CN117388662A - A method for extracting tunneling field effect transistor parameters - Google Patents
A method for extracting tunneling field effect transistor parameters Download PDFInfo
- Publication number
- CN117388662A CN117388662A CN202311387410.1A CN202311387410A CN117388662A CN 117388662 A CN117388662 A CN 117388662A CN 202311387410 A CN202311387410 A CN 202311387410A CN 117388662 A CN117388662 A CN 117388662A
- Authority
- CN
- China
- Prior art keywords
- gate
- und
- capacitance
- tfet
- average
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000005641 tunneling Effects 0.000 title claims abstract description 20
- 230000005669 field effect Effects 0.000 title claims abstract description 18
- 239000004065 semiconductor Substances 0.000 claims abstract description 15
- 208000035038 Orofaciodigital syndrome type 2 Diseases 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000009825 accumulation Methods 0.000 claims description 4
- 208000025591 orofaciodigital syndrome type II Diseases 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 238000012512 characterization method Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2607—Circuits therefor
- G01R31/2621—Circuits therefor for testing field effect transistors, i.e. FET's
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域Technical field
本发明属于半导体技术领域,具体涉及一种提取隧穿场效应晶体管参数的方法。The invention belongs to the field of semiconductor technology, and specifically relates to a method for extracting parameters of tunneling field effect transistors.
背景技术Background technique
人工智能物联网(AIoT)技术的发展对半导体功耗提出了更高的要求,隧穿场效应晶体管(TFET)被认为是最有潜力的低功耗器件之一。隧穿场效应晶体管的源端和漏端均存在隧穿结,源端的隧穿结用于提供器件导通的开态电流,漏端的隧穿结则会导致器件关态电流增大。一般的,常采取降低漏端杂质掺杂浓度或者制备漏端欠覆盖区的方式,增大漏端隧穿结的隧穿宽度,降低隧穿场效应晶体管漏端隧穿结的带带隧穿电流。The development of artificial intelligence Internet of Things (AIoT) technology has put forward higher requirements for semiconductor power consumption, and tunneling field effect transistors (TFETs) are considered to be one of the most potential low-power devices. There are tunnel junctions at both the source and drain ends of a tunneling field effect transistor. The tunnel junction at the source end is used to provide the on-state current of the device, while the tunnel junction at the drain end will cause the device to increase the off-state current. Generally, methods such as reducing the impurity doping concentration of the drain end or preparing an undercovered area of the drain end are often used to increase the tunneling width of the drain end tunnel junction and reduce the band-to-band tunneling of the drain end tunnel junction of the tunneling field effect transistor. current.
漏端欠覆盖区指的是隧穿场效应晶体管的靠近漏端的栅边缘到漏端隧穿结处的电学长度。对于制备漏端欠覆盖区的方式,需要得知器件漏端欠覆盖区的长度用于分离器件涨落源、调整器件电学性能等。但是,通过已有的物理表征方法只能获得单个器件的漏端欠覆盖区的物理长度,且对每个器件进行物理表征的成本较高。因此,需要发明一种提取隧穿场效应晶体管漏端欠覆盖区长度的方法,可以仅通过电学表征的方式提取漏端欠覆盖区的电学长度。The drain undercoverage refers to the electrical length from the gate edge of the tunneling field effect transistor close to the drain to the drain tunnel junction. Regarding the method of preparing the drain end undercoverage area, it is necessary to know the length of the device drain end undercoverage area to isolate the device fluctuation source, adjust the device electrical performance, etc. However, existing physical characterization methods can only obtain the physical length of the drain end undercoverage of a single device, and the cost of physical characterization of each device is high. Therefore, there is a need to invent a method for extracting the length of the under-covered area of the drain end of a tunneling field-effect transistor, which can extract the electrical length of the under-covered area of the drain end only through electrical characterization.
发明内容Contents of the invention
本发明的目的在于提出一种提取隧穿场效应晶体管参数的方法,可以仅通过电学表征的方式提取带有漏端欠覆盖区的隧穿场效应晶体管(DLund-TFET)的平均漏端欠覆盖区电学长度Lund。The purpose of the present invention is to propose a method for extracting tunneling field effect transistor parameters, which can extract the average drain undercover of tunneling field effect transistors with drain undercoverage (DL und -TFET) through electrical characterization only. Coverage area electrical length L und .
本发明提供的技术方案如下:The technical solutions provided by the invention are as follows:
一种提取带有漏端欠覆盖区的隧穿场效应晶体管(DLund-TFET)的平均漏端欠覆盖区电学长度Lund的方法,其特征是:A method of extracting the average electrical length L und of the drain undercoverage of a tunneling field effect transistor (DL und -TFET) with a drain undercoverage, which is characterized by:
用半导体参数分析仪测量N型DLund-TFET器件(或P型)的栅电容,进而得到N型DLund-TFET器件(或P型)的沟道表面处于耗尽状态时,器件源端的外边缘栅电容面密度COFS0和器件漏端的外边缘栅电容面密度COFD0。根据公式(1)计算Lund的数值,完成Lund的提取工作。Use a semiconductor parameter analyzer to measure the gate capacitance of the N-type DL und -TFET device (or P-type), and then obtain the external capacitance of the source end of the device when the channel surface of the N-type DL und -TFET device (or P-type) is in a depleted state. The edge gate capacitance areal density C OFS0 and the outer edge gate capacitance areal density C OFD0 at the drain end of the device. Calculate the value of L und according to formula (1) and complete the extraction of L und .
公式(1)中εOFF和εON分别为DLund-TFET器件源端栅侧墙的介电常数和漏端栅侧墙的介电常数,LG为DLund-TFET器件的栅长,EOT为DLund-TFET器件的有效栅氧化层厚度,ε0为真空中介电常数,π为圆周率。其中,ε0和π均为领域内专业人士已知的常数,可从教科书或者网络中查到。εOFF、εON、LG和EOT均为被测量的DLund-TFET器件的材料和结构参数,需要对被测器件进行参数提取才能得知。In formula (1), ε OFF and ε ON are the dielectric constant of the source gate sidewall and the drain side gate sidewall of the DL und -TFET device respectively, L G is the gate length of the DL und -TFET device, and EOT is the effective gate oxide thickness of the DL und -TFET device, ε 0 is the permittivity in vacuum, and π is the pi. Among them, ε 0 and π are constants known to professionals in the field and can be found in textbooks or on the Internet. ε OFF , ε ON , LG and EOT are all material and structural parameters of the measured DL und -TFET device, which can only be known by extracting parameters of the measured device.
进一步,获得DLund-TFET器件的εOFF、εON、LG和EOT参数的方法,其特征如下:Furthermore, the method to obtain the ε OFF , ε ON , LG and EOT parameters of DL und -TFET devices has the following characteristics:
用半导体参数分析仪测量N型DLund-TFET器件(或P型)的栅电容,进而得到N型DLund-TFET器件(或P型)的沟道表面处于积累状态(或反型状态)时器件源端的外边缘栅电容面密度COFS1、N型DLund-TFET器件(或P型)的沟道表面处于反型状态(或积累状态)时器件漏端的外边缘栅电容面密度COFD2和DLund-TFET器件的等效栅氧化层电容面密度COX。根据被测DLund-TFET器件的版图获得其栅长LG的数值,根据公式(2)、(3)、(4)计算EOT、εOFF和εON的数值,完成DLund-TFET器件的εOFF、εON、LG和EOT参数提取工作。Use a semiconductor parameter analyzer to measure the gate capacitance of the N-type DL und -TFET device (or P-type), and then obtain the time when the channel surface of the N-type DL und -TFET device (or P-type) is in an accumulation state (or inversion state) The outer edge gate capacitance areal density C OFS1 at the source end of the device, the outer edge gate capacitance areal density C OFD2 at the drain end of the device when the channel surface of the N-type DL und -TFET device (or P-type) is in the inversion state (or accumulation state) and DL und -The equivalent gate oxide capacitance areal density C OX of the TFET device. Obtain the value of the gate length LG according to the layout of the tested DL und -TFET device. Calculate the values of EOT, ε OFF and ε ON according to formulas (2), (3) and (4) to complete the analysis of the DL und -TFET device. ε OFF , ε ON , LG and EOT parameter extraction work.
公式(2)中,εOX指的是二氧化硅的介电常数,为领域内专业人士已知的常数,可从教科书或者网络中查到。公式(3)中和公式(4)中的HG均为DLund-TFET器件的栅导电层高度,可以通过查阅DLund-TFET器件的工艺制备参数得到,即查阅栅导电层材料的淀积厚度,即为HG。In formula (2), ε OX refers to the dielectric constant of silicon dioxide, which is a constant known to professionals in the field and can be found in textbooks or on the Internet. H G in formula (3) and formula (4) are both the height of the gate conductive layer of the DL und -TFET device, which can be obtained by checking the process preparation parameters of the DL und -TFET device, that is, checking the deposition of the gate conductive layer material The thickness is H G .
通常情况下,通过半导体分析仪测试得到的DLund-TFET器件栅电容,指的是随栅电压变化的栅源电容和随栅电压变化的栅漏电容。它们的物理成分包括等效栅氧化层电容、源端的外边缘栅电容、漏端的外边缘栅电容以及耗尽层电容等,这些物理成分需要通过分析测试数据得到,无法直接通过半导体分析仪测试得到。Normally, the gate capacitance of DL und -TFET devices measured by a semiconductor analyzer refers to the gate-source capacitance that changes with the gate voltage and the gate-drain capacitance that changes with the gate voltage. Their physical components include equivalent gate oxide layer capacitance, outer edge gate capacitance at the source end, outer edge gate capacitance at the drain end, depletion layer capacitance, etc. These physical components need to be obtained by analyzing test data and cannot be directly measured by a semiconductor analyzer. .
进一步,用半导体参数分析仪测量不同栅电压VG对应的N型DLund-TFET器件(或P型)的栅源电容和栅漏电容,源电压VS和漏电压VD均为0V,栅电压VG的扫描范围是从-VDD到VDD。VDD是DLund-TFET器件组成的电路对应的电源电压。每种栅长的DLund-TFET器件测试N个,一共测试M种栅长的器件,N的大小可以是大于等于1的正整数,M的大小可以是大于等于1的正整数。Further, use a semiconductor parameter analyzer to measure the gate-source capacitance and gate-drain capacitance of the N-type DL und -TFET device (or P-type) corresponding to different gate voltages V G. The source voltage V S and the drain voltage V D are both 0V, and the gate The scanning range of voltage V G is from -VDD to VDD. VDD is the power supply voltage corresponding to the circuit composed of DL und -TFET devices. N DL und -TFET devices of each gate length are tested, and a total of M gate length devices are tested. The size of N can be a positive integer greater than or equal to 1, and the size of M can be a positive integer greater than or equal to 1.
对于每种栅长的DLund-TFET器件,计算N个器件的栅源电容、栅漏电容的平均值,并除以器件的栅面积得到平均栅源电容面密度CGS和平均栅漏电容面密度CGD,将CGS和CGD相加得到平均栅电容面密度CGG。器件的栅面积指的是被测DLund-TFET器件栅长LG与栅宽WG的乘积,可以通过测量版图得到。For each gate length DL und -TFET device, calculate the average value of the gate-source capacitance and gate-drain capacitance of N devices, and divide it by the gate area of the device to obtain the average gate-source capacitance area density C GS and the average gate-drain capacitance area. Density C GD , adding C GS and C GD gives the average gate capacitance areal density C GG . The gate area of the device refers to the product of the gate length L G and the gate width W G of the DL und -TFET device under test, which can be obtained by measuring the layout.
画出平均栅源电容面密度CGS、平均栅漏电容面密度CGD和平均栅电容面密度CGG相对于栅电压VG的变化曲线,用于辅助后续的数据处理工作。可以发现DLund-TFET器件独有的电学特性,即,其“CGS-VG”和“CGD-VG”曲线具有栅长依赖性和二次开启现象。“CGG-VG”曲线具有栅长依赖性以及三段饱和区。定义“CGG-VG”曲线中间段饱和区的某一个栅电压为V0,定义DLund-TFET器件的“CGS-VG”曲线第二次开启后的饱和区中的某一个栅电压为V1,定义DLund-TFET器件的“CGD-VG”曲线第二次开启后的饱和区中的某一个栅电压为V2。Draw the variation curves of the average gate-source capacitance surface density C GS , the average gate-drain capacitance surface density C GD and the average gate capacitance surface density C GG relative to the gate voltage V G to assist subsequent data processing. It can be found that the unique electrical characteristics of DL und -TFET devices, that is, its “C GS -V G ” and “ CGD -V G ” curves have gate length dependence and secondary turn-on phenomena. The “C GG -V G ” curve has gate length dependence and three saturation regions. Define a certain gate voltage in the saturation area in the middle section of the "C GG -V G " curve as V 0 , and define a certain gate in the saturation area after the second turn-on of the "C GS -V G " curve of the DL und -TFET device. The voltage is V 1 , and a gate voltage in the saturation region after the second turn-on of the " CGD -V G " curve of the DL und -TFET device is defined as V 2 .
从M种栅长的DLund-TFET器件的平均栅电容面密度CGG中,提取得到VG=V1时的数值CGG1,一共M个。从M种栅长的DLund-TFET器件的平均栅电容面密度CGG中,提取得到VG=V2时的数值CGG2,一共M个。从M种栅长的DLund-TFET器件的平均栅源电容面密度CGS中,提取得到VG=V1时的数值CGS1,一共M个。从M种栅长的DLund-TFET器件的平均栅源电容面密度CGS中,提取得到VG=V0时的数值CGS0,一共M个。从M种栅长的DLund-TFET器件的平均栅源电容面密度CGD中,提取得到VG=V0时的数值CGD0,一共M个。From the average gate capacitance areal density C GG of DL und -TFET devices with M gate lengths, the values C GG1 when V G = V 1 are extracted, M in total. From the average gate capacitance areal density C GG of DL und -TFET devices with M gate lengths, the values C GG2 when V G = V 2 are extracted, M in total. From the average gate-source capacitance surface density C GS of DL und -TFET devices with M gate lengths, the value C GS1 when V G = V 1 is extracted, M in total. From the average gate-source capacitance areal density C GS of DL und -TFET devices with M gate lengths, the value C GS0 when V G = V 0 is extracted, M in total. From the average gate-source capacitance areal density CGD of DL und -TFET devices with M gate lengths, the value CGD0 when V G =V 0 is extracted, M in total.
用MATLAB或者其他数据处理软件,对上述提取得到的M个CGG1和其对应的M个1/LG做线性拟合,得到拟合公式CGG1=P1+Q1*(1/LG),其中P1指的是COX,即公式(2)左侧的数值。用同样的方法,对上述提取得到的M个CGG2和其对应的M个1/LG做线性拟合,得到拟合公式CGG2=P2+Q2*(1/LG),其中Q2指的是COFD2*LG,即公式(4)左侧的数值。用同样的方法,对上述提取得到的M个CGS1和其对应的M个1/LG做线性拟合,得到拟合公式CGS1=P3+Q3*(1/LG),其中Q3指的是COFS1*LG,即公式(3)左侧的数值。用同样的方法,对上述提取得到的M个CGS0和其对应的M个1/LG做线性拟合,得到拟合公式CGS0=P4+Q4*(1/LG),其中Q4指的是COFS0*LG,用于带入公式(1)左侧的对应部分进行计算。用同样的方法,对上述提取得到的M个CGD0和其对应的M个1/LG做线性拟合,得到拟合公式CGD0=P5+Q5*(1/LG),其中Q5指的是COFD0*LG,用于带入公式(1)左侧的对应部分进行计算。Use MATLAB or other data processing software to linearly fit the M C GG1 extracted above and the corresponding M 1/L G to obtain the fitting formula C GG1 =P 1 +Q 1 *(1/L G ), where P 1 refers to C OX , which is the value on the left side of formula (2). Using the same method, perform linear fitting on the M C GG2 extracted above and their corresponding M 1/L G , and obtain the fitting formula C GG2 =P 2 +Q 2 *(1/L G ), where Q 2 refers to C OFD2 * LG , which is the value on the left side of formula (4). Using the same method, perform linear fitting on the M C GS1 extracted above and its corresponding M 1/L G , and obtain the fitting formula C GS1 =P 3 +Q 3 *(1/L G ), where Q 3 refers to C OFS1 *L G , which is the value on the left side of formula (3). Using the same method, perform linear fitting on the M C GS0 extracted above and its corresponding M 1/L G , and obtain the fitting formula C GS0 =P 4 +Q 4 *(1/L G ), where Q 4 refers to C OFS0 *L G , which is used to bring the corresponding part on the left side of formula (1) for calculation. Use the same method to linearly fit the M C GD0 extracted above and the corresponding M 1/L G to obtain the fitting formula C GD0 =P 5 +Q 5 *(1/L G ), where Q 5 refers to C OFD0 *L G , which is used to bring the corresponding part on the left side of formula (1) for calculation.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明提出的上述方法,可以仅通过对DLund-TFET器件的栅电容进行电学测试和数据分析,提取得到DLund-TFET器件的平均漏端欠覆盖区的电学长度Lund。所有工作只需借助半导体参数分析仪和MATLAB即可完成,具有快速、低成本的优势。The above-mentioned method proposed by the present invention can extract and obtain the electrical length L und of the average drain end undercoverage area of the DL und -TFET device only by conducting electrical testing and data analysis on the gate capacitance of the DL und -TFET device. All work can be completed with the help of a semiconductor parameter analyzer and MATLAB, which has the advantages of speed and low cost.
附图说明Description of the drawings
图1为本发明提出的提取DLund-TFET器件的平均漏端欠覆盖区电学长度的流程图;Figure 1 is a flow chart for extracting the electrical length of the average drain under-coverage area of DL und -TFET devices proposed by the present invention;
图2为根据本发明提出的方法,提取某一种DLund-TFET器件的平均漏端欠覆盖区电学长度的中间结果图,具体的Figure 2 is an intermediate result diagram of extracting the average electrical length of the drain end under-coverage area of a certain DL und -TFET device according to the method proposed by the present invention. Specifically
(a)为平均栅源电容面密度(CGS)相对于栅电压(VG)的变化曲线;(a) is the variation curve of the average gate-source capacitance area density (C GS ) relative to the gate voltage (V G );
(b)为平均栅漏电容面密度(CGD)相对于栅电压(VG)的变化曲线;(b) is the variation curve of the average gate-to-drain capacitance areal density (C GD ) relative to the gate voltage (V G );
(c)为平均栅电容面密度(CGG)相对于栅电压(VG)的变化曲线;(c) is the variation curve of the average gate capacitance areal density (C GG ) relative to the gate voltage (V G );
(d)为CGG1相对于1/LG的变化曲线及其线性拟合结果;(d) is the change curve of C GG1 relative to 1/L G and its linear fitting results;
(e)为CGG2相对于1/LG的变化曲线及其线性拟合结果;(e) is the change curve of C GG2 relative to 1/L G and its linear fitting results;
(f)为CGS1相对于1/LG的变化曲线及其线性拟合结果;(f) is the change curve of C GS1 relative to 1/L G and its linear fitting results;
(g)为CGS0相对于1/LG的变化曲线及其线性拟合结果;(g) is the change curve of C GS0 relative to 1/L G and its linear fitting results;
(h)为CGD0相对于1/LG的变化曲线及其线性拟合结果;(h) is the change curve of C GD0 relative to 1/L G and its linear fitting results;
图3为图2中研究的某一种DLund-TFET器件的结构示意图及其几何参数示意图;Figure 3 is a schematic structural diagram of a certain DL und -TFET device studied in Figure 2 and a schematic diagram of its geometric parameters;
图中:In the picture:
1——高阻硅衬底; 2——浅沟槽隔离;1——High resistance silicon substrate; 2——Shallow trench isolation;
3——栅介质层; 4——栅导电层;3——Gate dielectric layer; 4——Gate conductive layer;
5——源端侧墙; 6——漏端侧墙;5——Source side wall; 6——Drain side side wall;
7——源端杂质掺杂区; 8——漏端杂质掺杂区;7——Source impurity doping region; 8——Drain impurity doping region;
9——源端金属层; 10——漏端金属层;9——Source metal layer; 10——Drain metal layer;
具体实施方式Detailed ways
下面将参照附图对本发明的一个示例性实施方式做进一步说明。需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。An exemplary embodiment of the present invention will be further described below with reference to the accompanying drawings. It should be noted that the purpose of publishing the embodiments is to help further understand the present invention, but those skilled in the art can understand that various substitutions and modifications are possible without departing from the spirit and scope of the present invention and the appended claims. of. Therefore, the present invention should not be limited to the contents disclosed in the embodiments, and the scope of protection claimed by the present invention shall be subject to the scope defined by the claims.
图1展示了本发明具体实施例所提出的提取DLund-TFET器件的平均漏端欠覆盖区电学长度Lund的方法流程图。该流程图将所提出的提取Lund的方法与提取εOFF、εON、LG、EOT参数的方法、获取各栅电容物理成分的方法进行了整合。根据图1中的步骤对图3所示的某一种DLund-TFET器件进行平均漏端欠覆盖区电学长度Lund进行提取,该器件是N型TFET器件。FIG. 1 shows the flow chart of the method for extracting the average drain terminal undercoverage electrical length L und of a DL und -TFET device proposed by a specific embodiment of the present invention. This flow chart integrates the proposed method of extracting L und with the method of extracting ε OFF , ε ON , LG , and EOT parameters, and the method of obtaining the physical components of each gate capacitance. According to the steps in Figure 1, extract the average drain end undercover area electrical length L und of a certain DL und -TFET device shown in Figure 3. This device is an N-type TFET device.
首先,用半导体参数分析仪测试器件的栅源电容和栅漏电容,栅电压VG的扫描范围是-2.5V到2.5V,源电压VS和漏电压VD均为0V。一共测试了五种栅长的器件,每种栅长测试了五个器件,栅长大小分别为60nm、120nm、180nm、240nm和300nm;First, use a semiconductor parameter analyzer to test the gate-source capacitance and gate-drain capacitance of the device. The scanning range of the gate voltage V G is -2.5V to 2.5V, and the source voltage V S and drain voltage V D are both 0V. A total of five devices with gate lengths were tested, and five devices were tested with each gate length. The gate length sizes were 60nm, 120nm, 180nm, 240nm and 300nm respectively;
接下来,对于每种栅长的器件,将测试得到的栅源电容、栅漏电容除以器件的栅面积得到栅源电容面密度、栅漏电容面密度;Next, for each gate length device, divide the tested gate-source capacitance and gate-drain capacitance by the gate area of the device to obtain the gate-source capacitance area density and gate-drain capacitance area density;
接下来,计算得到每种栅长器件对应的平均栅源电容面密度CGS和平均栅漏电容面密度CGD;Next, calculate the average gate-source capacitance area density C GS and the average gate-drain capacitance area density C GD corresponding to each gate length device;
接下来,将平均栅源电容面密度CGS和平均栅漏电容面密度CGD相加,计算得到每种栅长器件对应的平均栅电容面密度CGG;Next, add the average gate-source capacitance area density C GS and the average gate-drain capacitance area density C GD to calculate the average gate capacitance area density C GG corresponding to each gate length device;
接下来,如图2(a)所示,将每种栅长器件的平均栅源电容面密度CGS相对于栅电压VG的变化曲线画在一张图中;Next, as shown in Figure 2(a), the variation curve of the average gate-source capacitance area density C GS of each gate length device relative to the gate voltage V G is drawn in a graph;
接下来,如图2(b)所示,将每种栅长器件的平均栅漏电容面密度CGD相对于栅电压VG的变化曲线画在一张图中;Next, as shown in Figure 2(b), the variation curve of the average gate-to-drain capacitance area density C GD of each gate length device relative to the gate voltage V G is drawn in a graph;
图2(a)和图2(b)中均可以观察到栅长依赖性和二次开启现象。每一次开启后均有一段电容相对于栅电压几乎不发生变化的区域,为电容饱和区,对应的电容数值为饱和电容。定义V1=-2.5V,V2=1VThe gate length dependence and secondary turn-on phenomenon can be observed in both Figure 2(a) and Figure 2(b). After each turn on, there is a region where the capacitance hardly changes relative to the gate voltage, which is the capacitance saturation region, and the corresponding capacitance value is the saturation capacitance. Define V 1 =-2.5V, V 2 =1V
接下来,如图2(c)所示,将每种栅长器件的平均栅电容面密度CGG相对于栅电压VG的变化曲线画在一张图中;Next, as shown in Figure 2(c), the variation curve of the average gate capacitance area density C GG of each gate length device relative to the gate voltage V G is drawn in a graph;
图2(c)中可以观察到栅长依赖性和三段饱和区,选取中间那一段饱和区的栅电压-0.7V作为V0;In Figure 2(c), the gate length dependence and the three saturation regions can be observed. The gate voltage of the middle saturation region -0.7V is selected as V 0 ;
接下来,对每种栅长的器件,提取VG=V1时的平均栅源电容面密度(CGS)作为CGS1;Next, for each gate length device, extract the average gate-source capacitance area density (C GS ) when V G = V 1 as C GS1 ;
接下来,对每种栅长的器件,提取VG=V0时的平均栅源电容面密度(CGS)作为CGS0;Next, for each gate length device, extract the average gate-source capacitance area density (C GS ) when V G = V 0 as C GS0 ;
接下来,对每种栅长的器件,提取VG=V0时的平均栅漏电容面密度(CGD)作为CGD0;Next, for each gate length device, extract the average gate-to-drain capacitance areal density ( CGD ) when V G = V 0 as CGD0 ;
接下来,对每种栅长的器件,提取VG=V1时的平均栅电容面密度(CGG)作为CGG1;Next, for each gate length device, extract the average gate capacitance areal density (C GG ) when V G = V 1 as C GG1 ;
接下来,对每种栅长的器件,提取VG=V2时的平均栅电容面密度(CGG)作为CGG2;Next, for each gate length device, extract the average gate capacitance areal density (C GG ) when V G = V 2 as C GG2 ;
接下来,如图2(d)所示,将CGG1相对于1/LG的变化曲线及其线性拟合结果画在一张图中,拟合结果为 Next, as shown in Figure 2(d), the change curve of C GG1 relative to 1/L G and its linear fitting result are drawn in a picture. The fitting result is
接下来,如图2(e)所示,将CGG2相对于1/LG的变化曲线及其线性拟合结果画在一张图中,拟合结果为 Next, as shown in Figure 2(e), the change curve of C GG2 relative to 1/L G and its linear fitting result are drawn in a picture. The fitting result is
接下来,如图2(f)所示,将CGS1相对于1/LG的变化曲线及其线性拟合结果画在一张图中,拟合结果为 Next, as shown in Figure 2(f), the change curve of C GS1 relative to 1/L G and its linear fitting result are drawn in a picture. The fitting result is
接下来,如图2(g)所示,将CGS0相对于1/LG的变化曲线及其线性拟合结果画在一张图中,拟合结果为 Next, as shown in Figure 2(g), the change curve of C GS0 relative to 1/L G and its linear fitting result are drawn in a picture. The fitting result is
接下来,如图2(h)所示,将CGD0相对于1/LG的变化曲线及其线性拟合结果画在一张图中,拟合结果为 Next, as shown in Figure 2(h), the change curve of C GD0 relative to 1/L G and its linear fitting result are drawn in a picture. The fitting result is
接下来,根据公式(2)可知,带入参数ε0=8.85×10-14F/cm和εox=3.9,提取得到EOT=2.3nm;Next, according to formula (2), we can know that Bringing in the parameters ε 0 =8.85×10 -14 F/cm and ε ox =3.9, the extracted EOT =2.3nm;
接下来,根据公式(4)可知,带入参数EOT=2.3nm、ε0=8.85×10-14F/cm和HG=89nm,提取得到εON=7.6;Next, according to formula (4), we can know that Bringing in the parameters EOT=2.3nm, ε 0 =8.85×10 -14 F/cm and H G =89nm, we extract ε ON =7.6;
接下来,根据公式(3)可知,带入参数EOT=2.3nm、ε0=8.85×10-14F/cm和HG=89nm,提取得到εOFF=6.9;Next, according to formula (3), we can know that Bringing in the parameters EOT=2.3nm, ε 0 =8.85×10 -14 F/cm and H G =89nm, we extract ε OFF =6.9;
接下来,根据公式(1)可知,带入参数EOT=2.3nm、ε0=8.85×10-14F/cm、εOFF=6.9和εON=7.6,提取得到Lund=19nm;Next, according to formula (1), we can know that Bringing in the parameters EOT = 2.3nm, ε 0 = 8.85×10 -14 F/cm, ε OFF = 6.9 and ε ON = 7.6, extract L und = 19nm;
Lund的长度指的是靠近漏端的栅边界距离漏端隧穿结处的电学长度,约等于靠近漏端的栅边界距离漏端金属层10边界的长度Lm减去包裹漏端金属层10的漏端杂质掺杂区8掺杂浓度峰值区的宽度Ld。通过TEM表征得到某一个图3所示器件的Lm为30nm,通过Sentaurus Sprocess仿真得知Ld的宽度为10nm。由此验证了所提出的方法提取得到的DLund-TFET器件的平均漏端欠覆盖区的长度的合理性与准确性。The length of L und refers to the electrical length between the gate boundary near the drain end and the drain tunnel junction, which is approximately equal to the length L m between the gate boundary near the drain end and the boundary of the drain end metal layer 10 minus the length L m surrounding the drain end metal layer 10 The drain terminal impurity doped region 8 has a width L d of a doping concentration peak region. Through TEM characterization, the L m of a certain device shown in Figure 3 is found to be 30nm, and through Sentaurus Sprocess simulation, the width of L d is found to be 10nm. This verifies the rationality and accuracy of the average drain undercoverage length of the DL und -TFET device extracted by the proposed method.
虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。Although the present invention has been disclosed above in terms of preferred embodiments, this is not intended to limit the present invention. Any person familiar with the art can make many possible changes and modifications to the technical solution of the present invention by using the methods and technical contents disclosed above, or modify it into equivalent implementations with equivalent changes, without departing from the scope of the technical solution of the present invention. example. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments based on the technical essence of the present invention without departing from the content of the technical solution of the present invention still fall within the scope of protection of the technical solution of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311387410.1A CN117388662A (en) | 2023-10-25 | 2023-10-25 | A method for extracting tunneling field effect transistor parameters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311387410.1A CN117388662A (en) | 2023-10-25 | 2023-10-25 | A method for extracting tunneling field effect transistor parameters |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117388662A true CN117388662A (en) | 2024-01-12 |
Family
ID=89438716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311387410.1A Pending CN117388662A (en) | 2023-10-25 | 2023-10-25 | A method for extracting tunneling field effect transistor parameters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117388662A (en) |
-
2023
- 2023-10-25 CN CN202311387410.1A patent/CN117388662A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh et al. | A charge-plasma-based dielectric-modulated junctionless TFET for biosensor label-free detection | |
Venkatesh et al. | A dielectrically modulated electrically doped tunnel FET for application of label free biosensor | |
Chander et al. | Temperature analysis of Ge/Si heterojunction SOI-tunnel FET | |
Flandre et al. | $ g_ {m}/I_ {\rm d} $ Method for Threshold Voltage Extraction Applicable in Advanced MOSFETs With Nonlinear Behavior Above Threshold | |
CN102707227B (en) | Threshold voltage extracting method of FET | |
CN111596137B (en) | Method for extracting source-drain resistance of field effect transistor | |
Jazaeri et al. | Free carrier mobility extraction in FETs | |
Tripathi et al. | Improved drain current with suppressed short channel effect of p+ pocket double-gate MOSFET in Sub-14 nm technology node | |
Biswas et al. | Linearity and analog performance analysis of silicon junctionless bulk FinFET considering gate electrode workfunction variability and different fin aspect ratio | |
Lin et al. | Modeling of back-gate effects on gate-induced drain leakage and gate currents in UTB SOI MOSFETs | |
Liu et al. | Electrical performance of 130 nm PD-SOI MOSFET with diamond layout | |
Wakam et al. | Doping profile extraction in thin SOI films: Application to A2RAM | |
CN117388662A (en) | A method for extracting tunneling field effect transistor parameters | |
Rudenko et al. | A method for threshold voltage extraction in junctionless MOSFETs using the derivative of transconductance-to-current ratio | |
Trevisoli et al. | Junctionless nanowire transistors parameters extraction based on drain current measurements | |
Anvarifard et al. | Voltage difference engineering in SOI MOSFETs: A novel side gate device with improved electrical performance | |
Abdul-kadir et al. | Characterization of silicon tunnel field effect transistor based on charge plasma | |
Sahu et al. | RF parameter extraction and S-parameter analysis of junctionless silicon nanowire transistor | |
Abraham et al. | Effect of Fin shape on GIDL and subthreshold leakage currents | |
Chattopadhyay et al. | Effect of spacer dielectric engineering on asymmetric source underlapped double gate MOSFET using gate stack | |
Kumar et al. | Double Gate TFET Simulation with Different Gate Oxides and Thickness | |
Duggal et al. | Review article on analytical models for single gate and double gate MOSFETs in subthreshold regime | |
Jung et al. | Analysis of on-off current ratio in asymmetrical junctionless double gate MOSFET using high-k dielectric materials | |
Park et al. | A study on the performance of metal-oxide-semiconductor-field-effect-transistors with asymmetric junction doping structure | |
Boukortt et al. | Temperature dependence of electrical parameters of silicon-on-insulator triple gate n-channel fin field effect transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |