿瘤(后者被认为对免疫治疗反应较强),从而显著增强了对乳糖治疗的敏感性(图46C-D)。In order to detect whether lactose has an effect on other different types of tumors, the present invention subcutaneously inoculated the breast cancer cell line 4T1 and the mouse colon cancer cell line CT26 in wild-type syngeneic mice, and then injected lactose intravenously. The results showed that lactose treatment and The growth of 4T1 and CT26 tumors was not significantly affected (Figure 46A-B). These two tumors are considered immune "cold" tumors and are less responsive to immunotherapy. Subsequently, the present invention subcutaneously inoculated two melanoma cell lines, B16F10-Puro and B16F10-OVA, into wild-type syngeneic mice, using B16F10-Puro as a control cell line. Exogenous overexpression of OVA protein caused B16F10 cells to undergo "cold The tumors transformed into "hot" tumors (the latter are thought to be more responsive to immunotherapy), thereby significantly increasing sensitivity to lactose treatment (Figure 46C-D).
图46中,A.乳糖对BALB/c野生型小鼠皮下4T1肿瘤生长的影响。B.乳糖对BALB/c野生型小鼠皮下CT26肿瘤生长的影响。C.乳糖对C57BL/6J野生型小鼠皮下B16F10-Puro肿瘤生长的影响。D.乳糖对C57BL/6J野生型小鼠皮下B16F10-OVA肿瘤生长的影响。In Figure 46, A. Effect of lactose on subcutaneous 4T1 tumor growth in BALB/c wild-type mice. B. Effect of lactose on subcutaneous CT26 tumor growth in BALB/c wild-type mice. C. Effect of lactose on subcutaneous B16F10-Puro tumor growth in C57BL/6J wild-type mice. D. Effect of lactose on subcutaneous B16F10-OVA tumor growth in C57BL/6J wild-type mice.
3.乳糖及其衍生物的生物学特性3. Biological properties of lactose and its derivatives
进一步探究乳糖作为新免疫治疗药物的可能性,本发明对乳糖及其半乳糖基的功能性做了初步试验。本发明发现在缺乏哺乳动物功能性转运体的情况下,乳糖并不能有效地进入细胞内(图47),而在循环系统中乳糖的化学性质是稳定的。因此,本发明推断静脉注射乳糖抑制肿瘤免疫检查点并非由于其降解后的单糖产物(半乳糖和葡萄糖)。图47用平行人工膜渗透性实验(PAMPA)检测乳糖的渗透性。睾酮和甲氨蝶呤分别作为阳性对照和阴性对照。To further explore the possibility of lactose as a new immunotherapeutic drug, the present invention conducted preliminary tests on the functionality of lactose and its galactosyl group. The present invention found that in the absence of mammalian functional transporters, lactose cannot effectively enter cells (Fig. 47), and the chemical properties of lactose are stable in the circulation system. Therefore, the present invention concludes that the inhibition of tumor immune checkpoints by intravenous injection of lactose is not due to its degraded monosaccharide products (galactose and glucose). Figure 47 Detection of lactose permeability using parallel artificial membrane permeability assay (PAMPA). Testosterone and methotrexate served as positive and negative controls, respectively.
为了证实乳糖中的半乳糖基是结合凝集素和半乳糖凝集素的主要功能基团,本发明通过凝集素竞争染色实验测试了乳糖,蔗糖、N-乙酰乳糖胺(LacNAc)和乳糖-BSA(牛血清蛋白)(图48A)。由于不含有半乳糖基部分,蔗糖对于ECL,sWGA和Gal-1均未表现出竞争结合性质(图48B)。与乳糖相比,LacNAc可以更有效地与细胞表面糖组中的β-半乳糖苷竞争ECL和Gal-1的结合,但也能在较高浓度下与sWGA结合(图48B)。在小鼠体内,静脉注射LacNAc显示出对MC38肿瘤生长的抑制作用(图48C)。由于血液中的乳糖会通过肾脏迅速排出体外,为了稳定其在血液中的浓度,本发明通过高温将乳糖偶联到BSA上(图48A),这可能会改善药物动力学,延缓其在体内的代谢与排泄。In order to confirm that the galactosyl group in lactose is the main functional group that binds lectins and galectin, the present invention tested lactose, sucrose, N-acetyllactosamine (LacNAc) and lactose-BSA ( bovine serum albumin) (Figure 48A). Since it does not contain a galactosyl moiety, sucrose does not exhibit competitive binding properties for ECL, sWGA and Gal-1 (Figure 48B). LacNAc competes more efficiently with β-galactosides in the cell surface glycome than lactose for ECL and Gal-1 binding, but is also able to bind to sWGA at higher concentrations (Figure 48B). In mice, intravenous injection of LacNAc showed an inhibitory effect on MC38 tumor growth (Figure 48C). Since lactose in the blood will be quickly excreted through the kidneys, in order to stabilize its concentration in the blood, the present invention couples lactose to BSA through high temperature (Figure 48A), which may improve pharmacokinetics and delay its release in the body. Metabolism and excretion.
图48中,A.乳糖、蔗糖、N-乙酰乳糖胺(LacNAc)和乳糖-牛血清蛋白(BSA)的结构。SDS-PAGE凝胶考马斯亮蓝染色显示BSA有效地偶联了乳糖。B.乳糖、蔗糖、N-乙酰乳糖胺和乳糖-BSA与MC38细胞表面ECL、sWGA、Gal-1的竞争结线。C.静脉注射LacNAc(20mM/250μLDPBS)对C57BL/6J野生型小鼠MC38肿瘤生长的影响。In Figure 48, A. Structures of lactose, sucrose, N-acetyllactosamine (LacNAc) and lactose-bovine serum albumin (BSA). Coomassie brilliant blue staining of SDS-PAGE gel showed that BSA was efficiently coupled to lactose. B. Competitive binding of lactose, sucrose, N-acetylactosamine and lactose-BSA with ECL, sWGA and Gal-1 on the surface of MC38 cells. C. Effect of intravenous injection of LacNAc (20mM/250μLDPBS) on MC38 tumor growth in C57BL/6J wild-type mice.
通过体外T细胞肿瘤杀伤实验,细胞毒性因子检测以及体内肿瘤模型,本发明证明了乳糖可以通过竞争细胞表面Gal-1去增强TCR-CD8的共定位和TCR的激活,提高了T细胞的活性及抗肿瘤能力。从乳糖及其衍生物与凝集素的竞争结合实验得知,这些分子中的半乳糖基是结合Gal-1的主要功能基团,为进一步探索乳糖及其衍生物作为抗肿瘤药物的潜在可能性提供了分子基础。Through in vitro T cell tumor killing experiments, cytotoxic factor detection and in vivo tumor models, the present invention proves that lactose can enhance the co-localization of TCR-CD8 and TCR activation by competing for Gal-1 on the cell surface, thereby improving the activity and activation of T cells. Anti-tumor ability. From the competitive binding experiments of lactose and its derivatives with lectins, it is known that the galactosyl group in these molecules is the main functional group that binds Gal-1, which provides a basis for further exploring the potential of lactose and its derivatives as anti-tumor drugs. Provides a molecular basis.
以上所述,仅为本发明较佳的具体实施方式;但本发明的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其改进构思加以等同替换或改变,都应涵盖在本发明的保护范围内。The above are only preferred specific embodiments of the present invention; however, the protection scope of the present invention is not limited thereto. Any person familiar with the technical field who is familiar with the technical field shall make equivalent substitutions or changes based on the technical solutions and improvement concepts of the present invention within the technical scope disclosed in the present invention, and shall be covered by the protection scope of the present invention.
Claims (27)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211459300.7A CN116350756A (en) | 2022-11-16 | 2022-11-16 | Novel application of B4GALT1 gene/protein, a kind of isolated immune cell and its application |
CN2022114354538 | 2022-11-16 | ||
CN2022114593007 | 2022-11-16 | ||
CN202211435453.8A CN116036100A (en) | 2022-11-16 | 2022-11-16 | Novel use of lactose or derivative thereof, LALBA gene/protein |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117563001A true CN117563001A (en) | 2024-02-20 |
Family
ID=89885586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311529867.1A Pending CN117563001A (en) | 2022-11-16 | 2023-11-16 | Application of galectin-1 as immune checkpoint in preparation of tumor immunotherapy medicament and medicament |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117563001A (en) |
WO (1) | WO2024104433A1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116350756A (en) * | 2022-11-16 | 2023-06-30 | 北京生命科学研究所 | Novel application of B4GALT1 gene/protein, a kind of isolated immune cell and its application |
CN116036100A (en) * | 2022-11-16 | 2023-05-02 | 北京生命科学研究所 | Novel use of lactose or derivative thereof, LALBA gene/protein |
-
2023
- 2023-11-16 CN CN202311529867.1A patent/CN117563001A/en active Pending
- 2023-11-16 WO PCT/CN2023/132074 patent/WO2024104433A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024104433A1 (en) | 2024-05-23 |
WO2024104433A9 (en) | 2024-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cordova et al. | Human SLC46A2 is the dominant cGAMP importer in extracellular cGAMP-sensing macrophages and monocytes | |
Wang et al. | mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma | |
RU2768829C2 (en) | Anticancer rna vaccines | |
ES2875959T3 (en) | Compositions and methods for T-cell receptor reprogramming using fusion proteins | |
JP7045378B2 (en) | Gold-optimized CAR T cells | |
EP3368689B1 (en) | Composition for modulating immune responses by use of immune cell gene signature | |
US20210189342A1 (en) | Compositions and methods for modulating monocyte and macrophage inflammatory phenotypes and immunotherapy uses thereof | |
US11584787B2 (en) | Soluble CD33 for treating myelodysplastic syndromes (MDS) | |
WO2017069958A2 (en) | Modulation of novel immune checkpoint targets | |
CN113396216A (en) | Combinatorial gene targets for improved immunotherapy | |
KR20200130826A (en) | Gene-modulating compositions and methods for improved immunotherapy | |
AU2024203377A1 (en) | Altering inflammatory states of immune cells in vivo by modulating cellular activation states | |
CN114588255A (en) | Tumor vaccine based on mRNA and preparation and combined anti-cancer method thereof | |
US20240425560A1 (en) | IL-18 Variants and Uses Thereof | |
WO2022086875A1 (en) | Mercury controlled gene expression | |
CN116036100A (en) | Novel use of lactose or derivative thereof, LALBA gene/protein | |
KR20230004456A (en) | Methods and compositions for sensitization of tumor cells to immunotherapy | |
WO2024104433A9 (en) | Use of galectin-1 as immune checkpoint in preparation of tumor immunotherapy medicament and medicament | |
EP3789485A1 (en) | Cellular therapies for cancer | |
CN111166867B (en) | Function and application of PD-1 ubiquitination agonist | |
CN116350756A (en) | Novel application of B4GALT1 gene/protein, a kind of isolated immune cell and its application | |
EP3903805A1 (en) | Immunopotentiating or anticancer activity-augmenting composition comprising mal-expressed stem cell like memory t cell as active ingredient | |
US20210069245A1 (en) | Mirna modulation of t cell signaling and uses thereof | |
Yurkevicz et al. | Tumor-specific antigen delivery for T-cell therapy via a pH-sensitive peptide conjugate | |
EP4223779A1 (en) | Egfr-targeting chimeric antigen receptor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |