CN117315164B - Optical waveguide holographic display method, device, equipment and storage medium - Google Patents
Optical waveguide holographic display method, device, equipment and storage medium Download PDFInfo
- Publication number
- CN117315164B CN117315164B CN202311594693.7A CN202311594693A CN117315164B CN 117315164 B CN117315164 B CN 117315164B CN 202311594693 A CN202311594693 A CN 202311594693A CN 117315164 B CN117315164 B CN 117315164B
- Authority
- CN
- China
- Prior art keywords
- data
- optical waveguide
- image
- perform
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/22—Processes or apparatus for obtaining an optical image from holograms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/521—Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
- G03H1/0005—Adaptation of holography to specific applications
- G03H2001/0088—Adaptation of holography to specific applications for video-holography, i.e. integrating hologram acquisition, transmission and display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/08—Indexing scheme for image data processing or generation, in general involving all processing steps from image acquisition to 3D model generation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Graphics (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Multimedia (AREA)
- Optics & Photonics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Holo Graphy (AREA)
Abstract
Description
技术领域Technical field
本发明涉及图像处理技术领域,尤其涉及一种光波导全息显示方法、装置、设备及存储介质。The present invention relates to the technical field of image processing, and in particular to an optical waveguide holographic display method, device, equipment and storage medium.
背景技术Background technique
随着科技的不断进步和人们对更逼真、沉浸式视觉体验的需求不断增长,全息影像技术在虚拟现实、医学成像、远程教育以及娱乐等领域变得越来越重要。上述技术涵盖了一系列步骤,包括三维图像数据的获取和编码、衍射条纹分布数据的处理、光波导传输、图像立体信息构建以及全息图像的生成和传输。三维图像数据的获取可以涉及使用激光扫描、摄像机、深度传感器等设备来捕获真实世界中的三维信息。编码和处理这些数据有助于减小数据量,降低传输和存储成本。光波导技术的使用可帮助有效传输衍射条纹分布数据,从而实现了高质量的全息影像展示。这些技术在虚拟现实应用中提供了更真实感的体验,在医学领域中有助于可视化解剖结构,以及在教育和远程会议中提供了更生动的交流方式。With the continuous advancement of technology and people's growing demand for more realistic and immersive visual experiences, holographic imaging technology is becoming increasingly important in fields such as virtual reality, medical imaging, distance education, and entertainment. The above technology covers a series of steps, including the acquisition and encoding of three-dimensional image data, the processing of diffraction fringe distribution data, optical waveguide transmission, image stereoscopic information construction, and the generation and transmission of holographic images. The acquisition of 3D image data can involve the use of laser scanning, cameras, depth sensors, and other devices to capture 3D information in the real world. Encoding and processing this data helps reduce data size and transmission and storage costs. The use of optical waveguide technology can help effectively transmit diffraction fringe distribution data, thereby achieving high-quality holographic image display. These technologies provide a more realistic experience in virtual reality applications, help visualize anatomical structures in the medical field, and provide more vivid communication methods in education and remote conferencing.
尽管上述技术在提供沉浸式体验和高质量图像展示方面取得了显著进展,但仍然存在一些不足之处:处理三维图像数据、深度信息以及全息图像构建需要大量的计算资源和算法支持。这对硬件和软件的要求较高,限制了技术的广泛应用。高分辨率的全息图像需要大量的数据传输和存储空间。传输时需要高带宽通信,存储时需要大容量存储设备,这增加了成本。一些应用需要实时的图像生成和传输,这对技术的性能提出了更高要求。延迟会降低用户体验,尤其是在虚拟现实和增强现实应用中。Although the above technologies have made significant progress in providing immersive experience and high-quality image display, there are still some shortcomings: processing three-dimensional image data, depth information, and holographic image construction requires a large amount of computing resources and algorithm support. This has high requirements on hardware and software, limiting the wide application of the technology. High-resolution holographic images require large amounts of data transmission and storage space. High-bandwidth communication is required for transmission and large-capacity storage devices are required for storage, which increases costs. Some applications require real-time image generation and transmission, which places higher demands on the performance of the technology. Latency can degrade user experience, especially in virtual reality and augmented reality applications.
发明内容Contents of the invention
本发明提供了一种光波导全息显示方法、装置、设备及存储介质,用于提高光波导全息显示的准确率。The invention provides an optical waveguide holographic display method, device, equipment and storage medium, which are used to improve the accuracy of optical waveguide holographic display.
本发明第一方面提供了一种光波导全息显示方法,所述光波导全息显示方法包括:A first aspect of the present invention provides an optical waveguide holographic display method. The optical waveguide holographic display method includes:
获取预置的三维图像数据,并对所述三维图像数据进行编码处理,得到所述三维图像数据对应的衍射条纹分布数据;Obtain preset three-dimensional image data, and perform encoding processing on the three-dimensional image data to obtain diffraction fringe distribution data corresponding to the three-dimensional image data;
通过预置的光波导装置对所述衍射条纹分布数据进行位置传输,得到对应的光波导投影数据;Positionally transmit the diffraction fringe distribution data through a preset optical waveguide device to obtain corresponding optical waveguide projection data;
对所述光波导投影数据进行图像立体信息构建,得到所述光波导投影数据的图像立体信息;Construct image stereoscopic information on the optical waveguide projection data to obtain image stereoscopic information of the optical waveguide projection data;
基于所述图像立体信息对所述光波导投影数据进行全息图像构建,得到对应的目标全息影像并传输至预置的图像展示终端。Based on the image stereoscopic information, a holographic image is constructed on the optical waveguide projection data to obtain a corresponding target holographic image and transmit it to a preset image display terminal.
结合第一方面,在本发明第一方面的第一实施方式中,所述获取预置的三维图像数据,并对所述三维图像数据进行编码处理,得到所述三维图像数据对应的衍射条纹分布数据,包括:In conjunction with the first aspect, in a first implementation manner of the first aspect of the present invention, preset three-dimensional image data is obtained, and the three-dimensional image data is encoded to obtain a diffraction fringe distribution corresponding to the three-dimensional image data. Data, including:
获取所述三维图像数据,对所述三维图像数据进行视点提取,得到所述三维图像数据的多个视点信息;Obtain the three-dimensional image data, perform viewpoint extraction on the three-dimensional image data, and obtain multiple viewpoint information of the three-dimensional image data;
基于多个所述视点信息,对所述三维图像数据进行坐标系校正,得到校正三维图像数据;Based on the plurality of viewpoint information, perform coordinate system correction on the three-dimensional image data to obtain corrected three-dimensional image data;
对所述校正三维图像数据进行数据对齐处理,得到对齐三维图像数据;Perform data alignment processing on the corrected three-dimensional image data to obtain aligned three-dimensional image data;
对所述对齐三维图像数据进行编码处理,得到所述衍射条纹分布数据。The aligned three-dimensional image data is encoded to obtain the diffraction fringe distribution data.
结合第一方面的第一实施方式,在本发明第一方面的第二实施方式中,所述对所述对齐三维图像数据进行编码处理,得到所述衍射条纹分布数据,包括:With reference to the first implementation of the first aspect, in the second implementation of the first aspect of the present invention, the encoding process on the aligned three-dimensional image data to obtain the diffraction fringe distribution data includes:
对所述对齐三维图像数据进行深度信息提取,得到深度信息集合;Extract depth information from the aligned three-dimensional image data to obtain a depth information set;
对所述深度信息集合进行相位数据分析,得到对应的相位数据集合;Perform phase data analysis on the depth information set to obtain a corresponding phase data set;
对所述对齐三维图像数据进行物体目标检测,得到至少一个目标物体;Perform object target detection on the aligned three-dimensional image data to obtain at least one target object;
对至少一个目标物体进行亮度分析,得到亮度数据;Perform brightness analysis on at least one target object to obtain brightness data;
基于所述亮度数据,对至少一个所述目标物体进行振幅数据分析,得到对应的振幅数据集合;Based on the brightness data, perform amplitude data analysis on at least one of the target objects to obtain a corresponding amplitude data set;
对所述相位数据集合以及所述振幅数据集合进行数据合并,得到对应的合并数据;Perform data merging on the phase data set and the amplitude data set to obtain corresponding merged data;
对所述合并数据进行数据转换,得到所述衍射条纹分布数据。Perform data conversion on the merged data to obtain the diffraction fringe distribution data.
结合第一方面,在本发明第一方面的第三实施方式中,所述通过预置的光波导装置对所述衍射条纹分布数据进行位置传输,得到对应的光波导投影数据,包括:In conjunction with the first aspect, in a third embodiment of the first aspect of the present invention, the position transmission of the diffraction fringe distribution data through a preset optical waveguide device is performed to obtain corresponding optical waveguide projection data, including:
通过所述光波导装置对所述衍射条纹分布数据进行传输路径分析,得到初始传输路径;Perform transmission path analysis on the diffraction fringe distribution data through the optical waveguide device to obtain an initial transmission path;
对所述初始传输路径进行路径数据修正,得到目标传输路径;Perform path data correction on the initial transmission path to obtain the target transmission path;
基于所述目标传输路径以及所述衍射条纹分布数据,将预设的光信号传输至所述光波导装置进行位置传输;Based on the target transmission path and the diffraction fringe distribution data, transmit a preset optical signal to the optical waveguide device for position transmission;
通过预置的光学传感器采集在位置传输后的光信号数据,并对所述光信号数据进行分析,得到所述光波导投影数据。The optical signal data after position transmission is collected through a preset optical sensor, and the optical signal data is analyzed to obtain the optical waveguide projection data.
结合第一方面,在本发明第一方面的第四实施方式中,所述对所述光波导投影数据进行图像立体信息构建,得到所述光波导投影数据的图像立体信息,包括:In conjunction with the first aspect, in a fourth embodiment of the first aspect of the present invention, the construction of image stereoscopic information on the optical waveguide projection data to obtain the image stereoscopic information of the optical waveguide projection data includes:
对所述光波导投影数据进行图像深度计算,得到所述光波导投影数据对应的像素深度数据;Perform image depth calculation on the optical waveguide projection data to obtain pixel depth data corresponding to the optical waveguide projection data;
通过所述像素深度数据对所述光波导投影数据进行像素对匹配,得到多个目标像素对;Perform pixel pair matching on the optical waveguide projection data using the pixel depth data to obtain multiple target pixel pairs;
对每个所述目标像素对进行视差值计算,得到多个视差值;Perform disparity value calculation on each target pixel pair to obtain multiple disparity values;
通过多个所述视差值对所述光波导投影数据进行视差图生成,得到对应的目标视差图集;Generate a disparity map on the optical waveguide projection data using a plurality of the disparity values to obtain a corresponding target disparity map set;
通过预置的立体视觉算法对所述目标视差图集进行深度反投影,得到所述光波导投影数据的图像立体信息。The target disparity atlas is depth back-projected through a preset stereo vision algorithm to obtain the image stereo information of the optical waveguide projection data.
结合第一方面,在本发明第一方面的第五实施方式中,所述通过预置的立体视觉算法对所述目标视差图集进行深度反投影,得到所述光波导投影数据的图像立体信息,包括:In conjunction with the first aspect, in a fifth embodiment of the first aspect of the present invention, the target disparity atlas is depth back-projected through a preset stereo vision algorithm to obtain image stereo information of the optical waveguide projection data ,include:
通过所述立体视觉算法对所述目标视差图集中每个目标视差图进行深度值转换,得到每个所述目标视差图的深度值;Use the stereoscopic vision algorithm to perform depth value conversion on each target disparity map in the target disparity map set to obtain the depth value of each target disparity map;
基于每个所述目标视差图的深度值,对每个所述目标视差图进行二值化处理,得到多个深度二值化图;Based on the depth value of each target disparity map, perform binarization processing on each target disparity map to obtain multiple depth binarized maps;
对每个深度二值化图进行像素坐标转换,得到多个转换二值化图;Perform pixel coordinate conversion on each depth binarized image to obtain multiple converted binarized images;
对多个所述转换二值化图进行三维坐标计算,得到三维坐标集合;Perform three-dimensional coordinate calculations on a plurality of the converted binarized maps to obtain a three-dimensional coordinate set;
基于所述三维坐标集合对所述目标视差图集进行深度反投影,得到所述光波导投影数据的图像立体信息。Depth back-projection is performed on the target disparity atlas based on the three-dimensional coordinate set to obtain image stereoscopic information of the optical waveguide projection data.
结合第一方面,在本发明第一方面的第六实施方式中,所述基于所述图像立体信息对所述光波导投影数据进行全息图像构建,得到对应的目标全息影像并传输至预置的图像展示终端,包括:In conjunction with the first aspect, in a sixth embodiment of the first aspect of the present invention, the optical waveguide projection data is constructed with a holographic image based on the image stereoscopic information, and a corresponding target holographic image is obtained and transmitted to a preset Image display terminal, including:
对所述图像立体信息进行反射光场分析,得到对应的目标反射光场;Perform reflected light field analysis on the three-dimensional information of the image to obtain the corresponding target reflected light field;
基于所述目标反射光场,对所述光波导投影数据进行左右眼图像分割,得到对应的左眼图像集合以及右眼图像集合;Based on the target reflected light field, perform left-eye image segmentation on the optical waveguide projection data to obtain a corresponding left-eye image set and a right-eye image set;
对所述左眼图像集合以及所述右眼图像集合进行全息图像构建,得到所述目标全息影像;Perform holographic image construction on the left eye image set and the right eye image set to obtain the target holographic image;
对所述目标全息影像进行数据编码,得到编码影像数据;Perform data encoding on the target holographic image to obtain encoded image data;
对所述编码影像数据进行传输通道匹配,得到多个数据传输通道;Perform transmission channel matching on the encoded image data to obtain multiple data transmission channels;
基于多个所述数据传输通道,对所述编码影像数据进行全息图像构建,得到所述目标全息影像并传输至所述图像展示终端。Based on the plurality of data transmission channels, a holographic image is constructed on the encoded image data to obtain the target holographic image and transmit it to the image display terminal.
本发明第二方面提供了一种光波导全息显示装置,所述光波导全息显示装置包括:A second aspect of the present invention provides an optical waveguide holographic display device. The optical waveguide holographic display device includes:
获取模块,用于获取预置的三维图像数据,并对所述三维图像数据进行编码处理,得到所述三维图像数据对应的衍射条纹分布数据;An acquisition module is used to acquire preset three-dimensional image data, encode the three-dimensional image data, and obtain diffraction fringe distribution data corresponding to the three-dimensional image data;
传输模块,用于通过预置的光波导装置对所述衍射条纹分布数据进行位置传输,得到对应的光波导投影数据;A transmission module, used to positionally transmit the diffraction fringe distribution data through a preset optical waveguide device to obtain corresponding optical waveguide projection data;
第一构建模块,用于对所述光波导投影数据进行图像立体信息构建,得到所述光波导投影数据的图像立体信息;The first building module is used to construct image stereoscopic information on the optical waveguide projection data to obtain the image stereoscopic information of the optical waveguide projection data;
第二构建模块,用于基于所述图像立体信息对所述光波导投影数据进行全息图像构建,得到对应的目标全息影像并传输至预置的图像展示终端。The second building module is used to construct a holographic image on the optical waveguide projection data based on the image stereoscopic information, obtain the corresponding target holographic image and transmit it to a preset image display terminal.
本发明第三方面提供了一种光波导全息显示设备,包括:存储器和至少一个处理器,所述存储器中存储有指令;所述至少一个处理器调用所述存储器中的所述指令,以使得所述光波导全息显示设备执行上述的光波导全息显示方法。A third aspect of the present invention provides an optical waveguide holographic display device, including: a memory and at least one processor, with instructions stored in the memory; and the at least one processor calls the instructions in the memory, so that The optical waveguide holographic display device performs the above-mentioned optical waveguide holographic display method.
本发明的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述的光波导全息显示方法。A fourth aspect of the present invention provides a computer-readable storage medium. Instructions are stored in the computer-readable storage medium. When run on a computer, the computer is caused to execute the above optical waveguide holographic display method.
本发明提供的技术方案中,获取预置的三维图像数据,并对三维图像数据进行编码处理,得到三维图像数据对应的衍射条纹分布数据;通过预置的光波导装置对衍射条纹分布数据进行位置传输,得到对应的光波导投影数据;对光波导投影数据进行图像立体信息构建,得到光波导投影数据的图像立体信息;基于图像立体信息对光波导投影数据进行全息图像构建,得到对应的目标全息影像并传输至预置的图像展示终端。在本申请方案中,通过获取三维图像数据和衍射条纹分布数据,然后结合光波导技术进行位置传输,可以实现高质量的全息影像展示。这样的展示能够呈现高分辨率、深度感和立体效果,为观众提供更加沉浸式的视觉体验。对三维图像数据进行编码处理有助于压缩和优化数据,从而减少传输和存储开销。这可以提高效率并降低资源成本。In the technical solution provided by the present invention, preset three-dimensional image data is obtained, and the three-dimensional image data is encoded to obtain diffraction fringe distribution data corresponding to the three-dimensional image data; the diffraction fringe distribution data is positioned through a preset optical waveguide device. Transmit and obtain the corresponding optical waveguide projection data; construct the image stereoscopic information of the optical waveguide projection data to obtain the image stereoscopic information of the optical waveguide projection data; construct the holographic image of the optical waveguide projection data based on the image stereoscopic information to obtain the corresponding target hologram images and transmit them to the preset image display terminal. In this application solution, high-quality holographic image display can be achieved by acquiring three-dimensional image data and diffraction fringe distribution data, and then combining optical waveguide technology for position transmission. Such displays can present high resolution, depth and three-dimensional effects, providing viewers with a more immersive visual experience. Encoding 3D image data helps compress and optimize the data, thereby reducing transmission and storage overhead. This increases efficiency and reduces resource costs.
附图说明Description of drawings
图1为本发明实施例中光波导全息显示方法的一个实施例示意图;Figure 1 is a schematic diagram of an embodiment of an optical waveguide holographic display method in an embodiment of the present invention;
图2为本发明实施例中对对齐三维图像数据进行编码处理的流程图;Figure 2 is a flow chart for encoding aligned three-dimensional image data in an embodiment of the present invention;
图3为本发明实施例中通过预置的光波导装置对衍射条纹分布数据进行位置传输的流程图;Figure 3 is a flow chart of position transmission of diffraction fringe distribution data through a preset optical waveguide device in an embodiment of the present invention;
图4为本发明实施例中对光波导投影数据进行图像立体信息构建的流程图;Figure 4 is a flow chart for constructing image stereoscopic information on optical waveguide projection data in an embodiment of the present invention;
图5为本发明实施例中光波导全息显示装置的一个实施例示意图;Figure 5 is a schematic diagram of an embodiment of an optical waveguide holographic display device in an embodiment of the present invention;
图6为本发明实施例中光波导全息显示设备的一个实施例示意图。Figure 6 is a schematic diagram of an embodiment of an optical waveguide holographic display device in an embodiment of the present invention.
具体实施方式Detailed ways
本发明实施例提供了一种光波导全息显示方法、装置、设备及存储介质,用于提高光波导全息显示的准确率。Embodiments of the present invention provide an optical waveguide holographic display method, device, equipment and storage medium for improving the accuracy of optical waveguide holographic display.
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。The terms "first", "second", "third", "fourth", etc. (if present) in the description and claims of the present invention and the above-mentioned drawings are used to distinguish similar objects without necessarily using Used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments described herein can be practiced in sequences other than those illustrated or described herein. In addition, the terms "comprising" or "having" and any variations thereof are intended to cover non-exclusive inclusions, e.g., processes, methods, systems, products, or devices that comprise a series of steps or units and are not necessarily limited to those expressly listed. steps or units, but may include other steps or units not expressly listed or inherent to such processes, methods, products or apparatuses.
为便于理解,下面对本发明实施例的具体流程进行描述,请参阅图1,本发明实施例中光波导全息显示方法的一个实施例包括:For ease of understanding, the specific process of the embodiment of the present invention is described below. Please refer to Figure 1. One embodiment of the optical waveguide holographic display method in the embodiment of the present invention includes:
S101、获取预置的三维图像数据,并对三维图像数据进行编码处理,得到三维图像数据对应的衍射条纹分布数据;S101. Obtain preset three-dimensional image data, encode the three-dimensional image data, and obtain diffraction fringe distribution data corresponding to the three-dimensional image data;
可以理解的是,本发明的执行主体可以为光波导全息显示装置,还可以是终端或者服务器,具体此处不做限定。本发明实施例以服务器为执行主体为例进行说明。It can be understood that the execution subject of the present invention can be an optical waveguide holographic display device, or a terminal or a server, and the details are not limited here. The embodiment of the present invention is explained by taking the server as the execution subject as an example.
具体的,获取三维图像数据。这些数据可以来自不同的源,如三维扫描、计算机生成的模型或其他三维成像技术。这些数据包含了物体的三维信息,但通常需要进一步处理,以便在全息显示中使用。进行视点提取。从三维图像数据中提取多个视点信息。视点可以理解为观察对象的不同角度和位置。通过从三维数据中提取多个视点信息,服务器模拟出从不同角度观察对象的效果。基于多个视点信息,进行坐标系校正。这是为了确保各个视点之间的一致性和准确性。坐标系校正的过程涉及将不同视点的数据对齐,以使它们在全息图像中能够正确叠加,创造出一个完整的三维效果。这可以通过数学变换和坐标系调整来实现。进行数据对齐处理。一旦视点信息被校正,需要对齐这些信息以获得一致的三维表示。这涉及到处理不同视点之间的数据重叠和融合,以确保在最终的全息图像中没有不一致或不协调的元素。进行编码处理。对对齐的三维图像数据进行编码,以生成衍射条纹分布数据。这是全息显示的核心部分,其中对三维信息进行编码以创建衍射图案,这些图案将在光波导装置中使用,以形成最终的全息影像。Specifically, three-dimensional image data is obtained. This data can come from different sources such as 3D scans, computer-generated models or other 3D imaging techniques. This data contains three-dimensional information about the object, but often requires further processing for use in holographic displays. Perform viewpoint extraction. Extract multiple viewpoint information from three-dimensional image data. Viewpoints can be understood as different angles and positions from which objects are observed. By extracting multiple viewpoint information from three-dimensional data, the server simulates the effect of observing objects from different angles. Based on multiple viewpoint information, coordinate system correction is performed. This is to ensure consistency and accuracy across viewpoints. The process of coordinate system correction involves aligning data from different viewpoints so that they can be correctly superimposed in the holographic image, creating a complete three-dimensional effect. This can be achieved through mathematical transformations and coordinate system adjustments. Perform data alignment processing. Once the viewpoint information is corrected, this information needs to be aligned to obtain a consistent three-dimensional representation. This involves handling the overlap and fusion of data between different viewpoints to ensure there are no inconsistent or discordant elements in the final holographic image. Carry out encoding processing. The aligned three-dimensional image data is encoded to generate diffraction fringe distribution data. This is a core part of a holographic display, where three-dimensional information is encoded to create diffraction patterns that will be used in an optical waveguide device to form the final holographic image.
其中,服务器对对齐的三维图像数据进行深度信息提取。获取与每个像素点的深度相关的信息,以获得深度信息集合。深度信息是三维场景的关键,因为它确定了不同物体和元素之间的距离关系。进行相位数据分析。通过分析深度信息,服务器计算每个像素点的相位信息,这些相位信息将用于后续的编码过程。相位数据是光波导全息显示的关键组成部分,它决定了图像的光程差,从而影响光的干涉和衍射效果。同时,进行物体目标检测。在三维图像中,存在多个目标物体,如人、建筑物或其他物体。物体目标检测的任务是确定图像中存在的目标物体并提取相关信息。这可以通过计算机视觉技术和深度学习算法来实现。接下来是亮度分析。对检测到的目标物体进行亮度分析是为了确定它们在图像中的亮度或亮度分布。这有助于识别目标物体的明亮部分和暗部分,这些信息将在后续振幅数据分析中使用。基于亮度数据,进行振幅数据分析。计算目标物体的振幅信息,即它们的明暗变化。振幅数据反映了物体表面的反射或透射特性,这对于光波导全息显示至关重要。进行数据合并。将相位数据和振幅数据合并在一起,以生成对应的合并数据。这些合并数据包含了物体的相位和振幅信息,为最终的全息图像创建提供了必要的数据。进行数据转换。对合并数据进行必要的数学和计算操作,以生成衍射条纹分布数据。这些数据将用于生成全息图像,通过光波导技术将图像投影到观众的眼睛中,以呈现逼真的三维效果。Among them, the server extracts depth information from the aligned three-dimensional image data. Obtain information related to the depth of each pixel to obtain a depth information set. Depth information is key to three-dimensional scenes because it determines the distance relationships between different objects and elements. Perform phase data analysis. By analyzing the depth information, the server calculates the phase information of each pixel, which will be used in the subsequent encoding process. Phase data is a key component of optical waveguide holographic displays. It determines the optical path difference of the image, thereby affecting the interference and diffraction effects of light. At the same time, object detection is performed. In a three-dimensional image, there are multiple target objects, such as people, buildings or other objects. The task of object detection is to determine the target objects present in the image and extract relevant information. This can be achieved through computer vision technology and deep learning algorithms. Next is brightness analysis. Luminance analysis of detected target objects is performed to determine their brightness or brightness distribution in the image. This helps identify bright and dark parts of the target object, information that will be used in subsequent amplitude data analysis. Based on the brightness data, amplitude data analysis is performed. Calculate the amplitude information of target objects, that is, their light and dark changes. The amplitude data reflects the reflection or transmission properties of the object surface, which is crucial for optical waveguide holographic displays. Perform data merging. Phase data and amplitude data are merged together to generate corresponding merged data. This combined data contains phase and amplitude information about the object, providing the necessary data for the creation of the final holographic image. Perform data conversion. Perform the necessary mathematical and computational operations on the merged data to generate diffraction fringe distribution data. This data will be used to generate holographic images, which will be projected into the viewer's eyes through optical waveguide technology to present a realistic three-dimensional effect.
S102、通过预置的光波导装置对衍射条纹分布数据进行位置传输,得到对应的光波导投影数据;S102. Positionally transmit the diffraction fringe distribution data through the preset optical waveguide device to obtain the corresponding optical waveguide projection data;
具体的,通过光波导装置对衍射条纹分布数据进行传输路径分析。这是为了确定如何将衍射条纹分布数据传输到光波导装置。传输路径分析考虑了光波导装置的几何形状、材质和光传输特性,以确保数据以最佳方式传输。对初始传输路径进行路径数据修正。初始传输路径需要根据光波导装置的实际条件和需求进行微调。这包括调整传输角度、入射位置或其他参数,以确保数据能够有效地进入光波导装置。基于目标传输路径以及衍射条纹分布数据,将预设的光信号传输至光波导装置进行位置传输。这是将数据导入光波导装置的关键步骤。光信号通过激光或其他光源生成,并按照目标传输路径进行导向,以便与光波导装置交互。随后,通过预置的光学传感器采集在位置传输后的光信号数据。这个传感器可以是摄像头、光探测器或其他光学设备,用于捕捉数据在光波导装置内的行为和变化。对光信号数据进行分析,以获得光波导投影数据。这个分析过程涉及解读从光波导装置反射、折射或传输回的光信号,以还原出最终的全息图像或投影数据。例如,假设在光波导全息显示设备上显示一个三维旋转的立方体。服务器进行传输路径分析,以确定如何将衍射条纹分布数据传输到光波导装置,考虑光波导装置的形状和特性。服务器调整初始传输路径,确保数据以最佳方式进入光波导装置。服务器生成预设的光信号,如激光束,按照目标传输路径将其导向光波导装置。这个光信号与衍射条纹分布数据交互,产生了干涉和折射效应。使用预置的光学传感器,服务器捕捉在光波导装置内发生的光信号变化。这包括了经过光波导装置后的光的干涉模式和折射效应。通过分析光信号数据,服务器还原出光波导投影数据,这将用于生成最终的全息图像,观众可以在光波导装置上观看到旋转的三维立方体。这个过程确保了数据的准确传输和最终呈现。Specifically, the transmission path analysis of the diffraction fringe distribution data is performed through the optical waveguide device. This is to determine how to transmit diffraction fringe distribution data to an optical waveguide device. Transmission path analysis takes into account the geometry, material, and light transmission characteristics of the optical waveguide device to ensure that data is transmitted optimally. Perform path data correction on the initial transmission path. The initial transmission path needs to be fine-tuned based on the actual conditions and needs of the optical waveguide device. This includes adjusting transmission angle, incidence position, or other parameters to ensure data can effectively enter the optical waveguide device. Based on the target transmission path and diffraction fringe distribution data, the preset optical signal is transmitted to the optical waveguide device for position transmission. This is a critical step in getting data into optical waveguide devices. Optical signals are generated by lasers or other light sources and directed along targeted transmission paths for interaction with optical waveguide devices. Subsequently, the optical signal data after position transmission is collected through a preset optical sensor. This sensor can be a camera, light detector, or other optical device that captures the behavior and changes of data within the optical waveguide device. The optical signal data is analyzed to obtain optical waveguide projection data. This analysis process involves interpreting light signals reflected, refracted or transmitted back from the optical waveguide device to restore the final holographic image or projection data. For example, assume that a three-dimensional rotating cube is displayed on an optical waveguide holographic display device. The server performs transmission path analysis to determine how to transmit the diffraction fringe distribution data to the optical waveguide device, taking into account the shape and characteristics of the optical waveguide device. The server adjusts the initial transmission path to ensure that the data enters the optical waveguide device in the best possible way. The server generates a preset optical signal, such as a laser beam, and directs it to the optical waveguide device according to the target transmission path. This optical signal interacts with the diffraction fringe distribution data, producing interference and refraction effects. Using pre-installed optical sensors, the server captures the changes in optical signals that occur within the optical waveguide device. This includes the interference patterns and refraction effects of light after passing through the optical waveguide device. By analyzing the light signal data, the server restores the light waveguide projection data, which will be used to generate the final holographic image, and the audience can view the rotating three-dimensional cube on the light waveguide device. This process ensures the accurate transmission and final presentation of data.
S103、对光波导投影数据进行图像立体信息构建,得到光波导投影数据的图像立体信息;S103. Construct image stereoscopic information on the optical waveguide projection data to obtain the image stereoscopic information of the optical waveguide projection data;
具体的,对光波导投影数据进行图像深度计算。计算每个像素点在场景中的深度或距离信息。深度数据是为了确定不同像素点之间的距离关系,这有助于创建图像的立体感。通过像素深度数据进行像素对匹配。目的是寻找在不同视点中对应的像素对,即相同的像素在不同视点中的位置。像素对匹配是为了建立不同视点之间的联系,以实现立体效果。随后,对每个目标像素对进行视差值计算。视差是指在不同视点之间像素位置的差异。视差值计算是为了确定不同像素对之间的视差,即它们在不同视点之间的偏移。通过多个视差值,进行视差图生成。这是将视差信息可视化的过程,它通常生成一个称为"视差图"的图像,其中每个像素表示了在不同视点之间的视差值。视差图是立体视觉中的重要工具,用于模拟深度感。通过预置的立体视觉算法对目标视差图集进行深度反投影。深度反投影是将视差信息转换回三维深度信息的过程,即将像素的视差值映射回深度或距离。这样,服务器获得了光波导投影数据的图像立体信息,使服务器能够呈现逼真的三维效果。例如,假设需要显示一个人物立体图像,服务器首先获取了光波导投影数据。服务器计算每个像素的深度,以了解人物不同部分的距离。进行像素对匹配,以找到在不同视点中对应的像素对,例如,左眼和右眼视点中的相同像素。计算每个像素对之间的视差,即它们之间的偏移。通过多个视差值,生成视差图,它显示了不同像素的深度信息。通过立体视觉算法进行深度反投影,将视差信息转化为三维深度信息,从而创建了人物的图像立体信息,使观众能够看到具有深度感的立体图像。这一过程为全息显示提供了逼真的三维效果。Specifically, image depth calculation is performed on the optical waveguide projection data. Calculate the depth or distance information of each pixel in the scene. Depth data is used to determine the distance relationship between different pixels, which helps create a three-dimensional feel to the image. Pixel pair matching via pixel depth data. The purpose is to find corresponding pixel pairs in different viewpoints, that is, the positions of the same pixels in different viewpoints. Pixel pair matching is to establish a connection between different viewpoints to achieve a three-dimensional effect. Subsequently, the disparity value is calculated for each target pixel pair. Parallax refers to the difference in pixel positions between different viewpoints. The disparity value is calculated to determine the disparity between different pairs of pixels, that is, their offset between different viewpoints. Generate a disparity map through multiple disparity values. This is the process of visualizing disparity information, which typically produces an image called a "disparity map" where each pixel represents the disparity value between different viewpoints. Disparity maps are an important tool in stereovision for simulating the perception of depth. Depth backprojection of the target disparity atlas via a preset stereo vision algorithm. Depth backprojection is the process of converting disparity information back to three-dimensional depth information, that is, mapping the disparity value of a pixel back to depth or distance. In this way, the server obtains the image stereoscopic information of the optical waveguide projection data, enabling the server to present realistic three-dimensional effects. For example, assuming that a three-dimensional image of a person needs to be displayed, the server first obtains the optical waveguide projection data. The server calculates the depth of each pixel to understand how far away different parts of the character are. Pixel pair matching is performed to find pairs of pixels that correspond in different viewpoints, for example, the same pixels in the left and right eye viewpoints. Calculate the disparity between each pair of pixels, i.e. the offset between them. Through multiple disparity values, a disparity map is generated, which shows the depth information of different pixels. Depth back-projection is performed through a stereoscopic vision algorithm to convert parallax information into three-dimensional depth information, thereby creating image stereoscopic information of the character, allowing the audience to see a stereoscopic image with a sense of depth. This process provides a realistic three-dimensional effect to the holographic display.
其中,通过立体视觉算法对目标视差图集中的每个目标视差图进行深度值转换。目的是将视差信息转化为实际的深度值。每个目标视差图中的像素点表示了在不同视点之间的视差,通过算法将这些视差值转化为深度值,即像素到物体表面的距离。基于每个目标视差图的深度值,对每个目标视差图进行二值化处理。根据深度值的阈值,像素被分类为前景或背景,形成深度二值化图。这一步骤有助于确定图像中物体的轮廓和边界。对每个深度二值化图进行像素坐标转换。这是将二值化信息映射到像素坐标上的过程,以确定前景和背景的像素位置。这有助于将深度信息映射到图像上,以便后续的计算。对多个转换二值化图进行三维坐标计算。通过立体视觉算法,将前景和背景的像素位置转化为物体的三维坐标。这一步骤将每个像素点映射到三维空间中的坐标,从而形成了三维坐标集合。基于所得到的三维坐标集合,对目标视差图集进行深度反投影。深度反投影的过程是将三维坐标信息反向投影回原始的光波导投影数据,以还原出图像的立体信息。这一步骤使得观众能够在光波导全息显示设备上看到具有深度感的图像。Among them, the depth value of each target disparity map in the target disparity map set is converted through a stereoscopic vision algorithm. The purpose is to convert disparity information into actual depth values. The pixels in each target disparity map represent the disparity between different viewpoints, and the algorithm converts these disparity values into depth values, that is, the distance from the pixel to the object surface. Each target disparity map is binarized based on its depth value. Based on the threshold of the depth value, pixels are classified as foreground or background, forming a depth binarized map. This step helps determine the contours and boundaries of objects in the image. Perform pixel coordinate conversion on each depth binarized image. This is the process of mapping binary information onto pixel coordinates to determine the pixel positions of the foreground and background. This helps map depth information onto the image for subsequent calculations. Perform three-dimensional coordinate calculations on multiple transformed binarized images. Through the stereo vision algorithm, the pixel positions of the foreground and background are converted into the three-dimensional coordinates of the object. This step maps each pixel to a coordinate in three-dimensional space, thus forming a three-dimensional coordinate set. Based on the obtained three-dimensional coordinate set, the target disparity atlas is depth back-projected. The process of depth back-projection is to back-project the three-dimensional coordinate information back to the original optical waveguide projection data to restore the three-dimensional information of the image. This step enables viewers to see images with a sense of depth on the optical waveguide holographic display device.
S104、基于图像立体信息对光波导投影数据进行全息图像构建,得到对应的目标全息影像并传输至预置的图像展示终端。S104. Construct a holographic image based on the image stereoscopic information on the optical waveguide projection data, obtain the corresponding target holographic image and transmit it to the preset image display terminal.
具体的,进行反射光场分析。这是为了理解光波导投影数据在观察者眼睛处反射时的行为,以便进一步处理。反射光场分析有助于确定光波导投影数据如何与观察者的眼睛相互作用。基于目标反射光场,对光波导投影数据进行左右眼图像分割。将光波导投影数据分成两个部分,即左眼图像和右眼图像。这是为了创建适用于立体视觉的视图,以便左眼和右眼看到不同的图像,产生深度感。对左眼图像集合和右眼图像集合进行全息图像构建。左眼和右眼的图像集合将合并为一个全息图像。这个过程包括在光波导装置上创建衍射图案,使其对应于左右眼图像,以便观众可以看到逼真的三维效果。随后,对目标全息影像进行数据编码。编码是为了将全息图像转化为适合传输的数据格式,以便在后续传输阶段使用。对编码影像数据进行传输通道匹配。选择合适的传输通道,以确保目标全息影像能够传输到图像展示终端,以便观众观看。传输通道可以包括电缆、网络连接或其他传输方式。基于多个数据传输通道,对编码影像数据进行全息图像构建。将分散的数据传输到图像展示终端,再次构建目标全息影像,以便观众能够在图像展示终端上观看逼真的三维全息影像。Specifically, reflected light field analysis is performed. This is to understand the behavior of light waveguide projection data when reflected at the observer's eye for further processing. Reflected light field analysis helps determine how light waveguide projection data interacts with the observer's eye. Based on the target reflected light field, the left and right eye image segmentation is performed on the optical waveguide projection data. The optical waveguide projection data is divided into two parts, namely the left eye image and the right eye image. This is to create a view suitable for stereoscopic vision, so that the left and right eyes see different images, creating a sense of depth. Holographic image construction is performed on the left eye image set and the right eye image set. The collection of images for the left and right eyes will be merged into a single holographic image. The process involves creating diffraction patterns on light waveguide devices that correspond to left and right eye images so that viewers can see a realistic three-dimensional effect. Subsequently, the target holographic image is data encoded. Encoding is to convert the holographic image into a data format suitable for transmission so that it can be used in subsequent transmission stages. Perform transmission channel matching on encoded image data. Choose an appropriate transmission channel to ensure that the target holographic image can be transmitted to the image display terminal for viewing by the audience. Transmission channels may include cables, network connections, or other transmission methods. Based on multiple data transmission channels, the holographic image is constructed from the encoded image data. The scattered data is transmitted to the image display terminal, and the target holographic image is constructed again, so that the audience can watch the realistic three-dimensional holographic image on the image display terminal.
本发明实施例中,获取预置的三维图像数据,并对三维图像数据进行编码处理,得到三维图像数据对应的衍射条纹分布数据;通过预置的光波导装置对衍射条纹分布数据进行位置传输,得到对应的光波导投影数据;对光波导投影数据进行图像立体信息构建,得到光波导投影数据的图像立体信息;基于图像立体信息对光波导投影数据进行全息图像构建,得到对应的目标全息影像并传输至预置的图像展示终端。在本申请方案中,通过获取三维图像数据和衍射条纹分布数据,然后结合光波导技术进行位置传输,可以实现高质量的全息影像展示。这样的展示能够呈现高分辨率、深度感和立体效果,为观众提供更加沉浸式的视觉体验。对三维图像数据进行编码处理有助于压缩和优化数据,从而减少传输和存储开销。这可以提高效率并降低资源成本。In the embodiment of the present invention, preset three-dimensional image data is obtained, and the three-dimensional image data is encoded to obtain diffraction fringe distribution data corresponding to the three-dimensional image data; the diffraction fringe distribution data is positionally transmitted through the preset optical waveguide device, Obtain the corresponding optical waveguide projection data; construct the image stereoscopic information of the optical waveguide projection data to obtain the image stereoscopic information of the optical waveguide projection data; construct the holographic image of the optical waveguide projection data based on the image stereoscopic information to obtain the corresponding target holographic image and Transmit to the preset image display terminal. In this application solution, high-quality holographic image display can be achieved by acquiring three-dimensional image data and diffraction fringe distribution data, and then combining optical waveguide technology for position transmission. Such displays can present high resolution, depth and three-dimensional effects, providing viewers with a more immersive visual experience. Encoding 3D image data helps compress and optimize the data, thereby reducing transmission and storage overhead. This increases efficiency and reduces resource costs.
在一具体实施例中,执行步骤S101的过程可以具体包括如下步骤:In a specific embodiment, the process of executing step S101 may specifically include the following steps:
(1)获取三维图像数据,对三维图像数据进行视点提取,得到三维图像数据的多个视点信息;(1) Obtain three-dimensional image data, perform viewpoint extraction on the three-dimensional image data, and obtain multiple viewpoint information of the three-dimensional image data;
(2)基于多个视点信息,对三维图像数据进行坐标系校正,得到校正三维图像数据;(2) Based on multiple viewpoint information, perform coordinate system correction on the three-dimensional image data to obtain corrected three-dimensional image data;
(3)对校正三维图像数据进行数据对齐处理,得到对齐三维图像数据;(3) Perform data alignment processing on the corrected three-dimensional image data to obtain aligned three-dimensional image data;
(4)对对齐三维图像数据进行编码处理,得到衍射条纹分布数据。(4) Encode the aligned three-dimensional image data to obtain diffraction fringe distribution data.
具体的,服务器获取三维图像数据。这涉及使用一种三维扫描仪、立体相机、深度传感器或其他三维成像技术来捕获目标场景的三维信息。这个过程生成原始的三维图像数据,其中包含了场景的深度和形状信息。进行视点提取。从原始三维图像数据中提取多个视点信息,每个视点对应于不同的观察角度或位置。这些视点信息将用于后续处理,以获得多个视角的场景信息。基于多个视点信息,对三维图像数据进行坐标系校正。因为每个视点拥有不同的坐标系,校正是确保它们在相同坐标系下对齐的关键步骤。这确保了在后续处理中能够正确地合并不同视点的信息。随后,对校正的三维图像数据进行数据对齐处理。目的是将不同视点的数据对齐,以确保它们在相同的空间位置处保持一致。数据对齐可以涉及平移、旋转和缩放等变换,以实现视点之间的一致性。对对齐的三维图像数据进行编码处理,以生成衍射条纹分布数据。编码可以采用各种技术,如光学编码或数字编码,以将三维信息转化为衍射条纹分布,这是后续光波导全息显示所需的输入数据。Specifically, the server obtains three-dimensional image data. This involves using a 3D scanner, stereo camera, depth sensor or other 3D imaging technology to capture 3D information of the target scene. This process generates raw 3D image data, which contains depth and shape information of the scene. Perform viewpoint extraction. Multiple viewpoint information is extracted from the original three-dimensional image data, each viewpoint corresponding to a different viewing angle or position. This viewpoint information will be used for subsequent processing to obtain scene information from multiple perspectives. Based on multiple viewpoint information, coordinate system correction is performed on the three-dimensional image data. Because each viewpoint has a different coordinate system, calibration is a critical step to ensure that they are aligned in the same coordinate system. This ensures that information from different viewpoints can be correctly merged in subsequent processing. Subsequently, the corrected three-dimensional image data is subjected to data alignment processing. The purpose is to align data from different viewpoints to ensure that they are consistent at the same spatial location. Data alignment can involve transformations such as translation, rotation, and scaling to achieve consistency between viewpoints. The aligned three-dimensional image data is encoded to generate diffraction fringe distribution data. Encoding can employ various techniques, such as optical encoding or digital encoding, to convert the three-dimensional information into a diffraction fringe distribution, which is the input data required for subsequent optical waveguide holographic display.
在一具体实施例中,如图2所示,执行对对齐三维图像数据进行编码处理步骤的过程可以具体包括如下步骤:In a specific embodiment, as shown in Figure 2, the process of performing the encoding processing step on the aligned three-dimensional image data may specifically include the following steps:
S201、对对齐三维图像数据进行深度信息提取,得到深度信息集合;S201. Extract depth information from the aligned three-dimensional image data to obtain a depth information set;
S202、对深度信息集合进行相位数据分析,得到对应的相位数据集合;S202. Perform phase data analysis on the depth information set to obtain the corresponding phase data set;
S203、对对齐三维图像数据进行物体目标检测,得到至少一个目标物体;S203. Perform object target detection on the aligned three-dimensional image data to obtain at least one target object;
S204、对至少一个目标物体进行亮度分析,得到亮度数据;S204. Perform brightness analysis on at least one target object to obtain brightness data;
S205、基于亮度数据,对至少一个目标物体进行振幅数据分析,得到对应的振幅数据集合;S205. Based on the brightness data, perform amplitude data analysis on at least one target object to obtain a corresponding amplitude data set;
S206、对相位数据集合以及振幅数据集合进行数据合并,得到对应的合并数据;S206. Merge the phase data set and the amplitude data set to obtain corresponding merged data;
S207、对合并数据进行数据转换,得到衍射条纹分布数据。S207. Perform data conversion on the merged data to obtain diffraction fringe distribution data.
具体的,对对齐的三维图像数据进行深度信息提取。目的是从图像中提取出物体的深度信息,即不同物体或物体的部分之间的距离。深度信息可以通过计算视差或其他深度感知技术来获得。这将生成一个深度信息集合,其中包含了不同点的深度值。对深度信息集合进行相位数据分析。相位数据与深度信息之间存在关联,通常通过将深度信息转化为光波的相位信息来获得。相位数据集合包含了每个点的相位信息,可以用于后续的处理。同时,对对齐的三维图像数据进行物体目标检测。这一步骤旨在识别图像中的不同物体或物体的部分,以便分析它们的深度和形状信息。物体目标检测可以采用计算机视觉技术,如物体分割和轮廓检测。随后,对至少一个目标物体进行亮度分析。亮度数据表示物体的亮度或光强度,这是由光波导装置记录的。亮度数据有助于了解物体的表面性质,包括反射和透射。基于亮度数据,对至少一个目标物体进行振幅数据分析。振幅数据反映了光波的振幅变化,这在全息图像构建中起着关键作用。振幅数据集合包含了不同点的振幅信息,以描述光波的波动。对相位数据集合以及振幅数据集合进行数据合并。将深度信息、相位信息和振幅信息相结合,以建立物体的完整模型。数据合并有助于整合各个方面的信息,以便最终构建全息图像。对合并数据进行数据转换,以获得衍射条纹分布数据。衍射条纹分布数据用于创建全息图像,它们包括光波的相位和振幅信息,以及深度信息。这个数据的转换将所有信息结合起来,以满足光波导全息显示的要求,从而在光波导装置上呈现出逼真的三维全息图像。Specifically, depth information is extracted from the aligned three-dimensional image data. The purpose is to extract the depth information of objects from the image, that is, the distance between different objects or parts of objects. Depth information can be obtained by calculating disparity or other depth perception techniques. This will generate a collection of depth information containing depth values at different points. Phase data analysis is performed on a collection of depth information. There is a correlation between phase data and depth information, usually obtained by converting depth information into phase information of light waves. The phase data set contains the phase information of each point and can be used for subsequent processing. At the same time, object detection is performed on the aligned three-dimensional image data. This step aims to identify different objects or parts of objects in the image in order to analyze their depth and shape information. Object target detection can use computer vision techniques such as object segmentation and contour detection. Subsequently, a brightness analysis is performed on at least one target object. Luminance data represents the brightness or light intensity of an object, which is recorded by an optical waveguide device. Luminance data helps understand an object's surface properties, including reflection and transmission. Based on the brightness data, amplitude data analysis is performed on at least one target object. Amplitude data reflects the amplitude changes of light waves, which plays a key role in the construction of holographic images. Amplitude data sets contain amplitude information at different points to describe the fluctuations of light waves. Perform data merging on phase data sets and amplitude data sets. Depth, phase and amplitude information are combined to build a complete model of the object. Data merging helps integrate information from all aspects to ultimately build a holographic image. Data transformation was performed on the merged data to obtain diffraction fringe distribution data. Diffraction fringe distribution data are used to create holographic images, which include phase and amplitude information of light waves, as well as depth information. The conversion of this data combines all the information to meet the requirements of optical waveguide holographic display, thereby presenting a realistic three-dimensional holographic image on the optical waveguide device.
在一具体实施例中,如图3所示,执行步骤S102的过程可以具体包括如下步骤:In a specific embodiment, as shown in Figure 3, the process of executing step S102 may specifically include the following steps:
S301、通过光波导装置对衍射条纹分布数据进行传输路径分析,得到初始传输路径;S301. Perform transmission path analysis on the diffraction fringe distribution data through the optical waveguide device to obtain the initial transmission path;
S302、对初始传输路径进行路径数据修正,得到目标传输路径;S302. Perform path data correction on the initial transmission path to obtain the target transmission path;
S303、基于目标传输路径以及衍射条纹分布数据,将预设的光信号传输至光波导装置进行位置传输;S303. Based on the target transmission path and diffraction fringe distribution data, transmit the preset optical signal to the optical waveguide device for position transmission;
S304、通过预置的光学传感器采集在位置传输后的光信号数据,并对光信号数据进行分析,得到光波导投影数据。S304. Collect the optical signal data after position transmission through the preset optical sensor, analyze the optical signal data, and obtain the optical waveguide projection data.
具体的,进行传输路径分析,确定光波导装置上的初始传输路径,以便将衍射条纹分布数据传送到适当的位置。传输路径分析考虑了光波导的特性、衍射规律以及目标位置,以确保数据可以正确传输。对初始传输路径进行路径数据修正。修正过程涉及计算机模拟或实际调整光波导装置,以确保数据传输的路径与目标位置准确匹配。路径数据修正可以涉及微调光波导元件的角度、位置或形状。基于目标传输路径以及衍射条纹分布数据,将预设的光信号传输至光波导装置进行位置传输。将光信号注入光波导装置,以使光线遵循修正后的传输路径,以传输衍射条纹分布数据。光信号的属性和波长可以根据应用需求进行选择。通过预置的光学传感器采集在位置传输后的光信号数据。这些传感器位于光波导装置上,用于检测传输后的光波信息。传感器可以检测光信号的幅度、相位和其他特性。对光信号数据进行分析,以得到光波导投影数据。这一步骤涉及处理从光学传感器获取的数据,以还原原始的衍射条纹分布数据,这将用于构建全息图像。分析包括数字信号处理、波形恢复和衍射计算等技术。例如,假设需要呈现一个旋转的三维球体的全息图像。通过传输路径分析,服务器确定了衍射条纹分布数据应该如何传输到球体的位置。通过路径数据修正,服务器微调了光波导装置的角度和位置,以确保数据可以正确传输到球体的位置。服务器发送预设的光信号以进行位置传输。这些光信号被注入到光波导装置中,然后遵循修正后的传输路径,到达球体的位置。光学传感器位于装置上,采集传输后的光信号数据,包括幅度和相位信息。通过对光信号数据进行分析,服务器能够还原衍射条纹分布数据,这将用于构建全息图像。通过数学和计算技术,服务器能够重建三维球体的全息图像,使观众能够在光波导全息显示装置上看到旋转的球体,呈现逼真的全息图像效果。整个过程确保了数据的传输和最终的呈现,以实现所需的全息显示。Specifically, transmission path analysis is performed to determine the initial transmission path on the optical waveguide device so that the diffraction fringe distribution data can be transmitted to an appropriate location. Transmission path analysis takes into account the characteristics of the optical waveguide, diffraction patterns, and target location to ensure that data can be transmitted correctly. Perform path data correction on the initial transmission path. The correction process involves computer simulations or actual adjustments to the optical waveguide device to ensure that the path through which the data travels accurately matches the target location. Path data modifications may involve fine-tuning the angle, position or shape of the optical waveguide element. Based on the target transmission path and diffraction fringe distribution data, the preset optical signal is transmitted to the optical waveguide device for position transmission. The optical signal is injected into the optical waveguide device so that the light follows a modified transmission path to transmit diffraction fringe distribution data. The properties and wavelength of the optical signal can be selected based on application requirements. The optical signal data after position transmission is collected through a preset optical sensor. These sensors are located on optical waveguide devices and are used to detect transmitted light wave information. Sensors can detect the amplitude, phase, and other characteristics of light signals. The optical signal data is analyzed to obtain optical waveguide projection data. This step involves processing the data acquired from the optical sensor to restore the original diffraction fringe distribution data, which will be used to construct the holographic image. Analysis includes techniques such as digital signal processing, waveform recovery, and diffraction calculations. For example, suppose you need to render a holographic image of a rotating three-dimensional sphere. Through transmission path analysis, the server determines how the diffraction fringe distribution data should be transmitted to the location of the sphere. Through path data correction, the server fine-tunes the angle and position of the optical waveguide device to ensure that data can be transmitted to the correct location on the sphere. The server sends preset light signals for location transmission. These optical signals are injected into the optical waveguide device and then follow a modified transmission path to the location of the sphere. The optical sensor is located on the device and collects the transmitted optical signal data, including amplitude and phase information. By analyzing the light signal data, the server is able to restore the diffraction fringe distribution data, which will be used to construct the holographic image. Through mathematics and computing technology, the server can reconstruct the holographic image of the three-dimensional sphere, allowing the audience to see the rotating sphere on the optical waveguide holographic display device, presenting a realistic holographic image effect. The entire process ensures the transmission and final presentation of data to achieve the desired holographic display.
在一具体实施例中,如图4所示,执行步骤S103的过程可以具体包括如下步骤:In a specific embodiment, as shown in Figure 4, the process of executing step S103 may specifically include the following steps:
S401、对光波导投影数据进行图像深度计算,得到光波导投影数据对应的像素深度数据;S401. Perform image depth calculation on the optical waveguide projection data to obtain pixel depth data corresponding to the optical waveguide projection data;
S402、通过像素深度数据对光波导投影数据进行像素对匹配,得到多个目标像素对;S402. Perform pixel pair matching on the optical waveguide projection data through pixel depth data to obtain multiple target pixel pairs;
S403、对每个目标像素对进行视差值计算,得到多个视差值;S403. Calculate the disparity value for each target pixel pair to obtain multiple disparity values;
S404、通过多个视差值对光波导投影数据进行视差图生成,得到对应的目标视差图集;S404. Generate a disparity map on the optical waveguide projection data through multiple disparity values to obtain the corresponding target disparity atlas;
S405、通过预置的立体视觉算法对目标视差图集进行深度反投影,得到光波导投影数据的图像立体信息。S405. Perform depth back-projection on the target disparity atlas through a preset stereo vision algorithm to obtain image stereo information of the optical waveguide projection data.
具体的,对光波导投影数据进行图像深度计算。目的是确定光波导投影数据中每个像素的深度信息。深度可以根据像素在光波导装置上的位置和其他参数计算得出。图像深度计算可使用相机参数和标定技术等进行。通过像素深度数据对光波导投影数据进行像素对匹配。为光波导投影数据中的每个像素查找其在深度信息中对应的像素,以确保它们在深度上匹配。像素对匹配可通过像素坐标或其他特定标识符来实现。随后,对每个目标像素对进行视差值计算。视差值是指同一像素在两个不同视点下的位置差异。通过计算每个像素对的视差值,可以了解深度信息。视差值通常用来表示物体的深度,具体取决于立体视觉原理。通过多个视差值对光波导投影数据进行视差图生成。视差图是深度信息的表示形式,它显示了不同像素的视差值。视差图是构建立体信息的重要工具,因为它提供了图像中不同位置的深度信息。通过预置的立体视觉算法对目标视差图集进行深度反投影。这一步骤涉及将视差图转换为深度图,以还原出图像的立体信息。立体视觉算法可以使用多种技术,包括视差-深度关联、三角法和体视觉等,以从视差信息中恢复深度信息。Specifically, image depth calculation is performed on the optical waveguide projection data. The goal is to determine the depth information for each pixel in the optical waveguide projection data. Depth can be calculated based on the position of the pixel on the optical waveguide device and other parameters. Image depth calculation can be performed using camera parameters and calibration techniques, etc. Pixel pair matching is performed on optical waveguide projection data via pixel depth data. For each pixel in the light guide projection data, find its corresponding pixel in the depth information to ensure that they match in depth. Pixel pair matching can be achieved by pixel coordinates or other specific identifiers. Subsequently, the disparity value is calculated for each target pixel pair. The disparity value refers to the difference in position of the same pixel under two different viewpoints. Depth information can be learned by calculating the disparity value of each pixel pair. Parallax values are often used to represent the depth of an object, depending on the principles of stereoscopic vision. Disparity map generation is performed on optical waveguide projection data using multiple disparity values. A disparity map is a representation of depth information that shows the disparity values of different pixels. The disparity map is an important tool for constructing stereoscopic information because it provides depth information at different locations in the image. Depth backprojection of the target disparity atlas via a preset stereo vision algorithm. This step involves converting the disparity map into a depth map to restore the stereoscopic information of the image. Stereo vision algorithms can use a variety of techniques, including disparity-depth correlation, triangulation, and stereo vision, to recover depth information from disparity information.
在一具体实施例中,执行步骤S405的过程可以具体包括如下步骤:In a specific embodiment, the process of executing step S405 may specifically include the following steps:
(1)通过立体视觉算法对目标视差图集中每个目标视差图进行深度值转换,得到每个目标视差图的深度值;(1) Use a stereo vision algorithm to convert the depth value of each target disparity map in the target disparity map set to obtain the depth value of each target disparity map;
(2)基于每个目标视差图的深度值,对每个目标视差图进行二值化处理,得到多个深度二值化图;(2) Based on the depth value of each target disparity map, perform binarization processing on each target disparity map to obtain multiple depth binarized maps;
(3)对每个深度二值化图进行像素坐标转换,得到多个转换二值化图;(3) Perform pixel coordinate conversion on each depth binarized image to obtain multiple converted binarized images;
(4)对多个转换二值化图进行三维坐标计算,得到三维坐标集合;(4) Calculate three-dimensional coordinates on multiple converted binary images to obtain a three-dimensional coordinate set;
(5)基于三维坐标集合对目标视差图集进行深度反投影,得到光波导投影数据的图像立体信息。(5) Perform depth back-projection on the target disparity atlas based on the three-dimensional coordinate set to obtain the image stereo information of the optical waveguide projection data.
具体的,通过立体视觉算法对目标视差图集中每个目标视差图进行深度值转换。每个目标视差图的像素值将被转换为实际深度值。这是通过使用已知的视差-深度关联关系或其他深度感知算法来实现的。深度值表示每个像素到观察者的距离。基于每个目标视差图的深度值,对每个目标视差图进行二值化处理。深度值将被转化为二进制形式,以生成深度二值化图。这一步骤有助于将深度信息以更可处理的方式表示,便于后续的计算。随后,对每个深度二值化图进行像素坐标转换。将像素的深度信息转化为三维坐标,以确定物体的位置。像素坐标转换可以使用已知的相机参数和深度信息来实现。对多个转换二值化图进行三维坐标计算。三维坐标将根据像素坐标和深度信息计算出来。这将产生一个三维坐标集合,表示物体表面的点的位置。基于三维坐标集合对目标视差图集进行深度反投影。深度反投影是将三维信息重新投影到图像平面上的过程,以获得图像的立体信息。将三维坐标集合与目标视差图集相结合,以还原出图像的立体信息。Specifically, the depth value of each target disparity map in the target disparity map set is converted through a stereoscopic vision algorithm. The pixel values of each target disparity map will be converted into actual depth values. This is achieved by using known disparity-depth correlations or other depth perception algorithms. The depth value represents the distance of each pixel from the viewer. Each target disparity map is binarized based on its depth value. The depth value will be converted to binary form to generate a depth binarized map. This step helps represent the depth information in a more manageable way for subsequent calculations. Subsequently, pixel coordinate transformation is performed on each depth binarized map. Convert pixel depth information into three-dimensional coordinates to determine the location of the object. Pixel coordinate transformation can be implemented using known camera parameters and depth information. Perform three-dimensional coordinate calculations on multiple transformed binarized images. Three-dimensional coordinates will be calculated based on pixel coordinates and depth information. This will produce a set of three-dimensional coordinates representing the location of points on the object's surface. Depth backprojection of the target disparity atlas based on a set of three-dimensional coordinates. Depth backprojection is the process of reprojecting three-dimensional information onto the image plane to obtain the three-dimensional information of the image. The three-dimensional coordinate set is combined with the target disparity atlas to restore the stereoscopic information of the image.
在一具体实施例中,执行步骤S104的过程可以具体包括如下步骤:In a specific embodiment, the process of executing step S104 may specifically include the following steps:
(1)对图像立体信息进行反射光场分析,得到对应的目标反射光场;(1) Analyze the reflected light field on the three-dimensional image information to obtain the corresponding target reflected light field;
(2)基于目标反射光场,对光波导投影数据进行左右眼图像分割,得到对应的左眼图像集合以及右眼图像集合;(2) Based on the target reflected light field, perform left-eye image segmentation on the optical waveguide projection data to obtain the corresponding left-eye image set and right-eye image set;
(3)对左眼图像集合以及右眼图像集合进行全息图像构建,得到目标全息影像;(3) Construct holographic images on the left eye image set and right eye image set to obtain the target holographic image;
(4)对目标全息影像进行数据编码,得到编码影像数据;(4) Encode the target holographic image to obtain the encoded image data;
(5)对编码影像数据进行传输通道匹配,得到多个数据传输通道;(5) Match the transmission channels of the encoded image data to obtain multiple data transmission channels;
(6)基于多个数据传输通道,对编码影像数据进行全息图像构建,得到目标全息影像并传输至图像展示终端。(6) Based on multiple data transmission channels, construct a holographic image on the encoded image data to obtain the target holographic image and transmit it to the image display terminal.
具体的,对图像立体信息进行反射光场分析。目的是分析光波导装置上的反射光场,以了解光线如何在装置上反射和传播。反射光场分析考虑了光波导的特性、表面形状以及光源的属性,以确定反射光的路径和性质。基于目标反射光场,对光波导投影数据进行左右眼图像分割。将反射光场中的信息分为左眼和右眼视图,以用于后续的全息图像构建。左右眼图像分割可以根据观众的视点和眼睛位置来完成。对左眼图像集合和右眼图像集合进行全息图像构建。将左眼和右眼的视图合成为一个全息图像,以呈现立体视觉效果。全息图像构建考虑了视差、视角和光线传播等因素。随后,对目标全息影像进行数据编码。编码是为了减小数据量,以便在传输和存储时更加高效。编码可以包括压缩、数据分段和纠错编码等技术。对编码影像数据进行传输通道匹配。选择适当的数据传输通道,以确保编码影像数据能够有效地传输到图像展示终端。传输通道匹配可以根据网络条件、传输介质和带宽来确定。基于多个数据传输通道,对编码影像数据进行全息图像构建。这一步骤将分散的编码数据重新组合,以还原出目标全息影像。多个数据传输通道有助于提高数据传输的速度和稳定性。Specifically, the reflected light field analysis is performed on the three-dimensional information of the image. The goal is to analyze the reflected light field on an optical waveguide device to understand how light reflects and propagates on the device. Reflected light field analysis takes into account the characteristics of the optical waveguide, the surface shape, and the properties of the light source to determine the path and properties of the reflected light. Based on the target reflected light field, the left and right eye image segmentation is performed on the optical waveguide projection data. The information in the reflected light field is divided into left-eye and right-eye views for subsequent holographic image construction. Left and right eye image segmentation can be done based on the viewer's viewpoint and eye position. Holographic image construction is performed on the left eye image set and the right eye image set. The views of the left and right eyes are combined into a single holographic image to create a stereoscopic effect. Holographic image construction takes into account factors such as parallax, viewing angle, and light propagation. Subsequently, the target holographic image is data encoded. Encoding is used to reduce the amount of data so that it can be transmitted and stored more efficiently. Coding can include techniques such as compression, data segmentation, and error correction coding. Perform transmission channel matching on encoded image data. Select an appropriate data transmission channel to ensure that the encoded image data can be effectively transmitted to the image display terminal. Transmission channel matching can be determined based on network conditions, transmission media and bandwidth. Based on multiple data transmission channels, the holographic image is constructed from the encoded image data. This step reassembles the scattered encoded data to restore the target holographic image. Multiple data transmission channels help improve the speed and stability of data transmission.
上面对本发明实施例中光波导全息显示方法进行了描述,下面对本发明实施例中光波导全息显示装置进行描述,请参阅图5,本发明实施例中光波导全息显示装置一个实施例包括:The optical waveguide holographic display method in the embodiment of the present invention is described above. The optical waveguide holographic display device in the embodiment of the present invention is described below. Please refer to Figure 5. An embodiment of the optical waveguide holographic display device in the embodiment of the present invention includes:
获取模块501,用于获取预置的三维图像数据,并对所述三维图像数据进行编码处理,得到所述三维图像数据对应的衍射条纹分布数据;The acquisition module 501 is used to acquire preset three-dimensional image data, encode the three-dimensional image data, and obtain diffraction fringe distribution data corresponding to the three-dimensional image data;
传输模块502,用于通过预置的光波导装置对所述衍射条纹分布数据进行位置传输,得到对应的光波导投影数据;The transmission module 502 is used to positionally transmit the diffraction fringe distribution data through a preset optical waveguide device to obtain the corresponding optical waveguide projection data;
第一构建模块503,用于对所述光波导投影数据进行图像立体信息构建,得到所述光波导投影数据的图像立体信息;The first construction module 503 is used to construct image stereoscopic information on the optical waveguide projection data to obtain the image stereoscopic information of the optical waveguide projection data;
第二构建模块504,用于基于所述图像立体信息对所述光波导投影数据进行全息图像构建,得到对应的目标全息影像并传输至预置的图像展示终端。The second construction module 504 is used to construct a holographic image on the optical waveguide projection data based on the image stereoscopic information, obtain the corresponding target holographic image and transmit it to a preset image display terminal.
通过上述各个组成部分的协同合作,获取预置的三维图像数据,并对三维图像数据进行编码处理,得到三维图像数据对应的衍射条纹分布数据;通过预置的光波导装置对衍射条纹分布数据进行位置传输,得到对应的光波导投影数据;对光波导投影数据进行图像立体信息构建,得到光波导投影数据的图像立体信息;基于图像立体信息对光波导投影数据进行全息图像构建,得到对应的目标全息影像并传输至预置的图像展示终端。在本申请方案中,通过获取三维图像数据和衍射条纹分布数据,然后结合光波导技术进行位置传输,可以实现高质量的全息影像展示。这样的展示能够呈现高分辨率、深度感和立体效果,为观众提供更加沉浸式的视觉体验。对三维图像数据进行编码处理有助于压缩和优化数据,从而减少传输和存储开销。这可以提高效率并降低资源成本。Through the collaborative cooperation of the above components, the preset three-dimensional image data is obtained, and the three-dimensional image data is encoded and processed to obtain the diffraction fringe distribution data corresponding to the three-dimensional image data; the diffraction fringe distribution data is processed through the preset optical waveguide device. position transmission to obtain the corresponding optical waveguide projection data; construct the image stereoscopic information of the optical waveguide projection data to obtain the image stereoscopic information of the optical waveguide projection data; construct the holographic image of the optical waveguide projection data based on the image stereoscopic information to obtain the corresponding target The holographic image is transmitted to the preset image display terminal. In this application solution, high-quality holographic image display can be achieved by acquiring three-dimensional image data and diffraction fringe distribution data, and then combining optical waveguide technology for position transmission. Such displays can present high resolution, depth and three-dimensional effects, providing viewers with a more immersive visual experience. Encoding 3D image data helps compress and optimize the data, thereby reducing transmission and storage overhead. This increases efficiency and reduces resource costs.
上面图5从模块化功能实体的角度对本发明实施例中的光波导全息显示装置进行详细描述,下面从硬件处理的角度对本发明实施例中光波导全息显示设备进行详细描述。Figure 5 above describes the optical waveguide holographic display device in the embodiment of the present invention in detail from the perspective of modular functional entities. The following describes the optical waveguide holographic display device in the embodiment of the present invention in detail from the perspective of hardware processing.
图6是本发明实施例提供的一种光波导全息显示设备的结构示意图,该光波导全息显示设备600可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(centralprocessingunits,CPU)610(例如,一个或一个以上处理器)和存储器620,一个或一个以上存储应用程序633或数据632的存储介质630(例如一个或一个以上海量存储设备)。其中,存储器620和存储介质630可以是短暂存储或持久存储。存储在存储介质630的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对光波导全息显示设备600中的一系列指令操作。更进一步地,处理器610可以设置为与存储介质630通信,在光波导全息显示设备600上执行存储介质630中的一系列指令操作。FIG. 6 is a schematic structural diagram of an optical waveguide holographic display device provided by an embodiment of the present invention. The optical waveguide holographic display device 600 may vary greatly due to different configurations or performance, and may include one or more processors (central processing units). , CPU) 610 (eg, one or more processors) and memory 620, one or more storage media 630 (eg, one or more mass storage devices) that stores applications 633 or data 632. Among them, the memory 620 and the storage medium 630 may be short-term storage or persistent storage. The program stored in the storage medium 630 may include one or more modules (not shown in the figure), and each module may include a series of instruction operations on the optical waveguide holographic display device 600 . Furthermore, the processor 610 may be configured to communicate with the storage medium 630 and execute a series of instruction operations in the storage medium 630 on the optical waveguide holographic display device 600 .
光波导全息显示设备600还可以包括一个或一个以上电源640,一个或一个以上有线或无线网络接口650,一个或一个以上输入输出接口660,和/或,一个或一个以上操作系统631,例如WindowsServe,MacOSX,Unix,Linux,FreeBSD等等。本领域技术人员可以理解,图6示出的光波导全息显示设备结构并不构成对光波导全息显示设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。The optical waveguide holographic display device 600 may also include one or more power supplies 640, one or more wired or wireless network interfaces 650, one or more input and output interfaces 660, and/or one or more operating systems 631, such as WindowsServe , MacOSX, Unix, Linux, FreeBSD and more. Those skilled in the art can understand that the structure of the optical waveguide holographic display device shown in Figure 6 does not constitute a limitation on the optical waveguide holographic display device. It may include more or fewer components than shown in the figure, or combine certain components, or Different component arrangements.
本发明还提供一种光波导全息显示设备,所述光波导全息显示设备包括存储器和处理器,存储器中存储有计算机可读指令,计算机可读指令被处理器执行时,使得处理器执行上述各实施例中的所述光波导全息显示方法的步骤。The present invention also provides an optical waveguide holographic display device. The optical waveguide holographic display device includes a memory and a processor. Computer readable instructions are stored in the memory. When the computer readable instructions are executed by the processor, the processor executes the above steps. The steps of the optical waveguide holographic display method in the embodiment.
本发明还提供一种计算机可读存储介质,该计算机可读存储介质可以为非易失性计算机可读存储介质,该计算机可读存储介质也可以为易失性计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行所述光波导全息显示方法的步骤。The present invention also provides a computer-readable storage medium. The computer-readable storage medium can be a non-volatile computer-readable storage medium. The computer-readable storage medium can also be a volatile computer-readable storage medium. Instructions are stored in the computer-readable storage medium, and when the instructions are run on the computer, they cause the computer to execute the steps of the optical waveguide holographic display method.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and simplicity of description, the specific working processes of the systems, devices and units described above can be referred to the corresponding processes in the foregoing method embodiments, and will not be described again here.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或通过时,可以存储在一个计算机可读取存储介质中。基于的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-onlymemory,ROM)、随机存取存储器(randomacceSmemory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。The integrated unit, if implemented in the form of a software functional unit and sold or passed as an independent product, may be stored in a computer-readable storage medium. Based on the understanding, the technical solution of the present invention is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, It includes several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present invention. The aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。As mentioned above, the above embodiments are only used to illustrate the technical solution of the present invention, but not to limit it. Although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that they can still modify the foregoing. The technical solutions described in each embodiment may be modified, or some of the technical features may be equivalently replaced; however, these modifications or substitutions do not cause the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions of each embodiment of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311594693.7A CN117315164B (en) | 2023-11-28 | 2023-11-28 | Optical waveguide holographic display method, device, equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311594693.7A CN117315164B (en) | 2023-11-28 | 2023-11-28 | Optical waveguide holographic display method, device, equipment and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117315164A CN117315164A (en) | 2023-12-29 |
CN117315164B true CN117315164B (en) | 2024-02-23 |
Family
ID=89250242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311594693.7A Active CN117315164B (en) | 2023-11-28 | 2023-11-28 | Optical waveguide holographic display method, device, equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117315164B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050058085A (en) * | 2003-12-11 | 2005-06-16 | 한국전자통신연구원 | 3d scene model generation apparatus and method through the fusion of disparity map and depth map |
CN109799666A (en) * | 2019-03-12 | 2019-05-24 | 深圳大学 | A kind of holographic projector and holographic projection methods |
US10310284B1 (en) * | 2016-07-09 | 2019-06-04 | Mary Gormley Waldron | Apparatus and method for projecting three-dimensional holographic images |
CN111538223A (en) * | 2020-04-30 | 2020-08-14 | 北京大学 | Holographic projection method based on light beam deflection |
WO2021062941A1 (en) * | 2019-09-30 | 2021-04-08 | 中山大学 | Grating-based optical waveguide light field display system |
CN113009802A (en) * | 2019-12-18 | 2021-06-22 | 恩维世科斯有限公司 | Holographic image alignment |
CN114114873A (en) * | 2020-08-28 | 2022-03-01 | 三星电子株式会社 | Holographic display device and method of operating the same |
CN115330846A (en) * | 2022-08-16 | 2022-11-11 | 广东华路交通科技有限公司 | Three-dimensional digital holography-based pavement disease image fusion data processing method |
CN115373782A (en) * | 2022-08-01 | 2022-11-22 | 世优(北京)科技有限公司 | Three-dimensional holographic display method and device based on polygon |
CN116165864A (en) * | 2023-04-25 | 2023-05-26 | 北京至格科技有限公司 | Binary chromatography three-dimensional scene implementation method and system for augmented reality |
CN116824047A (en) * | 2023-06-02 | 2023-09-29 | 哈尔滨理工大学 | A structured light three-dimensional reconstruction method based on stripe image enhancement |
CN117055739A (en) * | 2023-10-11 | 2023-11-14 | 深圳优立全息科技有限公司 | Holographic equipment interaction method, device, equipment and storage medium |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8334889B2 (en) * | 2010-03-18 | 2012-12-18 | Tipd, Llc | Auto stereoscopic 3D telepresence using integral holography |
JP2017086271A (en) * | 2015-11-05 | 2017-05-25 | キヤノン株式会社 | Image observation device |
-
2023
- 2023-11-28 CN CN202311594693.7A patent/CN117315164B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050058085A (en) * | 2003-12-11 | 2005-06-16 | 한국전자통신연구원 | 3d scene model generation apparatus and method through the fusion of disparity map and depth map |
US10310284B1 (en) * | 2016-07-09 | 2019-06-04 | Mary Gormley Waldron | Apparatus and method for projecting three-dimensional holographic images |
CN109799666A (en) * | 2019-03-12 | 2019-05-24 | 深圳大学 | A kind of holographic projector and holographic projection methods |
WO2021062941A1 (en) * | 2019-09-30 | 2021-04-08 | 中山大学 | Grating-based optical waveguide light field display system |
CN113009802A (en) * | 2019-12-18 | 2021-06-22 | 恩维世科斯有限公司 | Holographic image alignment |
CN111538223A (en) * | 2020-04-30 | 2020-08-14 | 北京大学 | Holographic projection method based on light beam deflection |
CN114114873A (en) * | 2020-08-28 | 2022-03-01 | 三星电子株式会社 | Holographic display device and method of operating the same |
CN115373782A (en) * | 2022-08-01 | 2022-11-22 | 世优(北京)科技有限公司 | Three-dimensional holographic display method and device based on polygon |
CN115330846A (en) * | 2022-08-16 | 2022-11-11 | 广东华路交通科技有限公司 | Three-dimensional digital holography-based pavement disease image fusion data processing method |
CN116165864A (en) * | 2023-04-25 | 2023-05-26 | 北京至格科技有限公司 | Binary chromatography three-dimensional scene implementation method and system for augmented reality |
CN116824047A (en) * | 2023-06-02 | 2023-09-29 | 哈尔滨理工大学 | A structured light three-dimensional reconstruction method based on stripe image enhancement |
CN117055739A (en) * | 2023-10-11 | 2023-11-14 | 深圳优立全息科技有限公司 | Holographic equipment interaction method, device, equipment and storage medium |
Non-Patent Citations (1)
Title |
---|
机载光波导平视显示技术研究;闫占军;中国博士学位论文全文数据库 基础科学辑;第A005-3页 * |
Also Published As
Publication number | Publication date |
---|---|
CN117315164A (en) | 2023-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6205241B1 (en) | Compression of stereoscopic images | |
US6573912B1 (en) | Internet system for virtual telepresence | |
KR101177408B1 (en) | A multi-view interactive holographic device and system for reconstructing holographic images adaptable at the view-point of a user | |
TWI813098B (en) | Neural blending for novel view synthesis | |
WO2013056188A1 (en) | Generating free viewpoint video using stereo imaging | |
WO2019085022A1 (en) | Generation method and device for optical field 3d display unit image | |
EP4283562B1 (en) | Method and system for three-dimensional reconstruction of target object | |
CN101729920A (en) | Method for displaying stereoscopic video with free visual angles | |
CN104599317A (en) | Mobile terminal and method for achieving 3D (three-dimensional) scanning modeling function | |
KR20120045269A (en) | Method and apparatus for generating hologram based on 3d mesh modeling and evolution | |
CN118015165A (en) | Ultra-large scene sparse image rendering method and system based on depth information supervision | |
Mulligan et al. | Stereo-based environment scanning for immersive telepresence | |
KR100560464B1 (en) | How to configure a multiview image display system adaptive to the observer's point of view | |
KR101208767B1 (en) | Stereoscopic image generation method, device and system using circular projection and recording medium for the same | |
CN118138741B (en) | Naked eye 3D data communication method | |
CN117315164B (en) | Optical waveguide holographic display method, device, equipment and storage medium | |
CN117376541B (en) | Holographic three-dimensional picture synchronization method, device, equipment and storage medium | |
KR20110060180A (en) | Method and apparatus for generating 3D model by selecting object of interest | |
CN106993179A (en) | A method for converting a 3D model into a stereoscopic dual-viewpoint view | |
US12051168B2 (en) | Avatar generation based on driving views | |
CN111405262B (en) | Viewpoint information generation method, apparatus, system, device and medium | |
CN107103620A (en) | The depth extraction method of many pumped FIR laser cameras of spatial sampling under a kind of visual angle based on individual camera | |
CN202634612U (en) | Cyber-physical image fusion device | |
CN116939186B (en) | A processing method and device for automatic associative masking parallax naked-eye spatial calculation | |
CN116958353B (en) | Holographic projection method based on dynamic capture and related device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241130 Address after: Room 604, Building 4, Qidi Xiexin, No. 333 Longfei Avenue, Huanggekeng Community, Longcheng Street, Longgang District, Shenzhen City, Guangdong Province 518000 Patentee after: YUNSHIKANG (SHENZHEN) INTELLIGENT TECHNOLOGY Co.,Ltd. Country or region after: China Address before: 518000, B35, 22nd Floor, Block A, Jinfengcheng Building, No. 5015 Shennan East Road, Xinwei Community, Guiyuan Street, Luohu District, Shenzhen City, Guangdong Province Patentee before: VIRTUAL REALITY (SHENZHEN) INTELLIGENT TECHNOLOGY Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |