[go: up one dir, main page]

CN117339008B - 用于治疗感染性骨缺损3d打印pekk负载异制结体系 - Google Patents

用于治疗感染性骨缺损3d打印pekk负载异制结体系 Download PDF

Info

Publication number
CN117339008B
CN117339008B CN202311239574.XA CN202311239574A CN117339008B CN 117339008 B CN117339008 B CN 117339008B CN 202311239574 A CN202311239574 A CN 202311239574A CN 117339008 B CN117339008 B CN 117339008B
Authority
CN
China
Prior art keywords
pekk
tio
group
bone
bracket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311239574.XA
Other languages
English (en)
Other versions
CN117339008A (zh
Inventor
苏强
肖聪
张少云
高志祥
陈银华
龙能吉
姚凯
于伟
何丰来
郑晓峰
罗开荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Third Hospital of Mianyang
Original Assignee
Third Hospital of Mianyang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Third Hospital of Mianyang filed Critical Third Hospital of Mianyang
Priority to CN202311239574.XA priority Critical patent/CN117339008B/zh
Publication of CN117339008A publication Critical patent/CN117339008A/zh
Application granted granted Critical
Publication of CN117339008B publication Critical patent/CN117339008B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了用于治疗感染性骨缺损3D打印PEKK负载异制结体系,涉及骨缺损修复技术领域,其技术方案要点是:所述PEKK负载异制结体系是将纳米材料Cu2O‑Sr‑TiO2负载在聚多巴胺改性的3D打印PEKK支架表面制成的,所述PEKK负载异制结体系能够在超声响应下有效的杀灭细菌。在细菌酸性环境下,材料体系释放出铜离子和锶离子,促进缺损区域成骨和成血管以及抑制成熟破骨细胞活性,加速新生骨矿化。该支架体系兼具良好生物学活性、生物相容性和“抗菌和促成骨一体化”的功效,可用于治疗感染性骨缺损。

Description

用于治疗感染性骨缺损3D打印PEKK负载异制结体系
技术领域
本发明涉及骨缺损修复技术领域,更具体地说,它涉及用于治疗感染性骨缺损3D打印PEKK负载异制结体系。
背景技术
感染性骨缺损是一种由外伤、手术、慢性骨髓炎等导致的复杂疾病,具有修复难度大、时间长、效果差的特点,是目前骨科、口腔颌面外科等领域的主要难题。治疗感染性骨缺损通常需要联合多种治疗方法,外科手术以及抗生素治疗是治疗感染性骨缺损重要手段。然而临床治疗过程中存在细菌在植入物表面粘附定植形成生物膜抵御宿主的免疫攻击、长期使用抗生素具有潜在诱导细菌耐药等问题,因此设计兼具良好生物学活性、生物相容性和可控抗菌性的骨缺损修复材料尤为重要。
聚醚酮酮(PEKK)因其优异的机械强度、良好的生物相容性以及弹性模量和机械强度与骨相似,已被广泛应用于临床。但由于3D打印PEKK支架固有的生物惰性导致其成骨能力不足,且缺乏抗感染的能力,限制了其在治疗感染性骨缺损的运用。氧化亚铜(Cu2O)作为铜族纳米材料的一员,具有广泛的抗菌活性,且铜离子兼具刺激内皮细胞增殖和分化,促进血管化骨再生的能力。但在感染性骨缺损环境,破骨活跃,氧化亚铜成骨性能显现不佳。锶元素抑制破骨细胞分化以及破骨细胞活性,可抑制骨缺损早期破骨细胞的激活,促进骨修复,弥补以上不足。TiO2是一种传统的无机声敏剂,其可以在超声环境的影响下产生活性氧(ROS)杀菌,但是存在产生载电子流受限,ROS生成效率低等问题。而Cu2O是良好的电子载体,能促使TiO2电子空穴分离,提升载电子流,提高ROS产生效率,因此构建Cu2O-Sr-TiO2异质结体系,可以实现抗菌促骨再生双功能体系。
发明内容
本发明的目的是提供用于治疗感染性骨缺损3D打印PEKK负载异制结体系,该负载异制结体系兼具良好生物学活性、生物相容性和可控抗菌性,可用于治疗感染性骨缺损。
本发明的上述技术目的是通过以下技术方案得以实现的:用于治疗感染性骨缺损3D打印PEKK负载异制结体系,所述PEKK负载异制结体系是将纳米材料Cu2O-Sr-TiO2负载在聚多巴胺改性的3D打印PEKK支架表面制成的,所述PEKK负载异制结体系能够在细菌酸性环境下释放Cu元素和Sr元素,且在超声响应下释放量增加。
本发明还提供PEKK负载异制结体系的制备方法:包括以下步骤:
S1.纳米材料Cu2O-Sr的制备;
S2.纳米材料Cu2O-Sr-TiO2的制备;
S3.PEKK负载异制结体系的制备。
本发明进一步设置为:所述纳米材料Cu2O-Sr的制备具体操作如下:称量375mg五水硫酸铜、147mg柠檬酸二水合物和10mg氯化锶溶解在80ml去离子水(DI)中,充分溶解并保持搅拌15min;加入20ml1.25M的NaOH水溶液,充分搅拌15min后再加入50ml0.03M的抗坏血酸溶液,溶液保持搅拌3min;然后在室温下静置1h,10000rpm离心6min,用体积比为1:1的去离子水和乙醇溶液洗涤3次,冷冻干燥后即可得Cu2O-Sr。
本发明进一步设置为:所述纳米材料Cu2O-Sr-TiO2的制备具体操作如下:称取S1中制备得到的30mgCu2O-Sr,并将其溶于去离子水中,得到Cu2O-Sr水溶液,待搅拌均匀后,另称取10mgTiO2溶于10ml乙醇溶液,超声振荡均匀后加入上述Cu2O-Sr水溶液中,搅拌30min,将混合溶液加入至50ml反应釜中,转移至真空干燥箱中120℃反应10h;待反应釜自然冷却后,取出溶液,10000rpm离心6min,用体积比为1:1的去离子水和乙醇溶液洗涤3次,冷冻干燥后即可得Cu2O-Sr-TiO2
本发明进一步设置为:所述PEKK负载异制结体系的制备具体操作如下:将3D打印PEKK支架按丙酮-超纯水-乙醇-超纯水的顺序各超声10min,将清洗好的3D打印PEKK支架浸泡在含有20mlTris-HCl(PH=8.5),然后加入60mgDA,在避光条件下搅拌24h;将PEKK@PDA取出,超纯水超声下清洗支架,去除未附着的杂质;将提前溶解充分的Cu2O-Sr-TiO2加入PEKK@PDA中,避光条件下摇床处理12h,取出负载纳米材料的支架,超纯水清洗支架三次,去除未附着的药物,烘干后,获得Cu2O-Sr-TiO2-PEKK支架,即PEKK负载异制结体系。
本发明还提供PEKK负载异制结体系的应用:所述PEKK负载异制结体系可用于制备治疗骨缺损修复的材料。
综上所述,本发明具有以下有益效果:本发明以骨科手术中难治疗的感染性骨缺损疾病为切入点,基于感染性骨缺损修复所需的优良的力学性能、良好的抗菌活性、优良的促成骨能力,以及3D打印PEKK支架和基材Cu2O在当前临床应用所面临的缺陷,构建了一款在超声响应下构建兼具“抗菌和促成骨一体化”的双协同体系纳米复合材料。该纳米复合材料即本发明中所描述的PEKK负载异制结体系,其能够在超声响应下有效的杀灭细菌。在细菌酸性环境下,材料体系释放出铜离子,促进缺损区域成骨和成血管以及抑制成熟破骨细胞活性,加速新生骨矿化,兼具良好生物学活性、生物相容性和“抗菌和促成骨一体化”的功效,可用于治疗感染性骨缺损,能够解决PEKK支架在感染性骨缺损中的不足应用,为治疗感染性骨缺损提供一个新的策略。
附图说明
图1是本发明实施例2中纳米材料离子释放图;
图2是本发明实施例3中体外产生ROS检测;
图3是本发明实施例4中体外抗菌涂板及定量;
图4是本发明实施例4中载药支架抗菌SEM图;
图5是本发明实施例4中细菌生物膜活死染色图;
图6是本发明实施例4中细菌体内ROS检测图;
图7是本发明实施例5中不同材料1、3、5天CCK-8结果图;
图8是本发明实施例5中细胞粘附情况示意图;
图9是本发明实施例5中细胞在支架上活死染色;
图10是本发明实施例5中不同材料诱导分化ALP;
图11是本发明实施例5中不同材料诱导分化ARS;
图12是本发明实施例6中体内抗菌性能评估(1);
图13是本发明实施例6中体内抗菌性能评估(2);
图14是本发明实施例6中支架成骨评价;
图15是本发明实施例6中支架临近骨评价;
图16是本发明实施例6中不同支架4周和8周HE染色图;
图17是本发明实施例6中不同支架4周和8周Masson染色图;
图18是本发明实施例6中不同支架4周甲苯胺蓝染色图;
图19是本发明实施例6中不同支架4周和8周炎症相关指标;
图20是本发明实施例6中各组顺序性荧光染色标记新生骨;
图21是本发明实施例6中各组主要脏器HE染色;
图22是本发明实施例6中各组血常规及生化指标;
图23是本发明实施例1中PEKK负载异制结体系的合成路线图。
具体实施方式
以下结合附图1-23对本发明作进一步详细说明。
实施例1:分别合成Cu2O-Sr、Cu2O-Sr-TiO2纳米材料。
称量375mgCuSO4·5H2O和147mg柠檬酸二水合物溶解在80ml去离子水(DI)中,充分溶解并保持搅拌15min,加入20ml1.25M的NaOH水溶液,充分搅拌15min后再加入50ml0.03M的抗坏血酸溶液,溶液保持搅拌3min,然后在室温下静置1h,10000rpm离心6min,用体积比为1:1的去离子水和乙醇溶液洗涤3次,冷冻干燥后即可得Cu2O。
称量375mg五水硫酸铜、147mg柠檬酸二水合物和10mg氯化锶溶解在80ml去离子水(DI)中,充分溶解并保持搅拌15min;加入20ml1.25M的NaOH水溶液,充分搅拌15min后再加入50ml0.03M的抗坏血酸溶液,溶液保持搅拌3min;然后在室温下静置1h,10000rpm离心6min,用体积比为1:1的去离子水和乙醇溶液洗涤3次,冷冻干燥后即可得Cu2O-Sr。
称取30mg制备得到的Cu2O-Sr,并将其溶于去离子水中,得到Cu2O-Sr水溶液,待搅拌均匀后,另称取10mgTiO2溶于10ml乙醇溶液,超声振荡均匀后加入上述Cu2O-Sr水溶液中,搅拌30min,将混合溶液加入至50ml反应釜中,转移至真空干燥箱中120℃反应10h;待反应釜自然冷却后,取出溶液,10000rpm离心6min,用体积比为1:1的去离子水和乙醇溶液洗涤3次,冷冻干燥后即可得Cu2O-Sr-TiO2
将合成的3种纳米材料分别制备成PEKK负载异制结体系,具体操作如下:将3D打印PEKK支架按丙酮-超纯水-乙醇-超纯水的顺序各超声10min,将清洗好的3D打印PEKK支架浸泡在含有20mlTris-HCl(PH=8.5),然后加入60mgDA,在避光条件下搅拌24h,得到PEKK@PDA;将PEKK@PDA取出,超纯水超声下清洗支架,去除未附着的杂质;将提前溶解充分的Cu2O-Sr、TiO2、Cu2O-Sr-TiO2加入PEKK@PDA中,避光条件下摇床处理12h,取出负载纳米材料的支架,超纯水清洗支架三次,去除未附着的药物,烘干后,获得Cu2O-Sr-PEKK,TiO2-PEKK,Cu2O-Sr-TiO2-PEKK支架。
实施例2:铜离子释放情况
如图1所示,Cu2O-Sr-TiO2纳米材料在PH=7.4的中性环境中,随着时间的推迟,溶液中的铜离子含量逐渐增加,并且第三天后的降解速率更快。用PH=5.5的酸性环境模拟细菌生长环境,结果发现酸性环境中铜离子的明显多于中性环境,并且在第三天后快速释放,表明了在酸性环境下,氧化亚铜有一个先快后慢的释放过程。此外,在超声作用下,Cu2O-Sr-TiO2纳米材料的释放较非超声组增加,说明在超声的作用下,铜离子的释放增加。
实施例3:声动力效应检测
(1)体外产生ROS检测
DPBF(单线态氧指示荧光探针)作为一种1O2和·O2-的捕获剂,能够有效地被1O2和·O2-所降解,从而使得DPBF的特定波长下的紫外吸光度下降。吸光度下降的越明显,说明纳米材料体系在超声下产生的1O2和·O2-越多。Cu2O-Sr在超声作用下,随着时间的延长,DPBF在420nm波长处下降并不明显,如图2中A所示,TiO2作为一种典型的声敏剂,随着时间的累积,其超声相应下产生的1O2逐渐增加,如图2中B所示。与Cu2O-Sr和TiO2相比,Cu2O-Sr-TiO2在超声3min和6min时,DPBF峰值下降更快,且在超声15min时,检测出的DPBF峰值更低,如图2中C所示。说明Cu2O-Sr-TiO2在超声作用下,其产生的ROS速度和量较Cu2O-Sr和TiO2更优。对不同浓度(5μg/mL、100μg/mL、200μg/mL)Cu2O-Sr-TiO2的进行检测,结果显示Cu2O-Sr-TiO2超声响随着浓度的增加,其产生的1O2越多越快,如图2中D所示。上述结果表明,构建的Cu2O-Sr-TiO2在超声响应下能产生1O2,产生的1O2显示出时间依赖性和浓度依赖性。
(2)·OH的检测
声敏剂在超声作用下能够产生·OH,·OH能够破坏细菌体内的DNA、蛋白质等,从而达到杀菌的效果。运用MB捕获·OH,观察665nm处的吸收强度变化来检测产生的·OH的多少。TiO2在超声作用下665nm处的吸收峰下降不明显,如图2中E所示,而Cu2O-Sr-TiO2在超声作用下,随着时间的累积,峰值下降明显,具有时间依赖性,如图2中F所示。与空白组、Cu2O-Sr组、TiO2组相比,Cu2O-Sr-TiO2组在超声相同的时间下,其产生的·OH最多,如图2中G所示。
(3)ESR的检测
ESR结果显示:Cu2O-Sr-TiO2在超声作用下,1O2信号强度(1:1:1)与·OH信号强度(1:2:2:1)随超声的时间增长而逐渐增加,如图2中H、I所示。上述结果进一步验证了Cu2O-Sr-TiO2体系在超声作用下能够有效地产生1O2和·OH。
实施例4:细菌实验
(1)体外抗菌涂板
使用金黄色葡萄球菌(S.aureus)及大肠杆菌(E.coli)两种细菌作为致病菌模型,以检测纳米材料体系对革兰阳性菌和革兰阴性菌的杀伤能力。如图3中A所示,在非超声条件下,对照组可见E.coli与S.aureus大量增殖。Cu2O-Sr组在非超声条件下,对E.coli与S.aureus都有一定的杀灭作用,与对照组相比显著减少。Cu2O-Sr对细菌生长的杀灭作用来自于Cu2O本身的抗菌性能,Cu2O可以通过直接与细菌接触破坏细菌、释放铜离子、与环境H2O2反应产生·OH等途径损失细菌。TiO2在非超声条件下与E.coli与S.aureus共培养后,与对照组相比,培养出的细菌菌落仅略微减少。归因于TiO2良好的生物相容性,非超声条件下所使用的浓度并不会造成细菌显著减少。在引入超声(1MHz,50%dutycycle,1.5Wcm-2)后,对照组的E.coli与S.aureus较非超声时无明显下降,说明在该超声强度对细菌无明显杀伤作用。Cu2O-Sr组在超声条件下,细菌菌落较空白组显著减少,但是较Cu2O-Sr非超声时无显著减少,进一步验证了其抗菌活性来源于材料本身。与非超声时相比,TiO2在超声条件下显著减少了E.coli与S.aureus的菌落数量,说明TiO2在超声作用下产生的1O2能够有效杀灭细菌。超声下Cu2O-Sr-TiO2组菌落数量较各组最少,且相比于非超声处理时进一步减少,说明Cu2O-Sr-TiO2组在超声下产生的杀菌效用不仅来源于Cu2O本身的抗菌性能,还有来自于超声响应产生的1O2和·OH,二者产生叠加效应进一步增强了抗菌性能。各组材料针对E.coli与S.aureus的抗菌定量计数图表明:在超声作用下,Cu2O-Sr-TiO2对E.coli和S.aureus的抗菌率高达98.26±1.23%和94.58±3.17%(图3中B、C)。上述结果表明了Cu2O-Sr-TiO2组在超声下有效杀伤细菌,具有快速的广谱杀菌的能力。
(2)载药支架抗菌SEM
通过SEM观察非超声和超声处理后细菌在载药支架体系上的形态和膜完整性。在非超声条件下,PEKK@PDA组和TiO2-PEKK组表面的E.coli和S.aureus形态完整,表面光滑,未见细菌膜的损伤和皱缩。而Cu2O-Sr-PEKK和Cu2O-Sr-TiO2-PEKK两组支架表面可见E.coli和S.aureus有细菌形态的皱缩以及细菌膜的破裂(图4)。TiO2-PEKK组在非超声条件下细菌形态无明显破坏,归因于其良好的生物相容性,其支架载药的浓度并不会造成细菌形态破坏。在超声作用下,PEKK@PDA组两种细菌形态均无明显破坏,说明单纯的支架无抗菌活性,且使用的超声强度对细菌无破坏作用。Cu2O-Sr-PEKK组支架上的两种细菌形态较非超声时无进一步破坏,说明其抗菌性能主要来自于材料本身对细菌的杀伤作用。TiO2-PEKK组在超声作用下,细胞形态明显塌陷皱缩,进一步验证了TiO2超声相应下产生的ROS对细菌有杀伤作用。Cu2O-Sr-TiO2-PEKK组在超声作用下可见E.coli和S.aureus细菌形态明显变化,细菌皱缩,细菌膜破裂并伴随着细菌内物质的泄露(图4)。上述结证明了在超声作用下,Cu2O-Sr-TiO2-PEKK组能够有效地破坏细菌形态,杀灭细菌,与涂琼脂板结果保持一致。
(3)抗细菌生物膜
通过使用Live/Dead染色法染色S.aureus,直观的评价各组材料对细菌的杀伤能力。如图5所示,在非超声条件下,空白组和TiO2组处理的S.aureus显示为强烈的绿色荧光,未见有明显的红色荧光。而Cu2O-Sr和Cu2O-Sr-TiO2两组可见微弱的红色荧光,表面在非超声条件下Cu2O-Sr和Cu2O-Sr-TiO2对少部分细菌产生了杀伤作用。在超声作用下,Cu2O-Sr组支架的红色荧光较非超声时无明显增强,表明其抗菌效应主要来源于材料本身的作用。TiO2组在超声作用下,红色荧光明显增强,再次验证其在超声响应下对细菌有杀伤作用。而Cu2O-Sr-TiO2组在超声作用下可见大片的红色荧光。证明了在超声作用下,Cu2O-Sr-TiO2组能够有效地破坏细菌菌膜。
(4)DCFH
为了进一步探究Cu2O-Sr-TiO2在超声下杀伤细菌的原理,细菌体内ROS使用DCFH-DA检测。在非超声条件下,各组材料无明显的绿色荧光,说明在非超声条件下各组不能产生ROS。在超声条件下,绿色荧光在TiO2组和Cu2O-Sr-TiO2组中明显,且Cu2O-Sr-TiO2组中荧光最强,如图6所示。说明了Cu2O-Sr-TiO2组的抗菌效果主要来源于产生的ROS进入细菌膜破坏细菌的蛋白质和DNA。
实施例5:细胞实验
(1)细胞毒性
为了进一步探究PEKK@PDA、Cu2O-Sr-PEKK、TiO2-PEKK、Cu2O-Sr-TiO2-PEKK四组支架对细胞的毒性,运用CCK-8检测各支架与3T3细胞共培养1、3、5天的细胞活力。结果如图7所示,本实验所用的载药浓度对细胞无明显毒性,各材料组测定的1、3、5天的OD值大于空白对照组,证明各载药支架可促进细胞增加,可用于后续的动物实验。
(1)支架细胞共培养鬼笔环肽/DAPI染色
MC3T3-E1细胞分别与PEKK@PDA、Cu2O-Sr-PEKK、TiO2-PEKK、Cu2O-Sr-TiO2-PEKK四组支架共培养三天后,观察细胞的早期黏附情况。鬼笔环肽/DAPI染色,其结果显示:各组支架上的细胞均具有良好的细胞黏附,并伴随着细胞伪足的延展。单纯PEKK支架本身具有良好的细胞相容性,表面黏附的PDA表面带正电荷,可通过静电作用吸附细胞膜,使细胞黏附在支架上。铜离子本身具有促进细胞增殖分化的作用,因此MC3T3-E1在Cu2O-Sr-PEKK、Cu2O-Sr-TiO2-PEKK表现出良好的细胞黏附性,且较对照组更好。TiO2-PEKK组因TiO2良好的组织相容性,MC3T3-E1细胞在其上也铺展良好(图8)。
(2)支架细胞共培养活死染色
MC3T3-E1细胞分别与PEKK@PDA、Cu2O-Sr-PEKK、TiO2-PEKK、Cu2O-Sr-TiO2-PEKK四组支架共培养三天后,对细胞进行活死染色,绿色荧光表示活细胞,红色荧光表示死细胞。结果显示:各组支架上可见大量的绿色荧光信号,支架上细胞生长良好,细胞均匀分布在3D打印支架的各个横梁上,各组没有或者仅有微弱的红色荧光信号。相较于单纯的PEKK@PDA支架,Cu2O-Sr-PEKK、TiO2-PEKK、Cu2O-Sr-TiO2-PEKK三组支架上的绿色荧光分布更广,细胞增殖更多,与细胞在支架上的形态结果相一致(图9)。
(3)体外促成骨效应评价
分别将MC3T3-E1细胞与空白组、Cu2O-Sr、TiO2、Cu2O-Sr-TiO2共培养,通过检测共培养体系ALP的表达强度来检测纳米材料诱导成骨分化的潜能。染色结果显示:在加成骨诱导的第7天,各孔板表面有明显的ALP沉积,且Cu2O-Sr、TiO2、Cu2O-Sr-TiO2三组的染色强度高于空白组,有统计学差异。随着时间延长,在第14天,四组的ALP染色较第七天更为明显,大体图可以观察到各组表面有明显的蓝褐色沉积。Cu2O-Sr、TiO2、Cu2O-Sr-TiO2三组的染色强度高于空白组,且Cu2O-Sr在第14天的染色结果强于TiO2,有统计学差异;Cu2O-Sr-TiO2组的染色最深,半定量结果表明Cu2O-Sr-TiO2组ALP的强度明显高于其他三组,有统计学差异(图10)。Cu2O-Sr、TiO2、Cu2O-Sr-TiO2的ALP染色随着时间延长而增加,说明了这三种纳米材料对成骨分化具有诱导作用,在第14天,Cu2O-Sr组的染色强度较TiO2更明显,归因于铜离子和锶离子的持续释放,铜、锶离子本身具有诱导成骨分化的作用,因此材料释放的铜离子增强了ALP的沉积。
将MC3T3-E1细胞分别与空白组、Cu2O-Sr、TiO2、Cu2O-Sr-TiO2共培养,通过ARS染色细胞内的矿化钙结节,检测各纳米材料诱导成骨分化的潜能。在加成骨诱导的第14天,各孔板表面有明显的红色钙盐沉积,且Cu2O-Sr、TiO2、Cu2O-Sr-TiO2三组的染色强度高于空白组,差异有统计学意义(P<0.05)。随着成骨诱导的时间延长,在第21天,四组的ARS染色较第14天更为明显(图11)。ARS结果与ALP结果类似,表明Cu2O-Sr-TiO2纳米材料具有良好的成骨诱导分化潜能,能够促进PEKK支架与骨组织之间的骨整合。
实施例6:体内实验
(1)术后动物观察及取材
术后部分动物因感染模型出现饮食不佳、体重增加缓慢、局部皮肤溃烂等不同程度的表现,未出现死亡病例。在术后一周,处死大鼠,取出股骨及周围软组织,进行抗菌性能的评估;在术后4周和8周分别取材,取出股骨进行成骨相关分析。
(2)抗菌评估
术后一周,从股骨髁外侧切开皮肤,沿肌间隙暴露出股骨髁外侧支架植入处,拍大体图初步观察局部的炎症反应。如图12中A所示,对照组局部可见大量黄色的脓性物质,在大鼠关节腔内还能发现大量的脓液;Cu2O-Sr组和TiO2组局部炎症反应较空白组轻,但是仍可以见到黄色的炎性物质;Cu2O-Sr-TiO2局部感染症状最清,局部未见脓性物质的堆积。将各股骨分别取出,观察股骨周围的骨破坏情况,发现空白组局部脓肿明显,并伴随着造模孔的扩大;Cu2O-Sr组和TiO2组布局也可见由于感染控制不佳造成的骨破坏;Cu2O-Sr-TiO2组则无明显骨破坏。抗菌涂板结果显示,空白组菌落数最多,Cu2O-Sr组和TiO2菌落数较空白组减少,Cu2O-Sr-TiO2组则仅见数个菌落生长。定量计数结果显示,Cu2O-Sr-TiO2-PEKK支架植入体内后,其抗菌效率为94.93±2.01%。细菌浑浊度实验与抗菌涂板结果相一致。
将取下的股骨切片进行HE和Masson染色,进一步评估植入体周围的感染情况。HE染色用于观察植入支架临近骨组织的炎性细胞浸润情况,结果表明,术后一周对照组临近骨区域有大量的炎症细胞浸润,Cu2O-Sr组和TiO2组炎症细胞浸润情况较对照组少,而Cu2O-Sr-TiO2局部炎症最轻(图13中A所示)。Giemsa染色能将临近骨组织中的细菌染色成红色,便于直接观察局部的细菌浸润情况。Giemsa染色结果提示:如红色箭头所示,对照组临近骨区域红色颗粒最多,Cu2O-Sr组和TiO2组次之,而Cu2O-Sr-TiO2组最少(图13中B所示),与HE染色结果相一致。体内抗菌实验证明了Cu2O-Sr-TiO2-PEKK植入感染模型后,在超声作用下能后有效的杀灭支架周围的细菌,能够在感染早期快速控制感染,为后期的骨修复提供良好的成骨环境。
(3)影像学评价
进一步评估各载药支架体系的促成骨能力,对四周和八周取材的股骨进行micro-CT扫描,三维重建股骨髁,结果表明:由于感染控制不佳,对照组支架植入区域呈现出孔洞向周围扩大的表现,而Cu2O-Sr组和TiO2组孔洞扩大不明显,但是能观察到骨组织被破坏后重新修复的痕迹,Cu2O-Sr-TiO2组则可见股骨髁外侧新生骨覆盖骨缺损区域(图14中A所示)。进一步通过Mimics三维重建支架内部的成骨,结果表明:术后第四周,对照组仅在支架边缘有少量新生骨组织形成,支架内部未见骨组织形成,Cu2O-Sr组和TiO2组新生骨量较对照组增加,少量新生骨长入支架内部;Cu2O-Sr-TiO2组成骨最多,且可见连续的新生骨长入支架内部,形成呈三维立体的新生骨组织结构。术后8周时各组的新生骨组织均明显高于第4周(图14中B所示)。对各组新生骨进行定量分析,Cu2O-Sr-TiO2组拥有比其他各组更高的BV/TV(P<0.05),以及更低的BS/BV(P<0.05),且随着植入支架后时间的增加,BV/TV呈上升趋势,而BS/BV呈下降趋势。值得注意的是,4周时,Cu2O-Sr组的BV/TV较TiO2组高,但是差异无统计学意义,但是到了术后第八周,二者的BV/TV有了统计学差异,这是由于Cu2O-Sr中Sr离子的持续释放抑制了局部破骨细胞的活性,促进了新生骨的形成。上述结果表明超声处理后的Cu2O-Sr-TiO2可以修复感染性骨缺损,另外铜离子与锶离子的释放有利于骨细胞长入直接内部,从而促进新骨形成,达到优异的骨整合效果。
为观察载药支架体系对临近骨组织的影响,对支架临近骨区域进行三维重建分析,结果提示:空白组临近骨区域骨破坏严重,BV/TV和BS/BV较其余各实验组明显降低(P<0.05),且因为感染控制不佳,第八周时骨量进一步减少。Cu2O-Sr因为锶离子的引入,其临近骨的吸收较TiO2组更轻(P<0.05)。Cu2O-Sr-TiO2组临近骨破坏显著低于其他各组,表现出最高的BV/T以及最低的BS/BV(图15)。
(4)HE染色
通过组织切片染色法评估各组4周和8周支架內部及邻近区域的成骨和感染情况,结果提示:4周及8周的空白组缺损边缘区仅有少量的新骨形成,另外中心区有大量纤维增长,无骨质生成。空白组支架內部和支架-骨界面无明显新生骨,局部炎症反应明显,充斥着大量的纤维样组织。Cu2O-Sr组和TiO2组能够在支架內部和临近骨区域能观察到新生骨组织,且炎症细胞和纤维样组织较对照组明显减少。Cu2O-Sr-TiO2组新生骨数量最多,能够观察到支架内部及支架-骨界面存在大量连续的新生骨组织,且其炎细胞和纤维组织较其他三组少。在8周时,各组支架的新生骨组织较4周时均有所增加,染色结果与4周时相一致,Cu2O-Sr-TiO2组新生骨组织最多,炎症细胞和纤维组织最少(图16)。
(5)Masson染色
Masson染色可选择性的将胶原纤维和肌纤维染成绿色,通过观察切片的染色反应胶原纤维的数量。染色结果显示:4周和8周的空白组支架內部和支架-骨界面无明显胶原纤维生成,Cu2O-Sr组和TiO2组能够在支架內部和临近骨区域能观察绿染的胶原纤维,而Cu2O-Sr-TiO2组绿染区域最多,能够观察到支架內部及支架-骨界面存在大量连续的胶原纤维。在8周时,各组支架的胶原纤维较4周时均有所增加(图17)。
(6)甲苯胺蓝染色
甲苯胺蓝可以选择性的将软骨及骨组织染成紫蓝色。染色结果显示:4周和8周的空白组支架內部和支架-骨界面无明显骨组织形成,Cu2O-Sr组和TiO2组能够在支架內部和临近骨区域能观察蓝染的骨组织,而Cu2O-Sr-TiO2组蓝染区域最多,能够观察到支架內部及支架-骨界面存在大量连续的骨组织。在8周时,各组支架的骨组织较4周时均有所增加。(图18)。
(7)免疫组化
免疫组化染色观察各组支架-骨界面的肿瘤坏死因子α(TNF-α)和白细胞介素10(IL-10)的表达情况,TNF-α是反应机体炎症反应的代表性分子之一,其高低可反应组织的炎症水平;IL-10一种抗炎细胞因子,其高低可反应组织的抗炎水平。实验结果如下:空白组中TNF-α高表达,远高于其余各组(P<0.05),而Cu2O-Sr-TiO2组的TNF-α表达最低(P<0.05)。Cu2O-Sr组和TiO2组的表达低于对照组,且Cu2O-Sr组的表达低于TiO2组(P<0.05)(图19)。IL-10染色结果表明:空白组IL-10的表达水平远低于其余各组(P<0.05),且Cu2O-Sr-TiO2组的表达最高。这说明在超声的介导下,Cu2O-Sr-TiO2组具有良好的杀菌能力,切实有效的控制感染,降低局部的炎性反应。
(8)顺序性荧光
顺序性荧光染料能够与骨组织中的钙离子结合,向大鼠体内注入荧光染料后观察各荧光染料的面积以判断不同时间新生骨形成情况。共聚焦观察结果表明:Cu2O-Sr-TiO2绿色荧光最强,染色面积最大,表明早期成骨多,随时间的延长,骨组织形成速度逐渐放缓;对照组各组荧光面积低于其他各组(P<0.05),Cu2O-Sr-TiO2组的染色面积较其余各组高,其差异具有统计学意义(P<0.05)(图20)。
(9)安全性评价
8周时心、肝、脾、肺、肾组织HE染色结果显示:各组组织形态良好,均未见明显的炎症细胞浸润,表明植入的载药支架体系生物安全性良好,不会引起全身器官组织的炎症反应或组织坏死(图21)。
取各组外周血进行血常规和生化检测,结果显示:空白组的外周血白细胞(WBC)总数大于其他各组(P<0.05),Cu2O-Sr-TiO2组最少,Cu2O-Sr组少于TiO2组,差异具有统计学意义(P<0.05)。此外,空白组的粒细胞(Gran)和单核细胞(Mon)高于Cu2O-Sr-TiO2组(P<0.05),与Cu2O-Sr组和TiO2组无统计学差异。而各组血小板、红细胞压积、血红蛋白、红细胞计数等之间无明显差异(图22)。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (6)

1.用于治疗感染性骨缺损3D打印PEKK负载异制结体系,其特征是:所述PEKK负载异制结体系是将纳米材料Cu2O-Sr-TiO2负载在聚多巴胺改性的3D打印PEKK支架表面制成的,所述PEKK负载异制结体系能够释放Cu元素,且在超声响应下释放量增加。
2.根据权利要求1所述的3D打印PEKK负载异制结体系的制备方法,其特征是:包括以下步骤:
S1.纳米材料Cu2O-Sr的制备;
S2.纳米材料Cu2O-Sr-TiO2的制备;
S3.PEKK负载异制结体系的制备。
3.根据权利要求2所述的3D打印PEKK负载异制结体系的制备方法,其特征是:所述纳米材料Cu2O-Sr的制备具体操作如下:称量五水硫酸铜、柠檬酸二水合物和氯化锶溶解在去离子水中,充分溶解并保持搅拌;加入NaOH水溶液,充分搅拌后再加入抗坏血酸溶液,溶液保持搅拌;然后在室温下静置,离心,用体积比为1:1的去离子水和乙醇溶液洗涤,冷冻干燥后即可得Cu2O-Sr。
4.根据权利要求2所述的3D打印PEKK负载异制结体系的制备方法,其特征是:所述纳米材料Cu2O-Sr-TiO2的制备具体操作如下:称取S1中制备得到的Cu2O-Sr,并将其溶于去离子水中,得到Cu2O-Sr水溶液,待搅拌均匀后,另称取TiO2溶于乙醇溶液,超声振荡均匀后加入上述Cu2O-Sr水溶液中,搅拌,将混合溶液加入至反应釜中,转移至真空干燥箱中反应;待反应釜自然冷却后,取出溶液,离心,用体积比为1:1的去离子水和乙醇溶液洗涤,冷冻干燥后即可得Cu2O-Sr-TiO2
5.根据权利要求2所述的3D打印PEKK负载异制结体系的制备方法,其特征是:所述PEKK负载异制结体系的制备具体操作如下:将3D打印PEKK支架按丙酮-超纯水-乙醇-超纯水的顺序分别超声处理,将清洗好的3D打印PEKK支架浸泡在含有Tris-HCl的液体中,然后加入DA,在避光条件下搅拌;将PEKK@PDA取出,超纯水超声下清洗支架,去除未附着的杂质;将提前溶解充分的Cu2O-Sr-TiO2加入PEKK@PDA中,避光条件下摇床处理,取出负载纳米材料的支架,超纯水清洗支架,去除未附着的药物,烘干后,获得Cu2O-Sr-TiO2-PEKK支架,即PEKK负载异制结体系。
6.根据权利要求1所述的3D打印PEKK负载异制结体系的应用,其特征是:所述PEKK负载异制结体系可用于制备治疗骨缺损修复的材料。
CN202311239574.XA 2023-09-25 2023-09-25 用于治疗感染性骨缺损3d打印pekk负载异制结体系 Active CN117339008B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311239574.XA CN117339008B (zh) 2023-09-25 2023-09-25 用于治疗感染性骨缺损3d打印pekk负载异制结体系

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311239574.XA CN117339008B (zh) 2023-09-25 2023-09-25 用于治疗感染性骨缺损3d打印pekk负载异制结体系

Publications (2)

Publication Number Publication Date
CN117339008A CN117339008A (zh) 2024-01-05
CN117339008B true CN117339008B (zh) 2024-09-20

Family

ID=89358533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311239574.XA Active CN117339008B (zh) 2023-09-25 2023-09-25 用于治疗感染性骨缺损3d打印pekk负载异制结体系

Country Status (1)

Country Link
CN (1) CN117339008B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118059306A (zh) * 2024-03-07 2024-05-24 四川大学 一种超声激活的压电异质结抗菌涂层制备方法及其应用
CN118718084B (zh) * 2024-06-05 2025-01-28 绵阳市第三人民医院 一种压电纳米材料及其应用
CN119113217A (zh) * 2024-09-11 2024-12-13 四川大学 基于厌氧激活的超声响应型的抗菌成骨涂层、植入体及其制备方法
CN119633175A (zh) * 2024-11-20 2025-03-18 四川大学华西医院 一种PP-BST3-x植入体及其制备方法和应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2475110C (en) * 2002-02-05 2010-03-23 Cambridge Scientific, Inc. Bioresorbable osteoconductive compositions for bone regeneration
JP2007504920A (ja) * 2003-05-16 2007-03-08 ブルー メンブレーンス ゲーエムベーハー 生体適合性コーティングされた医療用インプラント
KR101206150B1 (ko) * 2010-10-11 2012-11-28 (주) 동명기계 탄소나노튜브를 이용한 고효율 전열관, 그 제조방법 및 그 이용방법
JP2015151317A (ja) * 2014-02-17 2015-08-24 富士フイルム株式会社 チタン酸ストロンチウム微粒子の製造方法、形状制御されたチタン酸ストロンチウム微粒子、及びそれを用いた水素・酸素生成光触媒システム
WO2016080937A1 (en) * 2014-11-17 2016-05-26 Dopa Ilac San. Tic. Ltd Sti. Antibacterial osseoconductive thin film for implant
CN112575576B (zh) * 2021-01-15 2023-11-24 新疆师范大学 一种具有光热/铜协同抗菌功能的聚多巴胺/聚乳酸/纳米铜复合纤维膜的制备方法
GB202103654D0 (en) * 2021-03-16 2021-04-28 Univ Leeds Innovations Ltd Bone repair kit
CN113430600B (zh) * 2021-05-27 2024-02-02 新疆师范大学 一种具有骨诱导和光热/铜协同抗菌功能的聚吡咯@纳米铜/帕米膦酸二钠复合涂层的制备方法
CN113769162B (zh) * 2021-09-14 2022-09-13 武汉大学 一种用于治疗感染性骨缺损的负载聚乙烯吡咯烷酮碘的仿生矿化微球的制备方法
CN115216774B (zh) * 2022-05-27 2023-10-20 北京化工大学 一种生物活性离子掺杂羟基磷灰石钛合金表面涂层及其制备方法
CN116288287A (zh) * 2023-01-06 2023-06-23 山东大学 一种钛植入体表面高效压电涂层的制备方法
CN115721777A (zh) * 2023-01-09 2023-03-03 泉州师范学院 一种聚多巴胺黏附的CuS/CaCO3纳米复合材料作抗菌涂层的钛合金螺钉
CN116036363A (zh) * 2023-01-10 2023-05-02 西北工业大学 钛材表面兼备长效抗菌促成骨双功能的缓释药物体系及其制备方法和应用
CN116510081B (zh) * 2023-04-28 2025-04-25 山东大学 一种能促进成骨、抗菌的复合羟基磷灰石涂层
CN116726170A (zh) * 2023-06-19 2023-09-12 中山大学·深圳 一种复合声敏剂与其细菌靶向的递送系统,及相关制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Gas-Phase Produced Cu@CuO Nanoparticles on Microarc Oxidized TiO2: Effect of Size on Antibacterial Efficiency and Osteoblast Viability;Sitki Aktas et al;American Chemical Socie;20231129;22253−22264 *

Also Published As

Publication number Publication date
CN117339008A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
CN117339008B (zh) 用于治疗感染性骨缺损3d打印pekk负载异制结体系
Nie et al. 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models
Tao et al. Osteoimmunomodulation mediating improved osteointegration by OGP-loaded cobalt-metal organic framework on titanium implants with antibacterial property
Tao et al. Surface modification of titanium implants by ZIF-8@ Levo/LBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration
Ding et al. A dual-functional implant with an enzyme-responsive effect for bacterial infection therapy and tissue regeneration
Klokkevold et al. Osteogenesis enhanced by chitosan (poly‐N‐acetyl glucosaminoglycan) in vitro
Wu et al. Bioinspired soft-hard combined system with mild photothermal therapeutic activity promotes diabetic bone defect healing via synergetic effects of immune activation and angiogenesis
Liu et al. Inside-outside Ag nanoparticles-loaded polylactic acid electrospun fiber for long-term antibacterial and bone regeneration
Tian et al. Chitosan-based biomaterial scaffolds for the repair of infected bone defects
CN101623518B (zh) 一种抗感染生物衍生疝和体壁修复材料及制备和应用
Shen et al. Bone regeneration and antibacterial properties of calcium-phosphorus coatings induced by gentamicin-loaded polydopamine on magnesium alloys
CN109758606A (zh) 一种rgd多肽修饰壳聚糖/羟基磷灰石复合支架及其制备方法
Ullah et al. An osteogenic, antibacterial, and anti-inflammatory nanocomposite hydrogel platform to accelerate bone reconstruction
CN110935066B (zh) 一种促进骨髓炎愈合的复合水凝胶及其制备方法
CN107213529A (zh) 一种用于提高成骨细胞粘附和成骨性能的可降解医用高分子三维材料的制备方法
Wang et al. Mussel-inspired deposition of copper on titanium for bacterial inhibition and enhanced osseointegration in a periprosthetic infection model
Xiao et al. Gadolinium-doped whitlockite/chitosan composite scaffolds with osteogenic activity for bone defect treatment: in vitro and in vivo evaluations
Tran et al. α-Calcium sulfate hemihydrate bioceramic prepared via salt solution method to enhance bone regenerative efficiency
Mehnath et al. Antibiofilm and enhanced antibiotic delivery by halloysite nanotubes architected dental implant against periodontitis
Yao et al. Multifunctional magnetocaloric bone cement with a time-varying alkaline microenvironment for sequential bacterial inhibition, angiogenesis and osteogenesis
CN107158465B (zh) 一种骨支架复合材料的制备方法
CN101856515B (zh) 以壳聚糖和贝壳粉末为原料制备人工骨的方法
Qiu et al. ZnO nanoparticle modified chitosan/borosilicate bioglass composite scaffold for inhibiting bacterial infection and promoting bone regeneration
Wang et al. 3D-printed porous PEI/TCP composite scaffolds loaded with graphdiyne oxide on the surface for bone defect repair and near-infrared light-responsive antibacterial
Sun et al. Highly active biological dermal acellular tissue scaffold composite with human bone powder for bone regeneration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant