Disclosure of Invention
The invention solves the technical problem of providing the energy storage conversion circuit and the working method thereof, and improves the performance of the energy storage conversion circuit while reducing the power consumption of the energy storage conversion circuit.
In order to solve the above technical problems, an embodiment of the present invention provides an energy storage conversion circuit, including: each phase conversion circuit comprises a first input end, a second input end and an output end, the first input ends of the phase conversion circuits are connected, the second input ends of the phase conversion circuits are connected, each phase conversion circuit further comprises a first switch module and a second switch module, the first switch module is used for outputting a first output current according to a first switch frequency, the second switch module is used for outputting a second output current according to a second switch frequency, the first switch frequency is smaller than the second switch frequency, the output end of the conversion circuit is used for outputting a third output current, and the third output current is the sum of the first output current and the second output current; the direct current input port is connected with the first input end and the second input end of each phase conversion circuit; and the alternating current output port is connected with the output end of each phase conversion circuit.
Optionally, the first switch module includes first switch unit and second switch unit, first switch unit and second switch unit all include first end, second end and control end, the first end of first switch unit with direct current input port is connected, the second end of first switch unit respectively with the first end of second switch unit and second switch module are connected, the second end of second switch unit with direct current input port is connected, first switch unit with second switch unit is used for switching on or off according to first switching frequency, first switch unit with the conduction time of second switch unit is complementary.
Optionally, the first switch unit includes a plurality of first switch tubes connected in parallel, the second switch unit includes a plurality of second switch tubes connected in parallel, and the number of the first switch tubes is the same as the number of the second switch tubes.
Optionally, the first switch module further includes a first inductor, a first end of the first inductor is connected to an output end of the first switch module, and a second end of the first inductor is connected to an output end of the second switch module.
Optionally, the second switch module includes a third switch unit and a fourth switch unit, where the third switch unit and the fourth switch unit each include a first end, a second end and a control end, the first end of the third switch unit is connected with the first end of the first switch unit, the second end of the third switch unit is connected with the first end of the fourth switch unit and the ac output port, the second end of the fourth switch unit is connected with the second end of the second switch unit, and the third switch unit and the fourth switch unit are used for being turned on or turned off according to the second switch frequency, and the turn-on time of the third switch unit and the turn-on time of the fourth switch unit are complementary.
Optionally, the third switching unit includes a third switching tube, and the fourth switching unit includes a fourth switching tube.
Optionally, the direct current input port includes a positive bus voltage end, a negative bus voltage end and a first capacitor, and the first capacitor is connected between the positive bus voltage end and the negative bus voltage end.
Optionally, the ac output port includes three filtering modules connected in parallel, and each filtering module is connected to an output end of one of the phase conversion circuits.
Optionally, each of the three filtering modules includes a second inductor and a second capacitor connected in parallel.
Optionally, the energy storage conversion circuit further includes: the control module is used for: applying a first switching frequency to the first switching module, so that a first output current of an output end of the conversion circuit reaches a first preset threshold; applying a second switching frequency to the second switching module, so that a third output current of the output end of the conversion circuit reaches a second preset threshold value.
Optionally, the control module is further configured to: according to the first output current and the first preset threshold value, the duty ratio of the first switch module is adjusted; and adjusting the duty ratio of the second switch module according to the third output current and the second preset threshold value.
Optionally, the control module is further configured to: when the first output current is smaller than a first preset threshold value, a first level is applied to the first switch unit, so that the first switch unit is conducted; and when the third output current is smaller than a second preset threshold value, applying a second level to the third switching unit so that the third switching unit is turned off.
Optionally, the control module is further configured to: when the first output current is larger than a first preset threshold value, a first level is applied to the second switch unit, so that the second switch unit is conducted; and when the third output current is larger than a second preset threshold value, applying a first level to the third switch unit so that the third switch unit is conducted.
Optionally, the control module is further configured to: when the first output current is equal to a first preset threshold value, a first level is applied to the first switch unit, so that the first switch unit is conducted; and when the third output current is equal to a second preset threshold value, applying a first level to the third switch unit so that the third switch unit is conducted.
Optionally, the control module is further configured to: when the first output current is equal to a first preset threshold value, a first level is applied to the second switch unit, so that the second switch unit is conducted; and when the third output current is equal to a second preset threshold value, applying a first level to the fourth switching unit so that the fourth switching unit is conducted.
Correspondingly, the technical scheme of the invention also provides a working method of the energy storage conversion circuit, which comprises the following steps: applying a first switching frequency to a first switching module, so that a first output current of an output end of the conversion circuit reaches a first preset threshold; applying a second switching frequency to the second switching module, so that a third output current of the output end of the conversion circuit reaches a second preset threshold value.
Optionally, the working method of the energy storage conversion circuit further includes: according to the first output current and the first preset threshold value, the duty ratio of the first switch module is adjusted; and adjusting the duty ratio of the second switch module according to the third output current and the second preset threshold value.
Optionally, adjusting the duty cycle of the first and second switch modules includes: when the first output current is smaller than a first preset threshold value, a first level is applied to a first switch unit, so that the first switch unit is conducted; and when the third output current is smaller than a second preset threshold value, applying a second level to a third switching unit so that the third switching unit is turned off.
Optionally, adjusting the duty cycle of the first and second switch modules further includes: when the first output current is larger than a first preset threshold value, a first level is applied to the second switch unit, so that the second switch unit is conducted; and when the third output current is larger than a second preset threshold value, applying a first level to the third switch unit so that the third switch unit is conducted.
Optionally, adjusting the duty cycle of the first and second switch modules further includes: when the first output current is equal to a first preset threshold value, a first level is applied to the first switch unit, so that the first switch unit is conducted; and when the third output current is equal to a second preset threshold value, applying a first level to the third switch unit so that the third switch unit is conducted.
Optionally, adjusting the duty cycle of the first and second switch modules further includes: when the first output current is equal to a first preset threshold value, a first level is applied to the second switch unit, so that the second switch unit is conducted; and when the third output current is equal to a second preset threshold value, applying a first level to a fourth switching unit so that the fourth switching unit is conducted.
Compared with the prior art, the technical scheme of the embodiment of the invention has the following beneficial effects:
according to the energy storage conversion circuit provided by the technical scheme of the invention, each phase conversion circuit is divided into the first switch module and the second switch module, and the first switch module and the second switch module are controlled through different switch frequencies, so that the power consumption of the first switch module is reduced under the low-frequency switch frequency, and meanwhile, the dynamic performance of the second switch module under the high-frequency switch frequency is ensured, and the performance of the energy storage conversion circuit is further improved; and under different switching frequencies, the output currents of the first switching module and the second switching module are different, so that the third output current of the energy storage conversion circuit is increased, the high-current output capacity of the energy storage conversion circuit is ensured, and the performance of the energy storage conversion circuit is further improved.
Further, in the energy storage conversion circuit provided by the technical scheme of the invention, the first switch module comprises the first switch unit and the second switch unit, the second switch module comprises the third switch unit and the fourth switch unit, and the flexible adjustment of the third output current of the energy storage conversion circuit is realized and the accuracy of the third output current of the energy storage conversion circuit is improved by controlling the complementary conduction of the first switch unit and the second switch unit and the complementary conduction of the third switch unit and the fourth switch unit.
Furthermore, in the energy storage conversion circuit provided by the technical scheme of the invention, the first inductor is connected into the first switch module, so that the first output current output by the first switch module is continuous by utilizing the characteristic that the current on the inductor cannot be suddenly changed, and the stability of the output current is ensured.
According to the working method of the energy storage conversion circuit, the first switch module and the second switch module are controlled through different switch frequencies, so that the power consumption of the first switch module is reduced under the low-frequency switch frequency, the dynamic performance of the second switch module under the high-frequency switch frequency is ensured, and the performance of the energy storage conversion circuit is further improved; and under different switching frequencies, the output currents of the first switching module and the second switching module are different, so that the third output current of the energy storage conversion circuit is increased, the high-current output capacity of the energy storage conversion circuit is ensured, and the performance of the energy storage conversion circuit is further improved.
Furthermore, according to the working method of the energy storage conversion circuit provided by the technical scheme of the invention, the flexible adjustment of the third output current of the energy storage conversion circuit is realized and the accuracy of the third output current of the energy storage conversion circuit is improved by controlling the complementary conduction of the first switch unit and the second switch unit and the complementary conduction of the third switch unit and the fourth switch unit.
Detailed Description
As known from the background art, the energy storage conversion circuit in the prior art has the problems of high loss of the power tube and low dynamic performance of the device, and the detection method of the existing energy storage conversion circuit is combined to analyze the reason:
fig. 1 is a schematic diagram of the structure of the energy storage conversion circuit.
Referring to fig. 1, fig. 1 shows only a structure of one phase conversion circuit in a tank conversion circuit, where the tank conversion circuit includes: a plurality of phase conversion circuits 6, each phase conversion circuit 6 including a first input terminal, a second input terminal, and an output terminal, the first input terminal of each phase conversion circuit 6 being connected, the second input terminal of each phase conversion circuit 6 being connected, each phase conversion circuit 6 including two switching transistors; the direct current input port 5 is connected with the input ends of the plurality of phase conversion circuits 6; and an alternating current output port 7, wherein the alternating current output port 7 is connected with the output ends of the phase conversion circuits 6.
In the above scheme, the switching frequency of the switching module adopts a compromise choice, namely, a unified cover opening frequency is adopted to control the phase conversion circuit, so that the loss and the dynamic performance of the switching module are in medium values, but the problems of high loss and low dynamic performance of the switching module still exist in the above scheme.
In order to solve the technical problems, the technical scheme of the invention provides an energy storage conversion circuit and a working method thereof, wherein each phase conversion circuit is divided into a first switch module and a second switch module, and the first switch module and the second switch module are controlled through different switch frequencies, so that the power consumption of the first switch module is reduced under the switch frequency of low frequency, and meanwhile, the dynamic performance of the second switch module under the switch frequency of high frequency is ensured, and the performance of the energy storage conversion circuit is further improved; and under different switching frequencies, the output currents of the first switching module and the second switching module are different, so that the third output current of the energy storage conversion circuit is increased, the high-current output capacity of the energy storage conversion circuit is ensured, and the performance of the energy storage conversion circuit is further improved.
In order to make the above objects, features and advantages of the present invention more comprehensible, embodiments accompanied with figures are described in detail below.
Fig. 2 is a schematic diagram of a tank circuit according to an embodiment of the invention.
Referring to fig. 2, the energy storage conversion circuit includes: three phase conversion circuits 2, each phase conversion circuit 2 includes a first input terminal, a second input terminal, and an output terminal, the first input terminal of each phase conversion circuit 2 is connected, and the second input terminal of each phase conversion circuit 2 is connected.
Fig. 3 is a schematic diagram of a phase conversion circuit in the energy storage conversion circuit according to an embodiment of the present invention.
Referring to fig. 3, each of the conversion circuits further includes a first switch module 201 and a second switch module 202; a direct current input port 1, wherein the direct current input port 1 is connected with a first input end and a second input end of each phase conversion circuit 2; and an ac output port 3, wherein the ac output port 3 is connected to an output terminal of each phase conversion circuit 2.
The first switching module 201 is configured to output a first output current I1 according to a first switching frequency.
The second switching module 202 is configured to output a second output current I2 according to a second switching frequency, the first switching frequency is smaller than the second switching frequency, and an output end of the conversion circuit is configured to output a third output current I3, where the third output current I3 is a sum of the first output current I1 and the second output current I2.
The first switching frequency ranges from 500 hz to 1500 hz, and the second switching frequency ranges from 5000 hz to 10000 hz.
The first switch module 201 includes a first switch unit 2011 and a second switch unit 2012, where each of the first switch unit 2011 and the second switch unit 2012 includes a first end, a second end, and a control end, the first end of the first switch unit 2011 is connected to the dc input port 1, the second end of the first switch unit 2011 is connected to the first end of the second switch unit 2012 and the ac output port 3, the second end of the second switch unit 2012 is connected to the dc input port 1, the first switch unit 2011 and the second switch unit 2012 are used for being turned on or off according to the first switching frequency, and the on time of the first switch unit 2011 and the on time of the second switch unit 2012 are complementary.
The purpose of the first switch module 201 is to reduce the switching frequency to reduce the loss of the switching tube, and to improve the efficiency and reduce the design requirement of the radiator of the device; the goal of the second switch module 202 is to increase the control frequency of the tank circuit to increase the bandwidth of the overall device. The third output current I3 is high-frequency high-current, so that the dynamic performance of high frequency is achieved, and the output capability of high current is ensured.
The second switch module 202 includes a third switch unit 2021 and a fourth switch unit 2022, where each of the third switch unit 2021 and the fourth switch unit 2022 includes a first end, a second end, and a control end, the first end of the third switch unit 2021 is connected to the first end of the first switch unit 2011, the second end of the third switch unit 2021 is connected to the first end of the fourth switch unit 2022 and the ac output port 3, the second end of the fourth switch unit 2022 is connected to the second end of the second switch unit 2012, the third switch unit 2021 and the fourth switch unit 2022 are used for being turned on or off according to the second switching frequency, and the on time of the third switch unit 2021 and the fourth switch unit 2022 are complementary.
In the above scheme, each phase conversion circuit 2 is divided into the first switch module 201 and the second switch module 202, and the first switch module 201 and the second switch module 202 are controlled by different switch frequencies, so that the power consumption of the first switch module 201 is reduced at the switch frequency of low frequency, and meanwhile, the dynamic performance of the second switch module 202 at the switch frequency of high frequency is ensured, and the performance of the energy storage conversion circuit is further improved; and under different switching frequencies, the output currents of the first switch module 201 and the second switch module 202 are different, so that the third output current I3 of the energy storage conversion circuit is increased, the high-current output capability of the energy storage conversion circuit is ensured, and the performance of the energy storage conversion circuit is further improved.
In this embodiment, the dc input port 1 includes a positive bus voltage end+, a negative bus voltage end, and a first capacitor 101, where the first capacitor 101 is connected between the positive bus voltage end+ and the negative bus voltage end.
In this embodiment, the ac output port 3 includes three filtering modules 301 connected in parallel, and each filtering module 301 is connected to an output terminal of one of the phase conversion circuits 2.
In the above solution, the first switch module 201 includes a first switch unit 2011 and a second switch unit 2012, and the second switch module 202 includes a third switch unit 2021 and a fourth switch unit 2022, and by controlling complementary conduction of the first switch unit 2011 and the second switch unit 2012 and complementary conduction of the third switch unit 2021 and the fourth switch unit 2022, flexible adjustment of the third output current I3 of the energy storage conversion circuit is achieved, and accuracy of the third output current I3 of the energy storage conversion circuit is improved.
Fig. 4 is a schematic diagram of a phase change circuit in the energy storage conversion circuit according to an embodiment of the present invention.
Referring to fig. 4, the first switching unit 2011 includes a plurality of first switching tubes T1 connected in parallel, and the second switching unit 2012 includes a plurality of second switching tubes T2 connected in parallel; the third switching unit 2021 includes a third switching tube T3, and the fourth switching unit 2022 includes a fourth switching tube T4.
The number of the first switching tubes T1 is the same as the number of the second switching tubes T2.
The filtering module 301 includes a second inductance 3011 and a second capacitance 3012 connected in parallel.
The conduction time of the first switching tube T1 is complementary with that of the second switching tube T2, and the conduction time of the third switching tube T3 is complementary with that of the fourth switching tube T4.
The first switching tube T1 is used for increasing the first output current I1, and the second switching tube T2 is used for decreasing the first output current I1.
In this embodiment, the first switching tube T1 and the second switching tube T2 include IGBTs, and the third switching tube T3 and the fourth switching tube T4 include MOS tubes.
Of course, the invention is not limited by this, and different types of switching tubes are selected according to the actual requirements of the energy storage conversion circuit so as to fully exert the large current characteristics and the high frequency characteristics of different switching tubes.
In this embodiment, the first switch module 201 further includes a first inductor 2013, a first end of the first inductor 2013 is connected to the output end of the first switch module 201, and a second end of the first inductor 2013 is connected to the output end of the second switch module 202.
Wherein i1=k×i, i3=i1+i2, where I1 is a first output current I1, I2 is a second output current I2, I3 is a third output current I3, K is a fixed ratio, and I is a second preset threshold.
In a specific embodiment, when the first output current I1 is less than k×i, the first switching tube T1 is turned on, the third switching tube T3 is turned off, and then the current of the second output current I2 flows through the freewheeling diode of the fourth switching tube T4, and at this time, no matter whether the fourth switching tube T4 is turned on or not, the voltage at two ends of the first inductor 2013 is the bus voltage, and the first output current I1 becomes large; when the first output current I1 is equal to k×i, the first switching tube T1 and the third switching tube T3 are turned on or the second switching tube T2 and the fourth switching tube T4 are turned on, so that the output end of the third output current I3 automatically draws a current of about k×i from a position lower than the first output current I1, and the remaining current (i.e., the second output current I2) flows out from the third switching tube T3, and at this time, the voltage at two ends of the first switching tube T1 is 0V, so that the magnitude of the first output current I1 is unchanged; when the first output current I1 is greater than k×i, the second switching tube T2 and the third switching tube T3 are turned on, and the first output current I1 decreases.
In this embodiment, K is 0.9 or 0.95.
In the above solution, the control target of the first switch module 201 is the first output current I1, and the first output current I1 is controlled to be slightly smaller than the third output current I3, for example, i1=kχi (k=0.95), and because the control frequency of the power tube is relatively low, the current waveform of the first output current I1 is a sine quantity with obvious up-down waveforms, which contains a large number of harmonics, and cannot meet the grid-connection requirement; the control objective of the second switch control module 4 is the voltage of the ac output port 3, and the third switch tube T3 and the fourth switch tube T4 are designed based on the area equivalent principle, that is, the two switch tubes of the second switch module 202 control the output characteristic of the phase conversion circuit 2 to be voltage control.
In addition, the first inductor 2013 is connected in the first switch module 201, so that the first output current I1 output by the first switch module 201 is continuous by utilizing the characteristic that the current on the inductor cannot be suddenly changed, and the stability of the output current is ensured.
The energy storage conversion circuit includes: a control module 4, the control module 4 being configured to: applying a first switching frequency to the first switching module 201, so that a first output current I1 of an output end of the conversion circuit reaches a first preset threshold; a second switching frequency is applied to the second switching module 202 such that a third output current I3 at the output of the conversion circuit reaches a second preset threshold.
The first preset threshold value is K x I, the second preset threshold value is I, and the value of K comprises 0.9 or 0.95. The control module 4 is further configured to: adjusting the duty cycle of the first switch module 201 according to the first output current I1 and the first preset threshold value k×i; the duty cycle of the second switch module 202 is adjusted according to the third output current I3 and the second preset threshold I.
The control module 4 is further configured to: when the first output current I1 is smaller than a first preset threshold value k×i, applying a first level to the first switch unit 2011, so that the first switch unit 2011 is turned on; when the third output current I3 is smaller than a second preset threshold I, a second level is applied to the third switching unit 2021 such that the third switching unit 2021 is turned off.
The control module 4 is further configured to: when the first output current I1 is greater than a first preset threshold value k×i, applying a first level to the second switching unit 2022, so that the second switching unit 2022 is turned on; when the third output current I3 is greater than a second preset threshold I, a first level is applied to the third switching unit 2021 such that the third switching unit 2021 is turned on.
The control module 4 is further configured to: when the first output current I1 is equal to a first preset threshold value k×i, applying a first level to the first switch unit 2011, so that the first switch unit 2011 is turned on; when the third output current I3 is equal to a second preset threshold I, a first level is applied to the third switching unit 2021 such that the third switching unit 2021 is turned on.
The control module 4 is further configured to: when the first output current I1 is equal to a first preset threshold value k×i, applying a first level to the second switch unit 2012, so that the second switch unit 2012 is turned on; when the third output current I3 is equal to a second preset threshold I, a first level is applied to the fourth switching unit 2022, so that the fourth switching unit 2022 is turned on.
Correspondingly, please continue to refer to fig. 4, the technical scheme of the present invention further provides a working method of the energy storage conversion circuit, which includes: applying a first switching frequency to the first switching module 201, so that a first output current I1 of an output end of the conversion circuit reaches a first preset threshold; a second switching frequency is applied to the second switching module 202 such that a third output current I3 at the output of the conversion circuit reaches a second preset threshold.
The first preset threshold value is K x I, the second preset threshold value is I, and the value of K comprises 0.9 or 0.95.
In this embodiment, the working method of the energy storage conversion circuit further includes: adjusting the duty cycle of the first switch module 201 according to the first output current I1 and the first preset threshold value k×i; the duty cycle of the second switch module 202 is adjusted according to the third output current I3 and the second preset threshold I.
In this embodiment, adjusting the duty cycle of the first switch module 201 and the second switch module 202 includes: when the first output current I1 is smaller than a first preset threshold value k×i, applying a first level to the first switch unit 2011, so that the first switch unit 2011 is turned on; when the third output current I3 is smaller than a second preset threshold I, a second level is applied to the third switching unit 2021 such that the third switching unit 2021 is turned off.
In this embodiment, adjusting the duty cycle of the first switch module 201 and the second switch module 202 further includes: when the first output current I1 is greater than a first preset threshold value k×i, applying a first level to the second switching unit 2022, so that the second switching unit 2022 is turned on; when the third output current I3 is greater than a second preset threshold I, a first level is applied to the third switching unit 2021 such that the third switching unit 2021 is turned on.
In this embodiment, adjusting the duty cycle of the first switch module 201 and the second switch module 202 further includes: when the first output current I1 is equal to a first preset threshold value k×i, applying a first level to the first switch unit 2011, so that the first switch unit 2011 is turned on; when the third output current I3 is equal to a second preset threshold I, a first level is applied to the third switching unit 2021 such that the third switching unit 2021 is turned on.
In this embodiment, adjusting the duty cycle of the first switch module 201 and the second switch module 202 further includes: when the first output current I1 is equal to a first preset threshold value k×i, applying a first level to the second switch unit 2012, so that the second switch unit 2012 is turned on; when the third output current I3 is equal to a second preset threshold I, a first level is applied to the fourth switching unit 2022, so that the fourth switching unit 2022 is turned on.
Although the present invention is disclosed above, the present invention is not limited thereto. Various changes and modifications may be made by one skilled in the art without departing from the spirit and scope of the invention, and the scope of the invention should be assessed accordingly to that of the appended claims.