CN117304289A - Application of MAX2 in adjusting plant high light adaptability - Google Patents
Application of MAX2 in adjusting plant high light adaptability Download PDFInfo
- Publication number
- CN117304289A CN117304289A CN202311207643.9A CN202311207643A CN117304289A CN 117304289 A CN117304289 A CN 117304289A CN 202311207643 A CN202311207643 A CN 202311207643A CN 117304289 A CN117304289 A CN 117304289A
- Authority
- CN
- China
- Prior art keywords
- plants
- protein
- plant
- irmax2
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 101100129499 Arabidopsis thaliana MAX2 gene Proteins 0.000 title abstract description 16
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 79
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 44
- 230000001105 regulatory effect Effects 0.000 claims abstract description 18
- 230000004044 response Effects 0.000 claims abstract description 14
- 241000196324 Embryophyta Species 0.000 claims description 174
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 claims description 32
- 229930002875 chlorophyll Natural products 0.000 claims description 25
- 235000019804 chlorophyll Nutrition 0.000 claims description 25
- 230000002829 reductive effect Effects 0.000 claims description 20
- 239000013598 vector Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 17
- 230000000243 photosynthetic effect Effects 0.000 claims description 15
- 230000030279 gene silencing Effects 0.000 claims description 14
- 230000001965 increasing effect Effects 0.000 claims description 12
- 108020004707 nucleic acids Proteins 0.000 claims description 12
- 102000039446 nucleic acids Human genes 0.000 claims description 12
- 150000007523 nucleic acids Chemical class 0.000 claims description 12
- 230000004298 light response Effects 0.000 claims description 11
- 108020004414 DNA Proteins 0.000 claims description 9
- 241000607479 Yersinia pestis Species 0.000 claims description 7
- 239000002299 complementary DNA Substances 0.000 claims description 7
- 102000053602 DNA Human genes 0.000 claims description 6
- 239000012620 biological material Substances 0.000 claims description 6
- 244000005700 microbiome Species 0.000 claims description 6
- 239000002773 nucleotide Substances 0.000 claims description 6
- 125000003729 nucleotide group Chemical group 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 4
- 206010034960 Photophobia Diseases 0.000 claims description 3
- 208000013469 light sensitivity Diseases 0.000 claims description 3
- 108091026890 Coding region Proteins 0.000 claims description 2
- 235000016462 Mimosa pudica Nutrition 0.000 claims description 2
- 125000000539 amino acid group Chemical group 0.000 claims description 2
- 238000012217 deletion Methods 0.000 claims description 2
- 230000037430 deletion Effects 0.000 claims description 2
- 108020001507 fusion proteins Proteins 0.000 claims description 2
- 102000037865 fusion proteins Human genes 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims description 2
- 241001070944 Mimosa Species 0.000 claims 1
- 210000004899 c-terminal region Anatomy 0.000 claims 1
- 101710175177 Very-long-chain 3-oxoacyl-CoA reductase Proteins 0.000 abstract description 17
- 101710187138 Very-long-chain 3-oxoacyl-CoA reductase-A Proteins 0.000 abstract description 17
- 101710187143 Very-long-chain 3-oxoacyl-CoA reductase-B Proteins 0.000 abstract description 17
- 230000019491 signal transduction Effects 0.000 abstract description 9
- 230000006978 adaptation Effects 0.000 abstract description 2
- 235000018102 proteins Nutrition 0.000 description 29
- 238000004061 bleaching Methods 0.000 description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- KBPHJBAIARWVSC-XQIHNALSSA-N trans-lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C KBPHJBAIARWVSC-XQIHNALSSA-N 0.000 description 17
- 241000238631 Hexapoda Species 0.000 description 16
- 150000001413 amino acids Chemical group 0.000 description 13
- 230000006378 damage Effects 0.000 description 13
- 229940024606 amino acid Drugs 0.000 description 12
- 235000001014 amino acid Nutrition 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 12
- 241000208125 Nicotiana Species 0.000 description 11
- 239000012634 fragment Substances 0.000 description 11
- 239000001656 lutein Substances 0.000 description 11
- 235000012680 lutein Nutrition 0.000 description 11
- 229960005375 lutein Drugs 0.000 description 11
- KBPHJBAIARWVSC-RGZFRNHPSA-N lutein Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C KBPHJBAIARWVSC-RGZFRNHPSA-N 0.000 description 11
- ORAKUVXRZWMARG-WZLJTJAWSA-N lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C ORAKUVXRZWMARG-WZLJTJAWSA-N 0.000 description 11
- FJHBOVDFOQMZRV-XQIHNALSSA-N xanthophyll Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C=C(C)C(O)CC2(C)C FJHBOVDFOQMZRV-XQIHNALSSA-N 0.000 description 11
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 10
- 230000009368 gene silencing by RNA Effects 0.000 description 10
- 230000012010 growth Effects 0.000 description 10
- 235000000346 sugar Nutrition 0.000 description 10
- 239000002028 Biomass Substances 0.000 description 9
- 241000228653 Nicotiana attenuata Species 0.000 description 9
- 239000003963 antioxidant agent Substances 0.000 description 9
- 235000006708 antioxidants Nutrition 0.000 description 9
- 230000011664 signaling Effects 0.000 description 9
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 8
- 230000003078 antioxidant effect Effects 0.000 description 8
- 239000011648 beta-carotene Substances 0.000 description 8
- 235000013734 beta-carotene Nutrition 0.000 description 8
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 8
- 229960002747 betacarotene Drugs 0.000 description 8
- 230000009261 transgenic effect Effects 0.000 description 8
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 8
- 238000011529 RT qPCR Methods 0.000 description 7
- 229930002868 chlorophyll a Natural products 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- JKQXZKUSFCKOGQ-JLGXGRJMSA-N (3R,3'R)-beta,beta-carotene-3,3'-diol Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-JLGXGRJMSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- JKQXZKUSFCKOGQ-LQFQNGICSA-N Z-zeaxanthin Natural products C([C@H](O)CC=1C)C(C)(C)C=1C=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-LQFQNGICSA-N 0.000 description 6
- QOPRSMDTRDMBNK-RNUUUQFGSA-N Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCC(O)C1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C QOPRSMDTRDMBNK-RNUUUQFGSA-N 0.000 description 6
- JKQXZKUSFCKOGQ-LOFNIBRQSA-N all-trans-Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C JKQXZKUSFCKOGQ-LOFNIBRQSA-N 0.000 description 6
- 235000021466 carotenoid Nutrition 0.000 description 6
- 150000001747 carotenoids Chemical class 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- ZNJFBWYDHIGLCU-HWKXXFMVSA-N jasmonic acid Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-HWKXXFMVSA-N 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 239000001775 zeaxanthin Substances 0.000 description 6
- 235000010930 zeaxanthin Nutrition 0.000 description 6
- 229940043269 zeaxanthin Drugs 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 229930002869 chlorophyll b Natural products 0.000 description 5
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000019516 nonphotochemical quenching Effects 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 5
- 238000007619 statistical method Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 230000029553 photosynthesis Effects 0.000 description 4
- 238000010672 photosynthesis Methods 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 241000219194 Arabidopsis Species 0.000 description 3
- 101100333271 Arabidopsis thaliana ELIP1 gene Proteins 0.000 description 3
- 101100333272 Arabidopsis thaliana ELIP2 gene Proteins 0.000 description 3
- 101150092959 MAX2 gene Proteins 0.000 description 3
- 101100366137 Mesembryanthemum crystallinum SODCC.1 gene Proteins 0.000 description 3
- 101100096142 Panax ginseng SODCC gene Proteins 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 206010052428 Wound Diseases 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000000132 electrospray ionisation Methods 0.000 description 3
- 108010030074 endodeoxyribonuclease MluI Proteins 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000011536 extraction buffer Substances 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 238000000589 high-performance liquid chromatography-mass spectrometry Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- ZNJFBWYDHIGLCU-UHFFFAOYSA-N jasmonic acid Natural products CCC=CCC1C(CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-UHFFFAOYSA-N 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 101150017120 sod gene Proteins 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- XHSDUVBUZOUAOQ-WJQMYRPNSA-N (3e,3ar,8bs)-3-[[(2r)-4-methyl-5-oxo-2h-furan-2-yl]oxymethylidene]-4,8b-dihydro-3ah-indeno[1,2-b]furan-2-one Chemical compound O1C(=O)C(C)=C[C@@H]1O\C=C/1C(=O)O[C@@H]2C3=CC=CC=C3C[C@@H]2\1 XHSDUVBUZOUAOQ-WJQMYRPNSA-N 0.000 description 2
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 2
- 101150066253 APX2 gene Proteins 0.000 description 2
- 101100485120 Arabidopsis thaliana WRKY33 gene Proteins 0.000 description 2
- 101100107065 Arabidopsis thaliana ZAT10 gene Proteins 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 2
- 241000255908 Manduca sexta Species 0.000 description 2
- 241000985245 Spodoptera litura Species 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000006353 environmental stress Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000001418 larval effect Effects 0.000 description 2
- 229940118019 malondialdehyde Drugs 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010208 microarray analysis Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000013595 supernatant sample Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- 241000254032 Acrididae Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000195940 Bryophyta Species 0.000 description 1
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- 241000254171 Curculionidae Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 241000738498 Epitrix pubescens Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 102000018700 F-Box Proteins Human genes 0.000 description 1
- 108010066805 F-Box Proteins Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 240000001140 Mimosa pudica Species 0.000 description 1
- 241001477931 Mythimna unipuncta Species 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 241000238814 Orthoptera Species 0.000 description 1
- 240000007377 Petunia x hybrida Species 0.000 description 1
- 241000985694 Polypodiopsida Species 0.000 description 1
- 241000256247 Spodoptera exigua Species 0.000 description 1
- 241000256250 Spodoptera littoralis Species 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- -1 Zygophyceae Species 0.000 description 1
- 230000036579 abiotic stress Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 108060000307 allene oxide cyclase Proteins 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 230000004790 biotic stress Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000004300 dark adaptation Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000004577 ear development Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 244000038280 herbivores Species 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 101150044508 key gene Proteins 0.000 description 1
- 238000012933 kinetic analysis Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000004301 light adaptation Effects 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000021232 nutrient availability Nutrition 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000003711 photoprotective effect Effects 0.000 description 1
- 230000005097 photorespiration Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 229930195732 phytohormone Natural products 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229930010796 primary metabolite Natural products 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000011506 response to oxidative stress Effects 0.000 description 1
- 230000026206 response to starvation Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000009105 vegetative growth Effects 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/825—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8262—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
- C12N15/8269—Photosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8286—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Botany (AREA)
- Insects & Arthropods (AREA)
- Pest Control & Pesticides (AREA)
- Nutrition Science (AREA)
- Virology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域Technical field
本发明属于生物技术领域,具体的说,涉及一种渐狭叶烟草中MAX2的高光适应性的新功能。The invention belongs to the field of biotechnology, and specifically relates to a new high-light adaptability function of MAX2 in Nicotiana intensifolia.
背景技术Background technique
自然界中的植物面临复杂的环境,植物激素在协调植物对复杂环境压力的生理反应方面发挥着核心作用。沙漠环境通常的特点是强烈的阳光,包括光合有效辐射(PAR)和极强的紫外线(UV-B)辐射,水和养分供应度低,极端高温,风和沙尘暴,以及强烈的虫害压力。渐狭叶烟草(Nicotiana attenuata)原产于美国犹他沙漠,长期生活在这些非生物和生物胁迫的环境中。构建渐狭叶烟草的转基因植株,并将其种植于原生地,了解基因在植物适应各种环境胁迫中的作用,已被证明是研究基因功能的重要手段。Plants in nature face complex environments, and phytohormones play a central role in coordinating plant physiological responses to complex environmental stresses. Desert environments are typically characterized by intense sunlight, including photosynthetically active radiation (PAR) and extreme ultraviolet (UV-B) radiation, low water and nutrient availability, extreme heat, wind and dust storms, and intense pest pressure. Nicotiana attenuata is native to the Utah Desert in the United States and has long lived in these abiotic and biotic stress environments. Constructing transgenic plants of Nicotiana intensifolia and planting them in their native habitat to understand the role of genes in plant adaptation to various environmental stresses has proven to be an important means of studying gene functions.
独脚金内酯(SLs)是一类由类胡萝卜素衍生的激素,通过抑制枝条分枝来调节植物结构。同时还充当寄主植物和寄生植物以及共生真菌之间的根际信号。DWARF14(D14)是一种α/β折叠水解酶,是SLs的受体。Karrikin(KARs)是一类植物燃烧产生的小分子,可在火灾后刺激种子萌发。KARs的受体,KARRIKININSENSITIVE 2(KAI2),是D14的旁系同源基因。由SL和KARs触发的信号传导都需要相同的共受体,MOREAXILLARYGROWTH2(MAX2),一种富含亮氨酸的F-box蛋白。各种植物中的max2突变体,包括拟南芥和水稻(其中它们被称为dwarf3)对SL和KAR信号均不敏感。Strigolactones (SLs) are a class of carotenoid-derived hormones that regulate plant structure by inhibiting branch branching. It also serves as a rhizosphere signal between host and parasitic plants and symbiotic fungi. DWARF14 (D14) is an α/β fold hydrolase and a receptor for SLs. Karrikin (KARs) is a class of small molecules produced by burning plants that can stimulate seed germination after fire. The receptor for KARs, KARRIKININSENSITIVE 2 (KAI2), is a paralog of D14. Signaling triggered by both SL and KARs requires the same coreceptor, MOREXILLARYGROWTH2 (MAX2), a leucine-rich F-box protein. max2 mutants in various plants, including Arabidopsis and rice (where they are referred to as dwarf3), are insensitive to both SL and KAR signaling.
在拟南芥、水稻和矮牵牛中都有SL生物合成和信号突变体,并且都表现出增加分枝表型。此外,已知SL途径能够调节影响产量的其他性状,例如玉米中的籽粒重量和水稻中的穗部发育。SL和KAR在防御生物攻击方面也起着核心作用,例如对抗钻茎象鼻虫(Trichobarus mucorea)的幼虫,以及线虫。SL和KAR信号途径都提高了植物在干旱和盐胁迫下的存活率。这些结果表明,SL和KAR信号途径可能是提高作物产量的期望靶标。然而,这些研究中的大多数都是在温室或实验室环境中进行的,SL和KAR信号途径在自然环境中所起的作用仍然未知。SL biosynthesis and signaling mutants are available in Arabidopsis, rice, and petunia, and all exhibit increased branching phenotypes. In addition, the SL pathway is known to regulate other traits that affect yield, such as grain weight in maize and ear development in rice. SL and KAR also play a central role in defense against biological attacks, such as against larvae of the stem-boring weevil (Trichobarus mucorea), as well as nematodes. Both SL and KAR signaling pathways improve plant survival rate under drought and salt stress. These results suggest that the SL and KAR signaling pathways may be desirable targets for improving crop yield. However, most of these studies were conducted in greenhouse or laboratory settings, and the role of SL and KAR signaling pathways in natural environments remains unknown.
为便于实验研究,植物通常被种植在温室中,通过在温室中的生长发育推测其在田间的表现,而温室环境与田间环境存在很大区别。例如,光照通常只是全日光PAR强度的一小部分,并且经常完全缺乏UV-B。生长在犹他州沙漠中的植物经常暴露在2000μmol/m2/s的PAR和数百μmol/m2/s的UV-B中,这些条件在受控环境中很难复制。暴露在超过光合作用能力的光照水平下可导致光氧化应激和叶绿素损伤,植物已经进化出光保护措施,以尽量减少过剩光能造成的损害,如光呼吸,非光化学猝灭(NPQ)和超氧化物歧化酶(SOD)的积累,以及抗氧化物质,如防止叶绿素氧化的类胡萝卜素。然而,SL和KAR信号途径是否在这些过量光响应中起作用仍然未知。To facilitate experimental research, plants are usually grown in greenhouses, and their performance in the field is inferred through their growth and development in the greenhouse. However, there is a big difference between the greenhouse environment and the field environment. For example, light is typically only a fraction of the PAR intensity of full daylight, and often lacks UV-B entirely. Plants growing in the Utah desert are regularly exposed to 2000 μmol/m 2 /s of PAR and hundreds of μmol/m 2 /s of UV-B, conditions that are difficult to replicate in a controlled environment. Exposure to light levels that exceed photosynthetic capacity can lead to photooxidative stress and chlorophyll damage, and plants have evolved photoprotective measures to minimize damage caused by excess light energy, such as photorespiration, non-photochemical quenching (NPQ), and ultrasonic quenching. The accumulation of oxide dismutase (SOD), as well as antioxidant substances such as carotenoids that prevent chlorophyll from oxidizing. However, whether the SL and KAR signaling pathways play a role in these excess light responses remains unknown.
发明内容Contents of the invention
本发明的目的在于,提供了一种渐狭叶烟草中MAX2基因及其编码的蛋白质在调节植物高光适应性中的应用。所述MAX2基因的核苷酸序列如序列2所示;其编码的蛋白质的氨基酸序列如序列1所示。The purpose of the present invention is to provide an application of the MAX2 gene in Nicotiana intensifolia and the protein it encodes in regulating the high-light adaptability of plants. The nucleotide sequence of the MAX2 gene is shown in Sequence 2; the amino acid sequence of the protein encoded by it is shown in Sequence 1.
本发明要求保护一种蛋白质在调节植物高光响应中的应用;所述蛋白质为如下A1)-A3)至少一种:The present invention claims the use of a protein in regulating the high-light response of plants; the protein is at least one of the following A1)-A3):
A1)序列表中序列1所示的蛋白质;A1) The protein shown in sequence 1 in the sequence listing;
A2)在A1)所述蛋白质的N端和/或C端连接标签得到的融合蛋白;A2) A fusion protein obtained by connecting a tag to the N-terminus and/or C-terminus of the protein described in A1);
A3)在A1)经过一个或几个氨基酸残基的取代和/或缺失、和/或添加得到的具有调节植物高光响应活性的蛋白质。A3) A protein with the activity of regulating high light response of plants obtained through substitution and/or deletion and/or addition of one or several amino acid residues in A1).
所述A3)可以为序列表中序列3所示的蛋白质。The A3) may be the protein shown in sequence 3 in the sequence listing.
在调节植物高光响应中可以使用序列1或者序列3所示的蛋白中的一种,也可以共同使用。In regulating the high light response of plants, one of the proteins shown in Sequence 1 or Sequence 3 can be used, or they can be used together.
本发明还要求保护与所述的蛋白相关的生物材料在在调节植物高光响应中的应用,所述生物材料为下述B1)至B5)中的任一种:The present invention also claims the application of biological materials related to the protein in regulating the high light response of plants, and the biological materials are any one of the following B1) to B5):
B1)编码中所述蛋白质的核酸分子;B1) Nucleic acid molecules encoding the proteins described in;
B2)含有B1)所述核酸分子的表达盒;B2) An expression cassette containing the nucleic acid molecule described in B1);
B3)含有B1)所述核酸分子的重组载体、或含有B2)所述表达盒的重组载体;B3) A recombinant vector containing the nucleic acid molecule described in B1), or a recombinant vector containing the expression cassette described in B2);
B4)含有B1)所述核酸分子的重组微生物、或含有B2)所述表达盒的重组微生物、或含有B3)所述重组载体的重组微生物;B4) A recombinant microorganism containing the nucleic acid molecule described in B1), or a recombinant microorganism containing the expression cassette described in B2), or a recombinant microorganism containing the recombinant vector described in B3);
B5)降低所述蛋白质表达量的核酸分子。B5) Nucleic acid molecules that reduce the expression level of the protein.
其中,B1)所述核酸分子为如下b11)或b12)或b13)或b14):Wherein, the nucleic acid molecule described in B1) is the following b11) or b12) or b13) or b14):
b11)编码序列是序列表中序列2的cDNA分子或DNA分子;b11) The coding sequence is the cDNA molecule or DNA molecule of sequence 2 in the sequence listing;
b12)序列表中序列2所示的cDNA分子或DNA分子;b12) The cDNA molecule or DNA molecule shown in sequence 2 in the sequence listing;
b13)在严格条件下与b11)或b12)或b13)限定的核苷酸序列杂交,且编码所述蛋白质的cDNA分子或DNA分子。b13) A cDNA molecule or DNA molecule that hybridizes to the nucleotide sequence defined by b11) or b12) or b13) under stringent conditions and encodes the protein.
其中,所述调节植物高光响应中为降低所述蛋白表达的植物株系对高光的耐受性低于正常表达所述蛋白表达的植物株系对高光的耐受性。Wherein, the high-light response of the plant is regulated by reducing the high-light tolerance of a plant strain that lowers the expression of the protein than that of a plant strain that normally expresses the protein.
其中,所述高光是指高PAR光,一般是指大于等于1000μmol/m2/s的PAR光,尤其是类似于犹他州沙漠中的约为2000μmol/m2/s的PAR光。The high light refers to high PAR light, which generally refers to PAR light of greater than or equal to 1000 μmol/m 2 /s, especially PAR light similar to about 2000 μmol/m 2 /s in the Utah desert.
本发明提供一种培育光敏感植物的方法,包括抑制目的植株中所述的蛋白质的表达/或者沉默所述编码基因的步骤。一般而言,可以同时沉默序列2或序列4所示的编码基因,达到光敏感的目的。The present invention provides a method for cultivating light-sensitive plants, which includes the step of inhibiting the expression of the protein in the target plant/or silencing the encoding gene. Generally speaking, the coding genes shown in sequence 2 or sequence 4 can be silenced simultaneously to achieve the purpose of light sensitivity.
本发明提供一种培育高光耐受性强的植物的方法,包括过表达目的植物中所述的蛋白质的步骤。The present invention provides a method for cultivating plants with strong high light tolerance, which includes the step of overexpressing the protein in the target plant.
其中,所述光敏感是指对高PAR光敏感;所述高光耐受性强是指对高PAR耐受性强。Wherein, the light sensitivity refers to being sensitive to high PAR light; the high light tolerance means strong tolerance to high PAR.
本发明提供一种培育叶片漂白植物的方法,包括将目的植株中所述的蛋白质的表达/或者沉默所述编码基因;并将目的植物在高PAR光条件下培育。The present invention provides a method for cultivating leaf-bleaching plants, which includes expressing/or silencing the encoding gene of the protein in a target plant; and cultivating the target plant under high PAR light conditions.
上述的蛋白质或者上述的生物材料在如下任一中的应用也应在本发明的额保护范围之内:The application of the above-mentioned proteins or the above-mentioned biological materials in any of the following should also be within the scope of the present invention:
1)制备培育高光耐受性强植物的产品;1) Prepare products for cultivating plants with high light tolerance;
2)培育高光耐受性强的植物;2) Cultivate plants with high light tolerance;
3)制备培育高光耐受性弱植物的产品;3) Prepare products for cultivating plants with low light tolerance;
4)培育高光耐受性弱的植物;4) Cultivate plants with weak high light tolerance;
5)制备培育叶片漂白植物的产品;5) Prepare products for cultivating leaf bleaching plants;
6)培育叶片漂白植物;6) Cultivate leaf bleaching plants;
7)制备培育叶绿素含量降低植物的产品;7) Preparing products for cultivating plants with reduced chlorophyll content;
8)培育叶绿素含量降低的植物;8) Cultivate plants with reduced chlorophyll content;
9)制备培育光合能力降低植物的产品;9) Prepare products for cultivating plants with reduced photosynthetic capacity;
10)培育光合能力降低的植物;10) Cultivate plants with reduced photosynthetic capacity;
11)制备培育害虫抗性降低植物的产品;11) Preparation of products for cultivating plants with reduced pest resistance;
12)培育害虫抗性降低的植物。12) Breed plants with reduced pest resistance.
本发明的有益效果在于:在SL和KAR信号通路基因(irMAX2,irD14和irKAI2植株)沉默的株系中,irMAX2,irD14表现出预期的分枝增加,但仅有irMAX2植株在田间生长时表现出强烈的叶片漂白表型。在田间,与野生型相比,irMAX2植株具有较低的糖分和较高的叶氨基酸含量,较低的生活史适应性并且更容易遭受虫害。在温室种植的irMAX2植株中未观察到这些表型。转录组学分析显示,田间irMAX2叶片对高强度光的响应显著;叶黄素含量降低,对高强度光、单线态氧和过氧化氢的转录反应增加。在田间进行的PAR和UV-B的实验表明,irMAX2漂白表型被降低的PAR逆转,而UV-B不影响其表型。本发明提出NaMAX2通过独立于SL和KAR信号通路中的作用来调节高光响应,从而在高光耐受和适应性增强中发挥作用。这项工作提供了另一个例子,说明在植物进化的复杂环境中―即自然环境中研究基因功能的价值。The beneficial effect of the present invention is that in the lines in which the SL and KAR signaling pathway genes (irMAX2, irD14 and irKAI2 plants) are silenced, irMAX2 and irD14 show the expected increase in branching, but only the irMAX2 plant shows the expected increase in branching when grown in the field. Strong leaf bleaching phenotype. In the field, irMAX2 plants had lower sugar and higher leaf amino acid content, lower life history adaptability and were more susceptible to insect damage compared with wild type. These phenotypes were not observed in greenhouse-grown irMAX2 plants. Transcriptomic analysis showed that irMAX2 leaves in the field responded significantly to high-intensity light; lutein content decreased, and transcriptional responses to high-intensity light, singlet oxygen, and hydrogen peroxide increased. Experiments with PAR and UV-B conducted in the field showed that the irMAX2 bleaching phenotype was reversed by reduced PAR, while UV-B did not affect its phenotype. The present invention proposes that NaMAX2 regulates high light response independently of its role in the SL and KAR signaling pathways, thereby playing a role in high light tolerance and adaptive enhancement. This work provides another example of the value of studying gene function in the complex context of plant evolution—that is, in the natural environment.
附图说明Description of the drawings
图1为温室种植的N.attenuata植物的MAX2沉默可增强生长和适应性,而不影响抗虫能力。(A)温室中生长的3.5个月大的EV,irMAX2#2和irD14#2植株的株高和主枝数(n=8)。(B和C)莲座叶阶段的表型和相对叶绿素量(n=8)(B)叶绿素a,b的含量和chl a/b比值(n=6)(C)。(D)在指定月份(n=8-12)EV,irMAX2#2和irD14#2植株的生物量,花数,蒴果数。3.5个月时收集的数据用于统计分析。(E)在指定日期(n=16-28)以EV,irMAX2#1,irMAX2#2和无防御(irAOC)植株物为食的鳞翅目害虫:广食性昆虫(Spodoptera littoralis)和专食性昆虫(Manduca sexta)的幼虫重量。(F)在未进行(对照)或1小时叶层穿刺伤口处理后的EV,irMAX2#1和irMAX2#2叶中JA和JA-Ile的水平(n=6)。使用Turkey’s的多重比较检验(P<0.05)(A,C,D)或双尾t检验(n.s.无显著差异)(F)(所有值均为均值±标准误)进行统计分析。Figure 1 shows that MAX2 silencing of greenhouse-grown N. attenuata plants enhances growth and fitness without affecting insect resistance. (A) Plant height and number of main branches of 3.5-month-old EV, irMAX2#2 and irD14#2 plants grown in the greenhouse (n=8). (B and C) Phenotype and relative chlorophyll amount at rosette leaf stage (n=8) (B) Chlorophyll a, b content and chl a/b ratio (n=6) (C). (D) Biomass, number of flowers, and number of capsules of EV, irMAX2#2 and irD14#2 plants in the specified months (n=8-12). Data collected at 3.5 months were used for statistical analysis. (E) Lepidopteran pests: generalist insects (Spodoptera littoralis) and specialist insects feeding on EV, irMAX2#1, irMAX2#2 and defenseless (irAOC) plants on the indicated days (n=16-28) (Manduca sexta) larval weight. (F) Levels of JA and JA-Ile in irMAX2#1 and irMAX2#2 leaves without (control) or 1 hour after leaf puncture wound treatment with EV (n=6). Statistical analysis was performed using Turkey’s multiple comparison test (P < 0.05) (A, C, D) or two-tailed t test (n.s. no significant difference) (F) (all values are means ± SE).
图2为田间生长的N.attenuata植物的MAX2沉默导致叶片漂白,损害适应性和抗虫性。(A)2018年Snow plot生长的2.5个月龄植株的代表性图片,WT、irMAX2#1,irD14#2和irKAI2#2植株的株高和初级分枝数(n=8)。(B和C)2019年在Lytle plot生长的上述植物的表型、相对叶绿素量(n=6)(B)和叶绿素a,b,chl a/b(n=8)(C)的含量。(D)2018年田间季节2.5个月龄WT、irMAX2#1,irD14#2和irKAI2#2植株的花数和蒴果数(n=8-10)。(E)在2019年田间季节2.5个月大的EV,2个独立株系的irMAX2植株的生物量、花数和蒴果数(n=8-10)。(F)2019年田间季EV、irMAX2,irD14,irKAI2和irD14×irKAI2植株叶片损伤比例。每个基因型包括两个株系(均值±标准误,n=46-60)。V级:叶片损伤30-40%,IV级:叶片损伤20-30%,III级:叶片损伤10-20%,II级:叶片损伤5-10%,I级:叶片损伤0-5%。(G)1小时后未经(对照)或经伤口处理的上述株系叶片中JA和JA-Ile的水平(平均±标准误,n=8)。使用Turkey’s的多重比较检验(P<0.05)(A,C,D,E)或双尾Student’s t-test.检验(**P<0.01)(G)进行统计分析,所有值均为:均值±标准误)。Figure 2 shows that MAX2 silencing in N. attenuata plants grown in the field resulted in leaf bleaching and impaired fitness and insect resistance. (A) Representative pictures of 2.5-month-old plants grown on Snow plot in 2018, plant height and primary branch number of WT, irMAX2#1, irD14#2 and irKAI2#2 plants (n=8). (B and C) Phenotype, relative chlorophyll amount (n=6) (B) and chlorophyll a, b, chl a/b (n=8) (C) content of the above plants grown in Lytle plot in 2019. (D) Number of flowers and capsules of 2.5-month-old WT, irMAX2#1, irD14#2 and irKAI2#2 plants in the 2018 field season (n=8-10). (E) Biomass, flower number, and capsule number of 2.5-month-old EV, irMAX2 plants from 2 independent lines during the 2019 field season (n = 8-10). (F) Leaf damage proportions of EV, irMAX2, irD14, irKAI2 and irD14×irKAI2 plants in the 2019 field season. Two lines were included per genotype (mean ± standard error, n = 46-60). Level V: 30-40% blade damage, Level IV: 20-30% blade damage, Level III: 10-20% blade damage, Level II: 5-10% blade damage, Level I: 0-5% blade damage. (G) Levels of JA and JA-Ile in leaves of the above lines without (control) or wound treatment after 1 hour (mean ± SE, n = 8). Statistical analysis was performed using Turkey's multiple comparison test (P < 0.05) (A, C, D, E) or two-tailed Student's t-test (**P < 0.01) (G). All values are: mean ± standard error).
图3为初级代谢物在田间irMAX2叶中改变。(A和B)在温室EV,irMAX2#2和irD14#2植物R6叶中的葡萄糖,果糖,蔗糖和淀粉含量(A)和2019年田间季节(B)(平均±标准误差,n=6)。(C和D)2019年温室(C)和田间生长的EV,irMAX2#2和irD14#2植物R6叶中氨基酸的比例(D)在图表下方给出氨基酸的总量(平均值±标准误,n=6)。使用Turkey’s的多元比较检验(P<0.05)(A,B)或双尾Student’s t-test(**,P<0.01)(D)进行统计分析。Figure 3 shows changes in primary metabolites in irMAX2 leaves in the field. (A and B) Glucose, fructose, sucrose and starch contents in R6 leaves of EV, irMAX2#2 and irD14#2 plants in greenhouse (A) and 2019 field season (B) (mean ± standard error, n = 6) . (C and D) Proportions of amino acids in R6 leaves of greenhouse (C) and field-grown EV, irMAX2#2 and irD14#2 plants in 2019 (D) Total amounts of amino acids (mean ± SE, n=6). Statistical analysis was performed using Turkey’s multiple comparison test (P<0.05) (A, B) or two-tailed Student’s t-test (**, P<0.01) (D).
图4为转录组学分析显示irMAX2叶片对高强度光照的超敏反应。(A)2019年田间季节收集的EV,irKAI2#2,irMAX2#2和irD14#2叶片转录组数据的多维度缩放(MDS)图(平均±标准误差,n=3)。(B)Venn图显示了EV,irKAI2#2,irMAX2#2和irD14#2叶中上调和下调基因之间的重叠。(C)热图显示了EV和irMAX2#2叶子中特异性的上调和下调基因。(D)来自EV和irMAX2#2叶子(C)的640个上调和683个下调基因的Gene Ontology(GO)富集。红色表示上调的基因,蓝色表示下调的基因。Figure 4 shows transcriptomic analysis showing the hypersensitivity of irMAX2 leaves to high-intensity light. (A) Multidimensional scaling (MDS) plot of EV, irKAI2#2, irMAX2#2 and irD14#2 leaf transcriptome data collected during the 2019 field season (mean ± standard error, n = 3). (B) Venn plot showing the overlap between up-regulated and down-regulated genes in EV, irKAI2#2, irMAX2#2 and irD14#2 leaves. (C) Heat map showing specific up- and down-regulated genes in EV and irMAX2#2 leaves. (D) Gene Ontology (GO) enrichment of 640 up-regulated and 683 down-regulated genes from EV and irMAX2#2 leaves (C). Red indicates up-regulated genes, blue indicates down-regulated genes.
图5为降低PAR而不是UV-B可以挽救MAX2沉默植物的漂白表型。(A)紫外线阻隔笼和紫外线透明笼外部和内部的相对UV-B通量(n=6)。(B)EV高紫外线、irMAX2高紫外线(紫外线透明笼中)和irMAX2低紫外线(紫外线阻挡笼中)植物叶片的相对叶绿素含量(n=6)。(C)遮阳笼的示意图以及笼子内外的光强度(PPFD)和UV-B水平。(D)irMAX2-对照(无遮阳笼)、irMAX2-遮阳(在遮阳笼中21天)和irMAX2-再曝光(在遮阳笼中21天,移除笼子5天)的代表图片;EV-高光(无遮阳笼)、irMAX2-高光(无遮阳笼)和irMAX2-低光(遮阳笼)叶片的相对叶绿素量,遮阳处理21天(n=8),irMAX2-低光,irMAX2-高光和irMAX2-去除遮阳笼5天后的叶片相对叶绿素量(n=5-8)。(E)EV高光、irMAX2低光和irMAX2高光植物的光响应曲线(n=3)。(F)EV-高光、irMAX2-低光和irMAX2-高光植株的A-Ci曲线,每个有2个重复。(G)EV-高光、irMAX2-高光和irMAX2-低光植株叶片中叶黄素、玉米黄质和β-胡萝卜素的含量(n=6-8)。(H)EV-高光、irMAX2-高光和irMAX2-低光植物叶片中高光响应基因(ELIP1,ELIP2),H2O2相关基因(SOD,APX2,CAT和ZAT10)和单线态氧响应基因(WRKY33,WRKY40-1和WRKY40-2)的相对转录丰度(n=8)。在此图中进行的所有实验都是在2019年的野外季节完成的。使用Turkey’s的多重比较检验(P<0.05)(G,H)进行统计分析(所有值均为均值±标准误)。Figure 5 shows that reducing PAR but not UV-B can rescue the bleaching phenotype of MAX2 silenced plants. (A) Relative UV-B flux outside and inside UV-blocking cages and UV-transparent cages (n=6). (B) Relative chlorophyll content of EV high UV, irMAX2 high UV (UV transparent cage), and irMAX2 low UV (UV blocking cage) plant leaves (n=6). (C) Schematic of the shade cage and the light intensity (PPFD) and UV-B levels inside and outside the cage. (D) Representative images of irMAX2-control (no shade cage), irMAX2-shade (21 days in shade cage), and irMAX2-reexposed (21 days in shade cage, 5 days cage removed); EV-high light ( Relative chlorophyll amount of leaves without shade cage), irMAX2-high light (without shade cage) and irMAX2-low light (shade cage), shade treatment for 21 days (n=8), irMAX2-low light, irMAX2-high light and irMAX2-removed Relative chlorophyll content of leaves after 5 days in shade cage (n=5-8). (E) Light response curves of EV high light, irMAX2 low light and irMAX2 high light plants (n=3). (F) A-Ci curves of EV-high light, irMAX2-low light and irMAX2-high light plants, each with 2 replicates. (G) Contents of lutein, zeaxanthin and β-carotene in leaves of EV-high light, irMAX2-high light and irMAX2-low light plants (n=6-8). (H) High-light-responsive genes (ELIP1, ELIP2), H 2 O 2- related genes (SOD, APX2, CAT and ZAT10) and singlet oxygen-responsive genes (WRKY33) in EV-high-light, irMAX2-high-light and irMAX2-low-light plant leaves , WRKY40-1 and WRKY40-2) relative transcript abundance (n=8). All experiments performed in this figure were completed during the 2019 field season. Statistical analysis was performed using Turkey's multiple comparison test (P < 0.05) (G, H) (all values are means ± SE).
图6为MAX2在温室和田间的功能总结。(A)当在相对低光照(200-300μmol/m2/s)水平下生长时,irMAX2植物发育有更多的分枝,增加地上生物量和种子产量;对抗虫性不受影响。(B)在犹他州沙漠中,植物的原生环境特点是一致的高光强度(2000μmol/m2/s),irMAX2植物的成熟叶漂白,光合作用,H2O2,糖和类胡萝卜素减少,单线态氧水平和蛋白质反而增加,这损害了生长,种子结实和对原生叶食动物的抵抗力。Figure 6 is a summary of the functions of MAX2 in greenhouses and fields. (A) When grown at relatively low light levels (200-300 μmol/m 2 /s), irMAX2 plants develop more branches, increase aboveground biomass and seed production; insect resistance is not affected. (B) In the Utah desert, where the plant's native environment is characterized by consistently high light intensities (2000 μmol/m 2 /s), mature leaves of irMAX2 plants experience bleaching, reduced photosynthesis, H 2 O 2 , sugars, and carotenoids, Singlet oxygen levels and protein instead increase, which impairs growth, seed set and resistance to native leaf feeders.
具体实施方式Detailed ways
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。The present invention will be described in further detail below in conjunction with specific embodiments. The examples given are only for illustrating the present invention and are not intended to limit the scope of the present invention. The examples provided below can serve as a guide for those of ordinary skill in the art to make further improvements, and do not limit the present invention in any way.
下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The experimental methods in the following examples, unless otherwise specified, are all conventional methods and are carried out in accordance with the techniques or conditions described in literature in the field or in accordance with product instructions. Materials, reagents, etc. used in the following examples can all be obtained from commercial sources unless otherwise specified.
下述实施例中,渐狭叶烟草(Nicotiana attenuata)来源于1988年从美国DI农场(犹他州圣克拉拉)收集的种子;质粒pRESC8来源于德国马普化学生态所Ian T.Baldwin实验室,在文章(Li,et al.,2020,Strigolactone signaling regulates specializedmetabolismin tobacco stems and interactions with stem-feeding herbivores)中公开。In the following examples, Nicotiana attenuata was derived from seeds collected from DI Farm (Santa Clara, Utah) in the United States in 1988; plasmid pRESC8 was derived from the laboratory of Ian T. Baldwin of the Max Planck Institute for Chemical Ecology, Germany. Disclosed in the article (Li, et al., 2020, Strigolactone signaling regulates specialized metabolismin tobacco stems and interactions with stem-feeding herbivores).
下述实施例中,涉及的部分基础实验及其方法如下:In the following examples, some of the basic experiments and methods involved are as follows:
1)抗虫生物测定:室内饲养的耐尼古丁鳞翅目物种烟草天蛾和斜纹夜蛾的幼虫被用于温室抗虫测定,在实验植物刚刚开始从营养生长过渡到生殖生长的阶段。将单个新生烟草天蛾幼虫放置在EV或irMAX2植物的完全展开的叶子上,并允许在整个植物上自由移动和进食。在指定天数称量幼虫生物量。对于斜纹夜蛾实验,将一只二龄幼虫(孵化后用人工饲料喂养3天)放在夹笼中完全展开的莲座状叶上,每1-2d移动到新叶上。2019年虫子对田间种植植物的损害是根据先前描述的方法目视估计和计算的。当植物处于开花早期(种植后33d)时,每个基因型采用40多株植物以量化虫子啃食的冠层面积百分比。大部分损害是由夜蛾幼虫、树蟋蟀和蚱蜢的成虫和若虫以及跳甲成虫的取食造成的。1) Insect resistance bioassay: Indoor-reared larvae of the nicotine-resistant Lepidopteran species Nicotiana sexta and Spodoptera litura were used for greenhouse insect resistance assay at a stage when the experimental plants had just begun to transition from vegetative growth to reproductive growth. Single newborn tobacco hornworm larvae are placed on fully expanded leaves of EV or irMAX2 plants and allowed to move and feed freely throughout the plant. Larval biomass was weighed on designated days. For the Spodoptera litura experiment, a second-instar larvae (fed with artificial feed for 3 days after hatching) was placed on a fully expanded rosette leaf in a clamp cage and moved to new leaves every 1-2 d. Insect damage to field-grown plants in 2019 was visually estimated and calculated according to previously described methods. More than 40 plants per genotype were used to quantify the percentage of canopy area being eaten by insects when plants were in early flowering (33 days after planting). Much of the damage is caused by feeding by armyworm larvae, adults and nymphs of tree crickets and grasshoppers, and flea beetle adults.
2)光合作用:使用LI-6400XT分析系统(美国Li-Cor生物科学)进行光合测量,荧光计集成在叶室中。田间测量是在上午10点至下午14点之间无云的日子进行的。在400μmol/m2/s CO2、30℃温度和2000μmol/m2/s光强度下测量光合速率(A)。在0-2000μmol/m2/s的光照强度水平下,使用相同的参考CO2水平和温度进行光响应曲线测定。在25℃温度和2000μmol/m2/s光强度下,在0-900μmol/m2/s的7个水平下,在参考CO2水平下进行A/Ci曲线。在温室中,在400μmol/m2/s CO2、25℃温度和0-2000μmol/m2/s的光强度下测量光合速率。Fv/Fm、NPQ、Fv'/Fm'和PhiPSII按照LICOR 6400XT手册进行暗适应和光适应测量。2) Photosynthesis: Photosynthesis measurements were performed using the LI-6400XT analysis system (Li-Cor Biosciences, USA), with a fluorometer integrated in the leaf chamber. Field measurements were performed on cloud-free days between 10 am and 14 pm. Photosynthetic rate (A) was measured at 400 μmol/m 2 /s CO 2 , 30°C temperature and 2000 μmol/m 2 /s light intensity. Photoresponse curve measurements were performed at light intensity levels of 0-2000 μmol/ m2 /s using the same reference CO2 levels and temperatures. A / Ci curves were performed at reference CO2 levels at 7 levels from 0 to 900 μmol/ m2 /s at a temperature of 25°C and a light intensity of 2000 μmol/ m2 /s. In the greenhouse, the photosynthetic rate was measured at 400 μmol/m 2 /s CO 2 , a temperature of 25°C and a light intensity of 0-2000 μmol/m 2 /s. Fv/Fm, NPQ, Fv'/Fm' and PhiPSII were measured according to the LICOR 6400XT manual for dark adaptation and light adaptation.
3)叶绿素和叶片的相对温度:用Dualex(FORCE-A)手持式分光光度计测定田间生长植物完全展开叶片的中层的相对叶绿素量和叶片温度。3) Relative chlorophyll and leaf temperature: Use Dualex (FORCE-A) handheld spectrophotometer to measure the relative chlorophyll amount and leaf temperature in the middle layer of fully expanded leaves of plants grown in the field.
4)叶绿素和类胡萝卜素测定:用600μL甲醇提取叶片的粉碎样品(100mg)用于叶绿素测量。离心后,用Acclaim C30色谱柱(Dionex,200A,3.5um,4.6*250mm)通过HPLC分离30μL上清液样品进行色素定量。纯叶绿素a、叶绿素b和β-胡萝卜素使用外标校准。HPLC的流动相如下:A:80%甲醇,B:乙酸乙酯,流速为1mL/min:0分钟,80%(体积/体积)A,20%B;2.5分钟,77.5%A,22.5%B;20分钟,50%A,50%B;22.5分钟,50%A,50%B;24分钟,20%A,80%B;26分钟,20%A,80%B;31分钟,0%A,100%B;34分钟,0%A,100%B;42分钟,80%A,20%B;47分钟,80%A,20%B。叶绿素a在440nm处检测,叶绿素b和β-胡萝卜素在475nm处检测,参考波长为550nm。4) Determination of chlorophyll and carotenoids: A crushed sample (100 mg) of leaves was extracted with 600 μL of methanol for chlorophyll measurement. After centrifugation, 30 μL of the supernatant sample was separated by HPLC using an Acclaim C30 column (Dionex, 200A, 3.5um, 4.6*250mm) for pigment quantification. Pure chlorophyll a, chlorophyll b and β-carotene were calibrated using external standards. The mobile phase of HPLC is as follows: A: 80% methanol, B: ethyl acetate, flow rate is 1mL/min: 0 minutes, 80% (vol/vol) A, 20% B; 2.5 minutes, 77.5% A, 22.5% B ; 20 minutes, 50% A, 50% B; 22.5 minutes, 50% A, 50% B; 24 minutes, 20% A, 80% B; 26 minutes, 20% A, 80% B; 31 minutes, 0% A, 100% B; 34 minutes, 0% A, 100% B; 42 minutes, 80% A, 20% B; 47 minutes, 80% A, 20% B. Chlorophyll a is detected at 440nm, chlorophyll b and β-carotene are detected at 475nm, and the reference wavelength is 550nm.
用600μL甲醇提取叶片的粉碎样品(100mg)用于叶绿素测量。离心后,用AcclaimC30色谱柱(Dionex,200A,3.5μm,4.6*250mm)通过HPLC分离20μL上清液样品,以通过纯标准品的外部标准曲线定量类胡萝卜素(叶黄素,玉米黄质)。HPLC的流动相如下:A:甲醇与乙酸乙酯(1:1),B:乙腈,C:去离子水与200mM乙酸,在1mL/min流速下梯度如下:0–3.6分钟,14.5%(体积/体积)A,85%B,0.5%C;3.6–27分钟,梯度相达到34.5%A,65%B,0.5%C;27–45分钟,34.5%A,65%B,0.5%C。在475nm处检测类胡萝卜素,参考波长在550nm。Crushed samples of leaves (100 mg) were extracted with 600 μL of methanol for chlorophyll measurement. After centrifugation, 20 μL supernatant samples were separated by HPLC using an Acclaim C30 column (Dionex, 200A, 3.5 μm, 4.6*250 mm) to quantify carotenoids (lutein, zeaxanthin) by an external standard curve of pure standards. . The mobile phase of HPLC is as follows: A: methanol and ethyl acetate (1:1), B: acetonitrile, C: deionized water and 200mM acetic acid, the gradient at a flow rate of 1mL/min is as follows: 0–3.6 minutes, 14.5% (volume /volume) A, 85% B, 0.5% C; 3.6–27 min, gradient phase to 34.5% A, 65% B, 0.5% C; 27–45 min, 34.5% A, 65% B, 0.5% C. Carotenoids are detected at 475nm with a reference wavelength of 550nm.
5)微阵列分析和RT-qPCR:为了进行转录本丰度定量,使用RNA植物(Macherey-Nagel)试剂盒从指定叶子中提取RNA。对于微阵列分析,根据快速扩增标记试剂盒(安捷伦,http://www.agilent.com/home)的方案,对从田间生长的叶片中提取的RNA进行标记和杂交。对于杂交,使用了安捷伦单色技术阵列(60k)。用分位数法对原始强度数据进行归一化,log2转化后丢弃低表达水平的探针。在成对比较后过滤差异表达的探针(|倍数变化|≥2,FDR≤0.05)。5) Microarray analysis and RT-qPCR: For transcript abundance quantification, use RNA Plant (Macherey-Nagel) kit extracted RNA from specified leaves. For microarray analysis, RNA extracted from field-grown leaves was labeled and hybridized according to the protocol of the Rapid Amplification Labeling Kit (Agilent, http://www.agilent.com/home). For hybridization, an Agilent Monochrome Technology array (60k) was used. Raw intensity data were normalized using the quantile method and probes with low expression levels were discarded after log2 transformation. Differentially expressed probes were filtered after pairwise comparisons (|fold change| ≥ 2, FDR ≤ 0.05).
对于RT-qPCR,使用PrimeScriptRT-qPCR试剂盒(TaKaRa)制备cDNA。RT-qPCR在Mx3005P qPCR机器上使用SYBR Green反应混合物(Eurogentec,qPCR试剂盒SYBR Green INo ROX)进行。对于所有RT-qPCR分析,使用N.attenuata IF-5a管家基因作为内部参考。For RT-qPCR, cDNA was prepared using PrimeScript RT-qPCR kit (TaKaRa). RT-qPCR was performed on a Mx3005P qPCR machine using SYBR Green reaction mix (Eurogentec, qPCR kit SYBR Green INo ROX). For all RT-qPCR analyses, the N. attenuata IF-5a housekeeping gene was used as an internal reference.
6)糖分测定:为了测定糖水平,用800μL提取缓冲液(80%MeOH中的0.2N甲酸)提取100mg粉碎的R6叶(叶位置测定见图1B)叶片样品。离心后,按照等人描述的程序,用500pmol/μL山梨醇(标准品)将提取物稀释200倍,用于HPLC-MS分析。该分析是在配备HESI(加热电喷雾电离)离子源的Bruker Elite EvoQ三重四极杆MS上进行的。6) Sugar content determination: To determine sugar levels, 100 mg of crushed R6 leaves (see Figure 1B for leaf position determination) leaf samples were extracted with 800 μL of extraction buffer (0.2N formic acid in 80% MeOH). After centrifugation, follow The extract was diluted 200-fold with 500 pmol/μL sorbitol (standard) for HPLC-MS analysis following the procedure described by et al. The analysis was performed on a Bruker Elite EvoQ triple quadrupole MS equipped with a HESI (heated electrospray ionization) ion source.
7)氨基酸测定:为了测定氨基酸水平,用800μL提取缓冲液(80%MeOH中的0.2N甲酸)提取100mg叶叶片粉碎的样品。离心后,按照等人描述的程序,用1ng/g氨基酸标准混合物将提取物稀释50倍以进行HPLC-MS分析。该分析是在配备HESI(加热电喷雾电离)离子源的Bruker Elite EvoQ三重四极杆MS上进行的。7) Amino Acid Determination: To determine amino acid levels, 100 mg of crushed leaf leaf samples were extracted with 800 μL of extraction buffer (0.2N formic acid in 80% MeOH). After centrifugation, follow The extracts were diluted 50-fold with a 1 ng/g amino acid standard mixture for HPLC-MS analysis following the procedure described by et al. The analysis was performed on a Bruker Elite EvoQ triple quadrupole MS equipped with a HESI (heated electrospray ionization) ion source.
8)茉莉酸测量:为了测定茉莉酸盐(JA和JA-Ile)水平,用800μL提取缓冲液(80%MeOH中的0.2N甲酸,同位素标记的JA内标)提取100mg叶薄片粉状样品。离心后,按照等人中描述的程序使用提取物进行HPLC-MS分析。该分析是在配备HESI(加热电喷雾电离)离子源的Bruker Elite EvoQ三重四极杆MS上进行的。8) Jasmonic acid measurement: To determine jasmonates (JA and JA-Ile) levels, 100 mg of leaf flake powdered samples were extracted with 800 μL of extraction buffer (0.2 N formic acid in 80% MeOH, isotopically labeled JA internal standard). After centrifugation, follow HPLC-MS analysis of extracts was performed using the procedure described in et al. The analysis was performed on a Bruker Elite EvoQ triple quadrupole MS equipped with a HESI (heated electrospray ionization) ion source.
实施例1植株的制备Example 1 Preparation of Plants
通过RNA干扰(RNAi)沉默N.attenuata的基因独立系的NaMAX2、NaD14和NaKAI2并用转化空载体(EV)作为对照。即将要沉默基因的靶点序列片段分别连接到质粒pRESC8上构建RNAi载体。将载体转染进渐狭叶烟草下胚轴中,形成转基因植株。通过对相应基因的表达检测,确认片段沉默成功。其中,所述NaMAX2基因的核苷酸序列如序列表的序列2(NaMAX2a)或序列4(NaMAX2b)所示,NaMAX2a编码如序列1所示的蛋白,序列4(NaMAX2b)编码如序列3所示的蛋白。NaD14的核苷酸序列及其编码的蛋白如序列表的序列6(NIATv7_g08776)或序列8(NIATv7_g26688)所示,NIATv7_g08776编码如序列5所示的蛋白,序列8(NIATv7_g26688)编码如序列7所示的蛋白;NaKAI2的核苷酸序列及其编码的蛋白如序列表的序列10或序列12所示,序列10编码如序列9所示的蛋白,序列12编码如序列11所示的蛋白。NaMAX2, NaD14 and NaKAI2 of gene-independent lines of N. attenuata were silenced by RNA interference (RNAi) and transformed with empty vector (EV) as a control. The target sequence fragments of the genes to be silenced are connected to plasmid pRESC8 to construct RNAi vectors. The vector was transfected into the hypocotyls of Nicotiana intensifolia to form transgenic plants. The success of fragment silencing was confirmed by detecting the expression of the corresponding genes. Wherein, the nucleotide sequence of the NaMAX2 gene is as shown in Sequence 2 (NaMAX2a) or Sequence 4 (NaMAX2b) of the sequence list, NaMAX2a encodes the protein as shown in Sequence 1, and Sequence 4 (NaMAX2b) encodes as shown in Sequence 3 of protein. The nucleotide sequence of NaD14 and its encoded protein are shown in sequence 6 (NIATv7_g08776) or sequence 8 (NIATv7_g26688) of the sequence list. NIATv7_g08776 encodes the protein shown in sequence 5, and sequence 8 (NIATv7_g26688) encodes the protein shown in sequence 7. The protein; the nucleotide sequence of NaKAI2 and the protein it encodes are shown in sequence 10 or sequence 12 of the sequence listing. Sequence 10 encodes the protein shown in sequence 9, and sequence 12 encodes the protein shown in sequence 11.
1.沉默植株irMAX2的制备1. Preparation of silent plant irMAX2
1)针对NaMAX2a设计RNA干扰的靶点序列(如序列13所示);针对NaMAX2b设计RNA干扰的靶点序列(如序列14所示);将DNA如序列13和序列14所示的片段分别连接到质粒pRESC8上,得到RNAi载体pRESC8-NaMAX2,所述pRESC8-NaMAX2为将pRESC8的SacⅠ与XhoⅠ位点之间的序列替换为序列15所示的片段,PstⅠ与MluⅠ位点之间的序列替换为16所示的片段的重组载体。1) Design the target sequence of RNA interference for NaMAX2a (as shown in Sequence 13); design the target sequence of RNA interference for NaMAX2b (as shown in Sequence 14); connect the DNA fragments as shown in Sequence 13 and Sequence 14 respectively. onto plasmid pRESC8 to obtain the RNAi vector pRESC8-NaMAX2. The pRESC8-NaMAX2 is obtained by replacing the sequence between the SacⅠ and XhoⅠ sites of pRESC8 with the fragment shown in Sequence 15, and replacing the sequence between the PstⅠ and MluⅠ sites with The recombinant vector of the fragment shown in 16.
2)将载体pRESC8-NaMAX2转染进渐狭叶烟草下胚轴中,形成转基因植株irMAX2,分别为irMAX2#1和irMAX2#2。2) The vector pRESC8-NaMAX2 was transfected into the hypocotyls of Nicotiana angustifolia to form transgenic plants irMAX2, respectively irMAX2#1 and irMAX2#2.
3)以MAX2a-F(ttgagccttaccgaactagatta)和MAX2a-R(gagtgtgacgcattcttgtag) 为引物检测NaMAX2a的表达情况;以MAX2b-F(actatttcaggggtgctcgc)和MAX2b-R (cgattcaagggctggtggta)为引物检测NaMAX2b的表达情况;结果表明irMAX2#1和irMAX2#2植株沉默了NaMAX2a和NaMAX2b基因。3) Use MAX2a-F (ttgagccttaccgaactagatta) and MAX2a-R (gagtgtgacgcattcttgtag) as primers to detect the expression of NaMAX2a; use MAX2b-F (actatttcaggggtgctcgc) and MAX2b-R (cgattcaagggctggtggta) as primers to detect the expression of NaMAX2b; the results show that irMAX2# 1 and irMAX2#2 plants had the NaMAX2a and NaMAX2b genes silenced.
2.对比沉默植株irD14的制备2. Preparation of irD14 in comparative silenced plants
1)针对NaD14设计RNA干扰的靶点序列(如序列17和18所示);将DNA如序列17和序列18所示的片段分别连接到质粒pRESC8上,得到RNAi载体pRESC8-NaD14,所述pRESC8-NaD14为将pRESC8的SacⅠ与XhoⅠ位点插入序列19所示的片段,PstⅠ与MluⅠ位点插入序列20所示的片段的重组载体。1) Design RNA interference target sequences for NaD14 (as shown in Sequences 17 and 18); connect the DNA fragments as shown in Sequence 17 and Sequence 18 to plasmid pRESC8, respectively, to obtain RNAi vector pRESC8-NaD14, said pRESC8 -NaD14 is a recombinant vector in which the SacⅠ and XhoI sites of pRESC8 are inserted into the fragment shown in Sequence 19, and the PstⅠ and MluI sites are inserted into the fragment shown in Sequence 20.
2)将载体pRESC8-NaD14转染进渐狭叶烟草下胚轴中,形成转基因植株irD14植株,分别为irD14#1和irD14#2。2) The vector pRESC8-NaD14 was transfected into the hypocotyls of Nicotiana angustifolia to form transgenic plants irD14 plants, respectively irD14#1 and irD14#2.
3)以D14-F(gatcggaattctcgcctcca)和D14-R(ccgacagctaacggagcaaa)为引物检测NaD14的表达情况,结果表明irD14#1和irD14#2植株沉默了NaD14基因。3) Use D14-F (gatcggaattctcgcctcca) and D14-R (ccgacagctaacggagcaaa) as primers to detect the expression of NaD14. The results showed that the NaD14 gene was silenced in irD14#1 and irD14#2 plants.
3.对比沉默植株irKAI2的制备3. Preparation of comparative silenced plants irKAI2
1)针对NaKAI2设计RNA干扰的靶点序列(如序列21和22所示);将DNA如序列21和序列22所示的片段分别连接到质粒pRESC8上,得到RNAi载体pRESC8-NaKAI2,所述pRESC8-NaKAI2为将pRESC8的SacⅠ与XhoⅠ位点插入序列23所示的片段,PstⅠ与MluⅠ位点插入序列24所示的片段的重组载体。1) Design the target sequence of RNA interference for NaKAI2 (as shown in sequences 21 and 22); connect the DNA fragments as shown in sequence 21 and sequence 22 to the plasmid pRESC8, respectively, to obtain the RNAi vector pRESC8-NaKAI2, the pRESC8 -NaKAI2 is a recombinant vector in which the SacⅠ and XhoI sites of pRESC8 are inserted into the fragment shown in Sequence 23, and the PstⅠ and MluI sites are inserted into the fragment shown in Sequence 24.
2)将载体pRESC8-NaKAI2转染进渐狭叶烟草下胚轴中,形成转基因植株irKAI2植株,分别为irKAI2#1和irKAI2#2。2) The vector pRESC8-NaKAI2 was transfected into the hypocotyls of Nicotiana angustifolia to form transgenic plants irKAI2 plants, respectively irKAI2#1 and irKAI2#2.
3)以KAI2-F(gatcggaattctcgcctcca)和KAI2-R(ccgacagctaacggagcaaa)为引物检测NaKAI2的表达情况结果表明irKAI2#1和irKAI2#2植株沉默了NaKAI2基因。3) Using KAI2-F (gatcggaattctcgcctcca) and KAI2-R (ccgacagctaacggagcaaa) as primers to detect the expression of NaKAI2, the results showed that irKAI2#1 and irKAI2#2 plants silenced the NaKAI2 gene.
4.对比沉默植株irD14*irKAI2的制备4. Preparation of comparative silenced plants irD14*irKAI2
irD14*irKAI2双突变体通过irD14植株和irKAI2植株杂交制备。The irD14*irKAI2 double mutant was prepared by crossing irD14 plants and irKAI2 plants.
以KAI2-F和KAI2-R为引物检测NaKAI2的表达情况,以D14-F和D14-R为引物检测NaD14的表达情况,结果表明irD14*irKAI2#2和irD14*irKAI2#2植株同时沉默了NaKAI2和NaD14基因。KAI2-F and KAI2-R were used as primers to detect the expression of NaKAI2, and D14-F and D14-R were used as primers to detect the expression of NaD14. The results showed that irD14*irKAI2#2 and irD14*irKAI2#2 plants simultaneously silenced NaKAI2. and NaD14 gene.
5.对照植物5. Control plants
将空白载体pRESC8转染进渐狭叶烟草下胚轴中,得到可作为空白对照的植物EV。The blank vector pRESC8 was transfected into the hypocotyl of Nicotiana intensifolia to obtain plant EV that could be used as a blank control.
实施例2沉默NaMAX2可增强温室种植植物的适应性Example 2 Silencing NaMAX2 can enhance the adaptability of greenhouse-grown plants
将上述植株按照前述方法在温室中培养,并对表型、叶绿素含量、抗虫性和JA水平进行了测定,结果如图1所示。The above plants were cultured in the greenhouse according to the aforementioned method, and the phenotype, chlorophyll content, insect resistance and JA level were measured. The results are shown in Figure 1.
从图1可以看出,irD14和irMAX2植株的两个株系产生了更多的初级分枝,并且整体株型较短(如图1A所示)而irKAI2植株则没有产生。irMAX2植株对初级根抑制的敏感性和下胚轴对GR24处理的伸长反应均低于EV植物。这些结果表明,N.attenuata irMAX2植株表现出与其他植株irMAX2突变体相同的表型,如拟南芥和水稻。As can be seen from Figure 1, the two lines of irD14 and irMAX2 plants produced more primary branches and the overall plant shape was shorter (as shown in Figure 1A), while the irKAI2 plant did not. The sensitivity of irMAX2 plants to primary root inhibition and the elongation response of hypocotyl to GR24 treatment were lower than those of EV plants. These results indicate that N. attenuata irMAX2 plants exhibit the same phenotype as irMAX2 mutants in other plants, such as Arabidopsis and rice.
如图1B和1C所示,在温室生长时,irMAX2、irD14和irKAI2植株的叶绿素含量(包括叶绿素a和b以及莲座叶中的a/b比例)与EV植株相比没有差异。As shown in Figures 1B and 1C, the chlorophyll content (including chlorophyll a and b and the a/b ratio in rosette leaves) of irMAX2, irD14, and irKAI2 plants did not differ from EV plants when grown in the greenhouse.
如图1D所示,经过两个月生长,irD14和irMAX2植株的地上部分生物量和花数量明显增加,生长2.5个月后,蒴果数更大。As shown in Figure 1D, after two months of growth, the aboveground biomass and flower number of irD14 and irMAX2 plants increased significantly, and after 2.5 months of growth, the number of capsules was larger.
如图1E所示,用广食性棉贪夜蛾和专食性烟草天蛾幼虫进行的喂养试验表明,这两个物种在以EV和irMAX2植物为食时表现相似,而在以无防御能力的irAOC植株—沉默表达JA生物合成基因ALLENE OXIDE CYCLASE—为食时,这两种昆虫显著获得了更多的生物量。As shown in Figure 1E, feeding trials with the generalist Spodoptera exigua and the specialist Nicotiana sexta larvae showed that the two species performed similarly when feeding on EV and irMAX2 plants, but not when feeding on defenseless irAOC When fed on plants that silently express the JA biosynthetic gene ALLENE OXIDE CYCLASE, the two insects gained significantly more biomass.
如图1F所示,irMAX2叶片在1h伤处理诱导合成的JA和JA-Ile水平与EV叶片没有显著差异。As shown in Figure 1F, the levels of JA and JA-Ile induced and synthesized by irMAX2 leaves after 1 h of wounding treatment were not significantly different from those of EV leaves.
上述结果表明,沉默NaMAX2表达会增加生物量和种子产量,而不会影响抗虫性,这表明沉默MAX2可能是提高植物适应性的有效策略。The above results indicate that silencing NaMAX2 expression increases biomass and seed yield without affecting insect resistance, suggesting that silencing MAX2 may be an effective strategy to improve plant fitness.
实施例3在田间,沉默NaMAX2会导致叶片漂白并损害植物的适应性Example 3 In the field, silencing NaMAX2 causes leaf bleaching and impairs plant fitness
为了评估温室种植植物的这些结果是否可以扩展到田间生长,按照前文所述方法在美国犹他州的大盆地沙漠中的两个田间地块种植了EV,irMAX2,irD14和irKAI2植物三年。To evaluate whether these results for greenhouse-grown plants can be extended to field growth, EV, irMAX2, irD14, and irKAI2 plants were grown for three years in two field plots in the Great Basin Desert of Utah, USA, as described previously.
并在田间季节生长2.5个月后,测定植物的表型、叶绿素水平及茉莉酸合成水平,结果如图2所示。After 2.5 months of growth in the field season, the plant phenotype, chlorophyll level and jasmonic acid synthesis level were measured. The results are shown in Figure 2.
如图2A所示,与正常株型的EV植物相比,irMAX2植物更小,更茂密,初级分枝数量更多;As shown in Figure 2A, compared with EV plants of normal plant type, irMAX2 plants are smaller, denser, and have more primary branches;
如图2B和2C所示,2个独立的irMAX2株系在三年的种植中均表现出严重的叶片漂白,莲座和茎叶叶绿素a和b含量显著降低,而irD14,irKAI2和irD14与irKAI2植株的杂交系(irD14*irKAI2)都没有出现这一情况。由于D14和KAI2分别是SL和KAR信号传导的受体,这些结果表明MAX2以独立于SL和KAR信号传导之外的方式调节这种漂白表型。As shown in Figure 2B and 2C, two independent irMAX2 lines showed severe leaf bleaching during three years of cultivation, and the chlorophyll a and b contents of rosette and stem leaves were significantly reduced, while irD14, irKAI2 and irD14 were different from irKAI2 plants. This situation did not occur in any of the hybrid lines (irD14*irKAI2). Since D14 and KAI2 are receptors for SL and KAR signaling, respectively, these results suggest that MAX2 regulates this bleaching phenotype in a manner independent of SL and KAR signaling.
如图2D和2E所示,在2018年和2019年的田间种植的irMAX2植株较EV植物地上部分生物量、花和蒴果数减少,而其他三种转基因植株(irD14、irKAI2或irD14*irKAI2植株)未出现该表型。As shown in Figures 2D and 2E, irMAX2 plants grown in the field in 2018 and 2019 had reduced aboveground biomass, flower and capsule number compared with EV plants, while the other three transgenic plants (irD14, irKAI2 or irD14*irKAI2 plants) This phenotype was not present.
如图2F所示,irMAX2植株的叶片相对于其他转基因植株以及EV植物受到生物损害更大。As shown in Figure 2F, the leaves of irMAX2 plants suffered greater biological damage than other transgenic plants and EV plants.
如图2G所示,irMAX2叶片的伤口诱导茉莉酸合成水平(JA,JA-Ile水平)明显低于EV叶片。As shown in Figure 2G , the wound-induced jasmonic acid synthesis levels (JA, JA-Ile levels) of irMAX2 leaves were significantly lower than those of EV leaves.
相比之下,在irD14,irKAI2,irD14*irKAI2叶片中,这些抗虫指标与EV植株相比没有差异。从这些结果中可以看出,沉默田间生长的植株的NaMAX2基因会导致植株叶片漂白,适应性和抗虫性降低并且独立于与SL和KAR信号。In contrast, in irD14, irKAI2, and irD14*irKAI2 leaves, there were no differences in these insect resistance indicators compared with EV plants. From these results, it can be seen that silencing the NaMAX2 gene in field-grown plants results in leaf bleaching, reduced fitness and insect resistance and is independent of SL and KAR signaling.
实施例4irMAX2和irD14叶片养分的变化Example 4 Changes in leaf nutrients of irMAX2 and irD14
为研究irMAX2和irD14叶片养分的变化,首先分析叶片淀粉和可溶性糖含量。结果如图3所示。In order to study the changes in leaf nutrients of irMAX2 and irD14, the leaf starch and soluble sugar contents were first analyzed. The results are shown in Figure 3.
如图3A和3B所示,可溶性糖,包括葡萄糖,果糖和蔗糖,在温室中生长的irMAX2和irD14植株物叶片中没有改变。然而,在田间种植植株物irMAX2漂白叶子中,淀粉和可溶性糖含量显着显著降低。As shown in Figures 3A and 3B, soluble sugars, including glucose, fructose, and sucrose, were not altered in the leaves of irMAX2 and irD14 plants grown in the greenhouse. However, starch and soluble sugar contents were significantly reduced in bleached leaves of field-grown plants irMAX2.
接下来我们分析了氨基酸含量。如图3C和3D所示,在温室条件下,irMAX2和irD14植株叶含有与EV叶相似的水平。然而,在田间种植的植物中,irMAX2植株而的总氨基酸含量比EV叶片高2倍,部分氨基酸含量超过这些增加增加的更多,如天冬酰胺(11倍)、色氨酸(10倍)、精氨酸(7倍)、异亮氨酸(7倍)、缬氨酸(6倍)和亮氨酸(5倍)。Next we analyzed the amino acid content. As shown in Figures 3C and 3D, irMAX2 and irD14 plant leaves contained similar levels to EV leaves under greenhouse conditions. However, among plants grown in the field, the total amino acid content of irMAX2 plants was 2 times higher than that of EV leaves, and the content of some amino acids exceeded these increases, such as asparagine (11 times), tryptophan (10 times). , arginine (7 times), isoleucine (7 times), valine (6 times) and leucine (5 times).
总之,在田间漂白的irMAX2植株的漂白叶片子中,糖含量低,氨基酸含量高,这些变化可能是由于叶绿素含量降低引起的,而这反过来又导致其光合能力低、碳水化合物水平低和繁殖能力差。In summary, bleached leaves of field-bleached irMAX2 plants have low sugar content and high amino acid content. These changes may be caused by reduced chlorophyll content, which in turn leads to low photosynthetic capacity, low carbohydrate levels and poor reproduction. poor ability.
实施例5漂白irMAX2叶中的转录反应Example 5 Transcription reaction in bleached irMAX2 leaves
为了探究irMAX2漂白的原因,用来自田间的EV,irMAX2,irKAI2和irD14叶进行了微阵列测定。多维缩放(MDS)分析清楚地将irMAX2样品与EV,irKAI2和irD14样品分开(图4A)。通过Venn图鉴定差异表达基因(DEGs)(|log2FC|≥1,FDR≤0.05),在irMAX2叶片中包括640个上调和683个下调DEGs特异性改变,并呈现在热图中(图4B和4C)。这些DEG进一步用于计算Gene Ontology(GO)的富集,其揭示了上调基因在与热,光强度和氧化应激反应相关的过程中富集,而下调的基因在饥饿反应中富集(图4D)。To explore the cause of irMAX2 bleaching, microarray assays were performed with EV, irMAX2, irKAI2 and irD14 leaves from the field. Multidimensional scaling (MDS) analysis clearly separated irMAX2 samples from EV, irKAI2 and irD14 samples (Figure 4A). Differentially expressed genes (DEGs) (|log2FC|≥1, FDR≤0.05) were identified by Venn plot, including 640 up-regulated and 683 down-regulated DEGs-specific changes in irMAX2 leaves, and presented in heat maps (Figures 4B and 4C ). These DEGs were further used to calculate Gene Ontology (GO) enrichment, which revealed that upregulated genes were enriched in processes related to heat, light intensity, and oxidative stress responses, while downregulated genes were enriched in starvation responses (Fig. 4D).
实施例6田间PAR遮阳挽救irMAX2植物的漂白表型Example 6 Field PAR shade rescues the bleaching phenotype of irMAX2 plants
为了评估沙漠光环境特征的高UV-B或PAR水平是否是导致叶片漂白的原因,将田间种植的空白植株和irMAX2植物封闭在设计过滤掉UV-B的笼子中,但PAR基本保持不变;对照NaMAX2基因沉默植株被封闭在UV-B透明笼中。在UV-B过滤笼内,中午UV-B通量从220μW/cm2下降到30μW/cm2,而紫外可透过笼内的通量为190μW/cm2(图5A)。生长21天后,两种笼子中的植株的叶绿素水平和叶色均无显著差异(图5B)。从这些结果中,由此推断单独UV-B通量不是irMAX2叶片漂白的原因。To evaluate whether the high UV-B or PAR levels characteristic of the desert light environment are responsible for leaf bleaching, field-grown blank plants and irMAX2 plants were enclosed in cages designed to filter out UV-B, but leave PAR essentially unchanged; Control NaMAX2 gene silenced plants were enclosed in UV-B transparent cages. In the UV-B filter cage, the UV-B flux dropped from 220 μW/cm 2 to 30 μW/cm 2 at noon, while the flux in the UV-permeable cage was 190 μW/cm 2 (Figure 5A). After 21 days of growth, there were no significant differences in chlorophyll levels and leaf color between the plants in the two cages (Figure 5B). From these results, it is concluded that UV-B flux alone is not the cause of irMAX2 leaf bleaching.
为了评估这些高PAR水平是否是导致irMAX2植株漂白的原因,将空白植株和irMAX2植株封闭在PAR遮阳笼中,将正午PAR值降低10倍至温室中常见的水平(200μmol/m2/s;图5C)。生长21天后,与封闭在金属笼但未进行遮阳中的irMAX2相比,在敏感节点位置(R1至R8为莲座叶的叶位,如图2B所示)的叶片中irMAX2叶片完全重新绿化并恢复叶绿素a和b水平(图5D)。此外,用LED灯将温室种植的irMAX2植株暴露在1000μmol/m2/s PAR水平下10天,并监测叶绿素含量,在高光暴露两天后叶绿素含量下降,到第6天,节点R1至R4的叶子完全漂白。从这些结果中,推断暴露于高PAR水平可以解释漂白表型。To assess whether these high PAR levels were responsible for bleaching of irMAX2 plants, blank and irMAX2 plants were enclosed in PAR shade cages and midday PAR values were reduced 10-fold to levels commonly seen in greenhouses (200 μmol/m 2 /s; Figure 5C). After 21 days of growth, compared with irMAX2 enclosed in a metal cage without shading, the leaves of irMAX2 in the sensitive node positions (R1 to R8 are the leaf positions of the rosette leaves, as shown in Figure 2B) were completely re-greened and restored. Chlorophyll a and b levels (Fig. 5D). In addition, greenhouse-grown irMAX2 plants were exposed to 1000 μmol/m 2 /s PAR levels for 10 days using LED lights, and the chlorophyll content was monitored. After two days of high light exposure, the chlorophyll content decreased. By the 6th day, the leaves of nodes R1 to R4 Completely bleached. From these results, it was inferred that exposure to high PAR levels could explain the bleaching phenotype.
为了进一步表征漂白和返绿反应,在2018年和2019年田间季节对田间种植的空白植株和上述转基因植株进行了红外气体分析(IRGA)。irMAX2植株的漂白莲座叶和茎叶光合速率降低,而irD14、irKAI2或irD14*irKAI2植株上相应位置的叶片未降低。漂白irMAX2叶片的光响应曲线在初始斜率、光饱和速率和饱和光合值衰减;但经过遮阳处理后,这些已经恢复到接近EV叶的水平(如图5E所示)。从田间IRGA计算的A/Ci曲线推断的RuBPCase羧化活性在21天的遮阳处理后基本恢复(如图5F所示)。在温室的低光照水平(200μmol/m2/s)下生长的植物的非漂白叶具有EV和irMAX2植物之间的光合参数无差异:光响应曲线,PSII的最大效率(Fv/Fm),PS II的效率(Fv'/Fm')和用于光合作用的吸收光的比例(PhiPSII),和非光化学猝灭(NPQ)。从这些结果中可以看出,高PAR光是造成田间irMAX2植株漂白表型和较低光合能力的原因。当在温室的低PAR光照水平下生长时,irMAX2植物具有正常的叶绿素水平和光合能力。In order to further characterize the bleaching and greening reactions, infrared gas analysis (IRGA) was performed on field-grown blank plants and the above-mentioned transgenic plants during the 2018 and 2019 field seasons. The photosynthetic rate of bleached rosette leaves and stem leaves of irMAX2 plants was reduced, while the leaves at corresponding positions on irD14, irKAI2 or irD14*irKAI2 plants were not reduced. The light response curve of bleached irMAX2 leaves was attenuated in the initial slope, light saturation rate, and saturated photosynthetic value; but after shading treatment, these had returned to levels close to EV leaves (as shown in Figure 5E). The RuBPCase carboxylation activity inferred from the A/Ci curve calculated by field IRGA basically recovered after 21 days of shading treatment (as shown in Figure 5F). Non-bleached leaves of plants grown at low light levels in the greenhouse (200 μmol/ m2 /s) with EV and irMAX2 plants No differences in photosynthetic parameters between plants: light response curve, maximum efficiency of PSII (Fv/Fm), PS II efficiency (Fv'/Fm') and the proportion of absorbed light used for photosynthesis (PhiPSII), and non-photochemical quenching (NPQ). From these results, it can be seen that high PAR light is responsible for the bleaching phenotype and lower photosynthetic capacity of irMAX2 plants in the field. When grown under low PAR light levels in the greenhouse, irMAX2 plants have normal chlorophyll levels and photosynthetic capacity.
实施例7PAR遮光可挽救irMAX2叶片中的抗氧化物质含量和ROS反应Example 7 PAR shading can rescue antioxidant content and ROS response in irMAX2 leaves
高光胁迫会引发一系列氧化反应,其中抗氧化物质,如叶黄素、玉米黄质和β-胡萝卜素,保护植物细胞免受过度光照引起的氧化损伤。按照上述方法测量了irMAX2的叶片中叶黄素、玉米黄质和β-胡萝卜素三种抗氧化物质的含量。在所有3个田间季节,irMAX2叶片叶黄素水平显著降低,irD14和irKAI2叶片叶黄素水平没有降低;玉米黄质含量与EV叶没有差异,均相对较低;2019年田间季节β胡萝卜素含量低于EV叶,但在2018年和2020年田间季节较高(如图5G所示)。在2019年田间遮阳处理后,irMAX2叶片叶黄素含量恢复到WT水平,但β-胡萝卜素水平没有(如图5G示)。在温室种植的植物中,irMAX2叶中所有三种抗氧化物质的含量与EV叶中的水平没有差异。当这些温室种植的植物暴露于高(1000μmol/m2/s)PAR水平2天时,所有三种抗氧化物质的水平在两种植物系中都有所增加,并且叶黄素低于EV叶,而非玉米黄质和β-胡萝卜素水平。这些结果表明,低叶黄素水平有助于irMAX2叶片对高光胁迫的敏感性。High light stress triggers a series of oxidative reactions, in which antioxidant substances, such as lutein, zeaxanthin and β-carotene, protect plant cells from oxidative damage caused by excessive light. The contents of three antioxidant substances, lutein, zeaxanthin and β-carotene, in the leaves of irMAX2 were measured according to the above method. In all three field seasons, the lutein level of irMAX2 leaves was significantly reduced, while the lutein levels of irD14 and irKAI2 leaves were not reduced; the zeaxanthin content was not different from that of EV leaves, both were relatively low; the β-carotene content in the 2019 field season lower than EV leaves, but higher in the 2018 and 2020 field seasons (shown in Figure 5G). After field shading treatment in 2019, the lutein content of irMAX2 leaves returned to WT levels, but the β-carotene level did not (as shown in Figure 5G). In greenhouse-grown plants, the levels of all three antioxidants in irMAX2 leaves did not differ from levels in EV leaves. When these greenhouse-grown plants were exposed to high (1000 μmol/m 2 /s) PAR levels for 2 days, the levels of all three antioxidant substances increased in both plant lines and lutein was lower than in EV leaves, but not zeaxanthin and beta-carotene levels. These results indicate that low lutein levels contribute to the sensitivity of irMAX2 leaves to high light stress.
过剩的光通常与ROS积累有关,例如单线态氧,过氧化氢(H2O2),丙二醛(MDA)和相关转录。我们检测了高光响应基因ELIP1,ELIP2,单线态氧响应基因WRKY33,WRKY40-1和WRKY40-2以及H2O2催化和响应基因SOD,APX2和ZAT10的转录丰度。在2018年和2019年的田间季节,irMAX2叶片的这些标记基因的转录水平升高(如图5H所示)。遮阳处理后,这些基因的转录水平降低到EV水平(图5H)。响应2天的高PAR暴露,ELIP1,ELIP2的转录水平显着增加(4倍)。从这些结果中,推断遮光可逆漂白表型不涉及ROS介导的细胞死亡反应和最终的衰老,但是需要在高PAR条件下对这些反应进行更详细的动力学分析,以了解ROS信号在漂白表型中的作用。Excess light is often associated with ROS accumulation, such as singlet oxygen, hydrogen peroxide (H 2 O 2 ), malondialdehyde (MDA) and related transcription. We detected the transcript abundance of the highly light-responsive genes ELIP1, ELIP2, the singlet oxygen-responsive genes WRKY33, WRKY40-1 and WRKY40-2, and the H2O2 catalytic and responsive genes SOD, APX2 and ZAT10. During the 2018 and 2019 field seasons, the transcript levels of these marker genes were elevated in irMAX2 leaves (shown in Figure 5H). After sunshade treatment, the transcription levels of these genes decreased to EV levels (Fig. 5H). Transcript levels of ELIP1, ELIP2 increased significantly (4-fold) in response to 2 days of high PAR exposure. From these results, it is inferred that the light-blocking reversible bleaching phenotype does not involve ROS-mediated cell death responses and eventual senescence, but more detailed kinetic analysis of these responses under high PAR conditions is needed to understand the role of ROS signaling in the bleaching table. role in the model.
实施例8SL信号的沉默在田间和温室条件下具有相反的效果Example 8 Silencing of SL signal has opposite effects under field and greenhouse conditions
在温室条件下阻断N.attenuata中的SL信号将释放SLs对植物适应性的抑制,从而增强地上部生物量和种子产量。它主要通过增加茂盛的枝条起作用(图6A)。然而,在犹他州沙漠N.attenuata的原生地中,高光胁迫在沉默MAX2基因后导致严重的叶片漂白,通过可能独立于SL和KAR信号通路的方式(图6B)。抗氧化物质叶黄素的减少可能是叶片漂白的原因之一。光合能力的急剧降低导致糖的减少,氨基酸的变化阻碍了irMAX2植株的适应性和产量。此外,JA反应的减少导致叶片上的虫害更严重(图6B)。Blocking SL signaling in N. attenuata under greenhouse conditions will release the inhibition of plant fitness by SLs, thereby enhancing aboveground biomass and seed production. It works mainly by increasing lush branches (Figure 6A). However, in the native habitat of N. attenuata in the Utah desert, high-light stress caused severe leaf bleaching after silencing the MAX2 gene, through a manner that may be independent of the SL and KAR signaling pathways (Fig. 6B). A decrease in the antioxidant lutein may be one of the causes of leaf bleaching. The drastic reduction in photosynthetic capacity leads to a decrease in sugar and changes in amino acids hinder the adaptability and yield of irMAX2 plants. Furthermore, the reduction in JA response resulted in more severe insect damage on leaves (Fig. 6B).
上述实施例中MAX2在进化过程中响应强光胁迫的功能可以在各种物种中进一步阐明,包括鞘毛藻科,合子藻科,苔藓植物,蕨类植物,裸子植物和被子植物。The function of MAX2 in response to strong light stress during evolution in the above examples can be further elucidated in various species, including Coleophyceae, Zygophyceae, bryophytes, ferns, gymnosperms and angiosperms.
然而,当种植到植物的原生栖息地-犹他州大盆地沙漠时,MAX2被确定为调节高光反应的关键基因。沉默MAX2,而不是D14和KAI2,无论是单独还是一起,都会导致叶片漂白,叶绿素含量,光合能力,适应性和害虫抗性降低。irMAX2植株的漂白表型通过降低PAR恢复,但UV-B遮光未恢复。通过转录组学分析和糖、氨基酸、抗氧化物质和过氧化物基因转录水平的测量,研究了MAX2调节过量光诱发反应的机制。从这些结果中推断,MAX2通过调节高光响应和抗氧化剂积累来增强自然界中的植物适应性,而与SL和KAR信号通路无关。However, when grown into the plant's native habitat, Utah's Great Basin Desert, MAX2 was identified as a key gene that regulates high-light responses. Silencing MAX2, but not D14 and KAI2, either alone or together, resulted in leaf bleaching, reduced chlorophyll content, photosynthetic capacity, fitness and pest resistance. The bleaching phenotype of irMAX2 plants was restored by reducing PAR, but not by UV-B shading. The mechanism by which MAX2 regulates responses induced by excess light was investigated through transcriptomic analysis and measurement of sugar, amino acid, antioxidant, and peroxide gene transcript levels. It was inferred from these results that MAX2 enhances plant fitness in nature by regulating high light response and antioxidant accumulation, independent of the SL and KAR signaling pathways.
以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。The present invention has been described in detail above. For those skilled in the art, the present invention can be implemented in a wider range under equivalent parameters, concentrations and conditions without departing from the spirit and scope of the invention and without unnecessary experiments. Although specific embodiments of the present invention have been shown, it should be understood that further modifications can be made to the invention. In short, based on the principles of the present invention, this application is intended to include any changes, uses, or improvements to the present invention, including changes that depart from the scope disclosed in this application and are made using conventional techniques known in the art. Some essential features may be applied within the scope of the appended claims below.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311207643.9A CN117304289A (en) | 2023-09-19 | 2023-09-19 | Application of MAX2 in adjusting plant high light adaptability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311207643.9A CN117304289A (en) | 2023-09-19 | 2023-09-19 | Application of MAX2 in adjusting plant high light adaptability |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117304289A true CN117304289A (en) | 2023-12-29 |
Family
ID=89272939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311207643.9A Pending CN117304289A (en) | 2023-09-19 | 2023-09-19 | Application of MAX2 in adjusting plant high light adaptability |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117304289A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118240872A (en) * | 2024-05-28 | 2024-06-25 | 河南大学三亚研究院 | Application of HLR gene in improving plant highlight tolerance |
CN118834913A (en) * | 2024-09-23 | 2024-10-25 | 山东农业大学 | Application of alpha-TTP expression circular vector in improving rice high light stress resistance |
-
2023
- 2023-09-19 CN CN202311207643.9A patent/CN117304289A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118240872A (en) * | 2024-05-28 | 2024-06-25 | 河南大学三亚研究院 | Application of HLR gene in improving plant highlight tolerance |
CN118834913A (en) * | 2024-09-23 | 2024-10-25 | 山东农业大学 | Application of alpha-TTP expression circular vector in improving rice high light stress resistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN117304289A (en) | Application of MAX2 in adjusting plant high light adaptability | |
Dalin et al. | Leaf trichome formation and plant resistance to herbivory | |
Davies et al. | Evolution and function of red pigmentation in land plants | |
US20190166774A1 (en) | Method to increase crop plant foliage productivity | |
CN109477118A (en) | Transgenic plants with increased photosynthetic efficiency and growth | |
Kumar et al. | Managing reactive oxygen species—Some learnings from high altitude extremophytes | |
CN104357479B (en) | Interference xanthein expression application of the overexpression lycopene in red petal brassica plant is prepared simultaneously | |
CN104480128B (en) | Suppress xanthein accumulation and accumulate lycopene and anthocyanin simultaneously in the application for preparing petal and taking on a red color in brassica plant | |
CN107406836A (en) | Nucleic acid construct, the plant containing nucleic acid construct and by nucleic acid construct be used for improve plant disease-resistant insect pest and improve plant monoterpene characteristic purposes | |
Moog et al. | Epidermal bladder cells as a herbivore defense mechanism | |
CN104232657B (en) | Related insect resistant gene OsLRR2 of rice source as well as coding product and application thereof | |
Yang et al. | Control of light environment: A key technique for high-yield and high-quality vegetable production in protected farmland | |
Sumitomo et al. | Spectral sensitivity of flowering and FT-like gene expression in response to night-break light treatments in the chrysanthemum cultivar,‘Reagan’ | |
CN109776659B (en) | Application of cry2Ah-vp gene in anti-myxobolus | |
ES2820760T3 (en) | Plants with increased yield and method of obtaining said plants | |
Li et al. | The nutrient, hormone, and antioxidant status of scion affects the rootstock activity in apple | |
Li et al. | Field‐work reveals a novel function for MAX2 in a native tobacco's high‐light adaptions | |
CN104531755A (en) | Application of gene for interfering expression of LCYB and LCYE and simultaneously ectopically expressing TT8 in preparation of brassica plant having red petals | |
Truffault et al. | Variation in tomato fruit ascorbate levels and consequences of manipulation of ascorbate metabolism on drought stress tolerance | |
CN104531754A (en) | Application of gene for interfering expression of LCYB and LCYE and simultaneously over-expressing PAP in preparation of brassica plant having red petals | |
Deslous | Towards the characterization of regulators involved in the metabolism of ascorbic acid in tomato: Impact of environmental conditions on plant adaptation | |
CN113512553B (en) | Potato TF72354 gene and application thereof in anthocyanin synthesis regulation | |
Kershanskaya et al. | Photosynthetic basis for wheat crop improvement: genetic modification of photosynthesis | |
CN106754971A (en) | New dimension pipe regulatory factor CsIVP genes and its application in breeding | |
Xiong | Antifungal Activity of Stilbenes in In Vitro Bioassays; and Stilbene Quantification and Blight Resistance Assays of Transgenic American Chestnut Overexpressing the Stilbene Synthase Gene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |