CN117417874B - Engineering strain HC6-MT and application thereof in low-temperature production of trehalose - Google Patents
Engineering strain HC6-MT and application thereof in low-temperature production of trehalose Download PDFInfo
- Publication number
- CN117417874B CN117417874B CN202311745292.7A CN202311745292A CN117417874B CN 117417874 B CN117417874 B CN 117417874B CN 202311745292 A CN202311745292 A CN 202311745292A CN 117417874 B CN117417874 B CN 117417874B
- Authority
- CN
- China
- Prior art keywords
- trehalose
- strain
- seq
- primer
- promoter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 title claims abstract description 95
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 title claims abstract description 95
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 title claims abstract description 95
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 229920002488 Hemicellulose Polymers 0.000 claims abstract description 43
- 230000015556 catabolic process Effects 0.000 claims abstract description 31
- 238000006731 degradation reaction Methods 0.000 claims abstract description 31
- 240000008042 Zea mays Species 0.000 claims abstract description 25
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims abstract description 25
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims abstract description 25
- 235000005822 corn Nutrition 0.000 claims abstract description 25
- 230000002018 overexpression Effects 0.000 claims abstract description 15
- 239000013604 expression vector Substances 0.000 claims abstract description 13
- 238000012224 gene deletion Methods 0.000 claims abstract description 4
- 101100068894 Bacillus subtilis (strain 168) glvA gene Proteins 0.000 claims description 27
- 101100207422 Bacillus subtilis (strain 168) treA gene Proteins 0.000 claims description 27
- 101100207423 Escherichia coli (strain K12) treC gene Proteins 0.000 claims description 27
- 101000795130 Homo sapiens Trehalase Proteins 0.000 claims description 26
- 102100029677 Trehalase Human genes 0.000 claims description 21
- 230000001580 bacterial effect Effects 0.000 claims description 16
- 238000000855 fermentation Methods 0.000 claims description 16
- 230000004151 fermentation Effects 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 15
- 241000894006 Bacteria Species 0.000 claims description 14
- 101150034999 otsA gene Proteins 0.000 claims description 11
- 101150031048 xynB gene Proteins 0.000 claims description 11
- 101100373342 Botryotinia fuckeliana (strain B05.10) xyn11A gene Proteins 0.000 claims description 10
- 101100506054 Cellulomonas fimi cex gene Proteins 0.000 claims description 10
- 101150021205 xlnB gene Proteins 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 230000000593 degrading effect Effects 0.000 claims description 4
- 238000012216 screening Methods 0.000 abstract description 7
- 239000002154 agricultural waste Substances 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 230000000813 microbial effect Effects 0.000 abstract description 4
- 238000011161 development Methods 0.000 abstract description 3
- 241000889980 bacterium HC6 Species 0.000 abstract 1
- 239000013598 vector Substances 0.000 description 30
- 238000012795 verification Methods 0.000 description 29
- 108090000623 proteins and genes Proteins 0.000 description 27
- 239000010902 straw Substances 0.000 description 26
- 239000013612 plasmid Substances 0.000 description 23
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 22
- 101150058203 cspD gene Proteins 0.000 description 20
- 101100007845 Stigmatella aurantiaca (strain DW4/3-1) cspA gene Proteins 0.000 description 19
- 239000000243 solution Substances 0.000 description 19
- 241000321184 Raoultella Species 0.000 description 17
- 108010049152 Cold Shock Proteins and Peptides Proteins 0.000 description 15
- 108020004414 DNA Proteins 0.000 description 14
- 230000002950 deficient Effects 0.000 description 14
- 101150110403 cspA gene Proteins 0.000 description 13
- 239000000758 substrate Substances 0.000 description 12
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 11
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 11
- 101150049887 cspB gene Proteins 0.000 description 11
- 239000003550 marker Substances 0.000 description 11
- 238000009825 accumulation Methods 0.000 description 10
- 101150041068 cspJ gene Proteins 0.000 description 10
- 238000001962 electrophoresis Methods 0.000 description 9
- 239000001963 growth medium Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229920001221 xylan Polymers 0.000 description 7
- 150000004823 xylans Chemical class 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 101150107437 cspC gene Proteins 0.000 description 6
- 101150116595 cspE gene Proteins 0.000 description 6
- 101150096074 cspG gene Proteins 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 101100168799 Aquifex aeolicus (strain VF5) csp gene Proteins 0.000 description 5
- 101100007857 Bacillus subtilis (strain 168) cspB gene Proteins 0.000 description 5
- 241000084225 Raoultella sp. Species 0.000 description 5
- 101150068339 cspLA gene Proteins 0.000 description 5
- 101150010904 cspLB gene Proteins 0.000 description 5
- 238000009630 liquid culture Methods 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000003209 gene knockout Methods 0.000 description 3
- 238000011081 inoculation Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- MYKOKMFESWKQRX-UHFFFAOYSA-N 10h-anthracen-9-one;sulfuric acid Chemical compound OS(O)(=O)=O.C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 MYKOKMFESWKQRX-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 101710090242 Cold shock protein CspA Proteins 0.000 description 2
- 101710136374 Cold shock-like protein CspB Proteins 0.000 description 2
- 101710136373 Cold shock-like protein CspC Proteins 0.000 description 2
- 101710136390 Cold shock-like protein CspD Proteins 0.000 description 2
- 101710136392 Cold shock-like protein CspE Proteins 0.000 description 2
- 101710136382 Cold shock-like protein CspG Proteins 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000012880 LB liquid culture medium Substances 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 101150026451 csp gene Proteins 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 239000010907 stover Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 108010005054 Deoxyribonuclease BamHI Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Natural products OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000036579 abiotic stress Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000002210 biocatalytic effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000037149 energy metabolism Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 101150067597 treh gene Proteins 0.000 description 1
- 238000007473 univariate analysis Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2477—Hemicellulases not provided in a preceding group
- C12N9/248—Xylanases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/12—Disaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6897—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
- C12Y204/01015—Alpha,alpha-trehalose-phosphate synthase (UDP-forming) (2.4.1.15)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01037—Xylan 1,4-beta-xylosidase (3.2.1.37)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及微生物工程技术领域,尤其涉及一种工程菌株HC6-MT及其在低温生产海藻糖中的应用。The invention relates to the technical field of microbial engineering, and in particular to an engineering strain HC6-MT and application thereof in producing trehalose at low temperature.
背景技术Background technique
海藻糖在生物体中存在范围广泛,常作为生物体结构组成、能量代谢、贮存物质和应激代谢物存在。海藻糖是一种具有细胞保护作用的双糖,能有效地维持细胞膜完整性以及维持蛋白质的三级结构,提高细胞对非生物胁迫压力的耐受性。Trehalose exists widely in organisms, often as a structural component of organisms, energy metabolism, storage material and stress metabolite. Trehalose is a disaccharide with cell-protective effects, which can effectively maintain the integrity of cell membranes and the tertiary structure of proteins, and improve the tolerance of cells to abiotic stress.
在以往的研究中,虽然已经发现了多种可以生产海藻糖的方法,如:利用葡萄糖酸转化成功合成海藻糖,利用化学法合成海藻糖,利用酶转化法生产海藻糖等。但是,化学法制备海藻糖存在副产物多、产率低、能耗高的问题,酶转化法存在工序复杂、酶的催化效率低、底物利用率低等问题。另外,目前采用的生物制备海藻糖法,采用商品化的葡萄糖、麦芽糖等为底物,致使生产成本较高。因此,寻找更加低成本、低能耗的合成底物及合成方法成为海藻糖炼制的关键。In previous studies, although a variety of methods for producing trehalose have been found, such as: synthesizing trehalose by converting gluconic acid, synthesizing trehalose by chemical method, and producing trehalose by enzyme conversion method, etc. However, the chemical method for preparing trehalose has many by-products, low yield, and high energy consumption, and the enzyme conversion method has complex procedures, low enzyme catalytic efficiency, and low substrate utilization. In addition, the biological preparation of trehalose currently used uses commercial glucose, maltose, etc. as substrates, resulting in high production costs. Therefore, finding a more low-cost, low-energy synthetic substrate and synthesis method has become the key to trehalose refining.
秸秆是地球上最为丰富的生物质资源,目前由于处理方式不得当而造成浪费,并且,在低温条件下微生物的酶活性受到温度限制,导致秸秆降解速率低,通常情况下微生物生物合成需要30℃以上的温度,这导致低温农业种植区的秸秆大量积累并被燃烧处理,造成大气的污染及资源的不完全利用。低温地区筛选获得的微生物可通过代谢产生冷活性酶(Cold-active enzyme)从而适应低温环境。耐冷微生物在0℃至40℃的温度范围内均具有较高的生物活性,可允许工业生产中的生物催化反应在低温下进行,从而降低工业生产过程中的能量损耗。因此,提供一种新的耐冷微生物来以农业废弃物——玉米秸秆为原料进行海藻糖的生产,对于低温地区农业废弃物利用,降低海藻糖生产企业成本是非常有必要的。Straw is the most abundant biomass resource on the earth. At present, it is wasted due to improper treatment methods. In addition, the enzyme activity of microorganisms is limited by temperature under low temperature conditions, resulting in a low straw degradation rate. Usually, microbial biosynthesis requires a temperature above 30°C, which leads to a large amount of straw accumulation and burning in low-temperature agricultural planting areas, causing air pollution and incomplete utilization of resources. Microorganisms screened in low-temperature areas can adapt to low-temperature environments by producing cold-active enzymes through metabolism. Cold-resistant microorganisms have high biological activity in the temperature range of 0°C to 40°C, which can allow biocatalytic reactions in industrial production to be carried out at low temperatures, thereby reducing energy loss in the industrial production process. Therefore, it is very necessary to provide a new cold-resistant microorganism to produce trehalose using agricultural waste, corn straw, as raw material, for the utilization of agricultural waste in low-temperature areas and to reduce the cost of trehalose production enterprises.
发明内容Summary of the invention
本发明的目的在于提供一种工程菌株HC6-MT及其在低温生产海藻糖中的应用,该工程菌株HC6-MT可以在低温条件下降解玉米秸秆半纤维素生产海藻糖,并且显著提高海藻糖产量,也为海藻糖低热能、低成本、低污染的生产提供了有效方案,为农业废弃物低碳经济发展提供了新思路。The purpose of the present invention is to provide an engineered strain HC6-MT and its application in low-temperature production of trehalose. The engineered strain HC6-MT can degrade corn straw hemicellulose to produce trehalose under low-temperature conditions and significantly increase the trehalose yield. It also provides an effective solution for the low-energy, low-cost and low-pollution production of trehalose, and provides a new idea for the development of a low-carbon economy of agricultural waste.
为了实现上述目的,本发明提供以下技术方案:In order to achieve the above object, the present invention provides the following technical solutions:
本发明提供了一种工程菌株HC6-MT,将启动子增强过表达载体PBBR1-PD-AB导入海藻糖降解基因缺失菌株HC6-M中,构建得到所述工程菌株HC6-MT。The invention provides an engineering strain HC6-MT, and a promoter-enhanced overexpression vector PBBR1-PD-AB is introduced into a trehalose degradation gene-deficient strain HC6-M to construct the engineering strain HC6-MT.
作为优选,所述启动子增强过表达载体PBBR1-PD-AB中包括从拉乌尔菌HC6中分离的低温强启动子PcspD、半纤维素关键降解基因xynB和海藻糖合成基因otsA。Preferably, the promoter-enhanced overexpression vector PBBR1-PD-AB includes the low-temperature strong promoter P cspD isolated from Raoultella HC6, the key hemicellulose degradation gene xynB , and the trehalose synthesis gene otsA .
作为优选,海藻糖降解基因缺失菌株HC6-M通过以下方法获得:以拉乌尔菌HC6为初始菌株,敲除拉乌尔菌HC6基因组中海藻糖降解基因glvA、treC和TREH中的一种或多种。Preferably, the trehalose degradation gene-deficient strain HC6-M is obtained by the following method: using Raoultella HC6 as the initial strain, and knocking out one or more of the trehalose degradation genes glvA , treC and TREH in the Raoultella HC6 genome.
本发明提供了一种拉乌尔菌HC6中低温强启动子PcspD的筛选方法,包括如下步骤:利用PCR扩增拉乌尔菌HC6的启动子序列,构建启动子荧光强度表达载体进行重组菌表达,检测重组菌OD600nm和荧光强度,筛选所述检测范围内荧光强度/OD600nm比值最大的启动子为低温强启动子PcspD。The invention provides a method for screening a low-temperature strong promoter P cspD in Raoultella HC6, comprising the following steps: amplifying a promoter sequence of Raoultella HC6 by PCR, constructing a promoter fluorescence intensity expression vector for recombinant bacterial expression, detecting OD 600nm and fluorescence intensity of the recombinant bacteria, and screening a promoter with the largest fluorescence intensity/OD 600nm ratio within the detection range as the low-temperature strong promoter P cspD .
作为优选,构建所述启动子荧光强度表达载体使用的原始载体为pET-RFP载体。Preferably, the original vector used to construct the promoter fluorescence intensity expression vector is a pET-RFP vector.
本发明还提供了所述工程菌株HC6-MT在低温生产海藻糖中的应用。The present invention also provides the use of the engineered strain HC6-MT in producing trehalose at low temperature.
作为优选,将工程菌株HC6-MT与玉米秸秆半纤维素混合,发酵生产海藻糖。Preferably, the engineered strain HC6-MT is mixed with corn stover hemicellulose and fermented to produce trehalose.
作为优选,所述工程菌株HC6-MT以菌液的形式应用,工程菌株HC6-MT菌液的OD600nm为1.7-2.3。Preferably, the engineered strain HC6-MT is used in the form of a bacterial solution, and the OD600nm of the bacterial solution of the engineered strain HC6-MT is 1.7-2.3.
作为优选,所述发酵的温度为18-23℃,所述发酵的时间为40-52h。Preferably, the fermentation temperature is 18-23°C, and the fermentation time is 40-52h.
通过采用上述技术方案,本发明具有如下有益效果:By adopting the above technical solution, the present invention has the following beneficial effects:
1.本发明通过联合敲除海藻糖降解基因菌株HC6-M和成功构建的低温启动子增强过表达载体PBBR1-PD-AB得到工程菌株HC6-MT,该工程菌株HC6-MT可以在低温条件下通过降解由玉米秸秆提取的半纤维素来生产海藻糖,省去了外界提供热量的操作,同时强启动子导入野生菌HC6后构建出的工程菌株HC6-MT,与野生菌株相比,对半纤维素的利用率、生产海藻糖的效率有所增强,从而减少了菌株接种量,降低了生产成本;此外,还有效降低了有毒、有害副产物的产量。1. The present invention obtains an engineered strain HC6-MT by combining a trehalose degradation gene knockout strain HC6-M and a successfully constructed low-temperature promoter-enhanced overexpression vector PBBR1-PD-AB. The engineered strain HC6-MT can produce trehalose by degrading hemicellulose extracted from corn stalks under low temperature conditions, eliminating the operation of providing heat from the outside. At the same time, the engineered strain HC6-MT constructed after a strong promoter is introduced into wild bacteria HC6 has enhanced utilization of hemicellulose and efficiency of producing trehalose compared with wild strains, thereby reducing the strain inoculation amount and reducing production costs; in addition, the output of toxic and harmful by-products is effectively reduced.
2.本发明实施例中表明了所述工程菌株HC6-MT可以在20℃低温条件下通过降解玉米秸秆半纤维素生产海藻糖,使海藻糖最大产量达到1.96g/L,相对野生菌株提升54倍。后经培养条件优化,在48h海藻糖最高产量至2.28g/L。2. The present invention shows that the engineered strain HC6-MT can produce trehalose by degrading corn straw hemicellulose at a low temperature of 20°C, so that the maximum trehalose yield reaches 1.96 g/L, which is 54 times higher than that of the wild strain. After the culture conditions are optimized, the maximum trehalose yield reaches 2.28 g/L in 48 hours.
3.本发明通过低温微生物发酵秸秆,将其转化为高附加值的产物,提高了秸秆生物利用效率的同时,又能降低环境污染压力,为农业废弃物低碳经济发展提供新思路。3. The present invention converts straw into high value-added products through low-temperature microbial fermentation, thereby improving the biological utilization efficiency of straw and reducing environmental pollution pressure, providing a new idea for the development of low-carbon economy of agricultural waste.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为质粒PKO3-knoc的电泳图(图1中的M表示5000bp DNA Marker,1表示质粒PKO3-glvA,2表示质粒PKO3-treC,3表示质粒PKO3-TREH);Figure 1 is an electrophoretic diagram of plasmid PKO3-knoc (M in Figure 1 represents 5000 bp DNA Marker, 1 represents plasmid PKO3- glvA , 2 represents plasmid PKO3- treC , and 3 represents plasmid PKO3- TREH );
图2为不同海藻糖基因缺陷菌株的敲除验证电泳图(图2中的(a)为HC6-g(▲glvA),(a)中的M表示2000bp DNA Marker,1表示基因glvA敲除验证条带,2表示自杀质粒验证条带;图2中的(b)为HC6-t(▲treC),(b)中的M表示2000bp DNA Marker,1表示自杀质粒验证条带,2表示基因treC敲除验证条带;图2中的(c)为HC6-T(▲TREH),(c)中的M表示2000bp DNA Marker,1表示基因TREH敲除验证条带,2表示自杀质粒验证条带;图2中的(d)为HC6-Tg(▲TREH▲glvA),(d)中的M表示2000bp DNA Marker,1表示基因glvA敲除验证条带,2表示基因TREH敲除验证条带,3表示自杀质粒验证条带;图2中的(e)为HC6-tg(▲treC▲glvA),(e)中的M表示2000bp DNA Marker,1表示自杀质粒验证条带,2表示基因glvA敲除验证条带,3表示基因treC敲除验证条带;图2中的(f)为HC6-Tt(▲TREH▲treC),(f)中的M表示2000bp DNA Marker,1表示基因treC敲除验证条带,2表示基因TREH敲除验证条带,3表示自杀质粒验证条带;图2中的(g)为HC6-M(▲glvA▲treC▲TREH),(g)中的M表示2000bpDNA Marker,1表示自杀质粒验证条带,2表示基因glvA敲除验证条带,3表示基因TREH敲除验证条带,4表示基因treC敲除验证条带);Figure 2 is the knockout verification electrophoresis of different trehalose gene-deficient strains (Figure 2 (a) is HC6-g (▲ glvA ), M in (a) represents a 2000bp DNA Marker, 1 represents a gene glvA knockout verification band, and 2 represents a suicide plasmid verification band; Figure 2 (b) is HC6-t (▲ treC ), M in (b) represents a 2000bp DNA Marker, 1 represents a suicide plasmid verification band, and 2 represents a gene treC knockout verification band; Figure 2 (c) is HC6-T (▲ TREH ), M in (c) represents a 2000bp DNA Marker, 1 represents a gene TREH knockout verification band, and 2 represents a suicide plasmid verification band; Figure 2 (d) is HC6-Tg (▲ TREH ▲ glvA ), M in (d) represents a 2000bp DNA Marker, 1 represents the gene glvA knockout verification band, 2 represents the gene TREH knockout verification band, and 3 represents the suicide plasmid verification band; (e) in Figure 2 is HC6-tg (▲ treC ▲ glvA ), and M in (e) represents a 2000bp DNA Marker, 1 represents the suicide plasmid verification band, 2 represents the gene glvA knockout verification band, and 3 represents the gene treC knockout verification band; (f) in Figure 2 is HC6-Tt (▲ TREH ▲ treC ), and M in (f) represents a 2000bp DNA Marker, 1 represents the gene treC knockout verification band, 2 represents the gene TREH knockout verification band, and 3 represents the suicide plasmid verification band; (g) in Figure 2 is HC6-M (▲ glvA ▲ treC ▲ TREH ), and M in (g) represents a 2000bp DNA Marker, 1 represents the suicide plasmid verification band, 2 represents the gene glvA knockout verification band, 3 represents the gene TREH knockout verification band, 4 represents the gene treC knockout verification band);
图3为海藻糖基因缺陷菌株HC6-M(▲glvA▲treC▲TREH)的构建过程图;FIG3 is a diagram showing the construction process of the trehalose gene-deficient strain HC6-M (▲ glvA ▲ treC ▲ TREH );
图4为海藻糖降解基因缺陷菌株与HC6菌株(WT)的生长状况以及海藻糖积累量图(图4中的(a)为海藻糖降解基因缺陷菌株与HC6菌株(WT)的生长曲线和海藻糖积累情况,图4中的(b)为不同稀释倍数的海藻糖降解基因缺陷菌株与HC6菌株(WT)的生长状况;显著性差异以不同小写字母表示,p<0.05);Figure 4 shows the growth status of the trehalose degradation gene defective strain and the HC6 strain (WT) and the trehalose accumulation (Figure 4 (a) shows the growth curve and trehalose accumulation of the trehalose degradation gene defective strain and the HC6 strain (WT), and Figure 4 (b) shows the growth status of the trehalose degradation gene defective strain and the HC6 strain (WT) at different dilution multiples; significant differences are indicated by different lowercase letters, p <0.05);
图5为菌株HC6中不同启动子的电泳图(图5中的M表示2000bp DNA Marker,1表示cspA基因启动子,2表示cspB基因启动子,3表示cspC基因启动子,4表示cspD基因启动子,5表示cspE基因启动子,6表示cspG基因启动子);Fig. 5 is an electrophoresis diagram of different promoters in strain HC6 (M in Fig. 5 represents 2000 bp DNA Marker, 1 represents cspA gene promoter, 2 represents cspB gene promoter, 3 represents cspC gene promoter, 4 represents cspD gene promoter, 5 represents cspE gene promoter, and 6 represents cspG gene promoter);
图6为pET-promoter-RFP载体的电泳图(图6中的M表示5000bp DNA Marker,1表示pET-PcspA-RFP验证,2表示pET-PcspB-RFP验证,3表示pET-PcspC-RFP验证,4表示pET-PcspD-RFP验证,5表示pET-PcspE-RFP验证,6表示pET-PcspG-RFP);Figure 6 is an electrophoretogram of the pET-promoter-RFP vector (M in Figure 6 represents a 5000 bp DNA Marker, 1 represents pET-P cspA -RFP verification, 2 represents pET-P cspB -RFP verification, 3 represents pET-P cspC -RFP verification, 4 represents pET-P cspD -RFP verification, 5 represents pET-P cspE -RFP verification, and 6 represents pET-P cspG -RFP);
图7为不同启动子荧光强度表达载体重组菌表达情况图(图7中的(a)为不同启动子荧光强度表达载体重组菌培养基颜色变化情况,图7中的(b)为不同启动子荧光强度表达载体重组菌荧光强度情况);Figure 7 is a diagram showing the expression of recombinant bacteria with different promoter fluorescence intensity expression vectors (Figure 7 (a) shows the color change of the culture medium of recombinant bacteria with different promoter fluorescence intensity expression vectors, and Figure 7 (b) shows the fluorescence intensity of recombinant bacteria with different promoter fluorescence intensity expression vectors);
图8为不同PBBR1-PD-AB重组载体的电泳图(图8中的M表示2000bp DNA Marker,1表示xynB验证,2表示PcspD+xynB,3表示PBBR1,4表示otsA,5表示PcspD+otsA);FIG8 is an electrophoresis diagram of different PBBR1-PD-AB recombinant vectors (M in FIG8 represents 2000 bp DNA Marker, 1 represents xynB verification, 2 represents P cspD + xynB , 3 represents PBBR1, 4 represents otsA , and 5 represents P cspD + otsA );
图9为玉米秸秆半纤维素以及傅里叶红外光谱检测、发酵结果图(图9中的(a)为玉米秸秆半纤维素提取过程中的中间产物,(a)中的1为干燥秸秆粉,(a)中的2为碱液溶解后的秸秆沉淀,(a)中的3为半纤维素溶液,(a)中的4为半纤维素沉淀;图9中的(b)为木聚糖标准品(上边曲线)和玉米秸秆提取半纤维素(下边曲线)的FTIR图谱;图9中的(c)为菌株HC6的生长曲线及木糖产量);Figure 9 is a diagram of corn straw hemicellulose and Fourier transform infrared spectroscopy detection and fermentation results (Figure 9 (a) is an intermediate product in the process of corn straw hemicellulose extraction, 1 in (a) is dry straw powder, 2 in (a) is straw precipitate after alkali solution dissolution, 3 in (a) is hemicellulose solution, and 4 in (a) is hemicellulose precipitate; Figure 9 (b) is the FTIR spectrum of xylan standard (upper curve) and corn straw extracted hemicellulose (lower curve); Figure 9 (c) is the growth curve and xylose yield of strain HC6);
图10为野生菌株HC6、工程菌株HC6-MT对底物半纤维素的利用情况即木糖、海藻糖积累量图(图10中的(a)为野生菌株HC6相关结果情况,图10中的(b)为工程菌株HC6-MT相关结果情况);FIG10 is a diagram showing the utilization of substrate hemicellulose by the wild strain HC6 and the engineered strain HC6-MT, i.e., the accumulation of xylose and trehalose (FIG. 10 (a) shows the results of the wild strain HC6, and FIG10 (b) shows the results of the engineered strain HC6-MT);
图11为底物浓度与冷激时间占比交互作用对HC6-MT海藻糖产量的影响图;FIG11 is a graph showing the effect of the interaction between substrate concentration and cold shock time ratio on HC6-MT trehalose production;
图12为pH与冷激时间占比交互作用对HC6-MT海藻糖产量的影响图;FIG12 is a diagram showing the effect of the interaction between pH and cold shock time ratio on HC6-MT trehalose production;
图13为磷酸盐浓度与冷激时间占比交互作用对HC6-M海藻糖产量的影响图;FIG13 is a graph showing the effect of the interaction between phosphate concentration and cold shock time ratio on trehalose production of HC6-M;
图14为底物浓度与pH交互作用对HC6-MT海藻糖产量的影响图;FIG14 is a graph showing the effect of the interaction between substrate concentration and pH on HC6-MT trehalose production;
图15为底物浓度与磷酸盐浓度交互作用对HC6-MT海藻糖产量的影响图;FIG15 is a graph showing the effect of the interaction between substrate concentration and phosphate concentration on trehalose production of HC6-MT;
图16为磷酸盐浓度与pH交互作用对HC6-MT海藻糖产量的影响图。FIG. 16 is a graph showing the effect of the interaction between phosphate concentration and pH on the trehalose production of HC6-MT.
生物保藏说明Biological Deposit Description
本发明涉及的拉乌尔菌(Raoultella sp.)HC6于2020年09月07日保藏在中国微生物菌种保藏管理委员会普通微生物中心,保藏地址为北京市朝阳区北辰西路1号院3号,保藏编号为CGMCC No.20607。The Raoultella sp. HC6 involved in the present invention was deposited in the General Microbiology Center of China National Microbiological Culture Collection Administration on September 7, 2020. The deposit address is No. 3, Yard No. 1, Beichen West Road, Chaoyang District, Beijing, and the deposit number is CGMCC No. 20607.
具体实施方式Detailed ways
本发明提供了一种工程菌株HC6-MT,将启动子增强过表达载体PBBR1-PD-AB导入海藻糖降解基因缺失菌株HC6-M中,构建得到所述工程菌株HC6-MT。The invention provides an engineering strain HC6-MT, and the promoter-enhanced overexpression vector PBBR1-PD-AB is introduced into a trehalose degradation gene-deficient strain HC6-M to construct the engineering strain HC6-MT.
在本发明中,所述启动子增强过表达载体PBBR1-PD-AB中包括从拉乌尔菌HC6中分离的低温强启动子PcspD、半纤维素关键降解基因xynB和海藻糖合成基因otsA。In the present invention, the promoter-enhanced overexpression vector PBBR1-PD-AB includes the low-temperature strong promoter P cspD isolated from Raoultella HC6, the key hemicellulose degradation gene xynB and the trehalose synthesis gene otsA .
在本发明中,所述拉乌尔菌(Raoultella sp.)HC6于2020年09月07日保藏在中国微生物菌种保藏管理委员会普通微生物中心,保藏地址为北京市朝阳区北辰西路1号院3号,保藏编号为CGMCC No.20607。本发明所述拉乌尔菌HC6属于耐冷菌,可在低温条件下进行生长代谢,且该菌株本身含有半纤维素关键降解基因xynB、海藻糖合成基因otsA,故其自身可利用半纤维素作为底物生产海藻糖。In the present invention, the Raoultella sp . HC6 was deposited in the General Microbiology Center of China Microorganism Culture Collection Administration on September 7, 2020, with the deposit address of No. 3, Yard No. 1, Beichen West Road, Chaoyang District, Beijing, and the deposit number is CGMCC No. 20607. The Raoultella sp. HC6 described in the present invention is a psychrophilic bacterium that can grow and metabolize under low temperature conditions, and the strain itself contains the key hemicellulose degradation gene xynB and the trehalose synthesis gene otsA , so it can use hemicellulose as a substrate to produce trehalose.
在本发明中,所述海藻糖降解基因缺失菌株HC6-M通过以下方法获得:以拉乌尔菌HC6为初始菌株,敲除拉乌尔菌HC6基因组中海藻糖降解基因glvA、treC和TREH中的一种或多种。进一步优选,本发明所述海藻糖降解基因缺失菌株HC6-M为以拉乌尔菌HC6为初始菌株,敲除拉乌尔菌HC6基因组中海藻糖降解基因glvA、treC和TREH。In the present invention, the trehalose degradation gene-deficient strain HC6-M is obtained by the following method: using Raoultella HC6 as the initial strain, knocking out one or more of the trehalose degradation genes glvA , treC and TREH in the Raoultella HC6 genome. Further preferably, the trehalose degradation gene-deficient strain HC6-M of the present invention is using Raoultella HC6 as the initial strain, knocking out the trehalose degradation genes glvA , treC and TREH in the Raoultella HC6 genome.
本发明提供了一种拉乌尔菌HC6中低温强启动子PcspD的筛选方法,包括如下步骤:利用PCR扩增拉乌尔菌HC6的启动子序列,构建启动子荧光强度表达载体进行重组菌表达,检测重组菌OD600nm和荧光强度,筛选所述检测范围内荧光强度/OD600nm比值最大的启动子为低温强启动子PcspD。The invention provides a method for screening a low-temperature strong promoter P cspD in Raoultella HC6, comprising the following steps: amplifying a promoter sequence of Raoultella HC6 by PCR, constructing a promoter fluorescence intensity expression vector for recombinant bacterial expression, detecting OD 600nm and fluorescence intensity of the recombinant bacteria, and screening a promoter with the largest fluorescence intensity/OD 600nm ratio within the detection range as the low-temperature strong promoter P cspD .
在本发明中,构建所述启动子荧光强度表达载体使用的原始载体为pET-RFP载体。In the present invention, the original vector used to construct the promoter fluorescence intensity expression vector is the pET-RFP vector.
本发明还提供了所述工程菌株HC6-MT在低温条件下生产海藻糖中的应用。The present invention also provides the use of the engineered strain HC6-MT in producing trehalose under low temperature conditions.
在本发明中,所述工程菌株HC6-MT可利用玉米秸秆半纤维素发酵生产海藻糖。本发明中将工程菌菌株HC6-MT与玉米秸秆半纤维素混合,工程菌株HC6-MT以菌液的形式混合应用,工程菌株HC6-MT菌液的OD600nm优选为1.7-2.3,进一步的优选为1.8-2.2,更进一步的优选为1.9-2.1。本发明所述发酵优选为摇瓶发酵,所述摇瓶的转速优选为170-250rpm,进一步的优选为185-220rpm,更进一步的优选为200rpm;所述发酵的温度优选为18-23℃,进一步的优选为19-21℃,更进一步的优选为20℃;所述发酵的时间优选为40-52h,进一步的优选为45-50h,更进一步的优选为48h。In the present invention, the engineered strain HC6-MT can produce trehalose by fermenting corn straw hemicellulose. In the present invention, the engineered bacterial strain HC6-MT is mixed with corn straw hemicellulose, and the engineered strain HC6-MT is mixed and applied in the form of bacterial liquid. The OD 600nm of the bacterial liquid of the engineered strain HC6-MT is preferably 1.7-2.3, further preferably 1.8-2.2, and further preferably 1.9-2.1. The fermentation of the present invention is preferably shake flask fermentation, and the rotation speed of the shake flask is preferably 170-250rpm, further preferably 185-220rpm, and further preferably 200rpm; the fermentation temperature is preferably 18-23°C, further preferably 19-21°C, and further preferably 20°C; the fermentation time is preferably 40-52h, further preferably 45-50h, and further preferably 48h.
下面结合实施例对本发明提供的技术方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。The technical solutions provided by the present invention are described in detail below in conjunction with the embodiments, but they should not be construed as limiting the protection scope of the present invention.
实施例1获得海藻糖降解基因缺失菌株HC6-MExample 1 Obtaining Trehalose Degradation Gene Deficient Strain HC6-M
(一)拉乌尔菌菌株HC6基因组测序1. Genome sequencing of Raoultella strain HC6
对拉乌尔菌菌株HC6基因组测序,结果表明基因组(登录号为CP093276.1)全长6243766bp,其中,染色体总长度为5955116bp,GC含量为58.42%。菌株HC6具有3个质粒,质粒1大小为167204bp,GC含量为51.75%;质粒2大小为100650bp,GC含量为51.54%;质粒3大小为20796bp,GC含量为57.56%。将菌株HC6的16SrDNA基因序列的测序结果与NCBI ribosomalRNA sequence数据库中的数据进行对比,结果显示其与菌属Raoultella sp.的相似度达到100%,表明菌株HC6未发生种属变异,可以进行后续试验。The genome of Raoultella sp. strain HC6 was sequenced, and the results showed that the genome (accession number CP093276.1) was 6243766bp in length, of which the total length of the chromosome was 5955116bp and the GC content was 58.42%. Strain HC6 has three plasmids, plasmid 1 is 167204bp in size and 51.75% in GC content; plasmid 2 is 100650bp in size and 51.54% in GC content; plasmid 3 is 20796bp in size and 57.56% in GC content. The sequencing results of the 16SrDNA gene sequence of strain HC6 were compared with the data in the NCBI ribosomalRNA sequence database, and the results showed that the similarity with the genus Raoultella sp. reached 100%, indicating that strain HC6 did not undergo species variation and could be used for subsequent experiments.
(二)海藻糖降解基因切除2. Trehalose degradation gene excision
利用自杀质粒PKO3-km(常规购买得到),在35℃条件下与内切酶BamHI的作用,酶切30min,酶切反应体系为:PKO3-km 5.0μL、10×Ligation Buffer 2.0μL、Quick cutBamHI 1.0μL、Sterilized ddH2O Up to 20.0μL。The suicide plasmid PKO3-km (commonly purchased) was digested with endonuclease BamHI at 35°C for 30 min. The digestion reaction system was: PKO3-km 5.0 μL, 10×Ligation Buffer 2.0 μL, Quick cutBamHI 1.0 μL, Sterilized ddH 2 O Up to 20.0 μL.
以菌株HC6基因组DNA为模板,设计引物,PCR扩增反应(PCR扩增体系为:5×PrimeSTAR Buffer (Mg2+ Plus) 10μL、dNTP Mixture(2.5 mM each) 4μL、Primer F 10-15pmol、Primer R 10-15pmol、Template <200ng、模板DNA 2μL、灭菌水 up to 50μL。PCR扩增程序为:98℃变性10s,60℃退火 5s,72℃ 1min,循环30次。)得到待敲除目的基因(海藻糖降解基因glvA、treC和TREH)的上、下游同源臂序列(以待敲除目的基因序列上、下游各500bp序列作为同源臂),引物序列见表1。Using the genomic DNA of strain HC6 as a template, primers were designed and PCR amplification reaction was performed (PCR amplification system: 5× PrimeSTAR Buffer (Mg 2+ Plus) 10 μL, dNTP Mixture (2.5 mM each) 4 μL, Primer F 10-15 pmol, Primer R 10-15 pmol, Template <200 ng, template DNA 2 μL, sterile water up to 50 μL. The PCR amplification program was: 98°C denaturation for 10 s, 60°C annealing for 5 s, 72°C 1 min, and 30 cycles.) The upstream and downstream homology arm sequences of the target genes to be knocked out (trehalose degradation genes glvA , treC and TREH ) were obtained (500 bp sequences upstream and downstream of the target gene sequences to be knocked out were used as homology arms). The primer sequences are shown in Table 1.
表1待敲除目的基因的上、下游同源臂PCR引物序列Table 1 PCR primer sequences of upstream and downstream homology arms of target genes to be knocked out
扩增反应结束后,使用FastPure Gel DNA Extraction Mini Kit试剂盒(购自于南京诺唯赞生物科技有限公司)进行目的基因片段纯化回收。纯化后的产物直接进行连接反应。连接反应物为上述步骤所获得的待敲除海藻糖降解基因glvA、treC和TREH序列的上、下游同源臂,然后利用In-Fusion无缝克隆连接技术将上、下游同源臂片段连接到线性化的PKO3-km质粒上,获得质粒PKO3-knock,具体为PKO3-glvA、PKO3-treC、PKO3-TREH基因敲除重组质粒载体。In-Fusion无缝克隆连接体系见表2。After the amplification reaction, the target gene fragment was purified and recovered using the FastPure Gel DNA Extraction Mini Kit (purchased from Nanjing Novozyme Biotechnology Co., Ltd.). The purified product was directly subjected to a ligation reaction. The ligation reaction products were the upstream and downstream homology arms of the trehalose degradation genes glvA , treC and TREH sequences to be knocked out obtained in the above steps, and then the upstream and downstream homology arm fragments were connected to the linearized PKO3-km plasmid using the In-Fusion seamless cloning connection technology to obtain the plasmid PKO3-knock, specifically PKO3- glvA , PKO3- treC , PKO3- TREH gene knockout recombinant plasmid vector. The In-Fusion seamless cloning connection system is shown in Table 2.
表2 In-Fusion无缝克隆连接体系Table 2 In-Fusion seamless cloning connection system
(所述“Target gene fragment”表示相应基因的上、下游同源臂)(The "Target gene fragment" indicates the upstream and downstream homology arms of the corresponding gene)
进行电泳,验证质粒PKO3-knock是否构建成功。对上述获得的质粒PKO3-knock进行BamHI和SalI双酶切,得到1.0kb和5.6kb两条电泳条带,符合PKO3-glvA、PKO3-treC、PKO3-TREH条带大小,表明这些重组质粒构建正确(如图1)。Electrophoresis was performed to verify whether the plasmid PKO3-knock was successfully constructed. The plasmid PKO3-knock obtained above was double-digested with BamHI and SalI to obtain two electrophoresis bands of 1.0 kb and 5.6 kb, which were consistent with the band sizes of PKO3- glvA , PKO3- treC , and PKO3- TREH , indicating that these recombinant plasmids were constructed correctly (as shown in Figure 1).
以菌株HC6为宿主菌,将质粒PKO3-knock电转化进入宿主菌内,30℃下SOC培养基培养24h,此时,质粒PKO3-knock会与宿主基因组发生同源重组,从而敲除目的基因。然后再次PCR扩增特异性条带验证基因敲除是否成功,所用引物见表3。结果见图2。Using strain HC6 as the host, plasmid PKO3-knock was electroporated into the host bacteria and cultured in SOC medium at 30°C for 24 hours. At this time, plasmid PKO3-knock will undergo homologous recombination with the host genome, thereby knocking out the target gene. Then PCR amplification of specific bands was performed again to verify whether the gene knockout was successful. The primers used are shown in Table 3. The results are shown in Figure 2.
表3检验目的基因缺失PCR引物序列Table 3 PCR primer sequences for testing target gene deletion
(三)海藻糖基因缺陷菌株生长验证3. Verification of the growth of trehalose gene-deficient strains
基于上述操作依次构建得到7株海藻糖降解基因缺陷菌株(如图3),分别为HC6-g(▲glvA)、HC6-t(▲treC)、HC6-T(▲TREH)、HC6-Tg(▲TREH▲glvA)、HC6-tg(▲treC▲glvA)、HC6-Tt(▲TREH▲treC)、HC6-M(▲glvA▲treC▲TREH)。Based on the above operations, 7 strains with trehalose degradation gene defects were constructed in sequence (as shown in Figure 3), namely HC6-g (▲ glvA ), HC6-t (▲ treC ), HC6-T (▲ TREH ), HC6-Tg (▲ TREH ▲ glvA ), HC6-tg (▲ treC ▲ glvA ), HC6-Tt (▲ TREH ▲ treC ), and HC6-M (▲ glvA ▲ treC ▲ TREH ).
将构建的海藻糖降解基因缺陷菌株与HC6菌株(WT)分别接种到LB液体培养基中过夜活化后,调节菌液OD600nm=2.0±0.1,分别将菌液稀释至10-1-10-6倍,每个稀释倍数取2.0μL菌液,在半纤维素液体培养基摇瓶发酵(20℃,80h,200rpm)进行生长检测与海藻糖积累量测定。同样,每个稀释倍数取2.0μL菌液,在以海藻糖为唯一碳源的无机盐固体培养基上,20℃恒温培养箱内培养,观察菌落生长状态。结果如图4。The constructed trehalose degradation gene defective strain and HC6 strain (WT) were inoculated into LB liquid medium for overnight activation, and then the bacterial solution OD 600nm = 2.0 ± 0.1 was adjusted, and the bacterial solution was diluted to 10 -1 -10 -6 times, and 2.0 μL of bacterial solution was taken for each dilution multiple, and the growth detection and trehalose accumulation were determined in a shake flask fermentation in a hemicellulose liquid medium (20°C, 80h, 200rpm). Similarly, 2.0 μL of bacterial solution was taken for each dilution multiple, and cultured in a 20°C constant temperature incubator on an inorganic salt solid medium with trehalose as the only carbon source, and the growth state of the colony was observed. The results are shown in Figure 4.
实施例2获得低温启动子增强过表达载体PBBR1-PD-ABExample 2 Obtaining the low temperature promoter enhanced overexpression vector PBBR1-PD-AB
(一)冷休克蛋白低温强启动子筛选及功能区预测1. Screening of cold shock protein promoters with strong low temperature and prediction of functional regions
菌株HC6中共有6个csp基因,为筛选低温高表达启动子,从菌株HC6全基因组中获取6个csp基因的启动子序列,使用原核启动子在线分析预测网站BPROM(http://linux1.softberry.com/)预测启动子-10区、-35区及间隔区距离。There are 6 csp genes in strain HC6. To screen promoters with high expression at low temperature, the promoter sequences of 6 csp genes were obtained from the whole genome of strain HC6. The prokaryotic promoter online analysis and prediction website BPROM (http://linux1.softberry.com/) was used to predict the distances of promoter -10 region, -35 region and spacer region.
所述6个冷休克蛋白基因序列及其启动子如下:The 6 cold shock protein gene sequences and their promoters are as follows:
冷休克蛋白基因HC6_00172 Cold shock protein CspA,序列如SEQ ID NO.21所示,具体为:ATGTCCGGTAAAATGACTGGTATCGTAAAATGGTTCAACGCTGATAAAGGTTTCGGCTTCATTACTCCTGATGACGGTTCTAAAGATGTATTCGTACACTTCTCCGCTATCATGAACGATGGCTACAAATCTCTGGATGAAGGTCAGAAAGTTTCCTTCACCATCGAAAGCGGCGCTAAAGGCCCGGCAGCTGGCAACGTTACCAGCCTGTAA;Cold shock protein gene HC6_00172 Cold shock protein CspA , the sequence is shown in SEQ ID NO.21, specifically: ATGTCCGGTAAAATGACTGGTATCGTAAAATGGTTCAACGCTGATAAAGGTTTCGGCTTCATTACTCCTGATGACGGTTCTAAAGATGTATTCGTACACTTCTCCGCTATCATGAACGATGGCTACAAATCTCTGGATGAAGGTCAGAAAGTTTCCTTCACCATCGAAAGCGGCGCTAAAGGCCCGGCAGCTGGCAACGTTACCAGCCTGTAA;
冷休克蛋白基因的启动子HC6_00172 Cold shock protein CspA promoter,序列如SEQ ID NO.22所示,具体为:AGTTCTATAATGTTATTGGACACTGATTACGGTCCTGATTAGGGACCGTTTTAATTTCTATGAAAAAAACGTTTGCTATCGCACCTCAAAAATGAGTTAATGCTCGCAGGTTTGATGTACAGACCACAGAGCATTAGTATAGAGTAGTCCTTGAGCGGTTATCCTAGATACCCCGGTAGTGAACTTTCCCTTTATAGCTTCAAATCTGTAGTCCAGACCGTATCGCCGAAAGGTTCATTTATTATTTAAAGGTATTTCGCT;The promoter of the cold shock protein gene HC6_00172 Cold shock protein CspA promoter, the sequence of which is shown in SEQ ID NO.22, is specifically: AGTTCTATAATGTTATTGGACACTGATTACGGTCCTGATTAGGGACCGTTTTAATTTCTATGAAAAAAACGTTTGCTATCGCACCTCAAAAATGAGTTAATGCTCGCAGGTTTGATGTACAGACCACAGAGCATTAGTATAGAGTAGTCCTTGAGCGGTTATCCTAGATACCCCGGTAGTGAACTTTCCCTTTATAGCTTCAAATCTGTAGTCCAGACCGTATCGCCGAAAGGTTCATTTATTATTTAAAGGTATTTCGCT;
冷休克蛋白基因HC6_02655 Cold shock-like protein CspB,序列如SEQ IDNO.23所示,具体为:ATGTCTGGTAAGATGATTGGTTTAGTAAAATGGTTTAATGAAGGTAAAGGTTTCGGCTTTATTTCTCCAGTAGACGGCAGTAAAGATGTTTTCGTGCATTTTTCTGCGCTGCAGGGCGATGGCTTTAAAACTTTATTTGAAGGGCAGAAGGTCGAATTCACTATCGAGAGCGGCGCCAAAGGCCCTGCTGCCGGTAATGTCGTTCTGCGCGACTAA;Cold shock protein gene HC6_02655 Cold shock-like protein CspB , the sequence is shown in SEQ ID NO.23, specifically: ATGTCTGGTAAGATGATTGGTTTAGTAAAATGGTTTAATGAAGGTAAAGGTTTCGGCTTTATTTCTCCAGTAGACGGCAGTAAAGATGTTTTCGTGCATTTTTCTGCGCTGCAGGGCGATGGCTTTAAAACTTTATTTGAAGGGCAGAAGGTCGAATTCACTATCGAGAGCGGCGCCAAAGGCCCTGCTGCCGGTAATGTCGTTCTGCGCGACTAA;
冷休克蛋白基因的启动子HC6_02655 Cold shock-like protein CspBpromoter,序列如SEQ ID NO.24所示,具体为:TTATTCACGGCTTCTCTGTGGGGGCAGAAAATAATGCTTGCTATCAATGGTTATCTATGTGATCAATAGCAGGTCGGTTTGGTACACAGAACCAATAAAGCGGTTTAGTAAAGCAGTCCTCATCTCAAGCGTTATTCCTAAATAATCCTTTTTTCGAGCCTCCTTATCGTTATTAATTAATTTCTGTGATGCGAACTTTTTCGCCGCAAGGCTTTGAACATTGGGATAATACTT;The promoter of the cold shock protein gene HC6_02655 Cold shock-like protein CspB promoter, the sequence of which is shown in SEQ ID NO.24, specifically: TTATTCACGGCTTCTCTGTGGGGGCAGAAAATAATGCTTGCTATCAATGGTTATCTATGTGATCAATAGCAGGTCGGTTTGGTACACAGAACCAATAAAGCGGTTTAGTAAAGCAGTCCTCATCTCAAGCGTTATTCCTAAATAATCCTTTTTTCGAGCCTCCTTATCGTTATTAATTAATTTCTGTGATGCGAACTTTTTCGCCGCAAGGCTTTGAACATTGGGATAATACTT;
冷休克蛋白基因HC6_02212 Cold shock-like protein CspC,序列如SEQ IDNO.25所示,具体为:ATGGCAAAGATTAAAGGTCAAGTTAAGTGGTTCAACGAGTCTAAAGGTTTTGGCTTTATTACTCCGGCTGATGGCAGCAAAGACGTGTTCGTACACTTCTCCGCTATCCAGGGTAATGGCTTCAAAACTCTGGCTGAAGGCCAGAACGTTGAGTTCGAAATTCAGGACGGCCAGAAAGGTCCGGCAGCAGTTAACGTAACTGCTATCTGA;Cold shock protein gene HC6_02212 Cold shock-like protein CspC , the sequence is shown in SEQ ID NO.25, specifically: ATGGCAAAGATTAAAGGTCAAGTTAAGTGGTTCAACGAGTCTAAAGGTTTTGGCTTTATTACTCCGGCTGATGGCAGCAAAGACGTGTTCGTACACTTCTCCGCTATCCAGGGTAATGGCTTCAAAACTCTGGCTGAAGGCCAGAACGTTGAGTTCGAAATTCAGGACGGCCAGAAAGGTCCGGCAGCAGTTAACGTAACTGCTATCTGA;
冷休克蛋白基因的启动子HC6_02212 Cold shock-like protein CspCpromoter,序列如SEQ ID NO.26所示,具体为:CTGATAAACGGGTGTACACCGCGCTGGTGTACACCTGCCTCATCGCCTTACGCAATAACTTATTCTTATCCTTCCGCGCTTATTGCCACATTTCTTATGTCACTTAATGTGTTAGCGATCGCAATTTTATCCAATAAGCTATGGATTTTTGAGCTATTCAAATAAAATAATAACATCGTGATTTAATTGCATGATGAAAGTGTGTGTCATCGAAATTTCATTATTAAGATGCAATATAAACACTATTTGTCGCGTGGCTAACAGCATTTAATTAACCCTGCATATTCTCGGCCTAAGCCAATTTTCAACTATCAATATGCGCGTTTATGCGCATCGTTATGCAGCTATGCGCACGTAACCCCTCAAAATTGGCAGGGTGCATGCATGGCGGGCTGGACGGAGCGAAGTTGTTGAGCTGTGGTGAAAAAGTTGCAGCTATCATCCATGCATAATCGGATGTTTGCCGCGCGCCCCGGGATTAACAGCGGGCGAGAAAAGGCGCATAAACGTGCAGTTGGTCAAATGATTCCCTTATATTTTGTGCGAAGGATCGAGAGCCGTTTAAAAATGGCTTGCCATTATTAACGTTGTATGTGATAACACCTTTCGGGTTAAACGAGGTACAGTTCTGTTTATGTGTGGCATTTTCAGTAAAGAAGTCCTGAGTAAACACGTTGTCGTTGAATACCGCTTCTCTGCCGAACCTTATATTAGTGCCTCATGCAGTAGTGTGTCAGTTTTATCTATGTAAGCGCCTGCGGGCGAAGAAAACAGTCTAAGGAATTTTGCAA;The promoter of the cold shock protein gene HC6_02212 Cold shock-like protein CspC promoter, the sequence of which is shown in SEQ ID NO.26, is specifically:
冷休克蛋白基因HC6_03855 Cold shock-like protein CspD,序列如SEQ IDNO.27所示,具体为:ATGGAAATGGGTACTGTTAAGTGGTTCAACAATGCCAAAGGGTTTGGTTTTATTTGCCCTGAGGGCGGAGGCGAAGACATTTTCGCCCATTACTCCACCATCCAGATGGATGGTTACAGAACGCTAAAAGCCGGACAAGCCGTTCGGTTTGATGTTCACCAGGGACCGAAAGGTAATCACGCCAGCGTGATTGTTCCTGTAGAAGCGGAAGCGGCTGCATAA;Cold shock protein gene HC6_03855 Cold shock-like protein CspD , the sequence is shown in SEQ ID NO.27, specifically: ATGGAAATGGGTACTGTTAAGTGGTTCAACAATGCCAAAGGGTTTGGTTTTATTTGCCCTGAGGGCGGAGGCGAAGACATTTTCGCCCATTACTCCACCATCCAGATGGATGGTTACAGAACGCTAAAAGCCGGACAAGCCGTTCGGTTTGATGTTCACCAGGGACCGAAAGGTAATCACGCCAGCGTGATTGTTCCTGTAGAAGCGGAAGCGGCTGCATAA;
冷休克蛋白基因的启动子HC6_03855 Cold shock-like protein CspDpromoter,序列如SEQ ID NO.28所示,具体为:CGTCAGTATTCATCATCGGTTGCTGTTGCCAACAGGCGGTGGCCTGTCGATGACCAAAAGTTATGCCCATCACAAATCTACAATAGATCATAGATAACTATCATCTATTACTTCCATCCGCGACGTCTGTCACATTCCCCGGCAATAGCGTTAACTGCTTCAAATTTTGACGCATTTTTCGCCTTCCCCTACCGTCAATCGCTTGACGCCTTTTCGTATTTCTCTAAATTGTACTGGCGAGAGTTGGCGAGCATTTGAACAACTCGTCACTCCACTACCGGTTCATTCCATCTTACTTATAAAGAATTACGAAGGATGTCGAAGT;The promoter of the cold shock protein gene HC6_03855 Cold shock-like protein CspD promoter, the sequence of which is shown in SEQ ID NO.28, specifically: CGTCAGTATTCATCATCGGTTGCTGTTGCCAACAGGCGGTGGCCTGTCGATGACCAAAAGTTATGCCCATCACAAATCTACAATAGATCATAGATAACTATCATCTATTACTTCCATCCGCGACGTCTGTCACATTCCCCGGCAATAGCGTTAACTGCTTCAAATTTTGACGCATTTTTCGCCTTCCCCTACCGTCAATCGCTTGACGCCTTTTCGTATTTCTCTAAATTGTACTGGCGAGAGTTGGCGAGCATTTGAACAACTCGTCACTCCACTACCGGTTCATTCCATCTTACTTATAAAGAATTACGAAGGATGTCGAAGT;
冷休克蛋白基因HC6_04170 Cold shock-like protein CspE,序列如SEQ IDNO.29所示,具体为:ATGTCTAAGATTAAAGGTAACGTTAAGTGGTTTAATGAGTCCAAAGGATTCGGTTTCATTACTCCGGAAGATGGCAGCAAAGATGTATTCGTACATTTCTCTGCAATCCAGTCCAACGGTTTCAAAACTCTGGCTGAAGGTCAGCGTGTAGAGTTCGAAATCACTAACGGTGCCAAAGGCCCTTCTGCTGCAAACGTAAACGCTATCTAA;Cold shock protein gene HC6_04170 Cold shock-like protein CspE , the sequence is shown in SEQ ID NO.29, specifically: ATGTCTAAGATTAAAGGTAACGTTAAGTGGTTTAATGAGTCCAAAGGATTCGGTTTCATTACTCCGGAAGATGGCAGCAAAGATGTATTCGTACATTTCTCTGCAATCCAGTCCAACGGTTTCAAAACTCTGGCTGAAGGTCAGCGTGTAGAGTTCGAAATCACTAACGGTGCCAAAGGCCCTTCTGCTGCAAACGTAAACGCTATCTAA;
冷休克蛋白基因的启动子HC6_04170 Cold shock-like protein CspEpromoter,序列如SEQ ID NO.30所示,具体为:TCCGCACTAGCTTAGTGATAAAAGAGCTGAGCATTATGTTATGTGGAAAAACAATAACTAAAGCGCAACCACTAAAAAAGATAGCGACTTTTGTCACTTTTTAGCAAAGTTCGACTGGACAAAAGGCACCACAATTGATGTACTGGATCGCGACACAGTATCAGTGTCTTTTTTTCATATAAAGGTAATTTTG;The promoter of the cold shock protein gene HC6_04170 Cold shock-like protein CspE promoter, the sequence of which is shown in SEQ ID NO.30, is specifically: TCCGCACTAGCTTAGTGATAAAAGAGCTGAGCATTATGTTATGTGGAAAAACAATAACTAAAGCGCAACCACTAAAAAAGATAGCGACTTTTGTCACTTTTTAGCAAAGTTCGACTGGACAAAAGGCACCACAATTGATGTACTGGATCGCGACACAGTATCAGTGTCTTTTTTTCATATAAAGGTAATTTTG;
冷休克蛋白基因HC6_02543 Cold shock-like protein CspG,序列如SEQ IDNO.31所示,具体为:TTGTTCCAAAAAATGACAGGCATTGTCAAAAGCTTTGATAATAAAACCGGCAGAGGCCTTATCGTCCCTTCCGACGGTCGTAAAGACGTTCAGGTTCATATTTCCGCATTATCCCCCAACGAGTCCACGCCAATGACGCCCGGTATTCGCGTTGAGTTTCGTCGGGTTAACGGCCTGCGCGGGCCAACCGCGGCAAACGTCTATACCTGCTAG;Cold shock protein gene HC6_02543 Cold shock-like protein CspG , the sequence is shown in SEQ ID NO.31, specifically: TTGTTCCAAAAAATGACAGGCATTGTCAAAAGCTTTGATAATAAAACCGGCAGAGGCCTTATCGTCCCTTCCGACGGTCGTAAAGACGTTCAGGTTCATATTTCCGCATTATCCCCCAACGAGTCCACGCCAATGACGCCCGGTATTCGCGTTGAGTTTCGTCGGGTTAACGGCCTGCGCGGGCCAACCGCGGCAAACGTCTATACCTGCTAG;
冷休克蛋白基因的启动子HC6_02543 Cold shock-like protein CspGpromoter,序列如SEQ ID NO.32所示,具体为CCGTCGCGGGGCGGAGGACGCGGCTGCCGCATCGTCCTCCCGCCCCGCCGGGATTGCGTAAATAGCCTTGACCAATCAGACGCTTATTTGCCCGCGGCGAAATCATTTCGAGCTATTGATAGCAGAATGATGTATGGTTGCCGGCCATTACATCAGGAAAAAATCATATGTCAGATCGAAAAGACTCGAAAACTCGCCGTAATTACCTTGTAAAATGCTCCTGCCCTAACTGCTCCCAGGAATCAGAACATAGCTTTAGCCGAGTACAAAAAGGCGCCCAGCTCATCTGCCCTTACTGCCACAAACTCTTCCAGTCATCACCCAGAAACGCCGCCTAATCCCTAAATGCCCGACGCTGATTGTGCCTTGCCCCGTTATTTAGATAATTCTTATTATTGGGTCGAATGAGACAATCGGTTTTATTCCGTTCAGGCAAATAGAAAACCCGCACTCCGGCGGGTTTTAAATAGTTCAATATTGTATTTCTTTGCATAACCCAGGTTATCGCATTCCTGTTTTTACCAGGAGTTTAT。The promoter of the cold shock protein gene HC6_02543 Cold shock-like protein CspG promoter, the sequence of which is shown in SEQ ID NO.32, is specifically:
启动子序列预测结果如表4所示。The promoter sequence prediction results are shown in Table 4.
表4启动子序列预测结果Table 4 Promoter sequence prediction results
(二)启动子荧光强度表达载体pET-promoter-RFP构建(II) Construction of promoter fluorescence intensity expression vector pET-promoter-RFP
以菌株HC6基因组DNA为模板,PCR扩增其启动子DNA序列,每条启动子序列大小在200-500bp之间。经琼脂糖凝胶电泳,扩增条带胶回收后送往生工生物工程(上海)股份有限公司进行测序,测序结果与基因组序列一致(如图5)。Using the genomic DNA of strain HC6 as a template, PCR was used to amplify its promoter DNA sequence, and the size of each promoter sequence was between 200-500 bp. After agarose gel electrophoresis, the amplified bands were recovered and sent to Shanghai Biotech Co., Ltd. for sequencing. The sequencing results were consistent with the genome sequence (as shown in Figure 5).
将扩增得到的启动子DNA序列连接至pUCm-T载体上,成功连接的载体命名为pUCmT-promoter,并转入DH5ɑ细菌中稳定克隆。提取pUCmT-promoter载体与pET-RFP载体分别用Quick cut BamHI、Quick cut KpnI酶进行双酶切,将酶切后的pET-RFP载体与菌株HC6启动子连接,成功连接的载体命名为pET-promoter-RFP,具体为pET-PcspA-RFP、pET-PcspB-RFP、pET-PcspC-RFP、pET-PcspD-RFP、pET-PcspE-RFP、pET-PcspG-RFP。The amplified promoter DNA sequence was connected to the pUCm-T vector, and the successfully connected vector was named pUCmT-promoter, and was transferred into DH5ɑ bacteria for stable cloning. The pUCmT-promoter vector and the pET-RFP vector were extracted and double-digested with Quick cut BamHI and Quick cut KpnI enzymes, respectively, and the digested pET-RFP vector was connected to the promoter of strain HC6. The successfully connected vector was named pET-promoter-RFP, specifically pET-P cspA -RFP, pET-P cspB -RFP, pET-P cspC -RFP, pET-P cspD -RFP, pET-P cspE -RFP, and pET-P cspG -RFP.
对构建得到的载体进行电泳,验证是否构建成功。将pET-promoter-RFP载体(约5000bp)和promoter-RFP基因重组片段(约1000bp)条带分别与电泳结果所示长度一致,证明载体构建成功(如图6)。The constructed vector was subjected to electrophoresis to verify whether the construction was successful. The pET-promoter-RFP vector (about 5000 bp) and promoter-RFP gene recombinant fragment (about 1000 bp) bands were consistent with the lengths shown in the electrophoresis results, proving that the vector was successfully constructed (as shown in Figure 6).
(三)确定低温强启动子3. Identification of low temperature strong promoters
对传统的T7强启动子采用上述启动子荧光强度表达载体构建方法,构建pET-PT7-RFP,然后分别将pET-PcspA-RFP、pET-PcspB-RFP、pET-PcspC-RFP、pET-PcspD-RFP、pET-PcspE-RFP、pET-PcspG-RFP以及pET-PT7-RFP转入E.coli BL31(DE3)中表达,通过检测重组菌的生物量和荧光强度,计算得到RFP基因表达的相对荧光强度(荧光强度/OD600nm),并用以此来表征启动子强度。The above-mentioned promoter fluorescence intensity expression vector construction method was used for the traditional T7 strong promoter to construct pET-PT7-RFP, and then pET-P cspA -RFP, pET-P cspB -RFP, pET-P cspC -RFP, pET-P cspD -RFP, pET-P cspE -RFP, pET-P cspG -RFP and pET-PT7-RFP were respectively transferred into E. coli BL31 (DE3) for expression. The relative fluorescence intensity (fluorescence intensity/OD 600nm ) of RFP gene expression was calculated by detecting the biomass and fluorescence intensity of the recombinant bacteria, and this was used to characterize the promoter strength.
在48孔板内经过37℃、16h培养后,启动子的强度排序为PcspC<PcspB<PcspG<PT7<PcspA<PcspE<PcspD,8h冷诱导后,除PcspC和PcspB组未检测到红色荧光外,启动子强度顺序依次为PcspG<PT7<PcspA<PcspE<PcspD。同时,各菌株LB液体培养基培养过程中可以观察到因红色mCherry蛋白积累而表现出的培养基颜色变化差异(如图7)。综合以上结果,确定使用冷休克蛋白基因cspD的启动子PcspD为低温强启动子,用于构建启动子增强过表达载体。After culturing at 37°C for 16 hours in a 48-well plate, the strength of the promoters was ranked as P cspC <P cspB <P cspG <PT7 <P cspA <P cspE <P cspD . After 8 hours of cold induction, except for the P cspC and P cspB groups where no red fluorescence was detected, the order of promoter strength was P cspG <PT7 <P cspA <P cspE <P cspD . At the same time, during the LB liquid culture medium culture of each strain, differences in the color change of the culture medium due to the accumulation of red mCherry protein can be observed (as shown in Figure 7). Based on the above results, the promoter P cspD of the cold shock protein gene cspD was determined to be a low-temperature strong promoter for the construction of a promoter-enhanced overexpression vector.
(四)启动子增强过表达载体PBBR1-PD-AB的构建(IV) Construction of promoter-enhanced overexpression vector PBBR1-PD-AB
通过PCR扩增半纤维素关键降解基因xynB序列、海藻糖合成基因otsA序列和cspD启动子序列,然后使用In-Fusion®Snap Assembly Master Mix 无缝连接试剂盒(购于宝生物工程(大连)有限公司)、通用限制性内切酶BmHI、KpnI与线性化后的通用表达质粒PBBR1-MCS2相连接,完成PBBR1-PD-AB的构建。The key hemicellulose degradation gene xynB sequence, trehalose synthesis gene otsA sequence and cspD promoter sequence were amplified by PCR, and then connected with the linearized universal expression plasmid PBBR1-MCS2 using the In-Fusion ® Snap Assembly Master Mix seamless connection kit (purchased from Bao Bioengineering (Dalian) Co., Ltd.), universal restriction endonucleases BmHI and KpnI to complete the construction of PBBR1-PD-AB.
表5 xynB、otsA及cspD序列PCR引物序列Table 5 PCR primer sequences for xynB, otsA and cspD sequences
为验证重组载体是否构建成功,以PBBR1-PD-AB载体为模板,扩增xynB基因条带(1321bp)、PcspD+xynB融合条带(1624bp)、otsA基因条带(896bp)、PcspD+otsA融合条带(1199bp)以及载体特异性条带PBBR1(346bp)。扩增条带电泳胶图8所示,条带大小符合,证明PET-PD-xynB与PET-PD-otsA载体构建成功。To verify whether the recombinant vector was successfully constructed, the PBBR1-PD-AB vector was used as a template to amplify the xynB gene band (1321bp), P cspD + xynB fusion band (1624bp), otsA gene band (896bp), P cspD + otsA fusion band (1199bp) and vector-specific band PBBR1 (346bp). The amplified band electrophoresis gel is shown in Figure 8, and the band sizes are consistent, proving that the PET-PD- xynB and PET-PD- otsA vectors were successfully constructed.
实施例3Example 3
(一)工程菌株HC6-MT的构建(I) Construction of the engineered strain HC6-MT
于-80℃冰箱内取出制备好的海藻糖基因缺陷菌株HC6-M感受态细胞,置于冰上解冻。取10μL提取的过表达载体(PBBR1-PD-AB),加入感受态细胞内,继续冰上放置30min后。将加入过表达载体(PBBR1-PD-AB)的混合液加入到预冷的电转杯中,设置电转化条件为:1500KV,800ꭥ。电转后的菌液加入1mL的SOC培养液中复苏培养1h后,取菌液涂布于工作浓度50ng/mL的Kana抗生素LB固体培养基平板,20℃过夜培养,挑取菌落,使用过表达载体(PBBR1-PD-AB)验证引物进行PCR验证。将验证成功的菌株命名为HC6-MT。Take out the prepared trehalose gene-deficient strain HC6-M competent cells from the -80℃ refrigerator and thaw on ice. Take 10μL of the extracted overexpression vector (PBBR1-PD-AB), add it to the competent cells, and continue to place it on ice for 30 minutes. Add the mixture with the overexpression vector (PBBR1-PD-AB) to the pre-cooled electroporation cup, and set the electroporation conditions to: 1500KV, 800ꭥ. After the electroporated bacterial solution is added to 1mL of SOC culture medium for recovery and culture for 1h, the bacterial solution is spread on a Kana antibiotic LB solid culture medium plate with a working concentration of 50ng/mL, cultured overnight at 20℃, pick the colony, and use the overexpression vector (PBBR1-PD-AB) verification primer for PCR verification. The successfully verified strain was named HC6-MT.
(二)玉米秸秆半纤维素的提取2. Extraction of hemicellulose from corn straw
将玉米秸秆(来源于东北农业大学向阳农场)烘干,剪成2.0-3.0cm小段,使用研磨机将其研磨成粉,得到的干燥秸秆粉末过80目筛子,然后与10%的NaOH按照1:10的比例混合,70℃浸泡2h后,纱布过滤混合物(秸秆沉淀),取滤液。用浓盐酸将滤液的pH调至7.0±0.2,与活性炭按照10:1(v/w)比例混合,60℃水浴15min后,10000rpm离心10min去除活性炭,得到半纤维素溶液。然后向半纤维素溶液中加入50%半纤维素溶液体积的无水乙醇得到半纤维素沉淀,固液分离后,收集滤渣,于50℃烘干获得半纤维素。Corn stalks (from Xiangyang Farm, Northeast Agricultural University) were dried, cut into 2.0-3.0 cm small segments, and ground into powder using a grinder. The obtained dry stalk powder was passed through an 80-mesh sieve, and then mixed with 10% NaOH at a ratio of 1:10. After soaking at 70 ° C for 2 hours, the mixture (straw precipitate) was filtered through gauze and the filtrate was taken. The pH of the filtrate was adjusted to 7.0 ± 0.2 with concentrated hydrochloric acid, mixed with activated carbon at a ratio of 10:1 (v/w), and after a 60 ° C water bath for 15 minutes, the activated carbon was removed by centrifugation at 10000 rpm for 10 minutes to obtain a hemicellulose solution. Then, 50% of the volume of the hemicellulose solution was added to anhydrous ethanol to obtain a hemicellulose precipitate. After solid-liquid separation, the filter residue was collected and dried at 50 ° C to obtain hemicellulose.
对获得的半纤维素与木聚糖标准品进行傅里叶红外光谱检测结果如图9所示,结果表明玉米秸秆提取物与木聚糖标准品展示的吸收峰位点基本一致,表明从玉米秸秆中提取的半纤维素主要成分为木聚糖。The results of Fourier transform infrared spectroscopy detection of the obtained hemicellulose and xylan standards are shown in Figure 9. The results show that the absorption peak positions displayed by the corn straw extract and the xylan standard are basically consistent, indicating that the main component of the hemicellulose extracted from corn straw is xylan.
以玉米秸秆半纤维素为底物,接种5%(v/v)拉乌尔菌HC6,20℃培养发酵80h,每6h取样,观察拉乌尔菌HC6的生长曲线并检测木糖的产量。结果如图9,可以看出,表明菌株HC6能够以玉米秸秆提取的半纤维素为唯一碳源进行生长,并将木聚糖(半纤维素主要成分)降解产生木糖。Corn straw hemicellulose was used as the substrate, and 5% (v/v) Raoultella HC6 was inoculated. The culture was fermented at 20°C for 80 hours, and samples were taken every 6 hours to observe the growth curve of Raoultella HC6 and detect the production of xylose. The results are shown in Figure 9, which shows that strain HC6 can grow with hemicellulose extracted from corn straw as the only carbon source, and degrade xylan (the main component of hemicellulose) to produce xylose.
实施例4Example 4
(一)玉米秸秆半纤维素液体培养基的配制1. Preparation of corn straw hemicellulose liquid culture medium
按照如下配方制备玉米秸秆半纤维素液体培养基:上述获得的半纤维素10g/L、NH4NO3 2g/L、K2HPO4 2g/L、MgSO4 0.2g/L。The corn stover hemicellulose liquid culture medium was prepared according to the following formula: 10 g/L of the above-obtained hemicellulose, 2 g/L of NH 4 NO 3 , 2 g/L of K 2 HPO 4 , and 0.2 g/L of MgSO 4 .
(二)(two)
以单独使用拉乌尔菌HC6生产海藻糖为对照,检测拉乌尔菌HC6和实施例3制备的工程菌株HC6-MT生产海藻糖的能力。The ability of Raoultella HC6 and the engineered strain HC6-MT prepared in Example 3 to produce trehalose was tested, with Raoultella HC6 producing trehalose alone as a control.
对照组:将菌株HC6菌液(OD600nm=2.0±0.1)以5%接种量(v/v)接种到上述玉米秸秆半纤维素液体培养基中,在20℃、200rpm条件下摇瓶发酵80h,每6h取样,检测菌株HC6对底物半纤维素的利用情况以及海藻糖产量。Control group: The bacterial liquid of strain HC6 (OD 600nm =2.0±0.1) was inoculated into the above-mentioned corn straw hemicellulose liquid culture medium at a 5% inoculum (v/v), and the culture was shaken at 20°C and 200 rpm for 80 h. Samples were taken every 6 h to detect the utilization of substrate hemicellulose by strain HC6 and the trehalose production.
实验组:将工程菌HC6-MT菌液(OD600nm=2.0±0.1)以5%接种量(v/v)接种到上述玉米秸秆半纤维素液体培养基中,在20℃、200rpm条件下摇瓶发酵80h,每6h取样,检测菌株HC6-MT对底物半纤维素的利用情况以及海藻糖产量。Experimental group: The engineered bacteria HC6-MT culture liquid (OD 600nm =2.0±0.1) was inoculated into the above-mentioned corn straw hemicellulose liquid culture medium at a 5% inoculum (v/v), and the culture was shaken in a flask at 20°C and 200 rpm for 80 h. Samples were taken every 6 h to detect the utilization of substrate hemicellulose by the strain HC6-MT and the trehalose production.
海藻糖含量检测方法如下:配制不同浓度的海藻糖标准液(0.2、0.1、0.075、0.05、0.025、0.0125mg/mL)后,分别取标准液2.0mL加入5.0mL的0.2%蒽酮-硫酸溶液,沸水浴8min,冷却后测定620nm处吸光值,以OD620nm对海藻糖含量绘制标准曲线。空白组为2.0mL去离子水加入5.0mL的0.2%蒽酮-硫酸溶液,沸水浴8min后进行相同的操作。The trehalose content detection method is as follows: After preparing different concentrations of trehalose standard solutions (0.2, 0.1, 0.075, 0.05, 0.025, 0.0125 mg/mL), take 2.0 mL of the standard solution and add 5.0 mL of 0.2% anthrone-sulfuric acid solution, boil in water bath for 8 minutes, measure the absorbance at 620 nm after cooling, and draw a standard curve for trehalose content at OD 620 nm . The blank group is 2.0 mL of deionized water added to 5.0 mL of 0.2% anthrone-sulfuric acid solution, and the same operation is performed after boiling in water bath for 8 minutes.
利用木聚糖前期会有一定量的木糖积累,因木聚糖的解聚速率(即木糖的生成速率)大于木糖的降解速率,造成解聚初期木糖的积累,之后工程菌株HC6-MT进一步对木糖加以利用,将木糖转化为海藻糖。In the early stage of xylan utilization, a certain amount of xylose will accumulate. Since the depolymerization rate of xylan (i.e., the generation rate of xylose) is greater than the degradation rate of xylose, xylose will accumulate in the early stage of depolymerization. After that, the engineered strain HC6-MT will further utilize xylose and convert it into trehalose.
野生菌株HC6、工程菌株HC6-MT海藻糖及木糖积累量检测结果如图10所示,由图可知工程菌株HC6-MT海藻糖最大积累量达1.96g/L,较野生菌株HC6海藻糖积累量提升54倍;工程菌株HC6-MT的最大木糖积累量为3.61g/L,较野生菌株增强2.3倍,成功增强菌株HC6的半纤维素利用能力以及海藻糖积累能力。The test results of trehalose and xylose accumulation of wild strain HC6 and engineered strain HC6-MT are shown in Figure 10. It can be seen from the figure that the maximum trehalose accumulation of the engineered strain HC6-MT is 1.96 g/L, which is 54 times higher than that of the wild strain HC6; the maximum xylose accumulation of the engineered strain HC6-MT is 3.61 g/L, which is 2.3 times higher than that of the wild strain, successfully enhancing the hemicellulose utilization ability and trehalose accumulation ability of the strain HC6.
实施例5菌株HC6-MT发酵条件的优化Example 5 Optimization of fermentation conditions of strain HC6-MT
用Minitab2022软件设计四因素三水平试验。基于单因素分析的结果,以显著性p<0.05为选择标准,以接种发酵培养基后10℃冷激时间(A)、培养基底物(玉米半纤维素)浓度(B)、培养基pH(C)和培养基中磷酸盐(D)为自变量,以海藻糖产量为响应值,探究构建的重组菌株HC6-MT最优发酵条件。影响菌株HC6-MT发酵产海藻糖的4种响应面因素及变量水平如表6。Minitab2022 software was used to design a four-factor three-level experiment. Based on the results of univariate analysis, with significance p <0.05 as the selection criterion, the 10°C cold shock time after inoculation of the fermentation medium (A), the medium substrate (corn hemicellulose) concentration (B), the medium pH (C) and the phosphate in the medium (D) were used as independent variables, and the trehalose yield was used as the response value to explore the optimal fermentation conditions of the constructed recombinant strain HC6-MT. The four response surface factors and variable levels that affect the fermentation of trehalose by the strain HC6-MT are shown in Table 6.
表6菌株HC6-MT发酵优化响应面因素及变量水平Table 6 Response surface factors and variable levels for fermentation optimization of strain HC6-MT
由图11-图16可得,将工程菌株HC6-MT接种至LB液体培养基中20℃活化培养16h后,以无菌水调节OD600nm=2.0±0.1,以5%的接种比例接种于玉米秸秆半纤维素液体培养基中,经优化后,在最佳海藻糖生产条件下,于48h达到海藻糖最高产量2.28g/L。As shown in Figures 11 to 16, the engineered strain HC6-MT was inoculated into LB liquid culture medium for activation culture at 20°C for 16 hours, then the OD 600nm was adjusted to 2.0±0.1 with sterile water, and inoculated into corn straw hemicellulose liquid culture medium at an inoculation ratio of 5%. After optimization, under the optimal trehalose production conditions, the maximum trehalose yield of 2.28 g/L was reached in 48 hours.
由以上实施例可知,本发明技术方案中提供的工程菌株HC6-MT可以在低温条件下通过降解由玉米秸秆提取的半纤维素来生产海藻糖,节省了生产原料,降低了生产成本,提高了海藻糖的产量、转化率及生产率。It can be seen from the above examples that the engineered strain HC6-MT provided in the technical solution of the present invention can produce trehalose by degrading hemicellulose extracted from corn straw under low temperature conditions, saving production raw materials, reducing production costs, and improving the yield, conversion rate and productivity of trehalose.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention. It should be pointed out that for ordinary technicians in this technical field, several improvements and modifications can be made without departing from the principle of the present invention. These improvements and modifications should also be regarded as the scope of protection of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311745292.7A CN117417874B (en) | 2023-12-19 | 2023-12-19 | Engineering strain HC6-MT and application thereof in low-temperature production of trehalose |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311745292.7A CN117417874B (en) | 2023-12-19 | 2023-12-19 | Engineering strain HC6-MT and application thereof in low-temperature production of trehalose |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117417874A CN117417874A (en) | 2024-01-19 |
CN117417874B true CN117417874B (en) | 2024-04-09 |
Family
ID=89525189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311745292.7A Active CN117417874B (en) | 2023-12-19 | 2023-12-19 | Engineering strain HC6-MT and application thereof in low-temperature production of trehalose |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117417874B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108531434A (en) * | 2018-04-04 | 2018-09-14 | 江南大学 | A method of improving Raoul bacterium 2,5- furandicarboxylic acid yield |
CN113322250A (en) * | 2021-02-23 | 2021-08-31 | 齐鲁工业大学 | Preparation method of MTSase immobilized enzyme and MTHase immobilized enzyme and application of MTSase immobilized enzyme and MTHase immobilized enzyme in trehalose production |
CN114107358A (en) * | 2020-12-03 | 2022-03-01 | 德州汇洋生物科技有限公司 | Construction method of heat-resistant aspergillus niger engineering bacteria for increasing content of stress trehalose |
CN116286560A (en) * | 2023-05-11 | 2023-06-23 | 东北农业大学 | A strain of Raoultella HC6 and its application in low temperature production of 2,3-butanediol |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022170059A1 (en) * | 2021-02-05 | 2022-08-11 | Christiana Care Health Services, Inc. | Methods of and compositions for reducing gene expression and/or activity |
-
2023
- 2023-12-19 CN CN202311745292.7A patent/CN117417874B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108531434A (en) * | 2018-04-04 | 2018-09-14 | 江南大学 | A method of improving Raoul bacterium 2,5- furandicarboxylic acid yield |
CN114107358A (en) * | 2020-12-03 | 2022-03-01 | 德州汇洋生物科技有限公司 | Construction method of heat-resistant aspergillus niger engineering bacteria for increasing content of stress trehalose |
CN113322250A (en) * | 2021-02-23 | 2021-08-31 | 齐鲁工业大学 | Preparation method of MTSase immobilized enzyme and MTHase immobilized enzyme and application of MTSase immobilized enzyme and MTHase immobilized enzyme in trehalose production |
CN116286560A (en) * | 2023-05-11 | 2023-06-23 | 东北农业大学 | A strain of Raoultella HC6 and its application in low temperature production of 2,3-butanediol |
Non-Patent Citations (4)
Title |
---|
Efficient conversion of hemicellulose into 2, 3-butanediol by engineered psychrotrophic Raoultella terrigena: mechanism and efficiency;Yue Wang 等;《Bioresource Technology》;20220611;第359卷;第1-11页 * |
Enzymatic synthesis of l‑fucose from l‑fuculose using a fucose isomerase from Raoultella sp. and the biochemical and structural analyses of the enzyme;In Jung Kim 等;《Biotechnol Biofuels》;20191205;第12卷(第282期);第1-12页 * |
Wang,Y..CP093276.1 Raoultella sp. HC6 chromosome, complete genome.《GenBank》.2022,第1-2页. * |
大肠杆菌海藻糖的代谢调控;戴秀玉 等;《生物工程进展》;20001231;第20卷(第6期);第26-29页 * |
Also Published As
Publication number | Publication date |
---|---|
CN117417874A (en) | 2024-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101555461B (en) | Bacterial strain LT3 producing alkalescence cellulase and breeding method and initial optimization of cellulase production conditions thereof | |
CN105802854B (en) | Cellulase high-yield strain and application thereof | |
JP2013545491A (en) | Enhancement of ethanol production by xylose-utilizing zymomonas mobilis in biomass hydrolyzate medium | |
CN106978360A (en) | One plant height cellulase-producing trichoderma reesei recombinant bacterial strain and its application | |
CN114561303B (en) | An engineered strain of Trichoderma reesei secreting high-performance cellulase and its application | |
CN108034667B (en) | Monascus rubrum alpha-amylase gene, preparation method and application thereof | |
CN106367409A (en) | Method for simultaneous high-yield production of cellulase and [beta]-glucosidase | |
CN101531988A (en) | Alkaline pectinase genetic engineering bacteria and construction method thereof | |
CN110055204A (en) | A kind of method and application for knocking out II Q and pcf gene of spo and improving the lichen bacillus ferments producing enzyme | |
CN107574173A (en) | A kind of recombinant plasmid and its method for building High-productive Monascus Pigment Strain | |
CN105039374B (en) | A kind of starch induction type recombined bacillus subtilis and preparation method and application | |
CN105368732A (en) | Industrial saccharomyces cerevisiae strain capable of producing xylitol and construction method of industrial saccharomyces cerevisiae strain | |
CN105734069A (en) | A high-temperature alpha-L-arabinfuranosidease gene, a high-temperature acetylxylan esterase gene, and protein expression and applications of the genes | |
CN110951628B (en) | Construction method and application of trichoderma reesei engineering strain with high beta-glucosidase activity for straw degradation | |
CN111575261B (en) | A heat and acid resistant xyloglucanase gene and its expression protein and application | |
CN117417874B (en) | Engineering strain HC6-MT and application thereof in low-temperature production of trehalose | |
CN103756949A (en) | Gene engineering bacteria for producing ultrahigh-optical purity R,R-2,3-butanediol as well as construction method and application thereof | |
CN101457230A (en) | High efficiency preparation method of high temperature alpha-amylase and mutant thereof | |
CN109694859B (en) | A kind of thermophilic pectinase and its expression gene and application | |
CN111893107A (en) | An engineering strain of Pichia pastoris heterologously expressing cellulase gene EGIV and its application | |
CN107236680B (en) | A Pichia recombinant bacterium expressing xylanase derived from Streptomyces sp.FA1 | |
CN105969751B (en) | A kind of β-glucosidase gene and its application | |
CN108949784A (en) | Application of the sporulation related gene sigmaF in producing enzyme | |
CN111334446B (en) | High-temperature-resistant saccharifying yeast strain and application thereof | |
CN113430217A (en) | Continuous endo-cellulase and coding gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |