CN117363654A - Human coronavirus main protease 3CL pro Active reporter plasmid of (2) and use thereof - Google Patents
Human coronavirus main protease 3CL pro Active reporter plasmid of (2) and use thereof Download PDFInfo
- Publication number
- CN117363654A CN117363654A CN202311443363.8A CN202311443363A CN117363654A CN 117363654 A CN117363654 A CN 117363654A CN 202311443363 A CN202311443363 A CN 202311443363A CN 117363654 A CN117363654 A CN 117363654A
- Authority
- CN
- China
- Prior art keywords
- gfp
- plasmid
- lqsg
- pro
- pcmv
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013612 plasmid Substances 0.000 title claims abstract description 96
- 244000309467 Human Coronavirus Species 0.000 title claims abstract description 28
- 101800000535 3C-like proteinase Proteins 0.000 title claims abstract description 19
- 101800002396 3C-like proteinase nsp5 Proteins 0.000 title claims abstract description 19
- 229940079593 drug Drugs 0.000 claims abstract description 22
- 239000003814 drug Substances 0.000 claims abstract description 22
- 241000711573 Coronaviridae Species 0.000 claims abstract description 20
- 238000012216 screening Methods 0.000 claims abstract description 10
- 239000002773 nucleotide Substances 0.000 claims abstract description 8
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 8
- 108091005804 Peptidases Proteins 0.000 claims description 18
- 239000004365 Protease Substances 0.000 claims description 17
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 17
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 9
- 230000002401 inhibitory effect Effects 0.000 abstract description 3
- 238000013537 high throughput screening Methods 0.000 abstract description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 28
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 28
- 239000005090 green fluorescent protein Substances 0.000 description 28
- 210000004027 cell Anatomy 0.000 description 25
- 230000003321 amplification Effects 0.000 description 19
- 238000003199 nucleic acid amplification method Methods 0.000 description 19
- 241000700605 Viruses Species 0.000 description 17
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 16
- 238000003776 cleavage reaction Methods 0.000 description 13
- 230000007017 scission Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 239000002609 medium Substances 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 229940088598 enzyme Drugs 0.000 description 10
- 101150066002 GFP gene Proteins 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 239000012634 fragment Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 230000035772 mutation Effects 0.000 description 9
- 238000012163 sequencing technique Methods 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000013613 expression plasmid Substances 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 238000001890 transfection Methods 0.000 description 7
- 241001428935 Human coronavirus OC43 Species 0.000 description 6
- 238000001962 electrophoresis Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 5
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 5
- 238000007877 drug screening Methods 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 239000011543 agarose gel Substances 0.000 description 4
- 239000003443 antiviral agent Substances 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 238000004624 confocal microscopy Methods 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- 230000000840 anti-viral effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 101800000504 3C-like protease Proteins 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 210000001985 kidney epithelial cell Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
- 230000006490 viral transcription Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/65—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/66—General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/10—Screening for compounds of potential therapeutic value involving cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/10—Musculoskeletal or connective tissue disorders
- G01N2800/107—Crystal induced conditions; Gout
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Toxicology (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了人冠状病毒主要蛋白酶3CLpro的报告质粒,其为质粒pCMV‑GFP‑β8‑LQSG‑9‑LQSG‑10或质粒pCMV‑GFP‑β9‑RLQSGF‑10,质粒pCMV‑GFP‑β8‑LQSG‑9‑LQSG‑10核苷酸序列如SEQ ID NO:1所示,质粒pCMV‑GFP‑β9‑RLQSGF‑10核苷酸序列如SEQ ID NO:2所示;将报告质粒应用在筛选抗人冠状病毒药物中,通过荧光强度能直观的观察到试剂的抑制效果,本发明能实现高通量筛选抗人冠状病毒药物的目的,且能大幅节约筛选抗人冠状病毒药物耗费的时间和成本。
The invention discloses a reporter plasmid of human coronavirus main protease 3CL pro , which is plasmid pCMV-GFP-β8-LQSG-9-LQSG-10 or plasmid pCMV-GFP-β9-RLQSGF-10, plasmid pCMV-GFP-β8- The nucleotide sequence of LQSG‑9‑LQSG‑10 is shown in SEQ ID NO:1, and the nucleotide sequence of plasmid pCMV‑GFP‑β9‑RLQSGF‑10 is shown in SEQ ID NO:2; the reporter plasmid is used to screen antibodies. Among human coronavirus drugs, the inhibitory effect of the reagent can be visually observed through the fluorescence intensity. The present invention can achieve the purpose of high-throughput screening of anti-human coronavirus drugs, and can significantly save the time and cost of screening anti-human coronavirus drugs. .
Description
技术领域Technical field
本发明属于药物筛选技术领域,尤其涉及一种筛选人冠状病毒主要蛋白酶3CLpro抑制剂的方法。The invention belongs to the technical field of drug screening, and in particular relates to a method for screening inhibitors of 3CL pro , the main protease of human coronavirus.
背景技术Background technique
冠状病毒是一种单股正链RNA病毒。虽然研发出多种冠状病毒的疫苗,但是由于其基因组的特异性,导致疫苗保护容易失效,因此抗病毒疗法对于降低感染者的发病率和死亡率非常重要。Coronavirus is a single-stranded positive-strand RNA virus. Although vaccines for a variety of coronaviruses have been developed, vaccine protection is prone to failure due to the specificity of their genomes. Therefore, antiviral therapy is very important to reduce morbidity and mortality in infected individuals.
目前针对冠状病毒药物筛选的方法主要有针对单一病毒蛋白的计算机辅助药物设计或使用野生型冠状病毒对一些已批准的抗病毒药物进行小规模药物筛选。这两种方法虽然取得了积极的结果,但也存在明显的局限性。计算机辅助药物设计只能针对单个或多个病毒靶点进行药物筛选,而不能模拟整个病毒生命周期,这可能会损失大量潜在的抗病毒药物,并且还需要进行药理实验来评估候选药物的实际抗病毒活性。考虑到野生型冠状病毒的生物安全性要求,活病毒药物筛选方法通常用于根据临床经验从现有的几种抗病毒药物中识别有效的治疗药物,因此,该方法不适用于高通量药物筛选。Current methods for coronavirus drug screening mainly include computer-aided drug design targeting single viral proteins or small-scale drug screening of some approved antiviral drugs using wild-type coronaviruses. Although these two methods have achieved positive results, they also have obvious limitations. Computer-aided drug design can only conduct drug screening for single or multiple viral targets, but cannot simulate the entire viral life cycle, which may result in the loss of a large number of potential antiviral drugs, and pharmacological experiments are also required to evaluate the actual antiviral properties of candidate drugs. Viral activity. Considering the biosafety requirements of wild-type coronavirus, live virus drug screening methods are usually used to identify effective therapeutic drugs from several existing antiviral drugs based on clinical experience. Therefore, this method is not suitable for high-throughput drugs. filter.
冠状病毒主要蛋白酶3CLpro是冠状病毒关键的蛋白水解酶之一,可以特异性识别并切割非结构蛋白中的LQ↓S(↓表示切割位点),释放主要负责病毒基因组的复制、转录以及参与病毒蛋白质翻译、修饰和核酸合成的蛋白,因此抑制3CLpro蛋白酶的活性可以有效的抑制病毒的复制和转录。此外3CLpro在人类细胞中没有发现同源物,且在人冠状病毒基因组基因序列高度保守,是一个理想的抗冠状病毒靶点。The main protease of coronavirus, 3CL pro , is one of the key proteolytic enzymes of coronavirus. It can specifically recognize and cleave LQ↓S (↓ indicates the cleavage site) in non-structural proteins, releasing it and is mainly responsible for the replication, transcription and participation of the viral genome. Viral protein translation, modification and nucleic acid synthesis proteins, therefore inhibiting the activity of 3CL pro protease can effectively inhibit viral replication and transcription. In addition, 3CL pro has no homologues found in human cells and is highly conserved in the human coronavirus genome sequence, making it an ideal anti-coronavirus target.
绿色荧光蛋白(Green fluorescent protein,GFP)分子量约为27kDa,是一个由238个氨基酸组成的单链多肽。最大激发波长395nm,发射峰509nm,并且在470nm处有一个肩峰,化学性质稳定,作为荧光标记广泛应用于生物医学研究。其二级结构包含11条β链和一个中央α螺旋,只有当GFP结构完整时才能够正常的发出荧光。Green fluorescent protein (GFP) has a molecular weight of approximately 27kDa and is a single-chain polypeptide composed of 238 amino acids. The maximum excitation wavelength is 395nm, the emission peak is 509nm, and there is a shoulder peak at 470nm. It has stable chemical properties and is widely used in biomedical research as a fluorescent label. Its secondary structure contains 11 β-strands and a central α-helix. Only when the GFP structure is complete can it fluoresce normally.
发明内容Contents of the invention
本发明提供了一种人冠状病毒主要蛋白酶3CLpro的活性报告质粒,通过在GFP的β链中插入人冠状病毒主要蛋白酶3CLpro的切割位点LQ↓SG或RLQ↓SGF(↓表示切割位点),构建了GFP的两种突变体,为质粒pCMV-GFP-β8-LQSG-9-LQSG-10或质粒pCMV-GFP-β9-RLQSGF-10,质粒pCMV-GFP-β8-LQSG-9-LQSG-10核苷酸序列如SEQ ID NO:1所示,质粒pCMV-GFP-β9-RLQSGF-10核苷酸序列如SEQ ID NO:2所示;The invention provides an activity reporter plasmid for human coronavirus major protease 3CL pro , by inserting the cleavage site LQ↓SG or RLQ↓SGF of human coronavirus major protease 3CL pro into the β chain of GFP (↓ represents the cleavage site ), two mutants of GFP were constructed, namely plasmid pCMV-GFP-β8-LQSG-9-LQSG-10 or plasmid pCMV-GFP-β9-RLQSGF-10, plasmid pCMV-GFP-β8-LQSG-9-LQSG The nucleotide sequence of -10 is shown in SEQ ID NO:1, and the nucleotide sequence of plasmid pCMV-GFP-β9-RLQSGF-10 is shown in SEQ ID NO:2;
质粒pCMV-GFP-β8-LQSG-9-LQSG-10是为在GFP的β链8、9、10之间插入LQ↓SG,该突变体转染293T细胞后,较野生型来说荧光强度减弱,当被冠状病毒主要蛋白酶3CLpro切割后,荧光强度明显变弱。质粒pCMV-GFP-β9-RLQSGF-10是在GFP的β链9和10之间插入RLQ↓SGF,该突变体转染293T细胞,较野生型来说荧光强度差异不明显,当被冠状病毒主要蛋白酶3CLpro切割后,其荧光强度大幅减弱。因此,两种GFP突变体的绿色荧光强度可以指示冠状病毒主要蛋白酶3CLpro的活性,即绿色荧光强度与3CLpro的活性成反比。Plasmid pCMV-GFP-β8-LQSG-9-LQSG-10 is to insert LQ↓SG between β chains 8, 9, and 10 of GFP. After transfection of this mutant into 293T cells, the fluorescence intensity is weakened compared with the wild type. , when cleaved by 3CL pro , the main coronavirus protease, the fluorescence intensity becomes significantly weaker. Plasmid pCMV-GFP-β9-RLQSGF-10 inserts RLQ↓SGF between β chains 9 and 10 of GFP. This mutant is transfected into 293T cells. Compared with the wild type, the difference in fluorescence intensity is not obvious. When it is mainly infected by coronavirus After cleavage by protease 3CL pro , its fluorescence intensity is greatly reduced. Therefore, the green fluorescence intensity of the two GFP mutants can indicate the activity of the main coronavirus protease 3CL pro , that is, the green fluorescence intensity is inversely proportional to the activity of 3CL pro .
本发明另一目的是将上述人冠状病毒主要蛋白酶3CLpro的报告质粒应用在筛选抗人冠状病毒药物中。Another object of the present invention is to apply the above-mentioned reporter plasmid of human coronavirus main protease 3CL pro in screening anti-human coronavirus drugs.
本发明通过以下技术方案实现本发明目的:The present invention achieves the purpose of the present invention through the following technical solutions:
1、人冠状病毒主要蛋白酶3CLpro的报告质粒的构建1. Construction of reporter plasmid for human coronavirus main protease 3CL pro
质粒pCMV-GFP-β8-LQSG-9-LQSG-10构建方法如下:The construction method of plasmid pCMV-GFP-β8-LQSG-9-LQSG-10 is as follows:
(1)以pEGFP-N3质粒(市购)为模版,采用引物GFP-F:cgggaattcatggtgagcaagggcgaggagc;GFP-R:ccgctcgagcttgtacagctcgtccatgccgagagtg进行扩增获得GFP基因(在GFP基因5’端和3’端分别引入EcoRⅠ和XhoⅠ),通过EcoRⅠ和XhoⅠ双酶切,将GFP基因连接到pCMV-c-flag质粒上获得pCMV-GFP-c-Flag质粒;(1) Use pEGFP-N3 plasmid (commercially available) as a template, use primers GFP-F: cgggaattcatggtgagcaagggcgaggagc; GFP-R: ccgctcgagcttgtacagctcgtccatgccgagagtg to amplify the GFP gene (introduce EcoRⅠ and XhoⅠ at the 5' end and 3' end of the GFP gene respectively) ), through double enzyme digestion with EcoRⅠ and XhoⅠ, connect the GFP gene to the pCMV-c-flag plasmid to obtain the pCMV-GFP-c-Flag plasmid;
(2)以pCMV-GFP-c-Flag质粒为模板,采用质粒突变引物GFPβ8-9-LQS-F:cacaacatcgaggacctgcagagcggcagcgtgcagctcgccgaccactac、GFPβ8-9-LQS-R:cgctgccgctctgcaggtcctcgatgttgtggcggatcttgaagttcaccttgatgccgttc;(2) Use pCMV-GFP-c-Flag plasmid as template and use plasmid mutation primers GFPβ8-9-LQS-F: cacaacatcgaggacctgcagagcggcagcgtgcagctcgccgaccactac, GFPβ8-9-LQS-R: cgctgccgctctgcaggtcctcgatgttgtggcggatcttgaagttcaccttgatgccgtt c;
GFPβ9-10-F:catcggcgacctgcagagcggccccgtgctgctgcccgacaaccactac、GFPβ9-10-R:cacggggccgctctgcaggtcgccgatgggggtgttctgctggtag进行扩增,扩增产物使用DpnⅠ酶处理,去除未产生突变的质粒,利用琼脂糖凝胶DNA回收试剂盒回收DpnⅠ酶处理后的质粒DNA;GFPβ9-10-F: CATCGGCGACCTGCAGCGCGCCCCCCCTGCCCCCCCCCCACCCTAC, GFPβ9-10-R: CACGGGGGCCGCGCGGGGGGGGGGTGGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT DPN Ⅰ enzyme treatment, remove the plasmids that have not produced unsatisfactory mutations, use agarose gel DNA to recover the DPN Ⅰ enzyme treatment DNA;
本步骤使用的质粒突变引物是含有3CLpro切割位点LQ↓SG(↓表示切割位点)的点突变引物,扩增后实现将LQ↓SG插入到GFP基因β链8、9、10之间的目的;The plasmid mutation primer used in this step is a point mutation primer containing the 3CL pro cleavage site LQ↓SG (↓ indicates the cleavage site). After amplification, LQ↓SG is inserted between the 8, 9, and 10 chains of the GFP gene β chain. the goal of;
(3)使用DpnⅠ酶处理后的质粒转化至感受态细胞,挑取单克隆,提取质粒并进行测序验证质粒构建成功后,使用无内毒素质粒提取试剂盒提取获得质粒pCMV-GFP-β8-LQSG-9-LQSG-10。(3) Use the plasmid treated with DpnⅠ enzyme to transform into competent cells, pick single clones, extract the plasmid and perform sequencing to verify that the plasmid is constructed successfully. Use an endotoxin-free plasmid extraction kit to extract the plasmid pCMV-GFP-β8-LQSG. -9-LQSG-10.
质粒pCMV-GFP-β9-RLQSGF-10构建方法同质粒pCMV-GFP-β8-LQSG-9-LQSG-10构建,不同在于步骤(2)中采用的质粒突变引物为GFP9-10-RLQSGF-F:catcggcgacaggctgcagagcggcttccccgtgctgctgcccgacaaccactac、GFP9-10-RLQSGF-R:gccgctctgcagcctgtcgccgatgggggtgttctg;使用的质粒突变引物是含有3CLpro切割位点RLQ↓SGF(↓表示切割位点)的点突变引物,扩增后实现将RLQ↓SGF插入到GFP基因β链9和10之间的目的。The construction method of plasmid pCMV-GFP-β9-RLQSGF-10 is the same as the construction of plasmid pCMV-GFP-β8-LQSG-9-LQSG-10. The difference is that the plasmid mutation primer used in step (2) is GFP9-10-RLQSGF-F: catcggcgacaggctgcagagcggcttccccgtgctgctgcccgacaaccactac, GFP9-10-RLQSGF-R: gccgctctgcagcctgtcgccgatgggggtgttctg; the plasmid mutation primer used is a point mutation primer containing the 3CL pro cleavage site RLQ↓SGF (↓ indicates the cleavage site). After amplification, RLQ↓SGF is inserted into GFP The gene beta chain targets between 9 and 10.
2、采用上述构建的被人冠状病毒主要蛋白酶3CLpro切割后绿色荧光强度降低的pCMV-GFP-β8-LQSG-9-LQSG-10报告质粒或pCMV-GFP-β9-RLQSGF-10报告质粒筛选抗人冠状病毒药物,方法如下:2. Use the pCMV-GFP-β8-LQSG-9-LQSG-10 reporter plasmid or pCMV-GFP-β9-RLQSGF-10 reporter plasmid constructed above that has reduced green fluorescence intensity after being cleaved by 3CL pro , the main human coronavirus protease, to screen for antibodies. Human coronavirus drugs, here’s how:
(1)使用吸附浓度为100TCID50的人冠状病毒(HCoV-OC43)培养液感染293T细胞(人肾上皮细胞),感染病毒的细胞分2组培养,一组添加待筛药物为实验组,不添加带筛选药物的为对照组;(1) Use human coronavirus (HCoV-OC43) culture medium with an adsorption concentration of 100TCID 50 to infect 293T cells (human kidney epithelial cells). The virus-infected cells are cultured in 2 groups. One group is added with the drug to be screened and is the experimental group. Adding screening drugs is the control group;
(2)使用pCMV-GFP-β8-LQSG-9-LQSG-10报告质粒或pCMV-GFP-β9-RLQSGF-10报告质粒转染步骤(1)中实验组、对照组的293T细胞;(2) Use pCMV-GFP-β8-LQSG-9-LQSG-10 reporter plasmid or pCMV-GFP-β9-RLQSGF-10 reporter plasmid to transfect 293T cells in the experimental group and control group in step (1);
(3)转染后,使用激光共聚焦检显微镜测绿色荧光的强度,若实验组的绿色荧光强度高于对照组,那么该待筛药物判定为3CLpro的抑制剂。(3) After transfection, use a laser confocal detection microscope to measure the intensity of green fluorescence. If the green fluorescence intensity of the experimental group is higher than that of the control group, then the drug to be screened is determined to be an inhibitor of 3CL pro .
筛选方法还可以将人冠状病毒替换为人冠状病毒主要蛋白酶3CLpro的表达质粒(pCMV-3CLpro(OC43)-c-Flag),采用其转染293T细胞后,再转染pCMV-GFP-β8-LQSG-9-LQSG-10报告质粒或pCMV-GFP-β9-RLQSGF-10报告质粒,其中人冠状病毒主要蛋白酶3CLpro的表达质粒构建时,按常规方法进行,从NCBI下载所需人冠状病毒(HCoV-OC43)主要蛋白酶3CLpro编码DNA序列并设计引物,提取人冠状病毒RNA,逆转得到的cDNA,采用引物扩增获得主要蛋白酶3CLpro基因片段,酶切后与初始载体连接,转化验证后获得构建成功的表达质粒。The screening method can also replace human coronavirus with the expression plasmid of human coronavirus main protease 3CL pro (pCMV-3CL pro (OC43)-c-Flag), and use it to transfect 293T cells, and then transfect pCMV-GFP-β8- LQSG-9-LQSG-10 reporter plasmid or pCMV-GFP-β9-RLQSGF-10 reporter plasmid, in which the expression plasmid of human coronavirus main protease 3CL pro is constructed according to the conventional method, and the required human coronavirus is downloaded from NCBI ( HCoV-OC43) Main protease 3CL pro coding DNA sequence and primer design, extract human coronavirus RNA, reverse the obtained cDNA, use primers to amplify the main protease 3CL pro gene fragment, connect it to the initial vector after enzyme digestion, and obtain after transformation verification Successfully constructed expression plasmid.
本发明的优点和技术效果:Advantages and technical effects of the present invention:
1、本发明通过在GFP的β链中插入人冠状病毒主要蛋白酶3CLpro的切割位点LQ↓SG或RLQ↓SGF(↓表示切割位点),构建了GFP的两种突变体(报告质粒),突变体转染细胞后,较野生型来说荧光强度减弱或变化不明显,当被人冠状病毒主要蛋白酶3CLpro切割后,荧光强度明显变弱,两种报告质粒的绿色荧光强度可以指示人冠状病毒主要蛋白酶3CLpro的活性,用于筛选抗人冠状病毒药物时,如果试剂有抗病毒活性,则与对照组(未添加药物,但是有3CLpro切割)相比,实验组(添加药物,同时有3CLpro存在)的绿色荧光强度更高;1. The present invention constructs two mutants (reporter plasmids) of GFP by inserting the cleavage site LQ↓SG or RLQ↓SGF (↓ represents the cleavage site) of the human coronavirus main protease 3CL pro into the β chain of GFP. , after the mutant is transfected into cells, the fluorescence intensity is weakened or does not change significantly compared with the wild type. When cleaved by 3CL pro , the main protease of human coronavirus, the fluorescence intensity becomes significantly weaker. The green fluorescence intensity of the two reporter plasmids can indicate human The activity of 3CL pro , the main coronavirus protease, is used to screen anti-human coronavirus drugs. If the reagent has antiviral activity, compared with the control group (no drug added, but 3CL pro is cleaved), the experimental group (drug added, In the presence of 3CL pro at the same time, the green fluorescence intensity is higher;
2、与使用活病毒进行抗病毒药物筛选的方法相比,本发明方法通过荧光强度直观的观察到抑制效果,能实现高通量筛选抗人冠状病毒药物,大幅节约筛选抗人冠状病毒药物耗费的时间和成本;2. Compared with the method of screening antiviral drugs using live viruses, the method of the present invention can intuitively observe the inhibitory effect through fluorescence intensity, can achieve high-throughput screening of anti-human coronavirus drugs, and greatly save the cost of screening anti-human coronavirus drugs. time and cost;
3、本发明方法使用的HCoV-OC43为低致病性的人冠状病毒,不受三级生物安全实验室的限制,并且操作简单方便,能够更有效节约人力成本。3. The HCoV-OC43 used in the method of the present invention is a human coronavirus with low pathogenicity and is not restricted by the third-level biosafety laboratory. The operation is simple and convenient, and can more effectively save labor costs.
附图说明Description of the drawings
图1是3CLpro基因片段扩增结果电泳图,图中1为3CLpro条带;Figure 1 is an electrophoresis diagram of the amplification result of 3CL pro gene fragment, 1 in the figure is the 3CL pro band;
图2是pCMV-3CLpro-c-Flag菌液PCR电泳结果图,其中1为DL2000 DNA marker,2-13为菌液扩增得到的3CLpro条带;Figure 2 is a picture of the PCR electrophoresis results of pCMV-3CL pro -c-Flag bacterial liquid, in which 1 is the DL2000 DNA marker, and 2-13 are the 3CL pro bands obtained by amplification of the bacterial liquid;
图3是pCMV-GFP-β8-LQSG-9-LQSG-10质粒上下游引物测序峰图比对结果图,其中1为上游引物,2为GFP参考序列,3为下游引物,A为β链9、10之间插入的LQSG编码序列,B为β链8、9之间插入LQSG编码序列;Figure 3 is the comparison result of the upstream and downstream primer sequencing peak charts of the pCMV-GFP-β8-LQSG-9-LQSG-10 plasmid, in which 1 is the upstream primer, 2 is the GFP reference sequence, 3 is the downstream primer, and A is β chain 9. , the LQSG coding sequence inserted between 10 and 10, B is the LQSG coding sequence inserted between 8 and 9 of the β chain;
图4是pCMV-GFP-β9-RLQSGF-10质粒上下游引物测序峰图比对结果图,其中1为上游引物,2为GFP参考序列,3为下游引物,A为β链9、10之间插入RLQSGF编码序列;Figure 4 is the comparison result of sequencing peak charts of the upstream and downstream primers of pCMV-GFP-β9-RLQSGF-10 plasmid, in which 1 is the upstream primer, 2 is the GFP reference sequence, 3 is the downstream primer, and A is between β chain 9 and 10. Inserting the RLQSGF coding sequence;
图5是转染3CLpro活性报告质粒pCMV-GFP-β8-LQSG-9-LQSG-10的激光共聚焦显微镜拍摄结果图,其中A、B、C分别为阴性组(不感染病毒且不添加药物)转染了pCMV-GFP-β8-LQSG-9-LQSG-10质粒的GFP、DAPI和Merge图;D、E、F分别为对照组(感染OC43病毒24h,不添加GC-376)转染报告质粒pCMV-GFP-β8-LQSG-9-LQSG-10组的GFP、DAPI和Merge图;图G、H、I分别为实验组(感染OC43病毒,添加GC-376)转染了报告质粒pCMV-GFP-β8-LQSG-9-LQSG-10的GFP、DAPI和Merge图;Figure 5 is a picture of the results of laser confocal microscopy of transfected 3CL pro activity reporter plasmid pCMV-GFP-β8-LQSG-9-LQSG-10, in which A, B, and C are negative groups (not infected with viruses and no drugs are added). ) GFP, DAPI and Merge pictures of pCMV-GFP-β8-LQSG-9-LQSG-10 plasmid transfected; D, E and F are the transfection reports of the control group (24h infection with OC43 virus, no GC-376 added) respectively. GFP, DAPI and Merge diagrams of the plasmid pCMV-GFP-β8-LQSG-9-LQSG-10 group; Figures G, H, and I respectively show the experimental group (infected with OC43 virus, added GC-376) transfected with the reporter plasmid pCMV- GFP, DAPI and Merge images of GFP-β8-LQSG-9-LQSG-10;
图6是转染质粒pCMV-GFP-β9-RLQSGF-10的激光共聚焦显微镜拍摄结果图,其中A、B、C分别为阴性组(不感染病毒且不添加药物)转染了pCMV-GFP-β9-RLQSGF-10的GFP、DAPI和Merge图;D、E、F分别为对照组(感染OC43病毒24h,不添加GC-376)转染报告质粒pCMV-GFP-β9-RLQSGF-10的GFP、DAPI和Merge图;图G、H、I分别为实验组(感染OC43病毒,添加GC-376)转染了报告质粒pCMV-GFP-β9-RLQSGF-10的GFP、DAPI和Merge图;Figure 6 is a picture of the results of laser confocal microscopy of the transfected plasmid pCMV-GFP-β9-RLQSGF-10, in which A, B, and C are the negative groups (not infected with viruses and without adding drugs) transfected with pCMV-GFP- GFP, DAPI and Merge diagrams of β9-RLQSGF-10; D, E and F are respectively the GFP, DAPI and Merge diagrams of the control group (infected with OC43 virus for 24 hours, without adding GC-376) transfected with the reporter plasmid pCMV-GFP-β9-RLQSGF-10. DAPI and Merge diagrams; Figures G, H, and I are respectively the GFP, DAPI, and Merge diagrams of the experimental group (infected with OC43 virus, added with GC-376) transfected with the reporter plasmid pCMV-GFP-β9-RLQSGF-10;
图7是实施例4中转染质粒pCMV-GFP-β8-LQSG-9-LQSG-10的激光共聚焦显微镜拍摄结果图,其中A、B、C分别为阴性组的GFP、DAPI和Merge图;D、E、F分别为对照组的GFP、DAPI和Merge图;图G、H、I分别为实验组的GFP、DAPI和Merge图片。Figure 7 is a picture of the results of laser confocal microscopy of the transfected plasmid pCMV-GFP-β8-LQSG-9-LQSG-10 in Example 4, in which A, B, and C are the GFP, DAPI, and Merge pictures of the negative group respectively; D, E, and F are the GFP, DAPI, and Merge images of the control group respectively; Figures G, H, and I are the GFP, DAPI, and Merge images of the experimental group, respectively.
图8是实施例4中转染了3CLpro活性报告质粒组pCMV-GFP-β9-RLQSGF-10的激光共聚焦显微镜拍摄结果图,其中A、B、C分别为阴性组的GFP、DAPI和Merge图片;D、E、F分别为对照组的GFP、DAPI和Merge图;图G、H、I分别为实验组的GFP、DAPI和Merge图。Figure 8 is a picture of the results of laser confocal microscopy of the 3CL pro activity reporter plasmid group pCMV-GFP-β9-RLQSGF-10 transfected in Example 4, where A, B, and C are the GFP, DAPI and Merge of the negative group respectively. Pictures; D, E, and F are the GFP, DAPI, and Merge pictures of the control group respectively; Pictures G, H, and I are the GFP, DAPI, and Merge pictures of the experimental group, respectively.
具体实施方式Detailed ways
下面通过附图和实例对本发明进一步说明,但本发明保护范围不局限于所述内容,本实施例中方法如无特殊说明的均按常规方法操作,所用试剂如无特殊说明的采用常规试剂或按常规方法配置的试剂。The present invention will be further described below through the drawings and examples, but the protection scope of the present invention is not limited to the content described. The methods in this example are operated according to conventional methods unless otherwise specified. The reagents used are conventional reagents or reagents unless otherwise specified. Reagents configured according to conventional methods.
实施例1:人冠状病毒主要蛋白酶3CLpro的表达质粒pCMV-3CLpro(OC43)-c-Flag的构建Example 1: Construction of expression plasmid pCMV-3CL pro (OC43)-c-Flag of human coronavirus main protease 3CLpro
1、从NCBI(National Center for Biotechnology Information(nih.gov))下载HCoV-OC43主要蛋白酶3CLpro编码DNA序列(GenBank:ON376724.1),使用Primer Primer 5.0分析酶切位点并设计特异性引物,并在上下游引物的5’端分别加上EcoRⅠ和KpnⅠ,引物序列如下表所示;1. Download the HCoV-OC43 main protease 3CL pro coding DNA sequence (GenBank: ON376724.1) from NCBI (National Center for Biotechnology Information (nih.gov)), use Primer Primer 5.0 to analyze the enzyme cleavage site and design specific primers. And add EcoRⅠ and KpnⅠ to the 5' ends of the upstream and downstream primers respectively. The primer sequences are as shown in the table below;
2、采用试剂盒OMEGATotal RNA Kit I提取病毒HCoV-OC43的RNA,提取步骤按试剂盒说明书进行;2. Use kit OMEGA Total RNA Kit I extracts the RNA of viral HCoV-OC43, and the extraction steps are carried out according to the kit instructions;
3、以RNA为模版,采用TAKARA One Step PrimeScriptTMRT-PCR Ki逆转录得到的cDNA,操作按试剂盒说明书进行;3. Use RNA as a template and use TAKARA One Step PrimeScript TM RT-PCR Ki to reverse-transcribe the cDNA obtained. The operation is carried out according to the kit instructions;
4、以cDNA为模板,使用诺唯赞高保真酶扩增得到带有酶切位点的3CLpro片段,扩增体系为:3CLpro-F 2μL、3CLpro-R 2μL、cDNA 1μL、2×Phanta Flash Master Mix 25μL、ddH2O20μL;扩增条件:98℃30s;98℃10s、65℃5s、72℃5s,30个循环;72℃1min;扩增电泳图如图1所示,采用天根琼脂糖凝胶DNA回收试剂盒回收目的片段;4. Use cDNA as a template and use Novozantn high-fidelity enzyme to amplify the 3CL pro fragment with enzyme cutting sites. The amplification system is: 3CL pro -F 2μL, 3CL pro -R 2μL, cDNA 1μL, 2× Phanta Flash Master Mix 25μL, ddH 2 O20μL; amplification conditions: 98℃ 30s; 30 cycles of 98℃ 10s, 65℃ 5s, 72℃ 5s; 72℃ 1min; the amplification electrophoresis diagram is shown in Figure 1, using daily Root agarose gel DNA recovery kit recovers the target fragment;
5、使用EcoRⅠ和KpnⅠ双酶切目的片段和载体pCMV-c-flag,然后使用天根琼脂糖凝胶DNA回收试剂盒纯化片段,其中酶切体系为:EcoRⅠ2μL、KpnⅠ2μL、DNA 2μg、10×M buffer4μL、ddH2O加至40μL,37℃下处理5h;5. Use EcoRⅠ and KpnⅠ to double-digest the target fragment and vector pCMV-c-flag, and then use Tiangen agarose gel DNA recovery kit to purify the fragment. The enzyme cutting system is: EcoRⅠ2μL, KpnⅠ2μL, DNA 2μg, 10×M Add buffer4μL and ddH 2 O to 40μL, and treat at 37°C for 5h;
6、使用T4DNA连接酶将目的片段和载体按摩尔比1:1进行连接,16℃连接过夜后,取连接产物20μL加入到100μL大肠杆菌DH5α中,冰浴30min后,转移到42℃水浴锅中热击90s,然后冰上放置5min,再用液体LB培养基补齐至1mL,接着置于37℃、200rpm摇床上培养1h,最后取出培养液,4000rpm离心5min,弃去900μL培养基,用剩余的培养基重悬细胞,将细胞悬液涂布在含有氨苄抗性的固体LB培养基中,于37℃过夜培养;6. Use T4 DNA ligase to ligate the target fragment and the vector at a molar ratio of 1:1. After ligation overnight at 16°C, add 20 μL of the ligation product to 100 μL E. coli DH5α, incubate on ice for 30 minutes, and then transfer to a 42°C water bath. Heat shock for 90 seconds, then place on ice for 5 minutes, then fill it up to 1 mL with liquid LB medium, and then place it on a shaker at 37°C and 200 rpm for 1 hour. Finally, take out the culture medium, centrifuge at 4000 rpm for 5 minutes, discard 900 μL of medium, and use the remaining Resuspend the cells in the medium, spread the cell suspension in solid LB medium containing ampicillin resistance, and culture at 37°C overnight;
7、挑取单克隆,37℃、200rpm培养3h后使用3CLpro特异性引物进行菌液PCR,其电泳结果初步证实3CLpro成功连接到载体上,然后扩培菌液,采用天根质粒小提试剂盒提取质粒并进行测序验证,菌液PCR电泳结果图如图2所示;测序结果证实成功构建了3CLpro表达质粒,然后使用天根无内毒素质粒中量提试剂盒提取无内毒素质粒。7. Pick a single clone and culture it at 37°C and 200rpm for 3 hours. Then use 3CL pro- specific primers to perform bacterial liquid PCR. The electrophoresis results preliminarily confirm that 3CL pro is successfully connected to the vector. Then the bacterial liquid is expanded and Tiangen plasmid miniprep is used. The plasmid was extracted with the kit and verified by sequencing. The result of PCR electrophoresis of the bacterial liquid is shown in Figure 2; the sequencing result confirmed that the 3CL pro expression plasmid was successfully constructed, and then the endotoxin-free plasmid was extracted using the Tiangen endotoxin-free plasmid medium extraction kit. .
实施例2:人冠状病毒主要蛋白酶3CLpro的报告质粒的构建Example 2: Construction of reporter plasmid for human coronavirus main protease 3CL pro
1、质粒pCMV-GFP-β8-LQSG-9-LQSG-10构建1. Construction of plasmid pCMV-GFP-β8-LQSG-9-LQSG-10
(1)以pEGFP-N3质粒(市购)为模版,采用引物GFP-F:cgggaattcatggtgagcaagggcgaggagc;GFP-R:ccgctcgagcttgtacagctcgtccatgccgagagtg进行扩增获得GFP基因(在GFP基因5’端和3’端分别引入EcoRⅠ和XhoⅠ),扩增体系为:GFP-F 2μL、GFP-R 2μL、pEGFP-N3质粒20ng、2×Phanta Flash Master Mix 25μL、ddH2O补齐至50μL;扩增条件:98℃30s;98℃10s、65℃5s、72℃5s,30个循环;72℃1min;采用天根琼脂糖凝胶DNA回收试剂盒回收GFP基因片段;(1) Use pEGFP-N3 plasmid (commercially available) as a template, use primers GFP-F: cgggaattcatggtgagcaagggcgaggagc; GFP-R: ccgctcgagcttgtacagctcgtccatgccgagagtg to amplify the GFP gene (introduce EcoRⅠ and XhoⅠ at the 5' end and 3' end of the GFP gene respectively) ), the amplification system is: 2 μL of GFP-F, 2 μL of GFP-R, 20 ng of pEGFP-N3 plasmid, 25 μL of 2×Phanta Flash Master Mix, and ddH 2 O. Make up to 50 μL; amplification conditions: 98°C for 30s; 98°C for 10s. , 65℃ for 5s, 72℃ for 5s, 30 cycles; 72℃ for 1min; use Tiangen agarose gel DNA recovery kit to recover GFP gene fragments;
采用EcoRⅠ和XhoⅠ双酶切GFP基因片段、pCMV-c-flag质粒,将GFP基因连接到pCMV-c-flag质粒上获得pCMV-GFP-c-Flag质粒;Use EcoRⅠ and XhoⅠ to double-digest the GFP gene fragment and pCMV-c-flag plasmid, and connect the GFP gene to the pCMV-c-flag plasmid to obtain the pCMV-GFP-c-Flag plasmid;
(2)首先以pCMV-GFP-c-Flag质粒为模板,采用质粒突变引物GFPβ8-9-LQS-F:cacaacatcgaggacctgcagagcggcagcgtgcagctcgccgaccactac、GFPβ8-9-LQS-R:cgctgccgctctgcaggtcctCgatgttgtggcggatcttgaagttcaccttgatgccgttc,诺唯赞高保真酶扩增,扩增体系为:GFPβ8-9-LQS-F2μL、GFPβ8-9-LQS-R 2μL、pCMV-GFP-c-Flag质粒20ng、2×Phanta FlashMaster Mix 25μL、ddH2O补齐至50μL;扩增条件:98℃30s;98℃10s、72℃25s、72℃5s,30个循环;72℃1min,以达到先将LQSG插入到GFP的β链8-9之间的目的;(2) First, use the pCMV-GFP-c-Flag plasmid as a template, and use the plasmid mutation primers GFPβ8-9-LQS-F: cacaacatcgaggacctgcagagcggcagcgtgcagctcgccgaccactac, GFPβ8-9-LQS-R: cgctgccgctctgcaggtcctCgatgttgtggcggatcttgaagttcaccttgatgccgt tc, Novozymes high-fidelity enzyme amplification, amplification The amplification system is: GFPβ8-9-LQS-F2μL, GFPβ8-9-LQS-R 2μL, pCMV-GFP-c-Flag plasmid 20ng, 2×Phanta FlashMaster Mix 25μL, ddH 2 O, make up to 50μL; amplification conditions: 98℃ for 30s; 98℃ for 10s, 72℃ for 25s, 72℃ for 5s, 30 cycles; 72℃ for 1min, in order to first insert LQSG into the β chain 8-9 of GFP;
(3)扩增产物使用TAKARA DpnⅠ酶处理,体系为:19μL PCR产物和1μL的DpnⅠ,在37℃下反应以去除未产生突变的质粒;(3) The amplification product is treated with TAKARA DpnⅠ enzyme. The system is: 19 μL PCR product and 1 μL DpnⅠ, react at 37°C to remove non-mutated plasmid;
(4)将处理后的PCR产物转化到大肠杆菌DH5α中,冰浴30min后,转移到42℃水浴锅中热击90s,然后冰上放置5min,再用液体LB培养基补齐至mL,接着置于37℃、200rpm摇床上培养1h,最后取出培养液,4000rpm离心5min,弃去上900μL培养基,用剩余的培养基重悬细胞,将细胞悬液涂布在含有氨苄抗性的固体LB培养基中,于37℃过夜培养;(4) Transform the processed PCR product into E. coli DH5α, incubate on ice for 30 minutes, transfer to a 42°C water bath and heat shock for 90 seconds, then place on ice for 5 minutes, then fill up to mL with liquid LB medium, and then Place the culture medium on a shaker at 37°C and 200 rpm for 1 hour. Finally, take out the culture medium and centrifuge it at 4000 rpm for 5 minutes. Discard the upper 900 μL medium, resuspend the cells with the remaining medium, and spread the cell suspension on solid LB containing ampicillin resistance. culture medium at 37°C overnight;
(5)挑取单克隆,37℃、200rpm培养3h后使用3CLpro特异性引物进行菌液PCR,其电泳结果初步证实3CLpro成功连接到载体上,然后扩培菌液,采用天根质粒小提试剂盒提取质粒并进行测序验证,测序结果证实成功将LQSG插入到GFP的β链8-9之间,得到pCMV-GFP-β8-LQSG-9质粒;(5) Pick a single clone, culture it at 37°C and 200rpm for 3 hours, and use 3CL pro -specific primers to perform bacterial liquid PCR. The electrophoresis results preliminarily confirm that 3CL pro is successfully connected to the vector, and then expand the bacterial liquid, using Tiangen plasmid mini The plasmid was extracted with the kit and verified by sequencing. The sequencing results confirmed that LQSG was successfully inserted between β chains 8-9 of GFP, and the pCMV-GFP-β8-LQSG-9 plasmid was obtained;
(6)以pCMV-GFP-β8-LQSG-9质粒为扩增模板,使用引物GFPβ9-10-F:catcggcgacctgcagagcggccccgtgctgctgcccgacaaccactac、GFPβ9-10-R:cacggggccgctctgcaggtcgccgatgggggtgttctgctggtag进行扩增,扩增体系为:GFPβ9-10-LQS-F 2μL、GFPβ9-10-LQS-R 2μL、pCMV-GFP-β8-LQSG-9质粒20ng、2×Phanta Flash Master Mix 25μL、ddH2O补齐至50μL;扩增条件:98℃30s;98℃10s、72℃25s、72℃5s,30个循环;72℃1min;(6) Use pCMV-GFP-β8-LQSG-9 plasmid as the amplification template, use primers GFPβ9-10-F: catcggcgacctgcagagcggccccgtgctgctgcccgacaaccactac, GFPβ9-10-R: cacggggccgctctgcaggtcgccgatgggggtgttctgctggtag for amplification, the amplification system is: GFPβ9-10-LQS -F 2μL, GFPβ9-10-LQS-R 2μL, pCMV-GFP-β8-LQSG-9 plasmid 20ng, 2×Phanta Flash Master Mix 25μL, ddH 2 O. Make up to 50μL; amplification conditions: 98°C for 30s; 98 ℃10s, 72℃25s, 72℃5s, 30 cycles; 72℃1min;
(7)扩增产物按照步骤(3)使用DpnⅠ酶处理,去除未产生突变的质粒,然后按照步骤(4)和(5)操作,得到pCMV-GFP-β8-LQSG-9-LQSG-10,其测序结果如图3所示,其核苷酸序列如SEQ ID NO:1所示。(7) The amplification product is treated with DpnⅠ enzyme according to step (3) to remove the non-mutated plasmid, and then operates according to steps (4) and (5) to obtain pCMV-GFP-β8-LQSG-9-LQSG-10, The sequencing results are shown in Figure 3, and the nucleotide sequence is shown in SEQ ID NO: 1.
2、质粒pCMV-GFP-β9-RLQSGF-10构建2. Construction of plasmid pCMV-GFP-β9-RLQSGF-10
(1)以pCMV-GFP-c-Flag质粒为模板,采用质粒突变引物GFP9-10-RLQSGF-F:catcggcgacaggctgcagagcggcttccccgtgctgctgcccgacaaccactac、GFP9-10-RLQSGF-R:gccgctctgcagcctgtcgccgatgggggtgttctg;按照质粒pCMV-GFP-β8-LQSG-9-LQSG-10的构建方法进行,得到pCMV-GFP-β9-RLQSGF-10,其测序结果如图4所示,其核苷酸序列如SEQ ID NO:2所示。(1) Use pCMV-GFP-c-Flag plasmid as template and use plasmid mutation primers GFP9-10-RLQSGF-F: catcggcgacaggctgcagagcggcttccccgtgctgctgcccgacaaccactac, GFP9-10-RLQSGF-R: gccgctctgcagcctgtcgccgatgggggtgttctg; according to the plasmid pCMV-GFP-β8- LQSG-9 -The construction method of LQSG-10 was carried out, and pCMV-GFP-β9-RLQSGF-10 was obtained. The sequencing result is shown in Figure 4, and its nucleotide sequence is shown in SEQ ID NO: 2.
实施例3:人人冠状病毒主要蛋白酶3CLpro的报告质粒在筛选人人冠状病毒主要蛋白酶3CLpro抑制剂的可行性验证实验Example 3: Feasibility verification experiment of screening human coronavirus major protease 3CL pro inhibitors using the reporter plasmid of human coronavirus major protease 3CL pro
1、病毒感染前一天将生长良好的293T细胞按照2×105cells/mL铺至提前放好细胞爬片的12孔板中;1. One day before virus infection, spread the well-growing 293T cells at 2×10 5 cells/mL into a 12-well plate where the cell sheets have been placed in advance;
2、将HCoV-OC43病毒原液从-80℃冰箱中取出,置于冰上融化,感染时,使用无血清的DMEM培养基将病毒原液稀释至吸附度为100TCID50的悬液,然后去除12孔板中的细胞上清,使用PBS缓冲液清洗细胞两次,然后将病毒悬液照每孔1mL的量加至12孔板中,34℃恒温培养箱中孵育2h后,去除12孔板中上清,更换为含2%血清的DMEM培养基继续培养;2. Take out the HCoV-OC43 virus stock solution from the -80°C refrigerator and place it on ice to thaw. During infection, use serum-free DMEM medium to dilute the virus stock solution to a suspension with an adsorption degree of 100TCID 50 , and then remove 12 wells. For the cell supernatant in the plate, wash the cells twice with PBS buffer, then add the virus suspension to the 12-well plate at an amount of 1 mL per well, and incubate it in a constant temperature incubator at 34°C for 2 hours, then remove the supernatant from the 12-well plate. Clear, replace with DMEM medium containing 2% serum and continue culturing;
3、设置实验组(感染OC43病毒,同时添加抑制剂GC-376)、对照组(感染OC43病毒,但不添加抑制剂GC-376)、阴性组(不感染病毒且不添加GC-376);3. Set up an experimental group (infected with OC43 virus, while adding inhibitor GC-376), a control group (infected with OC43 virus, but without adding inhibitor GC-376), and a negative group (not infected with virus and without adding GC-376);
4、使用灭菌水将冠状病毒3CLpro蛋白酶的抑制剂GC-376溶解至1mmol/L,病毒感染24h后,向实验组中细胞添加GC376溶液,每孔添加50μL,继续培养30min;4. Use sterile water to dissolve the coronavirus 3CL pro protease inhibitor GC-376 to 1mmol/L. After 24 hours of virus infection, add GC376 solution to the cells in the experimental group, add 50 μL to each well, and continue to culture for 30 minutes;
5、采用LipofectamineTM3000转染试剂盒,将报告质粒pCMV-GFP-β8-LQSG-9-LQSG-10或pCMV-GFP-β9-RLQSGF-10转染到步骤4细胞中,转染体系如下:5. Use Lipofectamine TM 3000 transfection kit to transfect the reporter plasmid pCMV-GFP-β8-LQSG-9-LQSG-10 or pCMV-GFP-β9-RLQSGF-10 into the cells in step 4. The transfection system is as follows:
①配置转染试剂(每个孔的上样量):①Configure transfection reagent (loading amount of each well):
试剂A:50μL无血清DMEM+1μg DNA+2μL p3000Reagent A: 50μL serum-free DMEM+1μg DNA+2μL p3000
试剂B:50μL无血清DMEM+1.5μL lip3000;Reagent B: 50μL serum-free DMEM+1.5μL lip3000;
②试剂A和B配置好后室温孵育5min,将A液转移到B液中,混匀,室温孵育15min;② After reagents A and B are prepared, incubate at room temperature for 5 minutes, transfer solution A to solution B, mix well, and incubate at room temperature for 15 minutes;
③将混合液加入到细胞培养基中,每孔50μL;③Add the mixed solution to the cell culture medium, 50 μL per well;
6、转染后继续培养6h,然后更换含2%血清的DMEM培养基(实验组中需要继续补加50μL GC-376),然后继续培养48h后,去除培养上清液,使用PBS缓冲液清洗细胞两次,然后每孔添加400μL的4%多聚甲醛,室温放置10min固定细胞;6. After transfection, continue to culture for 6 hours, then replace the DMEM medium containing 2% serum (the experimental group needs to continue to add 50 μL GC-376), then continue to culture for 48 hours, remove the culture supernatant, and wash with PBS buffer. Cells were added twice, and then 400 μL of 4% paraformaldehyde was added to each well and left at room temperature for 10 min to fix the cells;
7、使用PBS缓冲液按照说明书将DAPI稀释至0.5μg/mL;7. Use PBS buffer to dilute DAPI to 0.5μg/mL according to the instructions;
8、去除固定液,使用PBS缓冲液清洗细胞两次,然后每孔加入400μL的DAPI溶液,室温放置10min;8. Remove the fixative, wash the cells twice with PBS buffer, then add 400 μL of DAPI solution to each well, and leave at room temperature for 10 minutes;
9、去除DAPI溶液,使用PBS缓冲液清洗两次,然后取出细胞爬片,将其倒置在载玻片上(细胞面朝下),然后固定爬片,做好标记,使用倒置荧光显微镜观察绿色荧光的表达量;9. Remove the DAPI solution, wash twice with PBS buffer, then take out the cell slide, place it upside down on a glass slide (cell side down), then fix the slide, mark it, and use an inverted fluorescence microscope to observe the green fluorescence. the amount of expression;
实验结果如图5和6所示,图中显示对照组(感染OC43病毒但不添加药物)的绿色荧光强度明显低于及阴性组(不感染病毒且不添加GC-376),说明3CLpro蛋白酶的切割使得活性报告质粒表达的绿色荧光强度减弱,而于对照组相比,实验组(感染OC43病毒,添加GC-376)的绿色荧光强度明显变强,结果表明质粒pCMV-GFP-β8-LQSG-9-LQSG-10或pCMV-GFP-β9-RLQSGF-10能够指示OC43病毒主要蛋白酶3CLpro的活性,即绿色荧光强度与3CLpro蛋白酶活性成反比。The experimental results are shown in Figures 5 and 6. The figures show that the green fluorescence intensity of the control group (infected with OC43 virus but without the addition of drugs) is significantly lower than that of the negative group (not infected with the virus and without the addition of GC-376), indicating that 3CL pro protease The cleavage weakened the green fluorescence intensity expressed by the activity reporter plasmid. Compared with the control group, the green fluorescence intensity of the experimental group (infected with OC43 virus and added with GC-376) was significantly stronger. The results showed that the plasmid pCMV-GFP-β8-LQSG -9-LQSG-10 or pCMV-GFP-β9-RLQSGF-10 can indicate the activity of 3CL pro , the main protease of OC43 virus, that is, the green fluorescence intensity is inversely proportional to the 3CL pro protease activity.
实施例4:采用实施例1构建的3CLpro表达质粒pCMV-3CLpro(OC43)-c-Flag转染293T细胞,验证本发明的人冠状病毒主要蛋白酶3CLpro的报告质粒用于筛选抑制剂的可行性实验Example 4: The 3CLpro expression plasmid pCMV-3CL pro (OC43)-c-Flag constructed in Example 1 was used to transfect 293T cells to verify the feasibility of the human coronavirus main protease 3CL pro reporter plasmid of the present invention for screening inhibitors. sexual experimentation
本实施例方法同实施例3,不同在于将步骤2替换为使用1μg的pCMV-3CLpro(OC43)-c-Flag质粒转染293T细胞,pCMV-3CLpro(OC43)-c-Flag质粒转染24h后,再使用1μg报告质粒pCMV-GFP-β8-LQSG-9-LQSG-10或pCMV-GFP-β9-RLQSGF-10转染293T细胞;The method of this example is the same as that of Example 3, except that step 2 is replaced by using 1 μg of pCMV-3CL pro (OC43)-c-Flag plasmid to transfect 293T cells and pCMV-3CL pro (OC43)-c-Flag plasmid. 24 hours later, 1 μg of reporter plasmid pCMV-GFP-β8-LQSG-9-LQSG-10 or pCMV-GFP-β9-RLQSGF-10 was used to transfect 293T cells;
设置实验组(转染3CLpro表达载体,添加抑制剂GC-376)、对照组(转染3CLpro表达载体,不添加GC-376)、阴性组(不转染3CLpro表达载体且不添加药物);Set up an experimental group (transfected with 3CL pro expression vector, adding inhibitor GC-376), a control group (transfected with 3CL pro expression vector, without adding GC-376), and a negative group (not transfected with 3CL pro expression vector and without adding drugs );
其结果如图7和8所示,其结果与实施例3一致,即对照组(共同转染3CLpro表达质粒和报告质粒,不添加GC-376)的绿色荧光强度明显低于及阴性组(不转染3CLpro表达载体且不添加药物),说明3CLpro蛋白酶的切割使得活性报告质粒表达的绿色荧光强度减弱,而与对照组相比,实验组(共同转染3CLpro蛋白酶和活性报告质粒,添加GC-376)的绿色荧光强度明显变强,实验结果显示两个报告质粒pCMV-GFP-β8-LQSG-9-LQSG-10或pCMV-GFP-β9-RLQSGF-10表达的绿色荧光蛋白能够指示3CLpro蛋白酶的活性,即绿色荧光强度与3CLpro蛋白酶活性成反比。The results are shown in Figures 7 and 8. The results are consistent with Example 3, that is, the green fluorescence intensity of the control group (co-transfected with 3CL pro expression plasmid and reporter plasmid, without adding GC-376) is significantly lower than that of the negative group ( without transfection of 3CL pro expression vector and without adding drugs), indicating that the cleavage of 3CL pro protease weakens the green fluorescence intensity expressed by the activity reporter plasmid. Compared with the control group, the experimental group (co-transfected with 3CL pro protease and activity reporter plasmid (adding GC-376), the green fluorescence intensity is significantly stronger. The experimental results show that the green fluorescent protein expressed by the two reporter plasmids pCMV-GFP-β8-LQSG-9-LQSG-10 or pCMV-GFP-β9-RLQSGF-10 can Indicates the activity of 3CL pro protease, that is, the green fluorescence intensity is inversely proportional to the activity of 3CL pro protease.
以上实验结果表明本发明人冠状病毒主要蛋白酶3CLpro的报告质粒具有筛选抗人冠状病毒药物的潜力。The above experimental results show that the reporter plasmid of the human coronavirus main protease 3CL pro of the present invention has the potential to screen anti-human coronavirus drugs.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311443363.8A CN117363654A (en) | 2023-11-02 | 2023-11-02 | Human coronavirus main protease 3CL pro Active reporter plasmid of (2) and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311443363.8A CN117363654A (en) | 2023-11-02 | 2023-11-02 | Human coronavirus main protease 3CL pro Active reporter plasmid of (2) and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117363654A true CN117363654A (en) | 2024-01-09 |
Family
ID=89403916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311443363.8A Pending CN117363654A (en) | 2023-11-02 | 2023-11-02 | Human coronavirus main protease 3CL pro Active reporter plasmid of (2) and use thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117363654A (en) |
-
2023
- 2023-11-02 CN CN202311443363.8A patent/CN117363654A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Olsthoorn et al. | A conformational switch at the 3′ end of a plant virus RNA regulates viral replication | |
CN105518135B (en) | CRISPR-Cas9 specific knockout method of porcine CMAH gene and sgRNA for specific targeting of CMAH gene | |
CN105518138B (en) | CRISPR-Cas9 specific knockout method of porcine GFRA1 gene and sgRNA used to specifically target GFRA1 gene | |
CN106414740A (en) | Method for specific knockout of swine SLA-3 gene using CRISPR-Cas9 specificity, and sgRNA used for specifically targeting sla-3 gene | |
CN105518134A (en) | Method for pig SLA-2 gene specific knockout through CRISPR-Cas9 and sgRNA for specially targeting SLA-2 gene | |
CN105518139A (en) | Method for knocking out pig FGL2 genes with CRISPR-Cas9 specificity and sgRNA for specificity targeting FGL2 genes | |
WO2016187904A1 (en) | Method for pig cmah gene specific knockout by means of crispr-cas9 and sgrna for specially targeting cmah gene | |
CN105492608A (en) | Method using CRISPR-Cas9 to specifically knock off pig PDX1 gene and sgRNA of PDX1 gene for specific targeting | |
CN105518137A (en) | Method for specifically removing pig SALL1 gene by CRISPR-Cas9 and sgRNA used for specific targeting SALL1 gene | |
CN105492609A (en) | Method for CRISPR-Cas9 specific knockout of pig GGTA1 gene and sgRNA for specific targeted GGTA1 gene | |
CN113249408B (en) | Construction and application of a nucleic acid vaccine vector targeting activation of humoral and cellular immunity | |
CN107475298A (en) | CdtB gene overexpressions slow virus carrier and its construction method and the slow virus comprising cdtB genes and its application | |
CN110499335B (en) | CRISPR/SauriCas9 gene editing system and application thereof | |
US11021704B2 (en) | Methods for RNA promoter identification | |
CN114058619B (en) | Construction of RIPLET knockout cell line and application of RIPLET knockout cell line as picornaviridae virus vaccine production cell line | |
CN109022436B (en) | shRNA recombinant vector construction and application for specifically inhibiting 3 beta-HSD gene expression | |
CN110551762B (en) | CRISPR/ShaCas9 gene editing system and application thereof | |
WO2022120936A1 (en) | Modified nucleic acid and application thereof | |
WO2024251229A1 (en) | Cas enzyme and system and use thereof | |
CN117363654A (en) | Human coronavirus main protease 3CL pro Active reporter plasmid of (2) and use thereof | |
CN109777807B (en) | Method for positioning and expressing foreign protein in mitochondria | |
US20240301371A1 (en) | Crispr-associated transposon systems and methods of using same | |
CN101463351A (en) | External leader sequence for guiding RNase P ribozyme and use thereof in anti-HCMV medicament preparation | |
CN115725724B (en) | Application of POP gene or protein as target in screening drugs for inhibiting picornaviridae virus replication | |
CN113238053B (en) | A plasmid for detection of STAT3 dimerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |