CN117467333A - High-heat-conductivity breakdown-voltage-resistant circuit board material, circuit board and preparation method thereof - Google Patents
High-heat-conductivity breakdown-voltage-resistant circuit board material, circuit board and preparation method thereof Download PDFInfo
- Publication number
- CN117467333A CN117467333A CN202311598123.5A CN202311598123A CN117467333A CN 117467333 A CN117467333 A CN 117467333A CN 202311598123 A CN202311598123 A CN 202311598123A CN 117467333 A CN117467333 A CN 117467333A
- Authority
- CN
- China
- Prior art keywords
- circuit board
- composite
- layer
- graphene
- thermal conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 74
- 238000002360 preparation method Methods 0.000 title abstract description 12
- 239000010410 layer Substances 0.000 claims abstract description 85
- 239000002131 composite material Substances 0.000 claims abstract description 45
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 42
- 230000015556 catabolic process Effects 0.000 claims abstract description 41
- 239000006185 dispersion Substances 0.000 claims abstract description 30
- 239000000805 composite resin Substances 0.000 claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000000945 filler Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 21
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000000576 coating method Methods 0.000 claims abstract description 17
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 12
- 230000008014 freezing Effects 0.000 claims abstract description 10
- 238000007710 freezing Methods 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 claims abstract description 9
- 238000000465 moulding Methods 0.000 claims abstract description 8
- 238000007711 solidification Methods 0.000 claims abstract description 8
- 230000008023 solidification Effects 0.000 claims abstract description 8
- 230000002457 bidirectional effect Effects 0.000 claims abstract description 7
- 239000011247 coating layer Substances 0.000 claims abstract description 5
- 238000005728 strengthening Methods 0.000 claims abstract 2
- 239000000758 substrate Substances 0.000 claims description 25
- 239000003822 epoxy resin Substances 0.000 claims description 24
- 229920000647 polyepoxide Polymers 0.000 claims description 24
- 239000012046 mixed solvent Substances 0.000 claims description 17
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 15
- 239000011248 coating agent Substances 0.000 claims description 15
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical compound C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 14
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 14
- 229920005989 resin Polymers 0.000 claims description 14
- 239000011347 resin Substances 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 7
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 3
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 2
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 238000000967 suction filtration Methods 0.000 claims description 2
- 238000009849 vacuum degassing Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims 2
- 230000001105 regulatory effect Effects 0.000 claims 1
- -1 vacuum degassing Substances 0.000 claims 1
- 238000005240 physical vapour deposition Methods 0.000 abstract description 4
- 239000013077 target material Substances 0.000 abstract description 2
- 238000009413 insulation Methods 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 6
- 239000011231 conductive filler Substances 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- 238000007733 ion plating Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000001361 adipic acid Substances 0.000 description 3
- 235000011037 adipic acid Nutrition 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/70—Additives characterised by shape, e.g. fibres, flakes or microspheres
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
- H05K1/0203—Cooling of mounted components
- H05K1/0209—External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0254—High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
- H05K1/0256—Electrical insulation details, e.g. around high voltage areas
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
- C08K2003/2275—Ferroso-ferric oxide (Fe3O4)
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
Abstract
Description
技术领域Technical field
本发明涉及一种高导热耐击穿电压线路板材料、线路板及其制备方法,属于绝缘材料和复合电子材料技术领域。The invention relates to a circuit board material with high thermal conductivity and breakdown voltage, a circuit board and a preparation method thereof, and belongs to the technical field of insulating materials and composite electronic materials.
背景技术Background technique
新能源汽车发展如火如荼,在动力性能、智能化、节省成本等方面优势明显,特别是可以进行快速充电的高电压驱动的新能源汽车是市场大势所趋,不仅效率提升,热损耗降低,功率也能增大。因为“电子电气部件”技术进步,高击穿电压高导热材料的需求已经是箭在弦上。根据CEI60664的标准,如果500V的工作电压,层间崩溃电压需高达8KV到10KV DC左右,换算成“金属基板”绝缘厚度,则起码需有150um以上,导基材厚度与热阻成正比,150um以上的厚度对于热导能力有很大的负面作用,所以能承受新能源汽车高压需求的金属基板耐电压跟高导热无法两全。发展比绝大部分热导基材的击穿电压能力(1.3KV/mil)更好,能够承受生命周期长期高压工作,并具备一定热导特性的材料(起码2W ISO ASTMD5470),乃成为市场潜在关键需求。其中一个思路就是能够将厚度降低,而不影响击穿电压的可靠度。The development of new energy vehicles is in full swing, with obvious advantages in terms of power performance, intelligence, and cost savings. In particular, new energy vehicles that can be charged quickly and driven by high voltage are the general trend of the market. They not only improve efficiency, reduce heat loss, but also increase power. big. Due to the technological advancement of "electronic and electrical components", the demand for high breakdown voltage and high thermal conductivity materials is already imminent. According to the CEI60664 standard, if the working voltage is 500V, the interlayer collapse voltage needs to be as high as about 8KV to 10KV DC. When converted into a "metal substrate" insulation thickness, it must be at least 150um or more. The thickness of the conductive substrate is proportional to the thermal resistance, 150um The above thickness has a great negative effect on thermal conductivity, so a metal substrate that can withstand the high voltage requirements of new energy vehicles cannot have both high voltage resistance and high thermal conductivity. The development of materials that have better breakdown voltage capabilities (1.3KV/mil) than most thermally conductive base materials, can withstand long-term high-voltage operation in the life cycle, and have certain thermal conductivity properties (at least 2W ISO ASTMD5470) has become a potential market critical requirements. One of the ideas is to reduce the thickness without affecting the reliability of the breakdown voltage.
现有的常见技术是以铝基板为金属基层,通过构建电路层、绝缘层形成三层的单面板。其中绝缘层是铝基板最核心的技术,主要起到粘接、绝缘和导热的功能,铝基板绝缘层是功率模块结构中最大的导热屏障,绝缘层热传导性能越好,越有利于器件运行时所产生热量的扩散,也就越有利于降低器件的运行温度。但目前,市面上常用的铝基板绝缘层导热性能为3W-5W,导热性能差,且存在耐击穿电压低、剥离强度低、导电线路厚薄不均等缺陷。The common existing technology is to use an aluminum substrate as the metal base layer, and form a three-layer single panel by constructing a circuit layer and an insulating layer. Among them, the insulation layer is the core technology of the aluminum substrate. It mainly plays the functions of bonding, insulation and heat conduction. The insulation layer of the aluminum substrate is the largest thermal conductivity barrier in the power module structure. The better the thermal conductivity of the insulation layer, the more conducive it is to the operation of the device. The diffusion of heat generated is more conducive to reducing the operating temperature of the device. However, at present, the thermal conductivity of the insulation layer of aluminum substrates commonly used on the market is 3W-5W, which has poor thermal conductivity and has defects such as low breakdown voltage, low peel strength, and uneven thickness of conductive lines.
目前可用的绝缘层材料有很多,比如高分子材料。提高高分子材料导热性的最有效方法主要是在高分子基体中加入适量的高导热填料,对于主要起绝缘作用的导热材料来说,导热填料一般选择金属氧化物(BeO、MgO、Al:Os,NiO等)、碳化物(SiC、BC等)和金属氮化物(A1N、SigN,BN等)。填充型导热绝缘高分子材料是在普通的绝缘高分子材料中添加导热填料,通过导热填料之间的相互作用,在高聚物基体中形成类似网状或链状的导热网络,从而改善导热性能。然而,由于导热填料中导热性能好的粉体,例如AlN和BN,价格昂贵,增加了下游产业的生产成本。There are many insulating layer materials currently available, such as polymer materials. The most effective way to improve the thermal conductivity of polymer materials is to add an appropriate amount of highly thermally conductive fillers to the polymer matrix. For thermally conductive materials that mainly serve as insulation, metal oxides (BeO, MgO, Al:Os) are generally selected as thermal conductive fillers. , NiO, etc.), carbides (SiC, BC, etc.) and metal nitrides (A1N, SigN, BN, etc.). Filled thermally conductive insulating polymer materials add thermally conductive fillers to ordinary insulating polymer materials. Through the interaction between the thermally conductive fillers, a mesh-like or chain-like thermal conductive network is formed in the polymer matrix, thereby improving the thermal conductivity. . However, because the powders with good thermal conductivity in thermally conductive fillers, such as AlN and BN, are expensive, they increase the production costs of downstream industries.
环氧树脂复合材料因其粘结性好,耐腐蚀、电绝缘性好,在线路板领域得到了广泛应用。然而,纯环氧树脂的热导率为0.15~0.21W/mk,通常需要填充改性提升其导热性能。石墨烯热导率高达5×103W/m.K,热稳定性高,随着近年来石墨烯生产技术的成熟,石墨烯/环氧树脂复合材料将在线路板散热领域得到广泛的应用。但目前的方法仅是将石墨烯片作为填料简单地与环氧树脂进行复合应用,形成的一维平面的复合材料,其性能未能实现质的突破。Epoxy resin composite materials have been widely used in the field of circuit boards because of their good adhesion, corrosion resistance, and electrical insulation. However, the thermal conductivity of pure epoxy resin is 0.15~0.21W/mk, and filling modification is usually required to improve its thermal conductivity. Graphene has a thermal conductivity as high as 5×10 3 W/mK and high thermal stability. With the maturity of graphene production technology in recent years, graphene/epoxy resin composite materials will be widely used in the field of circuit board heat dissipation. However, the current method only uses graphene sheets as fillers and simply composites them with epoxy resin to form a one-dimensional planar composite material, whose performance has not achieved a qualitative breakthrough.
发明内容Contents of the invention
本发明的目的是克服上述不足,而提供一种高导热耐击穿电压线路板材料及其制备方法,该材料通过预制的三维结构、无机-有机组合,以实现高导热、高击穿的特异性能。The purpose of the present invention is to overcome the above-mentioned shortcomings and provide a high thermal conductivity and breakdown voltage resistant circuit board material and a preparation method thereof. The material achieves the specific characteristics of high thermal conductivity and high breakdown through a prefabricated three-dimensional structure and inorganic-organic combination. performance.
本发明采取的技术方案为:The technical solutions adopted by the present invention are:
高导热耐击穿电压线路板材料,它是将球形氧化铝与α-四氧化三铁与石墨烯的分散液磁取向成型制得三维多孔结构填料,将三维多孔结构填料浸入到环氧-苯并噁嗪复合树脂中并加固化剂混合,然后涂覆在基材上固化,再将涂覆后的基材线路板的前后两端调节温度,对涂覆后基材的涂覆层侧采用双向冷冻法构建出的具有3D导热网络的复合导热绝缘层材料。High thermal conductivity and breakdown voltage resistant circuit board material. It is a three-dimensional porous structure filler made by magnetically orienting the dispersion liquid of spherical alumina, α-ferroferric oxide and graphene. The three-dimensional porous structure filler is immersed in epoxy-benzene. Mix the oxazine composite resin with a curing agent, and then apply it on the base material for solidification. Then adjust the temperature at the front and rear ends of the coated base material circuit board, and use the coating layer on the coated side of the base material. A composite thermally conductive insulating layer material with a 3D thermal conductive network constructed by the two-way freezing method.
所述的球形氧化铝与α-四氧化三铁与石墨烯、环氧树脂、苯并噁嗪树脂的量重量比例范围为3:1:5:70~90:15~20。The weight-to-weight ratio range of the spherical alumina, α-ferroferric oxide, graphene, epoxy resin, and benzoxazine resin is 3:1:5:70-90:15-20.
上述高导热耐击穿电压线路板材料的制备方法,包括步骤如下:The preparation method of the above-mentioned high thermal conductivity and breakdown voltage circuit board material includes the following steps:
(1)将石墨烯分散液与球形氧化铝分散液与α-四氧化三铁分散液混合后超声分散均匀,置于固定磁场中固化后完成磁取向成型,抽滤得到球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构填料;石墨烯与球形氧化铝与α-四氧化三铁的质量比例为5:3:1;(1) Mix the graphene dispersion liquid with the spherical alumina dispersion liquid and α-ferroferric oxide dispersion liquid and disperse them evenly by ultrasonic, place them in a fixed magnetic field for solidification, complete the magnetic orientation molding, and obtain spherical alumina-α- by suction filtration. Three-dimensional porous structure filler of ferric oxide-graphene; the mass ratio of graphene to spherical alumina and α-ferric oxide is 5:3:1;
(2)将环氧树脂加入有机混合溶剂搅拌均匀,并按照环氧树脂与苯并噁嗪树脂重量比3~5:1的比例加入苯并噁嗪树脂,搅拌混合得到环氧-苯并噁嗪复合树脂;(2) Add the epoxy resin to the organic mixed solvent and stir evenly, add the benzoxazine resin according to the weight ratio of epoxy resin to benzoxazine resin of 3 to 5:1, stir and mix to obtain epoxy-benzoxine Azine composite resin;
(3)将环氧-苯并噁嗪复合树脂与固化剂按重量份比15~25:1的比例混合,将球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构填料浸入到混合液中,真空脱气,用涂布机涂敷于基材上并固化;球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构填料与环氧-苯并噁嗪复合树脂的质量比例范围为1:8~10;(3) Mix the epoxy-benzoxazine composite resin and the curing agent in a weight ratio of 15 to 25:1, and immerse the three-dimensional porous structure filler of spherical alumina-α-ferroferric oxide-graphene into the In the mixed solution, vacuum degassing, apply it on the substrate with a coater and solidify; the three-dimensional porous structure filler of spherical alumina-α-ferroferric oxide-graphene and the epoxy-benzoxazine composite resin The mass ratio range is 1:8~10;
(4)将涂覆后的基材线路板的前后两端调节温度至-20℃,对涂覆后基材的涂覆层侧采用双向冷冻法制备出具有3D导热网络的复合导热绝缘层材料。(4) Adjust the temperature of the front and rear ends of the coated substrate circuit board to -20°C, and use a bidirectional freezing method on the coating layer side of the coated substrate to prepare a composite thermally conductive insulating layer material with a 3D thermal conductive network .
上述方法中步骤(1)所述的球形氧化铝的粒径大小10~200nm,石墨烯分散液的浓度范围为2~5mg/mL,球形氧化铝分散液浓度范围为5~8mg/mL,α-四氧化三铁分散液浓度范围为0.4~1.0mg/mL。The particle size of the spherical alumina in step (1) of the above method is 10 to 200 nm, the concentration range of the graphene dispersion is 2 to 5 mg/mL, the concentration range of the spherical alumina dispersion is 5 to 8 mg/mL, α -The concentration range of Fe3O4 dispersion is 0.4~1.0mg/mL.
步骤(1)所述的超声分散20-30min,所述的固定磁场强度范围为0.2~1T,优选300mT。The ultrasonic dispersion in step (1) is carried out for 20-30 minutes, and the fixed magnetic field intensity range is 0.2-1T, preferably 300mT.
步骤(2)所述的有机混合溶剂为乙腈和甲苯及二氯甲烷的混合,按照环氧树脂与有机混合溶剂的重量份比为1:3~4加入有机混合溶剂,所述的环氧树脂分子量范围500~2500,制得的环氧-苯并噁嗪复合树脂粘度为100~200cp,25℃。The organic mixed solvent described in step (2) is a mixture of acetonitrile, toluene and methylene chloride. The organic mixed solvent is added according to the weight ratio of epoxy resin to organic mixed solvent of 1:3 to 4. The epoxy resin The molecular weight range is 500-2500, and the viscosity of the prepared epoxy-benzoxazine composite resin is 100-200cp at 25°C.
步骤(3)所述的固化剂为咪唑、丁二酸、癸二酸、三乙胺、吡啶或吡咯。所述的固化为置于120~145℃下预固化2~3h后,再在150~175℃下固化10~14h。The curing agent in step (3) is imidazole, succinic acid, sebacic acid, triethylamine, pyridine or pyrrole. The curing process involves pre-curing at 120-145°C for 2-3 hours, and then curing at 150-175°C for 10-14 hours.
本发明的另一目的是提供一种高导热耐击穿电压线路板及其制备方法。Another object of the present invention is to provide a circuit board with high thermal conductivity and breakdown voltage resistance and a preparation method thereof.
高导热耐击穿电压线路板,依次包括基材层下表面的复合导热绝缘层,基材层,基材层上表面的复合导热绝缘层,导电线路层;复合导热绝缘层采用上述制备的高导热耐击穿电压线路板材料。The circuit board with high thermal conductivity and breakdown voltage resistance includes in sequence a composite thermally conductive insulating layer on the lower surface of the base material layer, a composite thermally conductive insulating layer on the upper surface of the base material layer, and a conductive circuit layer; the composite thermally conductive insulating layer adopts the high-temperature conductive insulation layer prepared above. Thermal conductive and breakdown voltage resistant circuit board material.
所述基材层由铜、铜合金、铝、铝合金、镁、镁合金、铁、铁合金中的一种或多种混合制得。The base material layer is made of one or more of copper, copper alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, iron, and iron alloy.
所述的导电线路层是由包括铜、铜合金、铝、铝合金、银的一种或多种材料制得。The conductive circuit layer is made of one or more materials including copper, copper alloy, aluminum, aluminum alloy, and silver.
所述的基材层厚度为0.1~0.5mm,复合导热绝缘层厚度为10~35μm,导电线路层厚度为15~35μm。The thickness of the base material layer is 0.1-0.5 mm, the thickness of the composite thermally conductive insulating layer is 10-35 μm, and the thickness of the conductive circuit layer is 15-35 μm.
所述的高导热耐击穿电压线路板的制备方法,包括在基材层上按上述方法制备高导热耐击穿电压线路板材料的步骤,还包括利用靶材通过PVD(物理气象沉积)镀膜工艺在复合导热绝缘层上沉积导电线路层的步骤。The method for preparing a high thermal conductivity and breakdown voltage resistant circuit board includes the steps of preparing a high thermal conductivity and breakdown voltage resistant circuit board material on a substrate layer according to the above method, and also includes using a target material to coat a film through PVD (physical vapor deposition) The process of depositing a conductive circuit layer on a composite thermally conductive insulating layer.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明采用四氧化三铁和氧化铝的电磁场诱导取向,预制石墨烯的三维结构作为基底,利用苯并噁嗪特有的多环及酚羟基结构使其与环氧基团发生结构交联,形成新的环氧-苯并噁嗪复合树脂,然后利用层组装和双向冷冻技术,将环氧-苯并噁嗪复合树脂与石墨烯和氧化铝构筑出高导热高度有序排列的3D导热网络的复合导热绝缘层材料。The invention uses the electromagnetic field-induced orientation of ferric oxide and aluminum oxide, and uses the three-dimensional structure of prefabricated graphene as the base, and utilizes the unique polycyclic and phenolic hydroxyl structures of benzoxazine to cause structural cross-linking with epoxy groups to form The new epoxy-benzoxazine composite resin, and then using layer assembly and two-way freezing technology, combines the epoxy-benzoxazine composite resin with graphene and alumina to build a highly ordered 3D thermal conductive network with high thermal conductivity. Composite thermally conductive insulation layer material.
使用预制的三维结构可以更容易地在复合材料中构筑起有效的导热通路﹐这是因为纳米填料之间的接触热阻远低于填料和聚合物基体之间的接触热阻。同时二维片层结构赋予其很大的比表面积,使其在构筑三维网络结构时更容易搭接在一起形成具有良好传热性能的导热网络。热量可以沿着网络快速传递,从而实现高效散热。而且复合材料的导热性不仅与基体本身的结构有关,而且与填料的含量、粒径和形态、性能和彼此之间的界面性能有关,本发明还充分优化筛选了无机-有机组合的新型导热绝缘复合材料,以实现高导热、高击穿的特异性能。与现有的高导热绝缘材料及线路板相比,其性能优良,工艺较为简单,成本较低。Using prefabricated three-dimensional structures makes it easier to build effective thermal pathways in composite materials because the thermal contact resistance between nanofillers is much lower than that between the fillers and the polymer matrix. At the same time, the two-dimensional lamellar structure gives it a large specific surface area, making it easier to overlap together to form a thermal conductive network with good heat transfer performance when building a three-dimensional network structure. Heat can be transferred quickly along the network, allowing for efficient cooling. Moreover, the thermal conductivity of composite materials is not only related to the structure of the matrix itself, but also to the content, particle size and shape, performance and interface properties of the fillers. The present invention also fully optimizes and screens new thermal conductive insulation of inorganic-organic combinations. Composite materials to achieve specific properties of high thermal conductivity and high breakdown. Compared with existing high thermal conductivity insulation materials and circuit boards, it has excellent performance, simpler technology and lower cost.
附图说明Description of the drawings
图1为本发明球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构填料的成型过程示意图;Figure 1 is a schematic diagram of the forming process of the three-dimensional porous structure filler of spherical alumina-α-ferroferric oxide-graphene according to the present invention;
图2为本发明球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构填料的电镜图,a.50um分辨率,b.10um分辨率;Figure 2 is an electron microscope image of the three-dimensional porous structure filler of spherical alumina-α-ferroferric oxide-graphene of the present invention, with a.50um resolution and b.10um resolution;
图3为本发明高导热耐击穿电压线路板结构示意图,1.基材层,2.复合导热绝缘层,3.导电线路层;Figure 3 is a schematic structural diagram of the high thermal conductivity breakdown voltage circuit board of the present invention, 1. Base material layer, 2. Composite thermal conductive insulating layer, 3. Conductive circuit layer;
图4不同实施例及对比例制得的产品的导热系数测定的效果对比图。Figure 4 is a comparison chart of the thermal conductivity measurement effects of products produced in different embodiments and comparative examples.
具体实施方式Detailed ways
下面结合具体实施例进一步说明本发明。The present invention will be further described below in conjunction with specific embodiments.
实施例1高导热耐击穿电压线路板材料的制备方法,包括步骤如下:Embodiment 1 The preparation method of high thermal conductivity and breakdown voltage resistant circuit board material includes the following steps:
(1)将浓度3mg/mL的石墨烯分散液与6mg/mL的球形氧化铝分散液及0.5mg/mL的α-四氧化三铁分散液,按石墨烯与球形氧化铝与α-四氧化三铁的质量比例为5:3:1混合后超声分散30min,得到均匀的混合分散液,然后将上述混合物置于300mT的固定磁场中,固化后完成磁取向成型,将混合溶液抽滤得到球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构;(1) Mix the graphene dispersion with a concentration of 3 mg/mL, the spherical alumina dispersion of 6 mg/mL and the α-ferroferric oxide dispersion of 0.5 mg/mL. The mass ratio of triferrous iron is 5:3:1 and then ultrasonically dispersed for 30 minutes to obtain a uniform mixed dispersion. Then the above mixture is placed in a fixed magnetic field of 300mT. After solidification, the magnetic orientation molding is completed. The mixed solution is filtered to obtain a spherical shape. Three-dimensional porous structure of alumina-α-ferroferric oxide-graphene;
(2)取环氧树脂(分子量2500)按照质量比1:3的比例加入有机混合溶剂,有机混合溶剂为乙腈和甲苯及二氯甲烷的混合溶剂,在室温下搅拌1h,然后按照环氧树脂与苯并噁嗪树脂质量比为4:1的比例加入苯并噁嗪树脂,继续搅拌2h,测其粘度为150cp,25℃,得到环氧-苯并噁嗪复合树脂;(2) Take epoxy resin (molecular weight 2500) and add an organic mixed solvent at a mass ratio of 1:3. The organic mixed solvent is a mixed solvent of acetonitrile, toluene and methylene chloride. Stir at room temperature for 1 hour, and then follow the instructions for epoxy resin. Add benzoxazine resin at a mass ratio of 4:1 to benzoxazine resin, continue stirring for 2 hours, and measure the viscosity to be 150cp at 25°C to obtain an epoxy-benzoxazine composite resin;
(3)将所得球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构浸入到混合均匀的环氧-苯并噁嗪复合树脂,球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构填料与环氧-苯并噁嗪复合树脂的质量比例为1:8,并按照与环氧-苯并噁嗪复合树脂质量比例20:1加入咪唑固化剂,在60℃下真空脱气1h,用涂布机涂敷于基材0.1mm铜箔上,涂敷的厚度为35μm;(3) Immerse the obtained three-dimensional porous structure of spherical alumina-α-ferric oxide-graphene into the uniformly mixed epoxy-benzoxazine composite resin, spherical alumina-α-ferric oxide-graphene The mass ratio of the three-dimensional porous structure filler to the epoxy-benzoxazine composite resin is 1:8, and the imidazole curing agent is added according to the mass ratio of the epoxy-benzoxazine composite resin to 20:1, and the vacuum is placed at 60°C Degas for 1 hour, and use a coating machine to coat the base material on 0.1mm copper foil with a coating thickness of 35μm;
(4)将样品置于135℃,预固化2h后,再在150℃下固化10h,然后将涂覆后的基材线路板的前后两端调节温度至-20℃,对涂覆后基材的涂覆层侧采用双向冷冻技术制备出具有3D导热网络的复合导热绝缘层材料。(4) Place the sample at 135°C, pre-cure for 2 hours, and then cure at 150°C for 10 hours. Then adjust the temperature of the front and rear ends of the coated substrate circuit board to -20°C. The coating side uses bidirectional freezing technology to prepare a composite thermally conductive insulation layer material with a 3D thermal conductive network.
实施例2高导热耐击穿电压线路板及其制备方法:Example 2 High thermal conductivity breakdown voltage resistant circuit board and preparation method thereof:
高导热耐击穿电压线路板,依次包括基材层下表面的复合导热绝缘层,基材层,基材层上表面的复合导热绝缘层,导电线路层;基材层和复合导热绝缘层采用上述实施例1制备的在铜箔基体上的高导热耐击穿电压线路板材料,然后在复合导热绝缘层用铜靶采用溅射离子镀膜,膜层厚度控制15μm,得到高导热耐击穿电压线路板。The circuit board with high thermal conductivity and breakdown voltage resistance consists of a composite thermally conductive insulating layer on the lower surface of the base material layer, a base material layer, a composite thermally conductive insulating layer on the upper surface of the base material layer, and a conductive circuit layer; the base material layer and the composite thermally conductive insulating layer are made of The high thermal conductivity and breakdown voltage circuit board material prepared on the copper foil substrate in the above embodiment 1 is then sputtered ion plating using a copper target on the composite thermal conductive insulating layer. The thickness of the film layer is controlled to 15 μm to obtain a high thermal conductivity and breakdown voltage resistance. circuit board.
实施例3高导热耐击穿电压线路板材料的制备方法,包括步骤如下:Embodiment 3 The preparation method of high thermal conductivity and breakdown voltage resistant circuit board material includes the following steps:
(1)将浓度2mg/mL的石墨烯分散液与5mg/mL的球形氧化铝分散液及0.4mg/mL的α-四氧化三铁分散液,按石墨烯与球形氧化铝与α-四氧化三铁的质量比例为5:3:1混合后超声分散30min,得到均匀的混合分散液,然后将上述混合物置于300mT的固定磁场中,固化后完成磁取向成型,将混合溶液抽滤得到球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构;(1) Mix the graphene dispersion with a concentration of 2 mg/mL, the spherical alumina dispersion of 5 mg/mL and the α-ferroferric oxide dispersion of 0.4 mg/mL. The mass ratio of triferrous iron is 5:3:1 and then ultrasonically dispersed for 30 minutes to obtain a uniform mixed dispersion. Then the above mixture is placed in a fixed magnetic field of 300mT. After solidification, the magnetic orientation molding is completed. The mixed solution is filtered to obtain a spherical shape. Three-dimensional porous structure of alumina-α-ferroferric oxide-graphene;
(2)取环氧树脂(分子量1500)按照质量比1:4的比例加入有机混合溶剂,有机混合溶剂为乙腈和甲苯及二氯甲烷的混合溶剂,在室温下搅拌1h,然后按照环氧树脂与苯并噁嗪树脂按质量比为3:1的比例加入苯并噁嗪树脂,继续搅拌2h,测其粘度为200cp,25℃,得到环氧-苯并噁嗪复合树脂;(2) Take epoxy resin (molecular weight 1500) and add an organic mixed solvent at a mass ratio of 1:4. The organic mixed solvent is a mixed solvent of acetonitrile, toluene and methylene chloride. Stir at room temperature for 1 hour, and then follow the instructions for epoxy resin. Add benzoxazine resin to benzoxazine resin in a mass ratio of 3:1, continue stirring for 2 hours, and measure the viscosity to be 200cp at 25°C to obtain an epoxy-benzoxazine composite resin;
(3)将所得球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构浸入到混合均匀的环氧-苯并噁嗪复合树脂,球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构填料与环氧-苯并噁嗪复合树脂的质量比例为1:8,并按照与环氧-苯并噁嗪复合树脂质量比例20:1加入己二酸固化剂,在60℃下真空脱气1h,用涂布机涂敷于基材0.1mm铝箔上,涂敷的厚度为35um;(3) Immerse the obtained three-dimensional porous structure of spherical alumina-α-ferric oxide-graphene into the uniformly mixed epoxy-benzoxazine composite resin, spherical alumina-α-ferric oxide-graphene The mass ratio of the three-dimensional porous structure filler to the epoxy-benzoxazine composite resin is 1:8, and the adipic acid curing agent is added according to the mass ratio of the epoxy-benzoxazine composite resin to 20:1, at 60°C Degas under vacuum for 1 hour, and use a coating machine to coat the base material on 0.1mm aluminum foil with a coating thickness of 35um;
(4)将样品置于130℃,预固化2h后,再在165℃下固化12h,然后将涂覆后的基材线路板的前后两端调节温度至-20℃,对涂覆后基材的涂覆层侧采用双向冷冻技术制备出具有3D导热网络的复合导热绝缘层材料。(4) Place the sample at 130°C, pre-cure for 2 hours, and then cure at 165°C for 12 hours. Then adjust the temperature of the front and rear ends of the coated substrate circuit board to -20°C. The coating side uses bidirectional freezing technology to prepare a composite thermally conductive insulation layer material with a 3D thermal conductive network.
实施例4高导热耐击穿电压线路板及其制备方法:Example 4 High thermal conductivity breakdown voltage resistant circuit board and preparation method thereof:
高导热耐击穿电压线路板,依次包括基材层下表面的复合导热绝缘层,基材层,基材层上表面的复合导热绝缘层,导电线路层;基材层和复合导热绝缘层采用上述实施例1制备的在铝箔基体上的高导热耐击穿电压线路板材料,然后在复合导热绝缘层用铜靶采用溅射离子镀膜,膜层厚度控制20μm,得到高导热耐击穿电压线路板。The circuit board with high thermal conductivity and breakdown voltage resistance consists of a composite thermally conductive insulating layer on the lower surface of the base material layer, a base material layer, a composite thermally conductive insulating layer on the upper surface of the base material layer, and a conductive circuit layer; the base material layer and the composite thermally conductive insulating layer are made of The high thermal conductivity and breakdown voltage circuit board material prepared on the aluminum foil substrate in the above embodiment 1 is then sputtered ion plating with a copper target on the composite thermal conductivity insulating layer. The thickness of the film layer is controlled to 20 μm to obtain a high thermal conductivity and breakdown voltage resistant circuit. plate.
实施例5高导热耐击穿电压线路板材料的制备方法,包括步骤如下:The preparation method of Example 5 high thermal conductivity breakdown voltage circuit board material includes the following steps:
(1)将浓度5mg/mL的石墨烯分散液与8mg/mL的球形氧化铝分散液及0.6mg/mL的α-四氧化三铁分散液,按石墨烯与球形氧化铝与α-四氧化三铁的质量比例范围为5:3:1混合后超声分散30min,得到均匀的混合分散液,然后将上述混合物置于300mT的固定磁场中,固化后完成磁取向成型,将混合溶液抽滤得到球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构;(1) Combine the graphene dispersion with a concentration of 5 mg/mL, the spherical alumina dispersion of 8 mg/mL and the α-ferroferric oxide dispersion of 0.6 mg/mL. The mass ratio range of triferric iron is 5:3:1 and then ultrasonically dispersed for 30 minutes to obtain a uniform mixed dispersion. Then the above mixture is placed in a fixed magnetic field of 300mT. After solidification, the magnetic orientation molding is completed. The mixed solution is filtered to obtain Three-dimensional porous structure of spherical alumina-α-ferroferric oxide-graphene;
(2)取环氧树脂(分子量2000)按照质量比1:3的比例加入有机混合溶剂,有机混合溶剂为乙腈和甲苯及二氯甲烷的混合溶剂,在室温下搅拌1h,然后按照环氧树脂与苯并噁嗪树脂质量比为4:1的比例加入苯并噁嗪树脂,继续搅拌2h,测其粘度为200cp,25℃,得到环氧-苯并噁嗪复合树脂;(2) Take epoxy resin (molecular weight 2000) and add an organic mixed solvent at a mass ratio of 1:3. The organic mixed solvent is a mixed solvent of acetonitrile, toluene and methylene chloride. Stir at room temperature for 1 hour, and then follow the instructions for epoxy resin. Add benzoxazine resin at a mass ratio of 4:1 to benzoxazine resin, continue stirring for 2 hours, and measure its viscosity to be 200cp at 25°C to obtain an epoxy-benzoxazine composite resin;
(3)将所得球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构浸入到混合均匀的环氧-苯并噁嗪复合树脂,球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构填料与环氧-苯并噁嗪复合树脂的质量比例为1:10,并按照与环氧-苯并噁嗪复合树脂质量比例20:1加入吡啶固化剂,在60℃下真空脱气1h,用涂布机涂敷于基材0.1mm铝箔上,涂敷的厚度为35um;(3) Immerse the obtained three-dimensional porous structure of spherical alumina-α-ferric oxide-graphene into the uniformly mixed epoxy-benzoxazine composite resin, spherical alumina-α-ferric oxide-graphene The mass ratio of the three-dimensional porous structure filler to the epoxy-benzoxazine composite resin is 1:10, and the pyridine curing agent is added according to the mass ratio of the epoxy-benzoxazine composite resin to 20:1, and the vacuum is placed at 60°C Degas for 1 hour, and use a coating machine to coat the base material on 0.1mm aluminum foil with a coating thickness of 35um;
(4)将样品置于130℃,预固化2h后,再在165℃下固化12h,然后将涂覆后的基材线路板的前后两端调节温度至-20℃,对涂覆后基材的涂覆层侧采用双向冷冻技术制备出具有3D导热网络的复合导热绝缘层材料。(4) Place the sample at 130°C, pre-cure for 2 hours, and then cure at 165°C for 12 hours. Then adjust the temperature of the front and rear ends of the coated substrate circuit board to -20°C. The coating side uses bidirectional freezing technology to prepare a composite thermally conductive insulation layer material with a 3D thermal conductive network.
实施例6高导热耐击穿电压线路板及其制备方法:Example 6 High thermal conductivity breakdown voltage resistant circuit board and preparation method thereof:
高导热耐击穿电压线路板,依次包括基材层下表面的复合导热绝缘层,基材层,基材层上表面的复合导热绝缘层,导电线路层;基材层和复合导热绝缘层采用上述实施例1制备的在铝箔基体上的高导热耐击穿电压线路板材料,然后在复合导热绝缘层用铜靶采用溅射离子镀膜,膜层厚度控制18μm,得到高导热耐击穿电压线路板。The circuit board with high thermal conductivity and breakdown voltage resistance consists of a composite thermally conductive insulating layer on the lower surface of the base material layer, a base material layer, a composite thermally conductive insulating layer on the upper surface of the base material layer, and a conductive circuit layer; the base material layer and the composite thermally conductive insulating layer are made of The high thermal conductivity and breakdown voltage resistant circuit board material prepared on the aluminum foil substrate in the above Example 1 is then sputtered ion plating on the composite thermal conductive insulating layer using a copper target, and the film thickness is controlled to 18 μm to obtain a high thermal conductivity and breakdown voltage resistant circuit. plate.
对比例1:(仅有环氧树脂,无填料的线路板)取一定量的环氧树脂,(分子量1500)80g,加入由己二酸、咪唑固组成的混合固化剂4g,在60℃下真空脱气1h。用涂布机涂敷于基材0.1mm铜箔上,涂敷的厚度为35um。将样品置于130℃,预固化2h后,再在165℃下固化12h,得到铜箔样品。然后以铜靶,在树脂层上采用溅射离子镀膜,膜层厚度控制10um,得到电压线路板。Comparative Example 1: (Circuit board with only epoxy resin and no filler) Take a certain amount of epoxy resin, (molecular weight 1500) 80g, add 4g of mixed curing agent composed of adipic acid and imidazole, and vacuum at 60°C Degas for 1 hour. Use a coater to coat the base material on 0.1mm copper foil with a coating thickness of 35um. The sample was placed at 130°C, pre-cured for 2 hours, and then cured at 165°C for 12 hours to obtain a copper foil sample. Then use a copper target to sputter ion plating on the resin layer, and control the film thickness to 10um to obtain a voltage circuit board.
对比例2:(采用利用环氧树脂,加入填料改性,但没有复合苯并噁嗪树脂的线路板)Comparative Example 2: (A circuit board using epoxy resin, modified with fillers, but without composite benzoxazine resin)
(1)将2mg/mL的石墨烯分散液与5mg/mL的球形氧化铝分散液及0.4mg/mL的α-四氧化三铁按石墨烯与球形氧化铝与α-四氧化三铁的质量比例范围为5:3:1混合后超声分散30min,得到均匀的混合分散液。然后将上述复合物置于300mT的固定磁场中,固化后完成磁取向成型,将混合溶液抽滤得到球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构;(1) Combine 2 mg/mL graphene dispersion, 5 mg/mL spherical alumina dispersion and 0.4 mg/mL α-ferric oxide according to the mass of graphene, spherical alumina and α-ferric oxide. The ratio range is 5:3:1 and then ultrasonic dispersed for 30 minutes to obtain a uniform mixed dispersion. The above-mentioned composite is then placed in a fixed magnetic field of 300mT. After solidification, the magnetic orientation molding is completed. The mixed solution is filtered to obtain a three-dimensional porous structure of spherical alumina-α-ferroferric oxide-graphene;
(2)取环氧树脂(分子量1500)80g与球形氧化铝-α-四氧化三铁-石墨烯的三维多孔结构8g混合,然后再与己二酸、咪唑混合固化剂共4g混合,在60℃下真空脱气1h,用涂布机涂敷于基材0.1mm铜箔上,涂敷的厚度为35um;(2) Take 80g of epoxy resin (molecular weight 1500) and mix it with 8g of the three-dimensional porous structure of spherical alumina-α-ferroferric oxide-graphene, then mix it with a total of 4g of adipic acid and imidazole mixed curing agent, and mix it at 60 Degas in vacuum for 1 hour at ℃, and apply it on the base material 0.1mm copper foil with a coating machine. The thickness of the coating is 35um;
(3)将样品置于130℃,预固化2h后,再在165℃下固化12h,然后将涂覆后的基材线路板的前后两端调节温度至-20℃,对涂覆后基材的涂覆层侧采用双向冷冻技术制备出具有3D导热网络的复合导热绝缘层材料。(3) Place the sample at 130°C, pre-cure for 2 hours, and then cure at 165°C for 12 hours. Then adjust the temperature of the front and rear ends of the coated substrate circuit board to -20°C. The coating side uses bidirectional freezing technology to prepare a composite thermally conductive insulation layer material with a 3D thermal conductive network.
然后在复合导热绝缘层用铜靶采用溅射离子镀膜,膜层厚度控制15um,得到高导热耐击穿电压线路板。Then, a copper target is used for sputtering ion plating on the composite thermally conductive insulating layer, and the film thickness is controlled to 15um to obtain a circuit board with high thermal conductivity and breakdown voltage resistance.
材料的导热系数的测试:Test of thermal conductivity of materials:
采用瞬态激光闪点法测定不同石墨烯负载下石墨烯/环氧-苯并噁嗪复合材料的热扩散系数,遵循ASTM E-1461、DIN EN 821和DIN 30905的试验标准。热扩散系数α由式(1)得出。The transient laser flash point method was used to determine the thermal diffusion coefficient of graphene/epoxy-benzoxazine composites under different graphene loads, following the test standards of ASTM E-1461, DIN EN 821 and DIN 30905. Thermal diffusion coefficient α is obtained from equation (1).
式(1)中,d是样品的厚度(mm),导热系数λ(W/(m·K))可由热扩散系数α(mm2/s)、比热C(p J/(g·K))和密度ρ(g/cm3)的乘积求得,如式(2)所示,In formula (1), d is the thickness of the sample (mm), and the thermal conductivity λ (W/(m·K)) can be calculated by the thermal diffusion coefficient α (mm 2 /s), specific heat C (p J/(g·K) )) and the product of density ρ (g/cm 3 ) is obtained, as shown in equation (2),
λ = α × Cp × ρ (2)。λ = α × Cp × ρ (2).
不同实施例及对比例制得的产品的导热系数测定的效果对比见图4,本发明产品导热系数的增量是原工艺的10倍。A comparison of the thermal conductivity measurement results of products produced in different embodiments and comparative examples is shown in Figure 4. The increment of the thermal conductivity of the product of the present invention is 10 times that of the original process.
不同实施例的产品测试性能结果对比如表1:Comparison of product test performance results of different embodiments Table 1:
表1不同产品的性能参数Table 1 Performance parameters of different products
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311598123.5A CN117467333A (en) | 2023-11-28 | 2023-11-28 | High-heat-conductivity breakdown-voltage-resistant circuit board material, circuit board and preparation method thereof |
CN202410950194.5A CN118909508B (en) | 2023-11-28 | 2024-07-16 | High thermal conductivity and breakdown voltage resistant circuit board material, circuit board and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311598123.5A CN117467333A (en) | 2023-11-28 | 2023-11-28 | High-heat-conductivity breakdown-voltage-resistant circuit board material, circuit board and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117467333A true CN117467333A (en) | 2024-01-30 |
Family
ID=89625672
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311598123.5A Pending CN117467333A (en) | 2023-11-28 | 2023-11-28 | High-heat-conductivity breakdown-voltage-resistant circuit board material, circuit board and preparation method thereof |
CN202410950194.5A Active CN118909508B (en) | 2023-11-28 | 2024-07-16 | High thermal conductivity and breakdown voltage resistant circuit board material, circuit board and preparation method thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410950194.5A Active CN118909508B (en) | 2023-11-28 | 2024-07-16 | High thermal conductivity and breakdown voltage resistant circuit board material, circuit board and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN117467333A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011231196A (en) * | 2010-04-27 | 2011-11-17 | Denki Kagaku Kogyo Kk | Resin composite composition and application thereof |
WO2015099451A1 (en) * | 2013-12-27 | 2015-07-02 | 주식회사 두산 | Insulation resin sheet for forming flexible printed circuit board, method for manufacturing same, and printed circuit board comprising same |
US20170100857A1 (en) * | 2015-10-13 | 2017-04-13 | The Regents Of The University Of California | Bidirectional freeze casting for fabricating lamellar structures |
CN109943075A (en) * | 2019-03-27 | 2019-06-28 | 华南理工大学 | A kind of preparation method of magnetically oriented graphene thermal conductive silicone rubber composite material |
CN110845823A (en) * | 2018-08-21 | 2020-02-28 | 平高集团有限公司 | Benzoxazine modified epoxy resin insulating material, epoxy casting insulating part and preparation method thereof |
CN111777841A (en) * | 2020-07-16 | 2020-10-16 | 北京化工大学 | A kind of graphene/epoxy resin composite material based on lamellar anisotropy and preparation method thereof |
CN112300536A (en) * | 2020-11-09 | 2021-02-02 | 四川大学 | Heat-resistant composite dielectric with high dielectric and high heat conductivity |
KR102278841B1 (en) * | 2020-11-13 | 2021-07-20 | 지아이에프코리아 주식회사 | 3d thermally conductive foam structure and the methods of making the same |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103881299B (en) * | 2012-12-20 | 2016-08-31 | 中山台光电子材料有限公司 | Non-halogen resin composition and application thereof |
KR101556100B1 (en) * | 2013-11-11 | 2015-10-01 | 금오공과대학교 산학협력단 | Thermally conductive polymer composite and method for preparing thereof |
US20160326419A1 (en) * | 2013-12-31 | 2016-11-10 | The Regents Of The University Of California | Thermal interface materials with alligned fillers |
CN104371273B (en) * | 2014-11-11 | 2017-05-24 | 广东生益科技股份有限公司 | Halogen-free resin composition and prepreg and laminate prepared therefrom |
CN104559424A (en) * | 2014-12-26 | 2015-04-29 | 苏州格瑞丰纳米科技有限公司 | Efficient graphene-based cooling coating as well as preparation method and application thereof |
CN104559061B (en) * | 2015-01-09 | 2017-04-05 | 湖南大学 | A kind of high heat conductive insulating carbon filler and high heat conductive insulating epoxy resin composite material and preparation method |
JP6740254B2 (en) * | 2015-12-24 | 2020-08-12 | 株式会社カネカ | Resin composition, semi-curable heat conductive film using the same, circuit board and adhesive sheet |
CN106832926B (en) * | 2017-01-19 | 2020-03-10 | 祝巧凤 | Graphite mixture for heat conduction, graphite film, and preparation method and application thereof |
CN109233543B (en) * | 2017-05-03 | 2020-09-22 | 中山台光电子材料有限公司 | Resin composition and article made therefrom |
KR102098829B1 (en) * | 2018-04-20 | 2020-04-09 | 나노팀 주식회사 | A carbon seat having high heat-radiation property and manufacturing method thereof |
CN109320286B (en) * | 2018-11-14 | 2021-08-20 | 武汉纺织大学 | Magnetic graphene-based aerogel material with ordered structure and preparation method thereof |
CN109825010B (en) * | 2019-02-22 | 2020-10-30 | 安徽大学 | Method for preparing brick-mud structure heat-conducting polymer composite material by utilizing magnetic field orientation |
JP7231068B2 (en) * | 2020-02-27 | 2023-03-01 | 住友ベークライト株式会社 | Thermosetting resin composition, resin sheet and metal base substrate |
CN112350076B (en) * | 2020-11-04 | 2023-10-20 | 广东极客亮技术有限公司 | Graphene composite nano metal film and preparation method and application thereof |
CN113230987A (en) * | 2021-05-24 | 2021-08-10 | 南京工业大学 | Simple preparation method of magnetic chitosan aerogel |
CN116925502A (en) * | 2023-07-18 | 2023-10-24 | 平顶山学院 | An epoxy resin composite material containing a multi-layer thermally conductive film structure and its preparation method |
-
2023
- 2023-11-28 CN CN202311598123.5A patent/CN117467333A/en active Pending
-
2024
- 2024-07-16 CN CN202410950194.5A patent/CN118909508B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011231196A (en) * | 2010-04-27 | 2011-11-17 | Denki Kagaku Kogyo Kk | Resin composite composition and application thereof |
WO2015099451A1 (en) * | 2013-12-27 | 2015-07-02 | 주식회사 두산 | Insulation resin sheet for forming flexible printed circuit board, method for manufacturing same, and printed circuit board comprising same |
US20170100857A1 (en) * | 2015-10-13 | 2017-04-13 | The Regents Of The University Of California | Bidirectional freeze casting for fabricating lamellar structures |
CN110845823A (en) * | 2018-08-21 | 2020-02-28 | 平高集团有限公司 | Benzoxazine modified epoxy resin insulating material, epoxy casting insulating part and preparation method thereof |
CN109943075A (en) * | 2019-03-27 | 2019-06-28 | 华南理工大学 | A kind of preparation method of magnetically oriented graphene thermal conductive silicone rubber composite material |
CN111777841A (en) * | 2020-07-16 | 2020-10-16 | 北京化工大学 | A kind of graphene/epoxy resin composite material based on lamellar anisotropy and preparation method thereof |
CN112300536A (en) * | 2020-11-09 | 2021-02-02 | 四川大学 | Heat-resistant composite dielectric with high dielectric and high heat conductivity |
KR102278841B1 (en) * | 2020-11-13 | 2021-07-20 | 지아이에프코리아 주식회사 | 3d thermally conductive foam structure and the methods of making the same |
Non-Patent Citations (3)
Title |
---|
JINGKAI HAN等: "An Anisotropically High Thermal Conductive Boron Nitride/Epoxy Composite Based on Nacre-Mimetic 3D Network", ADVANCED FUNCTIONAL MATERIALS, vol. 29, no. 13, 28 March 2019 (2019-03-28) * |
桂晓凡等: "冻干取向法制备高导热复合材料研究进展", 工程塑料应用, vol. 51, no. 4, 30 April 2023 (2023-04-30), pages 155 - 159 * |
王华高等: "冰模板技术仿生构筑层状高分子纳米复合材料的研究进展", 化学学报, vol. 81, no. 9, 15 September 2023 (2023-09-15), pages 1231 - 1239 * |
Also Published As
Publication number | Publication date |
---|---|
CN118909508A (en) | 2024-11-08 |
CN118909508B (en) | 2025-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104228186B (en) | A kind of high heat conduction high-performance aluminum matrix copper-clad laminate and preparation method thereof | |
CN103525005B (en) | The preparation method of the high heat conduction ternary of low sizing content nano-micro structure epoxy composite material | |
CN103351578B (en) | Resin composition for forming dielectric layer of dielectric substrate for antenna and application thereof | |
CN102173155B (en) | Polymer-base ceramic composite dielectric material and preparation method thereof | |
CN109776864B (en) | A modified hexagonal boron nitride, prepreg, epoxy resin thermally conductive composite material, copper clad laminate and preparation method and application thereof | |
CN103146260B (en) | Conductive printing ink composition, conductive film layer as well as preparation method of conductive film layer and application of conductive printing ink composition | |
Zhang et al. | Surface modified and gradation-mixed Al 2 O 3 as an effective filler for the polyphenylene oxide (PPO) insulative layer in copper clad laminates | |
CN106832782A (en) | A kind of laminal filter particle/polymer composite and preparation method thereof | |
CN113845740B (en) | Preparation method of high-thermal-conductivity polytetrafluoroethylene composite film material | |
CN102152539A (en) | Continuous production method and continuous production line of aluminum-based copper clad laminate | |
CN116444945A (en) | A kind of high thermal conductivity hollow boron nitride microsphere composite polymer material and preparation method thereof | |
CN112251163A (en) | High-thermal-conductivity adhesive film and preparation method thereof | |
CN110310829A (en) | Buried capacitor material, its preparation method and printed circuit board | |
CN111909600A (en) | Manufacturing method of high-thermal-conductivity resin for metal substrate | |
CN106180749B (en) | It is a kind of doping big L/D ratio nano-silver thread graphene preparation method and its application in terms of preparing conducting resinl | |
CN104210182A (en) | High heat conduction copper-clad plate for LED backlight, glue solution, preparation method of copper-clad plate, and preparation method of glue solution | |
CN102825861A (en) | Thermally conductive double-sided flexible copper clad laminate and manufacturing method thereof | |
CN117467333A (en) | High-heat-conductivity breakdown-voltage-resistant circuit board material, circuit board and preparation method thereof | |
CN112694719A (en) | Resin composition, preparation method thereof and metal substrate | |
CN101056500A (en) | Application of epoxy resin-aluminum nitride composite material in the preparation of high-density printed circuit boards | |
TW200424259A (en) | Resin composition having high dielectric constant and uses thereof | |
CN104210181A (en) | High heat conduction copper-clad plate for LED lamps, and making method thereof | |
CN116925502A (en) | An epoxy resin composite material containing a multi-layer thermally conductive film structure and its preparation method | |
CN104599790A (en) | Conductive carbon slurry and preparation method thereof | |
CN115403928A (en) | A kind of electronic packaging material with thermal conductivity and electromagnetic shielding performance and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20240130 |