[go: up one dir, main page]

CN117374102A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
CN117374102A
CN117374102A CN202311356854.9A CN202311356854A CN117374102A CN 117374102 A CN117374102 A CN 117374102A CN 202311356854 A CN202311356854 A CN 202311356854A CN 117374102 A CN117374102 A CN 117374102A
Authority
CN
China
Prior art keywords
layer
semiconductor device
substrate
barrier layer
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311356854.9A
Other languages
Chinese (zh)
Inventor
刘勇
赵起越
李长安
吴克平
孙汉萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innoscience Zhuhai Technology Co Ltd
Original Assignee
Innoscience Zhuhai Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innoscience Zhuhai Technology Co Ltd filed Critical Innoscience Zhuhai Technology Co Ltd
Priority to CN202311356854.9A priority Critical patent/CN117374102A/en
Publication of CN117374102A publication Critical patent/CN117374102A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

The present disclosure provides a semiconductor device and a method of manufacturing the same, wherein the semiconductor device includes a substrate, a channel layer, an insertion layer, a barrier layer, and a gate electrode. The channel layer is disposed on the substrate, and the channel layer includes a nitride semiconductor material. The barrier layer is disposed on a side of the channel layer remote from the substrate, the barrier layer includes a nitride semiconductor material, and an energy gap of the barrier layer is greater than an energy gap of the channel layer. The grid electrode is arranged on one side of the barrier layer away from the channel layer. The insertion layer is disposed between the channel layer and the barrier layer, and the insertion layer is provided with a gap in a region corresponding to the gate electrode. By arranging the insertion layer with the gap, not only can the electron mobility be improved, but also the defects of easy punch-through of the device, reduced breakdown voltage of the device and the like can be avoided.

Description

半导体器件及其制造方法Semiconductor device and manufacturing method thereof

技术领域Technical field

本公开涉及半导体领域,尤其涉及一种半导体器件及其制造方法。The present disclosure relates to the field of semiconductors, and in particular, to a semiconductor device and a manufacturing method thereof.

背景技术Background technique

包含直接能隙半导体的组件,例如包含III-V族材料或III-V族化合物(类别:III-V族化合物)的半导体组件可以在各种条件下或各种环境中(例如,在不同的电压和频率下)操作或工作。Components containing direct bandgap semiconductors, such as semiconductor components containing III-V materials or III-V compounds (category: III-V compounds) can operate under various conditions or in various environments (e.g., in different voltage and frequency) operate or work.

半导体组件可以包含异质结双极性晶体管(heterojunction bipolartransistor,HBT)、异质结场效应晶体管(heterojunction field effect transistor,HFET)、高电子迁移率晶体管(high-electron-mobility transistor,HEMT)、调制掺杂FET(modulation-doped FET,MODFET)等。Semiconductor components may include heterojunction bipolar transistor (HBT), heterojunction field effect transistor (HFET), high-electron-mobility transistor (HEMT), modulation Doped FET (modulation-doped FET, MODFET), etc.

发明内容Contents of the invention

根据本公开实施例的第一方面,提供了一种半导体器件,所述半导体器件包括:According to a first aspect of embodiments of the present disclosure, a semiconductor device is provided, the semiconductor device including:

衬底;substrate;

沟道层,所述沟道层设置于所述衬底,所述沟道层包括氮化物半导体材料;a channel layer, the channel layer is provided on the substrate, the channel layer includes a nitride semiconductor material;

势垒层,所述势垒层设置于所述沟道层远离所述衬底的一侧,所述势垒层包括氮化物半导体材料,并且所述势垒层的能隙大于所述沟道层的能隙;A barrier layer, the barrier layer is disposed on a side of the channel layer away from the substrate, the barrier layer includes a nitride semiconductor material, and the energy gap of the barrier layer is larger than the channel energy gap of the layer;

栅极,所述栅极设置于所述势垒层远离所述沟道层的一侧;a gate, the gate being disposed on a side of the barrier layer away from the channel layer;

其中,在所述沟道层与所述势垒层之间设置有插入层,所述插入层在对应所述栅极的区域设置有间隙。Wherein, an insertion layer is provided between the channel layer and the barrier layer, and the insertion layer is provided with a gap in a region corresponding to the gate electrode.

在一些实施例中,所述插入层包括间隔排列的第一插入块与第二插入块,所述间隙设置在所述第一插入块与所述第二插入块之间。In some embodiments, the insertion layer includes a first insertion block and a second insertion block arranged at intervals, and the gap is provided between the first insertion block and the second insertion block.

在一些实施例中,所述半导体器件还包括源极与漏极,所述源极与漏极设置于所述势垒层远离所述沟道层的一侧,所述源极与漏极位于所述栅极的相对两侧。In some embodiments, the semiconductor device further includes a source electrode and a drain electrode. The source electrode and the drain electrode are disposed on a side of the barrier layer away from the channel layer. The source electrode and the drain electrode are located on Opposite sides of the gate.

在一些实施例中,所述第一插入块在所述衬底上的正投影与所述源极在所述衬底上的正投影至少存在部分重叠;In some embodiments, the orthographic projection of the first insertion block on the substrate at least partially overlaps the orthographic projection of the source on the substrate;

所述第二插入块在所述衬底上的正投影与所述漏极在所述衬底上的正投影至少存在部分重叠。There is at least a partial overlap between an orthographic projection of the second insertion block on the substrate and an orthographic projection of the drain electrode on the substrate.

在一些实施例中,所述间隙在所述衬底上的正投影与所述栅极在所述衬底上的正投影部分重叠和完全重合。In some embodiments, the orthographic projection of the gap on the substrate partially overlaps and completely coincides with the orthographic projection of the gate on the substrate.

在一些实施例中,所述势垒层包括凸出部与主体部,其中,所述凸出部填充在所述第一插入块与所述第二插入块之间的所述间隙内,所述主体部位于所述第一插入块、所述凸出部与所述第二插入块的上方。In some embodiments, the barrier layer includes a protruding portion and a main body portion, wherein the protruding portion is filled in the gap between the first insertion block and the second insertion block, so The main body part is located above the first insertion block, the protruding part and the second insertion block.

在一些实施例中,所述沟道层包括化合物InaAlbGa(1-a-b)N,其中,a+b≦1;In some embodiments, the channel layer includes a compound In a Al b Ga (1-ab) N, where a+b≦1;

或者,所述沟道层包括化合物AlaGa(1-a)N,其中,a≦1。Alternatively, the channel layer includes a compound Al a Ga (1-a) N, where a≦1.

在一些实施例中,所述势垒层包括化合物InaAlbGa(1-a-b)N,其中,a+b≦1;In some embodiments, the barrier layer includes a compound In a Al b Ga (1-ab) N, where a+b≦1;

或者,所述势垒层包括化合物AlaGa(1-a)N,其中,a≦1。Alternatively, the barrier layer includes the compound Al a Ga (1-a) N, where a≦1.

在一些实施例中,所述插入层的材质包括III-V族材料;In some embodiments, the material of the insertion layer includes III-V group materials;

或者,所述插入层的材质包括III族氮化物。Alternatively, the material of the insertion layer includes Group III nitride.

在一些实施例中,所述沟道层的材质包括氮化镓,所述势垒层的材质包括氮化铝镓,所述插入层的材质包括氮化铝。In some embodiments, the channel layer is made of gallium nitride, the barrier layer is made of aluminum gallium nitride, and the insertion layer is made of aluminum nitride.

在一些实施例中,所述半导体器件还包括缓冲层,所述缓冲层设置在所述衬底和所述沟道层之间,所述缓冲层包括III-V化合物。In some embodiments, the semiconductor device further includes a buffer layer disposed between the substrate and the channel layer, the buffer layer including a III-V compound.

在一些实施例中,所述缓冲层的材料包括AlN、AlGaN、InAlGaN、GaAs、AlAs、ZnO或其组合。In some embodiments, the material of the buffer layer includes AlN, AlGaN, InAlGaN, GaAs, AlAs, ZnO or a combination thereof.

在一些实施例中,所述半导体器件还包括成核层,所述成核层设置在所述衬底和所述沟道层之间。In some embodiments, the semiconductor device further includes a nucleation layer disposed between the substrate and the channel layer.

在一些实施例中,所述半导体器件还包括耗尽层,所述耗尽层设置于所述势垒层和所述栅极之间。In some embodiments, the semiconductor device further includes a depletion layer disposed between the barrier layer and the gate electrode.

在一些实施例中,所述耗尽层包括p型掺杂剂。In some embodiments, the depletion layer includes p-type dopants.

根据本公开实施例的第二方面,提供了一种半导体器件的制造方法,所述制造方法包括:According to a second aspect of embodiments of the present disclosure, a method of manufacturing a semiconductor device is provided, the manufacturing method including:

提供衬底;Provide a substrate;

在所述衬底上形成沟道层,所述沟道层包括氮化物半导体材料;forming a channel layer on the substrate, the channel layer including a nitride semiconductor material;

在所述沟道层上形成插入层,所述插入层内设置有间隙;An insertion layer is formed on the channel layer, and a gap is provided in the insertion layer;

在所述插入层上形成势垒层,所述势垒层包括氮化物半导体材料,并且所述势垒层的能隙大于所述沟道层的能隙;forming a barrier layer on the insertion layer, the barrier layer comprising a nitride semiconductor material, and the energy gap of the barrier layer being greater than the energy gap of the channel layer;

在所述势垒层上形成栅极,所述栅极位于所述间隙的上方。A gate electrode is formed on the barrier layer, and the gate electrode is located above the gap.

在一些实施例中,形成插入层的步骤包括:In some embodiments, forming the intervening layer includes:

在所述沟道层上形成插入材料层;forming an insertion material layer on the channel layer;

通过选择性刻蚀的方式去除所述插入材料层的一部分区域,形成插入层。A part of the insertion material layer is removed by selective etching to form an insertion layer.

在一些实施例中,所述插入层的材质包括III-V族材料;In some embodiments, the material of the insertion layer includes III-V group materials;

或者,所述插入层的材质包括III族氮化物。Alternatively, the material of the insertion layer includes Group III nitride.

在一些实施例中,所述沟道层的材质包括氮化镓,所述势垒层的材质包括氮化铝镓,所述插入层的材质包括氮化铝。In some embodiments, the channel layer is made of gallium nitride, the barrier layer is made of aluminum gallium nitride, and the insertion layer is made of aluminum nitride.

在一些实施例中,在形成栅极前,先在所述势垒层上形成耗尽层,所述耗尽层包括p型掺杂剂。In some embodiments, before forming the gate, a depletion layer is formed on the barrier layer, and the depletion layer includes a p-type dopant.

附图说明Description of the drawings

图1是本公开一示例性实施例提供的半导体器件的剖视图;1 is a cross-sectional view of a semiconductor device provided by an exemplary embodiment of the present disclosure;

图2是本公开另一示例性实施例提供的半导体器件的剖视图;2 is a cross-sectional view of a semiconductor device provided by another exemplary embodiment of the present disclosure;

图3是本公开再一示例性实施例提供的半导体器件的剖视图;3 is a cross-sectional view of a semiconductor device provided by yet another exemplary embodiment of the present disclosure;

图4是本公开又一示例性实施例提供的半导体器件的剖视图;4 is a cross-sectional view of a semiconductor device provided by yet another exemplary embodiment of the present disclosure;

图5至图10是本公开一示例性实施例提供的用于制造半导体器件的方法的各个阶段的剖视图。5 to 10 are cross-sectional views of various stages of a method for manufacturing a semiconductor device provided by an exemplary embodiment of the present disclosure.

具体实施方式Detailed ways

这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施例并不代表与本公开相一致的所有实施例。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。Exemplary embodiments will be described in detail herein, examples of which are illustrated in the accompanying drawings. When the following description refers to the drawings, the same numbers in different drawings refer to the same or similar elements unless otherwise indicated. The embodiments described in the following exemplary embodiments do not represent all embodiments consistent with the present disclosure. Rather, they are merely examples of apparatus and methods consistent with aspects of the disclosure as detailed in the appended claims.

在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。The terminology used in this disclosure is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used in this disclosure and the appended claims, the singular forms "a," "the" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items.

应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。It should be understood that although the terms first, second, third, etc. may be used in this disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other. For example, without departing from the scope of the present disclosure, the first information may also be called second information, and similarly, the second information may also be called first information. Depending on the context, the word "if" as used herein may be interpreted as "when" or "when" or "in response to determining."

以下公开提供了用于实施所提供主题的不同特征的许多不同实施例或实例。下文描述了组件和布置的具体实例。当然,这些仅是实例并且不旨在是限制性的。在本公开中,在以下描述中,对在第二特征之上或上形成或安置第一特征的引用可以包含将第一特征和第二特征形成或安置成直接接触的实施例,并且还可以包含可以在第一特征与第二特征之间形成和安置另外的特征使得第一特征和第二特征可以不直接接触的实施例。另外,本公开可以在各个实例中重复附图标记和/或字母。这种重复是为了简单和清晰的目的并且本身并不指示所讨论的各个实施例和/或配置之间的关系。The following disclosure provides many different embodiments or examples for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below. Of course, these are examples only and are not intended to be limiting. In this disclosure, in the following description, references to a first feature being formed or positioned on or over a second feature may include embodiments in which the first feature and the second feature are formed or positioned in direct contact, and may also include Embodiments are included in which additional features may be formed and positioned between the first feature and the second feature such that the first feature and the second feature may not be in direct contact. Additionally, the present disclosure may repeat reference numbers and/or letters in various instances. This repetition is for simplicity and clarity and does not by itself indicate a relationship between the various embodiments and/or configurations discussed.

下文详细讨论了本公开的实施例。然而,应当理解的是,本公开提供了许多可以在各种各样的特定环境下具体化的适用概念。所讨论的具体实施例仅是说明性的,而不限制本公开的范围。Embodiments of the present disclosure are discussed in detail below. It should be appreciated, however, that this disclosure provides many applicable concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are illustrative only and do not limit the scope of the disclosure.

本公开提供了一种半导体器件及其制造方法,其中所述半导体器件包括衬底、沟道层、插入层、势垒层与栅极。所述沟道层设置于所述衬底,所述沟道层包括氮化物半导体材料。所述势垒层设置于所述沟道层远离所述衬底的一侧,所述势垒层包括氮化物半导体材料,并且所述势垒层的能隙大于所述沟道层的能隙。所述栅极设置于所述势垒层远离所述沟道层的一侧。所述插入层设置在所述沟道层与所述势垒层之间,所述插入层在对应所述栅极的区域设置有间隙。通过设置具有间隙的上述插入层,既可提升电子迁移率,又可避免引发器件容易穿通以及器件击穿电压降低等缺陷。The present disclosure provides a semiconductor device and a manufacturing method thereof, wherein the semiconductor device includes a substrate, a channel layer, an insertion layer, a barrier layer and a gate electrode. The channel layer is provided on the substrate, and the channel layer includes a nitride semiconductor material. The barrier layer is disposed on a side of the channel layer away from the substrate, the barrier layer includes a nitride semiconductor material, and the energy gap of the barrier layer is greater than the energy gap of the channel layer . The gate electrode is disposed on a side of the barrier layer away from the channel layer. The insertion layer is provided between the channel layer and the barrier layer, and the insertion layer is provided with a gap in a region corresponding to the gate electrode. By providing the above-mentioned insertion layer with a gap, the electron mobility can be improved, and defects such as easy punch-through of the device and reduced breakdown voltage of the device can be avoided.

本公开的半导体器件可以应用于但不限于HEMT装置,尤其是在低压HEMT装置、高压HEMT装置和射频(radio frequency,RF)HEMT装置中。The semiconductor device of the present disclosure may be applied to, but is not limited to, HEMT devices, especially in low-voltage HEMT devices, high-voltage HEMT devices, and radio frequency (RF) HEMT devices.

图1是根据本公开的一些实施例的半导体器件100的横截面视图。半导体器件100可以包含衬底10、成核层20、缓冲层30、氮化物半导体层40、插入层50、氮化物半导体层60、电极70、电极90、耗尽层82与栅极84。Figure 1 is a cross-sectional view of a semiconductor device 100 in accordance with some embodiments of the present disclosure. The semiconductor device 100 may include a substrate 10 , a nucleation layer 20 , a buffer layer 30 , a nitride semiconductor layer 40 , an insertion layer 50 , a nitride semiconductor layer 60 , an electrode 70 , an electrode 90 , a depletion layer 82 and a gate electrode 84 .

衬底10可以包含但不限于硅(Si)、掺杂硅(doped Si)、碳化硅(SiC)、硅化锗(SiGe)、砷化镓(GaAs)或其它半导体材料。衬底10可以包含但不限于蓝宝石(sapphire)、绝缘体上硅(Silicon On Insulator,SOI)或其它合适的材料。在一些实施例中,衬底10还可包括经掺杂区域(图中未显示),例如p阱(p-well)、n阱(n-well)等。The substrate 10 may include, but is not limited to, silicon (Si), doped silicon (doped Si), silicon carbide (SiC), germanium silicide (SiGe), gallium arsenide (GaAs) or other semiconductor materials. The substrate 10 may include, but is not limited to, sapphire, silicon on insulator (SOI), or other suitable materials. In some embodiments, the substrate 10 may also include a doped region (not shown in the figure), such as a p-well (p-well), an n-well (n-well), etc.

成核层20可以安置在衬底10上。成核层20可与衬底10形成界面。成核层20被配置为提供用于在其上生长III族氮化物材料的顶面。换句话说,成核层20形成适当的模板,以从衬底的晶格过渡到更适合III族氮化物材料生长的模板。成核层20可提供过渡,以适应衬底10和将在其顶面上形成的III氮化物层之间的失配/差异(例如,外延形成)。失配/差异可能涉及不同的晶格常数或热膨胀系数。失配/差异可能导致形成层中的位错,从而降低屈服速率。成核层20的示例性材料可包括但不限于氮化铝(AlN)或其任何合金。氮化铝例如可以是但不限于掺杂的n型、p型或本征。可以选择成核层的材料来消除不匹配/差异。例如,为了适应由于要形成在成核层上的层中的第一元素而引起的失配/差异,成核层20形成为包括第一元素。Nucleation layer 20 may be disposed on substrate 10 . Nucleation layer 20 may form an interface with substrate 10 . Nucleation layer 20 is configured to provide a top surface for growth of Group III nitride material thereon. In other words, nucleation layer 20 forms a suitable template for transitioning from the substrate's crystal lattice to one more suitable for growth of Group III nitride materials. Nucleation layer 20 may provide a transition to accommodate mismatches/differences between substrate 10 and the III nitride layer to be formed on its top surface (eg, epitaxially formed). The mismatch/difference may involve different lattice constants or thermal expansion coefficients. Mismatch/differences can lead to dislocations in the formation layer, thereby reducing the yield rate. Exemplary materials for nucleation layer 20 may include, but are not limited to, aluminum nitride (AlN) or any alloy thereof. The aluminum nitride may be, for example, but not limited to, doped n-type, p-type, or intrinsic. The material of the nucleation layer can be selected to eliminate mismatch/differences. For example, to accommodate mismatches/differences due to the first element in the layer to be formed on the nucleation layer, nucleation layer 20 is formed to include the first element.

缓冲层30可以安置在成核层20上。缓冲层30可与成核层20形成界面。缓冲层30具有与成核层20接触的最底表面。该界面由缓冲层30的最底表面和成核层20的最顶表面形成。缓冲层30具有与最底表面相对的最顶表面。缓冲层30被配置为减少底层和将在缓冲层30上形成的层(例如,在其上外延形成)之间的晶格失配和热失配,从而固化由于失配/差异造成的缺陷。Buffer layer 30 may be disposed on nucleation layer 20 . The buffer layer 30 may form an interface with the nucleation layer 20 . Buffer layer 30 has a bottommost surface in contact with nucleation layer 20 . The interface is formed by the bottommost surface of the buffer layer 30 and the topmost surface of the nucleation layer 20 . The buffer layer 30 has a topmost surface opposite a bottommost surface. Buffer layer 30 is configured to reduce lattice mismatch and thermal mismatch between the underlying layer and layers to be formed (eg, epitaxially formed thereon) on buffer layer 30, thereby curing defects due to mismatch/disparity.

缓冲层30可以包括III-V化合物。III-V化合物可包括但不限于铝、镓、铟、氮化物或其组合。因此,缓冲层30的示例性材料可进一步包括(例如但不限于)AlN、AlGaN、InAlGaN、GaAs、AlAs、ZnO或其组合。在一些实施例中,缓冲层30可包括两种III族元素,并且成核层仅具有一种III族元素。例如,成核层包括包含铝且不含镓的化合物(例如AlN),缓冲层30包括包含铝和镓的III-V化合物(例如AlGaN)。Buffer layer 30 may include III-V compounds. III-V compounds may include, but are not limited to, aluminum, gallium, indium, nitrides, or combinations thereof. Accordingly, exemplary materials of buffer layer 30 may further include, for example, but not limited to, AlN, AlGaN, InAlGaN, GaAs, AlAs, ZnO, or combinations thereof. In some embodiments, buffer layer 30 may include two Group III elements, and the nucleation layer has only one Group III element. For example, the nucleation layer includes a compound containing aluminum and not containing gallium (eg, AlN), and the buffer layer 30 includes a III-V compound containing aluminum and gallium (eg, AlGaN).

氮化物半导体层40(也可称为第一氮化物半导体层40或沟道层40)可以安置在缓冲层30上。氮化物半导体层40可以包含III-V族材料层。氮化物半导体层40可以包含但不限于III族氮化物,例如化合物InaAlbGa(1-a-b)N,其中,a+b≦1。所述III族氮化物进一步包含但不限于例如化合物AlaGa(1-a)N,其中,a≦1。氮化物半导体层40可以包含氮化镓(GaN)层。GaN的能隙为约3.4eV。氮化物半导体层40的厚度的范围可以为但不限于约0.5μm到约10μm。The nitride semiconductor layer 40 (which may also be called the first nitride semiconductor layer 40 or the channel layer 40 ) may be disposed on the buffer layer 30 . The nitride semiconductor layer 40 may include a III-V group material layer. The nitride semiconductor layer 40 may include, but is not limited to, Group III nitride, such as the compound In a Al b Ga (1-ab) N, where a+b≦1. The Group III nitride further includes, but is not limited to, for example, the compound Ala Ga (1-a) N, where a≦1. The nitride semiconductor layer 40 may include a gallium nitride (GaN) layer. The energy gap of GaN is about 3.4eV. The thickness of the nitride semiconductor layer 40 may range, but is not limited to, about 0.5 μm to about 10 μm.

氮化物半导体层60(也可称为第三氮化物半导体层60或势垒层60)可以安置在氮化物半导体层40上。氮化物半导体层60可以包含III-V族材料层。氮化物半导体层60可以包含但不限于III族氮化物,例如化合物InaAlbGa(1-a-b)N,其中,a+b≦1。所述III族氮化物可以进一步包含但不限于例如化合物AlaGa(1-a)N,其中,a≦1。氮化物半导体层60的禁带宽度(能隙)可以大于氮化物半导体层40的禁带宽度(能隙)。氮化物半导体层60可以包含氮化铝镓(AlGaN)层。AlGaN的能隙为约4.0eV。氮化物半导体层60的厚度的范围可以为但不限于约10nm到约100nm。The nitride semiconductor layer 60 (which may also be called the third nitride semiconductor layer 60 or the barrier layer 60 ) may be disposed on the nitride semiconductor layer 40 . The nitride semiconductor layer 60 may include a III-V group material layer. The nitride semiconductor layer 60 may include, but is not limited to, Group III nitride, such as the compound In a Al b Ga (1-ab) N, where a+b≦1. The Group III nitride may further include, but is not limited to, for example, the compound Al a Ga (1-a) N, where a≦1. The forbidden band width (energy gap) of the nitride semiconductor layer 60 may be larger than the forbidden band width (energy gap) of the nitride semiconductor layer 40 . The nitride semiconductor layer 60 may include an aluminum gallium nitride (AlGaN) layer. The energy gap of AlGaN is approximately 4.0 eV. The thickness of the nitride semiconductor layer 60 may range from, but is not limited to, about 10 nm to about 100 nm.

在氮化物半导体层60与氮化物半导体层40之间形成有异质结。由于氮化物半导体层60的禁带宽度较氮化物半导体层40的禁带宽度大,这导致自由电荷从氮化物半导体层60转移至氮化物半导体层40,引起异质结界面的极化现象(polarization),结果电子从宽带隙之氮化物半导体层60中溢出,使其仅剩下正电荷(施主离子),这些空间电荷产生静电势,这导致能带弯曲,使异质结结面处形成一个二维势阱。这个二维势阱可将因极化而诱生的电子限制其中,这些电子在势阱中可沿着平行于氮化物半导体层60和氮化物半导体层40之间的界面的平面内作二维运动,从而在氮化物半导体层60和氮化物半导体层40之间的界面处积累电荷,形成二维电子气(two dimentional electron gas,2DEG)。2DEG可具有非常高的电子迀移率。在一些实施例中,相较于氮化物半导体层40,具有禁带宽度较大的氮化物半导体层60可作半导体器件100中的势垒层。在一些实施例中,相较于氮化物半导体层60,具有禁带宽度较小的氮化物半导体层40可为载流子提供沟道,作为半导体器件100中的沟道层。A heterojunction is formed between the nitride semiconductor layer 60 and the nitride semiconductor layer 40 . Since the bandgap of the nitride semiconductor layer 60 is larger than the bandgap of the nitride semiconductor layer 40 , free charges are transferred from the nitride semiconductor layer 60 to the nitride semiconductor layer 40 , causing polarization at the heterojunction interface ( polarization), resulting in electrons overflowing from the wide-bandgap nitride semiconductor layer 60, leaving only positive charges (donor ions). These space charges generate electrostatic potential, which leads to energy band bending and the formation of a heterojunction junction. A two-dimensional potential well. This two-dimensional potential well can confine electrons induced by polarization, and these electrons can move two-dimensionally in the potential well along a plane parallel to the interface between the nitride semiconductor layer 60 and the nitride semiconductor layer 40 Movement, thereby accumulating charges at the interface between the nitride semiconductor layer 60 and the nitride semiconductor layer 40 to form a two-dimensional electron gas (two dimentional electron gas, 2DEG). 2DEG can have very high electron mobility. In some embodiments, the nitride semiconductor layer 60 with a larger bandgap than the nitride semiconductor layer 40 can be used as a barrier layer in the semiconductor device 100 . In some embodiments, compared to the nitride semiconductor layer 60 , the nitride semiconductor layer 40 having a smaller bandgap can provide a channel for carriers and serve as a channel layer in the semiconductor device 100 .

由于氮化物半导体层60与氮化物半导体层40之间的界面存在较严重的合金无序散射,导致实际的半导体器件100的电子迁移率比较低。为提升电子迁移率,可以在氮化物半导体层60与氮化物半导体层40之间设置氮化物半导体层50(也可称为第二氮化物半导体层50或插入层50)。Since there is severe alloy disorder scattering at the interface between the nitride semiconductor layer 60 and the nitride semiconductor layer 40 , the electron mobility of the actual semiconductor device 100 is relatively low. In order to improve the electron mobility, the nitride semiconductor layer 50 (also called the second nitride semiconductor layer 50 or the insertion layer 50 ) can be provided between the nitride semiconductor layer 60 and the nitride semiconductor layer 40 .

氮化物半导体层50可以包含III-V族材料层。氮化物半导体层50可以包含但不限于III族氮化物,例如氮化铝(AlN)。氮化物半导体层50的厚度的范围可以为但不限于约0.5μm到约10μm。The nitride semiconductor layer 50 may include a III-V group material layer. The nitride semiconductor layer 50 may include, but is not limited to, Group III nitride, such as aluminum nitride (AlN). The thickness of the nitride semiconductor layer 50 may range, but is not limited to, about 0.5 μm to about 10 μm.

在相关技术中,用于提升电子迁移率的氮化物半导体层50为一整层。然而,这会导致增强型半导体器件的二维电子气(2DEG)浓度增加,器件容易穿通(Punch),以及击穿电压降低等缺陷。In the related art, the nitride semiconductor layer 50 used to improve electron mobility is a whole layer. However, this will lead to defects such as increased concentration of two-dimensional electron gas (2DEG) in enhancement-mode semiconductor devices, easy punch-through of the device, and reduced breakdown voltage.

为抑制或避免上述缺陷,本公开实施例中的氮化物半导体层50并非一整层,而是包括间隔排列的第一插入块52与第二插入块54。第一插入块52与第二插入块54之间存在间隙(图中未标示)。在一些实施例中,第一插入块52位于电极70的下方。在一些实施例中,第二插入块54位于电极90的下方。在一些实施例中,第一插入块52与第二插入块54之间的间隙位于栅极84的下方。In order to suppress or avoid the above defects, the nitride semiconductor layer 50 in the embodiment of the present disclosure is not a whole layer, but includes first insertion blocks 52 and second insertion blocks 54 arranged at intervals. There is a gap (not labeled in the figure) between the first insertion block 52 and the second insertion block 54 . In some embodiments, first insert 52 is located beneath electrode 70 . In some embodiments, the second insert 54 is located beneath the electrode 90 . In some embodiments, the gap between first insert 52 and second insert 54 is located below gate 84 .

安置在氮化物半导体层50上的氮化物半导体层60的至少一部分会填充在第一插入块52与第二插入块54之间的所述间隙内。对应的,氮化物半导体层60包括凸出部63与主体部61。其中,凸出部63填充在第一插入块52与第二插入块54之间的所述间隙内,主体部61位于第一插入块52、凸出部63与第二插入块54的上方。At least a portion of the nitride semiconductor layer 60 disposed on the nitride semiconductor layer 50 may be filled in the gap between the first insertion block 52 and the second insertion block 54 . Correspondingly, the nitride semiconductor layer 60 includes a protruding portion 63 and a main body portion 61 . The protruding portion 63 is filled in the gap between the first inserting block 52 and the second inserting block 54 , and the main body portion 61 is located above the first inserting block 52 , the protruding portion 63 and the second inserting block 54 .

电极70(或称为源极70)可以安置在氮化物半导体层60上。电极70可以与氮化物半导体层60接触。电极70可以包含例如但不限于导电材料。导电材料可以包含金属、合金、掺杂半导体材料(例如,掺杂晶体硅)或其它合适的导电材料,如Ti、Al、Ni、Cu、Au、Pt、Pd、W、TiN或其它合适的材料。电极70可以电连接到接地。电极70可以电连接到虚拟接地。电极70可以电连接到真实接地。An electrode 70 (or source electrode 70 ) may be disposed on the nitride semiconductor layer 60 . The electrode 70 may be in contact with the nitride semiconductor layer 60 . Electrode 70 may include, for example, but not limited to, a conductive material. The conductive material may include metals, alloys, doped semiconductor materials (eg, doped crystalline silicon), or other suitable conductive materials, such as Ti, Al, Ni, Cu, Au, Pt, Pd, W, TiN, or other suitable materials . Electrode 70 may be electrically connected to ground. Electrode 70 may be electrically connected to virtual ground. Electrode 70 may be electrically connected to true ground.

电极90(或称为漏极90)可以安置在氮化物半导体层60上。电极90可以与氮化物半导体层60接触。电极90可以包含例如但不限于导电材料。导电材料可以包含金属、合金、掺杂半导体材料(例如,掺杂晶体硅)或其它合适的导电材料,如Ti、Al、Ni、Cu、Au、Pt、Pd、W、TiN或其它合适的材料。An electrode 90 (or drain electrode 90 ) may be disposed on the nitride semiconductor layer 60 . The electrode 90 may be in contact with the nitride semiconductor layer 60 . Electrode 90 may include, for example, but not limited to, a conductive material. The conductive material may include metals, alloys, doped semiconductor materials (eg, doped crystalline silicon), or other suitable conductive materials, such as Ti, Al, Ni, Cu, Au, Pt, Pd, W, TiN, or other suitable materials .

耗尽层82可以安置在氮化物半导体层60上。耗尽层82可以与氮化物半导体层60直接接触。耗尽层82可以掺杂有杂质。耗尽层82可以包含p型掺杂剂。经过审慎思考,耗尽层82可以包含p掺杂GaN层、p掺杂AlGaN层、p掺杂AlN层或其它合适的III-V族层。p型掺杂剂可以包含镁(Mg)、铍(Be)、锌(Zn)和镉(Cd)。Depletion layer 82 may be disposed on nitride semiconductor layer 60 . The depletion layer 82 may be in direct contact with the nitride semiconductor layer 60 . Depletion layer 82 may be doped with impurities. Depletion layer 82 may contain p-type dopants. After careful consideration, the depletion layer 82 may include a p-doped GaN layer, a p-doped AlGaN layer, a p-doped AlN layer, or other suitable III-V group layers. The p-type dopant may include magnesium (Mg), beryllium (Be), zinc (Zn), and cadmium (Cd).

耗尽层82可以被配置成控制氮化物半导体层40中的2DEG的浓度。耗尽层82可以用于耗尽耗尽层82正下方的2DEG。Depletion layer 82 may be configured to control the concentration of 2DEG in nitride semiconductor layer 40 . Depletion layer 82 may be used to deplete the 2DEG directly beneath depletion layer 82 .

栅极84可以安置在耗尽层82上。栅极84可以包含栅极材料。栅极金属可以包含钛(Ti)、钽(Ta)、钨(W)、铝(Al)、钴(Co)、铜(Cu)、镍(Ni)、铂(Pt)、铅(Pb)、钼(Mo)和其化合物(如但不限于氮化钛(TiN)、氮化钽(TaN)、其它导电氮化物或导电氧化物)、金属合金(如铝铜合金(Al-Cu))或其它合适的材料。Gate 84 may be disposed on depletion layer 82 . Gate 84 may include gate material. Gate metals may include titanium (Ti), tantalum (Ta), tungsten (W), aluminum (Al), cobalt (Co), copper (Cu), nickel (Ni), platinum (Pt), lead (Pb), Molybdenum (Mo) and its compounds (such as but not limited to titanium nitride (TiN), tantalum nitride (TaN), other conductive nitrides or conductive oxides), metal alloys (such as aluminum-copper alloy (Al-Cu)) or Other suitable materials.

电极70和电极90可以安置在栅极84的两个相对侧面上。尽管电极70和电极90安置在图1中的栅极84的两个相对侧面上,但是电极70、电极90以及栅极84由于设计要求可以在本公开的其它实施例中具有不同配置。Electrode 70 and electrode 90 may be disposed on opposite sides of gate 84 . Although electrode 70 and electrode 90 are disposed on two opposite sides of gate 84 in FIG. 1 , electrode 70 , electrode 90 and gate 84 may have different configurations in other embodiments of the present disclosure due to design requirements.

然而,尽管未在图1中展示,但是经过审慎思考,电极70的结构可以在本公开的一些其它实施例中变化或改变。然而,尽管未在图1中展示,但是经过审慎思考,电极90的结构可以在本公开的一些其它实施例中变化或改变。例如,电极70的一部分可以定位于氮化物半导体层60中或在氮化物半导体层60中延伸。电极90的一部分可以定位于氮化物半导体层60中或在氮化物半导体层60中延伸。电极70可以安置在氮化物半导体层50上。电极90可以安置在氮化物半导体层50上。电极70可以穿透氮化物半导体层50以接触氮化物半导体层40。电极90可以穿透氮化物半导体层50以接触氮化物半导体层40。However, although not shown in Figure 1, upon careful consideration, the structure of electrode 70 may be varied or altered in some other embodiments of the present disclosure. However, although not shown in Figure 1, upon careful consideration, the structure of electrode 90 may be varied or altered in some other embodiments of the present disclosure. For example, a portion of electrode 70 may be positioned in or extend in nitride semiconductor layer 60 . A portion of the electrode 90 may be positioned in the nitride semiconductor layer 60 or extend in the nitride semiconductor layer 60 . The electrode 70 may be disposed on the nitride semiconductor layer 50 . The electrode 90 may be disposed on the nitride semiconductor layer 50 . The electrode 70 may penetrate the nitride semiconductor layer 50 to contact the nitride semiconductor layer 40 . The electrode 90 may penetrate the nitride semiconductor layer 50 to contact the nitride semiconductor layer 40 .

在一些实施例中,半导体器件100还可包括阻挡层(或称为空穴阻挡层)(图中未显示)。阻挡层可以安置在栅极84与氮化物半导体层60之间。阻挡层可以安置在栅极84与耗尽层82之间。耗尽层82可以由阻挡层与栅极84分离。阻挡层可以安置在耗尽层82上。栅极84可以安置在阻挡层上。栅极84可以与阻挡层接触。栅极84可以覆盖阻挡层。栅极84可以完全覆盖阻挡层。In some embodiments, the semiconductor device 100 may further include a blocking layer (or hole blocking layer) (not shown in the figure). A barrier layer may be disposed between the gate electrode 84 and the nitride semiconductor layer 60 . A barrier layer may be disposed between gate 84 and depletion layer 82 . Depletion layer 82 may be separated from gate 84 by a barrier layer. A barrier layer may be disposed on depletion layer 82 . Gate 84 may be disposed on the barrier layer. Gate 84 may be in contact with the barrier layer. Gate 84 may cover the barrier layer. Gate 84 may completely cover the barrier layer.

阻挡层的能隙可以大于氮化物半导体层60的能隙。阻挡层的能隙可以为约4.0eV到约4.5eV。阻挡层的能隙可以为约4.5eV到约5.0eV。阻挡层的能隙可以为约5.0eV到约5.5eV。阻挡层的能隙可以为约5.5eV到约6.0eV。阻挡层可以包含镓。阻挡层可以包含氧化镓。氧化镓可以包含Ga2O3。阻挡层可以包含氮氧化镓。氮氧化镓可以包含GaOxN(1-x),其中,0<x<1。阻挡层可以包含金刚石。阻挡层可以包含氮化铝。阻挡层可以包含其组合。阻挡层的能隙可以大于耗尽层82的能隙。The energy gap of the barrier layer may be larger than the energy gap of the nitride semiconductor layer 60 . The barrier layer may have an energy gap of about 4.0 eV to about 4.5 eV. The barrier layer may have an energy gap of about 4.5 eV to about 5.0 eV. The barrier layer may have an energy gap of about 5.0 eV to about 5.5 eV. The barrier layer may have an energy gap of about 5.5 eV to about 6.0 eV. The barrier layer may contain gallium. The barrier layer may include gallium oxide. Gallium oxide may contain Ga 2 O 3 . The barrier layer may include gallium oxynitride. Gallium oxynitride may include GaO x N (1-x) , where 0<x<1. The barrier layer may contain diamond. The barrier layer may include aluminum nitride. Barrier layers can contain combinations thereof. The energy gap of the barrier layer may be greater than the energy gap of depletion layer 82 .

栅极84、阻挡层和耗尽层82可以形成金属-绝缘体-半导体(MIS)结构。MIS结构可以辅助减少漏电流并增强击穿电压。因此,可以改善半导体器件100的栅极电压摆动。Gate 84, barrier layer and depletion layer 82 may form a metal-insulator-semiconductor (MIS) structure. The MIS structure can help reduce leakage current and enhance breakdown voltage. Therefore, the gate voltage swing of the semiconductor device 100 can be improved.

图2是根据本公开的一些实施例的半导体器件200的横截面视图。在图2实施例中,第一插入块52与第二插入块54之间的间隙在衬底10上的正投影并不与栅极84在衬底10上的正投影完全重合。在正投影方向上,第一插入块52的右侧边与栅极84的左侧边之间存在间距,第二插入块54的左侧边与栅极84的右侧边重合。Figure 2 is a cross-sectional view of a semiconductor device 200 in accordance with some embodiments of the present disclosure. In the embodiment of FIG. 2 , the orthographic projection of the gap between the first insertion block 52 and the second insertion block 54 on the substrate 10 does not completely coincide with the orthographic projection of the gate electrode 84 on the substrate 10 . In the orthographic projection direction, there is a gap between the right side of the first insertion block 52 and the left side of the grid 84 , and the left side of the second insertion block 54 coincides with the right side of the grid 84 .

图3是根据本公开的一些实施例的半导体器件300的横截面视图。在图3实施例中,第一插入块52与第二插入块54之间的间隙在衬底10上的正投影并不与栅极84在衬底10上的正投影完全重合。在正投影方向上,第一插入块52的右侧边与栅极84的左侧边重合,第二插入块54的左侧边与栅极84的右侧边存在间距。Figure 3 is a cross-sectional view of a semiconductor device 300 in accordance with some embodiments of the present disclosure. In the embodiment of FIG. 3 , the orthographic projection of the gap between the first insertion block 52 and the second insertion block 54 on the substrate 10 does not completely coincide with the orthographic projection of the gate electrode 84 on the substrate 10 . In the orthographic projection direction, the right side of the first insertion block 52 coincides with the left side of the grid 84 , and there is a gap between the left side of the second insertion block 54 and the right side of the grid 84 .

图4是根据本公开的一些实施例的半导体器件400的横截面视图。在图4实施例中,第一插入块52与第二插入块54之间的间隙在衬底10上的正投影并不与栅极84在衬底10上的正投影完全重合。在正投影方向上,第一插入块52的右侧边与栅极84的左侧边存在间距,第二插入块54的左侧边与栅极84的右侧边存在间距。Figure 4 is a cross-sectional view of a semiconductor device 400 in accordance with some embodiments of the present disclosure. In the embodiment of FIG. 4 , the orthographic projection of the gap between the first insertion block 52 and the second insertion block 54 on the substrate 10 does not completely coincide with the orthographic projection of the gate electrode 84 on the substrate 10 . In the orthographic projection direction, there is a gap between the right side of the first insertion block 52 and the left side of the grid 84 , and there is a gap between the left side of the second insertion block 54 and the right side of the grid 84 .

图5至图10展示了根据本公开的一些实施例的用于制造半导体器件的方法的各个阶段。5-10 illustrate various stages of a method for fabricating a semiconductor device according to some embodiments of the present disclosure.

参考图5,提供了衬底10。可以在衬底10上形成有成核层20、缓冲层30、氮化物半导体层40与插入材料层503。成核层20、缓冲层30、氮化物半导体层40与插入材料层503例如可以通过金属有机化学气相沉积(metal organic chemical vapor deposition,MOCVD)、外延生长或其它合适的沉积步骤来形成。Referring to Figure 5, a substrate 10 is provided. A nucleation layer 20 , a buffer layer 30 , a nitride semiconductor layer 40 and an insertion material layer 503 may be formed on the substrate 10 . The nucleation layer 20 , the buffer layer 30 , the nitride semiconductor layer 40 and the insertion material layer 503 may be formed by, for example, metal organic chemical vapor deposition (MOCVD), epitaxial growth or other suitable deposition steps.

衬底10可以包含但不限于硅(Si)、掺杂硅(doped Si)、碳化硅(SiC)、硅化锗(SiGe)、砷化镓(GaAs)或其它半导体材料。衬底10可以包含但不限于蓝宝石(sapphire)、绝缘体上硅(Silicon On Insulator,SOI)或其它合适的材料。在一些实施例中,衬底10还可包括经掺杂区域(图中未显示),例如p阱(p-well)、n阱(n-well)等。The substrate 10 may include, but is not limited to, silicon (Si), doped silicon (doped Si), silicon carbide (SiC), germanium silicide (SiGe), gallium arsenide (GaAs) or other semiconductor materials. The substrate 10 may include, but is not limited to, sapphire, silicon on insulator (SOI), or other suitable materials. In some embodiments, the substrate 10 may also include a doped region (not shown in the figure), such as a p-well (p-well), an n-well (n-well), etc.

成核层20可以形成在衬底10上。成核层20可与衬底10形成界面。成核层20被配置为提供用于在其上生长III族氮化物材料的顶面。换句话说,成核层20形成适当的模板,以从衬底的晶格过渡到更适合III族氮化物材料生长的模板。成核层20可提供过渡,以适应衬底10和将在其顶面上形成的III氮化物层之间的失配/差异(例如,外延形成)。失配/差异可能涉及不同的晶格常数或热膨胀系数。失配/差异可能导致形成层中的位错,从而降低屈服速率。成核层20的示例性材料可包括但不限于氮化铝(AlN)或其任何合金。氮化铝例如可以是但不限于掺杂的n型、p型或本征。可以选择成核层的材料来消除不匹配/差异。例如,为了适应由于要形成在成核层上的层中的第一元素而引起的失配/差异,成核层20形成为包括第一元素。Nucleation layer 20 may be formed on substrate 10 . Nucleation layer 20 may form an interface with substrate 10 . Nucleation layer 20 is configured to provide a top surface for growth of Group III nitride material thereon. In other words, nucleation layer 20 forms a suitable template for transitioning from the substrate's crystal lattice to one more suitable for growth of Group III nitride materials. Nucleation layer 20 may provide a transition to accommodate mismatches/differences between substrate 10 and the III nitride layer to be formed on its top surface (eg, epitaxially formed). The mismatch/difference may involve different lattice constants or thermal expansion coefficients. Mismatch/differences can lead to dislocations in the formation layer, thereby reducing the yield rate. Exemplary materials for nucleation layer 20 may include, but are not limited to, aluminum nitride (AlN) or any alloy thereof. The aluminum nitride may be, for example, but not limited to, doped n-type, p-type, or intrinsic. The material of the nucleation layer can be selected to eliminate mismatch/differences. For example, to accommodate mismatches/differences due to the first element in the layer to be formed on the nucleation layer, nucleation layer 20 is formed to include the first element.

缓冲层30可以形成在成核层20上。缓冲层30可与成核层20形成界面。缓冲层30具有与成核层20接触的最底表面。该界面由缓冲层30的最底表面和成核层20的最顶表面形成。缓冲层30具有与最底表面相对的最顶表面。缓冲层30被配置为减少底层和将在缓冲层30上形成的层(例如,在其上外延形成)之间的晶格失配和热失配,从而固化由于失配/差异造成的缺陷。The buffer layer 30 may be formed on the nucleation layer 20 . The buffer layer 30 may form an interface with the nucleation layer 20 . Buffer layer 30 has a bottommost surface in contact with nucleation layer 20 . The interface is formed by the bottommost surface of the buffer layer 30 and the topmost surface of the nucleation layer 20 . The buffer layer 30 has a topmost surface opposite a bottommost surface. Buffer layer 30 is configured to reduce lattice mismatch and thermal mismatch between the underlying layer and layers to be formed (eg, epitaxially formed thereon) on buffer layer 30, thereby curing defects due to mismatch/disparity.

缓冲层30可以包括III-V化合物。III-V化合物可包括但不限于铝、镓、铟、氮化物或其组合。因此,缓冲层30的示例性材料可进一步包括(例如但不限于)AlN、AlGaN、InAlGaN、GaAs、AlAs、ZnO或其组合。在一些实施例中,缓冲层30可包括两种III族元素,并且成核层仅具有一种III族元素。例如,成核层包括包含铝且不含镓的化合物(例如AlN),缓冲层30包括包含铝和镓的III-V化合物(例如AlGaN)。Buffer layer 30 may include III-V compounds. III-V compounds may include, but are not limited to, aluminum, gallium, indium, nitrides, or combinations thereof. Accordingly, exemplary materials of buffer layer 30 may further include, for example, but not limited to, AlN, AlGaN, InAlGaN, GaAs, AlAs, ZnO, or combinations thereof. In some embodiments, buffer layer 30 may include two Group III elements, and the nucleation layer has only one Group III element. For example, the nucleation layer includes a compound containing aluminum and not containing gallium (eg, AlN), and the buffer layer 30 includes a III-V compound containing aluminum and gallium (eg, AlGaN).

氮化物半导体层40(也可称为第一氮化物半导体层40或沟道层40)可以形成在缓冲层30上。氮化物半导体层40可以包含III-V族材料层。氮化物半导体层40可以包含但不限于III族氮化物,例如化合物InaAlbGa(1-a-b)N,其中,a+b≦1。所述III族氮化物进一步包含但不限于例如化合物AlaGa(1-a)N,其中,a≦1。氮化物半导体层40可以包含氮化镓(GaN)层。GaN的能隙为约3.4eV。氮化物半导体层40的厚度的范围可以为但不限于约0.5μm到约10μm。The nitride semiconductor layer 40 (which may also be called the first nitride semiconductor layer 40 or the channel layer 40 ) may be formed on the buffer layer 30 . The nitride semiconductor layer 40 may include a III-V group material layer. The nitride semiconductor layer 40 may include, but is not limited to, Group III nitride, such as the compound In a Al b Ga (1-ab) N, where a+b≦1. The Group III nitride further includes, but is not limited to, for example, the compound Ala Ga (1-a) N, where a≦1. The nitride semiconductor layer 40 may include a gallium nitride (GaN) layer. The energy gap of GaN is about 3.4eV. The thickness of the nitride semiconductor layer 40 may range, but is not limited to, about 0.5 μm to about 10 μm.

插入材料层503可以形成在氮化物半导体层40上。插入材料层503可以包含III-V族材料层。插入材料层503可以包含但不限于III族氮化物,例如氮化铝(AlN)。插入材料层503的厚度的范围可以为但不限于约0.5μm到约10μm。The insertion material layer 503 may be formed on the nitride semiconductor layer 40 . Insertion material layer 503 may include a layer of III-V material. Insertion material layer 503 may include, but is not limited to, Group III nitride, such as aluminum nitride (AlN). The thickness of the insert material layer 503 may range, but is not limited to, about 0.5 μm to about 10 μm.

参考图6,可以通过选择性刻蚀的方法去除插入材料层503的一部分(位于栅极84下方的一部分),从而形成插入层50。在一些实施例中,插入层50包括间隔排列的第一插入块52与第二插入块54。第一插入块52与第二插入块54之间存在间隙。Referring to FIG. 6 , a portion of the insertion material layer 503 (a portion located under the gate electrode 84 ) may be removed by selective etching, thereby forming the insertion layer 50 . In some embodiments, the insertion layer 50 includes first insertion blocks 52 and second insertion blocks 54 that are spaced apart. There is a gap between the first insertion block 52 and the second insertion block 54 .

参照图7,可以在插入层50上形成氮化物半导体层60。氮化物半导体层60的一部分会填充在第一插入块52与第二插入块54之间的所述间隙内。对应的,氮化物半导体层60包括凸出部63与主体部61。其中,凸出部63填充在第一插入块52与第二插入块54之间的所述间隙内,主体部61位于第一插入块52、凸出部63与第二插入块54的上方。Referring to FIG. 7 , a nitride semiconductor layer 60 may be formed on the insertion layer 50 . A portion of the nitride semiconductor layer 60 may be filled in the gap between the first insertion block 52 and the second insertion block 54 . Correspondingly, the nitride semiconductor layer 60 includes a protruding portion 63 and a main body portion 61 . The protruding portion 63 is filled in the gap between the first inserting block 52 and the second inserting block 54 , and the main body portion 61 is located above the first inserting block 52 , the protruding portion 63 and the second inserting block 54 .

氮化物半导体层60(也可称为第三氮化物半导体层60或势垒层60)可以包含III-V族材料层。氮化物半导体层60可以包含但不限于III族氮化物,例如化合物InaAlbGa(1-a-b)N,其中,a+b≦1。所述III族氮化物可以进一步包含但不限于例如化合物AlaGa(1-a)N,其中,a≦1。氮化物半导体层60的禁带宽度(能隙)可以大于氮化物半导体层40的禁带宽度(能隙)。氮化物半导体层60可以包含氮化铝镓(AlGaN)层。AlGaN的能隙为约4.0eV。氮化物半导体层60的厚度的范围可以为但不限于约10nm到约100nm。The nitride semiconductor layer 60 (which may also be called the third nitride semiconductor layer 60 or the barrier layer 60 ) may include a III-V group material layer. The nitride semiconductor layer 60 may include, but is not limited to, Group III nitride, such as the compound In a Al b Ga (1-ab) N, where a+b≦1. The Group III nitride may further include, but is not limited to, for example, the compound Al a Ga (1-a) N, where a≦1. The forbidden band width (energy gap) of the nitride semiconductor layer 60 may be larger than the forbidden band width (energy gap) of the nitride semiconductor layer 40 . The nitride semiconductor layer 60 may include an aluminum gallium nitride (AlGaN) layer. The energy gap of AlGaN is approximately 4.0 eV. The thickness of the nitride semiconductor layer 60 may range from, but is not limited to, about 10 nm to about 100 nm.

参照图8,可以在氮化物半导体层60上形成耗尽材料层820。耗尽材料层820可以与氮化物半导体层60直接接触。耗尽材料层820可以掺杂有杂质。耗尽材料层820可以包含p型掺杂剂。耗尽材料层820可以包含p掺杂GaN层、p掺杂AlGaN层、p掺杂AlN层或其它合适的III-V族层。p型掺杂剂可以包含镁(Mg)、铍(Be)、锌(Zn)和镉(Cd)。Referring to FIG. 8 , a depletion material layer 820 may be formed on the nitride semiconductor layer 60 . The depletion material layer 820 may be in direct contact with the nitride semiconductor layer 60 . Depletion material layer 820 may be doped with impurities. Depletion material layer 820 may include p-type dopants. Depletion material layer 820 may include a p-doped GaN layer, a p-doped AlGaN layer, a p-doped AlN layer, or other suitable III-V layer. The p-type dopant may include magnesium (Mg), beryllium (Be), zinc (Zn), and cadmium (Cd).

参照图9,可以通过选择性刻蚀的方法去除耗尽材料层820的一部分,从而形成耗尽层82。Referring to FIG. 9 , a portion of the depletion material layer 820 may be removed by selective etching, thereby forming the depletion layer 82 .

参照图10,可以在氮化物半导体层60和耗尽层82上形成电极70、电极90和栅极84以形成与如图1所描述和展示的半导体器件100相同或类似的半导体器件。Referring to FIG. 10 , electrode 70 , electrode 90 and gate electrode 84 may be formed on nitride semiconductor layer 60 and depletion layer 82 to form a semiconductor device that is the same as or similar to semiconductor device 100 as described and illustrated in FIG. 1 .

其中,电极70(或称为源极70)可以形成在氮化物半导体层60上。电极70可以与氮化物半导体层60接触。电极70可以包含例如但不限于导电材料。导电材料可以包含金属、合金、掺杂半导体材料(例如,掺杂晶体硅)或其它合适的导电材料,如Ti、Al、Ni、Cu、Au、Pt、Pd、W、TiN或其它合适的材料。Among them, the electrode 70 (or source electrode 70) may be formed on the nitride semiconductor layer 60. The electrode 70 may be in contact with the nitride semiconductor layer 60 . Electrode 70 may include, for example, but not limited to, a conductive material. The conductive material may include metals, alloys, doped semiconductor materials (eg, doped crystalline silicon), or other suitable conductive materials, such as Ti, Al, Ni, Cu, Au, Pt, Pd, W, TiN, or other suitable materials .

电极90(或称为漏极90)可以形成在氮化物半导体层60上。电极90可以与氮化物半导体层60接触。电极90可以包含例如但不限于导电材料。导电材料可以包含金属、合金、掺杂半导体材料(例如,掺杂晶体硅)或其它合适的导电材料,如Ti、Al、Ni、Cu、Au、Pt、Pd、W、TiN或其它合适的材料。An electrode 90 (also called a drain electrode 90 ) may be formed on the nitride semiconductor layer 60 . The electrode 90 may be in contact with the nitride semiconductor layer 60 . Electrode 90 may include, for example, but not limited to, a conductive material. The conductive material may include metals, alloys, doped semiconductor materials (eg, doped crystalline silicon), or other suitable conductive materials, such as Ti, Al, Ni, Cu, Au, Pt, Pd, W, TiN, or other suitable materials .

栅极84可以形成在耗尽层82上。栅极84可以包含栅极材料。栅极金属可以包含钛(Ti)、钽(Ta)、钨(W)、铝(Al)、钴(Co)、铜(Cu)、镍(Ni)、铂(Pt)、铅(Pb)、钼(Mo)和其化合物(如但不限于氮化钛(TiN)、氮化钽(TaN)、其它导电氮化物或导电氧化物)、金属合金(如铝铜合金(Al-Cu))或其它合适的材料。Gate 84 may be formed on depletion layer 82 . Gate 84 may include gate material. Gate metals may include titanium (Ti), tantalum (Ta), tungsten (W), aluminum (Al), cobalt (Co), copper (Cu), nickel (Ni), platinum (Pt), lead (Pb), Molybdenum (Mo) and its compounds (such as but not limited to titanium nitride (TiN), tantalum nitride (TaN), other conductive nitrides or conductive oxides), metal alloys (such as aluminum-copper alloy (Al-Cu)) or Other suitable materials.

在本文中可以为了便于描述而使用本文所用的如“之下”、“下面”、“下部”、“上方”、“上部”、“下部”、“左侧”、“右侧”等空间相对术语来描述如附图所示的一个元件或特征与另一或多个元件或特征的关系。除了在附图中描绘的朝向之外,空间相对术语还旨在涵盖装置在使用时或操作时的不同朝向。可以以其它方式朝向设备(旋转80度或处于其它朝向),并且同样可以以相应的方式解释本文中使用的空间相对描述语。应当理解,当元件被称为“连接到”或“耦接到”另一元件时,所述元件可以直接连接到或耦接到另一元件,或可以存在中间元件。For convenience of description, spatially relative terms such as "below", "below", "lower part", "above", "upper part", "lower part", "left side", "right side", etc. may be used herein. Terms used to describe the relationship of one element or feature to another element or feature or features as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 80 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. It will be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present.

如本文所使用的,术语“大约”、“基本上”、“基本”和“约”用于描述和解释小的变化。当结合事件或情形使用时,所述术语可以指代事件或情形精确发生的实例以及事件或情形接近发生的实例。如本文关于给定值或给定范围所使用的,术语“约”总体上意指处于给定值或范围的±10%、±5%、±1%或±0.5%内。本文中可以将范围表示为一个端点到另一个端点或介于两个端点之间。本文所公开的所有范围都包含端点,除非另外指明。术语“基本上共面”可以指两个表面沿同一平面定位的位置差处于数微米(μm)内,如沿同一平面定位的位置差处于10μm内、5μm内、1μm内或0.5μm内。当将数值或特性称为“基本上”相同时,所述术语可以指处于所述值的平均值的±10%、±5%、±1%或±0.5%内的值。As used herein, the terms "approximately," "substantially," "substantially," and "approximately" are used to describe and explain small variations. When used in connection with an event or situation, the terms may refer to instances of the exact occurrence of the event or situation as well as instances of near occurrence of the event or situation. As used herein with respect to a given value or a given range, the term "about" generally means within ±10%, ±5%, ±1%, or ±0.5% of the given value or range. A range may be expressed in this article as one endpoint to the other endpoint or as between two endpoints. All ranges disclosed herein are inclusive of the endpoints unless otherwise indicated. The term "substantially coplanar" may mean that two surfaces are located within a few micrometers (μm) of a position along the same plane, such as within 10 μm, 5 μm, 1 μm, or 0.5 μm of a difference in position along the same plane. When a value or property is referred to as being "substantially" the same, the term may refer to a value that is within ±10%, ±5%, ±1%, or ±0.5% of the mean of the stated values.

前述内容概述了几个实施例的特征和本公开的详细方面。本公开中描述的实施例可以容易地用作设计或修改其它工艺和结构以便于实施相同或类似目的和/或实现本文介绍的实施例的相同或类似优点的基础。此类等同构造不背离本公开的精神和范围,并且在不背离本公开的精神和范围的情况下,可以作出各种改变、替代和变更。The foregoing summary summarizes features of several embodiments and detailed aspects of the disclosure. The embodiments described in this disclosure may readily serve as a basis for designing or modifying other processes and structures for carrying out the same or similar purposes and/or achieving the same or similar advantages of the embodiments introduced herein. Such equivalent constructions do not depart from the spirit and scope of the disclosure, and various changes, substitutions and alterations may be made without departing from the spirit and scope of the disclosure.

Claims (20)

1. A semiconductor device, the semiconductor device comprising:
a substrate;
a channel layer disposed on the substrate, the channel layer comprising a nitride semiconductor material;
a barrier layer disposed on a side of the channel layer remote from the substrate, the barrier layer comprising a nitride semiconductor material and having an energy gap greater than an energy gap of the channel layer;
the grid electrode is arranged on one side of the barrier layer, which is far away from the channel layer;
an insertion layer is arranged between the channel layer and the barrier layer, and a gap is arranged in a region corresponding to the grid electrode.
2. The semiconductor device according to claim 1, wherein the interposer layer includes first and second interposer blocks arranged at intervals, the gap being provided between the first and second interposer blocks.
3. The semiconductor device of claim 2, further comprising a source and a drain disposed on a side of the barrier layer remote from the channel layer, the source and drain being on opposite sides of the gate.
4. A semiconductor device according to claim 3, wherein there is at least a partial overlap between the orthographic projection of the first interposer on the substrate and the orthographic projection of the source on the substrate;
there is at least a partial overlap between the orthographic projection of the second insert onto the substrate and the orthographic projection of the drain onto the substrate.
5. A semiconductor device according to claim 3, wherein the orthographic projection of the gap onto the substrate partially overlaps and fully coincides with the orthographic projection of the gate onto the substrate.
6. The semiconductor device according to claim 3, wherein the barrier layer includes a protruding portion and a body portion, wherein the protruding portion is filled in the gap between the first insertion block and the second insertion block, and wherein the body portion is located above the first insertion block, the protruding portion, and the second insertion block.
7. The semiconductor device according to claim 1, wherein the channel layer includes a compound In a Al b Ga (1-a-b) N, wherein a+b is less than or equal to 1;
alternatively, the channel layer includes a compound Al a Ga (1-a) N, wherein a is less than or equal to 1.
8. The semiconductor device according to claim 1, wherein the barrier layer includes a compound In a Al b Ga (1-a-b) N, wherein a+b is less than or equal to 1;
alternatively, the barrier layer comprises a compound Al a Ga (1-a) N, wherein a is less than or equal to 1.
9. The semiconductor device of claim 1, wherein the material of the interposer comprises a group III-V material;
alternatively, the material of the insertion layer includes a group III nitride.
10. The semiconductor device according to claim 1, wherein a material of the channel layer comprises gallium nitride, a material of the barrier layer comprises aluminum gallium nitride, and a material of the insertion layer comprises aluminum nitride.
11. The semiconductor device of claim 1, further comprising a buffer layer disposed between the substrate and the channel layer, the buffer layer comprising a III-V compound.
12. The semiconductor device of claim 11, wherein the material of the buffer layer comprises AlN, alGaN, inAlGaN, gaAs, alAs, znO or a combination thereof.
13. The semiconductor device of claim 1, further comprising a nucleation layer disposed between the substrate and the channel layer.
14. The semiconductor device according to claim 1, further comprising a depletion layer disposed between the barrier layer and the gate.
15. The semiconductor device of claim 14, wherein the depletion layer comprises a p-type dopant.
16. A method of manufacturing a semiconductor device, the method comprising:
providing a substrate;
forming a channel layer on the substrate, the channel layer comprising a nitride semiconductor material;
forming an insertion layer on the channel layer, wherein a gap is arranged in the insertion layer;
forming a barrier layer on the insertion layer, the barrier layer including a nitride semiconductor material, and an energy gap of the barrier layer being greater than an energy gap of the channel layer;
a gate is formed on the barrier layer, the gate being located over the gap.
17. The method of manufacturing of claim 16, wherein the step of forming the interposer includes:
forming an insertion material layer on the channel layer;
and removing a part of the area of the insertion material layer by means of selective etching to form an insertion layer.
18. The method of claim 17, wherein the material of the interposer comprises a group III-V material;
alternatively, the material of the insertion layer includes a group III nitride.
19. The method of claim 16, wherein the material of the channel layer comprises gallium nitride, the material of the barrier layer comprises aluminum gallium nitride, and the material of the insert layer comprises aluminum nitride.
20. The method of manufacturing of claim 16, wherein a depletion layer is formed on the barrier layer prior to forming the gate, the depletion layer comprising a p-type dopant.
CN202311356854.9A 2023-10-18 2023-10-18 Semiconductor device and method for manufacturing the same Pending CN117374102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311356854.9A CN117374102A (en) 2023-10-18 2023-10-18 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311356854.9A CN117374102A (en) 2023-10-18 2023-10-18 Semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
CN117374102A true CN117374102A (en) 2024-01-09

Family

ID=89388707

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311356854.9A Pending CN117374102A (en) 2023-10-18 2023-10-18 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
CN (1) CN117374102A (en)

Similar Documents

Publication Publication Date Title
KR101697825B1 (en) Sidewall passivation for hemt devices
TW202213770A (en) Semiconductor device
US12074199B2 (en) Semiconductor device with a field plate extending from drain
CN111509041A (en) Semiconductor device and method of manufacturing the same
CN110634867B (en) Semiconductor device and manufacturing method thereof
CN114270532A (en) Semiconductor device and method of manufacturing the same
US11588047B2 (en) Semiconductor component and manufacturing method thereof
US12289899B2 (en) Nitride-based semiconductor device and method for manufacturing the same
WO2023141749A1 (en) GaN-BASED SEMICONDUCTOR DEVICE WITH REDUCED LEAKAGE CURRENT AND METHOD FOR MANUFACTURING THE SAME
CN112368841B (en) Semiconductor device structure and method of manufacturing the same
WO2022087869A1 (en) Semiconductor device and fabrication method thereof
CN111129118A (en) Semiconductor device and method of manufacturing the same
CN112368842B (en) Semiconductor device structure and method of manufacturing the same
US12051739B2 (en) Package structure having a first connection circuit and manufacturing method thereof
US11862722B2 (en) Semiconductor device structures and methods of manufacturing the same
US12021121B2 (en) Semiconductor device structures and methods of manufacturing the same
KR102402771B1 (en) Semiconductor device and method for fabricating the same
CN222674845U (en) Semiconductor Devices
CN117374102A (en) Semiconductor device and method for manufacturing the same
CN111106163A (en) Semiconductor device and method for manufacturing the same
US12166116B2 (en) Semiconductor device and fabrication method thereof
US12159906B2 (en) Semiconductor device and fabrication method thereof
WO2024092544A1 (en) Nitride-based semiconductor device and method for manufacturing thereof
TW202519018A (en) Semiconductor device and method of forming the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination