CN117322323A - Method for improving regeneration and conversion efficiency of sweet corn - Google Patents
Method for improving regeneration and conversion efficiency of sweet corn Download PDFInfo
- Publication number
- CN117322323A CN117322323A CN202311545555.XA CN202311545555A CN117322323A CN 117322323 A CN117322323 A CN 117322323A CN 202311545555 A CN202311545555 A CN 202311545555A CN 117322323 A CN117322323 A CN 117322323A
- Authority
- CN
- China
- Prior art keywords
- sweet corn
- regeneration
- sweet
- callus
- culture medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000002017 Zea mays subsp mays Nutrition 0.000 title claims abstract description 71
- 241000482268 Zea mays subsp. mays Species 0.000 title claims abstract description 59
- 230000008929 regeneration Effects 0.000 title claims abstract description 33
- 238000011069 regeneration method Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 title claims abstract 3
- 230000009466 transformation Effects 0.000 claims abstract description 33
- 206010020649 Hyperkeratosis Diseases 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 20
- 230000002068 genetic effect Effects 0.000 claims abstract description 17
- 230000009261 transgenic effect Effects 0.000 claims abstract description 7
- 238000012216 screening Methods 0.000 claims abstract description 4
- 230000001131 transforming effect Effects 0.000 claims abstract 2
- 210000002257 embryonic structure Anatomy 0.000 claims description 19
- 239000002609 medium Substances 0.000 claims description 18
- 230000004069 differentiation Effects 0.000 claims description 17
- 230000006698 induction Effects 0.000 claims description 16
- 240000008042 Zea mays Species 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 12
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 10
- 235000005822 corn Nutrition 0.000 claims description 10
- 239000001963 growth medium Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 241000589158 Agrobacterium Species 0.000 claims description 7
- 230000010152 pollination Effects 0.000 claims description 7
- 210000001161 mammalian embryo Anatomy 0.000 claims description 5
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 claims description 4
- 239000012881 co-culture medium Substances 0.000 claims description 4
- 208000015181 infectious disease Diseases 0.000 claims description 4
- 238000011161 development Methods 0.000 claims description 3
- 230000018109 developmental process Effects 0.000 claims description 3
- 230000001404 mediated effect Effects 0.000 claims description 3
- 238000004659 sterilization and disinfection Methods 0.000 claims description 3
- 238000011426 transformation method Methods 0.000 claims description 3
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 2
- 235000009973 maize Nutrition 0.000 claims description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 claims 1
- 239000012883 rooting culture medium Substances 0.000 claims 1
- 230000001954 sterilising effect Effects 0.000 claims 1
- 241000196324 Embryophyta Species 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 5
- 239000013598 vector Substances 0.000 abstract description 2
- 235000009508 confectionery Nutrition 0.000 abstract 2
- 238000009395 breeding Methods 0.000 description 8
- 230000001488 breeding effect Effects 0.000 description 8
- 238000011160 research Methods 0.000 description 7
- 229930006000 Sucrose Natural products 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- 239000005720 sucrose Substances 0.000 description 6
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 4
- 229960002429 proline Drugs 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- 239000012882 rooting medium Substances 0.000 description 3
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000005595 Picloram Substances 0.000 description 2
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000003501 co-culture Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- NQQVFXUMIDALNH-UHFFFAOYSA-N picloram Chemical compound NC1=C(Cl)C(Cl)=NC(C(O)=O)=C1Cl NQQVFXUMIDALNH-UHFFFAOYSA-N 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 229960000344 thiamine hydrochloride Drugs 0.000 description 2
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 2
- 239000011747 thiamine hydrochloride Substances 0.000 description 2
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 2
- 229930186147 Cephalosporin Natural products 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 101150066002 GFP gene Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 229940027257 timentin Drugs 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/02—Methods or apparatus for hybridisation; Artificial pollination ; Fertility
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H4/00—Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
- A01H4/008—Methods for regeneration to complete plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Developmental Biology & Embryology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Chemical & Material Sciences (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Environmental Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域Technical field
本发明涉及植物基因工程技术领域,具体涉及一种提高甜玉米再生及转化效率的方法。The invention relates to the technical field of plant genetic engineering, and in particular to a method for improving the regeneration and transformation efficiency of sweet corn.
背景技术Background technique
甜玉米因其营养丰富、口感好深受广大消费者的喜爱,作为一种新型的果蔬兼用作物,在改善居民膳食结构、出口创汇上起到不可忽视的作用。浙江省是甜玉米的种植和消费大省,对优质甜玉米品种的需求非常大。而种质资源狭窄和育种技术滞后等因素严重制约我省甜玉米产业高质量发展。Sweet corn is deeply loved by consumers because of its rich nutrition and good taste. As a new type of fruit and vegetable crop, it plays an important role in improving residents' dietary structure and earning foreign exchange from exports. Zhejiang Province is a major sweet corn planting and consumption province, and the demand for high-quality sweet corn varieties is very high. However, factors such as narrow germplasm resources and lagging breeding technology severely restrict the high-quality development of the sweet corn industry in our province.
转基因技术作为一项新兴的生物技术,在提高作物产量、品质及抗性方面提供了一种新的技术方案。尽管现有技术已经公开了不少玉米的遗传转化方法,但不同的基因型仍然是限制玉米遗传转化效率的重要因素,甜玉米遗传转化同样受到基因型的限制。目前,适用于甜玉米遗传转化的受体非常有限,效率也非常低。As an emerging biotechnology, genetically modified technology provides a new technical solution for improving crop yield, quality and resistance. Although many corn genetic transformation methods have been disclosed in the prior art, different genotypes are still important factors limiting the efficiency of corn genetic transformation, and sweet corn genetic transformation is also limited by genotypes. Currently, the receptors suitable for genetic transformation of sweet corn are very limited and the efficiency is very low.
发明内容Contents of the invention
针对现有技术中的上述不足,本发明的目的在于克服甜玉米现有遗传转化中存在再生能力差、转化效率低、转化周期长等缺陷,提供一种甜玉米再生及转化效率的方法。In view of the above-mentioned deficiencies in the prior art, the purpose of the present invention is to overcome the shortcomings of poor regeneration ability, low transformation efficiency, and long transformation cycle in existing genetic transformation of sweet corn, and provide a method for sweet corn regeneration and transformation efficiency.
为了达到上述发明目的,本发明采用的技术方案为:In order to achieve the above-mentioned object of the invention, the technical solutions adopted by the present invention are:
提供一种提高甜玉米再生及转化效率的方法,其包括以下步骤:A method for improving sweet corn regeneration and transformation efficiency is provided, which includes the following steps:
利用甜玉米品种雪甜7401与HiII杂交,再回交、连续自交一系列过程培育出一个再生能力强、遗传转化效率高的甜玉米基因型材料,将其用于转化。A sweet corn genotype material with strong regeneration ability and high genetic transformation efficiency was developed by crossing the sweet corn variety Xuetian 7401 with HiII, followed by backcrossing and continuous selfing, and then used it for transformation.
进一步地,具体包括以下步骤:Further, it specifically includes the following steps:
A.利用诱导培养基对不同甜玉米品种的幼胚再生能力进行测试,测定包括愈伤的诱导效率、愈伤的增殖速度、愈伤的生长状态等,得到再生能力强的测试材料,将所得的材料入选后续的分化试验。A. Use the induction medium to test the regeneration ability of young embryos of different sweet corn varieties, including the callus induction efficiency, callus proliferation rate, callus growth status, etc., to obtain test materials with strong regeneration ability, and use the obtained The materials were selected for subsequent differentiation experiments.
B.利用愈伤分化培养基对前期筛选的不同甜玉米品种的愈伤进行测试,测定包括愈伤的增殖速度、愈伤的分化时间和效率等,得到再生能力强的测试材料入选后续的培育试验。B. Use the callus differentiation medium to test the callus of different sweet corn varieties screened in the early stage, including the callus proliferation rate, callus differentiation time and efficiency, etc., and obtain test materials with strong regeneration ability to be selected for subsequent cultivation. test.
C.对筛选出来的甜玉米品种雪甜7401同HiII进行杂交,获得的F1代,再同7401回交2次,BC2F1后代再进行自交2代,从中挑选出再生能力强的甜玉米自交系TH44用于转化。C. Cross the selected sweet corn variety Xuetian 7401 with HiII, and the F1 generation obtained will be backcrossed to 7401 twice, and the BC2F1 offspring will be self-crossed for 2 generations to select sweet corn self-crosses with strong regeneration ability. Line TH44 was used for transformation.
进一步地,利用农杆菌介导的遗传转化方法转化TH44,具体方法包括以下子步骤:Further, Agrobacterium-mediated genetic transformation method is used to transform TH44. The specific method includes the following sub-steps:
(1)挑选授粉后9-12d发育正常、籽粒饱满的玉米棒子,表面消毒后取幼胚,将幼胚浸入含有农杆菌的侵染培养基中;(1) Select corn cobs with normal development and full kernels 9-12 days after pollination, remove the young embryos after surface disinfection, and immerse the young embryos in the infection medium containing Agrobacterium;
(2)将侵染后的幼胚移至共培养基上暗培养;(2) Move the infected immature embryos to a co-culture medium and culture them in the dark;
(3)将幼胚移至不含双丙氨膦的筛选培养基上继续培养2-3周左右;(3) Move the young embryos to the selection medium without bialaphos and continue culturing for about 2-3 weeks;
(4)将分化的幼胚移至添加有双丙氨膦筛选培养基上继续培养,直至长出新的愈伤;(4) Move the differentiated immature embryos to a selection medium supplemented with bialaphos and continue culturing until new calli grow;
(5)将新的愈伤移至分化培养基上,分化形成小芽;(5) Move the new callus to the differentiation medium and differentiate to form small buds;
(6)再生出来的小苗移至生根培养基上;(6) Move the regenerated seedlings to the rooting medium;
(7)等小苗顶到瓶盖,可以打开炼苗,移栽,得到转基因玉米。(7) When the seedlings reach the bottle cap, you can open the seedlings and transplant them to obtain genetically modified corn.
进一步地,上述培养基中的各种培养基组分及配比如下所示:Further, the various culture medium components and proportions in the above-mentioned culture medium are as follows:
侵染培养基:1/2MS+蔗糖68.5g/L+葡萄糖36g/L+L-脯氨酸0.115g/L+乙酰丁香酮200mM;Infection medium: 1/2MS+sucrose 68.5g/L+glucose 36g/L+L-proline 0.115g/L+acetosyringone 200mM;
共培养基:1/2MS+蔗糖20g/L+葡萄糖10g/L+脯氨酸0.115g/L+盐酸硫胺素0.5mg/L+AgNO3 20mM+2,4-D 0.5mg/L+毒莠定2.2mg/L+乙酰丁香酮200mM;Co-culture medium: 1/2MS + sucrose 20g/L + glucose 10g/L + proline 0.115g/L + thiamine hydrochloride 0.5mg/L + AgNO3 20mM + 2,4-D 0.5mg/L + picloram 2.2mg/L + acetyl Syringone 200mM;
诱导培养基:MS+蔗糖30g/L+脯氨酸2g/L+盐酸硫氨酸0.5mg/L+AgNO320Mm+水解酪蛋白0.3g/L+2,4-D 0.5mg/L+毒秀定2.2mg/L+特美汀200mg/L;Induction medium: MS+sucrose 30g/L+proline 2g/L+thionine hydrochloride 0.5mg/L+AgNO320Mm+hydrolyzed casein 0.3g/L+2,4-D 0.5mg/L+Toxidine 2.2mg/L+Special Medin 200mg/L;
筛选培养基:MS+蔗糖30g/L+脯氨酸2g/L+盐酸硫胺素0.5mg/L+AgNO320mM+水解酪蛋白0.3g/L+2,4-D 0.5mg/L+毒莠定2.2mg/L+特美汀200mg/L+双丙氨膦0.5-50mg/L;Screening medium: MS + sucrose 30g/L + proline 2g/L + thiamine hydrochloride 0.5mg/L + AgNO320mM + hydrolyzed casein 0.3g/L + 2,4-D 0.5mg/L + picloram 2.2mg/L + Temei Stingin 200mg/L + bialaphos 0.5-50mg/L;
分化培养基:MS+蔗糖20g/L+6-BA 3.5mg/L+硫酸铜10mM+MES 0.5g/L+特美汀200mg/L;Differentiation medium: MS+sucrose 20g/L+6-BA 3.5mg/L+copper sulfate 10mM+MES 0.5g/L+timentin 200mg/L;
生根培养基:MS+蔗糖20g/L+MES 0.5g/L+IBA 0.2mg/L。Rooting medium: MS+sucrose 20g/L+MES 0.5g/L+IBA 0.2mg/L.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明获得的转基因甜玉米自交系TH44具有植株矮小、早花、生育期短等优点,作为甜玉米转基因受体后,获得的转基因材料可以直接作为甜玉米育种的自交系,可以大大缩短甜玉米的育种周期。另外,TH44的转化效率和再生能力显著高于其他甜玉米品种,对于甜玉米的转基因技术的进一步应用推广具有重要的意义。本发明通过筛选-杂交-回交-自交纯化的模式筛选出高再生及分化能力的甜玉米自交系,对指导其他植物的遗传转化研究也有一定的意义。The transgenic sweet corn inbred line TH44 obtained by the present invention has the advantages of short plants, early flowering, and short growth period. After being used as a sweet corn transgenic receptor, the transgenic material obtained can be directly used as an inbred line for sweet corn breeding, which can greatly shorten the breeding period. Sweet corn breeding cycle. In addition, the transformation efficiency and regeneration capacity of TH44 are significantly higher than other sweet corn varieties, which is of great significance for the further application and promotion of transgenic technology in sweet corn. The present invention selects sweet corn inbred lines with high regeneration and differentiation capabilities through the mode of screening-crossing-backcrossing-selfing purification, which also has certain significance in guiding the genetic transformation research of other plants.
附图说明Description of drawings
图1是本发明受体材料TH44的选育过程流程图;Figure 1 is a flow chart of the breeding process of the receptor material TH44 of the present invention;
图2是本发明构建的质粒载体pRF-GFP的图谱;Figure 2 is a map of the plasmid vector pRF-GFP constructed in the present invention;
图3是本发明选育过程中F1及其后代TH2、TH44的再生愈伤和以TH44为受体获得的阳性愈伤示意图。Figure 3 is a schematic diagram of the regenerative callus of F1 and its progeny TH2 and TH44 during the breeding process of the present invention and the positive callus obtained using TH44 as a receptor.
具体实施方式Detailed ways
以下实施例定义了本发明,并描述了如何鉴定甜玉米的幼胚诱导及分化能力,并且提供了TH44作为优良转基因受体的应用实例。根据以下的描述和这些实施例,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其适用不同的用途和条件。The following examples define the present invention, describe how to identify the young embryo induction and differentiation capabilities of sweet corn, and provide an application example of TH44 as an excellent transgene receptor. From the following description and these examples, those skilled in the art can determine the basic characteristics of the present invention, and without departing from the spirit and scope of the present invention, can make various changes and modifications to the present invention to make it suitable for different applications. purposes and conditions.
实施例1在诱导培养基上对不同甜玉米幼胚进行再生能力的初步评估试验Example 1 Preliminary evaluation test of regeneration ability of different sweet corn immature embryos on induction medium
为验证本发明的技术路线,对3个甜玉米品种(雪甜7401,购自福建金苗种业、浙甜20,浙江省农业科学院玉米与特色旱粮研究所育种研究室馈赠、浙泰甜928,浙江省农业科学院玉米与特色旱粮研究所栽培研究室馈赠)及6个甜玉米自交系(T21,研究室保存种质、T11,研究室保存种质、T12,研究室保存种质、T16,研究室保存种质、T39,研究室保存种质)进行再生能力的比较,甜玉米幼胚的诱导及分化能力比较如表1所示。In order to verify the technical route of the present invention, three sweet corn varieties (Xuetian 7401, purchased from Fujian Jinmiao Seed Industry, Zhetian 20, a gift from the Breeding Research Office of the Corn and Characteristic Dry Grain Research Institute, Zhejiang Academy of Agricultural Sciences, Zhejiang Taitian 928, a gift from the Cultivation Research Office of the Maize and Specialty Dry Grain Research Institute, Zhejiang Academy of Agricultural Sciences) and 6 sweet corn inbred lines (T21, germplasm preserved in the laboratory, T11, germplasm preserved in the laboratory, T12, germplasm preserved in the laboratory , T16, germplasm preserved in the laboratory, T39, germplasm preserved in the laboratory) were compared for regeneration ability. The induction and differentiation abilities of sweet corn immature embryos were compared as shown in Table 1.
步骤如下所示:The steps are as follows:
幼胚的培育:玉米开花后进行授粉,取授粉9-12d左右的雌穗,剥去玉米苞叶,用75%酒精表面消毒,再将棒子置于5%-10%的次氯酸钠中消毒2次,每次15min,取出后用灭菌水冲洗5次待用。Cultivation of young embryos: Pollination is carried out after corn blooms. Take the female ears about 9-12 days after pollination, peel off the corn bracts, surface sterilize with 75% alcohol, and then sterilize the cobs twice in 5%-10% sodium hypochlorite. , 15 minutes each time, rinse 5 times with sterilized water after taking out and set aside.
甜玉米幼胚愈伤组织的诱导培养体系的建立:用小刀将幼胚从果粒中剥下,置于液体诱导培养基中备用,待全部的幼胚剥取结束后,置换一次液体诱导培养基,置于灭菌的滤纸上,吸去多余的液体,吹干10-30min,直至表面无水渍,再将幼胚移至玉米诱导培养基上,26℃黑暗条件下培养14d,观察愈伤的诱导能力。Establishment of induction culture system for sweet corn immature embryo callus: Peel the immature embryos from the fruit kernels with a knife and place them in liquid induction medium for later use. After all immature embryos are peeled off, replace the liquid for induction culture. base, place it on sterilized filter paper, absorb the excess liquid, and blow dry for 10-30 minutes until there is no water stain on the surface. Then move the young embryos to the corn induction medium, culture them in the dark at 26°C for 14 days, and observe the healing Injury-inducing ability.
甜玉米愈伤组织的分化培养体系的建立:将诱导出来的愈伤继续继代2-3周后,将其置于玉米分化培养基上进行分化,期间每代2-3周左右,挑选生长旺盛的幼芽长到3-4cm左右高,转移到生根培养基上,放置于28℃光下进行培养2-3周左右。Establishment of the differentiation culture system of sweet corn callus: After the induced callus is subcultured for 2-3 weeks, it is placed on the corn differentiation medium for differentiation. During this period, each generation is about 2-3 weeks, and the growth is selected. The vigorous young shoots will grow to about 3-4cm in height, be transferred to the rooting medium, and placed under light at 28°C for about 2-3 weeks.
研究结果表明,在愈伤诱导及分化能力的关键指标上,雪甜7401比本省自主培育的品种(ZT20、ZTT928)及甜玉米自交系都更优秀(见表1)。Research results show that in key indicators of callus induction and differentiation ability, Xuetian 7401 is better than the province's independently cultivated varieties (ZT20, ZTT928) and sweet corn inbred lines (see Table 1).
表1不同甜玉米的再生能力比较Table 1 Comparison of regeneration abilities of different sweet corns
实施例2:TH44选育过程及同一世代不同株系转化再生效率的比较Example 2: TH44 breeding process and comparison of transformation and regeneration efficiency of different strains of the same generation
以HiII(浙江大学馈赠)与7401杂交后,再纯化分离出甜玉米自交系群体作为受体,挑选农艺性状优异的植株进行授粉,取授粉后9-12d的棒子,进行愈伤诱导及分化,方法同实施例1。After crossing HiII (a gift from Zhejiang University) and 7401, the sweet corn inbred line population was purified and isolated as the recipient. Plants with excellent agronomic properties were selected for pollination. The cobs 9-12 days after pollination were taken for callus induction and differentiation. , the method is the same as in Example 1.
研究结果表明,TH44的愈伤诱导及分化能力比其他甜玉米自交系都更好(见图3)。Research results show that TH44 has better callus induction and differentiation capabilities than other sweet corn inbred lines (see Figure 3).
实施例3:以TH44为转化受体,农杆菌介导的GFP遗传转化Example 3: Agrobacterium-mediated GFP genetic transformation using TH44 as the transformation receptor
农杆菌菌株EHA105及质粒载体用于甜玉米的遗传转化,该质粒的T-DNA结构图见图2。农杆菌转化甜玉米自交系TH44的程序如下:取授粉9-12d后的棒子,消毒后剥去种皮及部分胚乳,将所得的幼胚置于液体诱导培养基中,等全部取好后,置换一次新的液体诱导培养基,Agrobacterium strain EHA105 and plasmid vector are used for genetic transformation of sweet corn. The T-DNA structure of the plasmid is shown in Figure 2. The procedure for Agrobacterium transformation of sweet corn inbred line TH44 is as follows: take the cobs 9-12 days after pollination, remove the seed coat and part of the endosperm after disinfection, place the resulting young embryos in liquid induction medium, and wait until all are taken out. , replace with a new liquid induction medium,
接种于OD600=0.5的用共培养基悬浮的农杆菌菌液中,侵染10min后,将幼胚用无菌滤纸吸干幼胚表面的菌液,将幼胚置于含有共培养基的培养皿中,25℃共培养3d,将幼胚放入含有头孢(250mg/L)的无菌水中,冲洗3-5次,吸干表面的水渍,接到筛选培养基上,每2-3周继代一次,直到获得抗性愈伤。取甜玉米分化出来的抗性愈伤利用体式荧光显微镜检测GFP基因的瞬时表达。体视荧光显微镜型号为尼康L300,滤光片为GFP,激发光源为480nm波长的蓝光(图3)。Inoculate the Agrobacterium bacteria liquid suspended in co-culture medium with OD600=0.5. After infection for 10 minutes, use sterile filter paper to absorb the bacterial liquid on the surface of the young embryos, and place the young embryos in a culture medium containing co-culture media. Dish, co-culture for 3 days at 25°C, put the young embryos into sterile water containing cephalosporin (250mg/L), rinse 3-5 times, absorb the water stains on the surface, and connect it to the screening medium, every 2-3 Succession is carried out once every week until resistance and healing are obtained. The resistant callus differentiated from sweet corn was used to detect the transient expression of GFP gene using stereofluorescence microscopy. The stereofluorescence microscope model is Nikon L300, the filter is GFP, and the excitation light source is blue light with a wavelength of 480 nm (Figure 3).
本发明通过对不同的甜玉米品种再生能力进行初筛,再通过组织培养及遗传转化实验对不同的甜玉米品种转化能力进行再筛选,确定甜玉米品种雪甜7401的基因型适合遗传转化,但该品种的再生能力比较弱。申请人利用甜玉米品种雪甜7401与HiII杂交,再回交、连续自交等一系列过程培育出一个再生能力强、遗传转化效率高的甜玉米基因型材料,该甜玉米基因型是一种良好的转基因材料,申请人将这个基因型材料命名为TH44。该基因型材料TH44与其原始亲本雪甜7401相比较,其愈伤再生及转化效率均提高了2倍。利用TH44为转化受体,已将带有GFP的载体导入这个受体材料,并获得部分转基因T0代植株。The present invention preliminarily screens the regeneration abilities of different sweet corn varieties, and then re-screens the transformation abilities of different sweet corn varieties through tissue culture and genetic transformation experiments, and determines that the genotype of the sweet corn variety Xuetian 7401 is suitable for genetic transformation, but The regeneration ability of this variety is relatively weak. The applicant used the cross between the sweet corn variety Xuetian 7401 and HiII, followed by a series of processes such as backcrossing and continuous selfing to cultivate a sweet corn genotype material with strong regeneration ability and high genetic transformation efficiency. The sweet corn genotype is a A good genetically modified material, the applicant named this genotype material TH44. Compared with its original parent Xuetian 7401, the genotype material TH44 has twice the callus regeneration and transformation efficiency. Using TH44 as the transformation receptor, the vector carrying GFP has been introduced into this receptor material, and some transgenic T0 generation plants were obtained.
于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。It is obvious to those skilled in the art that the present invention is not limited to the details of the above-described exemplary embodiments, and the present invention can be implemented in other specific forms without departing from the spirit or essential characteristics of the present invention. Therefore, the embodiments should be regarded as illustrative and non-restrictive from any point of view, and the scope of the present invention is defined by the appended claims rather than the above description, and it is therefore intended that all claims falling within the claims All changes within the meaning and scope of equivalent elements are included in the present invention.
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。In addition, it should be understood that although this specification is described in terms of implementations, not each implementation only contains an independent technical solution. This description of the specification is only for the sake of clarity, and those skilled in the art should take the specification as a whole. , the technical solutions in each embodiment can also be appropriately combined to form other implementations that can be understood by those skilled in the art.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311545555.XA CN117322323A (en) | 2023-11-20 | 2023-11-20 | Method for improving regeneration and conversion efficiency of sweet corn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311545555.XA CN117322323A (en) | 2023-11-20 | 2023-11-20 | Method for improving regeneration and conversion efficiency of sweet corn |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117322323A true CN117322323A (en) | 2024-01-02 |
Family
ID=89293561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311545555.XA Pending CN117322323A (en) | 2023-11-20 | 2023-11-20 | Method for improving regeneration and conversion efficiency of sweet corn |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117322323A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090249514A1 (en) * | 2005-06-23 | 2009-10-01 | Basf Plant Science Gmbh | Improved Methods for the Production of Stably Transformed, Fertile Zea Mays Plants |
CN104745622A (en) * | 2013-12-27 | 2015-07-01 | 中国种子集团有限公司 | Efficient transgenic method for maize skeleton inbred lines |
CN105941163A (en) * | 2016-06-24 | 2016-09-21 | 浙江新安化工集团股份有限公司 | Breeding method of maize inbred line suitable for being used as transformation receptor |
CN107022561A (en) * | 2016-01-29 | 2017-08-08 | 中国种子集团有限公司 | Culture medium and cultural method for cultivating transgenic corns |
CN114303949A (en) * | 2021-12-30 | 2022-04-12 | 广东省农业科学院作物研究所 | Transformation method of super-sweet corn |
-
2023
- 2023-11-20 CN CN202311545555.XA patent/CN117322323A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090249514A1 (en) * | 2005-06-23 | 2009-10-01 | Basf Plant Science Gmbh | Improved Methods for the Production of Stably Transformed, Fertile Zea Mays Plants |
CN104745622A (en) * | 2013-12-27 | 2015-07-01 | 中国种子集团有限公司 | Efficient transgenic method for maize skeleton inbred lines |
CN107022561A (en) * | 2016-01-29 | 2017-08-08 | 中国种子集团有限公司 | Culture medium and cultural method for cultivating transgenic corns |
CN105941163A (en) * | 2016-06-24 | 2016-09-21 | 浙江新安化工集团股份有限公司 | Breeding method of maize inbred line suitable for being used as transformation receptor |
CN114303949A (en) * | 2021-12-30 | 2022-04-12 | 广东省农业科学院作物研究所 | Transformation method of super-sweet corn |
Non-Patent Citations (1)
Title |
---|
陈莉等: "甜玉米幼胚愈伤组织诱导及植株再生研究", 《江苏农业科学》, no. 6, 15 December 2009 (2009-12-15), pages 70 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3865264B2 (en) | Improved Zea Maze L genotype with long-term, highly efficient plant regeneration ability | |
Yang et al. | Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.) | |
EP3594349A1 (en) | Method for epigenetically manipulating plant phenotypic plasticity | |
CN1124563A (en) | Introduction of a fertility restorer gene and preparation of F therefrom1Method for hybridizing Brassica plants | |
RU2054482C1 (en) | Method of transformation of plant multiplying by pollination | |
Agarwal et al. | Comparison of genetic transformation in Morus alba L. via different regeneration systems | |
CN107517850A (en) | A kind of haploid method for creating of muskmelon | |
García-Sogo et al. | Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation | |
CN102217533A (en) | Method for preparing corn type II embryogenic calli | |
CN101186910B (en) | Transgene method for peanut | |
CN114303949A (en) | Transformation method of super-sweet corn | |
CN111235159B (en) | Application of MYB61 Gene in Breeding of Brassica napus | |
Cervera et al. | Genetic transformation of mature citrus plants | |
Derks et al. | Prolongation of vase life of cut roses via introduction of genes coding for antibacterial activity. Somatic embryogenesis and Agrobacterium-mediated transformation. | |
CN111543326B (en) | A method for asexual propagation of Admirallum vine | |
He et al. | Overcoming key technical challenges in the genetic transformation of pineapple | |
CN113604497A (en) | Genetic transformation method of gramineous plants | |
CN105802901A (en) | Medium for preparing embryonic callus of cotton, kit and application thereof | |
Ishizaka | Production of microspore-derived plants by anther culture of an interspecific F1 hybrid between Cyclamen persicum and C. purpurascens | |
US20130025003A1 (en) | Sorghum transformation | |
CN115119748B (en) | Method for obtaining water horn homozygote through in vitro culture | |
Van den Bulk et al. | Induction of embryogenesis in isolated microspores of tulip | |
CN117322323A (en) | Method for improving regeneration and conversion efficiency of sweet corn | |
CN116004705B (en) | Creation method and application of a corn gene editing induced line without genotype restrictions | |
Spitkó et al. | Haploid regeneration aptitude of maize (Zea mays L.) lines of various origin and of their hybrids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |