CN117399063A - Catalyst for producing gasoline by hydrocracking and preparation method and application thereof - Google Patents
Catalyst for producing gasoline by hydrocracking and preparation method and application thereof Download PDFInfo
- Publication number
- CN117399063A CN117399063A CN202210777954.8A CN202210777954A CN117399063A CN 117399063 A CN117399063 A CN 117399063A CN 202210777954 A CN202210777954 A CN 202210777954A CN 117399063 A CN117399063 A CN 117399063A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- molecular sieve
- hours
- pore volume
- zsm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 96
- 238000002360 preparation method Methods 0.000 title claims abstract description 49
- 239000003502 gasoline Substances 0.000 title claims abstract description 37
- 238000004517 catalytic hydrocracking Methods 0.000 title claims abstract description 22
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000002808 molecular sieve Substances 0.000 claims abstract description 79
- 239000011148 porous material Substances 0.000 claims abstract description 62
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- 238000001035 drying Methods 0.000 claims abstract description 15
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011230 binding agent Substances 0.000 claims abstract description 13
- 150000002739 metals Chemical class 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 40
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 35
- 229910052710 silicon Inorganic materials 0.000 claims description 35
- 239000010703 silicon Substances 0.000 claims description 35
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 29
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 15
- 239000003513 alkali Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 230000003197 catalytic effect Effects 0.000 claims description 9
- 238000010335 hydrothermal treatment Methods 0.000 claims description 9
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 6
- 238000004523 catalytic cracking Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000002283 diesel fuel Substances 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 230000014759 maintenance of location Effects 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000969 carrier Substances 0.000 abstract 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 45
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 19
- 238000003756 stirring Methods 0.000 description 17
- 239000000243 solution Substances 0.000 description 14
- 239000008367 deionised water Substances 0.000 description 13
- 229910021641 deionized water Inorganic materials 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 238000005984 hydrogenation reaction Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000002425 crystallisation Methods 0.000 description 8
- 230000008025 crystallization Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 235000019353 potassium silicate Nutrition 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 7
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- -1 small molecule alkyl benzene Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 244000275012 Sesbania cannabina Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000219793 Trifolium Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/10—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
- C10G47/12—Inorganic carriers
- C10G47/16—Crystalline alumino-silicate carriers
- C10G47/20—Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/16—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J29/166—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/78—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J29/7892—MTT-type, e.g. ZSM-23, KZ-1, ISI-4 or EU-13
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/30—Physical properties of feedstocks or products
- C10G2300/305—Octane number, e.g. motor octane number [MON], research octane number [RON]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
Abstract
本发明公开一种加氢裂化生产汽油的催化剂及其制备方法和应用。所述催化剂的性质如下:比表面积是350~600 m2/g,孔容是0.4~0.7 mL/g,所述催化剂中孔径为3‑6 nm介孔占总孔容35~60%,6~15 nm介孔占总孔容30~55%,以最终催化剂重量为基准,含有10wt%~30wt%以氧化物计的活性金属,70wt%~90wt%载体。所述催化剂的制备方法:包括如下步骤:首先制备ZSM‑23分子筛;然后将制备的ZSM‑23分子筛、Y分子筛、无定形硅铝和粘合剂混合、成型,经干燥、焙烧后制成催化剂载体;最后催化剂载体上引入活性金属,经干燥、焙烧后制得最终催化剂。该催化剂适用于催化柴油加氢裂化生产汽油,具有汽油收率高和汽油辛烷值高的特点。The invention discloses a catalyst for producing gasoline through hydrocracking and its preparation method and application. The properties of the catalyst are as follows: the specific surface area is 350~600 m2/g, the pore volume is 0.4~0.7 mL/g, the pore diameter of the catalyst is 3-6 nm, and the mesopores account for 35~60% of the total pore volume, 6~ The 15 nm mesopores account for 30~55% of the total pore volume. Based on the final catalyst weight, they contain 10wt%~30wt% active metals calculated as oxides and 70wt%~90wt% carriers. The preparation method of the catalyst includes the following steps: first prepare ZSM-23 molecular sieve; then mix and shape the prepared ZSM-23 molecular sieve, Y molecular sieve, amorphous silica aluminum and binder, and then dry and roast to prepare the catalyst. Carrier; finally, active metal is introduced onto the catalyst carrier, and the final catalyst is obtained after drying and roasting. The catalyst is suitable for catalyzing the hydrocracking of diesel to produce gasoline, and has the characteristics of high gasoline yield and high gasoline octane number.
Description
技术领域Technical field
本发明涉及一种加氢裂化生产汽油的催化剂及其制备方法和应用,具体地说涉及一种催化柴油加氢裂化生产高质量汽油的催化剂及其制备方法和应用。The present invention relates to a catalyst for hydrocracking diesel to produce gasoline and its preparation method and application. Specifically, it relates to a catalyst for catalyzing diesel hydrocracking to produce high-quality gasoline and its preparation method and application.
背景技术Background technique
催化裂化工艺是炼油工业中重油轻质化的一种主要工艺技术,在国内炼油企业中占据了比较重要的地位。随着全球石油日益重质化,FCC装置的处理能力也不断提高,产生了大量的硫、氮、芳烃含量高,十六烷值或十六烷指数低,且安定性极差的催化柴油。为提高石油资源的利用率,提高汽柴油燃料的整体质量水平,实现产品调合最优化和产品价值最大化的目标,满足国内对清洁燃料不断增长的需求,需要找到一种合适的方法对其进行加工处也理以满足企业产品出厂的要求,调整汽柴油产品结构,将催化柴油加氢转化生产成高辛烷值汽油是近年来出现的有效缓解炼油企业催化柴油出厂困难,同时提高企业效益的有效途径,具有很好的应用前景。The catalytic cracking process is a major process technology for lightening heavy oil in the oil refining industry, and it occupies a relatively important position among domestic oil refining enterprises. As global oil becomes increasingly heavy, the processing capacity of FCC units continues to increase, producing a large amount of catalytic diesel with high sulfur, nitrogen, and aromatic content, low cetane number or cetane index, and extremely poor stability. In order to improve the utilization rate of petroleum resources, improve the overall quality level of gasoline and diesel fuel, achieve the goals of product blending optimization and product value maximization, and meet the growing domestic demand for clean fuel, it is necessary to find a suitable method for its Processing and processing to meet the requirements for enterprise products to leave the factory, adjusting the structure of gasoline and diesel products, and hydrogenating catalytic diesel to produce high-octane gasoline have emerged in recent years to effectively alleviate the difficulties of catalytic diesel in refineries and improve corporate efficiency. It is an effective way and has good application prospects.
加氢裂化催化剂是由加氢功能和裂化功能组成的双功能催化剂,其中加氢功能是由加氢活性金属提供,提高催化剂的加氢性能,有利于芳烃的饱和;目前,大多数加氢裂化催化剂中的裂解中心由分子筛提供,而此类催化剂中起裂化作用的关键组分通常为Y、β分子筛。Hydrocracking catalysts are bifunctional catalysts composed of hydrogenation function and cracking function. The hydrogenation function is provided by hydrogenation active metals, which improves the hydrogenation performance of the catalyst and is conducive to the saturation of aromatics; currently, most hydrocracking The cracking center in the catalyst is provided by molecular sieves, and the key components for cracking in such catalysts are usually Y and β molecular sieves.
β分子筛芳烃饱和能力不足,导致汽油辛烷值低。EP20110834653公开了一种多环芳烃加氢转化催化剂的制备方法,该催化剂载体由β分子筛和拟薄水铝石组成,采用常规的方法添加第VIB族和第VIII族活性金属组分,但催化剂同样对汽油组分饱和能力较强,不利于催化柴油加氢转化生产高辛烷值汽油过程。Beta molecular sieve has insufficient aromatic saturation capacity, resulting in low gasoline octane number. EP20110834653 discloses a method for preparing a polycyclic aromatic hydrocarbon hydrogenation conversion catalyst. The catalyst carrier is composed of beta molecular sieve and pseudo-boehmite. The active metal components of Group VIB and Group VIII are added using conventional methods, but the catalyst is the same It has a strong saturation ability for gasoline components and is not conducive to the process of catalytic diesel hydroconversion to produce high-octane gasoline.
CN109777714公开了催化柴油加氢转化生产高辛烷值汽油的方法,采用的种Y型分子筛的加氢裂化催化剂,开环性能高,对富含芳烃的组分选择性裂解性能高等优点,可以有效控制原料中芳烃加氢饱和的深度将原料中部分芳烃转化并富集到石脑油馏分中生产高辛烷值汽油调合组分 。CN109777714 discloses a method for catalytic diesel hydroconversion to produce high-octane gasoline. The Y-type molecular sieve hydrocracking catalyst used has the advantages of high ring-opening performance and high selective cracking performance of components rich in aromatic hydrocarbons, which can effectively Control the depth of hydrogenation saturation of aromatic hydrocarbons in the raw material to convert part of the aromatic hydrocarbons in the raw material and enrich it into the naphtha fraction to produce high-octane gasoline blending components.
US2010116712公开了一种催化柴油加氢转化方法,该方法采用常规裂化催化剂,原料油首先经过预处理后与裂化催化剂接触,生产清洁柴油和高辛烷值汽油。US2010116712 discloses a catalytic diesel hydrogenation conversion method. This method uses a conventional cracking catalyst. The feed oil is first pretreated and then contacted with the cracking catalyst to produce clean diesel and high-octane gasoline.
上述催化剂用于催化柴油生产汽油加氢裂化过程时,普遍存在不同程度的汽油产品收率低,辛烷值低的问题。When the above catalyst is used to catalyze the hydrocracking process of diesel to produce gasoline, there are common problems of low gasoline product yield and low octane number to varying degrees.
发明内容Contents of the invention
针对现有技术中存在的问题,本发明提供一种加氢裂化生产汽油的催化剂及其制备方法和应用。该催化剂适用于催化柴油加氢裂化生产汽油,具有汽油收率高和汽油辛烷值高的特点。In view of the problems existing in the prior art, the present invention provides a catalyst for hydrocracking to produce gasoline and its preparation method and application. The catalyst is suitable for catalyzing the hydrocracking of diesel to produce gasoline, and has the characteristics of high gasoline yield and high gasoline octane number.
本发明一种加氢裂化生产汽油的催化剂,所述催化剂的性质如下:比表面积是350~600 m2/g,孔容是0.4~0.7 mL/g,所述催化剂中孔径为3-6 nm介孔占总孔容35~60%,6~15 nm介孔占总孔容30~55%;优选为3-6 nm介孔占总孔容45~55%,6~15 nm(不包括6nm)介孔占总孔容35~45%;以最终催化剂重量为基准,含有10wt%~30wt%以氧化物计的活性金属,余量为载体。The present invention is a catalyst for hydrocracking to produce gasoline. The properties of the catalyst are as follows: the specific surface area is 350-600 m2 /g, the pore volume is 0.4-0.7 mL/g, and the pore diameter of the catalyst is 3-6 nm. Mesopores account for 35~60% of the total pore volume, and 6~15 nm mesopores account for 30~55% of the total pore volume; preferably, 3-6 nm mesopores account for 45~55% of the total pore volume, and 6~15 nm (excluding 6nm) mesopores account for 35~45% of the total pore volume; based on the final catalyst weight, it contains 10wt%~30wt% of active metals calculated as oxides, and the remainder is the carrier.
本发明催化剂中,活性金属包括VIB族金属、VIII族金属至少一种。以催化剂的重量为基准,VIB族金属的含量以氧化物计为 10wt%~20wt%。VIII族金属的含量以氧化物计为2wt%~10wt%。所述VIB族金属包括W和/或Mo;所述VIII族金属包括Co和/或Ni。In the catalyst of the present invention, the active metal includes at least one of Group VIB metal and Group VIII metal. Based on the weight of the catalyst, the content of VIB group metal is 10wt%~20wt% in terms of oxide. The content of Group VIII metal is 2wt%~10wt% in terms of oxide. The Group VIB metal includes W and/or Mo; the Group VIII metal includes Co and/or Ni.
本发明催化剂中,以载体质量为基准,ZSM-23分子筛的含量为3~15wt%,Y分子筛的含量为30~60wt%;所述ZSM-23分子筛中孔径为3~6nm的介孔孔容占分子筛总孔容45-90%,优选为50-85%,进一步优选为55-81%。In the catalyst of the present invention, based on the quality of the carrier, the content of ZSM-23 molecular sieve is 3 to 15 wt%, and the content of Y molecular sieve is 30 to 60 wt%; the ZSM-23 molecular sieve has a mesopore volume with a pore diameter of 3 to 6 nm. It accounts for 45-90% of the total pore volume of the molecular sieve, preferably 50-85%, and further preferably 55-81%.
本发明催化剂中,所述Y型分子筛为改性Y型分子筛,所述Y型分子筛SiO2/Al2O3摩尔比为10~25;优选 15-20。In the catalyst of the present invention, the Y-type molecular sieve is a modified Y-type molecular sieve, and the Y-type molecular sieve SiO 2 /Al 2 O 3 molar ratio is 10 to 25; preferably 15 to 20.
本发明催化剂中,所述ZSM-23分子筛的性质如下:比表面积为300-430m2/g,孔容为0.31-0.5cm3/g,微孔比表面积为50-170m2/g,介孔比表面积为150-310m2/g;优选地,比表面积为320-405m2/g,孔容为0.34-0.45cm3/g,微孔比表面积为80-140m2/g,介孔比表面积为261-295m2/g。In the catalyst of the present invention, the properties of the ZSM-23 molecular sieve are as follows: specific surface area is 300-430m 2 /g, pore volume is 0.31-0.5cm 3 /g, micropore specific surface area is 50-170m 2 /g, mesopores The specific surface area is 150-310m 2 /g; preferably, the specific surface area is 320-405m 2 /g, the pore volume is 0.34-0.45cm 3 /g, the micropore specific surface area is 80-140m 2 /g, and the mesopore specific surface area is 261-295m 2 /g.
本发明催化剂中,所述ZSM-23分子筛的相对结晶度为95~120 %,所述分子筛经600℃水蒸气水热处理2小时后的相对结晶度保持度为95~100%。In the catalyst of the present invention, the relative crystallinity of the ZSM-23 molecular sieve is 95 to 120%, and the relative crystallinity retention of the molecular sieve after hydrothermal treatment with water vapor at 600°C for 2 hours is 95 to 100%.
本发明催化剂中,以载体质量为基准,大孔氧化铝的含量为20~60wt%,粘合剂的含量为10~30wt%。In the catalyst of the present invention, based on the quality of the carrier, the content of macroporous alumina is 20 to 60 wt%, and the content of the binder is 10 to 30 wt%.
本发明催化剂中,所述的大孔氧化铝性质如下:孔容为0.6~1.2mL/g,优选为0.8~1.0 mL/g,比表面积为300~600 m2/g,优选为400~500 m2/g。In the catalyst of the present invention, the properties of the macroporous alumina are as follows: pore volume is 0.6~1.2mL/g, preferably 0.8~1.0 mL/g, and specific surface area is 300~600 m2 /g, preferably 400~500 m 2 /g.
本发明催化剂中,所述的粘合剂可以采用本领域中常用的粘合剂,优选采用小孔氧化铝。所用的小孔氧化铝孔容为0.3~0.5 mL/g,比表面积为200~400m2/g。In the catalyst of the present invention, the binder can be a binder commonly used in this field, preferably small-pore alumina. The small-pore alumina used has a pore volume of 0.3 to 0.5 mL/g and a specific surface area of 200 to 400 m 2 /g.
一种加氢裂化生产汽油的催化剂的制备方法:包括如下步骤:首先制备ZSM-23分子筛;然后将制备的ZSM-23分子筛、Y分子筛、无定形硅铝和粘合剂混合、成型,经干燥、焙烧后制成催化剂载体;最后催化剂载体上引入活性金属,经干燥、焙烧后制得最终催化剂。ZSM-23分子筛的制备参照CN202210011767.9的制备方法。A method for preparing a catalyst for hydrocracking gasoline production: including the following steps: first prepare ZSM-23 molecular sieve; then mix and shape the prepared ZSM-23 molecular sieve, Y molecular sieve, amorphous silica aluminum and binder, and dry , and then calcined to make a catalyst carrier; finally, active metal is introduced onto the catalyst carrier, and the final catalyst is obtained after drying and calcining. The preparation of ZSM-23 molecular sieve refers to the preparation method of CN202210011767.9.
所述ZSM-23分子筛的制备,包括如下步骤:The preparation of the ZSM-23 molecular sieve includes the following steps:
(1)制备或者选取无定形二氧化硅;(1) Preparation or selection of amorphous silica;
(2)对无定形二氧化硅进行碱处理;(2) Alkali treatment of amorphous silica;
(3)以碱处理后的无定形二氧化硅为硅源制备ZSM-23分子筛;(3) Prepare ZSM-23 molecular sieve using amorphous silica after alkali treatment as the silicon source;
上述方法步骤(1)中,所述无定形二氧化硅,比表面积为600~1300 m2/g,优选为700~1200 m2/g;孔体积为0.6~1.3 cm3/g,优选为0.7~1.2 cm3/g;孔直径为1~15 nm,优选为2~10 nm。In step (1) of the above method, the amorphous silica has a specific surface area of 600~1300 m2 /g, preferably 700~1200 m2 /g; and a pore volume of 0.6~1.3 cm3 /g, preferably 0.7~1.2 cm 3 /g; the pore diameter is 1~15 nm, preferably 2~10 nm.
上述方法步骤(1)中,所述无定形二氧化硅制备过程如下:将硅源加入到去离子水中分散均匀,再加入表面活性剂搅拌;将溶液pH调节到1~5,优选为1.5~4后,水浴加热处理一段时间;过滤、洗涤、干燥、焙烧后制得无定形介孔二氧化硅。In step (1) of the above method, the preparation process of the amorphous silica is as follows: add the silicon source to deionized water to disperse evenly, then add surfactant and stir; adjust the pH of the solution to 1~5, preferably 1.5~ 4, heat treatment in a water bath for a period of time; filter, wash, dry, and roast to obtain amorphous mesoporous silica.
上述方法中,所述无定形二氧化硅制备过程中,所述的硅源为无机硅源,优选为水玻璃、硅溶胶或白炭黑中的一种或几种。In the above method, during the preparation process of amorphous silica, the silicon source is an inorganic silicon source, preferably one or more of water glass, silica sol or white carbon black.
上述方法中,所述无定形二氧化硅制备过程中,所述的表面活性剂为十六烷基三甲基溴/氯化铵、十八烷基三甲基氯/溴化铵中的一种或几种。In the above method, during the preparation process of the amorphous silica, the surfactant is one of cetyltrimethylbromide/ammonium chloride and octadecyltrimethylchloride/ammonium bromide. species or several species.
上述方法中,所述无定形二氧化硅制备过程中,所述硅源以SiO2计与表面活性剂的摩尔比为1:(0.02~0.3),优选为1 : (0.05~0.2)。In the above method, during the preparation process of the amorphous silica, the molar ratio of the silicon source to the surfactant in terms of SiO 2 is 1: (0.02~0.3), preferably 1: (0.05~0.2).
上述方法中,所述无定形二氧化硅制备过程中,所述硅源以SiO2计与去离子水的摩尔比为1:(30~300),优选为1 : (50~220);In the above method, during the preparation process of the amorphous silica, the molar ratio of the silicon source to deionized water in terms of SiO 2 is 1: (30~300), preferably 1: (50~220);
上述方法中,所述无定形二氧化硅制备过程中,加热温度为30~80℃,加热时间为0.5~8h;优选地,加热温度为40~70℃,加热时间为3~6h。In the above method, during the preparation process of amorphous silica, the heating temperature is 30~80°C and the heating time is 0.5~8h; preferably, the heating temperature is 40~70°C and the heating time is 3~6h.
上述方法步骤(2)中,所述碱处理为将步骤(1)制备的无定形二氧化硅加入碱性溶液中,进行加热搅拌。In step (2) of the above method, the alkali treatment is to add the amorphous silica prepared in step (1) to an alkaline solution, and heat and stir.
上述方法中,所述碱处理采用无机碱处理,所述无机碱为为氢氧化钠、氢氧化钾或氨水中的一种或几种。In the above method, the alkali treatment adopts inorganic alkali treatment, and the inorganic alkali is one or more of sodium hydroxide, potassium hydroxide or ammonia water.
上述方法中,所述碱处理加热搅拌时间为0.5~12 h,优选为2~8 h;加热温度为25~60 ℃,优选为30~50 ℃。In the above method, the alkali treatment heating and stirring time is 0.5~12 h, preferably 2~8 h; the heating temperature is 25~60°C, preferably 30~50°C.
上述方法中,无定形二氧化硅以SiO2 计与无机碱摩尔比为0.04~0.15,优选为0.05~0.13。In the above method, the molar ratio of amorphous silica to inorganic base in terms of SiO 2 is 0.04~0.15, preferably 0.05~0.13.
上述方法步骤(3)中,以碱处理后的无定形二氧化硅为硅源,将所述硅源同铝源、碱源(MOH)、模板剂(R)、水混合,形成凝胶,经晶化、过滤、洗涤、干燥、焙烧后制得HZSM-23分子筛。In step (3) of the above method, amorphous silica after alkali treatment is used as the silicon source, and the silicon source is mixed with an aluminum source, an alkali source (MOH), a template agent (R), and water to form a gel. HZSM-23 molecular sieve is obtained after crystallization, filtration, washing, drying and roasting.
优选地,凝胶体系中硅源(以SiO2计):铝源(以Al2O3计):碱源(以氢氧化物计):模板剂: H2O的摩尔比为1: (0.003~0.03) : (0.03~0.3) :(0.05~2):(10~90);进一步优选地,凝胶体系中硅源(以SiO2计):铝源(以Al2O3计):碱源(以氢氧化物计) :模板剂: H2O的摩尔比为1: (0.005~0.02) : (0.03~0.15) :(0.08~1.6):(20~70);Preferably, the molar ratio of silicon source (calculated as SiO 2 ): aluminum source (calculated as Al 2 O 3 ): alkali source (calculated as hydroxide): template agent: H 2 O in the gel system is 1: ( 0.003~0.03): (0.03~0.3): (0.05~2): (10~90); Further preferably, the silicon source (calculated as SiO 2 ) in the gel system: the aluminum source (calculated as Al 2 O 3 ) : Alkali source (calculated as hydroxide) : Template: The molar ratio of H 2 O is 1: (0.005~0.02) : (0.03~0.15) : (0.08~1.6): (20~70);
优选地,凝胶于150~200℃晶化24~96h,优选晶化温度为170~180℃,晶化时间为36~72h后,经过滤、洗涤、干燥、焙烧后制得ZSM-23分子筛。Preferably, the gel is crystallized at 150~200°C for 24~96h, the preferred crystallization temperature is 170~180°C, and the crystallization time is 36~72h. After filtering, washing, drying and roasting, ZSM-23 molecular sieve is obtained. .
上述方法步骤(3)中,所述的干燥温度为80~120 ℃,干燥时间为 4~12 h,焙烧温度为500~600 ℃,焙烧时间 2~6 h。In step (3) of the above method, the drying temperature is 80~120°C, the drying time is 4~12 h, the roasting temperature is 500~600°C, and the roasting time is 2~6 h.
本发明ZSM-23分子筛的制备过程中,初期在表面活性剂的辅助下制备了介孔型无定形二氧化硅,将其作为后期合成ZSM-23分子筛的硅源,该过程生成的无定形二氧化硅既具有介孔结构,又没有高度晶化成稳定的晶型,在进一步的低浓度碱性溶液中处理一段时间后,部分—Si—O—键打开,有助于之后分子筛结构中—Si—O—Al—键的生成,但其中的大部分介孔结构得到保留,在后期微孔模板剂的作用下,在适宜的ZSM-23分子筛合成体系中,又生成了微孔结构,同时介孔结构进一步晶化稳定,从而制得了微介孔复合的ZSM-23分子筛。本发明方法合成的ZSM-23分子筛既具有微孔结构可调变的酸性质,又具有介孔结构的大孔道特性,比表面积及孔容高,同时结晶度高、热稳定性及水热稳定性强。In the preparation process of ZSM-23 molecular sieve of the present invention, mesoporous amorphous silica is initially prepared with the assistance of surfactant, which is used as the silicon source for the later synthesis of ZSM-23 molecular sieve. The amorphous silica generated in this process Silicon oxide has a mesoporous structure and is not highly crystallized into a stable crystal form. After further treatment in a low-concentration alkaline solution for a period of time, some of the -Si-O- bonds are opened, which is helpful for the subsequent -Si in the molecular sieve structure. —O—Al— bonds are generated, but most of the mesoporous structure is retained. Under the action of the microporous template agent in the later stage, in the appropriate ZSM-23 molecular sieve synthesis system, the microporous structure is generated, and at the same time, the mesoporous structure is retained. The pore structure was further crystallized and stabilized, thereby producing a micro-mesoporous composite ZSM-23 molecular sieve. The ZSM-23 molecular sieve synthesized by the method of the present invention not only has acidic properties with adjustable microporous structure, but also has large pore characteristics of mesoporous structure, high specific surface area and pore volume, high crystallinity, thermal stability and hydrothermal stability. Strong sex.
根据本发明催化剂的制备方法中,所述成型可以根据需要就行常规选择。形状可为圆柱条、三叶草等。在催化剂成型过程中,还可以加入成型助剂,如胶溶酸、助挤剂等,胶溶剂一般可以采用无机酸和/或有机酸,助挤剂如田菁粉。采用常规的方法进行干燥和焙烧。所述干燥为80~120℃的温度下干燥3~10小时。所述焙烧为在400~600℃焙烧3~10小时。In the preparation method of the catalyst according to the present invention, the shape can be conventionally selected as needed. The shape can be cylindrical bar, clover, etc. During the catalyst molding process, molding aids can also be added, such as peptizing acid, extrusion aids, etc. The peptizing agent can generally be inorganic acids and/or organic acids, and extrusion aids such as sesbania powder. Drying and roasting are carried out using conventional methods. The drying is performed at a temperature of 80 to 120°C for 3 to 10 hours. The roasting is performed at 400-600°C for 3-10 hours.
根据本发明催化剂的制备方法中,所述负载活性金属的方法可采用常规的负载方法,优选浸渍法,可以是饱和浸、过量浸或络合浸。进一步,所述浸渍法为含有活性金属的溶液浸渍载体,干燥,焙烧得到。所述干燥为100℃~120℃干燥l~12小时。所述焙烧为400℃~600℃焙烧3~10小时。In the preparation method of the catalyst according to the present invention, the method of loading active metal can adopt a conventional loading method, preferably an impregnation method, which can be saturated impregnation, excess impregnation or complex impregnation. Furthermore, the impregnation method is obtained by impregnating the carrier with a solution containing active metal, drying and roasting. The drying is performed at 100°C to 120°C for 1 to 12 hours. The roasting is performed at 400°C to 600°C for 3 to 10 hours.
一种催化裂化柴油加氢裂化生产汽油的方法,催化裂化柴油经加氢精制后在上述加氢裂化催化剂的作用下进行加氢裂化反应。A method for producing gasoline by hydrocracking catalytic cracking diesel fuel. After the catalytically cracked diesel fuel is hydrorefined, a hydrocracking reaction is carried out under the action of the above-mentioned hydrocracking catalyst.
上述生产汽油的方法中,所述催化裂化柴油的性质:密度为0.88~0.99g/cm3,干点为360~400℃,芳烃含量为50~95wt%,催化裂化柴油的硫含量为0.2~2wt%,氮含量为500ppm~2000ppm。In the above method of producing gasoline, the properties of the catalytic cracking diesel are: density is 0.88~0.99g/cm 3 , dry point is 360~400°C, aromatics content is 50~95wt%, and sulfur content of the catalytic cracking diesel is 0.2~ 2wt%, nitrogen content is 500ppm~2000ppm.
上述生产汽油的方法中,所述加氢精制反应的工艺条件为:反应温度为320~440℃,优选340~420℃;反应压力为4.0~15.0MPa,优选6.0~12.0MPa;液时体积空速为0.2~6.0h-1,优选0.5~3.0h-1;氢油体积比为100~2000,优选500~1500。In the above method for producing gasoline, the process conditions of the hydrorefining reaction are: reaction temperature is 320-440°C, preferably 340-420°C; reaction pressure is 4.0-15.0MPa, preferably 6.0-12.0MPa; liquid hourly volume void The speed is 0.2 to 6.0 h -1 , preferably 0.5 to 3.0 h -1 ; the volume ratio of hydrogen to oil is 100 to 2000, preferably 500 to 1500.
上述生产汽油的方法中,所述加氢裂化反应的工艺条件为:反应温度为340~440℃,优选360~430℃;反应压力为4.0~15.0MPa,优选6.0~12.0MPa;液时体积空速为0.2~6.0h-1,优选0.5~3.0h-1;氢油体积比为100~2000,优选500~1500。In the above method for producing gasoline, the process conditions of the hydrocracking reaction are: reaction temperature is 340-440°C, preferably 360-430°C; reaction pressure is 4.0-15.0MPa, preferably 6.0-12.0MPa; liquid hourly volume void The speed is 0.2 to 6.0 h -1 , preferably 0.5 to 3.0 h -1 ; the volume ratio of hydrogen to oil is 100 to 2000, preferably 500 to 1500.
本发明催化剂所采用的ZSM-23分子筛与Y分子筛共同作为裂化中心,具有双重口结构,既充分发挥了其各自的性能特点,又能够使两种分子筛产生的协同催化作用,Y分子筛有利于烃分子的扩散,可提高环状烃特别是三环芳烃的优先转化能力,定向将三环芳烃中间的芳环进行饱和并且断裂,其次通过二段开环、裂化,将属柴油馏分的大分子环烷基苯裂化成小分子烷基苯富集到汽油馏分中,可以使的产品中高辛烷值汽油组分更多。The ZSM-23 molecular sieve and Y molecular sieve used in the catalyst of the present invention jointly serve as the cracking center and have a dual port structure, which not only fully exerts their respective performance characteristics, but also enables the synergistic catalytic effect of the two molecular sieves. The Y molecular sieve is beneficial to hydrocarbons. The diffusion of molecules can improve the preferential conversion ability of cyclic hydrocarbons, especially tricyclic aromatic hydrocarbons, and directionally saturate and break the aromatic rings in the middle of tricyclic aromatic hydrocarbons. Secondly, through two-stage ring opening and cracking, the macromolecular cycloalkyl groups of diesel fractions can be saturated and broken. Benzene is cracked into small molecule alkyl benzene and enriched in the gasoline fraction, which can make the product more high-octane gasoline components.
本发明的ZSM-23分子筛3-6nm高度集中的孔分布特点,对催化柴油中的正构烷烃和小分子烷基苯很好的吸附并异构化,增加异构化产品,进一步提高了汽油产品的辛烷值。本发明催化剂用于催化柴油加氢裂化生产汽油,具有汽油收率高和汽油辛烷值的特点。The ZSM-23 molecular sieve of the present invention has highly concentrated pore distribution characteristics of 3-6 nm, which can adsorb and isomerize n-alkanes and small-molecule alkylbenzenes in catalytic diesel very well, increase isomerization products, and further improve the performance of gasoline. The octane rating of the product. The catalyst of the invention is used to catalyze the hydrocracking of diesel to produce gasoline, and has the characteristics of high gasoline yield and gasoline octane number.
具体实施方式Detailed ways
为了更好地说明本发明,下面结合实施例和对比例来进一步说明本发明。但本发明的范围不只限于这些实施例的范围。本发明分析方法:比表面积、孔容采用采用ASAP2405低温液氮物理吸附法,分子筛的相对结晶度由X射线粉末衍射法(XRD)测定。其中,以微孔ZSM-23分子筛XRD谱图中2θ为~11.3、19.5—23°处衍射峰的高度之和作为结晶度100 %,本发明对比例1制备NaDZSM-23-1的结晶度为100,其它样品与之对比得到相对结晶度。相硅铝摩尔比采用化学法。本发明中,wt%为质量分数,v%为体积分数。In order to better illustrate the present invention, the present invention will be further described below in conjunction with examples and comparative examples. However, the scope of the present invention is not limited to the scope of these embodiments. The analysis method of the present invention: the specific surface area and pore volume adopt the ASAP2405 low-temperature liquid nitrogen physical adsorption method, and the relative crystallinity of the molecular sieve is measured by X-ray powder diffraction (XRD). Among them, taking the sum of the heights of the diffraction peaks at 2θ of ~11.3 and 19.5-23° in the XRD spectrum of the microporous ZSM-23 molecular sieve as the crystallinity 100%, the crystallinity of NaDZSM-23-1 prepared in Comparative Example 1 of the present invention is 100, and other samples were compared with it to obtain the relative crystallinity. The molar ratio of phase silicon to aluminum adopts chemical method. In the present invention, wt% is the mass fraction and v% is the volume fraction.
为了更好地说明本发明,下面结合实施例和对比例来进一步说明。但本发明的范围不只限于这些实施例的范围。In order to better illustrate the present invention, further description will be given below in conjunction with examples and comparative examples. However, the scope of the present invention is not limited to the scope of these embodiments.
实施例1Example 1
(1) 介孔硅源的制备(1) Preparation of mesoporous silicon source
向250 g去离子水中加入50 g水玻璃(SiO2质量分数为27%),搅拌分散均匀,再加入十八烷基三甲基氯化铵(C18TMACl)搅拌0.5小时,其中SiO2与C18TMACl摩尔比为1 : 0.07;用盐酸将溶液pH调节为2后,置于50 ℃水浴中加热4小时;结束后,过滤、洗涤、干燥,于550℃焙烧3小时,制得无定形二氧化硅;Add 50 g of water glass (SiO 2 mass fraction is 27%) to 250 g of deionized water, stir and disperse evenly, then add octadecyltrimethylammonium chloride (C 18 TMACl) and stir for 0.5 hours, in which SiO 2 and The molar ratio of C 18 TMACl is 1:0.07; after adjusting the pH of the solution to 2 with hydrochloric acid, place it in a 50°C water bath and heat it for 4 hours; after completion, filter, wash, dry, and roast at 550°C for 3 hours to obtain amorphous Silica;
(2) 微介孔ZSM-23分子筛的制备:(2) Preparation of micro-mesoporous ZSM-23 molecular sieve:
a)将0.35 gNaOH溶于35 mL去离子水中,加入(1)制得的介孔硅源3.7 g,置于45℃水浴中搅拌3小时;a) Dissolve 0.35 g NaOH in 35 mL deionized water, add 3.7 g of the mesoporous silicon source prepared in (1), and place it in a 45°C water bath for 3 hours;
b)将硫酸铝、异丙胺(IPA)依次溶解到剩余水中后,向其中加入由a)得到的硅源分散液,制得总摩尔配比为硅源中SiO2 : 铝源中Al2O3 : NaOH : IPA : H2O=1 : 0.01 :0.08 : 1.0 : 50的凝胶,于180 ℃晶化48小时后,经过滤、洗涤、干燥、焙烧后,得到产品NaZSM-23-1,测得其相对结晶度、比表面积、孔容及孔径分布,经600 ℃水蒸汽水热处理2小时后,测得其水热稳定性,具体性质见表1。b) Dissolve aluminum sulfate and isopropylamine (IPA) into the remaining water in sequence, and then add the silicon source dispersion obtained in a) to obtain a total molar ratio of SiO 2 in the silicon source: Al 2 O in the aluminum source. 3 : NaOH: IPA: H 2 O=1: 0.01:0.08: 1.0: 50 gel, after crystallization at 180°C for 48 hours, filtered, washed, dried and roasted, the product NaZSM-23-1 was obtained. Its relative crystallinity, specific surface area, pore volume and pore size distribution were measured. After hydrothermal treatment with water vapor at 600°C for 2 hours, its hydrothermal stability was measured. The specific properties are shown in Table 1.
(3) 铵交换(3) Ammonium exchange
称取一定量NaZSM-23-1分子筛样品,将其置于浓度为2 mol/L的硝酸铵溶液中,液固比为10,在80~90 ℃水浴中持续搅拌1小时后,过滤、洗涤。将上述操作过程重复两次后,将样品置于80~100 ℃烘箱中干燥8小时、550 ℃空气气氛焙烧3小时,得到HZSM-23-1。Weigh a certain amount of NaZSM-23-1 molecular sieve sample, place it in an ammonium nitrate solution with a concentration of 2 mol/L, with a liquid-to-solid ratio of 10, stir continuously in a water bath at 80~90°C for 1 hour, then filter and wash . After repeating the above operation process twice, the sample was dried in an oven at 80~100°C for 8 hours and calcined in an air atmosphere at 550°C for 3 hours to obtain HZSM-23-1.
(4) 催化剂制备(4) Catalyst preparation
将载体重量13%的HZSM-23-1分子筛、37%的Y分子筛(SiO2/Al2O3摩尔比为20)、33%的大孔氧化铝(孔容0.9mL/g,比表面积400m2/g)、以及17%的小孔氧化铝(孔容为0.30 mL/g,比表面积为320 m2/g)与10%重量浓度稀硝酸组成的粘合剂(HNO3/小孔Al2O3的摩尔比0.26),放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体TC-1。The carrier weight is 13% HZSM-23-1 molecular sieve, 37% Y molecular sieve (SiO 2 /Al 2 O 3 molar ratio is 20), 33% macroporous alumina (pore volume 0.9mL/g, specific surface area 400m 2 /g), and a binder composed of 17% small-porous alumina (pore volume 0.30 mL/g, specific surface area 320 m 2 /g) and 10% weight concentration dilute nitric acid (HNO 3 /small-porous Al The molar ratio of 2 O 3 is 0.26), put it into a roller compactor, mix it, add water, crush it into a paste, and extrud it into strips. The extruded strips are dried at 110°C for 4 hours, and then roasted at 550°C for 4 hours to obtain the carrier TC -1.
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂C-1,相应催化剂性质见表2。The carrier was immersed in an impregnating solution containing tungsten and nickel at room temperature for 2 hours, dried at 120°C for 4 hours, and roasted at a programmed temperature of 500°C for 4 hours to obtain catalyst C-1. The corresponding catalyst properties are shown in Table 2.
实施例2Example 2
(1) 介孔硅源的制备(1) Preparation of mesoporous silicon source
向250 g去离子水中加入50 g水玻璃(SiO2质量分数为27 %),搅拌分散均匀,再加入十八烷基三甲基氯化铵(C18TMACl)搅拌0.5小时,其中SiO2与C18TMACl摩尔比为1 : 0.07;用盐酸将溶液pH调节为2后,置于50 ℃水浴中加热4小时;结束后,过滤、洗涤、干燥,于550℃焙烧3小时,制得无定形二氧化硅;Add 50 g of water glass (SiO 2 mass fraction is 27%) to 250 g of deionized water, stir and disperse evenly, then add octadecyltrimethylammonium chloride (C 18 TMACl) and stir for 0.5 hours, in which SiO 2 and The molar ratio of C 18 TMACl is 1:0.07; after adjusting the pH of the solution to 2 with hydrochloric acid, place it in a 50°C water bath and heat it for 4 hours; after completion, filter, wash, dry, and roast at 550°C for 3 hours to obtain amorphous Silica;
(2) 微介孔ZSM-23分子筛的制备:(2) Preparation of micro-mesoporous ZSM-23 molecular sieve:
a)将0.42 gNaOH溶于40 mL去离子水中,加入(1)制得的介孔硅源3.7 g,置于35℃水浴中搅拌6小时;a) Dissolve 0.42 g NaOH in 40 mL deionized water, add 3.7 g of the mesoporous silicon source prepared in (1), and place it in a 35°C water bath and stir for 6 hours;
b)将硫酸铝、异丙胺(IPA)依次溶解到剩余水中后,向其中加入由a)得到的硅源分散液,制得摩尔配比为硅源中SiO2 : 铝源中Al2O3 : NaOH : IPA : H2O=1 : 0.01 : 0.10 :1.0 : 50的凝胶,于180 ℃晶化48小时后,经过滤、洗涤、干燥、焙烧后,命名为NaZSM-23-2,测得其相对结晶度、比表面积、孔容及孔径分布,经600 ℃水蒸汽水热处理2小时后,测得其水热稳定性,具体性质见表1。b) Dissolve aluminum sulfate and isopropylamine (IPA) into the remaining water in sequence, and then add the silicon source dispersion obtained in a) to obtain a molar ratio of SiO 2 in the silicon source: Al 2 O 3 in the aluminum source. : NaOH : IPA : H 2 O=1 : 0.01 : 0.10 :1.0 : 50 gel, after crystallization at 180 ℃ for 48 hours, filtered, washed, dried and roasted, it was named NaZSM-23-2 and measured Its relative crystallinity, specific surface area, pore volume and pore size distribution were obtained. After hydrothermal treatment with water vapor at 600°C for 2 hours, its hydrothermal stability was measured. The specific properties are shown in Table 1.
(3) 铵交换(3) Ammonium exchange
HZSM-23-2的制备过程同实施例1(3),只是将NaZSM-23-1分子筛替换为NaZSM-23-2。The preparation process of HZSM-23-2 is the same as in Example 1 (3), except that the NaZSM-23-1 molecular sieve is replaced by NaZSM-23-2.
(4) 催化剂制备(4) Catalyst preparation
将载体重量11%的HZSM-23-2分子筛、39%的Y分子筛(SiO2/Al2O3摩尔比为20)、33%的大孔氧化铝(孔容0.9mL/g,比表面积400m2/g)、以及17%的小孔氧化铝(孔容为0.30 mL/g,比表面积为320 m2/g)与10%重量浓度稀硝酸组成的粘合剂(HNO3/小孔Al2O3的摩尔比0.26)放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体TC-2。The carrier weight is 11% HZSM-23-2 molecular sieve, 39% Y molecular sieve (SiO 2 /Al 2 O 3 molar ratio is 20), 33% macroporous alumina (pore volume 0.9mL/g, specific surface area 400m 2 /g), and a binder composed of 17% small-porous alumina (pore volume 0.30 mL/g, specific surface area 320 m 2 /g) and 10% weight concentration dilute nitric acid (HNO 3 /small-porous Al The molar ratio of 2 O 3 (0.26) is put into a roller compactor, mixed, added with water, rolled into a paste, and extruded into strips. The extruded strips are dried at 110°C for 4 hours, and then roasted at 550°C for 4 hours to obtain the carrier TC- 2.
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂C-2,相应催化剂性质见表2。The carrier was immersed in an impregnating solution containing tungsten and nickel at room temperature for 2 hours, dried at 120°C for 4 hours, and roasted at a programmed temperature of 500°C for 4 hours to obtain catalyst C-2. The corresponding catalyst properties are shown in Table 2.
实施例3Example 3
(1) 介孔硅源的制备(1) Preparation of mesoporous silicon source
向1200 g去离子水中加入50 g水玻璃(SiO2质量分数为27%),搅拌分散均匀,再加入十八烷基三甲基氯化铵(C18TMACl)搅拌2小时,其中SiO2与C18TMACl摩尔比为1 : 0.2;用盐酸将溶液pH调节为3后,置于50 ℃水浴中加热4小时;结束后,过滤、洗涤、干燥,于550 ℃焙烧3小时,制得无定形二氧化硅;Add 50 g water glass (SiO 2 mass fraction is 27%) to 1200 g deionized water, stir and disperse evenly, then add octadecyltrimethylammonium chloride (C 18 TMACl) and stir for 2 hours, in which SiO 2 and The molar ratio of C 18 TMACl is 1:0.2; after adjusting the pH of the solution to 3 with hydrochloric acid, place it in a 50 ℃ water bath and heat it for 4 hours; after completion, filter, wash, dry, and roast at 550 ℃ for 3 hours to obtain amorphous Silica;
(2) 微介孔ZSM-23分子筛的制备:(2) Preparation of micro-mesoporous ZSM-23 molecular sieve:
a)将0.20 gNaOH溶于35 mL去离子水中,加入(1)制得的介孔硅源3.7 g,置于45℃水浴中搅拌3小时;a) Dissolve 0.20 g NaOH in 35 mL deionized water, add 3.7 g of the mesoporous silicon source prepared in (1), and place it in a 45°C water bath for 3 hours;
b)将硫酸铝、异丙胺(IPA)、氢氧化钠依次溶解到剩余水中后,向其中加入由a)得到的硅源分散液,制得摩尔配比为硅源中SiO2 : 铝源中Al2O3 : NaOH : IPA : H2O=1 :0.01 : 0.08 : 1.0 : 50的凝胶,于180 ℃晶化48小时后,经过滤、洗涤、干燥、焙烧后,命名为NaZSM-23-3,测得其相对结晶度、比表面积、孔容及孔径分布,经600 ℃水蒸汽水热处理2小时后,测得其水热稳定性,具体性质见表1。b) Dissolve aluminum sulfate, isopropylamine (IPA) and sodium hydroxide into the remaining water in sequence, then add the silicon source dispersion obtained in a) to obtain a molar ratio of SiO 2 in the silicon source: SiO 2 in the aluminum source The gel of Al 2 O 3 : NaOH : IPA : H 2 O=1 :0.01 : 0.08 : 1.0 : 50 was named NaZSM-23 after crystallization at 180°C for 48 hours, filtering, washing, drying and roasting. -3, its relative crystallinity, specific surface area, pore volume and pore size distribution were measured. After hydrothermal treatment with water vapor at 600°C for 2 hours, its hydrothermal stability was measured. The specific properties are shown in Table 1.
(3) 铵交换(3) Ammonium exchange
HZSM-23-3的制备过程同实施例1(3),只是将NaZSM-23-1分子筛替换为NaZSM-23-3。The preparation process of HZSM-23-3 is the same as in Example 1 (3), except that the NaZSM-23-1 molecular sieve is replaced by NaZSM-23-3.
(4) 催化剂制备 (4) Catalyst preparation
将载体重量9%的HZSM-23-3分子筛、41%的Y分子筛(SiO2/Al2O3摩尔比为20)、33%的大孔氧化铝(孔容0.9mL/g,比表面积400m2/g)、以及17%的小孔氧化铝(孔容为0.30 mL/g,比表面积为320 m2/g)与10%重量浓度稀硝酸组成的粘合剂(HNO3/小孔Al2O3的摩尔比0.26),放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体TC-3。The carrier weight is 9% HZSM-23-3 molecular sieve, 41% Y molecular sieve (SiO 2 /Al 2 O 3 molar ratio is 20), 33% macroporous alumina (pore volume 0.9mL/g, specific surface area 400m 2 /g), and a binder composed of 17% small-porous alumina (pore volume 0.30 mL/g, specific surface area 320 m 2 /g) and 10% weight concentration dilute nitric acid (HNO 3 /small-porous Al The molar ratio of 2 O 3 is 0.26), put it into a roller compactor, mix it, add water, crush it into a paste, and extrud it into strips. The extruded strips are dried at 110°C for 4 hours, and then roasted at 550°C for 4 hours to obtain the carrier TC -3.
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂C-3,相应催化剂性质见表2。The carrier was immersed in an impregnating solution containing tungsten and nickel at room temperature for 2 hours, dried at 120°C for 4 hours, and roasted at a programmed temperature of 500°C for 4 hours to obtain catalyst C-3. The corresponding catalyst properties are shown in Table 2.
实施例4Example 4
(1) 介孔硅源的制备(1) Preparation of mesoporous silicon source
向800 g去离子水中加入50 g水玻璃(SiO2质量分数为27%),搅拌分散均匀,再加入十八烷基三甲基氯化铵(C18TMACl)搅拌2小时,其中SiO2与C18TMACl摩尔比为1 : 0.2;用盐酸将溶液pH调节为4后,置于50 ℃水浴中加热4小时;结束后,过滤、洗涤、干燥,于550 ℃焙烧3小时,制得无定形二氧化硅;;Add 50 g water glass (SiO 2 mass fraction is 27%) to 800 g deionized water, stir and disperse evenly, then add octadecyltrimethylammonium chloride (C 18 TMACl) and stir for 2 hours, in which SiO 2 and The molar ratio of C 18 TMACl is 1:0.2; after adjusting the pH of the solution to 4 with hydrochloric acid, place it in a 50 ℃ water bath and heat it for 4 hours; after completion, filter, wash, dry, and roast at 550 ℃ for 3 hours to obtain amorphous Silica;;
(2) 微介孔ZSM-23分子筛的制备:(2) Preparation of micro-mesoporous ZSM-23 molecular sieve:
a)将0.42 gNaOH溶于40 mL去离子水中,加入(1)制得的介孔硅源3.7 g,置于40℃水浴中搅拌3小时;a) Dissolve 0.42 g NaOH in 40 mL deionized water, add 3.7 g of the mesoporous silicon source prepared in (1), and place it in a 40°C water bath for 3 hours;
b)将硫酸铝、异丙胺(IPA)依次溶解到剩余水中后,向其中加入由a)得到的硅源分散液,制得摩尔配比为硅源中SiO2 : 铝源中Al2O3 : NaOH : IPA : H2O=1 : 0.005 :0.10 : 1.0 : 50的凝胶,于180 ℃晶化48小时后,经过滤、洗涤、干燥、焙烧后,命名为NaZSM-23-4,测得其相对结晶度、比表面积、孔容及孔径分布,经600 ℃水蒸汽水热处理2小时后,测得其水热稳定性,具体性质见表1。b) Dissolve aluminum sulfate and isopropylamine (IPA) into the remaining water in sequence, and then add the silicon source dispersion obtained in a) to obtain a molar ratio of SiO 2 in the silicon source: Al 2 O 3 in the aluminum source. : NaOH : IPA : H 2 O=1 : 0.005 : 0.10 : 1.0 : 50 gel, after crystallization at 180 ℃ for 48 hours, filtered, washed, dried and roasted, it was named NaZSM-23-4 and measured Its relative crystallinity, specific surface area, pore volume and pore size distribution were obtained. After hydrothermal treatment with water vapor at 600°C for 2 hours, its hydrothermal stability was measured. The specific properties are shown in Table 1.
(3) 铵交换(3) Ammonium exchange
HZSM-23-4的制备过程同实施例1(3),只是将NaZSM-23-1分子筛替换为NaZSM-23-4。The preparation process of HZSM-23-4 is the same as in Example 1 (3), except that the NaZSM-23-1 molecular sieve is replaced by NaZSM-23-4.
(4) 催化剂制备 (4) Catalyst preparation
将载体重量7%的HZSM-23-4分子筛、43%的Y分子筛(SiO2/Al2O3摩尔比为20)、33%的大孔氧化铝(孔容0.9mL/g,比表面积400m2/g)、以及17%的小孔氧化铝(孔容为0.30 mL/g,比表面积为320 m2/g)与10%重量浓度稀硝酸组成的粘合剂(HNO3/小孔Al2O3的摩尔比0.26),放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体TC-4。The carrier weight is 7% HZSM-23-4 molecular sieve, 43% Y molecular sieve (SiO 2 /Al 2 O 3 molar ratio is 20), 33% macroporous alumina (pore volume 0.9mL/g, specific surface area 400m 2 /g), and a binder composed of 17% small-porous alumina (pore volume 0.30 mL/g, specific surface area 320 m 2 /g) and 10% weight concentration dilute nitric acid (HNO 3 /small-porous Al The molar ratio of 2 O 3 is 0.26), put it into a roller compactor, mix it, add water, crush it into a paste, and extrud it into strips. The extruded strips are dried at 110°C for 4 hours, and then roasted at 550°C for 4 hours to obtain the carrier TC -4.
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂C-4,相应催化剂性质见表2。The carrier was immersed in an impregnating solution containing tungsten and nickel at room temperature for 2 hours, dried at 120°C for 4 hours, and roasted at a programmed temperature of 500°C for 4 hours to obtain catalyst C-4. The corresponding catalyst properties are shown in Table 2.
对比例1(参照CN105540607A)Comparative Example 1 (refer to CN105540607A)
(1) 分子筛制备(1) Molecular sieve preparation
35 ℃搅拌下,将0.51 g的拟薄水铝石和0.3 g氢氧化钠加入26 mL去离子水中。溶液均质化后,加入异丙胺0.3 g,然后加入白炭黑21 g,再次均质化混合1小时。加入谷物淀粉24.5 g,将混合物升温到90 ℃,搅拌老化6小时。最后将得到的混合物转移到带有聚四氟内衬的水热反应釜中,于160 ℃静态晶化144小时,取出,冷却、过滤、80 ℃烘干,得到分子筛原粉。在空气气氛下500 ℃焙烧12小时,得到微介孔复合NaDZSM-23-1分子筛,测得其相对结晶度、比表面积、孔容及孔径分布,经600 ℃水蒸汽水热处理2小时后,测得其水热稳定性,具体性质见表1。Under stirring at 35°C, 0.51 g of pseudoboehmite and 0.3 g of sodium hydroxide were added to 26 mL of deionized water. After the solution is homogenized, add 0.3 g of isopropylamine, then add 21 g of silica, and homogenize again and mix for 1 hour. Add 24.5 g of grain starch, heat the mixture to 90°C, and stir and age for 6 hours. Finally, the obtained mixture was transferred to a hydrothermal reactor lined with polytetrafluoroethylene, statically crystallized at 160°C for 144 hours, taken out, cooled, filtered, and dried at 80°C to obtain raw molecular sieve powder. After roasting at 500°C for 12 hours in air atmosphere, the micro-mesoporous composite NaDZSM-23-1 molecular sieve was obtained. Its relative crystallinity, specific surface area, pore volume and pore size distribution were measured. After hydrothermal treatment with water vapor at 600°C for 2 hours, the Its hydrothermal stability was obtained, and its specific properties are shown in Table 1.
(2) 铵交换(2) Ammonium exchange
H-DZSM-23-1的制备过程同实施例1(3),只是将NaZSM-23-1分子筛替换为NaDZSM-23-1。The preparation process of H-DZSM-23-1 is the same as in Example 1 (3), except that the NaZSM-23-1 molecular sieve is replaced by NaDZSM-23-1.
(3) 催化剂制备 (3) Catalyst preparation
CC-1催化剂的制备方法同实施例4(4),只是将H-ZSM-23-1分子筛替换为H-DZSM-23-1,具体性质见表2。The preparation method of CC-1 catalyst is the same as in Example 4 (4), except that H-ZSM-23-1 molecular sieve is replaced by H-DZSM-23-1. The specific properties are shown in Table 2.
对比例2Comparative example 2
(1) 介孔硅源的制备(1) Preparation of mesoporous silicon source
向1200 g去离子水中加入50 g水玻璃(SiO2质量分数为27%),搅拌分散均匀,再加入十八烷基三甲基氯化铵(C18TMACl)搅拌2小时,其中SiO2与C18TMACl摩尔比为1 : 0.2;用盐酸将溶液pH调节为3后,置于50℃水浴中加热4小时;结束后,过滤、洗涤、干燥,于550 ℃焙烧,制得无定形二氧化硅;Add 50 g water glass (SiO 2 mass fraction is 27%) to 1200 g deionized water, stir and disperse evenly, then add octadecyltrimethylammonium chloride (C 18 TMACl) and stir for 2 hours, in which SiO 2 and The molar ratio of C 18 TMACl is 1:0.2; after adjusting the pH of the solution to 3 with hydrochloric acid, place it in a 50°C water bath and heat it for 4 hours; after completion, filter, wash, dry, and roast at 550°C to obtain amorphous dioxide silicon;
(2) a)将0.70 gNaOH溶于40 mL去离子水中,加入(1)制得的介孔硅源3.7 g,置于45 ℃水浴中搅拌3小时;(2) a) Dissolve 0.70 g NaOH in 40 mL deionized water, add 3.7 g of the mesoporous silicon source prepared in (1), and place in a 45°C water bath for 3 hours;
b) 将硫酸铝、异丙胺(IPA)依次溶解到剩余水中后,向其中加入由a)得到的硅源分散液,制得摩尔配比为硅源中SiO2 : 铝源中Al2O3 : NaOH : IPA : H2O=1 : 0.01 :0.16 : 1.0 : 50的凝胶,于180 ℃晶化48小时后,经过滤、洗涤、干燥、焙烧后,得到样品NaDZSM-23-2,测得其相对结晶度、比表面积、孔容及孔径分布,经600 ℃水蒸汽水热处理2小时后,测得其水热稳定性,具体性质见表1。b) Dissolve aluminum sulfate and isopropylamine (IPA) into the remaining water in sequence, and then add the silicon source dispersion obtained in a) to obtain a molar ratio of SiO 2 in the silicon source: Al 2 O 3 in the aluminum source. : NaOH : IPA : H 2 O=1 : 0.01 :0.16 : 1.0 : 50 gel, after crystallization at 180°C for 48 hours, filtered, washed, dried, and roasted, the sample NaDZSM-23-2 was obtained. Its relative crystallinity, specific surface area, pore volume and pore size distribution were obtained. After hydrothermal treatment with water vapor at 600°C for 2 hours, its hydrothermal stability was measured. The specific properties are shown in Table 1.
(3) 铵交换(3) Ammonium exchange
H-DZSM-23-2的制备过程同实施例1(3),只是将NaZSM-23-1分子筛替换为NaDZSM-23-2。The preparation process of H-DZSM-23-2 is the same as in Example 1 (3), except that the NaZSM-23-1 molecular sieve is replaced by NaDZSM-23-2.
(4) 催化剂制备 (4) Catalyst preparation
CC-2催化剂的制备方法同实施例4(4),只是将H-ZSM-23-1分子筛替换为H-DZSM-23-2,具体性质见表2。The preparation method of the CC-2 catalyst is the same as in Example 4 (4), except that the H-ZSM-23-1 molecular sieve is replaced by H-DZSM-23-2. The specific properties are shown in Table 2.
对比例3Comparative example 3
(1) 分子筛样品制备(1) Molecular sieve sample preparation
将水玻璃、硫酸铝、异丙胺(IPA)、氢氧化钠与水混合制得总摩尔配比为硅源中SiO2 : 铝源中Al2O3 : NaOH : IPA : H2O=1 : 0.01 : 0.08 : 1.0 : 50的凝胶,于180℃加热72小时后,经过滤、洗涤、干燥、焙烧后,得到产品命名为NaDZSM-23-3。Mix water glass, aluminum sulfate, isopropylamine (IPA), sodium hydroxide and water to obtain a total molar ratio of SiO 2 in the silicon source: Al 2 O 3 in the aluminum source: NaOH: IPA: H 2 O=1: The gel of 0.01:0.08:1.0:50 was heated at 180°C for 72 hours, filtered, washed, dried and roasted to obtain a product named NaDZSM-23-3.
(2) 铵交换(2) Ammonium exchange
H-DZSM-23-3的制备过程同实施例1(3),只是将NaZSM-23-1分子筛替换为NaDZSM-23-3。The preparation process of H-DZSM-23-3 is the same as in Example 1 (3), except that the NaZSM-23-1 molecular sieve is replaced by NaDZSM-23-3.
(3) 催化剂制备 (3) Catalyst preparation
CC-3催化剂的制备方法同实施例1(4),只是将H-ZSM-23-1分子筛替换为H-DZSM-23-3,具体性质见表2。The preparation method of CC-3 catalyst is the same as in Example 1 (4), except that H-ZSM-23-1 molecular sieve is replaced by H-DZSM-23-3. The specific properties are shown in Table 2.
对比例4Comparative example 4
将载体重量50%的Y分子筛(SiO2/Al2O3摩尔比为20)、33%的大孔氧化铝(孔容0.9mL/g,比表面积400m2/g)、以及17%的小孔氧化铝(孔容为0.30 mL/g,比表面积为320 m2/g)与10%重量浓度稀硝酸组成的粘合剂(HNO3/小孔Al2O3的摩尔比0.26),加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体TC-4。The carrier weight is 50% Y molecular sieve (SiO 2 /Al 2 O 3 molar ratio is 20), 33% macroporous alumina (pore volume 0.9mL/g, specific surface area 400m 2 /g), and 17% small A binder composed of pore alumina (pore volume 0.30 mL/g, specific surface area 320 m 2 /g) and 10% weight concentration dilute nitric acid (molar ratio of HNO 3 /small pore Al 2 O 3 0.26), add water , rolled into a paste, and extruded into strips. The extruded strips were dried at 110°C for 4 hours, and then calcined at 550°C for 4 hours to obtain the carrier TC-4.
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂CC-4,相应催化剂性质见表2。The carrier was immersed in an impregnating solution containing tungsten and nickel at room temperature for 2 hours, dried at 120°C for 4 hours, and roasted at a programmed temperature of 500°C for 4 hours to obtain catalyst CC-4. The corresponding catalyst properties are shown in Table 2.
表1 分子筛的性质Table 1 Properties of molecular sieves
a 该条件下生成的产物主要为其它分子筛,故此项性质无法分析;a The products generated under this condition are mainly other molecular sieves, so this property cannot be analyzed;
d相对结晶度保持度=水热后结晶度/相对结晶度。由于测量误差的存在,故结果大于100%的记作100%。d Relative crystallinity retention = crystallinity after hydrothermal treatment/relative crystallinity. Due to the existence of measurement errors, results greater than 100% are recorded as 100%.
表2 催化剂的物化性质 Table 2 Physicochemical properties of catalysts
上述催化剂进行活性评价试验。试验是在200mL小型加氢装置上进行的,采用一段串联加氢改质工艺,所用原料油性质见表4。操作条件如下:反应压力6.5MPa,氢油体积比500:1,液时体积空速1.0h-1,<210℃转化率70wt%,精制油氮含量20ppm。催化剂活性试验结果见表4。The above catalysts were subjected to activity evaluation tests. The test was conducted on a 200mL small hydrogenation device, using a one-stage series hydrogenation modification process. The properties of the raw oil used are shown in Table 4. The operating conditions are as follows: reaction pressure 6.5MPa, hydrogen-to-oil volume ratio 500:1, liquid hourly volume space velocity 1.0h -1 , conversion rate <210°C 70wt%, and refined oil nitrogen content 20ppm. The catalyst activity test results are shown in Table 4.
表3原料油性质Table 3 Raw material oil properties
表4 催化剂活性评价结果Table 4 Catalyst activity evaluation results
由表4催化剂的评价结果可看出,同比较例相比,本发明所制备的催化剂在较高活性的基础上,具有更高的汽油馏分收率和较高的辛烷值。It can be seen from the evaluation results of the catalyst in Table 4 that compared with the comparative example, the catalyst prepared by the present invention has a higher gasoline fraction yield and a higher octane number on the basis of higher activity.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210777954.8A CN117399063A (en) | 2022-07-04 | 2022-07-04 | Catalyst for producing gasoline by hydrocracking and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210777954.8A CN117399063A (en) | 2022-07-04 | 2022-07-04 | Catalyst for producing gasoline by hydrocracking and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117399063A true CN117399063A (en) | 2024-01-16 |
Family
ID=89487605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210777954.8A Pending CN117399063A (en) | 2022-07-04 | 2022-07-04 | Catalyst for producing gasoline by hydrocracking and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117399063A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0130809A2 (en) * | 1983-06-30 | 1985-01-09 | Mobil Oil Corporation | Method of preparing highly siliceous porous crystalline zeolites |
US4547605A (en) * | 1983-09-28 | 1985-10-15 | Mobil Oil Corporation | Catalyst for alkylation of aromatic hydrocarbons |
CN103551186A (en) * | 2013-07-22 | 2014-02-05 | 中海油(青岛)重质油加工工程技术研究中心有限公司 | Composite molecular sieve-containing medium oil type hydrocracking catalyst, preparation method and application thereof |
CN106179462A (en) * | 2015-04-30 | 2016-12-07 | 中国石油化工股份有限公司 | A kind of hydrocracking catalyst and preparation method thereof |
CN114433209A (en) * | 2020-10-19 | 2022-05-06 | 中国石油化工股份有限公司 | Diesel oil hydrogenation modification catalyst and preparation method and application thereof |
-
2022
- 2022-07-04 CN CN202210777954.8A patent/CN117399063A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0130809A2 (en) * | 1983-06-30 | 1985-01-09 | Mobil Oil Corporation | Method of preparing highly siliceous porous crystalline zeolites |
US4547605A (en) * | 1983-09-28 | 1985-10-15 | Mobil Oil Corporation | Catalyst for alkylation of aromatic hydrocarbons |
CN103551186A (en) * | 2013-07-22 | 2014-02-05 | 中海油(青岛)重质油加工工程技术研究中心有限公司 | Composite molecular sieve-containing medium oil type hydrocracking catalyst, preparation method and application thereof |
CN106179462A (en) * | 2015-04-30 | 2016-12-07 | 中国石油化工股份有限公司 | A kind of hydrocracking catalyst and preparation method thereof |
CN114433209A (en) * | 2020-10-19 | 2022-05-06 | 中国石油化工股份有限公司 | Diesel oil hydrogenation modification catalyst and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7169354B2 (en) | Modified Y-type molecular sieve and production method, hydrocracking catalyst and production method, and hydrocracking method for hydrocarbon oil | |
CN105251527A (en) | Composite molecular sieve and hydrodesulfurization catalyst prepared with composite molecular sieve as carrier | |
CN104549524B (en) | A kind of preparation method containing the nanocrystalline synthetic zeolite catalysts cracking gasoline hydrodesulfurizationcatalyst catalysts of base multistage pore canal ZSM 5 | |
CN104289251B (en) | Non-precious metal catalyst for hydrocarbon isomerization and preparation method and application | |
CN107442166A (en) | Hydrogenation catalyst suitable for producing biodiesel and its preparation method and application | |
CN111135857B (en) | Preparation method and application of reduced catalyst | |
CN103349995A (en) | Hydrodesulfurization catalyst taking micro and mesoporous composite molecular sieve as carrier and preparation method thereof | |
CN113083356B (en) | Mesomicroporous ZSM-5/alumina catalyst and its preparation and application | |
CN107362825B (en) | Calcination-free hydrogenation catalyst, and preparation method and application thereof | |
CN117399063A (en) | Catalyst for producing gasoline by hydrocracking and preparation method and application thereof | |
CN111632620B (en) | A medium oil type hydrocracking catalyst | |
CN116060082B (en) | A polycyclic aromatic hydrocarbon hydrogenation catalyst and preparation method thereof | |
CN105713657A (en) | Hydrocracking method | |
CN115739167A (en) | Metal carbide @ ZSM-5 catalyst and preparation method and application thereof | |
CN107344119B (en) | Hydrocracking catalyst carrier and preparation method thereof | |
CN107344120B (en) | Carrier of hydrocracking catalyst and its preparation method | |
CN107345159B (en) | A kind of method for hydrogen cracking producing low-coagulation diesel oil | |
CN107344117B (en) | Hydrocracking catalyst and its preparation method | |
CN117399060A (en) | Hydrocracking catalyst for producing aviation kerosene in large amount by using straight-run diesel oil, preparation method and application thereof | |
CN113019426A (en) | Hydrocracking catalyst carrier, hydrocracking catalyst and preparation method thereof | |
CN115414961B (en) | Preparation method of deethylation type carbon octaarene isomerization catalyst | |
CN112717983B (en) | Distillate oil hydrocracking catalyst, preparation method and application thereof | |
CN117380256A (en) | Isomerization catalyst, preparation method thereof and application thereof in catalytic diesel hydrocracking | |
CN114477226B (en) | Composite molecular sieve and hydro-upgrading catalyst prepared by using same as carrier | |
CN114130427B (en) | Y/SSZ-13/rare earth/ASA composite material, hydrocracking catalyst, catalyst carrier and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |