CN117251537B - Session processing method, device, equipment and storage medium for artificial intelligence - Google Patents
Session processing method, device, equipment and storage medium for artificial intelligence Download PDFInfo
- Publication number
- CN117251537B CN117251537B CN202310849200.3A CN202310849200A CN117251537B CN 117251537 B CN117251537 B CN 117251537B CN 202310849200 A CN202310849200 A CN 202310849200A CN 117251537 B CN117251537 B CN 117251537B
- Authority
- CN
- China
- Prior art keywords
- model
- session
- user
- content
- conversation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/332—Query formulation
- G06F16/3329—Natural language query formulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/10—Text processing
- G06F40/12—Use of codes for handling textual entities
- G06F40/151—Transformation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/451—Execution arrangements for user interfaces
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Human Computer Interaction (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Audiology, Speech & Language Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Information Transfer Between Computers (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
本申请实施例提供一种用于人工智能的会话处理方法、装置、设备及存储介质。在本申请实施例中,提供一种聚合有多个AI模型的人工智能聚合应用,用户在该应用提供的第一会话界面上与第一AI模型进行会话,生成了第一会话内容,将该第一会话内容转换为与第二AI模型适配的第二会话内容,并展示在第二AI模型提供的第二会话界面上,使得用户能够基于第二会话内容继续与第二AI模型进行会话,实现了针对同一会话在多AI模型之间进行自由切换,进一步,由于用户的会话是持续的,不会因为更换AI模型而中断,用户体验好。
The embodiments of the present application provide a conversation processing method, device, equipment and storage medium for artificial intelligence. In the embodiments of the present application, an artificial intelligence aggregation application that aggregates multiple AI models is provided, and a user conducts a conversation with a first AI model on a first conversation interface provided by the application, generates a first conversation content, converts the first conversation content into a second conversation content adapted to a second AI model, and displays it on a second conversation interface provided by the second AI model, so that the user can continue to have a conversation with the second AI model based on the second conversation content, and realizes free switching between multiple AI models for the same conversation. Furthermore, since the user's conversation is continuous and will not be interrupted due to the change of AI models, the user experience is good.
Description
技术领域Technical Field
本申请涉及人工智能技术领域,尤其涉及一种用于人工智能的会话处理方法、装置、设备及存储介质。The present application relates to the field of artificial intelligence technology, and in particular to a conversation processing method, device, equipment and storage medium for artificial intelligence.
背景技术Background Art
随着人工智能(Artificial Intelligence,AI)技术的发展,一些人工智能模型(简称AI模型)也随之出现,这些AI模型可以学习和理解人类语言,使得这些AI模型能够像人类一样与用户进行聊天和交流,甚至可以根据人类需求完成文案处理、翻译、编写代码、绘制图像等工作。With the development of artificial intelligence (AI) technology, some artificial intelligence models (AI models for short) have also emerged. These AI models can learn and understand human language, allowing them to chat and communicate with users like humans, and even complete tasks such as copywriting, translation, code writing, and image drawing according to human needs.
在AI模型使用过程中,用户可以在AI模型中开启会话,并在该会话中针对一个问题与该AI模型进行交流。但是,目前,同一会话只能出现在同一AI模型中,用户无法针对同一会话在多AI模型之间进行自由切换,影响用户体验感。When using an AI model, users can start a conversation in the AI model and communicate with the AI model about a problem in the conversation. However, currently, the same conversation can only appear in the same AI model, and users cannot switch freely between multiple AI models for the same conversation, which affects the user experience.
发明内容Summary of the invention
本申请的多个方面提供一种用于人工智能的会话处理方法、装置、设备及存储介质,用于实现针对同一会话在多AI模型之间进行自由切换。Multiple aspects of the present application provide a conversation processing method, apparatus, device and storage medium for artificial intelligence, which are used to achieve free switching between multiple AI models for the same conversation.
本申请实施例提供一种用于人工智能的会话处理方法,适用于人工智能聚合应用,应用中聚合有多个AI模型,该方法包括:在第一用户需要与第一AI模型进行会话的情况下,运行第一AI模型以展示第一AI模型的第一会话界面,以及响应于第一用户与第一AI模型之间的对话操作,在第一会话界面上展示第一用户与第一AI模型之间的第一会话内容;在第一用户与第一AI模型进行会话的过程中,响应于从第一AI模型切换至第二AI模型的触发操作,利用转换中间件对第一会话内容进行格式转换,以得到第二AI模型所支持的第二会话内容,并将第二会话内容提供给第二AI模型;运行第二AI模型,以将第一会话界面切换为第二AI模型对应的第二会话界面,并在第二会话界面上展示第二会话内容,以供第一用户基于第二会话内容与第二AI模型继续进行会话。An embodiment of the present application provides a conversation processing method for artificial intelligence, which is applicable to artificial intelligence aggregation applications, in which multiple AI models are aggregated. The method includes: when a first user needs to have a conversation with the first AI model, running the first AI model to display a first conversation interface of the first AI model, and in response to a dialogue operation between the first user and the first AI model, displaying a first conversation content between the first user and the first AI model on the first conversation interface; during the conversation between the first user and the first AI model, in response to a trigger operation of switching from the first AI model to the second AI model, using a conversion middleware to convert the format of the first conversation content to obtain a second conversation content supported by the second AI model, and providing the second conversation content to the second AI model; running the second AI model to switch the first conversation interface to a second conversation interface corresponding to the second AI model, and displaying the second conversation content on the second conversation interface, so that the first user can continue to have a conversation with the second AI model based on the second conversation content.
本申请实施例还提供一种用于人工智能的会话处理装置,该装置上运行的人工智能聚合应用,应用中聚合有多个AI模型,该装置包括:运行模块、展示模块、转换中间件模块、提供模块以及切换模块;运行模块,用于在第一用户需要与第一AI模型进行会话的情况下,运行第一AI模型,展示模块,用于展示第一AI模型的第一会话界面,以及展示模块,还用于响应于第一用户与第一AI模型之间的对话操作,在第一会话界面上展示第一用户与第一AI模型之间的第一会话内容;转换中间件模块,用于在第一用户与第一AI模型进行会话的过程中,响应于从第一AI模型切换至第二AI模型的触发操作,对第一会话内容进行格式转换,以得到第二AI模型所支持的第二会话内容,提供模块,用于将第二会话内容提供给第二AI模型;运行模块,用于运行第二AI模型,切换模块,用于将第一会话界面切换为第二AI模型对应的第二会话界面,展示模块,还用于在第二会话界面上展示第二会话内容,以供第一用户基于第二会话内容与第二AI模型继续进行会话。The embodiment of the present application also provides a conversation processing device for artificial intelligence, an artificial intelligence aggregation application running on the device, and multiple AI models are aggregated in the application. The device includes: an operation module, a display module, a conversion middleware module, a providing module, and a switching module; the operation module is used to run the first AI model when the first user needs to have a conversation with the first AI model, the display module is used to display the first conversation interface of the first AI model, and the display module is also used to display the first conversation content between the first user and the first AI model on the first conversation interface in response to the dialogue operation between the first user and the first AI model; the conversion middleware module is used to convert the format of the first conversation content in response to the trigger operation of switching from the first AI model to the second AI model during the conversation between the first user and the first AI model to obtain the second conversation content supported by the second AI model, and the providing module is used to provide the second conversation content to the second AI model; the operation module is used to run the second AI model, the switching module is used to switch the first conversation interface to the second conversation interface corresponding to the second AI model, and the display module is also used to display the second conversation content on the second conversation interface, so that the first user can continue to have a conversation with the second AI model based on the second conversation content.
本申请实施例还提供一种用于人工智能的会话处理设备,包括:存储器和处理器;存储器,用于存储计算机程序;处理器,与存储器耦合,用于执行计算机程序,以实现本申请实施例提供的用于人工智能的会话处理设备中的各步骤。An embodiment of the present application also provides a conversation processing device for artificial intelligence, including: a memory and a processor; the memory is used to store a computer program; the processor is coupled to the memory and is used to execute the computer program to implement each step in the conversation processing device for artificial intelligence provided in the embodiment of the present application.
本申请实施例还提供一种存储有计算机程序的计算机可读存储介质,当计算机程序被处理器执行时,致使处理器实现本申请实施例提供的用于人工智能的会话处理设备中的各步骤。The embodiment of the present application also provides a computer-readable storage medium storing a computer program. When the computer program is executed by a processor, the processor implements each step in the conversation processing device for artificial intelligence provided by the embodiment of the present application.
在本申请实施例中,提供一种聚合有多个AI模型的人工智能聚合应用,用户在该应用提供的第一会话界面上与第一AI模型进行会话,生成了第一会话内容,将该第一会话内容转换为与第二AI模型适配的第二会话内容,并展示在第二AI模型提供的第二会话界面上,使得用户能够基于第二会话内容继续与第二AI模型进行会话,实现了针对同一会话在多AI模型之间进行自由切换,进一步,由于用户的会话是持续的,不会因为更换AI模型而中断,用户体验好。In an embodiment of the present application, an artificial intelligence aggregation application that aggregates multiple AI models is provided. A user conducts a conversation with a first AI model on a first conversation interface provided by the application, generates first conversation content, converts the first conversation content into second conversation content adapted to a second AI model, and displays it on a second conversation interface provided by the second AI model, so that the user can continue to have a conversation with the second AI model based on the second conversation content, thereby achieving free switching between multiple AI models for the same conversation. Furthermore, since the user's session is continuous and will not be interrupted due to the change of AI models, the user experience is good.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The drawings described herein are used to provide a further understanding of the present application and constitute a part of the present application. The illustrative embodiments of the present application and their descriptions are used to explain the present application and do not constitute an improper limitation on the present application. In the drawings:
图1a为本申请示例性实施例提供的一种用于人工智能的会话处理方法的流程示意图;FIG1a is a flow chart of a conversation processing method for artificial intelligence provided by an exemplary embodiment of the present application;
图1b为本申请示例性实施例提供的一种第一会话界面的示意图;FIG1b is a schematic diagram of a first conversation interface provided by an exemplary embodiment of the present application;
图2为本申请示例性实施例提供的一种用于人工智能的会话处理装置的结构示意图;FIG2 is a schematic diagram of the structure of a conversation processing device for artificial intelligence provided by an exemplary embodiment of the present application;
图3为本申请示例性实施例提供的一种用于人工智能的会话处理设备的结构示意图。FIG3 is a schematic diagram of the structure of a conversation processing device for artificial intelligence provided by an exemplary embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solution and advantages of the present application clearer, the technical solution of the present application will be clearly and completely described below in combination with the specific embodiments of the present application and the corresponding drawings. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without making creative work are within the scope of protection of this application.
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据,并且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准,并提供有相应的操作入口,供用户选择授权或者拒绝。It should be noted that the user information (including but not limited to user device information, user personal information, etc.) and data (including but not limited to data used for analysis, stored data, displayed data, etc.) involved in this application are all information and data authorized by the user or fully authorized by all parties, and the collection, use and processing of relevant data must comply with the relevant laws, regulations and standards of the relevant countries and regions, and provide corresponding operation entrances for users to choose to authorize or refuse.
针对上述用户无法针对同一会话在多AI模型之间进行自由切换的技术问题,在本申请实施例中,提供一种聚合有多个AI模型的人工智能聚合应用,用户在该应用提供的第一会话界面上与第一AI模型进行会话,生成了第一会话内容,将该第一会话内容转换为与第二AI模型适配的第二会话内容,并展示在第二AI模型提供的第二会话界面上,使得用户能够基于第二会话内容继续与第二AI模型进行会话,实现了针对同一会话在多AI模型之间进行自由切换,进一步,由于用户的会话是持续的,不会因为更换AI模型而中断,用户体验好。In response to the above-mentioned technical problem that users cannot freely switch between multiple AI models for the same conversation, in an embodiment of the present application, an artificial intelligence aggregation application that aggregates multiple AI models is provided. The user has a conversation with a first AI model on a first conversation interface provided by the application, generates first conversation content, converts the first conversation content into second conversation content adapted to the second AI model, and displays it on a second conversation interface provided by the second AI model, so that the user can continue to have a conversation with the second AI model based on the second conversation content, thereby achieving free switching between multiple AI models for the same conversation. Furthermore, since the user's session is continuous and will not be interrupted due to the change of AI models, the user experience is good.
以下结合附图,对本申请实施例提供的一种解决方案进行详细说明。A solution provided by an embodiment of the present application is described in detail below in conjunction with the accompanying drawings.
图1a为本申请示例性实施例提供的一种用于人工智能的会话处理方法的流程示意图,该方法适用于人工智能聚合应用,该应用中聚合有多个AI模型,如图1a所示,该方法包括:FIG. 1a is a flow chart of a method for artificial intelligence session processing provided by an exemplary embodiment of the present application. The method is applicable to an artificial intelligence aggregation application in which multiple AI models are aggregated. As shown in FIG. 1a , the method includes:
101、在第一用户需要与第一AI模型进行会话的情况下,运行第一AI模型以展示第一AI模型的第一会话界面,以及响应于第一用户与第一AI模型之间的对话操作,在第一会话界面上展示第一用户与第一AI模型之间的第一会话内容;101. When a first user needs to have a conversation with a first AI model, run the first AI model to display a first conversation interface of the first AI model, and in response to a conversation operation between the first user and the first AI model, display a first conversation content between the first user and the first AI model on the first conversation interface;
102、在第一用户与第一AI模型进行会话的过程中,响应于从第一AI模型切换至第二AI模型的触发操作,利用转换中间件对第一会话内容进行格式转换,以得到第二AI模型所支持的第二会话内容,并将第二会话内容提供给第二AI模型;102. During a conversation between the first user and the first AI model, in response to a trigger operation of switching from the first AI model to the second AI model, the first conversation content is formatted using the conversion middleware to obtain second conversation content supported by the second AI model, and the second conversation content is provided to the second AI model;
103、运行第二AI模型,以将第一会话界面切换为第二AI模型对应的第二会话界面,并在第二会话界面上展示第二会话内容,以供第一用户基于第二会话内容与第二AI模型继续进行会话。103. Run the second AI model to switch the first conversation interface to a second conversation interface corresponding to the second AI model, and display the second conversation content on the second conversation interface so that the first user can continue the conversation with the second AI model based on the second conversation content.
在本实施例中,人工智能聚合应用中聚合的多个AI模型并不限定。例如,多个AI模型可以是不同类型的模型,例如,从AI模型采用的技术来看,AI模型的类型包含但不限于:监督学习模型、半监督学习模型、无监督学习模型、强化学习模型、卷积神经网络(Convolutional Neural Networks,CNN)模型、递归神经网络(Recurrent NeuralNetworks,RNN)模型、生成式模型或异常检测模型等。又例如,多个AI模型可以实现为同一类型,但属于不同厂商的AI模型。从AI模型实现的功能来看,AI模型包括但不限于:自然语言理解模型、图像或视频理解模型、聊天模型、AI编程模型、智能客服模型、AI办公模型、AI搜索引擎以及多模态图片生成模型等等。In this embodiment, the multiple AI models aggregated in the artificial intelligence aggregation application are not limited. For example, multiple AI models can be models of different types. For example, from the perspective of the technology used by the AI model, the types of AI models include but are not limited to: supervised learning models, semi-supervised learning models, unsupervised learning models, reinforcement learning models, convolutional neural networks (CNN) models, recurrent neural networks (RNN) models, generative models or anomaly detection models, etc. For another example, multiple AI models can be implemented as AI models of the same type but belonging to different manufacturers. From the perspective of the functions implemented by the AI model, the AI model includes but is not limited to: natural language understanding models, image or video understanding models, chat models, AI programming models, intelligent customer service models, AI office models, AI search engines, and multimodal image generation models, etc.
在本实施例中,人工智能聚合应用用于聚合多个AI模型,该应用包含多个AI对应的程序代码,或者包含多个AI模型对应的程序代码的下载地址,以便于在人工智能聚合应用运行过程中通过下载地址加载所需AI模型的程序代码。另外,该人工智能聚合应用具有与用户进行交互功能,可以响应下述实施例中提及的用户选择AI模型的操作或自然语言指令为用户选择AI模型,该交互功能实现为交互界面以及对交互界面上的操作或指令进行响应并处理的第一功能模块。另外,该人工智能聚合应用还具有与各个AI模型进行交互的交互功能,该交互功能实现为与各个AI模型的交互接口(例如API接口)和通过交互接口进行数据传输和处理的第二功能模块,以便于向AI模型发送调度请求、向AI模型传输用户在交互界面上输入的会话信息以供AI模型进行响应并获取AI模型针对会话信息反馈的响应信息(该响应信息也是一会话信息),以及将该响应信息通过第一功能模块显示在交互界面上,以实现被调用AI模型与用户的会话交互。当然,第一功能模块和第二功能模块也可以整合实现为同一功能模块,对此不做限定。关于会话信息处理的相关描述可参见后续实施例,在此暂不详述。In this embodiment, the artificial intelligence aggregation application is used to aggregate multiple AI models, and the application contains program codes corresponding to multiple AIs, or contains download addresses of program codes corresponding to multiple AI models, so that the program code of the required AI model can be loaded through the download address during the operation of the artificial intelligence aggregation application. In addition, the artificial intelligence aggregation application has an interactive function with the user, and can respond to the operation or natural language instruction of the user selecting the AI model mentioned in the following embodiment to select the AI model for the user. The interactive function is implemented as an interactive interface and a first functional module that responds to and processes the operation or instruction on the interactive interface. In addition, the artificial intelligence aggregation application also has an interactive function for interacting with each AI model, which is implemented as an interactive interface (such as an API interface) with each AI model and a second functional module for data transmission and processing through the interactive interface, so as to send a scheduling request to the AI model, transmit the session information input by the user on the interactive interface to the AI model for the AI model to respond and obtain the response information of the AI model for the session information feedback (the response information is also a session information), and display the response information on the interactive interface through the first functional module to realize the session interaction between the called AI model and the user. Of course, the first functional module and the second functional module can also be integrated into the same functional module, which is not limited to this. The relevant description of the session information processing can be found in the subsequent embodiments, which will not be described in detail here.
可选地,人工智能聚合应用会对外提供AI模型选择入口,以供用户从多个AI模型中选择需要使用的AI模型。例如,人工智能聚合应用可以提供首页面,首页面上包含AI模型的列表,该列表可以是下拉列表或平铺列表等,除了首页面,在运行某个AI模型产生的会话页面上,也可以包含AI模型选择入口,以供用户随时从一个AI模型切换至另一个AI模型。Optionally, the AI aggregation application will provide an AI model selection portal for users to select the AI model they want to use from multiple AI models. For example, the AI aggregation application can provide a home page that includes a list of AI models, which can be a drop-down list or a flat list. In addition to the home page, the session page generated by running a certain AI model can also include an AI model selection portal, so that users can switch from one AI model to another at any time.
可选地,人工智能聚合应用也可以根据用户输入的自然语言指令适应性地为用户匹配合适的AI模型。具体地,人工智能聚合应用将多种AI模型进行聚合,并采用独立任务调度模型,将用户输入的自然语言指令提供给该独立任务调度模型,该模型接收用户自然语言指令,对该自然语言指令进行用户动机预估,输出需要调用的AI模型,实现根据用户输入的自然语言指令自由切换多种AI模型。其中,该独立任务调度模型可以针对每个AI模型,对该自然语言指令进行用户动机预估,确定与该用户输入的自然语言指令适配的AI模型,例如,可以评估该AI模型处理用户输入的自然语言指令的服务质量,服务质量可以用处理自然语言指令的时间或输出内容的关注度等来衡量,将服务质量最好的AI模型作为与用户输入的自然语言指令适配的AI模型,也即需要调用的AI模型。当然,上述用户通过AI模型选择入口发起的选择操作,也可以被转换为选择指令后作为用户输入的自然语言指令的一种特例实现,进而由独立任务调度模型为用户调度适配的AI模型。Optionally, the artificial intelligence aggregation application can also adaptively match the appropriate AI model for the user according to the natural language instructions input by the user. Specifically, the artificial intelligence aggregation application aggregates multiple AI models, and adopts an independent task scheduling model to provide the natural language instructions input by the user to the independent task scheduling model. The model receives the user's natural language instructions, estimates the user's motivation for the natural language instructions, and outputs the AI model that needs to be called, so as to realize the free switching of multiple AI models according to the natural language instructions input by the user. Among them, the independent task scheduling model can estimate the user's motivation for the natural language instructions for each AI model, and determine the AI model that is adapted to the natural language instructions input by the user. For example, the service quality of the AI model processing the natural language instructions input by the user can be evaluated. The service quality can be measured by the time of processing the natural language instructions or the attention of the output content, etc. The AI model with the best service quality is used as the AI model adapted to the natural language instructions input by the user, that is, the AI model that needs to be called. Of course, the selection operation initiated by the user through the AI model selection entrance can also be converted into a special case of the natural language instructions input by the user after being converted into a selection instruction, and then the independent task scheduling model schedules the adapted AI model for the user.
其中,人工智能聚合应用可以运行在服务端设备上,服务端设备向人工智能聚合应用的客户端提供web页面,用户基于该web页面与AI模型进行会话。另外,在终端设备的计算能力足够强的情况下,例如,终端设备的处理器采用专用芯片实现,人工智能聚合应用还可以实现为:应用程序(app)或小程序等运行在终端设备的本地。其中,无论人工智能聚合应用采用哪种部署实现方式,人工智能聚合应用中聚合的多个AI模型可以部署在同一设备上,也可以分布式的部署在多个设备上,对此不做限定。无论多个AI模型部署在同一设备上还是多个不同设备上,通过人工智能聚合应用均能访问并运行每个AI模型。Among them, the artificial intelligence aggregation application can run on the server-side device, and the server-side device provides a web page to the client of the artificial intelligence aggregation application, and the user conducts a conversation with the AI model based on the web page. In addition, when the computing power of the terminal device is strong enough, for example, the processor of the terminal device is implemented with a dedicated chip, the artificial intelligence aggregation application can also be implemented as: an application (app) or a small program running locally on the terminal device. Among them, no matter which deployment implementation method the artificial intelligence aggregation application adopts, the multiple AI models aggregated in the artificial intelligence aggregation application can be deployed on the same device or distributed on multiple devices, without limitation. Regardless of whether multiple AI models are deployed on the same device or on multiple different devices, each AI model can be accessed and run through the artificial intelligence aggregation application.
在本实施例中,第一用户可以选择第一AI模型并与第一AI模型进行会话,以实现与第一AI模型的聊天或交流等。在第一用户需要与第一AI模型进行会话的情况下,若人工智能聚合应用运行在终端设备上,则人工智能聚合应用可以从终端设备本地或远端加载第一AI模型的程序代码,进而运行第一AI模型;若人工智能聚合应用运行在服务端设备上,则人工智能聚合应用可以从服务端设备本地或者其它设备上加载第一AI模型的程序代码,进而运行第一AI模型。在运行该第一AI模型的过程中,展示第一AI模型的第一会话界面,第一用户可以在该第一会话界面上与第一AI模型进行对话操作。相应地,人工智能聚合应用可以响应于第一用户与第一AI模型之间的对话操作,在第一会话界面上展示第一用户与第一AI模型之间的第一会话内容。例如,第一用户在第一会话页面上输入文字、图片、视频或文件等,第一AI模型输出文字、图片、视频或文件等,会话内容是指第一用户输入的文字、图片、视频或文件等,以及AI模型输出的文字、图片、视频或文件等,同一会话内容具有全局唯一标识信息,例如,第一会话内容的身份标识(Identity Document,ID)。In this embodiment, the first user can select the first AI model and have a conversation with the first AI model to achieve chatting or communication with the first AI model. In the case where the first user needs to have a conversation with the first AI model, if the artificial intelligence aggregation application runs on the terminal device, the artificial intelligence aggregation application can load the program code of the first AI model from the terminal device locally or remotely, and then run the first AI model; if the artificial intelligence aggregation application runs on the server device, the artificial intelligence aggregation application can load the program code of the first AI model from the server device locally or on other devices, and then run the first AI model. In the process of running the first AI model, the first conversation interface of the first AI model is displayed, and the first user can have a conversation operation with the first AI model on the first conversation interface. Accordingly, the artificial intelligence aggregation application can respond to the conversation operation between the first user and the first AI model and display the first conversation content between the first user and the first AI model on the first conversation interface. For example, the first user inputs text, pictures, videos or files on the first session page, and the first AI model outputs text, pictures, videos or files. The session content refers to the text, pictures, videos or files input by the first user, and the text, pictures, videos or files output by the AI model. The same session content has globally unique identification information, such as the identity document (ID) of the first session content.
在第一用户与第一AI模型进行会话的过程中,第一用户希望使用第二AI模型继续进行该会话,第一用户发起从第一AI模型切换至第二AI模型的触发操作,相应地,人工智能聚合应用响应于该触发操作,利用转换中间件对第一会话内容进行格式转换,以得到第二AI模型所支持的第二会话内容。During a conversation between a first user and a first AI model, the first user wishes to continue the conversation using a second AI model. The first user initiates a trigger operation to switch from the first AI model to the second AI model. Accordingly, the artificial intelligence aggregation application responds to the trigger operation and uses the conversion middleware to convert the format of the first conversation content to obtain the second conversation content supported by the second AI model.
其中,不同AI模型的入参格式或出参格式等存在差异,不同会话内容的格式也有所不同。例如,输入第一AI模型的会话内容需要满足第一AI模型的入参格式,从第一AI模型输出的会话内容具有第一AI模型的出参格式;输入第二AI模型的会话内容,需要满足第二AI模型的入参格式,从第二AI模型输出的会话内容具有第二AI模型的出参格式。基于此,在本申请实施例中提供一种转换中间件(converter),该转换中间件是一种独立的系统软件服务系统,可以为各个AI模型提供格式转换服务,主要用于针对会话内容进行格式转换,以适配相应的AI模型。具体地,第一会话内容中第一用户输入的数据符合第一AI模型的入参格式,第一AI模型输出的数据符合第一AI模型的出参格式,可以通过转换中间件将第一会话内容转换成第二AI模型所支持的入参格式,方便后续将该数据作为第二AI模型的入参输入至第二AI模型,以基于第二AI模型进行后续的会话。Among them, there are differences in the input parameter format or output parameter format of different AI models, and the formats of different conversation contents are also different. For example, the conversation content input into the first AI model needs to meet the input parameter format of the first AI model, and the conversation content output from the first AI model has the output parameter format of the first AI model; the conversation content input into the second AI model needs to meet the input parameter format of the second AI model, and the conversation content output from the second AI model has the output parameter format of the second AI model. Based on this, a conversion middleware (converter) is provided in an embodiment of the present application. The conversion middleware is an independent system software service system that can provide format conversion services for each AI model, mainly used for format conversion of conversation content to adapt to the corresponding AI model. Specifically, the data input by the first user in the first conversation content conforms to the input parameter format of the first AI model, and the data output by the first AI model conforms to the output parameter format of the first AI model. The first conversation content can be converted into the input parameter format supported by the second AI model through the conversion middleware, so as to facilitate the subsequent input of the data as the input parameter of the second AI model into the second AI model, so as to conduct subsequent conversations based on the second AI model.
可选地,采用聚合应用支持的通用格式,对第一会话内容进行保存,得到通用格式的第一会话内容。进一步可选地,将第一会话内容及其来源、状态和标识信息等封装后存储至数据库中,基于第一会话内容的标识信息,将封装后第一会话内容保存至数据库中,当需要使用第一会话内内容的情况下,基于标识信息,从数据库中获取封装后的第一会话内容,解封并转成通用格式的第一会话内容。其中,不同AI模型具有不同的入参格式,入参格式至少包括:上下文长度信息(context length)和输入类型信息,上下文长度信息是一个参数,用于描述在单个请求中AI模型可以使用多少个标记(token)。例如,上下文长度可以是4k、8k或32k等,输入类型信息可以是图片、文字或视频等,在当需要使用第二AI模型继续进行会话的情况下,采用第二AI模型所支持的入参格式,将该通用格式的第一会话内容转换成与入参格式适配的第二会话内容。在本实施例中,可以将第二会话内容提供给第二AI模型,若人工智能聚合应用运行在终端设备上,则人工智能聚合应用可以从终端设备本地或远端加载第二AI模型的程序代码,进而运行第二AI模型,或者,若人工智能聚合应用运行在服务端设备上,则人工智能聚合应用可以从服务端设备本地或者其它设备上加载第二AI模型的程序代码,进而运行第二AI模型。在运行第二AI模型的情况下,将第一会话界面切换为第二AI模型对应的第二会话界面,并在第二会话界面上展示第二会话内容,以供第一用户基于第二会话内容与第二AI模型继续进行会话。例如,第二会话内容提供给第二AI模型时,人工智能聚合应用的监听模块监听到有第二会话内容发送过来,则触发运行第二AI模型,并将当前展示的第一会话界面切换为第二会话界面。可选地,第一会话界面和第二会话界面的显示风格可以是一致的,例如,背景色、文字样式,布局风格等是一致的,使得第一会话界面流畅的切换为第二会话界面,而用户无感知。Optionally, the first session content is saved in a universal format supported by the aggregation application to obtain the first session content in a universal format. Further optionally, the first session content and its source, status and identification information are encapsulated and stored in a database, and the encapsulated first session content is saved in the database based on the identification information of the first session content. When the content in the first session needs to be used, the encapsulated first session content is obtained from the database based on the identification information, and is unpacked and converted into the first session content in a universal format. Among them, different AI models have different input parameter formats, and the input parameter format at least includes: context length information (context length) and input type information. The context length information is a parameter used to describe how many tokens (tokens) can be used by the AI model in a single request. For example, the context length can be 4k, 8k or 32k, etc., and the input type information can be pictures, text or videos, etc. When it is necessary to use the second AI model to continue the session, the input parameter format supported by the second AI model is used to convert the first session content in the universal format into the second session content adapted to the input parameter format. In this embodiment, the second conversation content can be provided to the second AI model. If the artificial intelligence aggregation application runs on the terminal device, the artificial intelligence aggregation application can load the program code of the second AI model from the terminal device locally or remotely, and then run the second AI model. Alternatively, if the artificial intelligence aggregation application runs on the server device, the artificial intelligence aggregation application can load the program code of the second AI model from the server device locally or on other devices, and then run the second AI model. When the second AI model is running, the first conversation interface is switched to the second conversation interface corresponding to the second AI model, and the second conversation content is displayed on the second conversation interface, so that the first user can continue the conversation with the second AI model based on the second conversation content. For example, when the second conversation content is provided to the second AI model, the monitoring module of the artificial intelligence aggregation application monitors that the second conversation content is sent, and then triggers the operation of the second AI model, and switches the currently displayed first conversation interface to the second conversation interface. Optionally, the display styles of the first conversation interface and the second conversation interface can be consistent, for example, the background color, text style, layout style, etc. are consistent, so that the first conversation interface is smoothly switched to the second conversation interface without the user's perception.
如图1b所示,本申请示例性的提供一种第一会话界面的示意图,第二会话界面的示意图可以与第一会话界面的相同或相似,对此不做限定。其中,第一会话界面上包括第一用户的提问信息和第一AI模型的回答信息,该提问信息和回答信息构成第一用户与第一AI模型的会话内容。提问信息可以是文字、图片、视频和文件等,回答信息可以是文字、图片、视频和文件等。As shown in Figure 1b, the present application exemplarily provides a schematic diagram of a first conversation interface, and the schematic diagram of the second conversation interface can be the same or similar to the first conversation interface, without limitation. Among them, the first conversation interface includes the question information of the first user and the answer information of the first AI model, and the question information and the answer information constitute the conversation content between the first user and the first AI model. The question information can be text, pictures, videos, files, etc., and the answer information can be text, pictures, videos, files, etc.
在本申请实施例中,提供一种聚合有多个AI模型的人工智能聚合应用,用户在该应用提供的第一会话界面上与第一AI模型进行会话,生成了第一会话内容,将该第一会话内容转换为与第二AI模型适配的第二会话内容,并展示在第二AI模型提供的第二会话界面上,使得用户能够基于第二会话内容继续与第二AI模型进行会话,实现了针对同一会话在多AI模型之间进行自由切换,进一步,由于用户的会话是持续的,不会因为更换AI模型而中断,用户体验好。In an embodiment of the present application, an artificial intelligence aggregation application that aggregates multiple AI models is provided. A user conducts a conversation with a first AI model on a first conversation interface provided by the application, generates first conversation content, converts the first conversation content into second conversation content adapted to a second AI model, and displays it on a second conversation interface provided by the second AI model, so that the user can continue to have a conversation with the second AI model based on the second conversation content, thereby achieving free switching between multiple AI models for the same conversation. Furthermore, since the user's session is continuous and will not be interrupted due to the change of AI models, the user experience is good.
在一可选实施例中,在第一会话界面上以弹窗方式、浮层或下拉列表等方式展示AI模型列表,该AI模型列表中包括至少一个AI模型,该至少一个AI模型至少包括:第一AI模型和第二AI模型;响应于对第二AI模型的选择操作,确定用户需要从第一AI模型切换至第二AI模型,进而利用转换中间件对第一会话内容进行格式转换,以得到第二AI模型所支持的第二会话内容。其中,在图1b中示例性的展示了AI模型列表,该AI模型列表包括第一AI模型、第二AI模型至第N AI模型,N为正整数且N大于等于3。In an optional embodiment, an AI model list is displayed on the first conversation interface in a pop-up window, floating layer, or drop-down list, and the AI model list includes at least one AI model, and the at least one AI model includes at least: a first AI model and a second AI model; in response to the selection operation of the second AI model, it is determined that the user needs to switch from the first AI model to the second AI model, and then the conversion middleware is used to convert the format of the first conversation content to obtain the second conversation content supported by the second AI model. Among them, FIG1b exemplarily shows an AI model list, and the AI model list includes the first AI model, the second AI model to the Nth AI model, where N is a positive integer and N is greater than or equal to 3.
其中,从第一AI模型切换至第二AI模型的触发操作并不限定。例如,第一会话界面上包括AI模型选择控件,在图1b中该AI模型选择控件实现为“切换控件”,从第一AI模型切换至第二AI模型的触发操作实现为对该AI模型选择控件的点击操作;再例如,人工智能聚合应用支持通过手势操作进行AI模型切换,并预先维护了在不同AI模型之间进行切换的手势操作,其中,不同AI模型之间进行切换的手势操作不完全相同,以便于区分不同AI模型之间的切换,基于此,该从第一AI模型切换至第二AI模型的触发操作实现为在第一会话界面上执行的手势操作,例如S型手势操作、Z型手势操作或W型手势操作等;又例如,人工智能聚合应用具有语音识别功能(例如包含具有语音识别的AI模型)并支持以语音方式进行AI模型切换,且维护了进行AI模型切换的语音指令,基于此,该从第一AI模型切换至第二AI模型的触发操作实现为在第一会话界面上接收到的用于进行AI模型切换的语音指令,在该语音指令中包含需要切换到的第二AI模型的标识信息,例如可以是第二AI模型的名称或系统ID等。The triggering operation for switching from the first AI model to the second AI model is not limited. For example, the first conversation interface includes an AI model selection control, which is implemented as a "switch control" in FIG. 1b, and the trigger operation of switching from the first AI model to the second AI model is implemented as a click operation on the AI model selection control; for another example, the artificial intelligence aggregation application supports switching of AI models through gesture operations, and pre-maintains gesture operations for switching between different AI models, wherein the gesture operations for switching between different AI models are not exactly the same, so as to distinguish the switching between different AI models, based on this, the trigger operation of switching from the first AI model to the second AI model is implemented as a gesture operation performed on the first conversation interface, such as an S-shaped gesture operation, a Z-shaped gesture operation, or a W-shaped gesture operation, etc.; for another example, the artificial intelligence aggregation application has a voice recognition function (for example, includes an AI model with voice recognition) and supports switching of AI models by voice, and maintains voice instructions for switching AI models, based on this, the trigger operation of switching from the first AI model to the second AI model is implemented as a voice instruction for switching AI models received on the first conversation interface, and the voice instruction contains identification information of the second AI model to be switched to, such as the name or system ID of the second AI model.
可选地,在一些实施例中,AI模型包括已解锁和未解锁两个状态;处于未解锁状态的AI模型,表示用户暂时不具备使用权限,用户在使用处于未解锁状态的AI模型之前,需要先行对该AI模型进行解锁处理。在AI模型列表中除了展示AI模型的标识信息之外,还会展示AI模型的解锁状态,例如已解锁或未解锁,以便于用户了解各AI模型的解锁状态,便于用户更好地选择要切换的AI模型。在一可选实施例中,在AI模型列表包括至少两个AI模型,且至少两个AI模型中包括已解锁的AI模型和未解锁的AI模型,其中,已解锁的AI模型是用户当前具有使用权限的AI模型,未解锁的AI模型是指用户当前不具有使用权限的AI模型。相应地,在第一会话界面上以弹窗方式、浮层或下拉列表的方式展示AI模型列表的情况下,可以在AI模型列表中展示各AI模型的解锁状态,例如,已解锁的AI模型其解锁状态可以用一个“开启状态的锁”来体现,未解锁的AI模型其解锁状态可以用一个“关闭状态的锁”来体现;又例如,已解锁的AI模型其解锁状态可以用一个“免费”或者“已付费”或“已解锁”等文字来体现,未解锁的AI模型其解锁状态可以用一个“需付费”或“需解锁”等文字来体现。Optionally, in some embodiments, the AI model includes two states: unlocked and unlocked; an AI model in an unlocked state indicates that the user does not have the permission to use it temporarily, and the user needs to unlock the AI model before using the AI model in an unlocked state. In addition to displaying the identification information of the AI model, the unlocking state of the AI model, such as unlocked or unlocked, is also displayed in the AI model list, so that the user can understand the unlocking state of each AI model and better select the AI model to switch. In an optional embodiment, the AI model list includes at least two AI models, and the at least two AI models include an unlocked AI model and an unlocked AI model, wherein the unlocked AI model is an AI model that the user currently has the permission to use, and the unlocked AI model is an AI model that the user currently does not have the permission to use. Accordingly, when the AI model list is displayed on the first session interface in the form of a pop-up window, a floating layer or a drop-down list, the unlocking status of each AI model can be displayed in the AI model list. For example, the unlocking status of an unlocked AI model can be represented by an "open lock", and the unlocking status of an unlocked AI model can be represented by a "closed lock"; for another example, the unlocking status of an unlocked AI model can be represented by a word such as "free" or "paid" or "unlocked", and the unlocking status of an unlocked AI model can be represented by a word such as "payment required" or "need to unlock".
在用户选择切换至第二AI模型之后,且在利用转换中间件对第一会话内容进行格式转换之前,可以判断第二AI模型是否是未解锁的AI模型;若第二AI模型是未解锁的AI模型,则展示解锁界面,该解锁界面上包括:解锁任务描述信息,该解锁任务描述信息用于辅助用户针对该AI模型执行解锁任务。例如,解锁任务描述信息实现为付款地址,在该付款地址被触发的情况下,展示付款页面,第一用户可以在该付款页面上针对第二AI模型进行付费,以完成解锁任务;再例如,解锁页面维护有预设验证信息,解锁任务描述信息为指示在解锁界面上输入的验证信息,从而可以在解锁界面上响应于输入操作,获取输入的验证信息,并判断该验证信息与预设验证信息是否一致,若一致,则认为完成了解锁任务;又例如,解锁任务描述信息为指示在解锁界面上观看广告的提示信息,解锁页面上还包括触发广告播放的播放控件,响应于针对该播放控件的触发操作,播放广告信息,在广告播放完毕之后,则认为完成解锁任务。After the user chooses to switch to the second AI model and before the conversion middleware is used to convert the format of the first session content, it can be determined whether the second AI model is an unlocked AI model; if the second AI model is an unlocked AI model, an unlocking interface is displayed, and the unlocking interface includes: unlocking task description information, and the unlocking task description information is used to assist the user to perform the unlocking task for the AI model. For example, the unlocking task description information is implemented as a payment address. When the payment address is triggered, a payment page is displayed, and the first user can pay for the second AI model on the payment page to complete the unlocking task; for another example, the unlocking page maintains preset verification information, and the unlocking task description information indicates the verification information input on the unlocking interface, so that the input verification information can be obtained in response to the input operation on the unlocking interface, and it is determined whether the verification information is consistent with the preset verification information. If it is consistent, it is considered that the unlocking task is completed; for another example, the unlocking task description information is a prompt information indicating watching an advertisement on the unlocking interface, and the unlocking page also includes a playback control for triggering the playback of the advertisement. In response to the triggering operation on the playback control, the advertisement information is played, and after the advertisement is played, it is considered that the unlocking task is completed.
在解锁任务完成的情况下,对该第二AI模型进行解锁操作,以使第一用户获得第二AI模型的使用权限,在此基础上,进一步利用转换中间件对第一会话内容进行格式转换,以得到第二AI模型所支持的第二会话内容,并将第二会话内容提供给第二AI模型,以供第一用户基于第二会话内容与第二AI模型继续进行会话。具体地,人工智能聚合应用与每个AI模型之间均具有聚合接口,通过与第二AI模型对应的聚合接口,将第二会话内容提供给第二AI模型,第二AI模型将第二会话内容作为AI模型的一部分,在第二AI模型被运行的过程中,呈现第二会话界面,并在第二会话界面上呈现第二会话内容,以供用户根据第二会话内容继续之间的会话。When the unlocking task is completed, the second AI model is unlocked so that the first user obtains the right to use the second AI model. On this basis, the first conversation content is further converted using the conversion middleware to obtain the second conversation content supported by the second AI model, and the second conversation content is provided to the second AI model so that the first user can continue the conversation with the second AI model based on the second conversation content. Specifically, there is an aggregation interface between the artificial intelligence aggregation application and each AI model. The second conversation content is provided to the second AI model through the aggregation interface corresponding to the second AI model. The second AI model uses the second conversation content as part of the AI model. When the second AI model is running, the second conversation interface is presented, and the second conversation content is presented on the second conversation interface so that the user can continue the conversation based on the second conversation content.
例如,用户在智能聊天模型上开启了一个会话和智能聊天模型进行交流,又在智能问答模型上开启了一个会话,通过本方案用户可以在智能问答模型上继续此前在智能聊天模型上的会话。这样,用户的会话是持续的,不会因为更换AI模型而中断,用户体验好,有利于解决用户所有需求,帮助用户在不同AI模型上进行切换,可以满足用户复杂的应用需求。For example, if a user starts a session on the intelligent chat model to communicate with the intelligent chat model, and then starts a session on the intelligent question-and-answer model, this solution allows the user to continue the previous session on the intelligent chat model on the intelligent question-and-answer model. In this way, the user's session is continuous and will not be interrupted due to the change of AI models. The user experience is good, which is conducive to solving all user needs, helping users switch between different AI models, and meeting users' complex application needs.
在一可选实施例中,用户可以在任何AI模型提供的会话界面上执行会话发布操作,以将该会话界面上的会话内容发布给其它用户,这样其它用户可以了解到该用户的会话内容,进一步可选地,也可以判断是否基于该会话内容继续进行会话,实现同一会话在不同用户之间进行交流的目的。为了便于描述和区分,将本实施例中提到的在第一会话界面上和第二会话界面上进行会话的用户称为第一用户,具体地,第一用户可以在第二会话界面上执行会话发布操作,以将第二会话内容以及在第二会话界面上产生的新的会话内容发布给聚合应用的其它用户。其中,会话发布操作的实现方式并不限定,例如,第二会话界面上包括会话发布控件,会话发布操作实现为对该会话发布控件的触发操作,其中,在图1b中展示了发布控件。当然,第一用户可以在第一会话界面上执行会话发布操作,以将第一会话内容发布给聚合应用的其它用户。下面以第一用户可以在第二会话界面上执行会话发布操作为例进行说明。In an optional embodiment, a user can perform a session publishing operation on a session interface provided by any AI model to publish the session content on the session interface to other users, so that other users can understand the user's session content. Further, optionally, it can also be determined whether to continue the session based on the session content to achieve the purpose of communicating between different users in the same session. For the convenience of description and distinction, the user who conducts a session on the first session interface and the second session interface mentioned in this embodiment is referred to as the first user. Specifically, the first user can perform a session publishing operation on the second session interface to publish the second session content and the new session content generated on the second session interface to other users of the aggregated application. Among them, the implementation method of the session publishing operation is not limited. For example, the second session interface includes a session publishing control, and the session publishing operation is implemented as a triggering operation of the session publishing control, wherein the publishing control is shown in Figure 1b. Of course, the first user can perform a session publishing operation on the first session interface to publish the first session content to other users of the aggregated application. The following is an example of the first user performing a session publishing operation on the second session interface.
具体地,聚合应用响应于第一用户在第二会话界面上的会话发布操作,根据第二会话内容以及第二会话界面上产生的新会话内容,生成第一用户的第一共享会话内容;例如,将该第二会话内容以及第二会话界面上产生的新会话内容进行编码、封装得到第一共享会话内容;将该第一共享会话内容发布给聚合应用的其它用户。Specifically, the aggregate application responds to the first user's session publishing operation on the second session interface, generates the first shared session content of the first user according to the second session content and the new session content generated on the second session interface; for example, the second session content and the new session content generated on the second session interface are encoded and packaged to obtain the first shared session content; and the first shared session content is published to other users of the aggregate application.
其中,将该第一共享会话内容发布给聚合应用的其它用户,其它用户可以查看该第一共享会话内容;可选地,还可以基于该第一共享会话内容继续进行会话,实现同一会话在不同用户之间进行交流的目的。具体地,将第一共享会话内容发布给聚合应用的其它用户,以供其它用户在第三AI模型的第三会话界面上,基于第一共享会话内容继续与第三AI模型进行会话,第三AI模型是其它用户采用人工智能聚合应用进行会话所使用的AI模型。其中,其它用户采用的人工智能聚合应用可以运行在服务端设备上,并在服务端设备上运行第三AI模型,由服务端设备向其它用户的客户端提供第三AI模型对应的第三会话界面,在第三会话界面上基于第一共享会话内容继续与第三AI模型进行会话。其它用户使用的终端设备采用专用芯片,算力较强,可以在终端设备上运行人工智能聚合应用和第三AI模型,并展示第三会话界面,在第三会话界面上基于第一共享会话内容继续与第三AI模型进行会话。Among them, the first shared session content is published to other users of the aggregation application, and other users can view the first shared session content; optionally, the conversation can also be continued based on the first shared session content to achieve the purpose of communication between different users in the same conversation. Specifically, the first shared session content is published to other users of the aggregation application, so that other users can continue to have a conversation with the third AI model based on the first shared session content on the third conversation interface of the third AI model. The third AI model is the AI model used by other users to have a conversation using the artificial intelligence aggregation application. Among them, the artificial intelligence aggregation application used by other users can be run on the server device, and the third AI model is run on the server device. The server device provides the third conversation interface corresponding to the third AI model to the client of other users, and the conversation with the third AI model is continued on the third conversation interface based on the first shared session content. The terminal device used by other users uses a dedicated chip with strong computing power. The artificial intelligence aggregation application and the third AI model can be run on the terminal device, and the third conversation interface can be displayed. On the third conversation interface, the conversation with the third AI model can be continued based on the first shared session content.
其中,将该第一共享会话内容发布给聚合应用的其它用户的实施方式并不限定。在一可选实施例中,将第一共享会话内容发布给聚合应用的其它用户实现为将第一共享会话内容发布给聚合应用提供的共享页面上,该共享页面上的共享会话内容对该聚合应用的特定用户可见。特定用户可以是聚合应用的部分用户或者全部用户,进一步,特定用户实现为具有某个用户级别的用户,例如,特征用户实现为账户等级超过5级的用户;或者特定用户实现为具有会员的用户。进一步,可以将该共享页面提供给聚合应用对应的其它平台,例如,社交平台。在另一可选实施例中,为了维护信息的安全,保护用户隐私,可以通过点对点或者端到端的方式,分享第一共享会话内容,例如,通过社交平台上的私信分享方式、短信分享方式或者邮件分享方式等分享第一共享会话内容。The implementation method of publishing the first shared session content to other users of the aggregated application is not limited. In an optional embodiment, publishing the first shared session content to other users of the aggregated application is implemented by publishing the first shared session content to a shared page provided by the aggregated application, and the shared session content on the shared page is visible to a specific user of the aggregated application. The specific user may be some or all users of the aggregated application. Further, the specific user is implemented as a user with a certain user level, for example, a feature user is implemented as a user with an account level exceeding level 5; or the specific user is implemented as a user with membership. Further, the shared page can be provided to other platforms corresponding to the aggregated application, for example, a social platform. In another optional embodiment, in order to maintain information security and protect user privacy, the first shared session content can be shared in a point-to-point or end-to-end manner, for example, the first shared session content can be shared through a private message sharing method, a text message sharing method, or an email sharing method on a social platform.
进一步可选地,第一用户可以将自己的会话内容发布或分享给其它用户,同样也可以接收其它用户发布或分享的会话内容,并基于其它用户发布或分享的会话内容继续进行会话。基于此,第一用户可以从共享页面上选择需要继续的第二共享会话内容,以便于继续基于第二共享会话内容进行会话。相应地,人工智能聚合应用可响应于第一用户对共享页面上的第二用户发布的第二共享会话内容的选择操作,判断第一用户当前使用的第四AI模型和该第二共享会话内容对应的AI模型是否相同,第二共享会话内容对应的AI模型是指产生第二共享会话内容时使用的AI模型;若第一用户当前使用的第四AI模型和该第二共享会话内容对应的AI模型不相同,利用转换中间件对第二共享会话内容进行格式转换,以得到第四AI模型所支持的第三会话内容;其中,利用转换中间件进行格式转换的详细实施方式,可参见前述,在此不再赘述;在第四AI模型的第四会话界面上展示第三会话内容,以供第一用户基于第三会话内容与第四AI模型继续进行会话。在一可选实施例中,第四AI模型可以实现为第一AI模型,第三会话内容实现为第一会话内容,第一用户基于第三会话内容与第四AI模型继续进行会话的过程,可以按照图1a所示方法来实现。Further optionally, the first user can publish or share his own session content with other users, and can also receive session content published or shared by other users, and continue the session based on the session content published or shared by other users. Based on this, the first user can select the second shared session content that needs to be continued from the sharing page, so as to continue the session based on the second shared session content. Accordingly, the artificial intelligence aggregation application can respond to the first user's selection operation on the second shared session content published by the second user on the sharing page, and determine whether the fourth AI model currently used by the first user and the AI model corresponding to the second shared session content are the same. The AI model corresponding to the second shared session content refers to the AI model used when generating the second shared session content; if the fourth AI model currently used by the first user and the AI model corresponding to the second shared session content are not the same, the second shared session content is converted into a format using the conversion middleware to obtain the third session content supported by the fourth AI model; wherein, the detailed implementation method of format conversion using the conversion middleware can be referred to above, and will not be repeated here; the third session content is displayed on the fourth session interface of the fourth AI model, so that the first user can continue the session with the fourth AI model based on the third session content. In an optional embodiment, the fourth AI model can be implemented as the first AI model, the third conversation content can be implemented as the first conversation content, and the process of the first user continuing the conversation with the fourth AI model based on the third conversation content can be implemented according to the method shown in Figure 1a.
进一步可选地,若第一用户当前使用的第四AI模型和该第二共享会话内容对应的AI模型相同,则直接在第四AI模型的第四会话界面上展示第二共享会话内容,以供第一用户基于第二共享会话内容与第四AI模型继续进行会话。需要说明的是,第四AI模型可以实现为第一AI模型,第二共享会话内容实现为第一会话内容,第一用户基于第二共享会话内容与第四AI模型继续进行会话的过程,可以按照图1a所示方法来实现。Further optionally, if the fourth AI model currently used by the first user is the same as the AI model corresponding to the second shared session content, the second shared session content is directly displayed on the fourth session interface of the fourth AI model, so that the first user can continue the conversation with the fourth AI model based on the second shared session content. It should be noted that the fourth AI model can be implemented as the first AI model, the second shared session content can be implemented as the first session content, and the process of the first user continuing the conversation with the fourth AI model based on the second shared session content can be implemented according to the method shown in Figure 1a.
例如,用户x1与AI模型y1进行会话生成会话内容z1;用户x2对会话内容z1感兴趣,用户x2习惯使用AI模型y2,将会话内容z1转换成AI模型y2所支持的会话内容z1’,在会话内容z1’的基础上,用户x2与AI模型y2进行会话,生成会话内容z2;用户x3对会话内容z2感兴趣,用户x3习惯使用AI模型y3,将会话内容z2转换成AI模型y3所支持的会话内容z2’,在会话内容z2’的基础上,用户x3与AI模型y3进行会话,生成会话内容z3;用户x4也对会话内容z2感兴趣,用户x4习惯使用AI模型y1,将会话内容z2转换成AI模型y1所支持的会话内容z2”,在会话内容z2”的基础上,用户x4与AI模型y1进行会话,生成会话内容z4。For example, user x1 has a conversation with AI model y1 to generate conversation content z1; user x2 is interested in conversation content z1, and user x2 is accustomed to using AI model y2, so the conversation content z1 is converted into conversation content z1’ supported by AI model y2. Based on conversation content z1’, user x2 has a conversation with AI model y2 to generate conversation content z2; user x3 is interested in conversation content z2, and user x3 is accustomed to using AI model y3, so the conversation content z2 is converted into conversation content z2’ supported by AI model y3. Based on conversation content z2’, user x3 has a conversation with AI model y3 to generate conversation content z3; user x4 is also interested in conversation content z2, and user x4 is accustomed to using AI model y1, so the conversation content z2 is converted into conversation content z2” supported by AI model y1. Based on conversation content z2”, user x4 has a conversation with AI model y1 to generate conversation content z4.
本申请实施例,辅助用户实现在同一会话下,多AI模型之间自由切换且连续对话,也可以实现在同一个会话下多个用户角色切换、多AI模型切换且连续对话。The embodiments of the present application assist users in freely switching between multiple AI models and having continuous conversations in the same session, and can also realize multiple user role switching, multiple AI model switching and continuous conversations in the same session.
在一可选实施例中,在共享页面上的共享会话内容被访问时,还可以记录各共享会话内容的访问热度信息,基于该访问热度信息,对聚合应用聚合的多个AI模型进行优化更新。具体地:响应于对共享页面上各共享会话内容的访问操作,生成各共享会话内容的访问热度信息,访问操作至少包括:查询、评论、点赞或点踩等互动行为,每个互动行为对应有权重和互动次数,访问热度信息可以是热度分值,该热度分值可以是针对每个互动行为基于各自的权重和互动次数进行加权求和/加权平均,并归一化到指定区间(如0-1)得到的;将访问热度信息高于设定访问热度阈值的共享会话内容作为热门共享会话内容;访问热度阈值可以是0.8、0.9或0.95等,热门共享会话内容的数量为多个;基于热门共享会话内容,对该应用中聚合有多个AI模型进行优化更新,例如,将热门共享会话内容输入至每个AI模型中,对每个AI模型进行模型训练,使得AI模型构建出受用户欢迎的会话内容的热度体系。In an optional embodiment, when the shared session content on the shared page is accessed, the access popularity information of each shared session content can also be recorded, and based on the access popularity information, multiple AI models aggregated by the aggregated application are optimized and updated. Specifically: in response to access operations on each shared session content on a shared page, access heat information of each shared session content is generated, the access operations at least include: interactive behaviors such as query, comment, like or dislike, each interactive behavior corresponds to a weight and an interaction number, the access heat information may be a heat score, and the heat score may be obtained by weighted summation/weighted average based on the respective weights and interaction numbers for each interactive behavior, and normalized to a specified interval (such as 0-1); shared session content whose access heat information is higher than a set access heat threshold is regarded as a hot shared session content; the access heat threshold may be 0.8, 0.9 or 0.95, etc., and the number of hot shared session content is multiple; based on the hot shared session content, multiple AI models aggregated in the application are optimized and updated, for example, the hot shared session content is input into each AI model, and each AI model is trained, so that the AI model builds a heat system for session content popular with users.
可选地,共享会话内容可能是单轮次会话,例如,共享会话内容包括第一会话内容,共享会话内容也可能是多轮次会话,例如,共享会话内容包括第二会话内容以及在该第二会话界面上产生的新的会话内容;基于此,一种响应于对共享页面上各共享会话内容的访问操作,生成各共享会话内容的访问热度信息的实施方式,包括:针对任一共享会话内容,在该共享会话内容包括多轮次会话的情况下,响应于对每个轮次会话的访问操作,生成各轮次会话的访问热度信息;根据各轮次会话的访问热度信息,生成各共享会话内容的访问热度信息。例如,对各轮次会话的访问热度信息进行加权平均/加权求和,生成会话内容的访问热度。其中,针对各轮次会话充分接受用户的互动(或评判),从而发现更好的会话内容,并且可以对AI模型进行优化更新,以产生更符合用户喜好的会话内容。Optionally, the shared session content may be a single-round session, for example, the shared session content includes the first session content, or the shared session content may be a multi-round session, for example, the shared session content includes the second session content and the new session content generated on the second session interface; based on this, an implementation method of generating access heat information of each shared session content in response to an access operation to each shared session content on a shared page includes: for any shared session content, in the case where the shared session content includes multiple rounds of sessions, in response to an access operation to each round of sessions, generating access heat information of each round of sessions; based on the access heat information of each round of sessions, generating access heat information of each shared session content. For example, weighted averaging/weighted summing is performed on the access heat information of each round of sessions to generate the access heat of the session content. Among them, the user's interaction (or judgment) is fully accepted for each round of sessions to discover better session content, and the AI model can be optimized and updated to generate session content that is more in line with user preferences.
在一可选实施例中,在用户与AI模型进行会话过程中,还提供辅助AI模型,辅助AI模型作为用户与AI模型之外的第三方,用于观察用户与AI模型之间的会话内容,给用户提供能够更好话术建议,使得用户可以更好的描述问题,从而获得AI模型提供的更有价值的回答。In an optional embodiment, during a conversation between a user and an AI model, an auxiliary AI model is also provided. The auxiliary AI model serves as a third party outside the user and the AI model and is used to observe the conversation content between the user and the AI model and provide the user with better suggestions for conversation techniques, so that the user can better describe the problem and obtain more valuable answers provided by the AI model.
具体地,在第一用户与第一AI模型进行会话过程中,将第一会话界面中至少部分会话内容提供给辅助AI模型,以供辅助AI模型生成话术建议信息;其中,至少部分会话内容可以是用户在第一会话界面上的全部内容,例如,第一会话内容的全部,或者也可以是第一会话内容的部分内容,如第一会话内容中包括用户的三个问题,以及第一AI模型的三个回答,部分会话内容可以是三个问题,或者两个问题和两个答案,对此不做限定;展示辅助AI模型生成的话术建议信息,以引导第一用户根据话术建议信息进行后续会话内容的输入,例如,可以以浮层方式,在第一会话界面上展示该话术建议信息,也可以以列表的形式展示话术建议信息;响应于第一用户在第一会话界面上的输入操作,获取第一用户输入的提问信息,在第一会话界面中展示提问信息,并将提问信息提供给第一AI模型,由第一AI模型基于该提问信息返回答案信息,以形成第一用户与第一AI模型的会话内容。其中,第一用户输入的提问信息可以是在展示话术建议信息时用户基于该话术建议信息编辑的提问信息,该提问信息也可以是用户点击的话术建议信息。Specifically, during a conversation between a first user and a first AI model, at least part of the conversation content in the first conversation interface is provided to the auxiliary AI model so that the auxiliary AI model can generate speech suggestion information; wherein, at least part of the conversation content can be all the content of the user on the first conversation interface, for example, all of the first conversation content, or it can also be part of the first conversation content, such as the first conversation content includes three questions of the user and three answers of the first AI model, and part of the conversation content can be three questions, or two questions and two answers, without limitation; the speech suggestion information generated by the auxiliary AI model is displayed to guide the first user to input subsequent conversation content according to the speech suggestion information, for example, the speech suggestion information can be displayed on the first conversation interface in a floating manner, or it can be displayed in the form of a list; in response to the input operation of the first user on the first conversation interface, the question information input by the first user is obtained, the question information is displayed in the first conversation interface, and the question information is provided to the first AI model, and the first AI model returns answer information based on the question information to form the conversation content between the first user and the first AI model. The question information input by the first user may be the question information edited by the user based on the speech suggestion information when the speech suggestion information is displayed, and the question information may also be the speech suggestion information clicked by the user.
或者,在第一用户与第二AI模型进行会话过程中,将第二会话界面中至少部分会话内容提供给辅助AI模型,以供辅助AI模型生成话术建议信息,至少部分会话内容可以是第二会话内容,也可以是第二会话内容和在第二会话界面产生的新的会话内容;展示辅助AI模型生成的话术建议信息,以引导第一用户根据话术建议信息进行后续会话内容的输入;以及响应于第一用户在第二会话界面上的输入操作,获取第一用户输入的提问信息,在第二会话界面中展示提问信息,并将提问信息提供给第二AI模型。详细内容可参见前述,在此不再赘述。Alternatively, during a conversation between the first user and the second AI model, at least part of the conversation content in the second conversation interface is provided to the auxiliary AI model so that the auxiliary AI model can generate speech suggestion information, and at least part of the conversation content can be the second conversation content, or the second conversation content and new conversation content generated in the second conversation interface; the speech suggestion information generated by the auxiliary AI model is displayed to guide the first user to input subsequent conversation content according to the speech suggestion information; and in response to the input operation of the first user on the second conversation interface, the question information input by the first user is obtained, the question information is displayed in the second conversation interface, and the question information is provided to the second AI model. For details, please refer to the above and will not be repeated here.
在一可选实施例中,在第一用户与AI模型进行交互之前,AI可以预先学习第一用户的语言特征,使得AI模型基于学习到的语言特征与第一用户进行交互。具体地,在第一用户使用第一AI模型或者第二AI模型进行会话之前,还可以获取第一用户的历史会话内容,该历史会话内容可以是第一用户与其它AI模型的会话内容,第一用户与第二AI模型进行交互之前,历史会话内容可以是第二会话内容;根据第一用户的历史会话内容,学习第一用户的语言特征,该语言特征可以是方言特征、儿童特征、老人特征或明星特征等;根据第一用户的语言特征,对第一AI模型或第二AI模型的语言特征进行更新,以使第一AI模型或第二AI模型能够模拟第一用户的语言特征与第一用户进行会话,以优化会话内容,增强用户体验感。需要说明的是,第一用户首次与AI模型进行会话的情况下,不存在第一用户的历史会话信息,这是AI模型使用默认的语言特征与第一用户进行会话。In an optional embodiment, before the first user interacts with the AI model, the AI can pre-learn the language features of the first user so that the AI model interacts with the first user based on the learned language features. Specifically, before the first user uses the first AI model or the second AI model to conduct a conversation, the first user's historical conversation content can also be obtained. The historical conversation content can be the conversation content between the first user and other AI models. Before the first user interacts with the second AI model, the historical conversation content can be the second conversation content; based on the first user's historical conversation content, the first user's language features are learned. The language features can be dialect features, children's features, elderly features, or celebrity features, etc.; based on the first user's language features, the language features of the first AI model or the second AI model are updated so that the first AI model or the second AI model can simulate the language features of the first user to conduct a conversation with the first user, so as to optimize the conversation content and enhance the user experience. It should be noted that when the first user conducts a conversation with the AI model for the first time, there is no historical conversation information of the first user. This is because the AI model uses the default language features to conduct a conversation with the first user.
需要说明的是,上述实施例所提供方法的各步骤的执行主体均可以是同一设备,或者,该方法也由不同设备作为执行主体。比如,步骤101至步骤103的执行主体可以为设备A;又比如,步骤101和102的执行主体可以为设备A,步骤103的执行主体可以为设备B;等等。It should be noted that the execution subject of each step of the method provided in the above embodiment can be the same device, or the method can be executed by different devices. For example, the execution subject of steps 101 to 103 can be device A; for another example, the execution subject of steps 101 and 102 can be device A, and the execution subject of step 103 can be device B; and so on.
另外,在上述实施例及附图中的描述的一些流程中,包含了按照特定顺序出现的多个操作,但是应该清楚了解,这些操作可以不按照其在本文中出现的顺序来执行或并行执行,操作的序号如101、102等,仅仅是用于区分开各个不同的操作,序号本身不代表任何的执行顺序。另外,这些流程可以包括更多或更少的操作,并且这些操作可以按顺序执行或并行执行。需要说明的是,本文中的“第一”、“第二”等描述,是用于区分不同的消息、设备、模块等,不代表先后顺序,也不限定“第一”和“第二”是不同的类型。In addition, in some of the processes described in the above embodiments and the accompanying drawings, multiple operations that appear in a specific order are included, but it should be clearly understood that these operations may not be executed in the order in which they appear in this article or executed in parallel, and the sequence numbers of the operations, such as 101, 102, etc., are only used to distinguish between different operations, and the sequence numbers themselves do not represent any execution order. In addition, these processes may include more or fewer operations, and these operations may be executed in sequence or in parallel. It should be noted that the descriptions of "first", "second", etc. in this article are used to distinguish different messages, devices, modules, etc., do not represent the order of precedence, and do not limit the "first" and "second" to be different types.
本申请实施例除了提供方法实施例之外,还提供了用于人工智能的会话处理装置,下面对本申请实施例提供的用于人工智能的会话处理装置的过程进行说明。In addition to providing a method embodiment, the embodiment of the present application also provides a conversation processing device for artificial intelligence. The process of the conversation processing device for artificial intelligence provided by the embodiment of the present application is described below.
图2为本申请示例性实施例提供的一种用于人工智能的会话处理装置的结构示意图,该装置上运行的人工智能聚合应用,应用中聚合有多个AI模型,如图2所示,该装置包括:运行模块21、展示模块22、转换中间件模块23、提供模块24以及切换模块25。Figure 2 is a structural diagram of a conversation processing device for artificial intelligence provided by an exemplary embodiment of the present application. The artificial intelligence aggregation application running on the device aggregates multiple AI models in the application. As shown in Figure 2, the device includes: an operation module 21, a display module 22, a conversion middleware module 23, a providing module 24 and a switching module 25.
运行模块21,用于在第一用户需要与第一AI模型进行会话的情况下,运行第一AI模型,展示模块22,用于展示第一AI模型的第一会话界面,以及展示模块22,还用于响应于第一用户与第一AI模型之间的对话操作,在第一会话界面上展示第一用户与第一AI模型之间的第一会话内容;An operation module 21 is used to operate the first AI model when the first user needs to have a conversation with the first AI model, a display module 22 is used to display a first conversation interface of the first AI model, and the display module 22 is also used to display the first conversation content between the first user and the first AI model on the first conversation interface in response to the conversation operation between the first user and the first AI model;
转换中间件模块23,用于在第一用户与第一AI模型进行会话的过程中,响应于从第一AI模型切换至第二AI模型的触发操作,对第一会话内容进行格式转换,以得到第二AI模型所支持的第二会话内容,提供模块24,用于将第二会话内容提供给第二AI模型;A conversion middleware module 23 is used to convert the format of the first conversation content to obtain the second conversation content supported by the second AI model in response to a trigger operation of switching from the first AI model to the second AI model during the conversation between the first user and the first AI model, and a providing module 24 is used to provide the second conversation content to the second AI model;
运行模块21,用于运行第二AI模型,切换模块25,用于将第一会话界面切换为第二AI模型对应的第二会话界面,展示模块22,还用于在第二会话界面上展示第二会话内容,以供第一用户基于第二会话内容与第二AI模型继续进行会话。The running module 21 is used to run the second AI model, the switching module 25 is used to switch the first conversation interface to the second conversation interface corresponding to the second AI model, and the display module 22 is also used to display the second conversation content on the second conversation interface so that the first user can continue the conversation with the second AI model based on the second conversation content.
在一可选实施例中,转换中间件模块具体用于:响应于从第一AI模型切换至第二AI模型的触发操作,在第一会话界面上以弹窗方式展示AI模型列表,AI模型列表中包括第二AI模型在内的至少一个AI模型;响应于对第二AI模型的选择操作,对第一会话内容进行格式转换,以得到第二AI模型所支持的第二会话内容;其中,触发操作实现为对第一会话界面上的AI模型选择控件的点击操作,或者实现为第一会话界面上用于展示AI模型列表的语音指令识别操作或手势操作。In an optional embodiment, the conversion middleware module is specifically used to: in response to a trigger operation of switching from a first AI model to a second AI model, display an AI model list in a pop-up window on the first conversation interface, wherein the AI model list includes at least one AI model including the second AI model; in response to a selection operation of the second AI model, perform format conversion on the first conversation content to obtain second conversation content supported by the second AI model; wherein the trigger operation is implemented as a click operation on the AI model selection control on the first conversation interface, or as a voice command recognition operation or gesture operation on the first conversation interface for displaying the AI model list.
在一可选实施例中,该装置还包括解锁模块,在AI模型列表包括至少两个AI模型的情况下,AI模型列表中包括已解锁的AI模型和未解锁的AI模型;利用转换中间件对第一会话内容进行格式转换之前,展示模块,用于若第二AI模型是未解锁的AI模型,则展示解锁界面,解锁界面上包括解锁任务描述信息;解锁模块,用于响应于第一用户对解锁任务描述信息执行解锁任务的操作,在解锁任务完成的情况下,对第二AI模型进行解锁操作,以使第一用户获得第二AI模型的使用权限。In an optional embodiment, the device also includes an unlocking module, and when the AI model list includes at least two AI models, the AI model list includes unlocked AI models and unlocked AI models; before using the conversion middleware to convert the format of the first session content, a display module is used to display an unlocking interface if the second AI model is an unlocked AI model, and the unlocking interface includes unlocking task description information; the unlocking module is used to respond to the first user's operation of performing an unlocking task on the unlocking task description information, and when the unlocking task is completed, unlock the second AI model so that the first user obtains the right to use the second AI model.
在一可选实施例中,转换中间件模块具体用于:采用应用支持的通用格式,对第一会话内容进行保存,得到通用格式的第一会话内容;采用第二AI模型所支持的入参格式,将通用格式的第一会话内容转换成与入参格式适配的第二会话内容,第二AI模型所支持的入参格式至少包括:上下文长度信息和输入类型信息。In an optional embodiment, the conversion middleware module is specifically used to: save the first session content in a universal format supported by the application to obtain the first session content in the universal format; convert the first session content in the universal format into second session content compatible with the input parameter format using an input parameter format supported by the second AI model, and the input parameter format supported by the second AI model includes at least context length information and input type information.
在一可选实施例中,该装置还包括:生成模块和发布模块;生成模块,用于响应于第一用户在第二会话界面上的会话发布操作,根据第二会话内容以及第二会话界面上产生的新会话内容生成第一用户的第一共享会话内容;发布模块,用于将第一共享会话内容发布给聚合应用的其它用户。In an optional embodiment, the device also includes: a generation module and a publishing module; the generation module is used to generate the first shared session content of the first user according to the second session content and the new session content generated on the second session interface in response to the first user's session publishing operation on the second session interface; the publishing module is used to publish the first shared session content to other users of the aggregation application.
可选地,发布模块具体用于:将第一共享会话内容发布给聚合应用的其它用户,以供其它用户在第三AI模型的第三会话界面上,基于第一共享会话内容继续与第三AI模型进行会话,第三AI模型是其它用户采用人工智能聚合应用进行会话所使用的AI模型。Optionally, the publishing module is specifically used to: publish the first shared session content to other users of the aggregation application, so that other users can continue to have a conversation with the third AI model based on the first shared session content on the third conversation interface of the third AI model. The third AI model is an AI model used by other users to conduct conversations using the artificial intelligence aggregation application.
在一可选实施例中,发布模块具体用于:将第一共享会话内容发布给聚合应用提供的共享页面上,共享页面上的共享会话内容对聚合应用的特定用户可见。In an optional embodiment, the publishing module is specifically used to: publish the first shared session content to a shared page provided by the aggregate application, and the shared session content on the shared page is visible to a specific user of the aggregate application.
在一可选实施例中,该装置还包括:判断模块;判断模块,用于响应于第一用户对共享页面上的第二用户发布的第二共享会话内容的选择操作,判断第一用户当前使用的第四AI模型和第二共享会话内容对应的AI模型是否相同;若否,则转换中间件模块,还用于对第二共享会话内容进行格式转换,以得到第四AI模型所支持的第三会话内容;展示模块,还用于在第四AI模型的第四会话界面上展示第三会话内容,以供第一用户基于第三会话内容与第四AI模型继续进行会话。In an optional embodiment, the device also includes: a judgment module; a judgment module, used to judge whether the fourth AI model currently used by the first user and the AI model corresponding to the second shared session content are the same in response to the first user's selection operation on the second shared session content posted by the second user on the shared page; if not, a conversion middleware module, also used to convert the format of the second shared session content to obtain the third session content supported by the fourth AI model; a display module, also used to display the third session content on the fourth session interface of the fourth AI model, so that the first user can continue the conversation with the fourth AI model based on the third session content.
在一可选实施例中,该装置还包括:处理模块和更新模块;生成模块,用于响应于对共享页面上各共享会话内容的访问操作,生成各共享会话内容的访问热度信息,处理模块用于将访问热度信息高于设定访问热度阈值的共享会话内容作为热门共享会话内容;更新模块,用于基于热门共享会话内容,对该应用中聚合有多个AI模型进行优化更新,访问操作至少包括:查询、评论、点赞或点踩。In an optional embodiment, the device also includes: a processing module and an update module; a generation module, which is used to generate access heat information of each shared session content in response to the access operation of each shared session content on the shared page, and the processing module is used to take the shared session content whose access heat information is higher than the set access heat threshold as the hot shared session content; the update module is used to optimize and update the multiple AI models aggregated in the application based on the hot shared session content, and the access operation includes at least: query, comment, like or dislike.
在一可选实施例中,生成模块具体用于:针对任一共享会话内容,在该共享会话内容包括多轮次会话的情况下,响应于对每个轮次会话的访问操作,生成各轮次会话的访问热度信息;根据各轮次会话的访问热度信息,生成各共享会话内容的访问热度信息。In an optional embodiment, the generation module is specifically used to: for any shared session content, when the shared session content includes multiple rounds of sessions, in response to an access operation to each round of sessions, generate access popularity information of each round of sessions; based on the access popularity information of each round of sessions, generate access popularity information of each shared session content.
在一可选实施例中,该装置还包括:获取模块;提供模块还用于:在第一用户与第一或第二AI模型进行会话过程中,将第一或第二会话界面中至少部分会话内容提供给辅助AI模型,以供辅助AI模型生成话术建议信息;展示模块还用于:展示辅助AI模型生成的话术建议信息,以引导第一用户根据话术建议信息进行后续会话内容的输入;以及响应于第一用户在第一或第二会话界面上的输入操作,通过获取模块获取第一用户输入的提问信息,通过展示模块在第一或第二会话界面中展示提问信息,通过提供模块将提问信息提供给第一或第二AI模型。In an optional embodiment, the device also includes: an acquisition module; the providing module is also used to: during a conversation between the first user and the first or second AI model, provide at least part of the conversation content in the first or second conversation interface to the auxiliary AI model, so that the auxiliary AI model can generate speech suggestion information; the display module is also used to: display the speech suggestion information generated by the auxiliary AI model to guide the first user to input subsequent conversation content according to the speech suggestion information; and in response to the input operation of the first user on the first or second conversation interface, obtain the question information input by the first user through the acquisition module, display the question information in the first or second conversation interface through the display module, and provide the question information to the first or second AI model through the providing module.
在一可选实施例中,该装置还包括:学习模块;在第一用户使用第一或第二AI模型进行会话之前,学习模块,用于根据第一用户的历史会话内容,学习第一用户的语言特征;更新模块,用于根据第一用户的语言特征,对第一或第二AI模型的语言特征进行更新,以使第一或第二AI模型能够模拟第一用户的语言特征与第一用户进行会话。In an optional embodiment, the device also includes: a learning module; before the first user uses the first or second AI model to conduct a conversation, the learning module is used to learn the language characteristics of the first user based on the historical conversation content of the first user; an updating module is used to update the language characteristics of the first or second AI model based on the language characteristics of the first user, so that the first or second AI model can simulate the language characteristics of the first user to conduct a conversation with the first user.
关于本申请实施例提供的图2所示装置中各步骤的详细实施方式以及有益效果已经在前述实施例中进行了详细描述,此处将不做详细阐述说明。The detailed implementation and beneficial effects of each step in the device shown in Figure 2 provided in the embodiment of the present application have been described in detail in the aforementioned embodiments and will not be elaborated here.
图3为本申请示例性实施例提供的一种用于人工智能的会话处理设备的结构示意图,该设备上运行的人工智能聚合应用,应用中聚合有多个AI模型,如图3所示,该设备包括:存储器34和处理器35。Figure 3 is a structural diagram of a conversation processing device for artificial intelligence provided by an exemplary embodiment of the present application. The artificial intelligence aggregation application running on the device aggregates multiple AI models in the application. As shown in Figure 3, the device includes: a memory 34 and a processor 35.
存储器34,用于存储计算机程序,并可被配置为存储其它各种数据以支持在用于人工智能的会话处理设备上的操作。这些数据的示例包括用于在用于人工智能的会话处理设备上操作的任何应用程序或方法的指令等。The memory 34 is used to store computer programs and can be configured to store various other data to support operations on the conversation processing device for artificial intelligence. Examples of such data include instructions for any application or method operating on the conversation processing device for artificial intelligence.
处理器35,与存储器34耦合,用于执行存储器34中的计算机程序,以用于:在第一用户需要与第一AI模型进行会话的情况下,运行第一AI模型以展示第一AI模型的第一会话界面,以及响应于第一用户与第一AI模型之间的对话操作,在第一会话界面上展示第一用户与第一AI模型之间的第一会话内容;在第一用户与第一AI模型进行会话的过程中,响应于从第一AI模型切换至第二AI模型的触发操作,利用转换中间件对第一会话内容进行格式转换,以得到第二AI模型所支持的第二会话内容,并将第二会话内容提供给第二AI模型;运行第二AI模型,以将第一会话界面切换为第二AI模型对应的第二会话界面,并在第二会话界面上展示第二会话内容,以供第一用户基于第二会话内容与第二AI模型继续进行会话。The processor 35 is coupled to the memory 34 and is used to execute the computer program in the memory 34, so as to: when the first user needs to have a conversation with the first AI model, run the first AI model to display the first conversation interface of the first AI model, and in response to the dialogue operation between the first user and the first AI model, display the first conversation content between the first user and the first AI model on the first conversation interface; during the conversation between the first user and the first AI model, in response to the trigger operation of switching from the first AI model to the second AI model, use the conversion middleware to convert the format of the first conversation content to obtain the second conversation content supported by the second AI model, and provide the second conversation content to the second AI model; run the second AI model to switch the first conversation interface to the second conversation interface corresponding to the second AI model, and display the second conversation content on the second conversation interface, so that the first user can continue to have a conversation with the second AI model based on the second conversation content.
在一可选实施例中,处理器35在响应于从第一AI模型切换至第二AI模型的触发操作,利用转换中间件对第一会话内容进行格式转换,以得到第二AI模型所支持的第二会话内容时,具体用于:响应于从第一AI模型切换至第二AI模型的触发操作,在第一会话界面上以弹窗方式展示AI模型列表,AI模型列表中包括第二AI模型在内的至少一个AI模型;响应于对第二AI模型的选择操作,利用转换中间件对第一会话内容进行格式转换,以得到第二AI模型所支持的第二会话内容;其中,触发操作实现为对第一会话界面上的AI模型选择控件的点击操作,或者实现为第一会话界面上用于展示AI模型列表的语音指令识别操作或手势操作。In an optional embodiment, when the processor 35 performs format conversion on the first session content using the conversion middleware in response to a trigger operation of switching from the first AI model to the second AI model to obtain the second session content supported by the second AI model, the processor 35 is specifically used to: in response to the trigger operation of switching from the first AI model to the second AI model, display an AI model list in a pop-up window on the first session interface, wherein the AI model list includes at least one AI model including the second AI model; in response to a selection operation of the second AI model, perform format conversion on the first session content using the conversion middleware to obtain the second session content supported by the second AI model; wherein the trigger operation is implemented as a click operation on the AI model selection control on the first session interface, or as a voice command recognition operation or gesture operation on the first session interface for displaying the AI model list.
在一可选实施例中,在AI模型列表包括至少两个AI模型的情况下,AI模型列表中包括已解锁的AI模型和未解锁的AI模型;利用转换中间件对第一会话内容进行格式转换之前,处理器35还用于:若第二AI模型是未解锁的AI模型,则展示解锁界面,解锁界面上包括解锁任务描述信息;响应于第一用户对解锁任务描述信息执行解锁任务的操作,在解锁任务完成的情况下,对第二AI模型进行解锁操作,以使第一用户获得第二AI模型的使用权限。In an optional embodiment, when the AI model list includes at least two AI models, the AI model list includes unlocked AI models and unlocked AI models; before using the conversion middleware to convert the format of the first session content, the processor 35 is also used to: if the second AI model is an unlocked AI model, display an unlocking interface, which includes unlocking task description information; in response to the first user performing an unlocking task on the unlocking task description information, when the unlocking task is completed, unlock the second AI model so that the first user obtains the right to use the second AI model.
在一可选实施例中,处理器35在利用转换中间件对第一会话内容进行格式转换,以得到第二AI模型所支持的第二会话内容时,具体用于:采用应用支持的通用格式,对第一会话内容进行保存,得到通用格式的第一会话内容;采用第二AI模型所支持的入参格式,将通用格式的第一会话内容转换成与入参格式适配的第二会话内容,第二AI模型所支持的入参格式至少包括:上下文长度信息和输入类型信息。In an optional embodiment, when the processor 35 uses the conversion middleware to convert the format of the first session content to obtain the second session content supported by the second AI model, it is specifically used to: save the first session content in a general format supported by the application to obtain the first session content in the general format; use the input parameter format supported by the second AI model to convert the first session content in the general format into the second session content compatible with the input parameter format, and the input parameter format supported by the second AI model includes at least: context length information and input type information.
在一可选实施例中,处理器35还用于:响应于第一用户在第二会话界面上的会话发布操作,根据第二会话内容以及第二会话界面上产生的新会话内容生成第一用户的第一共享会话内容;将第一共享会话内容发布给聚合应用的其它用户。In an optional embodiment, the processor 35 is further used to: in response to a session publishing operation of the first user on the second session interface, generate a first shared session content of the first user according to the second session content and new session content generated on the second session interface; and publish the first shared session content to other users of the aggregate application.
可选地,处理器35在将第一共享会话内容发布给聚合应用的其它用户时,具体用于:将第一共享会话内容发布给聚合应用的其它用户,以供其它用户在第三AI模型的第三会话界面上,基于第一共享会话内容继续与第三AI模型进行会话,第三AI模型是其它用户采用人工智能聚合应用进行会话所使用的AI模型。Optionally, when the processor 35 publishes the first shared session content to other users of the aggregation application, it is specifically used to: publish the first shared session content to other users of the aggregation application, so that other users can continue to have a conversation with the third AI model based on the first shared session content on the third conversation interface of the third AI model, and the third AI model is an AI model used by other users to conduct conversations using the artificial intelligence aggregation application.
在一可选实施例中,处理器35在将第一共享会话内容发布给聚合应用的其它用户时,具体用于:将第一共享会话内容发布给聚合应用提供的共享页面上,共享页面上的共享会话内容对聚合应用的特定用户可见。In an optional embodiment, when publishing the first shared session content to other users of the aggregate application, the processor 35 is specifically configured to: publish the first shared session content to a shared page provided by the aggregate application, and the shared session content on the shared page is visible to specific users of the aggregate application.
在一可选实施例中,处理器35还用于:响应于第一用户对共享页面上的第二用户发布的第二共享会话内容的选择操作,判断第一用户当前使用的第四AI模型和第二共享会话内容对应的AI模型是否相同;若否,则利用转换中间件对第二共享会话内容进行格式转换,以得到第四AI模型所支持的第三会话内容;在第四AI模型的第四会话界面上展示第三会话内容,以供第一用户基于第三会话内容与第四AI模型继续进行会话。In an optional embodiment, the processor 35 is also used to: in response to the first user's selection operation on the second shared session content posted by the second user on the shared page, determine whether the fourth AI model currently used by the first user and the AI model corresponding to the second shared session content are the same; if not, use the conversion middleware to convert the format of the second shared session content to obtain the third session content supported by the fourth AI model; display the third session content on the fourth session interface of the fourth AI model, so that the first user can continue the conversation with the fourth AI model based on the third session content.
在一可选实施例中,处理器35还用于:响应于对共享页面上各共享会话内容的访问操作,生成各共享会话内容的访问热度信息,并将访问热度信息高于设定访问热度阈值的共享会话内容作为热门共享会话内容;基于热门共享会话内容,对该应用中聚合有多个AI模型进行优化更新,访问操作至少包括:查询、评论、点赞或点踩。In an optional embodiment, the processor 35 is also used to: generate access popularity information of each shared session content in response to access operations on each shared session content on the shared page, and use the shared session content whose access popularity information is higher than the set access popularity threshold as the popular shared session content; based on the popular shared session content, optimize and update multiple AI models aggregated in the application, and the access operations include at least: query, comment, like or dislike.
在一可选实施例中,处理器35在响应于对共享页面上各共享会话内容的访问操作,生成各共享会话内容的访问热度信息时,具体用于:针对任一共享会话内容,在该共享会话内容包括多轮次会话的情况下,响应于对每个轮次会话的访问操作,生成各轮次会话的访问热度信息;根据各轮次会话的访问热度信息,生成各共享会话内容的访问热度信息。In an optional embodiment, when the processor 35 generates access popularity information of each shared session content in response to an access operation to each shared session content on a shared page, it is specifically used to: for any shared session content, when the shared session content includes multiple rounds of sessions, in response to an access operation to each round of sessions, generate access popularity information of each round of sessions; based on the access popularity information of each round of sessions, generate access popularity information of each shared session content.
在一可选实施例中,处理器35还用于:在第一用户与第一或第二AI模型进行会话过程中,将第一或第二会话界面中至少部分会话内容提供给辅助AI模型,以供辅助AI模型生成话术建议信息;展示辅助AI模型生成的话术建议信息,以引导第一用户根据话术建议信息进行后续会话内容的输入;以及响应于第一用户在第一或第二会话界面上的输入操作,获取第一用户输入的提问信息,在第一或第二会话界面中展示提问信息,并将提问信息提供给第一或第二AI模型。In an optional embodiment, the processor 35 is also used to: during a conversation between the first user and the first or second AI model, provide at least part of the conversation content in the first or second conversation interface to the auxiliary AI model, so that the auxiliary AI model can generate speech suggestion information; display the speech suggestion information generated by the auxiliary AI model to guide the first user to input subsequent conversation content according to the speech suggestion information; and in response to the first user's input operation on the first or second conversation interface, obtain the question information input by the first user, display the question information in the first or second conversation interface, and provide the question information to the first or second AI model.
在一可选实施例中,在第一用户使用第一或第二AI模型进行会话之前,处理器35还用于:根据第一用户的历史会话内容,学习第一用户的语言特征;根据第一用户的语言特征,对第一或第二AI模型的语言特征进行更新,以使第一或第二AI模型能够模拟第一用户的语言特征与第一用户进行会话。In an optional embodiment, before the first user uses the first or second AI model to conduct a conversation, the processor 35 is further used to: learn the language characteristics of the first user based on the historical conversation content of the first user; and update the language characteristics of the first or second AI model based on the language characteristics of the first user, so that the first or second AI model can simulate the language characteristics of the first user to conduct a conversation with the first user.
关于本申请实施例提供的图3所示设备中各步骤的详细实施方式以及有益效果已经在前述实施例中进行了详细描述,此处将不做详细阐述说明。The detailed implementation and beneficial effects of each step in the device shown in Figure 3 provided in the embodiment of the present application have been described in detail in the aforementioned embodiments and will not be elaborated here.
进一步,如图3所示,该用于人工智能的会话处理设备还包括:通信组件36、显示器33、电源组件38、音频组件39等其它组件。图3中仅示意性给出部分组件,并不意味着用于人工智能的会话处理设备只包括图3所示组件。另外,图3中虚线框内的组件为可选组件,而非必选组件,具体可视用于人工智能的会话处理设备的产品形态而定。本实施例的用于人工智能的会话处理设备可以实现为台式电脑、笔记本电脑、智能手机或IOT设备等终端设备,也可以是常规服务器、云服务器或服务器阵列等服务端设备。若本实施例的用于人工智能的会话处理设备实现为台式电脑、笔记本电脑、智能手机等终端设备,可以包含图3中虚线框内的组件;若本实施例的用于人工智能的会话处理设备实现为常规服务器、云服务器或服务器阵列等服务端设备,则可以不包含图3中虚线框内的组件。其中,用于人工智能的会话处理设备实现为服务端设备时,即人工智能聚合应用运行在服务器上,可以为云展示。Further, as shown in FIG3, the conversation processing device for artificial intelligence also includes: communication component 36, display 33, power supply component 38, audio component 39 and other components. FIG3 only schematically shows some components, which does not mean that the conversation processing device for artificial intelligence only includes the components shown in FIG3. In addition, the components in the dashed box in FIG3 are optional components, not mandatory components, and may depend on the product form of the conversation processing device for artificial intelligence. The conversation processing device for artificial intelligence of this embodiment can be implemented as a terminal device such as a desktop computer, a laptop computer, a smart phone or an IOT device, or a server-side device such as a conventional server, a cloud server or a server array. If the conversation processing device for artificial intelligence of this embodiment is implemented as a terminal device such as a desktop computer, a laptop computer, a smart phone, etc., it may include the components in the dashed box in FIG3; if the conversation processing device for artificial intelligence of this embodiment is implemented as a server-side device such as a conventional server, a cloud server or a server array, it may not include the components in the dashed box in FIG3. Among them, when the conversation processing device for artificial intelligence is implemented as a server-side device, that is, the artificial intelligence aggregation application runs on the server, it can be displayed as a cloud.
在一可选的实施方式中,云展示是指以云计算为基础的信息展示方式。在云展示的运行模式下,人工智能聚合应用的运行主体和会话界面的呈现主体是分离的,人工智能聚合应用所对应的数据储存与运行可以在云展示服务器上完成的,云展示客户端的作用为数据的接收、发送以及画面的呈现,举例而言,云展示客户端可以是靠近用户侧的具有数据传输功能的显示设备,如,移动终端、电视机、计算机、掌上电脑等;但是进行信息数据处理的电子终端为云端的云展示服务器。在进行信息浏览时,用户操作云展示客户端向云展示服务器发送操作指令,云展示服务器根据操作指令展示相关的画面,将数据进行编码压缩,通过网络返回云展示客户端,最后,通过云展示客户端进行解码并输出对应的画面。In an optional implementation, cloud display refers to an information display method based on cloud computing. In the operation mode of cloud display, the operation subject of the artificial intelligence aggregation application and the presentation subject of the conversation interface are separated. The data storage and operation corresponding to the artificial intelligence aggregation application can be completed on the cloud display server. The role of the cloud display client is to receive and send data and present the picture. For example, the cloud display client can be a display device with data transmission function close to the user side, such as a mobile terminal, a television, a computer, a handheld computer, etc.; but the electronic terminal for information data processing is a cloud display server in the cloud. When browsing information, the user operates the cloud display client to send an operation instruction to the cloud display server. The cloud display server displays the relevant pictures according to the operation instruction, encodes and compresses the data, and returns it to the cloud display client through the network. Finally, the cloud display client decodes and outputs the corresponding picture.
在另一可选的实施方式中,用于人工智能的会话处理设备可以为本地电子终端。本地电子终端存储有人工智能聚合应用的程序代码并用于呈现应用界面。本地电子终端用于通过图形用户界面与用户进行交互,即,常规的通过电子设备下载安装应用程序并运行。该本地电子终端将图形用户界面提供给用户的方式可以包括多种,例如,可以渲染显示在终端的显示屏上,或者,通过全息投影提供给用户。举例而言,本地电子终端可以包括显示屏和处理器,该显示屏用于呈现图形用户界面,该图形用户界面包括应用画面,该处理器用于运行该应用程序、生成图形用户界面以及控制图形用户界面在显示屏上的显示。In another optional embodiment, the conversation processing device for artificial intelligence can be a local electronic terminal. The local electronic terminal stores the program code of the artificial intelligence aggregation application and is used to present the application interface. The local electronic terminal is used to interact with the user through a graphical user interface, that is, the application is downloaded and installed and run by the conventional electronic device. The local electronic terminal may provide the graphical user interface to the user in a variety of ways, for example, it can be rendered and displayed on the display screen of the terminal, or provided to the user through a holographic projection. For example, the local electronic terminal may include a display screen and a processor, the display screen is used to present a graphical user interface, the graphical user interface includes an application screen, and the processor is used to run the application, generate a graphical user interface, and control the display of the graphical user interface on the display screen.
关于本申请实施例提供的用于人工智能的会话处理设备的详细实施方式以及有益效果已经在前述实施例中进行了详细描述,此处将不做详细阐述说明。The detailed implementation and beneficial effects of the conversation processing device for artificial intelligence provided in the embodiments of the present application have been described in detail in the aforementioned embodiments and will not be elaborated here.
相应地,本申请实施例还提供一种存储有计算机程序的计算机可读存储介质,计算机程序被执行时能够实现上述图1a所示方法实施例中可由会话状态同步设备执行的各步骤。Accordingly, an embodiment of the present application further provides a computer-readable storage medium storing a computer program, which, when executed, can implement the steps that can be performed by the session state synchronization device in the method embodiment shown in FIG. 1a above.
上述存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(Static Random-Access Memory,SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),可编程只读存储器(Programmable Read-Only Memory,PROM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,磁盘或光盘。The above-mentioned memory can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable programmable read only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic storage, flash memory, magnetic disk or optical disk.
上述通信组件被配置为便于通信组件所在设备和其他设备之间有线或无线方式的通信。通信组件所在设备可以接入基于通信标准的无线网络,如WiFi,2G、3G、4G/LTE、5G等移动通信网络,或它们的组合。在一个示例性实施例中,通信组件经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件还包括近场通信(Near Field Communication,NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(Radio Frequency Identification,RFID)技术,红外数据协会(InfraredData Association,IrDA)技术,超宽带(Ultra Wide Band,UWB)技术,蓝牙(BlueTooth,BT)技术和其他技术来实现。The above-mentioned communication component is configured to facilitate wired or wireless communication between the device where the communication component is located and other devices. The device where the communication component is located can access a wireless network based on a communication standard, such as WiFi, 2G, 3G, 4G/LTE, 5G and other mobile communication networks, or a combination thereof. In an exemplary embodiment, the communication component receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel. In an exemplary embodiment, the communication component also includes a near field communication (NFC) module to facilitate short-range communication. For example, the NFC module can be based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
上述显示器包括屏幕,其屏幕可以包括液晶显示器(Liquid Crystal Display,LCD)和触摸面板(TouchPanel,TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。The above-mentioned display includes a screen, and the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user. The touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
上述电源组件,为电源组件所在设备的各种组件提供电力。电源组件可以包括电源管理系统,一个或多个电源,及其他与为电源组件所在设备生成、管理和分配电力相关联的组件。The power supply assembly provides power to various components of the device where the power supply assembly is located. The power supply assembly may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to the device where the power supply assembly is located.
上述音频组件,可被配置为输出和/或输入音频信号。例如,音频组件包括一个麦克风(Microphone,MIC),当音频组件所在设备处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器或经由通信组件发送。在一些实施例中,音频组件还包括一个扬声器,用于输出音频信号。The above-mentioned audio component can be configured to output and/or input audio signals. For example, the audio component includes a microphone (Microphone, MIC), and when the device where the audio component is located is in an operating mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal. The received audio signal can be further stored in a memory or sent via a communication component. In some embodiments, the audio component also includes a speaker for outputting an audio signal.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可读存储介质(包括但不限于磁盘存储器、只读光盘(Compact Disc Read-Only Memory,CD-ROM)、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented on one or more computer-readable storage media (including but not limited to disk storage, compact disc read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage, etc.) containing computer-usable program code.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to the flowchart and/or block diagram of the method, device (system) and computer program product according to the embodiment of the present application. It should be understood that each process and/or box in the flowchart and/or block diagram, and the combination of the process and/or box in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable data processing device to produce a machine, so that the instructions executed by the processor of the computer or other programmable data processing device produce a device for realizing the function specified in one process or multiple processes in the flowchart and/or one box or multiple boxes in the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
在一个典型的配置中,计算设备包括一个或多个处理器(Central ProcessingUnit,CPU)、输入/输出接口、网络接口和内存。In a typical configuration, a computing device includes one or more processors (Central Processing Unit, CPU), input/output interface, network interface and memory.
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RandomAccess Memory,RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。Memory may include non-permanent storage in a computer-readable medium, random access memory (RAM) and/or non-volatile memory in the form of read-only memory (ROM) or flash RAM. Memory is an example of a computer-readable medium.
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(Phase-change Random AccessMemory,PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(Dynamic RandomAccess Memory,DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(Digital Video Disc,DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer readable media include permanent and non-permanent, removable and non-removable media that can be used to store information by any method or technology. Information can be computer-readable instructions, data structures, program modules or other data. Examples of computer storage media include, but are not limited to, phase-change random access memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, read-only compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical storage, magnetic cassettes, magnetic tape disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by a computing device. As defined herein, computer readable media does not include temporary computer readable media (transitory media), such as modulated data signals and carrier waves.
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。It should also be noted that the terms "include", "comprises" or any other variations thereof are intended to cover non-exclusive inclusion, so that a process, method, commodity or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, commodity or device. In the absence of more restrictions, the elements defined by the sentence "comprises a ..." do not exclude the existence of other identical elements in the process, method, commodity or device including the elements.
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。The above are only embodiments of the present application and are not intended to limit the present application. For those skilled in the art, the present application may have various changes and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present application should be included within the scope of the claims of the present application.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310849200.3A CN117251537B (en) | 2023-07-11 | 2023-07-11 | Session processing method, device, equipment and storage medium for artificial intelligence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310849200.3A CN117251537B (en) | 2023-07-11 | 2023-07-11 | Session processing method, device, equipment and storage medium for artificial intelligence |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117251537A CN117251537A (en) | 2023-12-19 |
CN117251537B true CN117251537B (en) | 2024-09-17 |
Family
ID=89125431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310849200.3A Active CN117251537B (en) | 2023-07-11 | 2023-07-11 | Session processing method, device, equipment and storage medium for artificial intelligence |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117251537B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN120050331A (en) * | 2025-04-21 | 2025-05-27 | 深圳微品致远信息科技有限公司 | Multi-model service intelligent scheduling optimization method and system based on edge computing |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112231463A (en) * | 2020-11-10 | 2021-01-15 | 腾讯科技(深圳)有限公司 | Session display method and device, computer equipment and storage medium |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102174346B1 (en) * | 2015-12-21 | 2020-11-04 | 구글 엘엘씨 | Automatic suggestions and other content for messaging applications |
US11138388B2 (en) * | 2016-12-22 | 2021-10-05 | Verizon Media Inc. | Method and system for facilitating a user-machine conversation |
WO2018227462A1 (en) * | 2017-06-15 | 2018-12-20 | Microsoft Technology Licensing, Llc | Method and apparatus for intelligent automated chatting |
US10749822B2 (en) * | 2018-09-20 | 2020-08-18 | The Toronto-Dominion Bank | Chat bot conversation manager |
CN110035187A (en) * | 2019-04-16 | 2019-07-19 | 浙江百应科技有限公司 | A method of realizing AI and operator attendance seamless switching in the phone |
CN111813308B (en) * | 2020-06-24 | 2022-02-08 | 维沃移动通信有限公司 | Interface processing method and device, electronic equipment and storage medium |
CN112488168A (en) * | 2020-11-20 | 2021-03-12 | 广东电力信息科技有限公司 | Dialogue model construction method |
CN114547288A (en) * | 2022-01-20 | 2022-05-27 | 北京声智科技有限公司 | Customer service information display method, device, equipment and medium |
-
2023
- 2023-07-11 CN CN202310849200.3A patent/CN117251537B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112231463A (en) * | 2020-11-10 | 2021-01-15 | 腾讯科技(深圳)有限公司 | Session display method and device, computer equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN117251537A (en) | 2023-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220172718A1 (en) | Interaction with a portion of a content item through a virtual assistant | |
JP7391913B2 (en) | Parsing electronic conversations for presentation in alternative interfaces | |
US20190087707A1 (en) | Artificial conversational entity methods and systems | |
US20190116094A1 (en) | Method and system for transferable customized contextual user interfaces | |
US20190354594A1 (en) | Building and deploying persona-based language generation models | |
US20140245140A1 (en) | Virtual Assistant Transfer between Smart Devices | |
US20090222742A1 (en) | Context sensitive collaboration environment | |
US20240267344A1 (en) | Chatbot for interactive platforms | |
US20240291779A1 (en) | Customizable chatbot for interactive platforms | |
US20210250438A1 (en) | Graphical User Interface for a Voice Response System | |
CN117251537B (en) | Session processing method, device, equipment and storage medium for artificial intelligence | |
CN107948437A (en) | Put out screen and show method and apparatus | |
CN112000766B (en) | A data processing method, device and medium | |
US20200219498A1 (en) | Methods and systems for managing voice response systems to optimize responses | |
US7574415B2 (en) | Personal support infrastructure for development of user applications and interfaces | |
US20210264910A1 (en) | User-driven content generation for virtual assistant | |
EP4150440A1 (en) | Delivery of compatible supplementary content via a digital assistant | |
KR20210039618A (en) | Apparatus for processing a message that analyzing and providing feedback expression items | |
WO2023246275A1 (en) | Method and apparatus for playing speech message, and terminal and storage medium | |
CN112000877B (en) | A data processing method, device and medium | |
KR20210039608A (en) | Recording Medium | |
EP4117232A1 (en) | Electronic device and control method therefor | |
KR20210039626A (en) | Program of processing a message that analyzing and providing feedback expression items | |
US12342030B2 (en) | Virtual remote control among digital assistant devices | |
US20240355131A1 (en) | Dynamically updating multimodal memory embeddings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250606 Address after: 101500 Beijing City Miyun District Shiliubu Town Shuangjing Village Shuangxing Street 83.NO Patentee after: Zhang Ge Country or region after: China Address before: 100085 Anningzhuang West Road, Haidian District, Beijing 2 Building, 9th Yard -1 Floor, Room 01 1093 Patentee before: Chongshan (Beijing) Technology Service Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |