CN117394914A - Method for improving transmitting efficiency of maca antenna by utilizing perfect vortex beam - Google Patents
Method for improving transmitting efficiency of maca antenna by utilizing perfect vortex beam Download PDFInfo
- Publication number
- CN117394914A CN117394914A CN202311219626.7A CN202311219626A CN117394914A CN 117394914 A CN117394914 A CN 117394914A CN 202311219626 A CN202311219626 A CN 202311219626A CN 117394914 A CN117394914 A CN 117394914A
- Authority
- CN
- China
- Prior art keywords
- antenna
- maca
- light field
- formula
- emission efficiency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000000421 Lepidium meyenii Nutrition 0.000 title claims abstract description 77
- 240000000759 Lepidium meyenii Species 0.000 title claims abstract description 77
- 235000012902 lepidium meyenii Nutrition 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000005540 biological transmission Effects 0.000 claims abstract description 23
- 230000014509 gene expression Effects 0.000 claims abstract description 21
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 claims abstract description 14
- 239000011159 matrix material Substances 0.000 claims abstract description 10
- 230000003287 optical effect Effects 0.000 claims description 34
- 238000012937 correction Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 8
- 238000002834 transmittance Methods 0.000 claims description 8
- 230000005499 meniscus Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 3
- 238000004204 optical analysis method Methods 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 6
- 230000004075 alteration Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Signal Processing (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Operations Research (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
技术领域Technical field
本发明属于无线光通信技术领域,具体涉及一种利用完美涡旋光束提高马卡天线发射效率的方法。The invention belongs to the technical field of wireless optical communication, and specifically relates to a method for improving the emission efficiency of a Maca antenna by utilizing a perfect vortex beam.
背景技术Background technique
随着无线通信技术的快速发展,现代通信对空间光通信(Free space opticalcommunication,FSO)技术逐渐提出了越来越高的要求。光学天线作为FSO系统中必不可少的组成部分占据着很重要的地位。在FSO系统中,光学天线在光信号的发射和接收上分别起着准直和聚焦的作用。因此,光学天线发射效率的大小将直接决定着FSO系统的通信质量。With the rapid development of wireless communication technology, modern communications have gradually put forward higher and higher requirements for free space optical communication (FSO) technology. Optical antennas play an important role as an essential component in FSO systems. In the FSO system, the optical antenna plays the role of collimation and focusing respectively in the transmission and reception of optical signals. Therefore, the emission efficiency of the optical antenna will directly determine the communication quality of the FSO system.
在FSO系统光学天线的选择中,卡塞格林系统是一种典型的双反射式望远物镜,整个系统没有色差。其主反射是一般是抛物面,次反射镜一般是凸面的双曲面镜。马克苏托夫-卡塞格林望远镜(简称马卡天线)是在卡塞格林系统的结构基础上进行改进的一种望远物镜,其以球面反射镜为基础,加入用于校正像差的折射原件,变成折返式结构。相较于卡塞格林系统,由于马卡天线中各组件均为球面,可以降低制造成本。基于马卡天线的优势,相关研究对不同类型光源经过马卡天线的发射效率进行了分析和探索。有研究发现:对于均匀分布的光源,马卡天线次反射镜遮挡造成能量损失在30%以上;对于高斯分布激光光源,能量损失可以达到50%甚至更多。经马卡天线发射后的光斑成环状分布,这对于无线光通信来说是严重的问题。In the selection of optical antennas for the FSO system, the Cassegrain system is a typical double-reflecting telephoto objective lens, and the entire system has no chromatic aberration. The primary reflection is generally a paraboloid, and the secondary reflector is generally a convex hyperboloid mirror. The Maksutov-Cassegrain telescope (referred to as the Maksutov-Cassegrain antenna) is a telephoto objective lens improved on the structure of the Cassegrain system. It is based on a spherical reflector and adds refraction for correcting aberrations. The original piece becomes a fold-back structure. Compared with the Cassegrain system, since each component in the Maca antenna is spherical, the manufacturing cost can be reduced. Based on the advantages of the Maca antenna, relevant research has analyzed and explored the emission efficiency of different types of light sources through the Maca antenna. Some studies have found that for uniformly distributed light sources, the energy loss caused by the sub-reflector of the Maca antenna is more than 30%; for Gaussian distributed laser light sources, the energy loss can reach 50% or more. The light spots emitted by the Maca antenna are distributed in a ring, which is a serious problem for wireless optical communications.
近几年,完美涡旋(Perfect optical vortex,POV)光束因其具有亮环半径不随拓扑荷数大小而改变的优点,在微粒操纵及量子通信等领域具有重要的应用价值,因此,从物理结构上完美涡旋光束因其光强分布成环状可与马卡天线达到匹配,但并未有研究探讨和分析完美涡旋光束经过马卡天线后的衍射特性和发射效率。In recent years, perfect optical vortex (POV) beams have the advantage that the bright ring radius does not change with the topological charge. They have important application value in fields such as particle manipulation and quantum communications. Therefore, from the physical structure The perfect vortex beam can match the Marka antenna because its light intensity is distributed in a ring shape, but there is no research to explore and analyze the diffraction characteristics and emission efficiency of the perfect vortex beam after passing through the Marka antenna.
发明内容Contents of the invention
本发明的目的是提供一种利用完美涡旋光束提高马卡天线发射效率的技术方法,用以解决马卡天线次反射镜遮挡造成能量损失的问题。The purpose of the present invention is to provide a technical method for improving the transmission efficiency of the Maca antenna by using a perfect vortex beam, so as to solve the problem of energy loss caused by the obstruction of the Maca antenna's sub-reflector.
本发明所采用的技术方案是,利用完美涡旋光束提高马卡天线发射效率的方法,具体为:The technical solution adopted by the present invention is to use a perfect vortex beam to improve the emission efficiency of the Maca antenna, specifically:
步骤1:根据Collins公式和马卡天线的ABCD传输矩阵建立完美涡旋光束经马卡天线衍射光场模型;Step 1: Establish the light field model of the perfect vortex beam diffracted by the Marka antenna based on the Collins formula and the ABCD transmission matrix of the Marka antenna;
步骤2:利用步骤1建立的衍射模型,理论推导出POV光束经马卡天线后的衍射光场表达式;Step 2: Using the diffraction model established in step 1, theoretically derive the expression of the diffraction light field of the POV beam after passing through the Maca antenna;
步骤3:根据几何光学分析方法,计算马卡天线的发射效率。Step 3: Calculate the emission efficiency of the Maca antenna according to the geometric optics analysis method.
本发明的特征还在于,The present invention is also characterized in that,
步骤1的具体过程如下:The specific process of step 1 is as follows:
步骤1.1、给出发射端光源的光场表达式,即POV光束在距离z=0平面上的光场E(r,θ,0)的表达式为:Step 1.1. Give the light field expression of the light source at the emission end, that is, the expression of the light field E(r,θ,0) of the POV beam on the distance z=0 plane is:
其中E0是幅度常数,m是拓扑荷数,i是虚数,Im是第一类m阶修正贝塞尔函数;ω0是焦点处的高斯束腰半径,亮环的环宽和半径分别等于2ω0和R,r和θ变量为柱坐标系的径向与方位角坐标;where E 0 is the amplitude constant, m is the topological charge, i is an imaginary number, I m is the first m-order modified Bessel function; ω 0 is the Gaussian beam waist radius at the focus, and the ring width and radius of the bright ring are respectively Equal to 2ω 0 and R, r and θ variables are the radial and azimuthal coordinates of the cylindrical coordinate system;
步骤1.2、由Collins公式可知,完美涡旋光束经马卡天线后,观测平面上的衍射光场为:Step 1.2. According to the Collins formula, after the perfect vortex beam passes through the Macca antenna, the diffraction light field on the observation plane for:
其中,z为传输距离,k=2π/λ为波数,λ为波长;H(r)为马卡天线的透射率函数;代表在柱坐标系下z>0处平面上的二维矢量,参数A,B,C,D为马卡天线光学系统的ABCD传输矩阵;Among them, z is the transmission distance, k=2π/λ is the wave number, and λ is the wavelength; H(r) is the transmittance function of the Maca antenna; Represents the two-dimensional vector on the plane at z>0 in the cylindrical coordinate system. The parameters A, B, C, and D are the ABCD transmission matrices of the Maca antenna optical system;
步骤1.3、马卡天线主要由第二遮拦、第一遮拦、主反射镜、次反射镜以及弯月校正镜组成。折反射式结构使得马卡天线结构紧凑,通过较小的尺寸就可形成大口径和长焦距的透镜组系统。马卡天线作为发射天线时的工作原理是:次反射镜将光源发出的光束进行第一次反射,反射后的光束入射主反射镜表面上,再被主反射镜反射后的光束经校正镜进行校正并透射出马卡天线系统,实现定向发射。在研究光束通过马卡天线时,将马卡天线等效为透镜系统;此透镜系统的ABCD传输矩阵和透过率函数H(r)分别为:Step 1.3. The Maca antenna is mainly composed of the second barrier, the first barrier, the primary reflector, the secondary reflector and the meniscus correction mirror. The catadioptric structure makes the Maca antenna compact, and a lens system with a large aperture and long focal length can be formed through a smaller size. The working principle of the Maca antenna as a transmitting antenna is: the secondary reflector reflects the beam emitted by the light source for the first time. The reflected beam is incident on the surface of the primary reflector, and then the beam reflected by the primary reflector is processed by the correction mirror. Correct and transmit the Maca antenna system to achieve directional emission. When studying the beam passing through the Maca antenna, the Maca antenna is equivalent to a lens system; the ABCD transmission matrix and transmittance function H(r) of this lens system are:
H(r)=H1(r)-H2(r) (4)H(r)=H 1 (r)-H 2 (r) (4)
公式(4)中,H1(r)及H2(r)的表达式如下:In formula (4), the expressions of H 1 (r) and H 2 (r) are as follows:
其中,f为等效透镜的焦距,Δz=(z-f)/f;D0为马卡天线光学系统的弯月校正镜直径,d0为马卡天线光学系统的次反射镜直径,Aα,Bα为系数,T=10;Among them, f is the focal length of the equivalent lens, Δz = (zf)/f; D 0 is the diameter of the meniscus correction mirror of the Maca antenna optical system, d 0 is the diameter of the sub-reflector of the Maca antenna optical system, A α , B α is the coefficient, T=10;
将(1)、(4)、(5)、(6)式代入到(2)式中,可得在距离z处的观测平面上衍射光场为:Substituting equations (1), (4), (5), and (6) into equation (2), we can get the diffracted light field on the observation plane at distance z for:
步骤1.3中,Aα,Bα为系数取值如表1所示:In step 1.3, A α and B α are coefficient values as shown in Table 1:
表1Aα,Bα为系数取值Table 1A α , B α are coefficient values
步骤2的具体过程如下:The specific process of step 2 is as follows:
步骤2.1、借助公式:Step 2.1, with the help of formula:
对公式(7)中得到的距离z处观测平面上衍射光场中的参量进行代换,可得:Substituting the parameters in the diffraction light field on the observation plane at distance z obtained in formula (7), we can get:
步骤2.2、利用积分公式:Step 2.2, use the integral formula:
对(9)式中的参量θ进行积分,并整理得到:Integrate the parameter θ in equation (9) and sort it out:
步骤2.3、由公式Step 2.3, from the formula
J-α(x)=(-1)αJα(x) (12)J -α (x)=(-1) α J α (x) (12)
将(11)式化为:Transform (11) into:
步骤2.4、利用积分公式:Step 2.4, use the integral formula:
对(13)式中的r进行积分,可得观测平面上的衍射光场为:Integrating r in equation (13), the diffraction light field on the observation plane can be obtained as:
其中,in,
步骤3的具体过程如下:根据几何光学的分析方法,定义马卡天线的发射效率为:The specific process of step 3 is as follows: According to the analysis method of geometric optics, the emission efficiency of the Maca antenna is defined as:
其中,P0为入射到马卡天线端面总的光功率,P为探测平面上总的光功率;I0(x0,y0,0)为初始POV光束的光强,I(x,y,z)为观测平面上衍射光场的光强;初始POV光束的光强I0可由公式(1)中的POV光束光场表达式获得,即:Among them, P 0 is the total optical power incident on the end face of the Maca antenna, P is the total optical power on the detection plane; I 0 (x 0 , y 0 , 0) is the light intensity of the initial POV beam, I (x, y ,z) is the light intensity of the diffracted light field on the observation plane; the light intensity I 0 of the initial POV beam can be obtained from the POV beam light field expression in formula (1), that is:
I0=<E(r,θ,0)·E*(r,θ,0)> (18)I 0 =<E(r,θ,0)·E * (r,θ,0)> (18)
观测平面上衍射光场的光强I可由公式(15)中距离z处的光场获得,即:The light intensity I of the diffracted light field on the observation plane can be determined by the light field at distance z in formula (15) Obtain, that is:
本发明的有益效果是:The beneficial effects of the present invention are:
本发明利用完美涡旋光束暗中空的空间分布结构以及亮环半径不随拓扑荷数大小而改变的特性,可以从空间分布上与马卡天线结构进行完美匹配,在完美涡旋光束半径参数选择合适的情况下,任意拓扑荷数的完美涡旋光束都可直接避免马卡天线次反射镜的遮挡问题,达到提高马卡天线发射效率的目的。The present invention utilizes the dark hollow spatial distribution structure of the perfect vortex beam and the characteristic that the bright ring radius does not change with the topological charge. It can perfectly match the Maka antenna structure in terms of spatial distribution and select the appropriate parameters for the perfect vortex beam radius. In the case of any topological charge, a perfect vortex beam can directly avoid the blocking problem of the Marka antenna's sub-reflector and achieve the purpose of improving the Marka antenna's emission efficiency.
附图说明Description of the drawings
图1是本发明利用完美涡旋光束提高马卡天线发射效率的方法的应用场景;Figure 1 is an application scenario of the method of using a perfect vortex beam to improve the transmission efficiency of the Maca antenna according to the present invention;
图2是不同拓扑荷数的POV光束所对应发射功率的柱状图。Figure 2 is a histogram of the corresponding emission power of POV beams with different topological charges.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below with reference to the drawings and specific embodiments.
本发明提出一种利用完美涡旋光束提高马卡天线发射效率的方法,具体为:The present invention proposes a method for improving the emission efficiency of the Maca antenna by using a perfect vortex beam, specifically as follows:
步骤1:根据Collins公式和马卡天线的ABCD传输矩阵建立完美涡旋光束经马卡天线衍射光场模型;Step 1: Establish the light field model of the perfect vortex beam diffracted by the Marka antenna based on the Collins formula and the ABCD transmission matrix of the Marka antenna;
步骤1的具体过程如下:The specific process of step 1 is as follows:
步骤1.1、给出发射端光源的光场表达式,即POV光束在距离z=0平面上的光场E(r,θ,0)的表达式为:Step 1.1. Give the light field expression of the light source at the emission end, that is, the expression of the light field E(r,θ,0) of the POV beam on the distance z=0 plane is:
其中E0是幅度常数,m是拓扑荷数,i是虚数,Im是第一类m阶修正贝塞尔函数;ω0是焦点处的高斯束腰半径,亮环的环宽和半径分别等于2ω0和R,r和θ变量为柱坐标系的径向与方位角坐标;where E 0 is the amplitude constant, m is the topological charge, i is an imaginary number, I m is the first m-order modified Bessel function; ω 0 is the Gaussian beam waist radius at the focus, and the ring width and radius of the bright ring are respectively Equal to 2ω 0 and R, r and θ variables are the radial and azimuthal coordinates of the cylindrical coordinate system;
步骤1.2、由Collins公式可知,完美涡旋光束经马卡天线后,观测平面上的衍射光场为:Step 1.2. According to the Collins formula, after the perfect vortex beam passes through the Macca antenna, the diffraction light field on the observation plane for:
其中,z为传输距离,k=2π/λ为波数,λ为波长;H(r)为马卡天线的透射率函数;代表在柱坐标系下z>0处平面上的二维矢量,参数A,B,C,D为马卡天线光学系统的ABCD传输矩阵;Among them, z is the transmission distance, k=2π/λ is the wave number, and λ is the wavelength; H(r) is the transmittance function of the Maca antenna; Represents the two-dimensional vector on the plane at z>0 in the cylindrical coordinate system. The parameters A, B, C, and D are the ABCD transmission matrices of the Maca antenna optical system;
步骤1.3、马卡天线主要由第二遮拦、第一遮拦、主反射镜、次反射镜以及弯月校正镜组成。折反射式结构使得马卡天线结构紧凑,通过较小的尺寸就可形成大口径和长焦距的透镜组系统。马卡天线作为发射天线时的工作原理是:次反射镜将光源发出的光束进行第一次反射,反射后的光束入射主反射镜表面上,再被主反射镜反射后的光束经校正镜进行校正并透射出马卡天线系统,实现定向发射。在研究光束通过马卡天线时,一般都将马卡天线等效为透镜系统。此透镜系统的ABCD传输矩阵和透过率函数H(r)分别为:Step 1.3. The Maca antenna is mainly composed of the second barrier, the first barrier, the primary reflector, the secondary reflector and the meniscus correction mirror. The catadioptric structure makes the Maca antenna compact, and a lens system with a large aperture and long focal length can be formed through a smaller size. The working principle of the Maca antenna as a transmitting antenna is: the secondary reflector reflects the beam emitted by the light source for the first time. The reflected beam is incident on the surface of the primary reflector, and then the beam reflected by the primary reflector is processed by the correction mirror. Correct and transmit the Maca antenna system to achieve directional emission. When studying the light beam passing through the Maca antenna, the Maca antenna is generally equivalent to a lens system. The ABCD transmission matrix and transmittance function H(r) of this lens system are respectively:
H(r)=H1(r)-H2(r) (4)H(r)=H 1 (r)-H 2 (r) (4)
公式(4)中,H1(r)及H2(r)的表达式如下:In formula (4), the expressions of H 1 (r) and H 2 (r) are as follows:
其中,f为等效透镜的焦距,Δz=(z-f)/f;D0为马卡天线光学系统的弯月校正镜直径,d0为马卡天线光学系统的次反射镜直径,Aα,Bα为系数,取值如表1所示;T=10;Among them, f is the focal length of the equivalent lens, Δz = (zf)/f; D 0 is the diameter of the meniscus correction mirror of the Maca antenna optical system, d 0 is the diameter of the sub-reflector of the Maca antenna optical system, A α , B α is the coefficient, the value is shown in Table 1; T=10;
表1Aα,Bα为系数取值Table 1A α , B α are coefficient values
将(1)、(4)、(5)、(6)式代入到(2)式中,可得在距离z处的观测平面上衍射光场为:Substituting equations (1), (4), (5), and (6) into equation (2), we can get the diffracted light field on the observation plane at distance z for:
步骤2:利用步骤1建立的衍射模型(即在距离z处的观测平面上衍射光场),理论推导出POV光束经马卡天线后的衍射光场表达式;Step 2: Use the diffraction model established in step 1 (that is, the diffracted light field on the observation plane at distance z ), the expression of the diffraction light field of the POV beam after passing through the Maca antenna is theoretically derived;
步骤2的具体过程如下:The specific process of step 2 is as follows:
步骤2.1、借助公式:Step 2.1, with the help of formula:
对公式(7)中得到的距离z处观测平面上衍射光场中的参量进行代换,可得:Substituting the parameters in the diffraction light field on the observation plane at distance z obtained in formula (7), we can get:
步骤2.2、利用积分公式:Step 2.2, use the integral formula:
对(9)式中的参量θ进行积分,并整理得到:Integrate the parameter θ in equation (9) and sort it out:
步骤2.3、由公式Step 2.3, from the formula
J-α(x)=(-1)αJα(x) (12)J -α (x)=(-1) α J α (x) (12)
将(11)式化为:Transform (11) into:
步骤2.4、利用积分公式:Step 2.4, use the integral formula:
对(13)式中的r进行积分,可得观测平面上的衍射光场为:Integrating r in equation (13), the diffraction light field on the observation plane can be obtained as:
其中,in,
步骤3:根据几何光学分析方法,计算马卡天线的发射效率;Step 3: Calculate the emission efficiency of the Maca antenna according to the geometric optics analysis method;
步骤3按照以下具体步骤实施:Step 3 is implemented according to the following specific steps:
根据几何光学的分析方法,定义马卡天线的发射效率为:According to the analysis method of geometric optics, the emission efficiency of the Maca antenna is defined as:
其中,P0为入射到马卡天线端面总的光功率,P为探测平面上总的光功率;I0(x0,y0,0)为初始POV光束的光强,I(x,y,z)为观测平面上衍射光场的光强;初始POV光束的光强I0可由公式(1)中的POV光束光场表达式获得,即:Among them, P 0 is the total optical power incident on the end face of the Maca antenna, P is the total optical power on the detection plane; I 0 (x 0 , y 0 , 0) is the light intensity of the initial POV beam, I (x, y ,z) is the light intensity of the diffracted light field on the observation plane; the light intensity I 0 of the initial POV beam can be obtained from the POV beam light field expression in formula (1), that is:
I0=<E(r,θ,0)·E*(r,θ,0)> (18)I 0 =<E(r,θ,0)·E * (r,θ,0)> (18)
观测平面上衍射光场的光强I可由公式(15)中距离z处的光场获得,即:The light intensity I of the diffracted light field on the observation plane can be determined by the light field at distance z in formula (15) Obtain, that is:
实施例1:Example 1:
结合步骤3中的公式(17)、(18)和(19),计算马卡天线的发射效率。在没有特别说明时,设置Matlab仿真参数如下:波长λ=1.06μm,束腰半径ω0=5cm,传输距离z=1km,等效透镜直径D0=0.03m,等效透镜焦距f=0.5m。图2为遮拦比b=d0/D0=0.2,拓扑荷数m=1、2、3、5、8时,马卡天线的发射效率和高斯光束经马卡天线的发射效率对比图。观察图2可以看出,高斯光经过马卡天线的发射效率为0.79,POV经过马卡天线的发射效率达到0.88以上,结果证明,利用完美涡旋光束的确可以提高马卡天线发射效率。Combined with formulas (17), (18) and (19) in step 3, calculate the emission efficiency of the Maca antenna. Unless otherwise specified, set the Matlab simulation parameters as follows: wavelength λ = 1.06 μm, beam waist radius ω 0 = 5cm, transmission distance z = 1km, equivalent lens diameter D 0 = 0.03m, equivalent lens focal length f = 0.5m . Figure 2 is a comparison diagram of the emission efficiency of the Marka antenna and the emission efficiency of the Gaussian beam passing through the Marka antenna when the blocking ratio b=d 0 /D 0 =0.2 and the topological charge m=1, 2, 3, 5, and 8. Observing Figure 2, we can see that the emission efficiency of Gaussian light passing through the Marka antenna is 0.79, and the emission efficiency of POV passing through the Marka antenna reaches more than 0.88. The results prove that the use of perfect vortex beams can indeed improve the emission efficiency of the Marka antenna.
本发明是一种利用完美涡旋光束规避马卡天线次反射镜的遮挡,提升马卡天线发射效率的方法,其可以应用的系统如图1所示,自由空间光通信系统主要分为发射端和接收端两个信号处理单元,具体包括:编码器、调制器、发射光学系统、接收光学系统、光接收机、解码器。信源携带的数据信息经过信源编码后,调制到光载波上,再通过以大气作为媒介的信道发送出去。本发明以完美涡旋光束为光载波,以马卡天线作为发射光学系统,分析完美涡旋光束经过马卡天线的发射效率,对比高斯光束经过马卡天线的发射效率,结果证明完美涡旋光束的确提高了马卡天线的发射效率。The present invention is a method of using a perfect vortex beam to avoid the obstruction of the Marka antenna sub-reflector and improve the radiation efficiency of the Marka antenna. The system to which it can be applied is shown in Figure 1. The free space optical communication system is mainly divided into the transmitting end. and two signal processing units at the receiving end, specifically including: encoder, modulator, transmitting optical system, receiving optical system, optical receiver, and decoder. The data information carried by the source is encoded by the source, modulated onto the optical carrier, and then sent out through the channel using the atmosphere as the medium. The present invention uses a perfect vortex beam as an optical carrier and a Marka antenna as a transmitting optical system. It analyzes the emission efficiency of the perfect vortex beam passing through the Marka antenna and compares the emission efficiency of a Gaussian beam passing through the Marka antenna. The results prove that the perfect vortex beam passes through the Marka antenna. It indeed improves the transmission efficiency of the Maca antenna.
实施例2Example 2
利用完美涡旋光束提高马卡天线发射效率的方法,具体为:The method of using perfect vortex beam to improve the emission efficiency of Maca antenna is as follows:
步骤1:根据Collins公式和马卡天线的ABCD传输矩阵建立完美涡旋光束经马卡天线衍射光场模型;Step 1: Establish the light field model of the perfect vortex beam diffracted by the Marka antenna based on the Collins formula and the ABCD transmission matrix of the Marka antenna;
步骤2:利用步骤1建立的衍射模型,理论推导出POV光束经马卡天线后的衍射光场表达式;Step 2: Using the diffraction model established in step 1, theoretically derive the expression of the diffraction light field of the POV beam after passing through the Maca antenna;
步骤3:根据几何光学分析方法,计算马卡天线的发射效率。Step 3: Calculate the emission efficiency of the Maca antenna according to the geometric optics analysis method.
实施例3Example 3
利用完美涡旋光束提高马卡天线发射效率的方法,具体为:The method of using perfect vortex beam to improve the emission efficiency of Maca antenna is as follows:
步骤1:根据Collins公式和马卡天线的ABCD传输矩阵建立完美涡旋光束经马卡天线衍射光场模型;Step 1: Establish the light field model of the perfect vortex beam diffracted by the Marka antenna based on the Collins formula and the ABCD transmission matrix of the Marka antenna;
步骤1的具体过程如下:The specific process of step 1 is as follows:
步骤1.1、给出发射端光源的光场表达式,即POV光束在距离z=0平面上的光场E(r,θ,0)的表达式为:Step 1.1. Give the light field expression of the light source at the emission end, that is, the expression of the light field E(r,θ,0) of the POV beam on the distance z=0 plane is:
其中E0是幅度常数,m是拓扑荷数,i是虚数,Im是第一类m阶修正贝塞尔函数;ω0是焦点处的高斯束腰半径,亮环的环宽和半径分别等于2ω0和R,r和θ变量为柱坐标系的径向与方位角坐标;where E 0 is the amplitude constant, m is the topological charge, i is an imaginary number, I m is the first m-order modified Bessel function; ω 0 is the Gaussian beam waist radius at the focus, and the ring width and radius of the bright ring are respectively Equal to 2ω 0 and R, r and θ variables are the radial and azimuthal coordinates of the cylindrical coordinate system;
步骤1.2、由Collins公式可知,完美涡旋光束经马卡天线后,观测平面上的衍射光场为:Step 1.2. According to the Collins formula, after the perfect vortex beam passes through the Macca antenna, the diffraction light field on the observation plane for:
其中,z为传输距离,k=2π/λ为波数,λ为波长;H(r)为马卡天线的透射率函数;代表在柱坐标系下z>0处平面上的二维矢量,参数A,B,C,D为马卡天线光学系统的ABCD传输矩阵;Among them, z is the transmission distance, k=2π/λ is the wave number, and λ is the wavelength; H(r) is the transmittance function of the Maca antenna; Represents the two-dimensional vector on the plane at z>0 in the cylindrical coordinate system. The parameters A, B, C, and D are the ABCD transmission matrices of the Maca antenna optical system;
步骤1.3、马卡天线主要由第二遮拦、第一遮拦、主反射镜、次反射镜以及弯月校正镜组成。折反射式结构使得马卡天线结构紧凑,通过较小的尺寸就可形成大口径和长焦距的透镜组系统。马卡天线作为发射天线时的工作原理是:次反射镜将光源发出的光束进行第一次反射,反射后的光束入射主反射镜表面上,再被主反射镜反射后的光束经校正镜进行校正并透射出马卡天线系统,实现定向发射。在研究光束通过马卡天线时,将马卡天线等效为透镜系统;此透镜系统的ABCD传输矩阵和透过率函数H(r)分别为:Step 1.3. The Maca antenna is mainly composed of the second barrier, the first barrier, the primary reflector, the secondary reflector and the meniscus correction mirror. The catadioptric structure makes the Maca antenna compact, and a lens system with a large aperture and long focal length can be formed through a smaller size. The working principle of the Maca antenna as a transmitting antenna is: the secondary reflector reflects the beam emitted by the light source for the first time. The reflected beam is incident on the surface of the primary reflector, and then the beam reflected by the primary reflector is processed by the correction mirror. Correct and transmit the Maca antenna system to achieve directional emission. When studying the beam passing through the Maca antenna, the Maca antenna is equivalent to a lens system; the ABCD transmission matrix and transmittance function H(r) of this lens system are:
H(r)=H1(r)-H2(r) (4)H(r)=H 1 (r)-H 2 (r) (4)
公式(4)中,H1(r)及H2(r)的表达式如下:In formula (4), the expressions of H 1 (r) and H 2 (r) are as follows:
其中,f为等效透镜的焦距,Δz=(z-f)/f;D0为马卡天线光学系统的弯月校正镜直径,d0为马卡天线光学系统的次反射镜直径,Aα,Bα为系数,T=10;Among them, f is the focal length of the equivalent lens, Δz = (zf)/f; D 0 is the diameter of the meniscus correction mirror of the Maca antenna optical system, d 0 is the diameter of the sub-reflector of the Maca antenna optical system, A α , B α is the coefficient, T=10;
将(1)、(4)、(5)、(6)式代入到(2)式中,可得在距离z处的观测平面上衍射光场为:Substituting equations (1), (4), (5), and (6) into equation (2), we can get the diffracted light field on the observation plane at distance z for:
步骤2:利用步骤1建立的衍射模型,理论推导出POV光束经马卡天线后的衍射光场表达式;Step 2: Using the diffraction model established in step 1, theoretically derive the expression of the diffraction light field of the POV beam after passing through the Maca antenna;
步骤3:根据几何光学分析方法,计算马卡天线的发射效率。Step 3: Calculate the emission efficiency of the Maca antenna according to the geometric optics analysis method.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311219626.7A CN117394914A (en) | 2023-09-21 | 2023-09-21 | Method for improving transmitting efficiency of maca antenna by utilizing perfect vortex beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311219626.7A CN117394914A (en) | 2023-09-21 | 2023-09-21 | Method for improving transmitting efficiency of maca antenna by utilizing perfect vortex beam |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117394914A true CN117394914A (en) | 2024-01-12 |
Family
ID=89436382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311219626.7A Pending CN117394914A (en) | 2023-09-21 | 2023-09-21 | Method for improving transmitting efficiency of maca antenna by utilizing perfect vortex beam |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117394914A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130225089A1 (en) * | 2012-02-28 | 2013-08-29 | Fujitsu Limited | Radio communication apparatus, system, and method |
CN111355530A (en) * | 2020-03-13 | 2020-06-30 | 山东师范大学 | A method and apparatus for improving the performance of a wireless optical communication system |
CN114236860A (en) * | 2022-01-25 | 2022-03-25 | 太原科技大学 | A device and method for generating a multi-order vortex beam splitting array |
-
2023
- 2023-09-21 CN CN202311219626.7A patent/CN117394914A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130225089A1 (en) * | 2012-02-28 | 2013-08-29 | Fujitsu Limited | Radio communication apparatus, system, and method |
CN111355530A (en) * | 2020-03-13 | 2020-06-30 | 山东师范大学 | A method and apparatus for improving the performance of a wireless optical communication system |
CN114236860A (en) * | 2022-01-25 | 2022-03-25 | 太原科技大学 | A device and method for generating a multi-order vortex beam splitting array |
Non-Patent Citations (2)
Title |
---|
J. J. WEN ET AL.: "A diffraction beam field expressed as the superposition of Gaussian beams", JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1 May 1988 (1988-05-01), pages 1 * |
王姣: "大气湍流中部分相干涡旋光束的传输及衍射特性研究", 中国优秀博士学位论文全文数据库, 15 January 2021 (2021-01-15) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104597436B (en) | A kind of spectrum device applied to imaging laser radar | |
Andrews et al. | Theoryof optical scintillation: gaussian-beam wave model | |
CN108445641A (en) | A kind of tunable semiconductor laser optical optical tweezers system | |
CN111856766B (en) | A Self-Focusing Vortex Beam Generation Method for Suppressing Turbulence Effects | |
CN105372820B (en) | A kind of multi-wavelength couples the device of same light path | |
CN108873554B (en) | Multi-user capturing and tracking method based on liquid crystal optical phased array | |
CN105281044B (en) | A kind of millimeter wave high-resolution imaging dielectric lens antenna design method | |
CN117394914A (en) | Method for improving transmitting efficiency of maca antenna by utilizing perfect vortex beam | |
CN107490858B (en) | An optical antenna based on an axicon prism and its design method | |
CN117706578B (en) | A polarization imaging detection device and method for underwater targets based on near-field suppression | |
CN113805325A (en) | Long-focus large-view-field miniaturized active athermal optical system | |
CN116599599B (en) | Communication and tracking integrated detection device based on single photon detection technology | |
Cao et al. | Coupling system with concave and positive–negative angular cone lenses group for the Cassegrain receiving antenna system | |
CN108008529B (en) | Turnover type medium-wave two-gear infrared optical system | |
Ke et al. | Automatic focusing control in beaconless APT system | |
CN115145005B (en) | Laser scanning lens suitable for center shielding and application thereof | |
CN112363305B (en) | Microminiature medium wave infrared continuous zooming optical system | |
CN107037575B (en) | Off-axis reflection type optical antenna and system | |
Tian et al. | New design scheme for and application of Fresnel lens for broadband photonics terahertz communication | |
CN114527568A (en) | Terahertz single lens for divergent terahertz wave focusing and design method thereof | |
CN210666225U (en) | Optical imaging system of transmission type diffraction optical element | |
Yang et al. | Optimum design for optical antenna of space laser communication system | |
CN114326135A (en) | Space optical communication terminal based on double-conical-structure prism | |
CN118590142A (en) | A laser communication receiving device based on edge beam modulation coupling | |
CN112764214A (en) | Diffraction simulation method for generating hollow light beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20240112 |
|
RJ01 | Rejection of invention patent application after publication |