[go: up one dir, main page]

CN117347619A - 一种用于二噁英检测的传感器及其制备方法 - Google Patents

一种用于二噁英检测的传感器及其制备方法 Download PDF

Info

Publication number
CN117347619A
CN117347619A CN202311378970.0A CN202311378970A CN117347619A CN 117347619 A CN117347619 A CN 117347619A CN 202311378970 A CN202311378970 A CN 202311378970A CN 117347619 A CN117347619 A CN 117347619A
Authority
CN
China
Prior art keywords
sensor
dioxin
dielectric layer
cylindrical
substrate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311378970.0A
Other languages
English (en)
Inventor
南剑
廖胜明
饶政华
王娅琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202311378970.0A priority Critical patent/CN117347619A/zh
Publication of CN117347619A publication Critical patent/CN117347619A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及传感器技术领域,特别是涉及一种用于二噁英检测的传感器及其制备方法,传感器包括:衬底和介质,所述介质设置在衬底上表面呈周期性排布,所述介质呈圆柱状。制备方法包括:清洗衬底材料,在所述衬底材料的上表面制备介质层;对所述介质层进行处理,获取圆柱形状介质表面;对所述圆柱形状介质表面进行去胶,再对衬底材料和介质层的整体表面进行胺基化修饰,完成传感器的制备。本发明所制备的传感器能够检测极低浓度的二噁英,大大提高二噁英检测灵敏度及选择性。

Description

一种用于二噁英检测的传感器及其制备方法
技术领域
本发明涉及传感器技术领域,特别是涉及一种用于二噁英检测的传感器及其制备方法。
背景技术
持久性有机污染物(POPs)是一类具有环境持久性、生物累积性、长距离迁移能力和高生物毒性的特殊污染物。二噁英是持久性有机污染物中的一种,也是最具代表性的有毒化学污染物。二噁英是一类化合物的总称,按化学结构可分为两大类:一类为多氯代二苯并二噁英(PCDDs),一类为多氯代二苯并呋喃(PCDFs),总共有210种同类物,在二噁英化合物中研究最多最典型也是毒性最强的物质为2,3,7,8-四氯代二苯并二噁英(2,3,7,8-TCDD)。
二噁英广泛存在于环境介质中,主要是在废弃物的燃烧,化学工业生产,工业制造以及热处理工艺过程中产生的。90%来源与含有氯化合物垃圾焚烧过程。如多氯联苯,五氯酚,聚氯乙烯等的燃烧。随着垃圾燃烧炉的增加二噁英的污染也将越来越严重。二噁英主要以两种形态存在,即挥发性的二噁英气体和固态的二噁英颗粒。常温常压下二噁英为白色固体晶体,有着较高的熔沸点,蒸汽压很小,不溶于水和有机溶剂,但脂溶性很强,并且易吸附在土壤,沉积物和空气飞尘上。目前为止,根据对二噁英检测原理的不同,可将二噁英的检测方法主要分为化学分析法、免疫检测法和生物法三种,目前现有的二噁英检测方法大多采用化学分析法,其存在检测设备体积庞大,且前处理复杂,检测不方便等技术问题。因此,亟需一种二噁英检测传感器来解决上述技术问题。
发明内容
本发明的目的是针对上述技术问题,提供一种用于二噁英检测的传感器及其制备方法,利用二噁英抗体对二噁英污染物的特异性结合,提高二噁英检测灵敏度及选择性。
为实现上述目的,本发明提供了如下方案:
一种用于二噁英检测的传感器,包括:衬底和介质,所述介质设置在衬底上表面并呈周期性排布,所述介质呈圆柱状。
优选地,所述衬底的电阻率>1014Ω·cm,在2000~20000nm频段内介电常数实部<4;所述介质的电阻率>5000Ω·cm,在2000~20000nm频段内介电常数实部>11。
优选地,所述衬底采用SiO2、Al2O3、硼酸盐玻璃中的一种。
优选地,所述介质采用Si半导体、Ge半导体、SiGe半导体中的一种。
优选地,所述介质的直径为1~4μm,高度为1~4μm,相邻两介质的间距为1~20μm。
为进一步实现上述目的,本发明还提供了一种用于二噁英检测的传感器的制备方法,包括:
清洗衬底材料,在所述衬底材料的上表面制备介质层;
对所述介质层进行处理,获取圆柱形状介质表面;
对所述圆柱形状介质表面进行去胶,再对衬底材料和介质层的整体表面进行胺基化修饰,完成传感器的制备。
优选地,对所述介质层进行处理,获取圆柱形状介质表面包括:
在所述介质层的表面涂正胶,光刻,制作若干个圆柱形状,后烘坚膜;
对所述介质层进行刻蚀,直至除所述圆柱形状以外的区域完全刻蚀,露出所述衬底材料。
优选地,在所述介质层的表面涂正胶的胶厚≥5μm;所述刻蚀的功率为100~1000W,时间为5~30min。
优选地,对所述圆柱形状介质表面进行去胶包括:
将所述圆柱形状介质表面依次利用丙酮、H2SO4与H2O2溶液的混合液浸泡,去除所述圆柱形状介质表面的残胶,其中,H2SO4与H2O2溶液的混合液的体积比为4:1,浸泡温度为100℃。
优选地,对衬底材料和介质层的整体表面进行胺基化修饰包括:
将所述衬底材料和介质层的整体表面采用3-氨丙基三乙氧基硅烷溶液浸泡,再用碳二亚胺、N-羟基硫代琥珀酰亚胺溶液和二噁英抗体溶液混合浸泡,完成衬底材料和介质层的整体表面的胺基化修饰,其中,所述3-氨丙基三乙氧基硅烷溶液的体积分数为1%~10%,在60~90℃条件下浸泡1~4小时;所述碳二亚胺、N-羟基硫代琥珀酰亚胺溶液和二噁英抗体溶液混合在35~39℃条件下浸泡1~24小时。
本发明的有益效果为:
本发明基于免疫检测方法制备一种用于二噁英检测的传感器,利用二噁英抗体对二噁英污染物的特异性结合,大大提高二噁英检测灵敏度及选择性;本发明所制备的传感器可用于检测极低浓度的二噁英,且有效解决了常规检测方法化学分析法的检测设备体积庞大,前处理复杂,检测不方便等问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的一种用于二噁英检测的传感器结构示意图;
图2为本发明实施例的不同浓度二噁英溶液傅里叶红外透射检测结果。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例一
本实施例提供了一种用于二噁英检测的传感器,如图1所示,包括:衬底,以及设置在衬底上面的若干个呈周期性排布的介质。
衬底电阻率>1014Ω·cm,在2000~20000nm频段内介电常数实部<4,优选SiO2、Al2O3或硼酸盐玻璃;介质呈圆柱状,介质的电阻率>5000Ω·cm,在2000~20000nm频段内介电常数实部>11,优选半导体,半导体为Si、Ge、SiGe;介质直径为1~4μm,高度h为1~4μm,相邻两介质的间距l为1~20μm。
一种用于二噁英检测的传感器的制备方法,包括以下步骤:
(1)将衬底材料清洗后,在衬底表面采用磁控溅射方法制备介质层,厚度为1~4μm;
(2)在介质层表面涂正胶,胶厚≥5μm,光刻,制作出若干个圆柱形状,后烘坚膜;
(3)使用聚焦离子束刻蚀方法,对介质层刻蚀,直至将介质层未保护区域完全刻蚀,露出衬底层,刻蚀功率100~1000W,刻蚀时间5~30min;
(4)用丙酮浸泡去胶,再用H2SO4与H2O2溶液的混合液浸泡,用氧等离子体对圆柱形状介质表面轰击清洗,去除表面残胶,其中,H2SO4与H2O2溶液的混合液的体积比为4:1,浸泡温度为100℃;
(5)使用3-氨丙基三乙氧基硅烷溶液浸泡,再用碳二亚胺(EDC)、N-羟基硫代琥珀酰亚胺溶液(SNHS)和二噁英抗体溶液混合浸泡,对传感器表面胺基化修饰,其中,3-氨丙基三乙氧基硅烷溶液的体积分数为1%~10%,在60~90℃条件下浸泡1~4小时,碳二亚胺(EDC)、N-羟基硫代琥珀酰亚胺溶液(SNHS)(10mg/mL)和二噁英抗体溶液(10μg/mL)混合在35~39℃条件下浸泡1~24小时,混合溶液中的碳二亚胺(EDC)质量浓度为10mg/mL,N-羟基硫代琥珀酰亚胺溶液(SNHS)的质量浓度为10mg/mL,二噁英抗体溶液的质量浓度为10μg/mL。
二噁英检测过程包括:将二噁英抗体滴涂于传感器表面,在35~39℃条件下静止1~24小时,去离子水冲洗,然后自然晾干;将待检测二噁英样品滴涂于如上处理后的传感器表面,用傅里叶红外光谱仪(FTIR)进行检测,根据谐振峰位移计算结果确定二噁英样品浓度。
实施例二
一种用于二噁英检测的传感器传感器,工作频段在2000~10000nm,由衬底和介质组成,衬底材料为SiO2,电阻率约1015Ω·cm,在2~20μm频段内介电常数实部在1.56~1.9范围内;设置在衬底上面的若干个呈周期性排布的圆柱状介质,材料为SiGe,电阻率约为6000Ω·cm,在2000~10000nm频段内介电常数实部在20~28范围内;介质直径高度h=2μm,两介质间距l=2μm。
制备方法包括以下步骤:
(1)对衬底材料进行清洗,在其表面使用磁控溅射方法制备介质层,厚度为2μm,制备过程中溅射气压0.4MPa,溅射功率150W;
(2)在介质层表面涂正胶涂胶,胶厚为6μm,光刻,制作出若干个圆柱形状,后烘坚膜15min;
(3)使用聚焦离子束刻蚀方法,对介质层刻蚀,直至将介质层未保护区域完全刻蚀,露出衬底层,离子束刻蚀功率700W,刻蚀25min;
(4)用丙酮浸泡去胶,再用体积比为4:1的H2SO4、H2O2溶液的混合液,100℃浸泡,用氧等离子体对圆柱状介质表面轰击清洗,将表面残胶完全去除;
(5)使用3-氨丙基三乙氧基硅烷溶液浸泡,再用碳二亚胺(EDC)、N-羟基硫代琥珀酰亚胺溶液(SNHS)和二噁英抗体溶液混合浸泡,对传感器表面胺基化修饰,其中,3-氨丙基三乙氧基硅烷溶液的体积分数为2%,在80%条件下浸泡1.5小时,碳二亚胺(EDC)、N-羟基硫代琥珀酰亚胺溶液(SNHS)和二噁英抗体溶液混合在37℃条件下浸泡12小时。
为验证本实施例所制备的传感器的检测效果,进行以下检测:
将二噁英抗体滴涂于传感器表面,在37℃条件下静止12小时,去离子水冲洗,然后自然晾干,将不同浓度二噁英溶液滴加于处理后的传感器表面,利用傅里叶红外光谱仪进行测试,检测二噁英溶液浓度,测试结果如图2所示,检测限可达0.1nmol/ml,本实施例所制备的传感器可用于检测极低浓度二噁英。
以上所述的实施例仅是对本发明优选方式进行的描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

1.一种用于二噁英检测的传感器,其特征在于,包括:衬底和介质,所述介质设置在衬底上表面并呈周期性排布,所述介质呈圆柱状。
2.根据权利要求1所述的用于二噁英检测的传感器,其特征在于,所述衬底的电阻率>1014Ω·cm,在2000~20000nm频段内介电常数实部<4;所述介质的电阻率>5000Ω·cm,在2000~20000nm频段内介电常数实部>11。
3.根据权利要求1所述的用于二噁英检测的传感器,其特征在于,所述衬底采用SiO2、Al2O3、硼酸盐玻璃中的一种。
4.根据权利要求3所述的用于二噁英检测的传感器,其特征在于,所述介质采用Si半导体、Ge半导体、SiGe半导体中的一种。
5.根据权利要求1所述的用于二噁英检测的传感器,其特征在于,所述介质的直径为1~4μm,高度为1~4μm,相邻两介质的间距为1~20μm。
6.一种根据权利要求1-5任一项所述的用于二噁英检测的传感器的制备方法,其特征在于,包括:
清洗衬底材料,在所述衬底材料的上表面制备介质层;
对所述介质层进行处理,获取圆柱形状介质表面;
对所述圆柱形状介质表面进行去胶,再对衬底材料和介质层的整体表面进行胺基化修饰,完成传感器的制备。
7.根据权利要求6所述的用于二噁英检测的传感器的制备方法,其特征在于,对所述介质层进行处理,获取圆柱形状介质表面包括:
在所述介质层的表面涂正胶,光刻,制作若干个圆柱形状,后烘坚膜;
对所述介质层进行刻蚀,直至除所述圆柱形状以外的区域完全刻蚀,露出所述衬底材料。
8.根据权利要求7所述的用于二噁英检测的传感器的制备方法,其特征在于,在所述介质层的表面涂正胶的胶厚≥5μm;所述刻蚀的功率为100~1000W,时间为5~30min。
9.根据权利要求6所述的用于二噁英检测的传感器的制备方法,其特征在于,对所述圆柱形状介质表面进行去胶包括:
将所述圆柱形状介质表面依次利用丙酮、H2SO4与H2O2溶液的混合液浸泡,去除所述圆柱形状介质表面的残胶,其中,H2SO4与H2O2溶液的混合液的体积比为4:1,浸泡温度为100℃。
10.根据权利要求6所述的用于二噁英检测的传感器的制备方法,其特征在于,对衬底材料和介质层的整体表面进行胺基化修饰包括:
将所述衬底材料和介质层的整体表面采用3-氨丙基三乙氧基硅烷溶液浸泡,再用碳二亚胺、N-羟基硫代琥珀酰亚胺溶液和二噁英抗体溶液混合浸泡,完成衬底材料和介质层的整体表面的胺基化修饰,其中,所述3-氨丙基三乙氧基硅烷溶液的体积分数为1%~10%,在60~90℃条件下浸泡1~4小时;所述碳二亚胺、N-羟基硫代琥珀酰亚胺溶液和二噁英抗体溶液混合在35~39℃条件下浸泡1~24小时。
CN202311378970.0A 2023-10-24 2023-10-24 一种用于二噁英检测的传感器及其制备方法 Pending CN117347619A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311378970.0A CN117347619A (zh) 2023-10-24 2023-10-24 一种用于二噁英检测的传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311378970.0A CN117347619A (zh) 2023-10-24 2023-10-24 一种用于二噁英检测的传感器及其制备方法

Publications (1)

Publication Number Publication Date
CN117347619A true CN117347619A (zh) 2024-01-05

Family

ID=89359154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311378970.0A Pending CN117347619A (zh) 2023-10-24 2023-10-24 一种用于二噁英检测的传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN117347619A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332819A1 (en) * 1988-01-26 1989-09-20 The Regents Of The University Of California Method for the immunoassay of dioxins and dibenzofurans
CN103197062A (zh) * 2013-04-03 2013-07-10 涿州市恒通达科贸有限公司 一种检测二恶英类的方法及其专用酶联免疫试剂盒
CN116448713A (zh) * 2023-06-14 2023-07-18 有研工程技术研究院有限公司 一种基于Mie谐振效应的太赫兹生物传感器及其制备方法和应用
CN116482051A (zh) * 2023-06-14 2023-07-25 有研工程技术研究院有限公司 一种红外频段生化传感器及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332819A1 (en) * 1988-01-26 1989-09-20 The Regents Of The University Of California Method for the immunoassay of dioxins and dibenzofurans
CN103197062A (zh) * 2013-04-03 2013-07-10 涿州市恒通达科贸有限公司 一种检测二恶英类的方法及其专用酶联免疫试剂盒
CN116448713A (zh) * 2023-06-14 2023-07-18 有研工程技术研究院有限公司 一种基于Mie谐振效应的太赫兹生物传感器及其制备方法和应用
CN116482051A (zh) * 2023-06-14 2023-07-25 有研工程技术研究院有限公司 一种红外频段生化传感器及其制备方法和应用

Similar Documents

Publication Publication Date Title
Khalizov et al. Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor
Pitts Jr et al. Factors influencing the reactivity of polycyclic aromatic hydrocarbons adsorbed on filters and ambient POM with ozone
Namieśnik Trace analysis—challenges and problems
Burkhardt et al. Pressurized liquid extraction using water/isopropanol coupled with solid-phase extraction cleanup for semivolatile organic compounds, polycyclic aromatic hydrocarbons (PAH), and alkylated PAH homolog groups in sediment
Ligocki et al. Assessment of adsorption/solvent extraction with polyurethane foam and adsorption/thermal desorption with Tenax-GC for the collection and analysis of ambient organic vapors
Bai et al. Light absorption of black carbon is doubled at Mt. Tai and typical urban area in North China
Švehla et al. Simple approaches to on-line and off-line speciation analysis of mercury in flue gases with detection by atomic absorption spectrometry: A pilot study
Gupta et al. Suspended graphene arrays for gas sensing applications
Kabir et al. Development and comparative investigation of Ag-sensitive layer based SAW and QCM sensors for mercury sensing applications
Wei et al. The wetting behavior of fresh and aged soot studied through contact angle measurements
Griffin et al. A nanoengineered conductometric device for accurate analysis of elemental mercury vapor
CN117347619A (zh) 一种用于二噁英检测的传感器及其制备方法
Kong et al. Analysis of trace‐level nitrated polycyclic aromatic hydrocarbons in water samples by solid‐phase microextraction with gas chromatography and mass spectrometry
Kabir et al. Investigating the cross-interference effects of alumina refinery process gas species on a SAW based mercury vapor sensor
Cai et al. Determination of methyl-and ethylmercury compounds using gas chromatography atomic fluorescence spectrometry following aqueous derivatization with sodium tetraphenylborate
Kim et al. Soft X-ray-assisted detection method for airborne molecular contaminations (AMCs)
Muller et al. Volatile cleanroom contaminants: sources and detection
Rabano et al. Speciation of arsenic in ambient aerosols collected in Los Angeles
Korfmacher et al. Nonphotochemical decomposition of fluorene vapor-adsorbed on coal fly ash
CN116482051A (zh) 一种红外频段生化传感器及其制备方法和应用
JP3641592B2 (ja) 大気の清浄度評価用捕集剤
Caroli et al. Determination of sulphur in coal products by inductively coupled plasma atomic emission spectrometry
Ryan PFAS incineration: EPA activities and research
Rauber et al. An optimised organic carbon∕ elemental carbon (OC∕ EC) fraction separation method for radiocarbon source apportionment applied to low-loaded Arctic aerosol filters
Raiah et al. FT-IR detection of DMMP on TiO2-Modified porous silicon substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination