CN117434035B - A method for determining gain medium material, electronic device and storage medium - Google Patents
A method for determining gain medium material, electronic device and storage medium Download PDFInfo
- Publication number
- CN117434035B CN117434035B CN202311420457.3A CN202311420457A CN117434035B CN 117434035 B CN117434035 B CN 117434035B CN 202311420457 A CN202311420457 A CN 202311420457A CN 117434035 B CN117434035 B CN 117434035B
- Authority
- CN
- China
- Prior art keywords
- gain medium
- medium material
- temperature
- target
- list
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 255
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000009191 jumping Effects 0.000 claims abstract 2
- 230000006870 function Effects 0.000 claims description 81
- 239000013598 vector Substances 0.000 claims description 38
- 230000008859 change Effects 0.000 claims description 31
- 238000011156 evaluation Methods 0.000 claims description 28
- 238000010606 normalization Methods 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 description 19
- 230000008569 process Effects 0.000 description 7
- 230000010354 integration Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 101100517648 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) NUM1 gene Proteins 0.000 description 1
- 101100129590 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mcp5 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及增益介质材料类型确定领域,特别是涉及一种增益介质材料确定方法、电子设备及存储介质。The present invention relates to the field of gain medium material type determination, and in particular to a gain medium material determination method, electronic equipment and storage medium.
背景技术Background technique
目前,半导体激光器被广泛应用于各个领域,半导体激光器所发出的激光是基于半导体材料,即增益介质材料生成的,而半导体材料的类型繁多,不同类型的半导体材料所产生激光的过程以及产生激光的过程中半导体材料自身的温度与波长的变化特性也不同;如果无法确定半导体激光器对应的半导体材料具体是哪一种半导体材料,会导致半导体激光器所生成的激光的波长的精度较低。At present, semiconductor lasers are widely used in various fields. The laser emitted by semiconductor lasers is generated based on semiconductor materials, namely gain medium materials. There are many types of semiconductor materials. The process of generating lasers by different types of semiconductor materials and the temperature and wavelength change characteristics of the semiconductor materials themselves during the laser generation process are also different. If it is impossible to determine which semiconductor material the semiconductor laser corresponds to, the wavelength accuracy of the laser generated by the semiconductor laser will be low.
发明内容Summary of the invention
针对上述技术问题,本发明采用的技术方案为:In view of the above technical problems, the technical solution adopted by the present invention is:
根据本申请的第一方面,提供了一种增益介质材料确定方法,所述方法应用于光束输出装置,所述光束输出装置至少包括光源元器件、第一反射光元器件、第二反射光元器件、谐振腔元器件、增益介质腔元器件和控制器件;其中,光源元器件能够发出光束至增益介质腔中的增益介质;所述控制器件用于执行以下步骤:According to a first aspect of the present application, a method for determining a gain medium material is provided, the method being applied to a light beam output device, the light beam output device comprising at least a light source component, a first reflective light component, a second reflective light component, a resonant cavity component, a gain medium cavity component, and a control device; wherein the light source component is capable of emitting a light beam to a gain medium in a gain medium cavity; and the control device is used to perform the following steps:
S100,响应于光源元器件发出光束至增益介质腔中,获取从增益介质腔中蹦出的初始原子量级E’;其中,光源元器件发出的光束的波长通过光源元器件对应的电流进行控制。S100, in response to the light source component emitting a light beam into the gain medium cavity, obtaining the initial atomic level E' that pops out of the gain medium cavity; wherein the wavelength of the light beam emitted by the light source component is controlled by the current corresponding to the light source component.
S200,根据预设的增益介质材料属性列表,获取每一增益介质材料对应的原子量级,以得到原子量级列表E=(E1,E2,…,Ei,…,En),i=1,2,…,n;其中,Ei为增益介质材料属性列表中的第i种增益介质材料对应的原子量级,n为增益介质材料属性列表中增益介质材料的数量;增益介质材料属性列表包括p行q列,每一行对应一种增益介质材料,每一列对应一种增益介质材料的属性;增益介质材料的属性包括对应的原子量级。S200, according to a preset gain medium material attribute list, obtaining the atomic weight level corresponding to each gain medium material to obtain an atomic weight level list E=( E1 , E2 , …, Ei , …, En ), i=1, 2, …, n; wherein Ei is the atomic weight level corresponding to the i-th gain medium material in the gain medium material attribute list, and n is the number of gain medium materials in the gain medium material attribute list; the gain medium material attribute list includes p rows and q columns, each row corresponds to a gain medium material, and each column corresponds to an attribute of a gain medium material; the attribute of the gain medium material includes the corresponding atomic weight level.
S300,遍历E,若|E’-Ei|<ΔE,则将Ei对应的增益介质材料确定为中间增益介质材料,以得到中间增益介质材料列表W=(W1,W2,…,Wj,…,Wm),j=1,2,…,m;其中,Wj为确定出的第j个中间增益介质材料,m为确定出的中间增益介质材料的数量;ΔE为预设的原子量级差阈值。S300, traverse E, if |E'-E i |<ΔE, then determine the gain medium material corresponding to E i as the intermediate gain medium material to obtain an intermediate gain medium material list W=(W 1 , W 2 , …, W j , …, W m ), j=1, 2, …, m; wherein W j is the jth intermediate gain medium material determined, m is the number of the intermediate gain medium materials determined; ΔE is a preset atomic weight level difference threshold.
S400,若m=1,则将W1确定为增益介质腔中的增益介质对应的增益介质材料。S400: If m=1, determine W1 as the gain medium material corresponding to the gain medium in the gain medium cavity.
根据本申请的另一方面,还提供了一种非瞬时性计算机可读存储介质,存储介质中存储有至少一条指令或至少一段程序,至少一条指令或至少一段程序由控制器件加载并执行以实现上述增益介质材料确定方法。According to another aspect of the present application, a non-transitory computer-readable storage medium is also provided, in which at least one instruction or at least one program is stored, and the at least one instruction or at least one program is loaded and executed by a control device to implement the above-mentioned gain medium material determination method.
根据本申请的另一方面,还提供了一种电子设备,包括控制器件和上述非瞬时性计算机可读存储介质。According to another aspect of the present application, an electronic device is also provided, including a control device and the above-mentioned non-transitory computer-readable storage medium.
本发明至少具有以下有益效果:The present invention has at least the following beneficial effects:
本发明的增益介质材料确定方法,获取从增益介质腔中蹦出的初始原子量级,初始原子量级对应有固定的电流;将初始原子量级和预设的增益介质材料属性列表中的每一原子量级进行比对,如果增益介质材料属性列表中的某一原子量级与初始原子量级的差值小于预设的原子量级差阈值,则将该原子量级对应的增益介质材料确定为增益介质对应的增益介质材料,从而达到现确定增益介质具体为哪一种增益介质材料的目的,进而根据确定出的具体的增益介质材料的属性选择激光生成的控制策略,使得生成的激光的波长的精度较高。The gain medium material determination method of the present invention obtains the initial atomic level that pops out of the gain medium cavity, and the initial atomic level corresponds to a fixed current; the initial atomic level is compared with each atomic level in a preset gain medium material attribute list, and if the difference between a certain atomic level in the gain medium material attribute list and the initial atomic level is less than a preset atomic level difference threshold, the gain medium material corresponding to the atomic level is determined as the gain medium material corresponding to the gain medium, thereby achieving the purpose of determining which gain medium material the gain medium is specifically, and then selecting a control strategy for laser generation according to the determined specific gain medium material attribute, so that the wavelength of the generated laser has a higher accuracy.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.
图1为本发明实施例提供的增益介质材料确定方法的流程图。FIG. 1 is a flow chart of a method for determining a gain medium material provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative work are within the scope of protection of the present invention.
需要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其他方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其他结构及/或功能性实施此设备及/或实践此方法。It should be noted that various aspects of the embodiments within the scope of the appended claims are described below. It should be apparent that the aspects described herein may be embodied in a wide variety of forms, and any specific structure and/or function described herein is merely illustrative. Based on the present disclosure, it should be understood by those skilled in the art that an aspect described herein may be implemented independently of any other aspect, and two or more of these aspects may be combined in various ways. For example, any number of aspects described herein may be used to implement a device and/or practice a method. In addition, other structures and/or functionalities other than one or more of the aspects described herein may be used to implement this device and/or practice this method.
下面将参照图1所述的增益介质材料确定方法的流程图,对一种增益介质材料确定方法进行介绍。A method for determining a gain medium material will be introduced below with reference to the flowchart of the method for determining a gain medium material shown in FIG. 1 .
所述增益介质材料确定方法应用于光束输出装置,所述光束输出装置至少包括光源元器件、第一反射光元器件、第二反射光元器件、谐振腔元器件、增益介质腔元器件和控制器件;其中,光源元器件能够发出光束至增益介质腔中的增益介质;所述控制器件用于执行以下步骤:The gain medium material determination method is applied to a light beam output device, which at least includes a light source component, a first reflective light component, a second reflective light component, a resonant cavity component, a gain medium cavity component, and a control device; wherein the light source component can emit a light beam to a gain medium in a gain medium cavity; and the control device is used to perform the following steps:
S100,响应于光源元器件发出目标光束至增益介质腔中,获取从增益介质腔中蹦出的初始原子量级E’;其中,光源元器件发出的目标光束的波长通过光源元器件对应的电流进行控制。S100, in response to the light source component emitting a target light beam into the gain medium cavity, obtaining the initial atomic level E' that pops out of the gain medium cavity; wherein the wavelength of the target light beam emitted by the light source component is controlled by the current corresponding to the light source component.
本实施例中,光束输出装置可以理解为半导体激光器,光源元器件可以理解为生成泵浦光的元器件,光源元器件发出光束至增益介质腔中的增益介质,增益介质为半导体材料,即本申请中所述的增益介质材料,增益介质在光源元器件发出的光束的作用下,会蹦出初始原子量级,初始原子量级经过后续的反射镜的受激辐射生成激光;在增益介质腔蹦出初始原子量级时,能够获取到该初始原子量级;需要说明的是,光源元器件发出的光束的波长是固定的,波长可以通过光源元器件的输入电流进行控制;原子量级为原子跃迁时的跃迁能量。In this embodiment, the light beam output device can be understood as a semiconductor laser, the light source component can be understood as a component for generating pump light, the light source component emits a light beam to the gain medium in the gain medium cavity, the gain medium is a semiconductor material, that is, the gain medium material described in the present application, and the gain medium will jump out of the initial atomic level under the action of the light beam emitted by the light source component, and the initial atomic level will generate laser through stimulated radiation of subsequent reflectors; when the initial atomic level jumps out of the gain medium cavity, the initial atomic level can be obtained; it should be noted that the wavelength of the light beam emitted by the light source component is fixed, and the wavelength can be controlled by the input current of the light source component; the atomic level is the transition energy during atomic transition.
S200,根据预设的增益介质材料属性列表,获取每一增益介质材料在目标光束的波长下对应的原子量级,以得到原子量级列表E=(E1,E2,…,Ei,…,En),i=1,2,…,n;其中,Ei为增益介质材料属性列表中的第i种增益介质材料对应的原子量级,n为增益介质材料属性列表中增益介质材料的数量;增益介质材料属性列表包括p行q列,每一行对应一种增益介质材料,每一列对应一种增益介质材料的属性;增益介质材料的属性包括增益介质材料对应的原子量级。S200, according to a preset gain medium material attribute list, obtaining the atomic weight level corresponding to each gain medium material at the wavelength of the target light beam to obtain an atomic weight level list E=( E1 , E2 , …, Ei , …, En ), i=1, 2, …, n; wherein Ei is the atomic weight level corresponding to the i-th gain medium material in the gain medium material attribute list, and n is the number of gain medium materials in the gain medium material attribute list; the gain medium material attribute list includes p rows and q columns, each row corresponds to a gain medium material, and each column corresponds to an attribute of a gain medium material; the attribute of the gain medium material includes the atomic weight level corresponding to the gain medium material.
本实施例中,预设的增益介质材料属性列表中包括p种增益介质材料,每一种增益介质材料对应有若干属性,例如,某一增益介质材料在目标光束的照射下所蹦出的原子量级,在目标光束的照射下的温度等;对于每一种增益介质材料,均能够预先在目标光束下得到对应的原子量级;能够将增益介质材料属性列表中的每一增益介质材料在目标光束的波长下对应的原子量级获取,以得到E。In this embodiment, the preset gain medium material attribute list includes p kinds of gain medium materials, and each gain medium material corresponds to a number of attributes, for example, the atomic level of a certain gain medium material under the irradiation of the target light beam, the temperature under the irradiation of the target light beam, etc.; for each gain medium material, the corresponding atomic level can be obtained in advance under the target light beam; the atomic level corresponding to each gain medium material in the gain medium material attribute list under the wavelength of the target light beam can be obtained to obtain E.
S300,遍历E,若|E’-Ei|<ΔE,则将Ei对应的增益介质材料确定为中间增益介质材料,以得到中间增益介质材料列表W=(W1,W2,…,Wj,…,Wm),j=1,2,…,m;其中,Wj为确定出的第j个中间增益介质材料,m为确定出的中间增益介质材料的数量;ΔE为预设的原子量级差阈值。S300, traverse E, if |E'-E i |<ΔE, then determine the gain medium material corresponding to E i as the intermediate gain medium material to obtain an intermediate gain medium material list W=(W 1 , W 2 , …, W j , …, W m ), j=1, 2, …, m; wherein W j is the jth intermediate gain medium material determined, m is the number of the intermediate gain medium materials determined; ΔE is a preset atomic weight level difference threshold.
本实施例中,预设的原子量级差阈值可以通过对应若干增益介质材料进行多次试验得到;可以理解的是,即使同一增益介质材料,在不同的条件下,所蹦出的原子量级也是存在差异的,因此,本实施例中,所得到的中间增益介质材料的数量并不是固定值。In this embodiment, the preset atomic weight level difference threshold can be obtained by performing multiple tests on a number of gain medium materials. It can be understood that even for the same gain medium material, the atomic weight levels that pop out are different under different conditions. Therefore, in this embodiment, the number of intermediate gain medium materials obtained is not a fixed value.
S400,若m=1,则将W1确定为增益介质腔中的增益介质对应的增益介质材料。S400: If m=1, determine W1 as the gain medium material corresponding to the gain medium in the gain medium cavity.
可以理解的是,若m=1,说明只确定出一种中间增益介质材料,可直接将该中间增益介质材料确定为增益介质对应的增益介质材料,从而达到确定出增益介质为哪一种增益介质材料的目的。It can be understood that if m=1, it means that only one intermediate gain medium material is determined, and the intermediate gain medium material can be directly determined as the gain medium material corresponding to the gain medium, thereby achieving the purpose of determining which gain medium material the gain medium is.
进一步的,在步骤S400之后,所述控制器件还用于执行以下步骤:Furthermore, after step S400, the control device is further configured to perform the following steps:
S500,若m>1,则控制光源元器件对应的电流递增,以得到若干递增电流;其中,光源元器件输入每一递增电流时,增益介质腔中均能够蹦出中间原子量级以生成对应的中间光束。S500, if m>1, then control the current corresponding to the light source component to increase to obtain a plurality of increasing currents; wherein, when the light source component inputs each increasing current, an intermediate atomic level can pop out of the gain medium cavity to generate a corresponding intermediate light beam.
本实施例中,若m>1,则表示确定出的中间增益介质材料为多种,存在多种增益介质材料与增益介质实际的增益介质材料较为相似,需要通过其它方式确定出增益介质实际对应的增益介质材料;具体的,改变光源元器件对应的输入电流的大小,使得光源元器件对应的输入电流递增,以得到若干递增电流;例如,光源元器件的初始电流为20毫安,将光源元器件的时输入电流增大至25毫安、30毫安等;每一递增电流下,从增益介质腔中蹦出的中间原子量级均生成对应的中间光束。In this embodiment, if m>1, it means that there are multiple intermediate gain medium materials determined, and there are multiple gain medium materials that are relatively similar to the actual gain medium material of the gain medium, and it is necessary to determine the gain medium material actually corresponding to the gain medium by other means; specifically, the size of the input current corresponding to the light source component is changed so that the input current corresponding to the light source component is increased to obtain a number of increasing currents; for example, the initial current of the light source component is 20 mA, and the input current of the light source component is increased to 25 mA, 30 mA, etc.; under each increasing current, the intermediate atomic mass levels that pop out of the gain medium cavity generate corresponding intermediate light beams.
S510,获取每一中间光束的波长以及生成每一中间光束时增益介质的温度,以得到中间光束波长温度列表集Y=(Y1,Y2,…,Yr,…,Yk),r=1,2,…,k;其中,Yr为获取到的第r个电流对应的中间光束波长温度列表,k为获取到的中间光束波长温度列表的数量;Yr=(Yr,1,Yr,2),Yr,1为第r个中间光束的波长,Yr,2为生成第r个中间光束时增益介质的温度。S510, obtaining the wavelength of each intermediate light beam and the temperature of the gain medium when generating each intermediate light beam, so as to obtain an intermediate light beam wavelength-temperature list set Y=(Y 1 , Y 2 , …, Y r , …, Y k ), r=1, 2, …, k; wherein Y r is the intermediate light beam wavelength-temperature list corresponding to the r-th current obtained, and k is the number of intermediate light beam wavelength-temperature lists obtained; Y r =(Y r, 1 , Y r, 2 ), Y r, 1 is the wavelength of the r-th intermediate light beam, and Y r, 2 is the temperature of the gain medium when generating the r-th intermediate light beam.
可以理解的是,在不同的输入电流下,增益介质所对应的温度也不同,当增益介质的温度不同时,从增益介质中发出的光的波长会发生红移现象,导致光的波长与实际的波长发生偏差;基于此,能够获取Y。It can be understood that under different input currents, the temperature corresponding to the gain medium is also different. When the temperature of the gain medium is different, the wavelength of the light emitted from the gain medium will undergo a red shift, causing the wavelength of the light to deviate from the actual wavelength; based on this, Y can be obtained.
S520,根据Y,确定增益介质对应的中间光束波长温度波动率,以得到中间光束波长温度波动率列表α=(α1,α2,…,αh,…,αk-1),h=1,2,…,k-1;其中,αh为增益介质对应的第h个中间光束波长温度波动率;αh=(Yh+1,1-Yh,1)/(Yh+1,2-Yh,2)。S520. Determine the temperature fluctuation rate of the intermediate light beam wavelength corresponding to the gain medium according to Y to obtain a list of temperature fluctuation rates of the intermediate light beam wavelength α=(α 1 , α 2 , …, α h , …, α k-1 ), h=1, 2, …, k-1; wherein α h is the hth temperature fluctuation rate of the intermediate light beam wavelength corresponding to the gain medium; α h =(Y h+1 , 1 -Y h, 1 )/(Y h+1, 2 -Y h, 2 ).
S530,根据α,确定增益介质对应的目标光束波长温度波动率α’=∑k-1 h=1αh。S530, determining the temperature fluctuation rate of the target light beam wavelength corresponding to the gain medium α'=∑ k-1 h=1 α h according to α.
本实施例中,目标光束波长温度波动率是通过对多个中间光束波长温度波动率求均值得到,由此,能够避免某一数据突变而导致目标光束波长温度波动率不准确的情况发生。In this embodiment, the target light beam wavelength temperature fluctuation rate is obtained by averaging a plurality of intermediate light beam wavelength temperature fluctuation rates, thereby avoiding the situation where a sudden change in a certain data causes an inaccurate target light beam wavelength temperature fluctuation rate.
S540,根据α’和预设的增益介质材料属性列表,确定所述增益介质对应的增益介质材料;其中,增益介质材料属性列表中增益介质材料的属性还包括对应的光束波长温度波动率。S540, determining a gain medium material corresponding to the gain medium according to α' and a preset gain medium material attribute list; wherein the attributes of the gain medium material in the gain medium material attribute list further include a corresponding light beam wavelength temperature fluctuation rate.
本实施例中,预设的增益介质材料属性列表中还包括有每一增益介质材料对应的已知的光束波长温度波动率;每一增益介质材料对应的光束波长温度波动率可以通过大量试验预先得到,也可以通过参照每一半导体材料的具体特性计算得到。In this embodiment, the preset gain medium material property list also includes the known light beam wavelength temperature fluctuation rate corresponding to each gain medium material; the light beam wavelength temperature fluctuation rate corresponding to each gain medium material can be obtained in advance through a large number of experiments, or can be calculated by referring to the specific characteristics of each semiconductor material.
进一步的,步骤S540包括以下步骤:Further, step S540 includes the following steps:
S541,获取增益介质材料属性列表中每一增益介质材料对应的光束波长温度波动率,以得到初始光束波长温度波动率集β=(β1,β2,…,βe,…,βp),e=1,2,…,p;其中,βe为增益介质材料属性列表中第e个增益介质材料对应的光束波长温度波动率。S541, obtaining the light beam wavelength temperature fluctuation rate corresponding to each gain medium material in the gain medium material attribute list to obtain an initial light beam wavelength temperature fluctuation rate set β=(β 1 , β 2 , …, β e , …, β p ), e=1, 2, …, p; wherein β e is the light beam wavelength temperature fluctuation rate corresponding to the e-th gain medium material in the gain medium material attribute list.
S542,遍历β,若|α’-βe|<Δβ,则将βe对应的增益介质材料确定为增益介质对应的增益介质材料;其中,Δβ为预设的光束波长温度波动率差阈值。S542, traverse β, if |α'-β e |<Δβ, determine the gain medium material corresponding to β e as the gain medium material corresponding to the gain medium; wherein Δβ is a preset light beam wavelength temperature fluctuation rate difference threshold.
本实施例中,若|α’-βe|<Δβ,则表示βe对应的增益介质材料的光束波长温度波动率与增益介质实际的增益介质材料对应的光束波长温度波动率最接近,可将βe对应的增益介质材料确定为增益介质对应的增益介质材料;本实施例中,由于,目标光束波长温度波动率是通过对多个中间光束波长温度波动率求均值得到,避免来了某一数据突变而导致目标光束波长温度波动率不准确的情况发生,从而使得确定出的增益介质对应的增益介质材料更为精准。In this embodiment, if |α'-β e |<Δβ, it means that the light beam wavelength temperature fluctuation rate of the gain medium material corresponding to β e is closest to the light beam wavelength temperature fluctuation rate corresponding to the actual gain medium material of the gain medium, and the gain medium material corresponding to β e can be determined as the gain medium material corresponding to the gain medium; in this embodiment, since the target light beam wavelength temperature fluctuation rate is obtained by averaging a plurality of intermediate light beam wavelength temperature fluctuation rates, the situation that the target light beam wavelength temperature fluctuation rate is inaccurate due to a certain data mutation is avoided, thereby making the determined gain medium material corresponding to the gain medium more accurate.
进一步的,在步骤S400之后,所述控制器件还用于执行以下步骤:Furthermore, after step S400, the control device is further configured to perform the following steps:
S600,若m=0,则将光源元器件对应的电流I1增大至I2,使得光源元器件在电流I2时发出光束至增益介质腔中;其中,I1与E’对应。S600, if m=0, increase the current I1 corresponding to the light source component to I2 , so that the light source component emits a light beam into the gain medium cavity at the current I2 ; wherein I1 corresponds to E'.
本实施例中,若m=0,则表示增益介质材料属性列表中的原子量级与初始原子量级的差值均大于等于ΔE,无法确定出增益介质对应的增益介质材料;此时,则需要增大光源元器件的输入电流至I2。In this embodiment, if m=0, it means that the difference between the atomic level in the gain medium material attribute list and the initial atomic level is greater than or equal to ΔE, and the gain medium material corresponding to the gain medium cannot be determined; at this time, the input current of the light source component needs to be increased to I 2 .
S610,获取光源元器件对应的电流为I2时增益介质腔中蹦出的原子量级E’1。S610, obtaining the atomic level E' 1 popped out of the gain medium cavity when the current corresponding to the light source component is I 2 .
S620,根据I1、I2、E’和E’1,确定增益介质对应的电流原子量级变化率TG=(E’1-E’)/(I2-I1)。S620, determining the current atomic level change rate TG corresponding to the gain medium according to I 1 , I 2 , E' and E' 1 = (E' 1 -E')/(I 2 -I 1 ).
S630,根据TG和预设的增益介质材料属性列表,确定增益介质对应的目标增益介质材料;其中,增益介质材料属性列表中增益介质材料的属性还包括对应的电流原子量级变化率。S630, determining a target gain medium material corresponding to the gain medium according to TG and a preset gain medium material attribute list; wherein the attribute of the gain medium material in the gain medium material attribute list further includes a corresponding current atomic level change rate.
具体的,可以获取增益介质材料属性列表中每一增益介质材料对应的电流原子量级变化率,然后将TG与增益介质材料属性列表中每一增益介质材料对应的电流原子量级变化率进行求差值,将差值在预设范围内的电流原子量级变化率对应的增益介质材料确定为增益介质对应的增益介质材料;另外,如果确定出的增益介质对应的增益介质材料的数量大于1,则可以通过步骤S500-S540中的方法进行精确确定增益介质对应的增益介质材料。Specifically, the current atomic level change rate corresponding to each gain medium material in the gain medium material attribute list can be obtained, and then the difference between TG and the current atomic level change rate corresponding to each gain medium material in the gain medium material attribute list is calculated, and the gain medium material corresponding to the current atomic level change rate whose difference is within a preset range is determined as the gain medium material corresponding to the gain medium; in addition, if the number of gain medium materials corresponding to the determined gain medium is greater than 1, the gain medium material corresponding to the gain medium can be accurately determined by the method in steps S500-S540.
进一步的,在步骤S400之后,所述控制器件还用于执行以下步骤:Furthermore, after step S400, the control device is further configured to perform the following steps:
S700,从预设的增益介质材料属性列表中获取目标增益介质材料对应的隶属函数类型。S700: Obtain a membership function type corresponding to a target gain medium material from a preset gain medium material attribute list.
S711,使用目标增益介质材料对应的隶属函数类型对增益介质的温度进行控制。S711, controlling the temperature of the gain medium using the membership function type corresponding to the target gain medium material.
本实施例中,半导体激光器在工作的时候,通常需要精确控制增益介质的温度,以避免发生红移现象;上述实施例中,确定出增益介质对应的目标增益介质材料后,可以选择目标增益介质材料对应的隶属函数来对增益介质进行温度控制,以达到较好的温度控制效果。In this embodiment, when the semiconductor laser is working, it is usually necessary to accurately control the temperature of the gain medium to avoid the red shift phenomenon. In the above embodiment, after determining the target gain medium material corresponding to the gain medium, the membership function corresponding to the target gain medium material can be selected to control the temperature of the gain medium to achieve a better temperature control effect.
本实施例的增益介质材料确定方法,获取从增益介质腔中蹦出的初始原子量级,初始原子量级对应有固定的电流;将初始原子量级和预设的增益介质材料属性列表中的每一原子量级进行比对,如果增益介质材料属性列表中的某一原子量级与初始原子量级的差值小于预设的原子量级差阈值,则将该原子量级对应的增益介质材料确定为增益介质对应的增益介质材料,从而达到现确定增益介质具体为哪一种增益介质材料的目的,进而根据确定出的具体的增益介质材料的属性选择激光生成的控制策略,使得生成的激光的波长的精度较高。The gain medium material determination method of the present embodiment obtains the initial atomic level that pops out of the gain medium cavity, and the initial atomic level corresponds to a fixed current; the initial atomic level is compared with each atomic level in a preset gain medium material attribute list, and if the difference between a certain atomic level in the gain medium material attribute list and the initial atomic level is less than a preset atomic level difference threshold, the gain medium material corresponding to the atomic level is determined as the gain medium material corresponding to the gain medium, thereby achieving the purpose of determining which gain medium material the gain medium is, and then selecting a control strategy for laser generation according to the determined specific gain medium material attribute, so that the wavelength of the generated laser has a higher accuracy.
在一示例性的实施例中,提供一种目标增益介质材料对应的隶属函数类型确定方法,该方法包括以下步骤:In an exemplary embodiment, a method for determining a membership function type corresponding to a target gain medium material is provided, the method comprising the following steps:
S710,获取目标增益介质材料在每一预设的时间段内发光时对应的初始温度向量,以得到初始温度向量列表A=(A1,A2,…,Ae,…,Au),e=1,2,…,u;其中,Ae为目标增益介质材料在第e个时间段内发光时对应的初始温度向量,u为预设的时间段的数量;Ae=(Ae,1,Ae,2,Ae,3,Ae,4,Ae,5);Ae,1为目标增益介质材料在第e个时间段内发光时对应的平均室温,Ae,2为目标增益介质材料在第e个时间段内发光时的最大温度,Ae,3为目标增益介质材料在第e个时间段内发光时的功率变化率,Ae,4为目标增益介质材料在第e个时间段内发光时生成光束的波长,Ae,5为目标增益介质材料在第e个时间段内发光时的平均功率;目标增益介质材料在每一时间段内发光时的初始温度相同。S710, obtaining an initial temperature vector corresponding to the target gain medium material when emitting light in each preset time period, to obtain an initial temperature vector list A=( A1 , A2 , ..., Ae , ..., Au ), e=1, 2, ..., u; wherein Ae is the initial temperature vector corresponding to the target gain medium material when emitting light in the e-th time period, and u is the number of preset time periods; Ae =(Ae , 1 , Ae , 2 , Ae , 3 , Ae , 4 , Ae , 5 ); Ae , 1 is the average room temperature corresponding to the target gain medium material when emitting light in the e-th time period, Ae , 2 is the maximum temperature when the target gain medium material emits light in the e-th time period, Ae , 3 is the power change rate when the target gain medium material emits light in the e-th time period, Ae , 4 is the wavelength of the light beam generated by the target gain medium material when emitting light in the e-th time period, and Ae , 5 is the average power when the target gain medium material emits light in the e-th time period; the initial temperature of the target gain medium material when emitting light in each time period is the same.
本实施例中,设置光源元器件的输入电流为预设的固定电流,生成光束至增益介质对应的目标增益介质材料,目标增益介质材料在发光时会对应有若干参数,能够获取到目标增益介质材料在每一预设的时间段内发光时的平均室温、最大温度、功率变化率、生成光束的波长以及平均功率;需要说明的是,每一预设的时间段的时长相同,例如,时间段的时长为10分钟、20分钟或1小时等;平均室温可以通过在每一时间段内采集多个室温,然后求均值的方式确定;目标增益介质材料的最大温度可以通过在每一时间段内采集多个目标增益介质材料的温度,然后求最大温度的方式确定;功率变化率以及平均功率可以通过获取增益介质材料发光时对应的多个功率,求多个功率的均值,确定平均功率,然后获取最大功率和最小功率确定,确定功率变化率;光束的波长可以通过获取多个光束的波长求均值的方式确定;需要说明的是,可以通过冷却的方式使得目标增益介质材料在每一时间段内发光时的初始温度相同。In this embodiment, the input current of the light source component is set to a preset fixed current, and a light beam is generated to the target gain medium material corresponding to the gain medium. The target gain medium material will correspond to several parameters when emitting light, and the average room temperature, maximum temperature, power change rate, wavelength of the generated light beam and average power of the target gain medium material when emitting light in each preset time period can be obtained; it should be noted that the duration of each preset time period is the same, for example, the duration of the time period is 10 minutes, 20 minutes or 1 hour, etc.; the average room temperature can be determined by collecting multiple room temperatures in each time period and then calculating the average value; the maximum temperature of the target gain medium material can be determined by collecting multiple temperatures of the target gain medium material in each time period and then calculating the maximum temperature; the power change rate and the average power can be determined by obtaining multiple powers corresponding to the gain medium material when emitting light, calculating the average of the multiple powers, determining the average power, and then obtaining the maximum power and the minimum power to determine the power change rate; the wavelength of the light beam can be determined by obtaining the wavelengths of multiple light beams and calculating the average value; it should be noted that the initial temperature of the target gain medium material when emitting light in each time period can be the same by cooling.
S720,对A中每一温度向量进行归一化处理,以得到中间温度向量列表A’=(A’1,A’2,…,A’e,…,A’u);其中,A’e为Ae对应的中间温度向量;A’e=(A’e,1,A’e,2,A’e,3,A’e,4,A’e,5);A’e,1为Ae,1对应的归一化值,A’e,2为Ae,2对应的归一化值,A’e,3为Ae,3对应的归一化值,A’e,4为Ae,4对应的归一化值,A’e,5为Ae,5对应的归一化值;A’e,1=Ae,1/maxAe,1;A’e,2=Ae,2/maxAe,2;A’e,3=Ae,3/maxAe,3;A’e,4=Ae,4/maxAe,4;A’e,5=Ae,5/maxAe,5;maxAe,1为A中所有的平均室温中的最大平均室温,maxAe,2为A中所有的最大温度中的最大值,maxAe,3为A中所有的功率变化率中的最大功率变化率,maxAe,4为A中所有的波长中的最大波长,maxAe,5为A中所有的平均功率中的最大平均功率。S720, normalize each temperature vector in A to obtain an intermediate temperature vector list A'=( A'1 , A'2 , ..., A'e , ..., A'u ); wherein A'e is the intermediate temperature vector corresponding to Ae ; A'e =(A'e ,1 , A'e ,2 , A'e ,3 , A'e ,4 , A'e ,5 ); A'e ,1 is the normalized value corresponding to Ae ,1, A'e ,2 is the normalized value corresponding to Ae,2, A'e ,3 is the normalized value corresponding to Ae, 3 , A'e ,4 is the normalized value corresponding to Ae,4, and A'e ,5 is the normalized value corresponding to Ae , 5; A'e ,1 =Ae ,1 /maxAe ,1 ; A'e ,2 =Ae ,2 /maxAe ,2 ; A'e ,3 =Ae ,3 /maxAe ,3 ; A'e ,4 =Ae ,4 /maxA e,4 ;A' e,5 =A e,5 /maxA e,5 ; maxA e,1 is the maximum average room temperature among all the average room temperatures in A, maxA e,2 is the maximum value among all the maximum temperatures in A, maxA e,3 is the maximum power change rate among all the power change rates in A, maxA e,4 is the maximum wavelength among all the wavelengths in A, maxA e,5 is the maximum average power among all the average powers in A.
S730,根据A’,获取每一中间温度向量对应的评价值,以得到评价值列表MA=(MA1,MA2,…,MAe,…,MAu);其中,MAe为A’e对应的评价值;MAe=(A’e,1+A’e,2+A’e,3+A’e,4+A’e,5)/5。S730. According to A', obtain the evaluation value corresponding to each intermediate temperature vector to obtain an evaluation value list MA=(MA 1 , MA 2 , …, MA e , …, MA u ); wherein MA e is the evaluation value corresponding to A'e; MA e =(A' e, 1 +A' e, 2 +A' e, 3 +A' e, 4 +A' e, 5 )/5.
本实施例中,可以理解的是,每一中间温度向量内的元素的值均处于0到1的范围内,因此,每一中间温度向量对应的评价值均处于0到1的范围内,由此,能够较好的通过评价值评判每一中间温度向量。In this embodiment, it can be understood that the values of the elements in each intermediate temperature vector are all in the range of 0 to 1. Therefore, the evaluation value corresponding to each intermediate temperature vector is in the range of 0 to 1. Therefore, each intermediate temperature vector can be better judged by the evaluation value.
S740,采用预设的聚类算法,将A’中所有的中间温度向量聚类为y个簇,以得到簇列表B=(B1,B2,…,Bx,…,By),x=1,2,…,y;其中,Bx为对A’中所有的中间温度向量进行聚类得到的第x个簇;Bx=(Bx,1,Bx,2,…,Bx,ε,…,Bx,f(x)),ε=1,2,…,f(x);Bx,ε为对A’中所有的中间温度向量进行聚类得到的第x个簇中的第ε个中间温度向量,f(x)为Bx内中间温度向量的数量。S740, using a preset clustering algorithm, cluster all the intermediate temperature vectors in A' into y clusters to obtain a cluster list B=( B1 , B2 , …, Bx , …, By ), x=1, 2, …, y; wherein, Bx is the x-th cluster obtained by clustering all the intermediate temperature vectors in A'; Bx =(Bx , 1 , Bx , 2 , …, Bx , ε , …, Bx , f(x) ), ε=1, 2, …, f(x); Bx , ε is the ε-th intermediate temperature vector in the x-th cluster obtained by clustering all the intermediate temperature vectors in A', and f(x) is the number of intermediate temperature vectors in Bx .
本实施例中,预设的聚类算法可以为DBSCAN聚类算法,该聚类算法为无监督聚类算法,不用预设簇的数量,聚类效果较好;可以理解的是,每一簇内的所有中间温度向量之间的相似度是较高的,簇内中间温度向量的数量越多,表示目标增益介质材料工作时所处的状态与该簇内中间温度向量整体所表征的目标增益介质材料工作是的状态相近。In this embodiment, the preset clustering algorithm can be a DBSCAN clustering algorithm, which is an unsupervised clustering algorithm. It does not require a preset number of clusters and has a better clustering effect. It can be understood that the similarity between all intermediate temperature vectors in each cluster is relatively high. The more intermediate temperature vectors in a cluster, the closer the working state of the target gain medium material is to the working state of the target gain medium material represented by the intermediate temperature vectors in the cluster as a whole.
S750,获取每一簇内向量的数量,以得到B对应的簇内向量数量列表NUM=(NUM1,NUM2,…,NUMx,…,NUMy);其中,NUMx为Bx内中间温度向量的数量。S750, obtaining the number of vectors in each cluster to obtain a list of the number of vectors in the cluster corresponding to B, NUM=( NUM1 , NUM2 , ..., NUMx , ..., NUMy ); wherein NUMx is the number of intermediate temperature vectors in Bx .
S760,根据MA和B,获取每一簇对应的评价值,以得到B对应的评价值列表MB=(MB1,MB2,…,MBx,…,MBy);其中,MBx为Bx对应的评价值;MBx=1/f(x)×∑f(x) ε=1MBx,ε;MBx,ε为Bx,ε对应的评价值。S760, according to MA and B, obtain the evaluation value corresponding to each cluster to obtain an evaluation value list MB=(MB 1 , MB 2 , …, MB x , …, MB y ) corresponding to B; wherein MB x is the evaluation value corresponding to B x ; MB x =1/f(x)×∑ f(x) ε=1 MB x,ε ; MB x,ε are the evaluation values corresponding to B x,ε .
本实施例中,通过上述步骤,将每一簇转换为一个点,每一点关联有对应的簇内中间温度向量的数量和评价值,以便于后续构建目标增益介质材料对应的参考曲线。In this embodiment, through the above steps, each cluster is converted into a point, and each point is associated with the number and evaluation value of the corresponding intermediate temperature vectors in the cluster, so as to facilitate the subsequent construction of a reference curve corresponding to the target gain medium material.
S770,根据NUM和MB,确定目标增益介质材料对应的隶属函数类型。S770: Determine the type of membership function corresponding to the target gain medium material according to NUM and MB.
本实施例中,步骤S770包括以下步骤:In this embodiment, step S770 includes the following steps:
S771,根据NUM和MB,确定B中每一簇在预设的直角坐标系中对应的坐标,以得到簇坐标列表ZB=(ZB1,ZB2,…,ZBx,…,ZBy);其中,ZBx为Bx对应的坐标;ZBx=(ZBx,1,ZBx,2);ZBx,1为Bx在预设的直角坐标系中对应的横坐标,ZBx,2为Bx在预设的直角坐标系中对应的纵坐标;ZBx,1=MBx,ZBx,2=NUMx。S771, determine the coordinates corresponding to each cluster in B in the preset rectangular coordinate system according to NUM and MB, to obtain a cluster coordinate list ZB=( ZB1 , ZB2 , ..., ZBx , ..., ZBy ); wherein ZBx is the coordinate corresponding to Bx ; ZBx =(ZBx , 1 , ZBx , 2 ); ZBx , 1 is the horizontal coordinate corresponding to Bx in the preset rectangular coordinate system, and ZBx , 2 is the vertical coordinate corresponding to Bx in the preset rectangular coordinate system; ZBx, 1 = MBx , ZBx , 2 = NUMx .
S772,在直角坐标系中,将ZB中的每一坐标进行拟合生成目标增益介质材料对应的参考曲线QX。S772, in a rectangular coordinate system, fitting each coordinate in ZB to generate a reference curve QX corresponding to the target gain medium material.
本实施例中,需要说明的是,本领域技术人员能够根据实际需要采用现有的曲线拟合方法,将ZB中的每一坐标进行拟合生成目标增益介质材料对应的参考曲线QX,此处不加赘述。In this embodiment, it should be noted that those skilled in the art can adopt existing curve fitting methods according to actual needs to fit each coordinate in ZB to generate a reference curve QX corresponding to the target gain medium material, which will not be elaborated here.
S773,获取QX与每一已知类型的隶属函数对应的隶属函数曲线的相似度,以得到相似度列表TY=(TY1,TY2,…,TYη,…,TYδ),η=1,2,…,δ;其中,TYη为QX与第η个已知类型的隶属函数对应的隶属函数曲线的相似度,δ为已知隶属函数类型的数量。S773, obtaining the similarity between QX and the membership function curve corresponding to each known type of membership function to obtain a similarity list TY=(TY 1 , TY 2 , …, TY η , …, TY δ ), η=1, 2, …, δ; wherein TY η is the similarity between QX and the membership function curve corresponding to the ηth known type of membership function, and δ is the number of known membership function types.
本实施例中,能够预先获取已知类型的若干隶属函数对应的隶属函数曲线,例如,高斯型隶属函数、广义钟型隶属函数、三角形隶属函数等;每一隶属函数对应的隶属函数曲线的形状是不同的,能够获取QX与每一已知隶属函数对应的隶属函数曲线的相似度,以得到TY;需要说明的是,本领域技术人员能够根据实际需要,采用现有的曲线相似度获取方法,获取QX与每一已知类型的隶属函数对应的隶属函数曲线的相似度,此处不加赘述。In this embodiment, membership function curves corresponding to several membership functions of known types can be obtained in advance, for example, Gaussian membership function, generalized bell-shaped membership function, triangular membership function, etc.; the shape of the membership function curve corresponding to each membership function is different, and the similarity between QX and the membership function curve corresponding to each known membership function can be obtained to obtain TY; it should be noted that those skilled in the art can adopt the existing curve similarity acquisition method according to actual needs to obtain the similarity between QX and the membership function curve corresponding to each known type of membership function, which will not be elaborated here.
S774,获取目标相似度MTY=MAX(TY);其中,MAX()为预设的求最值函数。S774, obtaining target similarity MTY=MAX(TY); wherein MAX() is a preset maximum value function.
S775,将MTY对应的隶属函数类型确定为目标增益介质材料对应的隶属函数类型。S775: Determine the membership function type corresponding to the MTY as the membership function type corresponding to the target gain medium material.
本实施例中,根据增益介质对应的实际的目标增益介质材料,来确定温度控制中所用的隶属函数类型,能够避免温度控制中所选择的隶属函数与增益介质实际对应的增益介质材料不相符,导致温度控制精度较差的问题发生,从而提高对增益介质温度控制的精度。In this embodiment, the type of membership function used in temperature control is determined according to the actual target gain medium material corresponding to the gain medium, which can avoid the problem of poor temperature control accuracy caused by the membership function selected in temperature control not being consistent with the gain medium material actually corresponding to the gain medium, thereby improving the accuracy of gain medium temperature control.
进一步的,本实施例中,可以将现有的每一增益介质材料均按照上述实施例中的方法确定出对应的隶属函数类型,同时将每一增益介质材料对应的隶属函数类型添加至预设的增益介质材料属性列表中,后续温度控制中,能够根据增益介质对应的增益介质材料的不同直接选择对应的隶属函数,以提高对增益介质温度控制的精度。Furthermore, in this embodiment, the corresponding membership function type can be determined for each existing gain medium material according to the method in the above embodiment, and the membership function type corresponding to each gain medium material is added to the preset gain medium material attribute list. In the subsequent temperature control, the corresponding membership function can be directly selected according to the different gain medium materials corresponding to the gain medium, so as to improve the accuracy of the gain medium temperature control.
在一实例性的实施例中,为了使得温度控制的效果更好,提供一种确定目标增益介质材料对应的隶属函数的论域的方法,该方法包括以下步骤:In an exemplary embodiment, in order to achieve a better temperature control effect, a method for determining the domain of a membership function corresponding to a target gain medium material is provided, the method comprising the following steps:
S700,将MB中的评价值按照从小到大的顺序进行排序,以得到B对应的排序后的评价值列表MB’=(MB’1,MB’2,…,MB’s,…,MB’y),s=1,2,…,y;其中,MB’s为将MB中的评价值按照从小到大的顺序进行排序得到的第s个评价值。S700, sort the evaluation values in MB in ascending order to obtain a sorted evaluation value list MB'=(MB' 1 , MB' 2 , …, MB' s , …, MB' y ) corresponding to B, s=1, 2, …, y; wherein MB' s is the sth evaluation value obtained by sorting the evaluation values in MB in ascending order.
S710,若目标增益介质材料对应的隶属函数类型为高斯型隶属函数,且y为奇数,则将MBʹ确定为目标增益介质材料对应的隶属函数的论域。S710: If the type of the membership function corresponding to the target gain medium material is a Gaussian membership function, and y is an odd number, MBʹ is determined as the domain of the membership function corresponding to the target gain medium material.
本实施例中,根据每一簇对应的评价值确定目标增益介质材料对应的隶属函数的论域,相较于根据经验确定隶属函数的论域,更具有依据,论域的确定也更加合理;另外,每一簇对应的评价值是根据初始温度向量转换而来,是与目标增益介质材料的温度特性密切相关的,由此,通过本实施例中的方法确定出的隶属函数的论域,在后续温度控制过程中,使得温度控制更加精准。In this embodiment, the domain of the membership function corresponding to the target gain medium material is determined according to the evaluation value corresponding to each cluster. Compared with determining the domain of the membership function based on experience, it is more reliable and the determination of the domain is more reasonable. In addition, the evaluation value corresponding to each cluster is converted according to the initial temperature vector and is closely related to the temperature characteristics of the target gain medium material. Therefore, the domain of the membership function determined by the method in this embodiment makes the temperature control more accurate in the subsequent temperature control process.
进一步的,在步骤S710之后,所述方法还包括以下步骤:Furthermore, after step S710, the method further includes the following steps:
S720,若目标增益介质材料对应的隶属函数为高斯型隶属函数,且y为偶数,则获取扩充值KB=(MB’y/2+MB’y/2+1)/2。S720: If the membership function corresponding to the target gain medium material is a Gaussian membership function and y is an even number, obtain an expansion value KB=(MB'y /2 +MB'y /2+1 )/2.
可以理解的是,高斯型隶属函数的论域内的元素的数量是奇数,而本申请中,聚类得到的簇的数量y是有可能为偶数的,当y为偶数时,则不能够直接将y确定为隶属函数的论域内的元素的数量,需要再添加一个中心点KB。It is understandable that the number of elements in the domain of the Gaussian membership function is an odd number, while in the present application, the number of clusters y obtained by clustering may be an even number. When y is an even number, y cannot be directly determined as the number of elements in the domain of the membership function, and another center point KB needs to be added.
S730,将KB添加至MB’中MB’y/2与MB’y/2+1之间,以得到扩充后的评价值列表。S730, adding KB to MB' between MB'y /2 and MB'y /2+1 in MB' to obtain an expanded evaluation value list.
S740,将扩充后的评价值列表确定为目标增益介质材料对应的隶属函数的论域。S740: Determine the expanded evaluation value list as the domain of the membership function corresponding to the target gain medium material.
本实施例中,通过上述方法,即使目标增益介质材料对应的隶属函数为高斯型隶属函数且y为偶数,也能够将评价值列表扩充为隶属函数的论域,提高了隶属函数的论域确定的灵活度。In this embodiment, through the above method, even if the membership function corresponding to the target gain medium material is a Gaussian membership function and y is an even number, the evaluation value list can be expanded to the domain of the membership function, thereby improving the flexibility of determining the domain of the membership function.
进一步的,在步骤S710之后,所述方法还包括以下步骤:Furthermore, after step S710, the method further includes the following steps:
S750,若目标增益介质材料对应的隶属函数不为高斯型隶属函数,则将MB’中的每一评价值确定为目标增益介质材料对应的隶属函数的论域中的元素。S750: If the membership function corresponding to the target gain medium material is not a Gaussian membership function, each evaluation value in MB' is determined as an element in the domain of the membership function corresponding to the target gain medium material.
本实施例中,除了高斯型隶属函数以外的其它隶属函数为非对称函数,其对应的论域内的元素不一定必须为奇数,因此,可以将MB’中的每一评价值确定为目标增益介质材料对应的隶属函数的论域中的元素。In this embodiment, the membership functions other than the Gaussian membership function are asymmetric functions, and the elements in the corresponding domain do not necessarily have to be odd numbers. Therefore, each evaluation value in MB’ can be determined as an element in the domain of the membership function corresponding to the target gain medium material.
在一示例性的实施例中,在确定出增益介质对应的目标增益介质材料以及隶属函数类型后,能够对增益介质的温度进行控制,具体的包括以下步骤:In an exemplary embodiment, after determining the target gain medium material and the type of membership function corresponding to the gain medium, the temperature of the gain medium can be controlled, specifically including the following steps:
S1,获取增益介质对应的目标增益介质材料。S1, obtaining a target gain medium material corresponding to the gain medium.
本实施例中,光束输出装置可以理解为半导体激光器,光源元器件可以理解为生成泵浦光的元器件,光源元器件发出光束至增益介质腔中的增益介质,增益介质为半导体材料,即本申请中所述得到目标增益介质材料;增益介质材料有多种,能够确定出增益介质对应的是哪一种增益介质材料,以得到目标增益介质材料。In this embodiment, the light beam output device can be understood as a semiconductor laser, the light source component can be understood as a component for generating pump light, the light source component emits a light beam to the gain medium in the gain medium cavity, and the gain medium is a semiconductor material, that is, the target gain medium material obtained as described in this application; there are many types of gain medium materials, and it is possible to determine which gain medium material corresponds to the gain medium to obtain the target gain medium material.
S2,根据目标增益介质材料和预设的增益介质材料属性列表,确定目标增益介质材料对应的隶属函数类型;其中,增益介质材料属性列表包括p行q列,每一行对应一种增益介质材料,其中一列对应增益介质材料的隶属函数类型。S2, determining the membership function type corresponding to the target gain medium material according to the target gain medium material and a preset gain medium material attribute list; wherein the gain medium material attribute list includes p rows and q columns, each row corresponds to a gain medium material, and one column corresponds to the membership function type of the gain medium material.
本实施例中,预设的增益介质材料属性列表中包括p种增益介质材料,每一种增益介质材料对应有若干属性,例如,某一增益介质材料在目标光束的照射下所蹦出的原子量级,在目标光束的照射下的温度以及对应的隶属函数类型等;对于每一种增益介质材料,均能够预先确定对应的隶属函数类型。In this embodiment, the preset gain medium material attribute list includes p types of gain medium materials, and each gain medium material corresponds to a number of attributes, for example, the atomic level of a certain gain medium material under the irradiation of the target light beam, the temperature under the irradiation of the target light beam, and the corresponding membership function type, etc.; for each gain medium material, the corresponding membership function type can be determined in advance.
S3,将目标增益介质材料对应的隶属函数类型确定为温度控制器对应的隶属函数类型,并根据确定出的隶属函数类型确定温度控制器对应的隶属函数,以通过温度控制器对应的隶属函数对增益介质进行温度控制。S3, determining the membership function type corresponding to the target gain medium material as the membership function type corresponding to the temperature controller, and determining the membership function corresponding to the temperature controller according to the determined membership function type, so as to control the temperature of the gain medium through the membership function corresponding to the temperature controller.
本实施例中,需要说明的是,本领域技术人员能够根据实际需要采用现有的模糊控制方法以及确定出的隶属函数类型,控制增益介质的温度,此处不加赘述。In this embodiment, it should be noted that those skilled in the art can adopt the existing fuzzy control method and the determined membership function type to control the temperature of the gain medium according to actual needs, which will not be elaborated here.
S4,获取温度控制器控制的增益介质当前的温度偏差ρ和和温度偏差变化率ρc;其中,ρ=T1-T2;T1为增益介质的设定温度,T2为增益介质当前的实际温度;ρc=(ρ-ρ’)/TU;ρ’为与ρ相邻的上一次测量的温度偏差,TU为相邻两次温度测量的时间间隔。S4, obtaining the current temperature deviation ρ and the temperature deviation change rate ρ c of the gain medium controlled by the temperature controller; wherein ρ=T 1 -T 2 ; T 1 is the set temperature of the gain medium, T 2 is the current actual temperature of the gain medium; ρ c =(ρ-ρ')/TU;ρ' is the temperature deviation of the last measurement adjacent to ρ, and TU is the time interval between two adjacent temperature measurements.
本实施例中,在对增益介质的温度控制过程中,对应有设定温度和实际温度,由此,能够确定当前的温度偏差,在根据相邻两次温度测量的时间间隔,能够确定出温度偏差变化率。In this embodiment, during the temperature control process of the gain medium, there are corresponding set temperatures and actual temperatures, thereby the current temperature deviation can be determined, and the temperature deviation change rate can be determined according to the time interval between two adjacent temperature measurements.
S5,若ρ>DU或ρc>TE,则获取温度控制器的第一性能值GT1、第二性能值GT2、第三性能值GT3和第四性能值GT4;其中,DU为目标增益介质材料对应的温度偏差阈值,TE为目标增益介质材料对应的温度偏差变化率阈值;GT1为温度控制器在时间乘绝对误差积分准则对应的性能值、GT2为温度控制器在绝对误差积分准则对应的性能值、GT3为温度控制器在时间乘平方误差积分准则对应的性能值、GT4为温度控制器在平方误差积分准则对应的性能值。S5. If ρ>DU or ρ c >TE, obtain the first performance value GT 1 , the second performance value GT 2 , the third performance value GT 3 and the fourth performance value GT 4 of the temperature controller; wherein DU is the temperature deviation threshold value corresponding to the target gain medium material, and TE is the temperature deviation change rate threshold value corresponding to the target gain medium material; GT 1 is the performance value of the temperature controller corresponding to the time multiplied absolute error integral criterion, GT 2 is the performance value of the temperature controller corresponding to the absolute error integral criterion, GT 3 is the performance value of the temperature controller corresponding to the time multiplied square error integral criterion, and GT 4 is the performance value of the temperature controller corresponding to the square error integral criterion.
本实施例中,可以采用以预设的时间间隔获取增益介质的温度偏差和温度偏差变化率,然后分别与温度偏差阈值以及温度偏差变化率阈值进行比较,来判断是否需要对温度控制器的性能进行评估。In this embodiment, the temperature deviation and temperature deviation change rate of the gain medium may be obtained at preset time intervals, and then compared with the temperature deviation threshold and the temperature deviation change rate threshold, respectively, to determine whether the performance of the temperature controller needs to be evaluated.
需要说明的是,本领域技术人员能够根据实际需要采用现有的时间乘绝对误差积分准则、绝对误差积分准则、时间乘平方误差积分准则以及平方误差积分准则分别确定出GT1、GT2、GT3以及GT4,此处不加赘述。It should be noted that those skilled in the art can respectively determine GT 1 , GT 2 , GT 3 and GT 4 by using the existing time multiplied absolute error integration criterion, absolute error integration criterion, time multiplied square error integration criterion and square error integration criterion according to actual needs , which will not be elaborated here.
具体的,DU通过以下步骤确定:Specifically, DU is determined by the following steps:
S51,根据A,获取目标增益介质材料在每一预设时间段内的最大温度,以得到最大温度列表HT=(A1,2,A2,2,…,Ae,2,…,Au,2)。S51 , according to A, obtaining the maximum temperature of the target gain medium material in each preset time period to obtain a maximum temperature list HT=(A 1,2 , A 2,2 , …, A e,2 , …, Au,2 ).
S52,根据HT,获取目标增益介质材料在每一预设时间段内的温度偏差,以得到温度偏差列表KT=(KT1,KT2,…,KTe,…,KTu);其中,KTe为目标增益介质材料在第e个预设时间段对应的温度偏差;KTe=SF-Ae,2;SF为标准温度。S52, according to HT, obtain the temperature deviation of the target gain medium material in each preset time period to obtain a temperature deviation list KT=(KT 1 , KT 2 , …, KT e , …, KT u ); wherein KT e is the temperature deviation of the target gain medium material in the e th preset time period; KT e =SF-A e,2 ; SF is the standard temperature.
本实施例中,可以将基于目标增益介质材料的半导体激光器输入固定的电流,使其正常生成激光,在半导体激光器生成激光的过程中,能够获取目标增益介质材料在每一预设时间段内的最大温度;在半导体激光器输入固定电流时,目标增益介质材料对应有理论上的标准温度SF。In this embodiment, a fixed current can be input into a semiconductor laser based on a target gain medium material so that it can generate laser light normally. During the process of the semiconductor laser generating laser light, the maximum temperature of the target gain medium material in each preset time period can be obtained. When a fixed current is input into the semiconductor laser, the target gain medium material corresponds to a theoretical standard temperature SF.
S53,根据KT,确定DU=1/u×∑u e=1KTe。S53, according to KT, determine DU=1/u×∑ ue =1 KT e .
本实施例中,DU是基于多个预设时间段内的最大温度确定的,由此,能够避免某一最大温度发生突变而导致DU不准确。In this embodiment, DU is determined based on the maximum temperatures within a plurality of preset time periods, thereby preventing a sudden change in a certain maximum temperature from causing inaccurate DU.
具体的,TE通过以下步骤确定:Specifically, TE is determined by the following steps:
S54,根据KT,获取相邻两个预设时间段之间的温度偏差变化率,以得到温度偏差变化率列表LT=(LT1,LT2,…,LTv,…,LTu-1),v=1,2,…,u-1;其中,LT1为KT1和KT2之间的温度偏差变化率;LTv=(KTv+1-KTv)/PU;PU为相邻两个预设时间段时间的时间间隔。S54, according to KT, obtain the temperature deviation change rate between two adjacent preset time periods to obtain a temperature deviation change rate list LT=(LT 1 , LT 2 , …, LT v , …, LT u-1 ), v=1, 2, …, u-1; wherein LT 1 is the temperature deviation change rate between KT 1 and KT 2 ; LT v =(KT v+1 -KT v )/PU; PU is the time interval between two adjacent preset time periods.
S55,根据LT,确定TE=(1/u-1)×∑u-1 v=1LTv。S55, according to LT, determine TE=(1/u-1)×∑ u-1 v=1 LT v .
本实施例中,LT是基于多个温度偏差变化率确定的,由此,能够避免某一温度偏差变化率误差较大而导致LT不准确的问题。In this embodiment, LT is determined based on a plurality of temperature deviation change rates, thereby avoiding the problem that a certain temperature deviation change rate has a large error and thus causes inaccurate LT.
需要说明的是,本实施例中的DU和LT是基于目标增益介质材料工作过程中的温度特性得到的,相较于根据经验直接设定阈值,通过本实施例中的方法确定的DU和LT更加合理,也能够较好与目标增益介质材料实际工作过程中的温度特性相匹配,从而提高判断的准确性。It should be noted that DU and LT in this embodiment are obtained based on the temperature characteristics of the target gain medium material during its working process. Compared with directly setting the threshold value based on experience, DU and LT determined by the method in this embodiment are more reasonable and can better match the temperature characteristics of the target gain medium material during its actual working process, thereby improving the accuracy of the judgment.
S6,若GT1>WQ1,GT2>WQ2,GT3>WQ3或GT4>WQ4,则对温度控制器对应的隶属函数的参数进行优化;其中,WQ1为预设的时间乘绝对误差积分准则对应的性能阈值,WQ2为预设的绝对误差积分准则对应的性能阈值,WQ3为预设的时间乘平方误差积分准则对应的性能阈值,WQ4为预设的平方误差积分准则对应的性能阈值。S6. If GT 1 > WQ 1 , GT 2 > WQ 2 , GT 3 > WQ 3 or GT 4 > WQ 4 , the parameters of the membership function corresponding to the temperature controller are optimized; wherein WQ 1 is the performance threshold corresponding to the preset time multiplied absolute error integral criterion, WQ 2 is the performance threshold corresponding to the preset absolute error integral criterion, WQ 3 is the performance threshold corresponding to the preset time multiplied square error integral criterion, and WQ 4 is the performance threshold corresponding to the preset square error integral criterion.
本实施例中,WQ1、WQ2、WQ3和WQ4可以根据经验确定,若GT1>WQ1,GT2>WQ2,GT3>WQ3或GT4>WQ4,表示温度控制器当前的性能已经不能够满足预设条件,此时,则需要对温度控制器对应的隶属函数的参数进行优化,例如,可以采用粒子群算法对隶属函数的参数进行再次优化。In this embodiment, WQ 1 , WQ 2 , WQ 3 and WQ 4 can be determined based on experience. If GT 1 > WQ 1 , GT 2 > WQ 2 , GT 3 > WQ 3 or GT 4 > WQ 4 , it means that the current performance of the temperature controller cannot meet the preset conditions. At this time, it is necessary to optimize the parameters of the membership function corresponding to the temperature controller. For example, the particle swarm algorithm can be used to optimize the parameters of the membership function again.
本实施例的增益介质材料温度控制方法,在对增益介质的温度控制过程中,获取当前的温度偏差和和温度偏差变化率,若当前的温度偏差大于温度偏差阈值或温度偏差变化率大于温度偏差变化率阈值,表示当前的温度控制已经不准确;则获取温度控制器的第一性能值GT1、第二性能值GT2、第三性能值GT3和第四性能值GT4,然后分别与对应的性能阈值比对,任一性能值大于对应的性能阈值,则表示当前的温度控制器的性能有所下降,需要对温度控制器对应的隶属函数的参数进行优化,以使温度控制器保持较好的性能,从而提高增益介质温度控制的精度。The gain medium material temperature control method of this embodiment obtains the current temperature deviation and the temperature deviation change rate during the temperature control of the gain medium. If the current temperature deviation is greater than the temperature deviation threshold or the temperature deviation change rate is greater than the temperature deviation change rate threshold, it indicates that the current temperature control is inaccurate. Then, the first performance value GT 1 , the second performance value GT 2 , the third performance value GT 3 and the fourth performance value GT 4 of the temperature controller are obtained, and then compared with the corresponding performance thresholds respectively. If any performance value is greater than the corresponding performance threshold, it indicates that the performance of the current temperature controller has declined, and the parameters of the membership function corresponding to the temperature controller need to be optimized to enable the temperature controller to maintain good performance, thereby improving the accuracy of the gain medium temperature control.
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。In addition, although the steps of the method in the present disclosure are described in a specific order in the drawings, this does not require or imply that the steps must be performed in this specific order, or that all the steps shown must be performed to achieve the desired results. Additionally or alternatively, some steps may be omitted, multiple steps may be combined into one step, and/or one step may be decomposed into multiple steps, etc.
本发明的实施例还提供了一种非瞬时性计算机可读存储介质,该存储介质可设置于电子设备之中以保存用于实现方法实施例中一种方法相关的至少一条指令或至少一段程序,该至少一条指令或该至少一段程序由该控制器件加载并执行以实现上述实施例提供的方法。An embodiment of the present invention also provides a non-transitory computer-readable storage medium, which can be set in an electronic device to store at least one instruction or at least one program related to implementing a method in a method embodiment. The at least one instruction or the at least one program is loaded and executed by the control device to implement the method provided in the above embodiment.
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。The program product may use any combination of one or more readable media. The readable medium may be a readable signal medium or a readable storage medium. The readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above. More specific examples (non-exhaustive list) of readable storage media include: an electrical connection with one or more wires, a portable disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above.
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。Computer readable signal media may include data signals propagated in baseband or as part of a carrier wave, in which readable program code is carried. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above. Readable signal media may also be any readable medium other than a readable storage medium, which may send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device.
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。The program code embodied on the readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wired, optical cable, RF, etc., or any suitable combination of the foregoing.
可以以一种或多种程序设计语言的任意组合来编写用于执行本申请操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。Program code for performing the operations of the present application may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, C++, etc., and conventional procedural programming languages such as "C" or similar programming languages. The program code may be executed entirely on the user computing device, partially on the user device, as a separate software package, partially on the user computing device and partially on a remote computing device, or entirely on a remote computing device or server. In the case of a remote computing device, the remote computing device may be connected to the user computing device through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (e.g., using an Internet service provider to connect through the Internet).
本发明的实施例还提供了一种电子设备,包括控制器件和前述的非瞬时性计算机可读存储介质。An embodiment of the present invention further provides an electronic device, comprising a control device and the aforementioned non-transitory computer-readable storage medium.
根据本申请的这种实施方式的电子设备。电子设备仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。The electronic device according to this embodiment of the present application is only an example and should not bring any limitation to the functions and scope of use of the embodiments of the present application.
电子设备以通用计算设备的形式表现。电子设备的组件可以包括但不限于:上述至少一个处理器、上述至少一个储存器、连接不同系统组件(包括储存器和处理器)的总线。The electronic device is presented in the form of a general-purpose computing device. The components of the electronic device may include, but are not limited to: the at least one processor mentioned above, the at least one storage device mentioned above, and a bus connecting different system components (including storage devices and processors).
其中,所述储存器存储有程序代码,所述程序代码可以被所述处理器执行,使得所述处理器执行本说明书中描述的各种实施例中的步骤。The storage stores program codes, which can be executed by the processor, so that the processor executes the steps in various embodiments described in this specification.
储存器可以包括易失性储存器形式的可读介质,例如随机存取储存器(RAM)和/或高速缓存储存器,还可以进一步包括只读储存器(ROM)。The memory may include readable media in the form of volatile memory, such as random access memory (RAM) and/or cache memory, and may further include read only memory (ROM).
储存器还可以包括具有一组(至少一个)程序模块的程序/实用工具,这样的程序模块包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。The storage may also include a program/utility having a set (at least one) of program modules, such program modules including but not limited to: an operating system, one or more application programs, other program modules and program data, each of which or some combination may include the implementation of a network environment.
总线可以为表示几类总线结构中的一种或多种,包括储存器总线或者储存器控制器、外围总线、图形加速端口、处理器或者使用多种总线结构中的任意总线结构的局域总线。The bus may represent one or more of several types of bus structures including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor or a local bus using any of a variety of bus architectures.
电子设备也可以与一个或多个外部设备(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备交互的设备通信,和/或与使得该电子设备能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口进行。并且,电子设备还可以通过网络适配器与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器通过总线与电子设备的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。The electronic device may also communicate with one or more external devices (e.g., keyboards, pointing devices, Bluetooth devices, etc.), may communicate with one or more devices that enable a user to interact with the electronic device, and/or may communicate with any device (e.g., routers, modems, etc.) that enables the electronic device to communicate with one or more other computing devices. Such communication may be performed through an input/output (I/O) interface. Furthermore, the electronic device may also communicate with one or more networks (e.g., local area networks (LANs), wide area networks (WANs), and/or public networks, such as the Internet) through a network adapter. The network adapter communicates with other modules of the electronic device through a bus. It should be understood that, although not shown in the figure, other hardware and/or software modules may be used in conjunction with the electronic device, including but not limited to: microcode, device drivers, redundant processors, external disk drive arrays, RAID systems, tape drives, and data backup storage systems, etc.
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。Through the description of the above implementation, it is easy for those skilled in the art to understand that the example implementation described here can be implemented by software, or by software combined with necessary hardware. Therefore, the technical solution according to the implementation of the present disclosure can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, a USB flash drive, a mobile hard disk, etc.) or on a network, including several instructions to enable a computing device (which can be a personal computer, a server, a terminal device, or a network device, etc.) to execute the method according to the implementation of the present disclosure.
本发明的实施例还提供一种计算机程序产品,其包括程序代码,当所述程序产品在电子设备上运行时,所述程序代码用于使该电子设备执行本说明书上述描述的根据本发明各种示例性实施方式的方法中的步骤。An embodiment of the present invention further provides a computer program product, which includes program code. When the program product is run on an electronic device, the program code is used to enable the electronic device to execute the steps of the method according to various exemplary embodiments of the present invention described above in this specification.
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员还应理解,可以对实施例进行多种修改而不脱离本发明的范围和精神。本发明开的范围由所附权利要求来限定。Although some specific embodiments of the present invention have been described in detail by way of example, it will be appreciated by those skilled in the art that the above examples are provided for illustration only and are not intended to limit the scope of the present invention. It will also be appreciated by those skilled in the art that various modifications may be made to the embodiments without departing from the scope and spirit of the present invention. The scope of the present invention is defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311420457.3A CN117434035B (en) | 2023-10-30 | 2023-10-30 | A method for determining gain medium material, electronic device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311420457.3A CN117434035B (en) | 2023-10-30 | 2023-10-30 | A method for determining gain medium material, electronic device and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117434035A CN117434035A (en) | 2024-01-23 |
CN117434035B true CN117434035B (en) | 2024-05-03 |
Family
ID=89557980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311420457.3A Active CN117434035B (en) | 2023-10-30 | 2023-10-30 | A method for determining gain medium material, electronic device and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117434035B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1144022A (en) * | 1994-03-18 | 1997-02-26 | 布朗大学研究基金会 | Optical sources having strongly scattering gain medium providing laser-like action |
CN101799419A (en) * | 2010-01-29 | 2010-08-11 | 山东大学 | Measuring system and method of Raman gain coefficient of solid material |
CN103414470A (en) * | 2013-07-29 | 2013-11-27 | 北京大学 | Method and device for producing active light clock with gain medium and quantum reference medium separated |
WO2018209437A1 (en) * | 2017-05-19 | 2018-11-22 | National Research Council Of Canada | Characterization of a material using combined laser-based ir spectroscopy and laser-induced breakdown spectroscopy |
CN112924392A (en) * | 2021-02-05 | 2021-06-08 | 国家纳米科学中心 | Measuring method and measuring system device for measuring optical gain coefficient of nano material in micro-area |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112867934A (en) * | 2017-12-18 | 2021-05-28 | 里德堡技术公司 | Atom-based electromagnetic field sensing element and measurement system |
-
2023
- 2023-10-30 CN CN202311420457.3A patent/CN117434035B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1144022A (en) * | 1994-03-18 | 1997-02-26 | 布朗大学研究基金会 | Optical sources having strongly scattering gain medium providing laser-like action |
CN101799419A (en) * | 2010-01-29 | 2010-08-11 | 山东大学 | Measuring system and method of Raman gain coefficient of solid material |
CN103414470A (en) * | 2013-07-29 | 2013-11-27 | 北京大学 | Method and device for producing active light clock with gain medium and quantum reference medium separated |
WO2018209437A1 (en) * | 2017-05-19 | 2018-11-22 | National Research Council Of Canada | Characterization of a material using combined laser-based ir spectroscopy and laser-induced breakdown spectroscopy |
CN112924392A (en) * | 2021-02-05 | 2021-06-08 | 国家纳米科学中心 | Measuring method and measuring system device for measuring optical gain coefficient of nano material in micro-area |
Non-Patent Citations (1)
Title |
---|
光学增益介质在微型激光器中的应用进展;刘佳男 等;《发光学报》;20221231;第43卷(第12期);第1948-1964页 * |
Also Published As
Publication number | Publication date |
---|---|
CN117434035A (en) | 2024-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12045285B2 (en) | Social graph generation method using a degree distribution generation model | |
CN115860008B (en) | Data processing method, electronic equipment and medium for determining abnormal log information | |
Kuri-Morales et al. | The best genetic algorithm ii: A comparative study of structurally different genetic algorithms | |
CN117434035B (en) | A method for determining gain medium material, electronic device and storage medium | |
CN110929399A (en) | A method for generating typical scenarios of wind power output based on BIRCH clustering and Wasserstein distance | |
CN113190730B (en) | Block chain address classification method and device | |
CN114925767A (en) | Scene generation method and device based on variational self-encoder | |
CN112714397A (en) | WSN node positioning method based on ranging optimization and improved sparrow search algorithm | |
CN117420863B (en) | A method, device and medium for determining membership function type of gain medium material | |
CN118296408A (en) | High-proportion new energy uncertainty scenario generation method and system based on hybrid clustering | |
CN116485583A (en) | Carbon emission management system and method for industrial parks | |
CN115878319A (en) | Load balancing method and system and electronic equipment | |
CN110113815B (en) | An Improved Wireless Sensor Network Location Method Based on IWO | |
CN115495705A (en) | Evaluation function determination method, evaluation function determination device, electronic device, and storage medium | |
CN117335263B (en) | A gain medium material temperature control method, electronic device and storage medium | |
CN118920508B (en) | A photovoltaic grid-connected power generation control method and related device based on cloud platform | |
CN118695477A (en) | Server PCB manufacturing method and system designed with skip-via | |
CN116931438B (en) | A method, device, equipment and medium for determining parameters of a hydraulic turbine speed regulator | |
CN114826396B (en) | Method and device for controlling pumping by monitoring Raman amplifier reflected power | |
CN116722589A (en) | Distributed energy power distribution network topological structure selection method and related device | |
CN116565915A (en) | Power distribution network optical storage configuration optimization method considering source-load association uncertainty | |
CN110460376B (en) | Optimization method for evaluating L-I fault diagnosis model of vertical cavity surface emitting laser | |
CN114640393B (en) | Method and device for improving performance of EDFA erbium-doped amplifier | |
CN118758567B (en) | Comprehensive test method and system for surface-emitting semiconductor laser | |
CN118972868A (en) | A wireless transmission method based on AES audio processing technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 201808 Zone D, floor 2, building 2, No. 1918, xupan Road, Xuxing Town, Jiading District, Shanghai Patentee after: Shanghai Pinzhun Laser Technology Co.,Ltd. Country or region after: China Address before: 201808 Zone D, floor 2, building 2, No. 1918, xupan Road, Xuxing Town, Jiading District, Shanghai Patentee before: PRECILASERS Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |