[go: up one dir, main page]

CN117408095A - Method for predicting fatigue life of asphalt at different temperatures - Google Patents

Method for predicting fatigue life of asphalt at different temperatures Download PDF

Info

Publication number
CN117408095A
CN117408095A CN202311730215.4A CN202311730215A CN117408095A CN 117408095 A CN117408095 A CN 117408095A CN 202311730215 A CN202311730215 A CN 202311730215A CN 117408095 A CN117408095 A CN 117408095A
Authority
CN
China
Prior art keywords
model
fatigue life
asphalt
model parameters
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311730215.4A
Other languages
Chinese (zh)
Other versions
CN117408095B (en
Inventor
张园
王叶飞
裴珂
南红兵
邹桂莲
虞将苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202311730215.4A priority Critical patent/CN117408095B/en
Publication of CN117408095A publication Critical patent/CN117408095A/en
Application granted granted Critical
Publication of CN117408095B publication Critical patent/CN117408095B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/42Road-making materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供一种沥青在不同温度下疲劳寿命的预测方法,涉及沥青测试技术领域,包括:设置测试温度,获取沥青的复合模量实测数据和疲劳寿命实测数据;建立预测模型,预测模型包括模型参数,将模型参数划分为两类,分别为第一模型参数和第二模型参数;根据第一优化方法迭代优化第一模型参数,得到优化后的第一模型参数;根据第二优化方法迭代优化第二模型参数,得到优化后的第二模型参数;利用优化后的第一模型参数、优化后的第二模型参数更新预测模型,得到最终的预测模型,利用最终的预测模型得到疲劳寿命的预测结果。本发明的预测模型形式简单,实用性更强,通过两种优化方法对模型参数按批次优化,能够增加模型预测的准确度。

The invention provides a method for predicting the fatigue life of asphalt at different temperatures, and relates to the technical field of asphalt testing. It includes: setting the test temperature, obtaining the measured data of the composite modulus and the measured fatigue life of the asphalt; establishing a prediction model, and the prediction model includes a model Parameters, divide the model parameters into two categories, namely first model parameters and second model parameters; iteratively optimize the first model parameters according to the first optimization method to obtain the optimized first model parameters; iteratively optimize according to the second optimization method The second model parameters are used to obtain the optimized second model parameters; the prediction model is updated using the optimized first model parameters and the optimized second model parameters to obtain the final prediction model, and the final prediction model is used to obtain the prediction of fatigue life. result. The prediction model of the present invention is simple in form and more practical. The model parameters are optimized in batches through two optimization methods, which can increase the accuracy of model prediction.

Description

一种沥青在不同温度下疲劳寿命的预测方法A method for predicting the fatigue life of asphalt at different temperatures

技术领域Technical field

本发明涉及沥青测试技术领域,具体涉及一种沥青在不同温度下疲劳寿命的预测方法。The invention relates to the technical field of asphalt testing, and specifically relates to a method for predicting the fatigue life of asphalt at different temperatures.

背景技术Background technique

疲劳寿命是衡量沥青沥青路面耐久性的一个重要指标,通过准确预测沥青的疲劳寿命,可以优化路面材料的选择和设计、施工工艺,以及后期的路面养护和管理,从而提供科学的决策支持。Fatigue life is an important indicator for measuring the durability of asphalt asphalt pavement. By accurately predicting the fatigue life of asphalt, the selection and design of pavement materials, construction technology, and subsequent pavement maintenance and management can be optimized, thereby providing scientific decision-making support.

在此背景下,沥青疲劳寿命预估模型的研发和应用显得尤为重要。沥青疲劳寿命预估模型能够指导工程师进行更科学的路面设计和材料选择,从而提高路面结构的耐久性和经济效益。同时,借助于疲劳寿命预估模型,工程师可以实现有效的维修时机判断和寿命预测,确保道路的安全和功能的持续性。In this context, the development and application of asphalt fatigue life prediction models are particularly important. The asphalt fatigue life prediction model can guide engineers to conduct more scientific pavement design and material selection, thereby improving the durability and economic benefits of the pavement structure. At the same time, with the help of the fatigue life prediction model, engineers can achieve effective maintenance timing judgment and life prediction to ensure road safety and functional continuity.

目前,实验室多采用动态剪切流变试验来直接测试沥青的疲劳寿命,而对于测试不同温度下的疲劳寿命,需要耗费大量的试验成本和时间。因此,开发能够有效预测不同环境条件下沥青疲劳寿命的预估模型,是当前路面工程领域的重要研究方向。At present, laboratories mostly use dynamic shear rheology tests to directly test the fatigue life of asphalt. However, testing the fatigue life at different temperatures requires a lot of test costs and time. Therefore, developing a prediction model that can effectively predict the fatigue life of asphalt under different environmental conditions is an important research direction in the current field of pavement engineering.

中国申请号为202310163323.1的发明专利公开了一种沥青应变-疲劳寿命曲线的快速获取方法,其是通过应变-疲劳寿命曲线图来预测不同应变水平下沥青的疲劳寿命,解决的是沥青抗疲劳性能测试试验时间长的问题,因此其准确度和精度有限,且无法应对不同测试温度下的沥青抗疲劳性能的测试。The Chinese invention patent with application number 202310163323.1 discloses a method for quickly obtaining the asphalt strain-fatigue life curve. It uses the strain-fatigue life curve to predict the fatigue life of asphalt under different strain levels and solves the fatigue resistance performance of asphalt. The test test time is long, so its accuracy and precision are limited, and it cannot cope with the test of asphalt fatigue resistance at different test temperatures.

发明内容Contents of the invention

有鉴于此,本发明提供一种沥青在不同温度下疲劳寿命的预测方法,本发明的预测模型形式简单,实用性更强,通过两种优化方法对模型参数按批次优化,能够增加模型预测的准确度。In view of this, the present invention provides a method for predicting the fatigue life of asphalt at different temperatures. The prediction model of the present invention is simple in form and more practical. The model parameters are optimized in batches through two optimization methods, which can increase the number of model predictions. accuracy.

本发明的技术目的是这样实现的:The technical purpose of the present invention is achieved as follows:

本发明提供一种沥青在不同温度下疲劳寿命的预测方法,包括以下步骤:The invention provides a method for predicting the fatigue life of asphalt at different temperatures, which includes the following steps:

S1 设置实验温度,包括测试温度和预测温度,获取实验温度下沥青的复合模量,得到沥青的复合模量实测数据,在测试温度下对沥青进行线性振幅扫描试验,获取沥青的疲劳寿命实测数据;S1 Set the experimental temperature, including test temperature and predicted temperature, obtain the composite modulus of asphalt at the experimental temperature, obtain the measured data of the composite modulus of asphalt, conduct a linear amplitude scanning test on the asphalt at the test temperature, and obtain the measured data of the fatigue life of the asphalt ;

S2 建立预测模型,预测模型包括模型参数,将模型参数划分为两类,分别为第一模型参数和第二模型参数;S2 establishes a prediction model. The prediction model includes model parameters, and the model parameters are divided into two categories, namely first model parameters and second model parameters;

步骤S2中,预测模型的表示函数为:In step S2, the representation function of the prediction model is:

;

式中,为疲劳寿命预测数据,/>为第一模型参数,其用于描述不同温度下沥青的复合模量,/>为第二模型参数,其用于描述不同温度下沥青的疲劳寿命,/>为外加应变,/>为缩减频率;In the formula, For fatigue life prediction data,/> is the first model parameter, which is used to describe the composite modulus of asphalt at different temperatures,/> is the second model parameter, which is used to describe the fatigue life of asphalt at different temperatures,/> For external strain,/> To reduce the frequency;

S3 在实验温度中选择参考温度,利用复合模量实测数据,基于时温等效原理,获得参考温度下的复合模量主曲线和其他实验温度下的缩减频率,根据第一优化方法基于复合模量实测数据、参考温度下的复合模量主曲线和其他实验温度下的缩减频率迭代优化第一模型参数,得到优化后的第一模型参数,其中,第一优化方法为基于最小二乘法原理的优化方法;S3 Select the reference temperature among the experimental temperatures, use the measured data of the composite modulus, and based on the time-temperature equivalence principle, obtain the master curve of the composite modulus at the reference temperature and the reduction frequency at other experimental temperatures. According to the first optimization method, based on the composite modulus Iteratively optimize the first model parameters by measuring the measured data, the master composite modulus curve at the reference temperature and the reduction frequency at other experimental temperatures, and obtain the optimized first model parameters. The first optimization method is based on the principle of the least squares method. Optimization;

S4 根据第二优化方法基于疲劳寿命实测数据迭代优化第二模型参数,得到优化后的第二模型参数,其中,第二优化方法为基于逐差法原理的优化方法;S4 Iteratively optimizes the second model parameters based on the fatigue life measured data according to the second optimization method, and obtains the optimized second model parameters, where the second optimization method is an optimization method based on the principle of difference-by-difference method;

S5 利用优化后的第一模型参数、优化后的第二模型参数更新预测模型,得到最终的预测模型,利用最终的预测模型对沥青在预测温度下进行预测,得到疲劳寿命的预测结果。S5 uses the optimized first model parameters and the optimized second model parameters to update the prediction model to obtain the final prediction model. Use the final prediction model to predict the asphalt at the predicted temperature to obtain the prediction results of fatigue life.

在上述技术方案的基础上,优选的,步骤S3包括:Based on the above technical solution, preferably, step S3 includes:

S31 在实验温度中选择参考温度,获取参考温度下的复合模量实测数据,包括损耗模量和储能模量随加载频率变化的数据;S31 Select the reference temperature among the experimental temperatures and obtain the measured data of the composite modulus at the reference temperature, including data on the changes of the loss modulus and storage modulus with the loading frequency;

S32 对参考温度下的复合模量实测数据进行处理和分析,得到损耗模量和储能模量随加载频率变化的拟合曲线,即参考温度下的复合模量主曲线;S32 processes and analyzes the measured data of the composite modulus at the reference temperature, and obtains the fitting curve of the loss modulus and storage modulus changing with the loading frequency, which is the master curve of the composite modulus at the reference temperature;

S33 根据时温等效原理,将参考温度下的复合模量主曲线转换到其他实验温度下进行等效数据的获取,得到其他实验温度下的缩减频率;S33 According to the principle of time-temperature equivalence, convert the composite modulus master curve at the reference temperature to other experimental temperatures to obtain equivalent data, and obtain the reduced frequencies at other experimental temperatures;

S34 基于复合模量实测数据、参考温度下的复合模量主曲线和其他实验温度下的缩减频率,采用第一优化方法对第一模型参数进行迭代优化,得到优化后的第一模型参数。S34 Based on the measured data of composite modulus, the composite modulus master curve at the reference temperature and the reduction frequency at other experimental temperatures, the first optimization method is used to iteratively optimize the first model parameters to obtain the optimized first model parameters.

在上述技术方案的基础上,优选的,步骤S34包括:Based on the above technical solution, preferably, step S34 includes:

S341 定义第一目标函数,并初始化第一模型参数;S341 defines the first objective function and initializes the first model parameters;

S342 根据复合模量实测数据计算当前第一模型参数下的第一目标函数值;S342 Calculate the first objective function value under the current first model parameters based on the measured data of composite modulus;

S343 计算第一目标函数对第一模型参数的敏感矩阵,根据敏感矩阵和第一目标函数值的梯度,计算第一模型参数的调整参量;S343 Calculate the sensitivity matrix of the first objective function to the first model parameter, and calculate the adjustment parameter of the first model parameter based on the sensitivity matrix and the gradient of the first objective function value;

S344 根据计算得到的调整参量,将其叠加到当前的第一模型参数,以更新当前的第一模型参数;S344 superimposes the calculated adjustment parameters onto the current first model parameters to update the current first model parameters;

S345 利用更新后的第一模型参数计算新的第一目标函数值;S345 uses the updated first model parameters to calculate the new first objective function value;

S346 判断新的第一目标函数值是否收敛:S346 Determine whether the new first objective function value converges:

若收敛,则停止迭代,并输出最终优化得到的第一模型参数,作为优化后的第一模型参数;If it converges, stop the iteration and output the first model parameter obtained by the final optimization as the optimized first model parameter;

若未收敛,则根据第一目标函数值的变化情况,调整敏感矩阵的参数,并转至步骤S343。If it does not converge, adjust the parameters of the sensitivity matrix according to the change in the first objective function value, and go to step S343.

在上述技术方案的基础上,优选的,其特征在于,第一目标函数为:Based on the above technical solution, preferably, the first objective function is:

;

式中,为第一目标函数值,/>是复合模量的预测数据,/>是复合模量的实测数据,N是数据点个数。In the formula, is the first objective function value,/> is the predicted data of composite modulus,/> is the measured data of composite modulus, and N is the number of data points.

在上述技术方案的基础上,优选的,步骤S343 包括:Based on the above technical solution, preferably, step S343 includes:

针对每个第一模型参数,计算第一目标函数对单个第一模型参数的偏导数,得到敏感矩阵JFor each first model parameter, calculate the partial derivative of the first objective function on the single first model parameter to obtain the sensitivity matrix J ;

利用梯度算子计算第一目标函数的梯度Use the gradient operator to calculate the gradient of the first objective function ;

根据敏感矩阵J和梯度计算调整参量:According to the sensitivity matrix J and gradient Calculate adjustment parameters:

;

式中,为调整参量,J为敏感矩阵,/>为敏感矩阵的转置,/>为矩阵参数,I为单位矩阵,/>为梯度。In the formula, is the adjustment parameter, J is the sensitivity matrix,/> is the transpose of the sensitivity matrix,/> is the matrix parameter, I is the identity matrix,/> is the gradient.

在上述技术方案的基础上,优选的,步骤S4包括:Based on the above technical solution, preferably, step S4 includes:

S41 定义第二目标函数,并初始化第二模型参数;S41 Define the second objective function , and initialize the second model parameters;

S42 设置最大迭代次数和调整步长;S42 sets the maximum number of iterations and adjustment step size;

S43 选择一个第二模型参数作为目标参数;S43 Select a second model parameter as the target parameter;

S44 将目标参数的当前值叠加调整步长,得到目标参数的调整值;S44 Add the current value of the target parameter to the adjustment step to obtain the adjustment value of the target parameter;

S45 根据疲劳寿命的实测数据,分别使用目标参数的当前值和目标参数的调整值计算对应的第二目标函数值和/>S45 Based on the measured data of fatigue life, use the current value of the target parameter and the adjusted value of the target parameter to calculate the corresponding second objective function value. and/> ;

S46 比较和/>的大小,确定下一步迭代的目标参数的当前值和调整步长,并转至步骤S44,直至达到收敛条件或达到最大迭代次数;S46 comparison and/> The size of , determine the current value and adjustment step size of the target parameter for the next iteration, and go to step S44 until the convergence condition is reached or the maximum number of iterations is reached;

S47 重复步骤S43-S46,对每个第二模型参数均进行优化,得到优化后的第二模型参数。S47 Repeat steps S43-S46 to optimize each second model parameter to obtain optimized second model parameters.

在上述技术方案的基础上,优选的,第二目标函数为:Based on the above technical solution, preferably, the second objective function is:

;

式中,为第二目标函数值,/>为疲劳寿命实测数据,/>为疲劳寿命实测数据的平均值,/>为疲劳寿命预测数据,/>为疲劳寿命预测数据的平均值。In the formula, is the second objective function value,/> It is the measured data of fatigue life,/> is the average value of fatigue life measured data,/> For fatigue life prediction data,/> is the average value of the fatigue life prediction data.

在上述技术方案的基础上,优选的,步骤S46中,比较和/>的大小,确定下一步迭代的目标参数新的当前值,包括:Based on the above technical solution, preferably, in step S46, compare and/> The size of , determines the new current value of the target parameters of the next iteration, including:

,则将目标参数的调整值作为下一步迭代的目标参数的当前值,并保持调整步长不变;like , then the adjustment value of the target parameter is used as the current value of the target parameter for the next iteration, and the adjustment step size remains unchanged;

,则保持目标参数的当前值不变,将调整步长减去一个步长差项作为下一步迭代的新的调整步长。like , then keep the current value of the target parameter unchanged, and subtract a step difference term from the adjustment step size as the new adjustment step size for the next iteration.

在上述技术方案的基础上,优选的,步骤S1还包括:Based on the above technical solution, preferably, step S1 also includes:

根据复合模量和相位角定义疲劳失效准则,根据线性振幅扫描试验的结果和疲劳失效准则计算得到疲劳寿命实测数据;The fatigue failure criterion is defined based on the composite modulus and phase angle, and the measured fatigue life data is calculated based on the results of the linear amplitude sweep test and the fatigue failure criterion;

其中,疲劳失效准则为疲劳破坏达到初始疲劳因子的35%,疲劳破坏为沥青试样出现裂纹或断裂,初始疲劳因子为,/>为复数剪切模量,/>为相位角。Among them, the fatigue failure criterion is that the fatigue damage reaches 35% of the initial fatigue factor, the fatigue damage is the occurrence of cracks or fractures in the asphalt sample, and the initial fatigue factor is ,/> is the complex shear modulus,/> is the phase angle.

本发明的方法相对于现有技术具有以下有益效果:The method of the present invention has the following beneficial effects compared with the existing technology:

(1)本发明通过线性振幅扫描试验,获得测试温度下的沥青疲劳寿命实测数据,基于线性黏弹性理论,建立不同温度下的沥青疲劳寿命预测模型,该模型相对于现有技术,实用性更强,模型形式更简单,准确度更高,可节省大量试验成本和时间,对路面材料的选择、设计、施工工艺的优化,以及后期的路面养护和管理具有重要意义;(1) The present invention obtains actual measured data of asphalt fatigue life at the test temperature through a linear amplitude scanning test, and establishes a prediction model of asphalt fatigue life at different temperatures based on linear viscoelasticity theory. This model is more practical than the existing technology. Strong, the model form is simpler and more accurate, which can save a lot of test costs and time, and is of great significance to the selection, design, construction technology optimization of pavement materials, as well as later pavement maintenance and management;

(2)本发明的沥青疲劳寿命模型共有6个模型参数:、/>,其中,/>用于描述不同温度下沥青的复合模量,/>用于描述不同温度下沥青的疲劳寿命,该模型的呈现,能够预测不同温度下沥青的疲劳寿命;(2) The asphalt fatigue life model of the present invention has a total of 6 model parameters: ,/> , where,/> Used to describe the composite modulus of asphalt at different temperatures,/> Used to describe the fatigue life of asphalt at different temperatures. The presentation of this model can predict the fatigue life of asphalt at different temperatures;

(3)本发明采用两个优化方法分别优化第一模型参数和第二模型参数,针对复合模量和疲劳寿命各自的数据特点,设置了相应的优化方式,能够最大程度的得到合适的第一模型参数和第二模型参数,以此增加预测模型的预测精度。(3) The present invention uses two optimization methods to optimize the first model parameters and the second model parameters respectively. According to the respective data characteristics of the composite modulus and fatigue life, corresponding optimization methods are set up to obtain the appropriate first model to the greatest extent. model parameters and second model parameters to increase the prediction accuracy of the prediction model.

附图说明Description of the drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.

图1为本发明实施例的方法流程图;Figure 1 is a method flow chart according to an embodiment of the present invention;

图2为本发明的第一实施例中参考温度下复合模量的主曲线;Figure 2 is the main curve of the composite modulus at the reference temperature in the first embodiment of the present invention;

图3为本发明的第一实施例的实测疲劳寿命与预测疲劳寿命的相关性;Figure 3 shows the correlation between the measured fatigue life and the predicted fatigue life of the first embodiment of the present invention;

图4为本发明的第二实施例的实测疲劳寿命与预测疲劳寿命的相关性;Figure 4 is the correlation between the measured fatigue life and the predicted fatigue life of the second embodiment of the present invention;

图5为本发明的第三实施例的实测疲劳寿命与预测疲劳寿命的相关性。Figure 5 shows the correlation between the measured fatigue life and the predicted fatigue life of the third embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施方式,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.

如图1所示,本发明提供一种沥青在不同温度下疲劳寿命的预测方法,包括以下步骤:As shown in Figure 1, the present invention provides a method for predicting the fatigue life of asphalt at different temperatures, which includes the following steps:

S1 设置实验温度,包括测试温度和预测温度,获取实验温度下沥青的复合模量,得到沥青的复合模量实测数据,在测试温度下对沥青进行线性振幅扫描试验,获取沥青的疲劳寿命实测数据;S1 Set the experimental temperature, including test temperature and predicted temperature, obtain the composite modulus of asphalt at the experimental temperature, obtain the measured data of the composite modulus of asphalt, conduct a linear amplitude scanning test on the asphalt at the test temperature, and obtain the measured data of the fatigue life of the asphalt ;

S2 建立预测模型,预测模型包括模型参数,将模型参数划分为两类,分别为第一模型参数和第二模型参数;S2 establishes a prediction model. The prediction model includes model parameters, and the model parameters are divided into two categories, namely first model parameters and second model parameters;

S3 在实验温度中选择参考温度,利用复合模量实测数据,基于时温等效原理,获得参考温度下的复合模量主曲线和其他实验温度下的缩减频率,根据第一优化方法基于复合模量实测数据、参考温度下的复合模量主曲线和其他实验温度下的缩减频率迭代优化第一模型参数,得到优化后的第一模型参数,其中,第一优化方法为基于最小二乘法原理的优化方法;S3 Select the reference temperature among the experimental temperatures, use the measured data of the composite modulus, and based on the time-temperature equivalence principle, obtain the master curve of the composite modulus at the reference temperature and the reduction frequency at other experimental temperatures. According to the first optimization method, based on the composite modulus Iteratively optimize the first model parameters by measuring the measured data, the master composite modulus curve at the reference temperature and the reduction frequency at other experimental temperatures, and obtain the optimized first model parameters. The first optimization method is based on the principle of the least squares method. Optimization;

S4 根据第二优化方法基于疲劳寿命实测数据迭代优化第二模型参数,得到优化后的第二模型参数,其中,第二优化方法为基于逐差法原理的优化方法;S4 Iteratively optimizes the second model parameters based on the fatigue life measured data according to the second optimization method, and obtains the optimized second model parameters, where the second optimization method is an optimization method based on the principle of difference-by-difference method;

S5 利用优化后的第一模型参数、优化后的第二模型参数更新预测模型,得到最终的预测模型,利用最终的预测模型对沥青在预测温度下进行预测,得到疲劳寿命的预测结果。S5 uses the optimized first model parameters and the optimized second model parameters to update the prediction model to obtain the final prediction model. Use the final prediction model to predict the asphalt at the predicted temperature to obtain the prediction results of fatigue life.

具体地,步骤S1还包括:Specifically, step S1 also includes:

根据复合模量和相位角定义疲劳失效准则,根据线性振幅扫描试验的结果和疲劳失效准则计算得到疲劳寿命实测数据;The fatigue failure criterion is defined based on the composite modulus and phase angle, and the measured fatigue life data is calculated based on the results of the linear amplitude sweep test and the fatigue failure criterion;

其中,疲劳失效准则为疲劳破坏达到初始疲劳因子的35%,疲劳破坏为沥青试样出现裂纹或断裂,初始疲劳因子为,/>为复数剪切模量,/>为相位角。Among them, the fatigue failure criterion is that the fatigue damage reaches 35% of the initial fatigue factor, the fatigue damage is the occurrence of cracks or fractures in the asphalt sample, and the initial fatigue factor is ,/> is the complex shear modulus,/> is the phase angle.

本发明实施例中,复合模量实测数据是所有实验温度下的数据,其可以是直接测试得到所有温度下的复合模量实测数据,也可以是先测得在测试温度下的复合模量实测数据,然后在测试温度中选定一个温度作为目标温度,根据时温等效原理能够基于这个目标温度的复合模量来计算得到预测温度下的复合模量实测数据。In the embodiment of the present invention, the actual measured data of the composite modulus is the data at all experimental temperatures. It can be directly measured to obtain the measured data of the composite modulus at all temperatures, or it can be first measured to obtain the actual measured data of the composite modulus at the test temperature. data, and then select a temperature among the test temperatures as the target temperature. According to the time-temperature equivalence principle, the composite modulus measured data at the predicted temperature can be calculated based on the composite modulus at this target temperature.

具体地,本发明实施例中,步骤S2的预测模型表示函数为:Specifically, in the embodiment of the present invention, the prediction model representation function of step S2 is:

;

式中,为疲劳寿命预测数据,/>为第一模型参数,其用于描述不同温度下沥青的复合模量,/>为第二模型参数,其用于描述不同温度下沥青的疲劳寿命,/>为外加应变,/>为缩减频率。In the formula, For fatigue life prediction data,/> is the first model parameter, which is used to describe the composite modulus of asphalt at different temperatures,/> is the second model parameter, which is used to describe the fatigue life of asphalt at different temperatures,/> For external strain,/> To reduce the frequency.

本实施例中,沥青疲劳寿命的预测模型共有6个模型参数:,其中,/>用于描述不同温度下沥青的复合模量,/>用于描述不同温度下沥青的疲劳寿命,该模型的呈现,能够预测不同温度下沥青的疲劳寿命。In this embodiment, the prediction model of asphalt fatigue life has 6 model parameters: , , where,/> Used to describe the composite modulus of asphalt at different temperatures,/> Used to describe the fatigue life of asphalt at different temperatures, the presentation of this model can predict the fatigue life of asphalt at different temperatures.

具体地,步骤S3包括:Specifically, step S3 includes:

S31 在实验温度中选择参考温度,获取参考温度下的复合模量实测数据,包括损耗模量和储能模量随加载频率变化的数据;S31 Select the reference temperature among the experimental temperatures and obtain the measured data of the composite modulus at the reference temperature, including data on the changes of the loss modulus and storage modulus with the loading frequency;

S32 对参考温度下的复合模量实测数据进行处理和分析,得到损耗模量和储能模量随加载频率变化的拟合曲线,即参考温度下的复合模量主曲线;S32 processes and analyzes the measured data of the composite modulus at the reference temperature, and obtains the fitting curve of the loss modulus and storage modulus changing with the loading frequency, which is the master curve of the composite modulus at the reference temperature;

S33 根据时温等效原理,将参考温度下的复合模量主曲线转换到其他实验温度下进行等效数据的获取,得到其他实验温度下的缩减频率;S33 According to the principle of time-temperature equivalence, convert the composite modulus master curve at the reference temperature to other experimental temperatures to obtain equivalent data, and obtain the reduced frequencies at other experimental temperatures;

S34 基于复合模量实测数据、参考温度下的复合模量主曲线和其他实验温度下的缩减频率,采用第一优化方法对第一模型参数进行迭代优化,得到优化后的第一模型参数。S34 Based on the measured data of composite modulus, the composite modulus master curve at the reference temperature and the reduction frequency at other experimental temperatures, the first optimization method is used to iteratively optimize the first model parameters to obtain the optimized first model parameters.

其中,步骤S34包括:Among them, step S34 includes:

S341 定义第一目标函数,并初始化第一模型参数;S341 defines the first objective function and initializes the first model parameters;

第一目标函数为:The first objective function is:

;

式中,为第一目标函数值,/>是复合模量的预测数据,/>是复合模量的实测数据,N是数据点个数。In the formula, is the first objective function value,/> is the predicted data of composite modulus,/> is the measured data of composite modulus, and N is the number of data points.

S342 根据复合模量实测数据计算当前第一模型参数下的第一目标函数值;S342 Calculate the first objective function value under the current first model parameters based on the measured data of composite modulus;

S343 计算第一目标函数对第一模型参数的敏感矩阵,根据敏感矩阵和第一目标函数值的梯度,计算第一模型参数的调整参量;S343 Calculate the sensitivity matrix of the first objective function to the first model parameter, and calculate the adjustment parameter of the first model parameter based on the sensitivity matrix and the gradient of the first objective function value;

针对每个第一模型参数,计算第一目标函数对单个第一模型参数的偏导数,得到敏感矩阵JFor each first model parameter, calculate the partial derivative of the first objective function on the single first model parameter to obtain the sensitivity matrix J ;

利用梯度算子计算第一目标函数的梯度Use the gradient operator to calculate the gradient of the first objective function ;

根据敏感矩阵J和梯度计算调整参量:According to the sensitivity matrix J and gradient Calculate adjustment parameters:

;

式中,为调整参量,J为敏感矩阵,/>为敏感矩阵的转置,/>为矩阵参数,I为单位矩阵,/>为梯度。In the formula, is the adjustment parameter, J is the sensitivity matrix,/> is the transpose of the sensitivity matrix,/> is the matrix parameter, I is the identity matrix,/> is the gradient.

S344 根据计算得到的调整参量,将其叠加到当前的第一模型参数,以更新当前的第一模型参数;S344 superimposes the calculated adjustment parameters onto the current first model parameters to update the current first model parameters;

S345 利用更新后的第一模型参数计算新的第一目标函数值;S345 uses the updated first model parameters to calculate the new first objective function value;

S346 判断新的第一目标函数值是否收敛:S346 Determine whether the new first objective function value converges:

若收敛,则停止迭代,并输出最终优化得到的第一模型参数,作为优化后的第一模型参数;If it converges, stop the iteration and output the first model parameter obtained by the final optimization as the optimized first model parameter;

若未收敛,则根据第一目标函数值的变化情况,调整敏感矩阵的参数,并转至步骤S343。If it does not converge, adjust the parameters of the sensitivity matrix according to the change in the first objective function value, and go to step S343.

本实施例中,第一优化方法是基于最小二乘法原理的优化方法,最小二乘法是一种统计学和数学中常用的方法,用于拟合一组数据点到一个函数模型。它基于以下原理:对于给定的数据点,最小二乘法通过最小化数据点到模型预测值的残差平方和来确定最佳拟合模型参数。换句话说,它寻找一个函数模型,使得数据点到模型预测值的残差的平方和最小。这样做的目的是使得拟合模型能够最好地描述数据点之间的关系。本实施例的第一优化方法是在最小二乘法的原理基础上,引入了敏感矩阵,基于梯度下降和敏感矩阵来不断迭代优化第一模型参数。In this embodiment, the first optimization method is an optimization method based on the principle of least squares. The least squares method is a commonly used method in statistics and mathematics and is used to fit a set of data points to a function model. It is based on the following principle: for a given data point, the least squares method determines the best-fitting model parameters by minimizing the sum of squared residuals from the data point to the model predicted value. In other words, it looks for a functional model that minimizes the sum of squares of the residuals from the data points to the model predicted values. The purpose of this is to fit the model to best describe the relationship between the data points. The first optimization method in this embodiment is based on the principle of the least squares method, introducing a sensitivity matrix, and continuously iteratively optimizing the first model parameters based on gradient descent and the sensitivity matrix.

本实施例中,通过迭代优化,能够不断调整第一模型参数,使得预测结果与实测数据更加吻合,从而提高模型的准确性和可靠性。利用敏感矩阵和梯度计算调整参数,可以加速第一模型参数的调整过程,提高优化的效率和收敛速度。通过设定合适的收敛判断条件,可以实现优化过程的自动化,减少人工干预。In this embodiment, through iterative optimization, the first model parameters can be continuously adjusted so that the prediction results are more consistent with the measured data, thereby improving the accuracy and reliability of the model. Using sensitivity matrices and gradients to calculate adjustment parameters can accelerate the adjustment process of the first model parameters and improve the efficiency and convergence speed of optimization. By setting appropriate convergence judgment conditions, the optimization process can be automated and manual intervention reduced.

具体地,步骤S4包括:Specifically, step S4 includes:

S41 定义第二目标函数,并初始化第二模型参数;S41 Define the second objective function , and initialize the second model parameters;

第二目标函数为:The second objective function is:

;

式中,为第二目标函数值,/>为疲劳寿命实测数据,/>为疲劳寿命实测数据的平均值,/>为疲劳寿命预测数据,/>为疲劳寿命预测数据的平均值。In the formula, is the second objective function value,/> It is the measured data of fatigue life,/> is the average value of fatigue life measured data,/> For fatigue life prediction data,/> is the average value of the fatigue life prediction data.

S42 设置最大迭代次数和调整步长;S42 sets the maximum number of iterations and adjustment step size;

S43 选择一个第二模型参数作为目标参数;S43 Select a second model parameter as the target parameter;

S44 将目标参数的当前值叠加调整步长,得到目标参数的调整值;S44 Add the current value of the target parameter to the adjustment step to obtain the adjustment value of the target parameter;

S45 根据疲劳寿命的实测数据,分别使用目标参数的当前值和目标参数的调整值计算对应的第二目标函数值和/>S45 Based on the measured data of fatigue life, use the current value of the target parameter and the adjusted value of the target parameter to calculate the corresponding second objective function value. and/> ;

S46 比较和/>的大小,确定下一步迭代的目标参数的当前值和调整步长,并转至步骤S44,直至达到收敛条件或达到最大迭代次数;S46 comparison and/> The size of , determine the current value and adjustment step size of the target parameter for the next iteration, and go to step S44 until the convergence condition is reached or the maximum number of iterations is reached;

该步骤具体包括:This step specifically includes:

,则将目标参数的调整值作为下一步迭代的目标参数的当前值,并保持调整步长不变;like , then the adjustment value of the target parameter is used as the current value of the target parameter for the next iteration, and the adjustment step size remains unchanged;

,则保持目标参数的当前值不变,将调整步长减去一个步长差项作为下一步迭代的新的调整步长。like , then keep the current value of the target parameter unchanged, and subtract a step difference term from the adjustment step size as the new adjustment step size for the next iteration.

S47 重复步骤S43-S46,对每个第二模型参数均进行优化,得到优化后的第二模型参数。S47 Repeat steps S43-S46 to optimize each second model parameter to obtain optimized second model parameters.

本实施例中,第二优化方法是基于逐差法原理的优化方法,逐差法是一种用于数值逼近微分方程解的方法。它的基本思想是通过差分逼近微分方程中的导数,从而将微分方程转化为差分方程,然后利用差分方程进行数值计算。本实施例将逐差法的思想引入了第二模型参数的优化过程,即引入调整步长和调整值的概念,并给出了调整步长的更新方式,以通过逐步迭代的方式来逼近最优解,在迭代过程中,不断朝着最优解的方向更新第二模型参数,该方式能够增加模型的泛化能力,并加快收敛速度,使得优化过程更加稳定,提高优化精度。In this embodiment, the second optimization method is an optimization method based on the principle of the difference-by-difference method. The difference-by-difference method is a method for numerically approximating the solution of a differential equation. Its basic idea is to approximate the derivative in the differential equation through difference, thereby converting the differential equation into a difference equation, and then use the difference equation to perform numerical calculations. This embodiment introduces the idea of the difference-by-difference method into the optimization process of the second model parameters, that is, introduces the concepts of adjustment step size and adjustment value, and provides an update method of the adjustment step size, so as to approach the optimal value through step-by-step iteration. Optimal solution: During the iterative process, the second model parameters are constantly updated in the direction of the optimal solution. This method can increase the generalization ability of the model and speed up the convergence speed, making the optimization process more stable and improving optimization accuracy.

本发明通过三个具体实施例来验证预测模型的有效性:This invention verifies the effectiveness of the prediction model through three specific embodiments:

实施例1Example 1

在本实施例中,根据AASHTO TP 101-12标准对经PAV老化后的沥青进行线性振幅扫描试验,选用的四种沥青进行测试,分别为PG 58-28#1、PG 58-28#2、PG 58-28#3、PG 58-28#4,#表示不同批次,测试温度为13℃和31℃,预测温度为19℃和25℃。根据试验数据,四种沥青在不同外加应变下的疲劳寿命计算结果如表1所示。In this example, a linear amplitude scan test was performed on the PAV-aged asphalt according to the AASHTO TP 101-12 standard. Four asphalts were selected for testing, namely PG 58-28#1, PG 58-28#2, PG 58-28#3, PG 58-28#4, # indicates different batches, the test temperatures are 13°C and 31°C, and the predicted temperatures are 19°C and 25°C. According to the test data, the fatigue life calculation results of the four kinds of asphalt under different applied strains are shown in Table 1.

表1 四种沥青在不同应变水平时的疲劳寿命 Table 1 Fatigue life of four kinds of asphalt at different strain levels

根据本发明提供的预测模型,基于步骤S3得到本实施例的参考温度下的复合模量主曲线,如图2所示,图2中,三角形、圆形、菱形分别表示的数据点为现有的19℃、25℃、31℃下复合模量的实验数据,叉叉表示的数据点为参考温度25℃下的复合模量主曲线,该主曲线可以获得任意温度下的缩减频率According to the prediction model provided by the present invention, the composite modulus master curve at the reference temperature of this embodiment is obtained based on step S3, as shown in Figure 2. In Figure 2, the data points represented by triangles, circles, and diamonds are the existing data points. Experimental data of composite modulus at 19°C, 25°C, and 31°C. The data points represented by the cross are the composite modulus master curve at the reference temperature of 25°C. This master curve can obtain the reduction frequency at any temperature. .

本实施例中,采用第一优化方法得到的第一模型参数如下表2所示:In this embodiment, the first model parameters obtained by the first optimization method are As shown in Table 2 below:

表2 四种沥青的疲劳寿命预测模型的第一模型参数 Table 2 The first model parameters of the fatigue life prediction model of four asphalts

本实施例中,采用第二优化方法得到的第二模型参数如下表3所示:In this embodiment, the second model parameters obtained by the second optimization method are As shown in Table 3 below:

表3 四种沥青的疲劳寿命预测模型的第二模型参数 Table 3 Second model parameters of the fatigue life prediction model of four asphalts

将优化后的预测模型的第一模型参数和第二模型参数以及需要预测的温度(19℃、25℃)下的缩减频率代入预测模型的表示函数中,得到预测温度下的疲劳寿命。The first model parameter and the second model parameter of the optimized prediction model and the reduction frequency at the temperature to be predicted (19℃, 25℃) Substituting into the representation function of the prediction model, the fatigue life at the predicted temperature is obtained.

本实施例为了验证预测模型的准确性,对PG 58-28#1、PG 58-28#2、PG 58-28#3、PG 58-28#4进行19℃、25℃下的疲劳寿命实测。在19℃和25℃下,四种沥青实测疲劳寿命与预测疲劳寿命的相关性如图3所示。图3中圆形表示的数据点是在两个实测温度下的模型预测值,而三角形表示的数据点是来自两个中间温度的实测结果,模拟预测值与实测值吻合较好,该模型可以精确预测不同温度下的疲劳寿命。In this example, in order to verify the accuracy of the prediction model, the fatigue life of PG 58-28#1, PG 58-28#2, PG 58-28#3, and PG 58-28#4 was measured at 19°C and 25°C. . The correlation between the measured fatigue life and the predicted fatigue life of the four asphalts at 19°C and 25°C is shown in Figure 3. The data points represented by circles in Figure 3 are model prediction values at two measured temperatures, while the data points represented by triangles are measured results from two intermediate temperatures. The simulated prediction values are in good agreement with the measured values. The model can Accurately predict fatigue life at different temperatures.

实施例2Example 2

在本实施例中,根据AASHTO TP 101-12标准对经PAV老化后的沥青进行线性振幅扫描试验,选用的四种沥青进行测试,分别为PG 64-22#1、PG 64-22#2、PG 64-22#3、PG 64-22#4,#表示不同批次,测试温度为19℃和37℃,预测温度为25℃和31℃。根据试验数据,四种沥青在不同外加应变下的疲劳寿命计算结果如表4所示。In this example, a linear amplitude scan test was performed on the PAV-aged asphalt according to the AASHTO TP 101-12 standard. Four asphalts were selected for testing, namely PG 64-22#1, PG 64-22#2, PG 64-22#3, PG 64-22#4, # indicates different batches, the test temperatures are 19°C and 37°C, and the predicted temperatures are 25°C and 31°C. According to the test data, the fatigue life calculation results of the four kinds of asphalt under different applied strains are shown in Table 4.

表4 四种沥青在不同应变水平时的疲劳寿命 Table 4 Fatigue life of four kinds of asphalt at different strain levels

利用现有复合模量的试验数据,基于时温等效原理,获得参考温度下的复合模量主曲线,以及任意温度下的缩减频率Using the existing experimental data of composite modulus and based on the time-temperature equivalence principle, the master curve of composite modulus at the reference temperature and the reduction frequency at any temperature are obtained .

本实施例中,采用第一优化方法得到的第一模型参数如下表5所示:In this embodiment, the first model parameters obtained by the first optimization method are As shown in Table 5 below:

表5 四种沥青的疲劳寿命预测模型参数 Table 5 Fatigue life prediction model parameters of four kinds of asphalt

本实施例中,采用第二优化方法得到的第二模型参数如下表6所示:In this embodiment, the second model parameters obtained by the second optimization method are As shown in Table 6 below:

表6 四种沥青的疲劳寿命预测模型参数 Table 6 Fatigue life prediction model parameters of four kinds of asphalt

将优化后的预测模型的第一模型参数和第二模型参数以及需要预测的温度(25℃、31℃)下的缩减频率代入预测模型的表示函数中,得到预测温度下的疲劳寿命。The first model parameter and the second model parameter of the optimized prediction model and the reduction frequency at the temperature to be predicted (25℃, 31℃) Substituting into the representation function of the prediction model, the fatigue life at the predicted temperature is obtained.

为了验证模型的准确性,需要对PG 64-22#1、PG 64-22#2、PG 64-22#3、PG 64-22#4进行25℃、31℃下的疲劳寿命实测。在25℃和31℃下,四种沥青实测疲劳寿命与预测疲劳寿命的相关性如图4所示。图4中圆形表示的数据点是在两个实测温度下的模型预测值,而三角形表示的数据点是来自两个中间温度的实测结果,模拟预测值与实测值吻合较好,该模型可以精确预测不同温度下的疲劳寿命。In order to verify the accuracy of the model, actual fatigue life measurements at 25°C and 31°C are required for PG 64-22#1, PG 64-22#2, PG 64-22#3, and PG 64-22#4. The correlation between the measured fatigue life and the predicted fatigue life of the four asphalts at 25°C and 31°C is shown in Figure 4. The data points represented by circles in Figure 4 are model prediction values at two measured temperatures, while the data points represented by triangles are measured results from two intermediate temperatures. The simulated prediction values are in good agreement with the measured values. The model can Accurately predict fatigue life at different temperatures.

实施例3Example 3

在本实施例中,根据AASHTO TP 101-12标准对经PAV老化后的沥青进行线性振幅扫描试验,选用的四种沥青进行测试,分别为PG 70-22#1、PG 70-22#2、PG 70-22#R1、PG70-22#R2,#表示不同批次,R表示改性后,测试温度为25℃和43℃,预测温度为31℃和37℃。根据试验数据,四种沥青在不同外加应变下的沥青疲劳寿命计算结果如表7所示。In this example, a linear amplitude scan test was performed on the PAV-aged asphalt according to the AASHTO TP 101-12 standard. Four asphalts were selected for testing, namely PG 70-22#1, PG 70-22#2, PG 70-22#R1, PG70-22#R2, # indicates different batches, R indicates after modification, the test temperatures are 25°C and 43°C, and the predicted temperatures are 31°C and 37°C. According to the test data, the calculation results of the asphalt fatigue life of the four kinds of asphalt under different applied strains are shown in Table 7.

表7 四种沥青在不同应变水平时的疲劳寿命 Table 7 Fatigue life of four asphalts at different strain levels

利用现有复合模量的试验数据,基于时温等效原理,获得参考温度下的复合模量主曲线,以及任意温度下的缩减频率Using the existing experimental data of composite modulus and based on the time-temperature equivalence principle, the composite modulus master curve at the reference temperature and the reduction frequency at any temperature are obtained .

本实施例中,采用第一优化方法得到的第一模型参数如下表8所示:In this embodiment, the first model parameters obtained by the first optimization method are As shown in Table 8 below:

表8 四种沥青的疲劳寿命预测模型参数 Table 8 Fatigue life prediction model parameters of four kinds of asphalt

本实施例中,采用第二优化方法得到的第二模型参数如下表9所示:In this embodiment, the second model parameters obtained by the second optimization method are As shown in Table 9 below:

表9四种沥青的疲劳寿命预测模型参数 Table 9 Fatigue life prediction model parameters of four kinds of asphalt

将优化后的预测模型的第一模型参数和第二模型参数以及需要预测的温度(31℃、37℃)下的缩减频率代入预测模型的表示函数中,得到预测温度下的疲劳寿命。The first and second model parameters of the optimized prediction model and the reduction frequency at the temperatures to be predicted (31°C, 37°C) Substituting into the representation function of the prediction model, the fatigue life at the predicted temperature is obtained.

为了验证模型的准确性,需要对PG 70-22#1、PG 70-22#2、PG 70-22#R1、PG 70-22#R2进行31℃、37℃下的疲劳寿命实测。在31℃和37℃下,四种沥青实测疲劳寿命与预测疲劳寿命的相关性如图5所示。图5中圆形表示的数据点是在两个实测温度下的模型预测值,而三角形表示的数据点是来自两个中间温度的实测结果,模拟预测值与实测值吻合较好,该模型可以精确预测不同温度下的疲劳寿命。In order to verify the accuracy of the model, actual fatigue life measurements at 31°C and 37°C are required for PG 70-22#1, PG 70-22#2, PG 70-22#R1, and PG 70-22#R2. The correlation between the measured fatigue life and the predicted fatigue life of the four asphalts at 31°C and 37°C is shown in Figure 5. The data points represented by circles in Figure 5 are model prediction values at two measured temperatures, while the data points represented by triangles are measured results from two intermediate temperatures. The simulated prediction values are in good agreement with the measured values. The model can Accurately predict fatigue life at different temperatures.

以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the present invention. within the scope of protection.

Claims (9)

1. The method for predicting the fatigue life of asphalt at different temperatures is characterized by comprising the following steps:
s1, setting an experimental temperature, wherein the experimental temperature comprises a test temperature and a prediction temperature, acquiring composite modulus of asphalt at the experimental temperature, obtaining composite modulus actual measurement data of the asphalt, and performing a linear amplitude scanning test on the asphalt at the test temperature to obtain fatigue life actual measurement data of the asphalt;
s2, establishing a prediction model, wherein the prediction model comprises model parameters, and dividing the model parameters into two types, namely a first model parameter and a second model parameter;
in step S2, the representation function of the prediction model is:
in the method, in the process of the invention,for fatigue life prediction data, < >>First model parameters for describing the compound die of asphalt at different temperaturesQuantity (S)>Is a second model parameter describing fatigue life of asphalt at different temperatures, +.>For external strain->To reduce the frequency;
s3, selecting a reference temperature from experimental temperatures, obtaining a composite modulus main curve at the reference temperature and a reduced frequency at other experimental temperatures based on a time-temperature equivalent principle by utilizing composite modulus measured data, and iteratively optimizing first model parameters according to a first optimization method based on the composite modulus measured data, the composite modulus main curve at the reference temperature and the reduced frequency at other experimental temperatures to obtain optimized first model parameters, wherein the first optimization method is an optimization method based on a least square method principle;
s4, iteratively optimizing second model parameters based on fatigue life actual measurement data according to a second optimization method to obtain optimized second model parameters, wherein the second optimization method is an optimization method based on a difference-by-difference method principle;
and S5, updating the prediction model by using the optimized first model parameter and the optimized second model parameter to obtain a final prediction model, and predicting asphalt at a prediction temperature by using the final prediction model to obtain a prediction result of fatigue life.
2. A method for predicting fatigue life of asphalt at different temperatures as defined in claim 1, wherein step S3 comprises:
s31, selecting a reference temperature from experimental temperatures, and acquiring composite modulus measured data at the reference temperature, wherein the data comprise the change of loss modulus and storage modulus along with loading frequency;
s32, processing and analyzing the composite modulus measured data at the reference temperature to obtain a fitting curve of the loss modulus and the storage modulus along with the change of the loading frequency, namely a composite modulus main curve at the reference temperature;
s33, according to a time-temperature equivalent principle, converting a composite modulus main curve at a reference temperature into other experimental temperatures to acquire equivalent data, and obtaining a reduced frequency at the other experimental temperatures;
and S34, carrying out iterative optimization on the first model parameters by adopting a first optimization method based on the measured data of the composite modulus, the main curve of the composite modulus at the reference temperature and the reduction frequency at other experimental temperatures to obtain the optimized first model parameters.
3. A method for predicting fatigue life of asphalt at different temperatures as defined in claim 2, wherein step S34 comprises:
s341 defines a first objective function and initializes a first model parameter;
s342, calculating a value of a first objective function under the current first model parameter according to the actual measurement data of the composite modulus;
s343, calculating a sensitive matrix of the first objective function to the first model parameter, and calculating an adjustment parameter of the first model parameter according to the sensitive matrix and the gradient of the value of the first objective function;
s344, superposing the calculated adjustment parameters to the current first model parameters to update the current first model parameters;
s345 calculates a new value of the first objective function by using the updated first model parameters;
s346 judges whether or not the value of the new first objective function converges:
if the first model parameters are converged, stopping iteration, and outputting the first model parameters obtained through final optimization as optimized first model parameters;
if not, the parameters of the sensitive matrix are adjusted according to the change condition of the value of the first objective function, and the step S343 is proceeded.
4. A method for predicting fatigue life of asphalt at different temperatures as defined in claim 3, wherein the first objective function is:
in the method, in the process of the invention,for the value of the first objective function, +.>Is the predicted data of complex modulus, +.>Is the measured data of the composite modulus, and N is the number of data points.
5. The method of claim 4, wherein step S343 comprises:
for each first model parameter, calculating the partial derivative of the first objective function on the single first model parameter to obtain a sensitive matrixJ
Computing gradients of a first objective function using gradient operators
Based on a sensitivity matrixJAnd gradientCalculating an adjustment parameter:
in the method, in the process of the invention,in order to adjust the parameters of the device,Jis a sensitive matrix->Transpose of sensitive matrix +.>As a parameter of the matrix,Iis a matrix of units which is a matrix of units,is a gradient.
6. A method for predicting fatigue life of asphalt at different temperatures as defined in claim 1, wherein step S4 comprises:
s41 defining a second objective functionInitializing second model parameters;
s42, setting the maximum iteration times and the adjustment step length;
s43, selecting a second model parameter as a target parameter;
s44, superposing the current value of the target parameter with an adjustment step length to obtain an adjustment value of the target parameter;
s45, according to the actual measurement data of the fatigue life, calculating corresponding second objective function values by using the current value of the objective parameter and the adjustment value of the objective parameterAnd->
S46 comparisonAnd->Determining the current value of the target parameter and the adjustment step size of the next iteration, and proceeding to step S44 until reaching the convergence condition or the maximum iterationThe number of times;
s47, repeating the steps S43-S46, and optimizing each second model parameter to obtain optimized second model parameters.
7. A method of predicting fatigue life of asphalt at different temperatures as recited in claim 6, wherein the second objective function is:
in the method, in the process of the invention,for the second objective function value, < >>For fatigue life measured data, < >>For the average of fatigue life measured data, +.>For fatigue life prediction data, < >>Is the average of the fatigue life prediction data.
8. The method for predicting fatigue life of asphalt at different temperatures as defined in claim 6, wherein in step S46, the comparison is madeAnd->Determining a new current value of the target parameter for the next iteration, comprising:
if it isTaking the adjustment value of the target parameter as the current value of the target parameter of the next iteration, and keeping the adjustment step length unchanged;
if it isAnd keeping the current value of the target parameter unchanged, and subtracting a step difference item from the adjustment step length to serve as a new adjustment step length of the next iteration.
9. The method for predicting fatigue life of asphalt at different temperatures as defined in claim 6, wherein step S1 further comprises:
defining a fatigue failure criterion according to the composite modulus and the phase angle, and calculating to obtain fatigue life actual measurement data according to the result of the linear amplitude scanning test and the fatigue failure criterion;
wherein the fatigue failure criterion is that the fatigue failure reaches 35% of the initial fatigue factor, the fatigue failure is that the asphalt sample has cracks or breaks, and the initial fatigue factor is that,/>Is complex shear modulus>Is the phase angle.
CN202311730215.4A 2023-12-15 2023-12-15 A method for predicting the fatigue life of asphalt at different temperatures Active CN117408095B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311730215.4A CN117408095B (en) 2023-12-15 2023-12-15 A method for predicting the fatigue life of asphalt at different temperatures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311730215.4A CN117408095B (en) 2023-12-15 2023-12-15 A method for predicting the fatigue life of asphalt at different temperatures

Publications (2)

Publication Number Publication Date
CN117408095A true CN117408095A (en) 2024-01-16
CN117408095B CN117408095B (en) 2024-02-13

Family

ID=89500400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311730215.4A Active CN117408095B (en) 2023-12-15 2023-12-15 A method for predicting the fatigue life of asphalt at different temperatures

Country Status (1)

Country Link
CN (1) CN117408095B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2299417C2 (en) * 2005-07-12 2007-05-20 Сергей Константинович Илиополов Mode of evaluation of fatigue of asphalt concrete at cyclical dynamic impacts
KR20110108512A (en) * 2010-03-29 2011-10-06 충남대학교산학협력단 Frequency Asphalt Modulus Determination Method for Master Curve Determination
US20120253704A1 (en) * 2011-03-29 2012-10-04 University Of Tennessee Research Foundation Method and apparatus for fatigue and viscoeleastic property testing of asphalt mixtures using a loaded wheel tester
CN110929940A (en) * 2019-11-26 2020-03-27 太原理工大学 Method for predicting dynamic modulus of asphalt mixture and application thereof
WO2023284112A1 (en) * 2021-07-15 2023-01-19 武汉理工大学 Method and apparatus for determining asphalt pavement modulus gradient, and electronic device
CN116165082A (en) * 2023-02-24 2023-05-26 哈尔滨工业大学 A quick method for obtaining the strain-fatigue life curve of asphalt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2299417C2 (en) * 2005-07-12 2007-05-20 Сергей Константинович Илиополов Mode of evaluation of fatigue of asphalt concrete at cyclical dynamic impacts
KR20110108512A (en) * 2010-03-29 2011-10-06 충남대학교산학협력단 Frequency Asphalt Modulus Determination Method for Master Curve Determination
US20120253704A1 (en) * 2011-03-29 2012-10-04 University Of Tennessee Research Foundation Method and apparatus for fatigue and viscoeleastic property testing of asphalt mixtures using a loaded wheel tester
CN110929940A (en) * 2019-11-26 2020-03-27 太原理工大学 Method for predicting dynamic modulus of asphalt mixture and application thereof
WO2023284112A1 (en) * 2021-07-15 2023-01-19 武汉理工大学 Method and apparatus for determining asphalt pavement modulus gradient, and electronic device
CN116165082A (en) * 2023-02-24 2023-05-26 哈尔滨工业大学 A quick method for obtaining the strain-fatigue life curve of asphalt

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PEERAPONG JITSANGIAM ET AL: "New theoretical framework for temperature-effect integration into asphalt concrete pavement life prediction with respect to Australian pavement conditions", ROAD MATERIALS AND PAVEMENT DESIGN, 31 December 2020 (2020-12-31), pages 1 - 19 *
YUAN ZHANG ET AL: "Increasing the Service Life of Porous Asphalt with Rejuvenators", SUSTAINABLE CONSTRUCTION MATERIALS, 31 December 2012 (2012-12-31), pages 316 - 328 *
刘锋 等: "沥青混合料组成差异对沥青路面结构疲劳寿命的影响分析", 武汉理工大学学报(交通科学与工程版), 31 December 2021 (2021-12-31), pages 930 - 934 *
邹桂莲 等: "旧普通沥青改性热再生辨识性指标研究", 广西大学学报(自然科学版), 30 April 2023 (2023-04-30), pages 312 - 319 *

Also Published As

Publication number Publication date
CN117408095B (en) 2024-02-13

Similar Documents

Publication Publication Date Title
CN110702886B (en) Method for inverting parameters of mass concrete material
CN111625988A (en) Bridge health management analysis and prediction system and method based on deep learning
CN104809311B (en) A kind of structural member method for predicting residual useful life based on multifactor fusion amendment
CN108344663B (en) Test method for multi-stage creep damage of asphalt
Zhu et al. Probabilistic fatigue assessment of notched components under size effect using generalized weakest-link model
CN109682954A (en) Multi-modal Assessment of Concrete Intensity method and system
CN111832099A (en) Bridge Structure Damage Identification Method Based on FBG and Finite Element Model Correction
CN111209695A (en) A LSTM-based Structure Dynamic Response Prediction Method
CN113326550B (en) Real-time verification method for vibration quality of concrete precast bridge
CN113607580A (en) Metal component fatigue test method and residual life prediction method
CN111859743A (en) Method and equipment for dynamic displacement estimation of structures based on acceleration response
CN116384193A (en) Crack propagation prediction method based on digital twin technology and data fusion
CN111143768A (en) An Air Quality Prediction Algorithm Based on ARIMA-SVM Combination Model
CN106354944A (en) Method for recognizing mill foundation boundary supporting rigidity based on vibration modality
CN117408095B (en) A method for predicting the fatigue life of asphalt at different temperatures
CN104165795B (en) A kind of residue anti-bending bearing capacity assay method of ancient building wooden frame
CN106446384B (en) A damage identification method for bridge crane main girder structure
CN117408090B (en) Rubber modified asphalt main curve characterization method based on combined model
RU2699918C1 (en) Diagnostic method of technical state of buildings and structures
CN115270238A (en) Prediction method of bridge static behavior based on dynamic load
Muhit et al. A framework for digital twinning of masonry arch bridges
CN118942595A (en) Polymer material life prediction method and system based on path planning algorithm
CN117610374A (en) Method for rapidly evaluating earthquake resistance of reinforced concrete structure after earthquake damage
CN114329714B (en) A rapid structural health monitoring method for all stages of construction and operation of prefabricated super-high-rise structures
Li et al. Model Updating Method for Jacket Platform Considering Different Component Degradation Based on Deep Learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20240116

Assignee: Huayun Tongda Technology Group Co.,Ltd.

Assignor: SOUTH CHINA University OF TECHNOLOGY

Contract record no.: X2024980032194

Denomination of invention: A prediction method for fatigue life of asphalt at different temperatures

Granted publication date: 20240213

License type: Common License

Record date: 20241204

EE01 Entry into force of recordation of patent licensing contract
OL01 Intention to license declared
OL01 Intention to license declared