[go: up one dir, main page]

CN117327715B - Bacopa monnieri P450 enzyme gene BmCYP068 and application thereof - Google Patents

Bacopa monnieri P450 enzyme gene BmCYP068 and application thereof Download PDF

Info

Publication number
CN117327715B
CN117327715B CN202311077715.2A CN202311077715A CN117327715B CN 117327715 B CN117327715 B CN 117327715B CN 202311077715 A CN202311077715 A CN 202311077715A CN 117327715 B CN117327715 B CN 117327715B
Authority
CN
China
Prior art keywords
bmcyp068
dammarenediol
enzyme gene
bacopa monnieri
bacopa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311077715.2A
Other languages
Chinese (zh)
Other versions
CN117327715A (en
Inventor
张广辉
张双艳
刘祥宇
杨生超
赵艳
和四梅
郝冰
卢迎春
向贵生
冯垒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Agricultural University
Original Assignee
Yunnan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Agricultural University filed Critical Yunnan Agricultural University
Priority to CN202311077715.2A priority Critical patent/CN117327715B/en
Publication of CN117327715A publication Critical patent/CN117327715A/en
Application granted granted Critical
Publication of CN117327715B publication Critical patent/CN117327715B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • C12N9/0081Cholesterol monooxygenase (cytochrome P 450scc)(1.14.15.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/06Hydroxylating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/15Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced iron-sulfur protein as one donor, and incorporation of one atom of oxygen (1.14.15)
    • C12Y114/15006Cholesterol monooxygenase (side-chain-cleaving) (1.14.15.6), i.e. cytochrome P450scc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/102Plasmid DNA for yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a Bacopa monnieri P450 enzyme gene BmCYP and application thereof, belonging to the technical field of biology. The nucleotide sequence of the Bacopa monnieri P450 enzyme gene BmCYP and 068 is shown as SEQ ID NO.1, and the full length of the sequence is 1554bp; the amino acid sequence of the encoded protein is shown as SEQ ID NO.2, and 517 amino acid residues are encoded. The Bacopa monnieri P450 enzyme gene BmCYP and 068 can be used as biosynthesis regulatory genes of 23-OH-Dammarenediol II and 25-OH-Dammarenediol II, and can be applied to preparation of the genes, so that the application prospect is obvious and the popularization and application are easy.

Description

一种假马齿苋P450酶基因BmCYP068及其应用A Bacopa monnieri P450 enzyme gene BmCYP068 and its application

技术领域Technical Field

本发明属于生物技术领域,具体涉及一种假马齿苋P450酶基因BmCYP068及其应用。The invention belongs to the field of biotechnology, and specifically relates to a Bacopa monnieri P450 enzyme gene BmCYP068 and an application thereof.

背景技术Background technique

假马齿苋Bacopa monnieri(L.)Wettst.是玄参科(Scrophulariaceae)假马齿苋属Bacopa Aubl.植物,主要分布在热带和亚热带地区,多见于水边、湿地及沙滩等地方,在我国主要分布在台湾、福建、广东、云南等省份。假马齿苋是印度传统阿育吠陀医学的一种备受推崇的草本植物,被公认为补脑的高价值药用植物,能够改善记忆和智力。全球不同的研究小组探索假马齿苋用于治疗痴呆症、健忘症、记忆功能障碍、帕金森病、阿尔茨海默病、癫痫发作和精神分裂症。除神经保护外,假马齿苋还具有镇静、抗菌、抗炎、抗惊厥、抗衰老、支气管血管扩张、抗癌、抗抑郁药、抗呕吐和抗溃疡活性。据报道,假马齿苋这些潜在的药理活性与其次生代谢物达玛烷型三萜皂苷密切相关。Bacopa monnieri (L.) Wettst. is a plant of the genus Bacopa Aubl. in the family Scrophulariaceae. It is mainly distributed in tropical and subtropical regions, and is often found in places such as watersides, wetlands and beaches. In my country, it is mainly distributed in Taiwan, Fujian, Guangdong, Yunnan and other provinces. Bacopa monnieri is a highly respected herb in traditional Indian Ayurvedic medicine. It is recognized as a high-value medicinal plant for brain tonic, which can improve memory and intelligence. Different research groups around the world are exploring the use of Bacopa monnieri for the treatment of dementia, amnesia, memory dysfunction, Parkinson's disease, Alzheimer's disease, epileptic seizures and schizophrenia. In addition to neuroprotection, Bacopa monnieri also has sedative, antibacterial, anti-inflammatory, anticonvulsant, anti-aging, bronchial vasodilator, anticancer, antidepressant, antiemetic and anti-ulcer activities. It is reported that these potential pharmacological activities of Bacopa monnieri are closely related to its secondary metabolites, dammarane-type triterpenoid saponins.

假马齿苋中的三萜类皂苷含量丰富种类繁多,按其结构可以分为达玛烷型、葫芦烷型、羽扇豆醇型、乌苏烷型等。其中,达玛烷型三萜皂苷是最常见的一类成分,这些化合物与植物的潜在药理作用息息相关。该类化合物多以糖苷形式存在,其母核结构主要以酸枣仁皂苷元和伪酸枣仁皂苷元为主,这些化合物的区别在于连接的糖基种类和方式多种多样。The triterpenoid saponins in Bacopa monnieri are rich in content and of various types. According to their structure, they can be divided into dammarane type, cucurbitane type, lupeol type, ursane type, etc. Among them, dammarane type triterpenoid saponins are the most common type of components, and these compounds are closely related to the potential pharmacological effects of plants. This type of compound mostly exists in the form of glycosides, and its parent core structure is mainly jujube sapogenin and pseudojujube sapogenin. The difference between these compounds lies in the variety of types and methods of connected sugar groups.

假马齿苋中的三萜皂苷含量低,结构复杂,从植物材料中提取需要大量的原材料。然而,目前假马齿苋现存资源多为野生状态,数量稀少且分布零散,而且分离的成本高,化学合成难度大,因此限制了假马齿苋中三萜皂苷的应用。因此,利用合成生物学的方法生产单体化合物是未来实现假马齿苋中三萜皂苷大规模生产的最有效和可行的方法之一。然而,目前对假马齿苋的研究主要集中在化合物的提取分离和药理活性鉴定,其三萜皂苷合成的分子机理尚不清楚。要想通过生物合成的方法获得假马齿苋中的达玛烷型三萜皂苷,首先要解析这些化合物的生物合成途径。The triterpenoid saponins in Bacopa monnieri are low in content and complex in structure, and a large amount of raw materials are required to extract them from plant materials. However, most of the existing resources of Bacopa monnieri are in the wild state, with a small number and scattered distribution, and the cost of separation is high and the chemical synthesis is difficult, which limits the application of triterpenoid saponins in Bacopa monnieri. Therefore, using synthetic biology methods to produce monomer compounds is one of the most effective and feasible methods to achieve large-scale production of triterpenoid saponins in Bacopa monnieri in the future. However, the current research on Bacopa monnieri mainly focuses on the extraction and separation of compounds and the identification of pharmacological activities, and the molecular mechanism of the synthesis of triterpenoid saponins is still unclear. In order to obtain dammarane-type triterpenoid saponins in Bacopa monnieri by biosynthesis, it is first necessary to analyze the biosynthetic pathway of these compounds.

酸枣仁皂苷元和伪酸枣仁皂苷元作为假马齿苋三萜皂苷的关键中间体,鉴定其生物合成的酶成为重中之重。但迄今为止,负责假马齿苋中酸枣仁皂苷元和伪酸枣仁皂苷元生成的相关酶功能尚未得到验证,影响了假马齿苋中达玛烷型三萜皂苷生物合成工作的推进。Jujubosapogenin and pseudojujubosapogenin are key intermediates of triterpenoid saponins in Bacopa monnieri, and identification of their biosynthetic enzymes has become a top priority. However, to date, the functions of the enzymes responsible for the production of jujubosapogenin and pseudojujubosapogenin in Bacopa monnieri have not been verified, which has affected the advancement of the biosynthesis of dammarane-type triterpenoid saponins in Bacopa monnieri.

发明内容Summary of the invention

本发明的目的是为了解决现有技术的不足,提供一种假马齿苋P450酶基因BmCYP068,可作为假马齿苋三萜皂苷的生物合成中形成23-OH-Dammarenediol II和25-OH-Dammarenediol II调控基因以及应用于制备23-OH-Dammarenediol II和25-OH-Dammarenediol II。The purpose of the present invention is to solve the deficiencies of the prior art and to provide a Bacopa monnieri P450 enzyme gene BmCYP068, which can be used as a regulatory gene for forming 23-OH-Dammarenediol II and 25-OH-Dammarenediol II in the biosynthesis of Bacopa monnieri triterpenoid saponins and for preparing 23-OH-Dammarenediol II and 25-OH-Dammarenediol II.

为实现上述目的,本发明采用的技术方案如下:To achieve the above purpose, the technical solution adopted by the present invention is as follows:

本发明第一方面提供一种假马齿苋P450酶基因BmCYP068,假马齿苋P450酶基因BmCYP068核苷酸序列如SEQ ID NO.1所示,序列全长1554bp。In a first aspect, the present invention provides a Bacopa monnieri P450 enzyme gene BmCYP068. The nucleotide sequence of the Bacopa monnieri P450 enzyme gene BmCYP068 is shown in SEQ ID NO.1, and the full length of the sequence is 1554 bp.

本发明第二方面提供上述假马齿苋P450酶基因BmCYP068编码蛋白,该编码蛋白的氨基酸序列如SEQ ID NO.2所示,编码了517个氨基酸残基。The second aspect of the present invention provides a protein encoded by the Bacopa monnieri P450 enzyme gene BmCYP068. The amino acid sequence of the encoded protein is shown in SEQ ID NO. 2, encoding 517 amino acid residues.

本发明第三方面提供含有上述假马齿苋P450酶基因BmCYP068的重组质粒。The third aspect of the present invention provides a recombinant plasmid containing the Bacopa monnieri P450 enzyme gene BmCYP068.

进一步,优选的是,将假马齿苋P450酶基因BmCYP068与Y33载体同源重组,获得Y33-BmCYP068重组质粒。Furthermore, preferably, the Bacopa monnieri P450 enzyme gene BmCYP068 is homologously recombined with the Y33 vector to obtain the Y33-BmCYP068 recombinant plasmid.

本发明第四方面提供一种转基因工程菌,含有上述重组质粒,或,所述基因工程菌的基因组中整合有外源的上述假马齿苋P450酶基因BmCYP068。The fourth aspect of the present invention provides a genetically modified engineered bacterium, comprising the above-mentioned recombinant plasmid, or the genome of the genetically modified bacterium is integrated with the above-mentioned exogenous Bacopa monnieri P450 enzyme gene BmCYP068.

进一步,优选的是,所述转基因工程菌为酿酒酵母Dammarenediol I I底盘细胞。Furthermore, preferably, the genetically modified engineered bacteria are Saccharomyces cerevisiae Dammarenediol II chassis cells.

本发明第五方面提供上述假马齿苋P450酶基因BmCYP068编码得到的假马齿苋P450酶BmCYP068。The fifth aspect of the present invention provides the Bacopa monnieri P450 enzyme BmCYP068 encoded by the Bacopa monnieri P450 enzyme gene BmCYP068.

本发明第六方面提供上述假马齿苋P450酶基因BmCYP068在制备23-OH-Dammarenediol II和25-OH-Dammarenediol II中的应用。The sixth aspect of the present invention provides the use of the Bacopa monnieri P450 enzyme gene BmCYP068 in the preparation of 23-OH-Dammarenediol II and 25-OH-Dammarenediol II.

进一步,优选的是,以底盘细胞产生的Dammarenediol II为底物,在由所述的假马齿苋P450酶基因BmCYP068编码得到的假马齿苋P450酶BmCYP068的催化下经过侧链23位或25位羟基化生成23-OH-Dammarenediol II和25-OH-Dammarenediol II。Furthermore, preferably, Dammarenediol II produced by chassis cells is used as a substrate, and is hydroxylated at position 23 or 25 of the side chain under the catalysis of the Bacopa P450 enzyme BmCYP068 encoded by the Bacopa P450 enzyme gene BmCYP068 to generate 23-OH-Dammarenediol II and 25-OH-Dammarenediol II.

本发明通过重组质粒,在酿酒酵母底盘细胞中表达后获得目标蛋白,经进一步对底物Dammarenediol II进行催化,直接生成23-OH-Dammarenediol II和25-OH-Dammarenediol II。The invention obtains the target protein after expressing the target protein in the chassis cells of Saccharomyces cerevisiae through the recombinant plasmid, and directly generates 23-OH-Dammarenediol II and 25-OH-Dammarenediol II by further catalyzing the substrate Dammarenediol II.

本发明所述的假马齿苋P450酶基因BmCYP068,是从假马齿苋的植株中,通过转录组测序及生物信息学技术,经大量实验后筛选后得以鉴定出来的;经过密码子优化,通过人工合成的方法获得。所述的假马齿苋P450酶基因BmCYP068的扩增引物如下所示:The Bacopa monnieri P450 enzyme gene BmCYP068 of the present invention is identified from Bacopa monnieri plants through transcriptome sequencing and bioinformatics technology, and screened after a large number of experiments; it is obtained through codon optimization and artificial synthesis. The amplification primers of the Bacopa monnieri P450 enzyme gene BmCYP068 are as follows:

5'F:ATGGCAGTTAAATTGAGCAGC;(SEQ ID NO.3)5'F: ATGGCAGTTAAATTGAGCAGC; (SEQ ID NO.3)

3'R:TTACAATTTGTGCAAAACCATAGAAGC。(SEQ ID NO.4)3'R:TTACAATTTGTGCAAAACCATAGAAGC. (SEQ ID NO.4)

此外,与载体Y33进行同源重组时,BmCYP068基因则需要使用用带同源壁的引物进行扩增及回收,带同源壁的引物如下:In addition, when homologous recombination is performed with vector Y33, the BmCYP068 gene needs to be amplified and recovered using primers with homologous walls. The primers with homologous walls are as follows:

上游同源臂引物:5'F:cagtcgacctcgaatctaga ATGGCAGTTAAATTGAGCAGC;(SEQ IDNO.5)。Upstream homology arm primer: 5'F: cagtcgacctcgaatctaga ATGGCAGTTAAATTGAGCAGC; (SEQ ID NO. 5).

下游同源臂引物:3'R:ctaattacatgatgcggcccTTACAATTTGTGCAAAACCATAGAAGC(SEQ ID NO.6)。Downstream homology arm primer: 3'R: ctaattacatgatgcggcccTTACAATTTGTGCAAAACCATAGAAGC (SEQ ID NO. 6).

从假马齿苋中分离并鉴定的P450酶基因BmCYP068,可作为假马齿苋的分子辅助育种的重要标记基因,同时也可作为酵母底盘细胞构建中生产23-OH-Dammarenediol II和25-OH-Dammarenediol II及假马齿苋皂苷的重要候选基因。The P450 enzyme gene BmCYP068 isolated and identified from Bacopa monnieri can be used as an important marker gene for molecular-assisted breeding of Bacopa monnieri, and can also be used as an important candidate gene for the production of 23-OH-Dammarenediol II, 25-OH-Dammarenediol II and Bacopa saponins in the construction of yeast chassis cells.

本发明与现有技术相比,其有益效果为:Compared with the prior art, the present invention has the following beneficial effects:

本发明提供P450酶基因BmCYP068可作为23-OH-Dammarenediol II和25-OH-Dammarenediol II的生物合成调控基因,并应用于制备The present invention provides a P450 enzyme gene BmCYP068 which can be used as a biosynthesis regulatory gene for 23-OH-Dammarenediol II and 25-OH-Dammarenediol II and is used in the preparation of

23-OH-Dammarenediol II和25-OH-Dammarenediol II。23-OH-Dammarenediol II and 25-OH-Dammarenediol II.

(1)随着生物信息学技术的飞速发展,极大地推进了三萜类化合物生物合成路径关键酶基因的挖掘,本发明中23-OH-Dammarenediol II和25-OH-Dammarenediol II的生物合成调控基因即P450酶基因BmCYP068,是在假马齿苋中首次鉴定并成功验证,开辟了一种生产23-OH-Dammarenediol II和25-OH-Dammarenediol II的生物合成新方法。本发明通过在酿酒酵母内异源表达蛋白并进行催化的方式来获得目标产物,采用体内生物合成,进行定向生产,具有产量高等优点。(1) With the rapid development of bioinformatics technology, the mining of key enzyme genes in the biosynthesis pathway of triterpenoid compounds has been greatly promoted. The biosynthesis regulatory gene of 23-OH-Dammarenediol II and 25-OH-Dammarenediol II in the present invention, namely the P450 enzyme gene BmCYP068, was first identified and successfully verified in Bacopa monnieri, opening up a new biosynthetic method for producing 23-OH-Dammarenediol II and 25-OH-Dammarenediol II. The present invention obtains the target product by heterologously expressing the protein in Saccharomyces cerevisiae and catalyzing it, adopts in vivo biosynthesis, and performs directional production, which has the advantages of high yield, etc.

(2)本发明提供了含有该P450酶基因BmCYP068的重组质粒、基因工程菌,为通过生物工程方法大量合成23-OH-Dammarenediol II和25-OH-Dammarenediol II,进一步为构建产23-OH-Dammarenediol II和25-OH-Dammarenediol II的细胞工厂研究奠定基础。(2) The present invention provides a recombinant plasmid and a genetically engineered bacterium containing the P450 enzyme gene BmCYP068, which lays a foundation for synthesizing 23-OH-Dammarenediol II and 25-OH-Dammarenediol II in large quantities through bioengineering methods, and further for constructing a cell factory that produces 23-OH-Dammarenediol II and 25-OH-Dammarenediol II.

(3)通过异源生物合成23-OH-Dammarenediol II和25-OH-Dammarenediol II,可控性强,可以减少对原料种植的需求,生产产物产量高,便于后期23-OH-Dammarenediol II和25-OH-Dammarenediol II的分离和纯化;还可减少化学合成困难,合成路径复杂等问题。所述P450酶基因BmCYP068作为23-OH-Dammarenediol II和25-OH-Dammarenediol II生物合成的关键基因,还可用于假马齿苋植物的育种研究。(3) The heterologous biosynthesis of 23-OH-Dammarenediol II and 25-OH-Dammarenediol II has strong controllability, can reduce the demand for raw material planting, produce high product yield, and facilitate the subsequent separation and purification of 23-OH-Dammarenediol II and 25-OH-Dammarenediol II; it can also reduce the difficulties of chemical synthesis and the complexity of the synthesis path. The P450 enzyme gene BmCYP068, as a key gene for the biosynthesis of 23-OH-Dammarenediol II and 25-OH-Dammarenediol II, can also be used in the breeding research of Bacopa monnieri plants.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为23-OH-Dammarenediol II和25-OH-Dammarenediol II推导的合成路径示意图;FIG1 is a schematic diagram of the synthetic pathway derived from 23-OH-Dammarenediol II and 25-OH-Dammarenediol II;

图2为重组表达质粒Y33-BmCYP068的构建示意图;FIG2 is a schematic diagram of the construction of the recombinant expression plasmid Y33-BmCYP068;

图3为假马齿苋P450酶基因BmCYP068重组后的电泳检测结果。其中,M为核酸Mar,1-6为阳性单菌落检测结果;Figure 3 is the electrophoresis detection result of the recombinant Bacopa monnieri P450 enzyme gene BmCYP068, where M is the nucleic acid Mar, and 1-6 are the positive single colony detection results;

图4为HPLC检测假马齿苋P450酶基因BmCYP068在酵母体内对底物DammarenediolII的催化作用(DM+PPD标品:Dammarenediol II标准品和PPD标品出峰时间;DM底盘+Y33空载:对照组Y33空质粒作为阳性对照的反应结果;DM底盘+BmCYP068:假马齿苋P450酶基因BmCYP068在酵母体内催化底物Dammarenediol II反应结果,产物1和2出峰时间)。Figure 4 is a HPLC detection of the catalytic effect of Bacopa monnieri P450 enzyme gene BmCYP068 on the substrate Dammarenediol II in yeast (DM+PPD standard: peak time of Dammarenediol II standard and PPD standard; DM chassis+Y33 empty load: the reaction result of the control group Y33 empty plasmid as a positive control; DM chassis+BmCYP068: the reaction result of Bacopa monnieri P450 enzyme gene BmCYP068 catalyzing the substrate Dammarenediol II in yeast, peak time of products 1 and 2).

图5为LC-MS检测结果,反应产物1的特征峰离子图(理论分子量460)。FIG5 is the LC-MS detection result, the characteristic peak ion diagram of the reaction product 1 (theoretical molecular weight 460).

图6为LC-MS检测结果,反应产物2的特征峰离子图(理论分子量460)。FIG6 is the LC-MS detection result, the characteristic peak ion diagram of the reaction product 2 (theoretical molecular weight 460).

图7为NMR检测结果,反应产物1的NMR 13C谱。FIG. 7 is the NMR detection result, NMR 13 C spectrum of the reaction product 1. FIG.

图8为NMR检测结果,反应产物1的NMR 1H谱。FIG8 is the NMR detection result, NMR 1 H spectrum of the reaction product 1. ...

图9为NMR检测结果,反应产物1HMBC谱。FIG. 9 is the NMR detection result, 1HMBC spectrum of the reaction product.

图10为NMR检测结果,反应产物1的HSQC谱。FIG. 10 is the NMR detection result and the HSQC spectrum of the reaction product 1.

图11为NMR检测结果,反应产物1的COSY谱Figure 11 shows the NMR detection results, COSY spectrum of reaction product 1

图12为NMR检测结果,反应产物1的ROESY谱。FIG. 12 is the NMR detection result, ROESY spectrum of reaction product 1.

图13为NMR检测结果,反应产物2NMR 13C谱。FIG. 13 is the NMR detection result, NMR 13 C spectrum of the reaction product 2.

图14为NMR检测结果,反应产物2的NMR 1H谱。FIG. 14 is the NMR detection result, NMR 1 H spectrum of the reaction product 2. FIG.

图15为NMR检测结果,反应产物2的HMBC谱。FIG. 15 is the NMR detection result, HMBC spectrum of the reaction product 2.

图16为NMR检测结果,反应产物2的HSQC谱。FIG. 16 is the NMR detection result, HSQC spectrum of the reaction product 2.

图17为NMR检测结果,反应产物2的COSY谱Figure 17 shows the NMR detection results, COSY spectrum of reaction product 2

图18为NMR检测结果,反应产物2的ROESY谱。FIG. 18 is the NMR detection result, ROESY spectrum of the reaction product 2.

具体实施方式Detailed ways

下面结合实施例对本发明作进一步的详细描述。The present invention is further described in detail below in conjunction with embodiments.

本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用材料或设备未注明生产厂商者,均为可以通过购买获得的常规产品。Those skilled in the art will appreciate that the following examples are only used to illustrate the present invention and should not be considered to limit the scope of the present invention. If no specific techniques or conditions are specified in the examples, the techniques or conditions described in the literature in the art or the product specifications are used. If the manufacturer of the materials or equipment used is not specified, they are all conventional products that can be purchased.

实施例1Example 1

基于假马齿苋转录组Unigene基本功能注释信息,在测序注释结果中进行筛选CYP候选基因,同时,以植物中鉴定的细胞色素P450单加氧酶(Cytochrome p450Monooxygenase,CYPs)为参考序列,通过序列本地BLAST分析,然后对筛选结果进行整理分析,最后筛选出20个CYP基因。其中BmCYP068的功能注释为细胞色素P450单加氧酶,最后根据Unigene所对应ID号,从fasta文件中提取Unigene核苷酸序列进行后续分析。之后进行密码子优化、人工合成、同源重组、酵母底盘细胞体内诱导表达,酵母代谢物提取,以及HPLC、LC-MS和NMR检测等一系列工作后,最终鉴定出BmCYP068基因可以催化Dammarenediol II侧链的23位或25位羟基化生成23-OH-Dammarenediol II和25-OH-Dammarenediol II(图1)。23-OH-Dammarenediol II和25-OH-Dammarenediol II合成的各阶段操作步骤如下(以下实施所用试剂、原料、仪器设备等均为市售):Based on the basic functional annotation information of the Unigene transcriptome of Bacopa monnieri, CYP candidate genes were screened in the sequencing annotation results. At the same time, the cytochrome P450 monooxygenase (CYPs) identified in plants was used as the reference sequence. The local BLAST analysis of the sequence was performed, and then the screening results were sorted and analyzed. Finally, 20 CYP genes were screened. Among them, the functional annotation of BmCYP068 was cytochrome P450 monooxygenase. Finally, according to the ID number corresponding to Unigene, the Unigene nucleotide sequence was extracted from the fasta file for subsequent analysis. After a series of work such as codon optimization, artificial synthesis, homologous recombination, in vivo induced expression in yeast chassis cells, yeast metabolite extraction, and HPLC, LC-MS and NMR detection, the BmCYP068 gene was finally identified as being able to catalyze the hydroxylation of the 23- or 25-position of the side chain of Dammarenediol II to generate 23-OH-Dammarenediol II and 25-OH-Dammarenediol II (Figure 1). The steps of each stage of the synthesis of 23-OH-Dammarenediol II and 25-OH-Dammarenediol II are as follows (the reagents, raw materials, instruments and equipment used in the following implementation are all commercially available):

(1)BmCYP068基因的密码子优化及人工合成(1) Codon optimization and artificial synthesis of BmCYP068 gene

将从转录组中注释到的P450合酶编码基因BmCYP068进行密码子优化后由公司进行人工合成。The P450 synthase encoding gene BmCYP068 annotated from the transcriptome was codon-optimized and then artificially synthesized by the company.

(2)基因重组载体的构建与鉴定(2) Construction and identification of gene recombination vectors

同源重组的示意图详见图2。首先对载体Y33进行线性化,使用XbaI酶进行单酶切获得线性化载体,酶切体系(50μL)环状Y33载体1μg,10×NEBuffer5μL,RestrictionEnzyme 1μL,双蒸水补足至总体系50μL,将反应液放置在37℃温育15min,获得线性化载体Y33。回收使用EasyPure Quick Gel Extraction Kit试剂盒,回收结束后测定其浓度,最后放-20℃冰箱中保存备用。同源重组时则按照同源重组酶试剂盒的操作说明进行组装,然后根据插入片段和载体的浓度,并按照重组说明计算各组分用量;最后在冰上将各组分加入到PCR反应管中,如表1。将假马齿苋P450酶基因BmCYP068与Y33载体同源重组获得重组质粒,命名为Y33-BmCYP068。将重组质粒转化到DH5α大肠杆菌中,挑选阳性克隆进行检测并送公司测序,组装后的电泳检测结果见图3,表明组装成功。按以下过程重组操作:The schematic diagram of homologous recombination is shown in Figure 2. First, the vector Y33 was linearized, and the linearized vector was obtained by single restriction digestion with XbaI enzyme. The restriction digestion system (50μL) was 1μg of circular Y33 vector, 5μL of 10×NEBuffer, 1μL of RestrictionEnzyme, and double distilled water was added to the total system of 50μL. The reaction solution was placed at 37℃ for 15min to obtain the linearized vector Y33. The EasyPure Quick Gel Extraction Kit was used for recovery, and its concentration was measured after recovery. Finally, it was stored in a -20℃ refrigerator for standby use. During homologous recombination, the assembly was carried out according to the operating instructions of the homologous recombination enzyme kit, and then the amount of each component was calculated according to the concentration of the insert and the vector and the recombination instructions; finally, each component was added to the PCR reaction tube on ice, as shown in Table 1. The recombinant plasmid was obtained by homologous recombination of the Bacopa monnieri P450 enzyme gene BmCYP068 with the Y33 vector, named Y33-BmCYP068. The recombinant plasmid was transformed into DH5α E. coli, and the positive clones were selected for detection and sent to the company for sequencing. The electrophoresis detection results after assembly are shown in Figure 3, indicating that the assembly was successful. The recombinant operation was performed according to the following process:

表1候选基因重组反应体系Table 1 Candidate gene recombination reaction system

Table 1 Candidate genes Recombination SystemTable 1 Candidate genes Recombination System

其中X=(0.02×Y33碱基对数)ng/线化化Y33浓度ng/μL;Y=(0.02×Y33碱基对数)ng/BmCYP068回收浓度ng/μL;Where X = (0.02 × Y33 base pairs) ng/linearized Y33 concentration ng/μL; Y = (0.02 × Y33 base pairs) ng/BmCYP068 recovery concentration ng/μL;

(3)重组质粒提取(3) Recombinant plasmid extraction

吸取测序检测好的阳性单克隆保种液10μL置于6mL LB液体培养基中(100mg/mLAmp),于37℃摇床(220r/min)培养过夜。按照质粒DNA小量制备试剂盒离心柱型(GenStar,中国深圳)中的说明抽提质粒,提取后质粒DNA在NanoReady超微量紫外可见分光光度计上测定其回收浓度,最后放-20℃冰箱中保存备用。10 μL of the positive monoclonal stock solution detected by sequencing was placed in 6 mL LB liquid medium (100 mg/mL Amp) and cultured overnight at 37°C in a shaker (220 r/min). The plasmid was extracted according to the instructions in the plasmid DNA mini-preparation kit centrifugal column type (GenStar, Shenzhen, China). After extraction, the recovery concentration of the plasmid DNA was measured on a NanoReady ultra-micro UV-visible spectrophotometer, and finally stored in a -20°C refrigerator for later use.

(4)DM酵母底盘细胞感受态制备(4) Preparation of competent DM yeast cells

挑取SC-His-Leu平板上DM底盘细胞菌株接种进入100ml的SC-His-Leu液体培养基中,30℃,220rpm培养至OD=0.8~0.9,用50mL的离心管进行分离,5000g/5min收集菌体。25mL灭菌水洗两次,重复离心步骤,清洗后的菌体用1mLddH2o重悬混匀转移至1.5mL离心管,13000rpm,离心30s收集菌体。用600μL dd水重悬,分装每管100μL用于转化Pick the DM-based cell strain on the SC-His-Leu plate and inoculate it into 100ml of SC-His-Leu liquid medium. Cultivate at 30℃ and 220rpm until OD=0.8-0.9. Use a 50mL centrifuge tube to separate and collect the bacteria at 5000g/5min. Wash twice with 25mL sterile water, repeat the centrifugation step, resuspend the washed bacteria with 1mLddH2o, transfer to a 1.5mL centrifuge tube, centrifuge at 13000rpm for 30s to collect the bacteria. Resuspend with 600μL dd water and dispense 100μL into each tube for transformation.

(5)DM酵母底盘细胞转化(5) DM yeast cell transformation

在掌上离心机离心20s,弃上清,加转化体系:PEG4000(50%)240μL,LAC(醋酸锂)1.0mol 36μL,SSDNA(蛙鱼精)2.0ug/μL 10μL,带目的片段的质粒(400ng)和ddH2O共74μL。混合好的体重重悬30℃保温20min,42℃热激40min,取200μL菌液涂板SC-His-Leu-Ura,并倒置放入30℃培养箱培养2~4天后挑选阳性克隆菌株进行验证。Centrifuge for 20 seconds in a handheld centrifuge, discard the supernatant, add the transformation system: PEG4000 (50%) 240μL, LAC (lithium acetate) 1.0mol 36μL, SSDNA (frog fish sperm) 2.0ug/μL 10μL, plasmid with target fragment (400ng) and ddH2O 74μL in total. Resuspend the mixed body and keep it at 30℃ for 20min, heat shock at 42℃ for 40min, take 200μL of bacterial solution to plate SC-His-Leu-Ura, and invert it into a 30℃ incubator for 2-4 days, then select the positive clone strain for verification.

(6)阳性菌株克隆筛选(6) Screening of positive strain clones

于0.2mL PCR管中各加入20μL ddH2O,挑取上述培养的单菌落各4个;于PCR仪95℃反应10min进行破壁处理。在PCR管中加入如下反应体系:Super 2x Mix 12.5μL,灭菌水10.5μL,通用正向引物(10mM)0.5μL,通用反向引物(10mM)0.5μL,1μL溶于水中的单克隆模板。其中检测通用引物采用软件(SnapGene 3.2.1)设计,检测的上游引物:GATGCTTTCTTTTTCTCTTTTTTTACAGATC,下游引物:GCGTGAATGTAAGCGTGAC;PCR扩增循环参数为:95℃3min;95℃30s,55℃30s,72℃90S,35个循环;72℃5min,10℃5min。Add 20 μL ddH2O to each 0.2mL PCR tube, pick 4 single colonies from the above culture; react at 95℃ for 10min in a PCR instrument for cell wall breaking. Add the following reaction system to the PCR tube: 12.5μL Super 2x Mix, 10.5μL sterilized water, 0.5μL universal forward primer (10mM), 0.5μL universal reverse primer (10mM), 1μL monoclonal template dissolved in water. Among them, the universal primer for detection was designed by software (SnapGene 3.2.1), the upstream primer for detection: GATGCTTTCTTTTTCTTTTTTTTTACAGATC, the downstream primer: GCGTGAATGTAAGCGTGAC; the PCR amplification cycle parameters are: 95℃3min; 95℃30s, 55℃30s, 72℃90S, 35 cycles; 72℃5min, 10℃5min.

(7)检测及测序(7) Detection and sequencing

取1.0μL Loading buffer加5μL上述PCR产物,混匀,经1%琼脂糖凝胶电泳检测扩增结果,如与目的片段大小相近,则为真阳性酵母菌株,表示为转化成功。将鉴定为阳性克隆的菌液用SC-His-Leu-Ura液体培养基培养1天后保菌。方法为50%甘油与菌液按1:1加入保种管,充分混匀后放入-80℃超低温冰箱中保存,备用。Take 1.0μL Loading buffer and add 5μL of the above PCR product, mix well, and detect the amplification results by 1% agarose gel electrophoresis. If the size is similar to the target fragment, it is a true positive yeast strain, indicating successful transformation. The bacterial solution identified as positive clones was cultured in SC-His-Leu-Ura liquid medium for 1 day and then preserved. The method is to add 50% glycerol and bacterial solution in a 1:1 ratio to the seed preservation tube, mix well, and store in a -80℃ ultra-low temperature refrigerator for use.

(8)酵母诱导表达及检测(8) Yeast induced expression and detection

挑选生长正常的阳性转化菌株在SC-His-Leu-Ura的液体培养基(50ml)中培养,在30℃,220rpm震荡培养5天后8000rpm离心5min收集细胞,用2ml裂解液(20%KOH,50%EtOH),裂解破壁;用相同体积的正己烷萃取三次;将萃取液用旋蒸仪旋干,用3ml色谱甲醇溶解。通过HPLC对萃取的代谢产物进行分析。The positive transformed strains with normal growth were selected and cultured in SC-His-Leu-Ura liquid medium (50 ml). After culturing at 30°C and 220 rpm for 5 days, the cells were collected by centrifugation at 8000 rpm for 5 min, and the cells were lysed and broken with 2 ml of lysis solution (20% KOH, 50% EtOH); the cells were extracted three times with the same volume of n-hexane; the extract was dried by rotary evaporation and dissolved with 3 ml of chromatographic methanol. The extracted metabolites were analyzed by HPLC.

HPLC检测条件如下:HPLC detection conditions are as follows:

HPLC检测所用仪器为安捷伦高效液相色谱仪。色谱柱为安捷伦EC-C18色谱柱(4.6×100mm,2.7um),柱温:25℃;测定流动相为:水(A)-乙腈(B),梯度洗脱:0~10min,70%~75%B;10~20min,75%~85%B;20~22min,85%~100%B;22~25min,100%B;洗脱时采用的流动相A+B总计100%;采用线性梯度洗脱;洗脱时间:25min;进样量:10μL;流速:0.8ml/min;检测波长203nm,检测器为二极管阵列检测器。检测结果见图5,表明实验样品在假马齿苋P450酶BmCYP068的催化下有新的产物产生。The instrument used for HPLC detection is Agilent high performance liquid chromatograph. The chromatographic column is Agilent EC-C18 chromatographic column (4.6×100mm, 2.7um), column temperature: 25°C; the mobile phase for determination is: water (A)-acetonitrile (B), gradient elution: 0-10min, 70%-75% B; 10-20min, 75%-85% B; 20-22min, 85%-100% B; 22-25min, 100% B; the mobile phase A+B used during elution is 100% in total; linear gradient elution is used; elution time: 25min; injection volume: 10μL; flow rate: 0.8ml/min; detection wavelength is 203nm, and the detector is a diode array detector. The detection results are shown in Figure 5, indicating that the experimental sample has new products produced under the catalysis of Bacopa monnieri P450 enzyme BmCYP068.

LC-MS检测条件如下:LC-MS detection conditions are as follows:

为了进一步确认HPLC所检测到的反应产物,采用Agilent 1290UPLC/6540Q-TOF液相色谱质谱联用仪(LC/MS/MS)进行检测:质谱条件:离子源采用的是负离子模式,电压:3500V;碎裂电压:135V;锥孔电压:60V;射频电压:750V,扫描范围:100-1000m/z,扫描方式:SRM。色谱条件:色谱柱为安捷伦EC-C18色谱柱(4.6×100mm,2.7um),柱温:25℃;测定流动相为:水(A)-乙腈(B),梯度洗脱:0~10min,70%~75%B;10~20min,75%~85%B;20~22min,85%~100%B;22~25min,100%B;洗脱时采用的流动相A+B总计100%;采用线性梯度洗脱;洗脱时间:25min;进样量:10μL;流速:0.8ml/min;检测波长203nm,检测器为二极管阵列检测器。使用MassHunter工作站(Agilent)软件进行数据分析。检测结果见图5~6。In order to further confirm the reaction products detected by HPLC, Agilent 1290UPLC/6540Q-TOF liquid chromatography-mass spectrometry (LC/MS/MS) was used for detection: Mass spectrometry conditions: the ion source used was negative ion mode, voltage: 3500 V; fragmentation voltage: 135 V; cone voltage: 60 V; radio frequency voltage: 750 V, scanning range: 100-1000 m/z, scanning mode: SRM. Chromatographic conditions: The chromatographic column is an Agilent EC-C18 column (4.6×100mm, 2.7um), the column temperature is 25°C; the mobile phase is water (A)-acetonitrile (B), gradient elution: 0-10min, 70%-75% B; 10-20min, 75%-85% B; 20-22min, 85%-100% B; 22-25min, 100% B; the mobile phase A+B used in elution is 100% in total; linear gradient elution is used; elution time: 25min; injection volume: 10μL; flow rate: 0.8ml/min; detection wavelength is 203nm, and the detector is a diode array detector. MassHunter workstation (Agilent) software is used for data analysis. The test results are shown in Figures 5-6.

根据以上检测分析,推测在假马齿苋P450酶BmCYP068的催化下,DammarenediolII分别在两个位点发生了羟基化。为了明确羟基化位点,我们对化合物1和2进行了NMR检测。NMR检测在Bruker AV-800MHz光谱仪(Santa Clara,USA)上进行,检测结果见图7~18。综上检测结果分析,化合物1确定为23-OH-Dammarenediol II,化合物2确定为25-OH-Dammarenediol II。According to the above detection and analysis, it is speculated that DammarenediolII was hydroxylated at two sites under the catalysis of Bacopa monnieri P450 enzyme BmCYP068. In order to clarify the hydroxylation site, we performed NMR detection on compounds 1 and 2. NMR detection was performed on a Bruker AV-800MHz spectrometer (Santa Clara, USA), and the detection results are shown in Figures 7 to 18. Based on the above detection results, compound 1 was determined to be 23-OH-Dammarenediol II, and compound 2 was determined to be 25-OH-Dammarenediol II.

序列表Sequence Listing

SEQ ID NO.1SEQ ID NO.1

目标序列:Target sequence:

ATGGCTGTGAAACTAAGCTCAATCCTTATTTCTCTTCTCGTACTTGCACTCACAACATTGGTACTAAAAGTATTGAATTGGGTTTGGTTTAGACCCAAGAAATTGGAGAAAATCTTGAGAGATCAAGGCCTCAATGGAAACCCATACAGAATTCTTATTGGAGACATGAAGGACTTGATGTCTGCAACCAACGCAGAAAAATCCAGACCAATCCAACTTTCTGACGATATATCTCAGCATATGTTTCCGTATTACCATCAAGCCAGGAGCAAGTATGGACCGAATTCTTTTGTGTGGTTTGGACCCTCGCCAAAATTGATGATTGCTGATCCAGTTCTTCTCAAGGAGATATTCACAAAACCAGATGTATTTCATAAGCCTGTTCCAGATCCCATTGGCCAATCCATTGCTGGAGGGCTTACGTTTCTTGAAGATGAAAAATGGGCCAAACACCGGAGAATTATTAATCCGGCTTTCCATATGGAGAAGCTCAAGGATAAGACAGCAACGATTCGAATGAGTTGTTCAATAATGATAGAGAAATGGGATGCATTGGTTTCAAGACGTGGAAACTCTGGGGAATTAGATGTTTGGCCTTATATTAGAGAACTATCAGGTGATATGATTTCTCGAGCAGCATTTGGAAGTAGTCATAAGGACGGAAGCAGAATATTTGAGCTCCAAAACGAGCAAGTGAAGCTCGTCTTGCAACTCTTGGCTTTCCATTTTATCCCTGGATGGAGTTATTTACCAACCAAGGCAAACAGAAAAATGAAAGCACTCGCCAAAGAAATTAAGTCCTTACTGAGGGGTATTATCGACCAGCGAGAGAAAGCAATGAAAAGGGGAGAAGAGATGGCATCTGATTTGTTGGGTATATTAATGGAGTCAAATTTCAAAGAAATGCAACAGCAAGGAAACAAGAAGATGGGAATGAGCATTGAGGATGTTGTAGAGGAATGCAAGCTGTTCTATATTGCAGGCTCTGATACCACTTCTAATTTGCTAGTGTGGACTATGGTAATGCTTAGTAAACATCCGGAATGGCAGGCTCGTGCAAGAGAAGAAGTTTTGCAAGTCTTTGGAAAGAGTGAACCAACTTTTGACGGTGTAAATCGCCTCAAAATCGTAACCATGATTCTTCAAGAAGTTCTCCGATTGTATCCACCAGTACCTTTGGTCCTCCGATCCCCTACAAAAGAGCTCAGACTGGGAGACATAACTTTGCCAAAGGACGTCGATGTAATTTTGTTAATGGGCATGCTCCATCATGATCCAGAAGTTTGGGGAGATGATGTACAAGACTTCAAACCTGAGAGATTTTCTGGAGGTATTTCATCCGCGGCAAAGACTCAATTCGCCTTCATGCCATTCGGCTTCGGACCTCGAATTTGCATAGGGCAAAATTTTGCAATGCTTGAGGCAAAAATCTCTTTGGCCATGATACTCCAGCGGTTTTCGTTTGAGTTGTCCTCGTCTTATTTGCATGCGCCTTTCCCCATTCTTACACTCGAACCACAGCATGGCGCTTCAATGGTTTTGCATAAACTATAGATGGCTGTGAAACTAAGCTCAATCCTTATTTCTCTTCTCGTACTTGCACTCACAACATTGGTACTAAAAGTATTGAATTGGGTTTGGTTTAGACCCAAGAAATTGGAGAAAATCTTGAGAGATCAAGGCCTCAATGGAAACCCATACAGAATTCTTATTGGAGACATGAAGGACTTGATGTCTGCAACCAACGCAGAAAAATCCAGACCAATCCAACTTTCTGACGATATATCTCAGCATATGTTTCCGTATTACCATCAAGCCAGGAGCAAGTATGGACCGAATTCTTTTGTGTGGTTTGGACCCTCGCCAAAATTGATGATTGCTGATCCAGTTCTTCTCAAGGAGATATTCACAAAACCAGATGTATTTCATAAGCCTGTTCCAG ATCCCATTGGCCAATCCATTGCTGGAGGGCTTACGTTTCTTGAAGATGAAAAATGGGCCAAACACCGGAGAATTATTAATCCGGCTTTCCATATGGAGAAGCTCAAGGATAAGACAGCAACGATTCGAATGAGTTGTTCAATAATGATAGAGAAATGGGATGCATTGGTTTCAAGACGTGGAAACTCTGGGGAATTAGATGTTTGGCCTTATATTAGAGAACTATCAGGTGATATGATTTCTCGAGCAGCATTTGGAAGTAGTCATAAGGACGGAAGCAGAATATTTGAGCTCCAAAACGAGCAAGTGAAGCTCGTCTTGCAACTCTTGGCTTTCCATTTTATCCCTGGATGGAGTTATTTACCAACCAAGGCAAACAGAAAAATGAAA GCACTCGCCAAAGAAATTAAGTCCTTACTGAGGGGTATTATCGACCAGCGAGAGAAAGCAATGAAAAGGGGAGAAGAGATGGCATCTGATTTGTTGGGTATATTAATGGAGTCAAATTTCAAAGAAATGCAACAGCAAGGAAACAAGAAGATGGGAATGAGCATTGAGGATGTTGTAGAGGAATGCAAGCTGTTCTATATTGCAGGCTCTGATACCACTTCTAATTTGCTAGTGTGGACTATGGTAATGCTTAGTAAACATCCGGAATGGCAGGCTCGTGCAAGAGAAGAAGTTTTGCAAGTCTTTGGAAAGAGTGAACCAACTTTTGACGGTGTAAATCGCCTCAAAATCGTAACCATGATTCTTCAAGAAGTTCTCCGATTGTATC CACCAGTACCTTTGGTCCTCCGATCCCCTACAAAAGAGCTCAGACTGGGAGACATAACTTTGCCAAAGGACGTCGATGTAATTTTGTTAATGGGCATGCTCCATCATGATCCAGAAGTTTGGGGAGATGATGTACAAGACTTCAAACCTGAGAGATTTTCTGGAGGTATTTCATCCGCGGCAAAGACTCAATTCGCCTTCATGCCATTCGGCTTCGGACCTCGAATTTGCATAGGGCAAAATTTTGCAATGCTTGAGGCAAAAATCTCTTTGGCCATGATACTCCAGCGGTTTTCGTTTGAGTTGTCCTCGTCTTATTTGCATGCGCCTTTCCCCATTCTTACACTCGAACCACAGCATGGCGCTTCAATGGTTTTGCATAAACTATAG

SEQ ID NO.2SEQ ID NO.2

氨基酸序列:Amino Acid Sequence:

MAVKLSSILISLLVLALTTLVLKVLNWVWFRPKKLEKILRDQGLNGNPYRILIGDMKDLMSATNAEKSRPIQLSDDISQHMFPYYHQARSKYGPNSFVWFGPSPKLMIADPVLLKEIFTKPDVFHKPVPDPIGQSIAGGLTFLEDEKWAKHRRIINPAFHMEKLKDKTATIRMSCSIMIEKWDALVSRRGNSGELDVWPYIRELSGDMISRAAFGSSHKDGSRIFELQNEQVKLVLQLLAFHFIPGWSYLPTKANRKMKALAKEIKSLLRGIIDQREKAMKRGEEMASDLLGILMESNFKEMQQQGNKKMGMSIEDVVEECKLFYIAGSDTTSNLLVWTMVMLSKHPEWQARAREEVLQVFGKSEPTFDGVNRLKIVTMILQEVLRLYPPVPLVLRSPTKELRLGDITLPKDVDVILLMGMLHHDPEVWGDDVQDFKPERFSGGISSAAKTQFAFMPFGFGPRICIGQNFAMLEAKISLAMILQRFSFELSSSYLHAPFPILTLEPQHGASMVLHKLMAVKLSSILISLLVLALTTLVLKVLNWVWFRPKKLEKILRDQGLNGNPYRILIGDMKDLMSATNAEKSRPIQLSDDISQHMFPYYHQARSKYGPNSFVWFGPSPKLMIADPVLLKEIFTKPDVFHKPVPDPIGQSIAGGLTFLEDEKWAKHRRIINPAFHMEKLKDKTATIRMSCSIMIEKWDALVSRRGNSGELDVWPYIRELSGDMISRAAFGSSHKDGSRIFELQNEQVKLVLQLLAFHFIPGWSYLPTKANRKM KALAKEIKSLLRGIIDQREKAMKRGEEMASDLLGILMESNFKEMQQQGNKKMGMSIEDVVEECKLFYIAGSDTTSNLLVWTMVMLSKHPEWQARAREEVLQVFGKSEPTFDGVNRLKIVTMILQEVLRLYPPVPLVLRSPTKELRLGDITLPKDVDVILLMGMLHHDPEVWGDDVQDFKPERFSGGISSAAKTQFAFMPFGFGPRICIGQNFAMLEAKISLAMILQRFSFELSSSYLHAPFPILTLEPQHGASMVLHKL

SEQ ID NO.3SEQ ID NO.3

ATGGCAGTTAAATTGAGCAGCATGGCAGTTAAATTGAGCAGC

SEQ ID NO.4SEQ ID NO.4

TTACAATTTGTGCAAAACCATAGAAGCTTACAATTTGTGCAAAACCATAGAAGC

SEQ ID NO.5SEQ ID NO.5

cagtcgacctcgaatctaga ATGGCAGTTAAATTGAGCAGCcagtcgacctcgaatctaga ATGGCAGTTAAATTGAGCAGC

SEQ ID NO.6SEQ ID NO.6

ctaattacatgatgcggccc TTACAATTTGTGCAAAACCATAGAAGCctaattacatgatgcggccc TTACAATTTGTGCAAAACCATAGAAGC

Claims (8)

1.一种假马齿苋P450酶基因BmCYP068,其特征在于,假马齿苋P450酶基因BmCYP068核苷酸序列如SEQ ID NO.1所示。1. A Bacopa monnieri P450 enzyme gene BmCYP068 , characterized in that the nucleotide sequence of the Bacopa monnieri P450 enzyme gene BmCYP068 is shown in SEQ ID NO.1. 2.权利要求1所述的假马齿苋P450酶基因BmCYP068编码蛋白,其特征在于,该编码蛋白的氨基酸序列如SEQ ID NO.2所示。2. The protein encoded by the Bacopa monnieri P450 enzyme gene BmCYP068 according to claim 1, characterized in that the amino acid sequence of the encoded protein is shown in SEQ ID NO.2. 3.含有权利要求1所述的假马齿苋P450酶基因BmCYP068的重组质粒。3. A recombinant plasmid containing the Bacopa monnieri P450 enzyme gene BmCYP068 according to claim 1. 4.根据权利要求3所述的含有假马齿苋P450酶基因BmCYP068的重组质粒,其特征在于,将假马齿苋P450酶基因BmCYP068与Y33载体同源重组,获Y33-BmCYP068重组质粒。4. The recombinant plasmid containing the Bacopa monnieri P450 enzyme gene BmCYP068 according to claim 3, characterized in that the Bacopa monnieri P450 enzyme gene BmCYP068 is homologously recombined with a Y33 vector to obtain a Y33- BmCYP068 recombinant plasmid. 5.一种转基因工程菌,含有权利要求3所述的重组质粒,或,所述基因工程菌的基因组中整合有外源的权利要求1所述的假马齿苋P450酶基因BmCYP0685. A genetically modified engineered bacterium, comprising the recombinant plasmid of claim 3, or the genome of the genetically modified bacterium is integrated with the exogenous Bacopa monnieri P450 enzyme gene BmCYP068 of claim 1. 6.根据权利要求5所述的转基因工程菌,其特征在于,所述转基因工程菌为Dammarenediol II酿酒酵母底盘细胞。6. The genetically modified engineered bacteria according to claim 5, characterized in that the genetically modified engineered bacteria are Dammarenediol II Saccharomyces cerevisiae chassis cells. 7.权利要求1所述的假马齿苋P450酶基因BmCYP068在制备23-OH-Dammarenediol II和25-OH-Dammarenediol II中的应用。7. Use of the Bacopa monnieri P450 enzyme gene BmCYP068 according to claim 1 in the preparation of 23-OH-Dammarenediol II and 25-OH-Dammarenediol II. 8.根据权利要求7所述的假马齿苋P450酶基因BmCYP068在制备23-OH-DammarenediolII和25-OH-Dammarenediol II中的应用,其特征在于:以底盘细胞产生的DammarenediolII为底物,在由所述的假马齿苋P450酶基因BmCYP068编码得到的假马齿苋P450酶BmCYP068的催化下经过侧链23位或25位羟基化生成23-OH-Dammarenediol II和25-OH-Dammarenediol II。8. Use of the Bacopa P450 enzyme gene BmCYP068 according to claim 7 in the preparation of 23-OH-Dammarenediol II and 25-OH-Dammarenediol II, characterized in that: Dammarenediol II produced by chassis cells is used as a substrate, and 23-OH-Dammarenediol II and 25-OH-Dammarenediol II are generated by hydroxylation at position 23 or 25 of the side chain under the catalysis of the Bacopa P450 enzyme BmCYP068 encoded by the Bacopa P450 enzyme gene BmCYP068 .
CN202311077715.2A 2023-08-25 2023-08-25 Bacopa monnieri P450 enzyme gene BmCYP068 and application thereof Active CN117327715B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311077715.2A CN117327715B (en) 2023-08-25 2023-08-25 Bacopa monnieri P450 enzyme gene BmCYP068 and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311077715.2A CN117327715B (en) 2023-08-25 2023-08-25 Bacopa monnieri P450 enzyme gene BmCYP068 and application thereof

Publications (2)

Publication Number Publication Date
CN117327715A CN117327715A (en) 2024-01-02
CN117327715B true CN117327715B (en) 2024-06-14

Family

ID=89274481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311077715.2A Active CN117327715B (en) 2023-08-25 2023-08-25 Bacopa monnieri P450 enzyme gene BmCYP068 and application thereof

Country Status (1)

Country Link
CN (1) CN117327715B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518818B (en) * 2020-03-26 2021-11-30 浙江大学 Hydroxylase gene participating in myricetin biosynthesis and application thereof
CN114507646B (en) * 2020-11-17 2023-11-10 生合万物(上海)生物科技有限公司 Cytochrome P450 mutant protein and application thereof
CN116004553A (en) * 2022-08-02 2023-04-25 中国医学科学院药用植物研究所 The gene involved in the synthesis of gypenoside and its encoded product and application
CN115927405A (en) * 2022-11-15 2023-04-07 湖北大学 Gene sequence for coding P450 enzyme and cytochrome P450 reductase derived from fusarium graminearum and recombinant strain thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Characterization of MYB35 regulated methyl jasmonate and wound responsive Geraniol 10‑hydroxylase‑1 gene from Bacopa monnieri;Jeena等;Planta;20211231;第253卷;第1-13页 *
药用植物甾体皂苷生物合成途径研究进展;张雪;王希付;赵荣华;俞捷;顾雯;付兴情;曹冠华;贺森;;中国实验方剂学杂志;20201231(第14期);第232-241页 *

Also Published As

Publication number Publication date
CN117327715A (en) 2024-01-02

Similar Documents

Publication Publication Date Title
Zhu et al. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants
Wang et al. Biosynthesis of a ganoderic acid in Saccharomyces cerevisiae by expressing a cytochrome P450 gene from Ganoderma lucidum
CN114058525B (en) Squalene-producing genetically engineered bacterium, construction method and application thereof
CN116426495A (en) Flavonoid-O-methyltransferase and its Application in the Synthesis of Iswogonin and Scutellaria flavonoids
CN110982722A (en) Construction method of saccharomyces cerevisiae for efficiently synthesizing α -amyrin
CN116334106A (en) Application of Snow Gall Cytochrome Oxidase Gene and Its Transgenic Engineering Bacteria in the Preparation of Cucurbitacin Intermediates
CN108929884B (en) Method for heterologous biosynthesis of Ganoderma lucidum by means of synthetic biology
CN116515872B (en) Cyclocarya paliurus Liu San terpene synthase CpalOSC gene and application thereof in preparation of beta-amyrin
CN113969288B (en) Farnesol-producing genetically engineered bacterium and construction method and application thereof
CN113402357B (en) 5-12-5 Tricyclic diterpene skeleton compound and preparation thereof
CN117327715B (en) Bacopa monnieri P450 enzyme gene BmCYP068 and application thereof
CN111088175A (en) Yarrowia lipolytica producing bisabolene and its construction method and use
CN118272337A (en) Three UDP-glycosyltransferases and their applications in the synthesis of oleanolic acid glycosides
CN113528365A (en) Recombinant saccharomyces cerevisiae for producing cannabidiol, construction method and application thereof
CN117844830A (en) Application of transgenic yeast expressing cytochrome oxidase in the preparation of cucurbitacin intermediates
CN117904153A (en) Isopentenyl transferase gene CmPT for catalyzing isoprenylation and its application
CN110684795A (en) Construction method of monascus purpureus comp50904_ c4 gene overexpression strain
CN113604470B (en) Recombinant yarrowia lipolytica T30pED for high yield of campesterol, construction method and application thereof
CN113045410A (en) Bicyclic norditerpenoid compound and synthetic gene and preparation method thereof
CN113956990A (en) Recombinant saccharomyces cerevisiae for producing dihydronilotinib as well as preparation method and application thereof
CN113930352A (en) Engineering bacteria producing umbelliferone and parsley and its construction method and application
CN112646834A (en) Lupeol derivative and synthesis method and application thereof
CN107903227B (en) Succinic anhydride compound, gene and protein related thereto, and preparation method thereof
CN113583993B (en) Polyketide synthase PreuA and its application in the preparation of fusic acid
CN117587045B (en) Veratric cholesterol 22 (R) -hydroxylase VnCYP B27 gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant