CN117522681A - Real-time splicing method and system for UAV thermal infrared remote sensing images - Google Patents
Real-time splicing method and system for UAV thermal infrared remote sensing images Download PDFInfo
- Publication number
- CN117522681A CN117522681A CN202311413477.8A CN202311413477A CN117522681A CN 117522681 A CN117522681 A CN 117522681A CN 202311413477 A CN202311413477 A CN 202311413477A CN 117522681 A CN117522681 A CN 117522681A
- Authority
- CN
- China
- Prior art keywords
- thermal infrared
- image
- coordinate system
- real
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000004927 fusion Effects 0.000 claims abstract description 18
- 239000011159 matrix material Substances 0.000 claims description 27
- 238000004364 calculation method Methods 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 8
- 239000013598 vector Substances 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 5
- 238000007499 fusion processing Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 240000004282 Grewia occidentalis Species 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/80—Arrangement of on-board electronics, e.g. avionics systems or wiring
- B64U20/87—Mounting of imaging devices, e.g. mounting of gimbals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/60—Editing figures and text; Combining figures or text
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4038—Image mosaicing, e.g. composing plane images from plane sub-images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10048—Infrared image
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域Technical field
本发明涉及无人机摄影技术领域,尤其涉及一种无人机热红外遥感影像实时拼接方法及系统。The invention relates to the technical field of drone photography, and in particular to a real-time splicing method and system for thermal infrared remote sensing images of drones.
背景技术Background technique
无人机搭载热红外相机可以快速实现大区域的高分辨率热红外遥感成像,在消防应急、野外搜救、林火监测等专业领域得到了广泛应用,可有效降低各种突发事件造成的人身和财产损失等。受制于热红外相机分辨率、飞行高度等限制,热红外遥感影像需要拼接处理才能快速实现大面积的温度态势感知。目前在多种应用场景下,如森林火灾现场勘测,对无人机热红外遥感影像的在线实时拼接提出了强烈需求。无人机热红外遥感影像的大区域拼接方法主要采集摄影测量或者运动恢复结构方法,遵循先配准后拼接的影像处理策略,通过提取影像重叠区域的同名特征对影像位置与姿态进行解算,然后开展几何纠正与影像拼接处理。由于无人机热红外遥感影像具有信噪比和对比度低的特点,特征匹配困难,硬件计算资源消耗大,导致在线实时拼接处理易失败。Drones equipped with thermal infrared cameras can quickly achieve high-resolution thermal infrared remote sensing imaging of large areas. They have been widely used in professional fields such as fire emergency, field search and rescue, forest fire monitoring, etc., and can effectively reduce the personal injury caused by various emergencies. and property damage, etc. Subject to limitations such as thermal infrared camera resolution and flight altitude, thermal infrared remote sensing images need to be spliced to quickly achieve large-area temperature situation awareness. Currently, in various application scenarios, such as forest fire site survey, there is a strong demand for online real-time splicing of UAV thermal infrared remote sensing images. The large-area splicing method of UAV thermal infrared remote sensing images mainly collects photogrammetry or motion recovery structure methods, follows the image processing strategy of first registration and then splicing, and solves the image position and attitude by extracting the same-name features of the image overlapping areas. Then perform geometric correction and image stitching processing. Since UAV thermal infrared remote sensing images have low signal-to-noise ratio and contrast, feature matching is difficult, and hardware computing resources are consumed, resulting in online real-time splicing processing that is prone to failure.
因此,现在技术还有待发展和改进。Therefore, the technology has yet to be developed and improved.
发明内容Contents of the invention
本发明提供了一种无人机热红外遥感影像实时拼接方法及系统,用于在只需较少地面控制端计算资源支持的情况下实现不受地表场景与影像同名特征提取限制的热红外遥感影像在线实时拼接。The present invention provides a real-time splicing method and system for UAV thermal infrared remote sensing images, which is used to achieve thermal infrared remote sensing that is not limited by the extraction of features of the same name in surface scenes and images while requiring less computing resource support from the ground control end. Images are stitched online in real time.
本发明第一方面提供了一种无人机热红外遥感影像实时拼接方法,所述无人机热红外遥感影像实时拼接方法包括:对热红外相机和热红外相机与POS系统进行检校,POS系统包括GNSS接收器和IMU;接收无人机下发的带有位姿元信息的原始热红外影像;根据热红外相机相对于imu坐标系的外参矩阵和位姿元信息中记录的曝光时刻的影像位姿,计算所述原始热红外影像在地面摄影坐标系Om中的外方位元素;根据所述原始热红外影像在地面摄影坐标系Om中的外方位元素对所述原始热红外影像进行正射纠正,生成热红外正射影像;在所述生成的热红外正射影像中增加用于记录每个像素点在原始热红外影像中的像高IH的图层;当生成的热红外正射影像不为第一幅影像时,根据地理位置将所述生成的热红外正射影像与已拼接影像进行拼接,所述生成的热红外正射影像与所述已拼接影像的重叠区域的灰度值根据像高IH的取值大小采用渐入渐出方法进行图像融合,并更新已拼接影像;将更新后的已拼接影像加载到地面控制端GIS系统中,并与观测区已有卫星底图进行叠加实时显示。The first aspect of the present invention provides a real-time splicing method of UAV thermal infrared remote sensing images. The real-time splicing method of UAV thermal infrared remote sensing images includes: calibrating the thermal infrared camera and the POS system. The POS system The system includes a GNSS receiver and IMU; receives the original thermal infrared image with pose element information sent by the drone; and based on the external parameter matrix of the thermal infrared camera relative to the imu coordinate system and the exposure time recorded in the pose element information image pose, calculate the external orientation elements of the original thermal infrared image in the ground photography coordinate system O m ; calculate the original thermal infrared image according to the external orientation elements of the original thermal infrared image in the ground photography coordinate system O m The image is orthorectified to generate a thermal infrared orthoimage; a layer for recording the image height I H of each pixel in the original thermal infrared image is added to the generated thermal infrared orthoimage; when the generated thermal infrared orthoimage is When the thermal infrared orthoimage is not the first image, the generated thermal infrared orthoimage and the spliced image are spliced according to the geographical location, and the overlap between the generated thermal infrared orthoimage and the spliced image is The gray value of the area is fused using the fade-in and fade-out method according to the image height I The existing satellite base map is overlaid and displayed in real time.
优选地,所述对热红外相机和热红外相机与POS系统进行检校包括:对热红外相机进行标定,获取所述热红外相机的焦距(fx,fy)、主点(cx,cy)和镜头几何畸变参数(k1,k2,p1,p2,k3);将GNSS接收器接收的PPS信号同步到IMU的时钟以使IMU的时间与GNSS接收器的时间同步,并配置热红外相机响应GNSS接收器的PPS触发信号以使置热红外相机捕获的图像与GNSS接收器的时间同步;获取所述热红外相机相对于imu坐标系的外参矩阵。Preferably, the calibration of the thermal infrared camera and the thermal infrared camera and the POS system includes: calibrating the thermal infrared camera, and obtaining the focal length (f x , f y ) and principal point (c x , ) of the thermal infrared camera. c y ) and lens geometric distortion parameters (k 1 , k 2 , p 1 , p 2 , k 3 ); synchronize the PPS signal received by the GNSS receiver to the clock of the IMU to synchronize the time of the IMU with the time of the GNSS receiver , and configure the thermal infrared camera to respond to the PPS trigger signal of the GNSS receiver so that the image captured by the thermal infrared camera is synchronized with the time of the GNSS receiver; obtain the external parameter matrix of the thermal infrared camera relative to the imu coordinate system.
优选地,所述位姿元信息中记录的曝光时刻的影像位姿的获取方法包括:当无人机搭载的热红外相机影像曝光完毕后,通过机载控制板记录曝光时刻,获取所述IMU的当前时间戳;当当前时间戳大于曝光时刻时,采用曝光时刻前后最临近的两个位姿数据根据线性内插方法计算热红外影像的位置和姿态,得到曝光时刻的影像位姿;将所述曝光时刻的影像位姿写入原始热红外影像的Exif元信息中。Preferably, the method for obtaining the image pose at the exposure time recorded in the pose element information includes: after the thermal infrared camera image mounted on the drone is exposed, record the exposure time through the onboard control panel, and obtain the IMU the current timestamp of The image pose at the exposure moment is written into the Exif meta-information of the original thermal infrared image.
优选地,所述原始热红外影像在地面摄影坐标系Om中的外方位元素包括角元素与线元素,所述角元素用旋转矩阵表示,旋转矩阵/>的计算公式如下:Preferably, the outer orientation elements of the original thermal infrared image in the ground photography coordinate system O m include angular elements and line elements, and the angular elements are represented by a rotation matrix Represents, rotation matrix/> The calculation formula is as follows:
式中,m表示地面摄影坐标系,E表示地心三维直角坐标系;g表示导航坐标系,b表示imu坐标系,c表示热红外相机本体坐标系,i表示像空间坐标系,表示i坐标系到m坐标系的旋转矩阵,/>表示g坐标系到e坐标系的旋转矩阵,/>表示b坐标系到g坐标系的旋转矩阵,/>表示c坐标系到b坐标系的旋转矩阵,/>表示i坐标系到c坐标系的旋转矩阵;In the formula, m represents the ground photography coordinate system, E represents the geocentric three-dimensional rectangular coordinate system; g represents the navigation coordinate system, b represents the imu coordinate system, c represents the thermal infrared camera body coordinate system, and i represents the image space coordinate system, Represents the rotation matrix from i coordinate system to m coordinate system,/> Represents the rotation matrix from g coordinate system to e coordinate system,/> Represents the rotation matrix from b coordinate system to g coordinate system, /> Represents the rotation matrix from c coordinate system to b coordinate system, /> Represents the rotation matrix from i coordinate system to c coordinate system;
所述线元素用向量表示,向量/>的计算公式如下:The line elements are represented by vectors Representation, vector/> The calculation formula is as follows:
式中,imuE表示imu坐标系原点,mE表示地面摄影坐标系Om原点在地心三维直角坐标系OE中的坐标,表示热红外相机坐标系c原点在imu坐标系b中的坐标。In the formula, imu E represents the origin of the imu coordinate system, m E represents the coordinates of the origin of the ground photography coordinate system O m in the geocentric three-dimensional rectangular coordinate system O E , Indicates the coordinates of the origin of the thermal infrared camera coordinate system c in the imu coordinate system b.
优选地,所述根据所述原始热红外影像在地面摄影坐标系Om中的外方位元素对所述原始热红外影像进行正射纠正,生成热红外正射影像,包括:将观测区内载入的开放DEM数据集通过坐标系转换,投影到地面摄影坐标系Om中;基于光束追踪正算方法,计算得到所述原始热红外影像的四个角在地面摄影坐标系Om中的实际地理位置(XA,YA),XA和YA的公式表示为:Preferably, orthorectifying the original thermal infrared image according to the outer azimuth elements of the original thermal infrared image in the ground photography coordinate system Om to generate a thermal infrared orthoimage includes: loading the observation area The incoming open DEM data set is projected into the ground photography coordinate system O m through coordinate system conversion; based on the beam tracking positive calculation method, the actual four corners of the original thermal infrared image in the ground photography coordinate system O m are calculated. The formula for geographical location (X A , Y A ), X A and Y A is:
式中,Z表示观测区范围内DEM平均高度,x,y表示经过镜头几何畸变改正与像主点偏移改正的影像像素坐标,f表示热红外相机的焦距(fx,fy)的平均值,x,y表示经过镜头几何畸变改正与像主点偏移改正的影像像素坐标,f表示热红外相机的焦距(fx,fy)的平均值;In the formula, Z represents the average height of the DEM within the observation area, x and y represent the image pixel coordinates corrected by lens geometric distortion and image principal point offset, and f represents the average focal length (f x , f y ) of the thermal infrared camera. Values, x, y represent the image pixel coordinates corrected by lens geometric distortion and image principal point offset, f represents the average value of the focal length (f x , f y ) of the thermal infrared camera;
采用光束追踪反算方法对所述原始热红外影像进行正射纠正处理,生成原始热红外影像在地面摄影测量坐标系中的热红外正射影像,像素坐标x、y的反算公式表示为:The beam tracking inverse calculation method is used to perform orthorectification processing on the original thermal infrared image, and a thermal infrared orthoimage of the original thermal infrared image in the ground photogrammetry coordinate system is generated. The inverse calculation formula of the pixel coordinates x and y is expressed as:
式中,ZA表示由DEM数据内插得到的地表XA、YA高度值,f表示热红外相机的焦距(fx,fy)的平均值;对像素坐标x、y进行像主点偏移与镜头几何畸变处理,得到像素坐标x、y在原始热红外影像中的实际像素位置,并取像素坐标x、y在原始热红外影像中的实际像素位置记录的辐射强度值填充到所述热红外正射影像。 In the formula, Z A represents the height values of surface Offset and lens geometric distortion processing are used to obtain the actual pixel positions of the pixel coordinates x and y in the original thermal infrared image, and the radiation intensity values recorded at the actual pixel positions of the pixel coordinates x and y in the original thermal infrared image are filled in Described thermal infrared orthophoto.
优选地,所述生成的热红外正射影像与所述已拼接影像的重叠区域的灰度值Gray重叠区域的融合公式表示为:Preferably, the fusion formula of the gray value Gray overlapping area of the overlapping area of the generated thermal infrared orthophoto image and the spliced image is expressed as:
优选地,还包括当所述生成的热红外正射影像为第一幅影像时,将所述生成的热红外正射影像作为已拼接影像加载到地面控制端GIS系统中,并与观测区已有卫星底图进行叠加实时显示。Preferably, the method further includes, when the generated thermal infrared orthoimage is the first image, loading the generated thermal infrared orthoimage into the ground control terminal GIS system as a spliced image and aligning it with the observation area. There is a satellite base map for overlay and real-time display.
本发明第二方面提供了一种无人机热红外遥感影像实时拼接系统,包括POS系统、热红外相机、FPGA芯片、微控制处理器和数据存储器,所述POS系统包括GNSS接收器和IMU,所述GNSS接收器、所述IMU、所述热红外相机、所述FPGA芯片和所述数据存储器分别与所述微控制处理器连接,所述GNSS接收器、所述IMU和所述热红外相机分别与所述FPGA芯片连接,所述热红外相机与所述数据存储器连接,所述GNSS接收器用于采集PPS信号和所述热红外相机的实时位置信息,并发送给所述FPGA芯片,所述IMU用于采集所述热红外相机的实时姿态信息,并发送给所述FPGA芯片,所述热红外相机用于根据所述FPGA的拍照控制信号执行拍照,并将曝光结束信息返回给所述FPGA芯片,并将采集到的原始热红外影像发送给微控制处理器和数据存储器;所述FPGA芯片用于将PPS信号、所述热红外相机的实时位置信息和所述热红外相机的实时姿态信息做位姿数据融合处理以获得位姿融合数据,并发送给所述微控制处理器;所述微控制处理器用于控制和接收所述GNSS接收器、所述IMU、所述热红外相机、所述FPGA芯片发送的数据,并根据所述原始热红外影像和所述位姿融合数据进行图像拼接处理,并将处理后的数据存储在所述数据存储器。The second aspect of the present invention provides a real-time splicing system for UAV thermal infrared remote sensing images, including a POS system, a thermal infrared camera, an FPGA chip, a microcontrol processor and a data memory. The POS system includes a GNSS receiver and an IMU, The GNSS receiver, the IMU, the thermal infrared camera, the FPGA chip and the data memory are respectively connected to the microcontrol processor, and the GNSS receiver, the IMU and the thermal infrared camera are respectively connected to the FPGA chip, the thermal infrared camera is connected to the data storage, the GNSS receiver is used to collect the PPS signal and the real-time position information of the thermal infrared camera, and send it to the FPGA chip, the The IMU is used to collect the real-time posture information of the thermal infrared camera and send it to the FPGA chip. The thermal infrared camera is used to take photos according to the photo control signal of the FPGA and return the exposure end information to the FPGA. chip, and sends the collected original thermal infrared image to the microcontrol processor and data memory; the FPGA chip is used to combine the PPS signal, the real-time position information of the thermal infrared camera and the real-time attitude information of the thermal infrared camera Perform pose data fusion processing to obtain pose fusion data, and send it to the microcontrol processor; the microcontrol processor is used to control and receive the GNSS receiver, the IMU, the thermal infrared camera, and the The data sent by the FPGA chip is used to perform image splicing processing based on the original thermal infrared image and the pose fusion data, and the processed data is stored in the data memory.
本发明提供的技术方案中,通过POS系统与时空同步标定技术,在线获取无人机热红外影像曝光时刻的空中位置与姿态,在原始热红外影像采集同时完成正射纠正,并且通过地理拼接方法与渐入渐出的影像融合技术,开展无人机热红外影像的大区域实时拼接;该方案对计算资源需求少,在提高作业效率的同时可有效增强无人机热红外遥感技术对大区域温度态势感知的时效性。In the technical solution provided by the present invention, the aerial position and attitude of the UAV thermal infrared image at the time of exposure are obtained online through the POS system and spatio-temporal synchronous calibration technology, and orthorectification is completed while the original thermal infrared image is collected, and through the geographical splicing method With the fade-in and fade-out image fusion technology, real-time splicing of UAV thermal infrared images over a large area is carried out; this solution requires less computing resources, improves operational efficiency, and can effectively enhance UAV thermal infrared remote sensing technology for large areas. Timeliness of temperature situational awareness.
附图说明Description of drawings
图1为本发明实施例提供的无人机热红外遥感影像实时拼接方法的流程图;Figure 1 is a flow chart of a real-time splicing method for UAV thermal infrared remote sensing images provided by an embodiment of the present invention;
图2为本发明实施例提供的无人机热红外遥感影像实时拼接系统的结构框图。Figure 2 is a structural block diagram of a real-time splicing system for UAV thermal infrared remote sensing images provided by an embodiment of the present invention.
附图标号说明:Explanation of reference numbers:
10、GNSS接收器;20、IMU;30、热红外相机;40、FPGA芯片;50、微控制处理器;60、数据存储器。10. GNSS receiver; 20. IMU; 30. Thermal infrared camera; 40. FPGA chip; 50. Microcontrol processor; 60. Data memory.
具体实施方式Detailed ways
本发明实施例提供了无人机热红外遥感影像实时拼接方法及系统,该方法用于在只需较少地面控制端计算资源支持的情况下实现不受地表场景与影像同名特征提取限制的热红外遥感影像在线实时拼接。Embodiments of the present invention provide a method and system for real-time splicing of UAV thermal infrared remote sensing images. The method is used to achieve thermal processing that is not limited by the extraction of features of the same name in surface scenes and images while requiring less computing resource support from the ground control end. Online real-time stitching of infrared remote sensing images.
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。The terms "first", "second", "third", "fourth", etc. (if present) in the description and claims of the present invention and the above-mentioned drawings are used to distinguish similar objects without necessarily using Used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments described herein can be practiced in sequences other than those illustrated or described herein. In addition, the terms "comprising" or "having" and any variations thereof are intended to cover non-exclusive inclusions, e.g., processes, methods, systems, products, or devices that comprise a series of steps or units and are not necessarily limited to those expressly listed. steps or units, but may include other steps or units not expressly listed or inherent to such processes, methods, products or apparatuses.
为便于理解,下面对本发明实施例的具体流程进行描述,请参阅图1,本发明实施例中一种无人机热红外遥感影像实时拼接方法的实施例包括:For ease of understanding, the specific process of the embodiment of the present invention is described below. Please refer to Figure 1. In the embodiment of the present invention, a real-time splicing method of UAV thermal infrared remote sensing images includes:
S101、对热红外相机和热红外相机与POS系统进行检校,POS系统包括GNSS接收器和IMU(惯性测量单元)。S101. Calibrate the thermal infrared camera and the POS system. The POS system includes a GNSS receiver and an IMU (Inertial Measurement Unit).
S102、接收无人机下发的带有位姿元信息的原始热红外影像。S102. Receive the original thermal infrared image with pose element information sent by the drone.
S103、根据热红外相机相对于imu坐标系的外参矩阵和位姿元信息中记录的曝光时刻的影像位姿,计算原始热红外影像在地面摄影坐标系Om中的外方位元素。S103. Calculate the external orientation elements of the original thermal infrared image in the ground photography coordinate system O m based on the external parameter matrix of the thermal infrared camera relative to the imu coordinate system and the image pose at the exposure time recorded in the pose element information.
S104、根据原始热红外影像在地面摄影坐标系Om中的外方位元素对原始热红外影像进行正射纠正,生成热红外正射影像。S104. Perform orthorectification on the original thermal infrared image based on the external orientation elements of the original thermal infrared image in the ground photography coordinate system O m to generate a thermal infrared orthoimage.
S105、在生成的热红外正射影像中增加用于记录每个像素点在原始热红外影像中的像高IH的图层。S105. Add a layer for recording the image height I H of each pixel in the original thermal infrared image to the generated thermal infrared orthophoto.
S106、当生成的热红外正射影像不为第一幅影像时,根据地理位置将生成的热红外正射影像与已拼接影像进行拼接,生成的热红外正射影像与已拼接影像的重叠区域的灰度值根据像高IH的取值大小采用渐入渐出方法进行图像融合,并更新已拼接影像。S106. When the generated thermal infrared orthoimage is not the first image, splice the generated thermal infrared orthoimage and the spliced image according to the geographical location, and the overlapping area between the generated thermal infrared orthoimage and the spliced image The grayscale value of I uses the fade-in and fade-out method to perform image fusion according to the value of the image height I H , and updates the spliced image.
可以理解地,若当生成的热红外正射影像为第一幅影像时,将生成的热红外正射影像作为已拼接影像加载到地面控制端GIS系统中,并与观测区已有卫星底图进行叠加实时显示。Understandably, if the generated thermal infrared orthoimage is the first image, the generated thermal infrared orthoimage will be loaded into the ground control GIS system as a spliced image, and combined with the existing satellite base map of the observation area. Perform overlay real-time display.
S107、将更新后的已拼接影像加载到地面控制端GIS系统中,并与观测区已有卫星底图进行叠加实时显示,用于对观测区域温度态势进行实时感知。S107. Load the updated spliced image into the ground control terminal GIS system, and overlay it with the existing satellite base map of the observation area for real-time display, for real-time perception of the temperature situation in the observation area.
在本实施例中,在完成已接收到无人机热红外影像的实时拼接任务后,地面端系统等待接收无人机通信链路的影像下传。当接收到新下传影像后,跳转到S103继续进行实时拼接处理;当接收到影像采集结束标识后,保存更新后的已拼接影像到本地文件中,拼接任务结束,无人机按计划航线自动返航降落。In this embodiment, after completing the real-time splicing task of receiving the thermal infrared images of the drone, the ground system waits to receive the download of the image from the drone communication link. After receiving the new downloaded image, jump to S103 to continue the real-time splicing process; when receiving the image collection end flag, save the updated spliced image to a local file, the splicing task ends, and the drone follows the planned route Automatically return to home and land.
在本实施例中,步骤S101中,对热红外相机和热红外相机与POS系统进行检校具体包括:对热红外相机进行标定,获取热红外相机的焦距(fx,fy)、主点(cx,cy)和镜头几何畸变参数(k1,k2,p1,p2,k3);将GNSS接收器的PPS信号同步到IMU的时钟以使IMU的时间与GNSS的时间同步,并配置热红外相机响应GNSS接收器的PPS触发信号以使置热红外相机捕获的图像与GNSS接收器的时间同步;获取热红外相机相对于imu坐标系的外参矩阵。In this embodiment, in step S101, calibrating the thermal infrared camera and the thermal infrared camera and the POS system specifically includes: calibrating the thermal infrared camera, and obtaining the focal length (f x , f y ) and principal point of the thermal infrared camera. (c x , c y ) and lens geometric distortion parameters (k 1 , k 2 , p 1 , p 2 , k 3 ); synchronize the PPS signal of the GNSS receiver to the clock of the IMU so that the time of the IMU is consistent with the time of the GNSS Synchronize and configure the thermal infrared camera to respond to the PPS trigger signal of the GNSS receiver so that the image captured by the thermal infrared camera is synchronized with the time of the GNSS receiver; obtain the external parameter matrix of the thermal infrared camera relative to the imu coordinate system.
可选地,选取对热红外波段有较强反射能力的标定板,通过对标定板进行非均匀加热完成多幅不同角度的热红外影像采集,采用“张正友”方法进行热红外相机标定,得到热红外相机的焦距(fx,fy)、主点(cx,cy)和镜头几何畸变参数(k1,k2,p1,p2,k3)。Optionally, select a calibration plate with strong reflective ability for the thermal infrared band, and non-uniformly heat the calibration plate to complete the collection of multiple thermal infrared images from different angles. Use the "Zhang Zhengyou" method to calibrate the thermal infrared camera, and obtain the thermal infrared image. The focal length (f x , f y ), principal point (c x , c y ) and lens geometric distortion parameters (k 1 , k 2 , p 1 , p 2 , k 3 ) of the infrared camera.
可以理解地,PPS(Pulse Per Second)信号是一种精准的脉冲信号,在时间同步和测量中广泛应用。PPS信号以每秒一次的频率产生一个脉冲,PPS信号能够提供非常精确的时间标记,通常误差在数微秒或以下级别。Understandably, the PPS (Pulse Per Second) signal is a precise pulse signal that is widely used in time synchronization and measurement. The PPS signal generates a pulse at a frequency of once per second. The PPS signal can provide a very precise time stamp, usually with an error of a few microseconds or less.
在本实施例中,GNSS接收器接收卫星PPS信号获取时间戳,IMU生成加速度和角速度数据,确保其时间戳与GNSS接收器同步,同时配置热红外相机响应PPS触发信号,确保在精确的时间点捕获图像。数据采集时,保持各硬件时间戳同步,影像曝光时刻取开始与结束曝光时刻的均值进行存储记录。In this embodiment, the GNSS receiver receives the satellite PPS signal to obtain the timestamp, and the IMU generates acceleration and angular velocity data to ensure that its timestamp is synchronized with the GNSS receiver. At the same time, the thermal infrared camera is configured to respond to the PPS trigger signal to ensure that it is at a precise time point. Capture image. During data collection, the timestamps of each hardware are kept synchronized, and the image exposure time is stored and recorded by taking the average of the start and end exposure time.
可选地,使用坐标已知、标志点显著的室外控制场,采用刚性连接的热红外相机与POS系统采集热红外影像与IMU数据,根据影像恢复轨迹与IUM测量轨迹应保持一致为基本原则,采用最小二乘优化方法求解热红外相机相对于imu坐标系的外参矩阵 Alternatively, use an outdoor control field with known coordinates and significant landmark points, and use a rigidly connected thermal infrared camera and POS system to collect thermal infrared images and IMU data. According to the basic principle that the image recovery trajectory and the IUM measurement trajectory should be consistent, Use the least squares optimization method to solve the external parameter matrix of the thermal infrared camera relative to the imu coordinate system
可选地,完成对热红外相机和热红外相机与POS系统较校时,还需要量测GNSS接收器的天线相位中心到imu坐标系原点标识处的杆臂值,并填入到采集控制板卡的嵌入式软件中。Optionally, when completing the calibration of the thermal infrared camera and the thermal infrared camera with the POS system, you also need to measure the lever arm value from the antenna phase center of the GNSS receiver to the origin mark of the imu coordinate system, and fill it in the acquisition control board in the card’s embedded software.
可选地,在无人机起飞前,除了完成对热红外相机和热红外相机与POS系统较校外,还需要做无人机起飞前检查准备,无人机起飞前检查准备包括:在载荷采集嵌入式软件中配置RTK信号源,可选用网络RTK模式或在测区架设RTK基站;然后测试载荷采集端与地面控制端无线通信情况,保证热红外影像可以正常下传;其次,对POS系统工作状态进行确认,保证时间同步与位姿采集信息正常;最后,根据热红外相机的地面实际像元大小GSD在地面控制端设置拼接影像的实际成图分辨率,其中GSD通过下式估算:Optionally, before the drone takes off, in addition to completing the calibration of the thermal infrared camera and the thermal infrared camera and POS system, you also need to make preparations for the drone's pre-takeoff inspection. The preparation for the drone's pre-takeoff inspection includes: payload collection Configure the RTK signal source in the embedded software, and you can choose the network RTK mode or set up an RTK base station in the measurement area; then test the wireless communication between the payload acquisition terminal and the ground control terminal to ensure that the thermal infrared image can be downloaded normally; secondly, work on the POS system The status is confirmed to ensure that the time synchronization and pose collection information are normal; finally, the actual mapping resolution of the spliced image is set on the ground control terminal according to the actual pixel size GSD of the thermal infrared camera on the ground, where GSD is estimated by the following formula:
式中,u为像元真实尺寸,H是相对航高,f是热红外相机物理焦距。In the formula, u is the real size of the pixel, H is the relative altitude, and f is the physical focal length of the thermal infrared camera.
进一步地,在对热红外相机和热红外相机与POS系统较校和无人机起飞前检查工作后,根据预先规划航线任务,地面控制站自动载入测区范围全球开放的DEM数据集,控制无人机携带热红外相机自动起飞开始执行设计航线。为了保证无人机热红外影像的测区100%覆盖与实时拼接效果,航线设计时保证影像航向与旁向重叠率均不小于20%。Furthermore, after calibrating the thermal infrared camera and POS system and inspecting the drone before taking off, based on the pre-planned route task, the ground control station automatically loaded the globally open DEM data set within the measurement area and controlled The UAV carries a thermal infrared camera and automatically takes off to start executing the designed route. In order to ensure 100% coverage of the measurement area and real-time splicing effect of the UAV thermal infrared image, the route design ensures that the image heading and side overlap rate is not less than 20%.
在本实施例中,步骤S102中,当飞行任务开始后,热红外影像实时拼接功能模块在地面控制站中启动,通信链路实时监控并接收无人机下发的带有位姿元信息的原始热红外影像。In this embodiment, in step S102, after the flight mission starts, the thermal infrared image real-time splicing function module is started in the ground control station, and the communication link monitors and receives the pose element information sent by the drone in real time. Raw thermal infrared image.
可选地,位姿元信息中记录的曝光时刻的影像位姿的获取方法包括:当无人机搭载的热红外相机影像曝光完毕后,通过机载控制板记录曝光时刻,获取IMU的当前时间戳;当当前时间戳大于曝光时刻时,采用曝光时刻前后最临近的两个位姿数据根据线性内插方法计算热红外影像的位置和姿态,得到曝光时刻的影像位姿;将曝光时刻的影像位姿写入原始热红外影像的Exif元信息中。Optionally, the method of obtaining the image pose at the exposure moment recorded in the pose element information includes: after the thermal infrared camera image mounted on the drone is exposed, record the exposure moment through the airborne control panel and obtain the current time of the IMU. Stamp; when the current timestamp is greater than the exposure time, the two closest pose data before and after the exposure time are used to calculate the position and attitude of the thermal infrared image according to the linear interpolation method to obtain the image pose at the exposure time; the image at the exposure time is The pose is written into the Exif meta-information of the original thermal infrared image.
具体地,位置和姿态用大地纬度、大地经度、椭球高(B,L,H)以及航向角、俯仰角、横滚角(heading,pitch,roll)表示。Specifically, the position and attitude are represented by geodetic latitude, geodetic longitude, ellipsoid height (B, L, H), and heading, pitch, and roll angles (heading, pitch, roll).
在本实施例中,步骤S103中,地面摄影坐标系Om中的坐标原点取测区中心点经纬度和大地高B0,L0,H0,其中X和Y轴分别指向正东向和正北向,Z轴方向根据右手原则指向天顶。In this embodiment, in step S103, the origin of the coordinates in the ground photography coordinate system O m is the longitude and latitude of the center point of the survey area and the height of the earth B 0 , L 0 , H 0 , where the X and Y axes point to the true east and true north directions respectively. , the Z-axis direction points to the zenith according to the right-hand principle.
可选地,原始热红外影像在地面摄影坐标系Om中的外方位元素包括角元素与线元素,角元素用旋转矩阵表示,旋转矩阵/>的计算公式如下:Optionally, the external orientation elements of the original thermal infrared image in the ground photography coordinate system O m include angular elements and line elements, and the angular elements are represented by a rotation matrix Represents, rotation matrix/> The calculation formula is as follows:
式中,m表示地面摄影坐标系,E表示地心三维直角坐标系;g表示导航坐标系,b表示imu坐标系,c表示热红外相机本体坐标系,i表示像空间坐标系,表示i坐标系到m坐标系的旋转矩阵,/>表示g坐标系到e坐标系的旋转矩阵,/>表示b坐标系到g坐标系的旋转矩阵,/>表示c坐标系到b坐标系的旋转矩阵,/>表示i坐标系到c坐标系的旋转矩阵。In the formula, m represents the ground photography coordinate system, E represents the geocentric three-dimensional rectangular coordinate system; g represents the navigation coordinate system, b represents the imu coordinate system, c represents the thermal infrared camera body coordinate system, and i represents the image space coordinate system, Represents the rotation matrix from i coordinate system to m coordinate system, /> Represents the rotation matrix from g coordinate system to e coordinate system,/> Represents the rotation matrix from b coordinate system to g coordinate system,/> Represents the rotation matrix from c coordinate system to b coordinate system,/> Represents the rotation matrix from the i coordinate system to the c coordinate system.
线元素用向量表示,向量/>的计算公式如下:Line elements use vectors Representation, vector/> The calculation formula is as follows:
式中,imuE表示imu坐标系原点,mE表示地面摄影坐标系Om原点在地心三维直角坐标系OE中的坐标,表示热红外相机坐标系c原点在imu坐标系b中的坐标,Xs、Ys、Zs表示向量/>的各位置元素。In the formula, imu E represents the origin of the imu coordinate system, m E represents the coordinates of the origin of the ground photography coordinate system O m in the geocentric three-dimensional rectangular coordinate system O E , Represents the coordinates of the origin of the thermal infrared camera coordinate system c in the imu coordinate system b, Xs, Ys, Zs represent vectors/> of each position element.
在本实施例中,步骤S104中,根据原始热红外影像在地面摄影坐标系Om中的外方位元素对原始热红外影像进行正射纠正,生成热红外正射影像,包括:In this embodiment, in step S104, the original thermal infrared image is orthorectified according to the outer azimuth elements of the original thermal infrared image in the ground photography coordinate system O m to generate a thermal infrared orthoimage, including:
将观测区内载入的开放DEM数据集通过坐标系转换,投影到地面摄影坐标系Om中;基于光束追踪正算方法,计算得到原始热红外影像的四个角在地面摄影坐标系Om中的实际地理位置(XA,YA),采用光束追踪反算方法对原始热红外影像进行正射纠正处理,生成原始热红外影像在地面摄影测量坐标系中的热红外正射影像,对像素坐标x、y进行像主点偏移与镜头几何畸变处理,得到像素坐标x、y在原始热红外影像中的实际像素位置,并取像素坐标x、y在原始热红外影像中的实际像素位置记录的辐射强度值填充到对应的热红外正射影像。The open DEM data set loaded in the observation area is converted into the coordinate system and projected into the ground photography coordinate system O m ; based on the beam tracking positive calculation method, the four corners of the original thermal infrared image are calculated in the ground photography coordinate system O m The actual geographical location (X A , Y A ) in The pixel coordinates x and y are processed by principal point offset and lens geometric distortion to obtain the actual pixel positions of the pixel coordinates x and y in the original thermal infrared image, and the actual pixel positions of the pixel coordinates x and y in the original thermal infrared image are obtained. The radiation intensity values recorded at the location are filled into the corresponding thermal infrared orthophoto.
其中,XA和YA的公式表示为:Among them, the formulas of X A and Y A are expressed as:
式中,表示观测区范围内DEM平均高度,x,y表示经过镜头几何畸变改正与像主点偏移改正的影像像素坐标,f表示热红外相机的焦距(fx,fy)的平均值,x,y表示经过镜头几何畸变改正与像主点偏移改正的影像像素坐标,f表示热红外相机的焦距(fx,fy)的平均值;In the formula, represents the average height of the DEM within the observation area, x, y represents the image pixel coordinates corrected by lens geometric distortion and image principal point offset, f represents the average focal length (f x , f y ) of the thermal infrared camera, x, y represents the image pixel coordinates corrected by lens geometric distortion and image principal point offset, f represents the average of the focal length (f x , f y ) of the thermal infrared camera;
像素坐标x、y的反算公式表示为:The inverse formula of pixel coordinates x and y is expressed as:
式中,ZA表示由DEM数据内插得到的地表XA、YA高度值,f表示热红外相机的焦距(fx,fy)的平均值。In the formula, Z A represents the surface X A and Y A height values interpolated from DEM data, and f represents the average value of the focal length (f x , f y ) of the thermal infrared camera.
在本实施例中,步骤S105中,在生成的热红外正射影像中增加用于记录每个像素点在原始热红外影像中的像高IH的图层,用于开展后续拼接融合。热红外正射影像中像素点对应的像高IH越小,在原始热红外影像中越靠近像主点,成像畸变越小,影像质量越好。In this embodiment, in step S105, a layer for recording the image height I H of each pixel in the original thermal infrared image is added to the generated thermal infrared orthophoto image for subsequent splicing and fusion. The smaller the image height I H corresponding to the pixel in the thermal infrared orthophoto image, and the closer it is to the main image point in the original thermal infrared image, the smaller the imaging distortion, and the better the image quality.
某像素点(x,y)在原始热红外影像中的像高IH的公式表示为:The formula for the image height I H of a certain pixel (x, y) in the original thermal infrared image is expressed as:
式中,(cx,cy)表示热红外相机的主点。In the formula, (c x , c y ) represents the principal point of the thermal infrared camera.
在本实施例中,步骤S106中,当已拼接影像的像高大于待拼接影像的像高时,重叠区域的灰度值等于待拼接影像的灰度值,当已拼接影像的像高小于待拼接影像的像高时,重叠区域的灰度值等于已拼接影像的灰度值,生成的热红外正射影像与已拼接影像的重叠区域的灰度值Gray重叠区域的融合公式表示为:In this embodiment, in step S106, when the image height of the spliced image is greater than the image height of the image to be spliced, the gray value of the overlapping area is equal to the gray value of the image to be spliced. When the image height of the spliced image is smaller than the image height to be spliced, When splicing the image height of the image, the gray value of the overlapping area is equal to the gray value of the spliced image. The fusion formula of the Gray overlapping area of the generated thermal infrared orthophoto image and the overlapping area of the spliced image is expressed as:
在本实施例中,步骤S107中,将更新后的已拼接影像加载到地面控制端GIS系统中,并与观测区已有卫星底图进行叠加实时显示。In this embodiment, in step S107, the updated spliced image is loaded into the ground control end GIS system, and superimposed with the existing satellite base map of the observation area for real-time display.
在本实施例中,将更新后的已拼接影像加载到地面控制端GIS系统之前,可以对更新后的已拼接影像行适度羽化处理,羽化处理可以在不同影像之间创建平滑的过渡区域,使得拼接后的影像在边界处更加自然和连续。这样可以避免出现明显的边缘断裂或突变,提高影像的整体质量,In this embodiment, before loading the updated spliced image into the ground control GIS system, the updated spliced image can be appropriately feathered. The feathering process can create a smooth transition area between different images, so that The stitched images are more natural and continuous at the boundaries. This can avoid obvious edge breaks or mutations and improve the overall quality of the image.
在影像拼接过程中,由于不同影像之间的亮度、色彩等差异,可能会产生伪影或明显的过渡线。通过羽化处理,可以减少这些伪影,使得影像之间的过渡更加平滑,视觉效果更好。During the image stitching process, artifacts or obvious transition lines may occur due to differences in brightness, color, etc. between different images. Feathering can reduce these artifacts, making the transition between images smoother and providing better visual effects.
本实施例提供的是一种无人机热红外遥感影像实时拼接方法,其通过事前热红外相机内外参严密标定、多传感器高精度时间同步技术,在实时融合解算POS系统的支持下,严格计算曝光时刻无人机热红外影像的空中位置与姿态,然后对下传到地面端的原始影像开展正射纠正,最后根据地理位置进行几何拼接,同时利用像高完成图像渐入渐出融合,实现无人机热红外影像的在线实时拼接。通过采用该方法,无需消耗大量本地计算资源或采用云端解算,可快速完成无人机热红外影像空中位姿的计算,然后利用地理位置和像高实现相邻影像的高效拼接与高质量融合,保证了无人机热红外影像在线拼接任务的时效性、稳健性与准确性;同时该方法可大幅度降低对相邻影像重叠率的要求,提高无人机对勘测区域温度态势感知的作业效率。This embodiment provides a real-time splicing method of UAV thermal infrared remote sensing images, which uses strict calibration of internal and external parameters of thermal infrared cameras in advance, multi-sensor high-precision time synchronization technology, and with the support of real-time fusion solution POS system, strictly Calculate the aerial position and attitude of the drone's thermal infrared image at the time of exposure, and then perform orthorectification on the original image transmitted to the ground. Finally, geometric splicing is performed based on the geographical location, and the image height is used to complete the image fade-in and fade-out fusion to achieve Online real-time stitching of UAV thermal infrared images. By adopting this method, there is no need to consume a large amount of local computing resources or use cloud computing. It can quickly complete the calculation of the aerial pose of the UAV thermal infrared image, and then use the geographical location and image height to achieve efficient splicing and high-quality fusion of adjacent images. , ensuring the timeliness, robustness and accuracy of the online splicing task of UAV thermal infrared images; at the same time, this method can greatly reduce the requirements for the overlap rate of adjacent images and improve the UAV's temperature situation awareness of the survey area. efficiency.
请参阅图2所示,本发明实施例还提供了一种无人机热红外遥感影像实时拼接系统,包括POS系统、热红外相机30、FPGA芯片40、微控制处理器50和数据存储器60,POS系统包括GNSS接收器10和IMU20,GNSS接收器10、IMU20、热红外相机30、FPGA芯片40和数据存储器60分别与微控制处理器50连接,GNSS接收器10、IMU20和热红外相机30分别与FPGA芯片40连接,热红外相机30与数据存储器60连接,GNSS接收器10用于采集PPS信号和热红外相机30的实时位置信息,并发送给FPGA芯片40,IMU20用于采集热红外相机30的实时姿态信息,并发送给FPGA芯片40,热红外相机30用于根据FPGA的拍照控制信号执行拍照,并将曝光结束信息返回给FPGA芯片40,并将采集到的原始热红外影像发送给微控制处理器50和数据存储器60;FPGA芯片40用于将PPS信号、热红外相机30的实时位置信息和热红外相机30的实时姿态信息做位姿数据融合处理以获得位姿融合数据,并发送给微控制处理器50;微控制处理器50用于控制和接收GNSS接收器10、IMU20、热红外相机30、FPGA芯片40发送的数据,并根据原始热红外影像和位姿融合数据进行图像拼接处理,并将处理后的数据存储在数据存储器60。Please refer to Figure 2. The embodiment of the present invention also provides a real-time splicing system for UAV thermal infrared remote sensing images, including a POS system, a thermal infrared camera 30, an FPGA chip 40, a microcontrol processor 50 and a data memory 60. The POS system includes a GNSS receiver 10 and an IMU 20. The GNSS receiver 10, IMU 20, thermal infrared camera 30, FPGA chip 40 and data memory 60 are respectively connected to the micro control processor 50. The GNSS receiver 10, IMU 20 and thermal infrared camera 30 are respectively connected to the micro control processor 50. Connected to the FPGA chip 40 , the thermal infrared camera 30 is connected to the data storage 60 , the GNSS receiver 10 is used to collect PPS signals and real-time position information of the thermal infrared camera 30 , and sends them to the FPGA chip 40 , and the IMU 20 is used to collect the thermal infrared camera 30 The real-time posture information is sent to the FPGA chip 40. The thermal infrared camera 30 is used to perform photography according to the photographing control signal of the FPGA, return the exposure end information to the FPGA chip 40, and send the collected original thermal infrared image to the microcomputer. Control processor 50 and data memory 60; FPGA chip 40 is used to perform pose data fusion processing on PPS signals, real-time position information of thermal infrared camera 30 and real-time attitude information of thermal infrared camera 30 to obtain pose fusion data, and send To the microcontrol processor 50; the microcontroller 50 is used to control and receive data sent by the GNSS receiver 10, IMU20, thermal infrared camera 30, and FPGA chip 40, and perform image stitching based on the original thermal infrared image and pose fusion data. process and store the processed data in data storage 60.
本实施例的拼接系统通过POS系统与时空同步标定技术,在线获取无人机热红外影像曝光时刻的空中位置与姿态,在原始热红外影像采集同时完成正射纠正,并且通过地理拼接方法与渐入渐出的影像融合技术,开展无人机热红外影像的大区域实时拼接;该系统对计算资源需求少,在提高作业效率的同时可有效增强无人机热红外遥感技术对大区域温度态势感知的时效性。The splicing system of this embodiment uses the POS system and spatio-temporal synchronization calibration technology to online obtain the aerial position and attitude of the UAV thermal infrared image at the time of exposure, completes orthorectification while collecting the original thermal infrared image, and uses the geographical splicing method and gradient The progressive image fusion technology enables real-time splicing of large-area thermal infrared images from drones; the system requires less computing resources, improves operational efficiency, and can effectively enhance the temperature situation of large areas using drone thermal infrared remote sensing technology. Perceived timeliness.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统或装置、单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and simplicity of description, the specific working processes of the above-described systems, devices, and units can be referred to the corresponding processes in the foregoing method embodiments, and will not be described again here.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present invention is essentially or contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in various embodiments of the present invention. The aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。As mentioned above, the above embodiments are only used to illustrate the technical solution of the present invention, but not to limit it. Although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that they can still modify the foregoing. The technical solutions described in each embodiment may be modified, or some of the technical features may be equivalently replaced; however, these modifications or substitutions do not cause the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions of each embodiment of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311413477.8A CN117522681A (en) | 2023-10-27 | 2023-10-27 | Real-time splicing method and system for UAV thermal infrared remote sensing images |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311413477.8A CN117522681A (en) | 2023-10-27 | 2023-10-27 | Real-time splicing method and system for UAV thermal infrared remote sensing images |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117522681A true CN117522681A (en) | 2024-02-06 |
Family
ID=89746658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311413477.8A Pending CN117522681A (en) | 2023-10-27 | 2023-10-27 | Real-time splicing method and system for UAV thermal infrared remote sensing images |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117522681A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119228643A (en) * | 2024-12-03 | 2024-12-31 | 金华浙农信息技术有限公司 | Automatic mosaic method and device for unmanned aerial vehicle remote sensing images |
-
2023
- 2023-10-27 CN CN202311413477.8A patent/CN117522681A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119228643A (en) * | 2024-12-03 | 2024-12-31 | 金华浙农信息技术有限公司 | Automatic mosaic method and device for unmanned aerial vehicle remote sensing images |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110310248B (en) | A kind of real-time joining method of unmanned aerial vehicle remote sensing images and system | |
US10339663B2 (en) | Generating georeference information for aerial images | |
CN105627991B (en) | A kind of unmanned plane image real time panoramic joining method and system | |
JP7556383B2 (en) | Information processing device, information processing method, information processing program, image processing device, and image processing system | |
KR102664900B1 (en) | Apparatus for measuring ground control point using unmanned aerial vehicle and method thereof | |
CN102322859B (en) | Aerial inertial navigation measurement system and attitude correction method | |
CN112634370A (en) | Unmanned aerial vehicle dotting method, device, equipment and storage medium | |
KR101345554B1 (en) | Method of resampling high resolution digital multi band imagery from line senser into frame type imagery to construct gis(uis), digital map and 3d spatial information using ground control point and gps/ins data | |
CN103900539B (en) | A kind of aerial cube panoramic imagery object localization method | |
JP2008186145A (en) | Aerial image processing apparatus and aerial image processing method | |
CN110675450A (en) | Method and system for generating orthoimage in real time based on SLAM technology | |
US20220113421A1 (en) | Online point cloud processing of lidar and camera data | |
CN105424010A (en) | Unmanned aerial vehicle video geographic space information registering method | |
US20220026208A1 (en) | Surveying system, surveying method, and surveying program | |
JP5304465B2 (en) | Mosaic image generation method, apparatus and program | |
CN115439531A (en) | Method and equipment for acquiring target space position information of target object | |
KR20030070553A (en) | Video picture processing method | |
CN112365591A (en) | Space and ground collaborative comprehensive situation generation method based on synthetic vision | |
CN117522681A (en) | Real-time splicing method and system for UAV thermal infrared remote sensing images | |
KR101224830B1 (en) | Portable Multi-Sensor System for Acquiring Georeferenced Images and Method thereof | |
JP2000276045A (en) | Map creation method and apparatus using captured image, and method for correcting distortion of captured image | |
WO2019100214A1 (en) | Method, device, and unmanned aerial vehicle for generating output image | |
JP2003316259A (en) | Photography image processing method and system thereof | |
CN107655458B (en) | Panorama scene automatic association method based on GIS | |
CN114399549A (en) | Panoramic overlay pattern spot rendering method and geographic national condition monitoring method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |