[go: up one dir, main page]

CN117247912A - 一种粘着剑菌锑氧化酶基因arsO及其应用 - Google Patents

一种粘着剑菌锑氧化酶基因arsO及其应用 Download PDF

Info

Publication number
CN117247912A
CN117247912A CN202310744501.XA CN202310744501A CN117247912A CN 117247912 A CN117247912 A CN 117247912A CN 202310744501 A CN202310744501 A CN 202310744501A CN 117247912 A CN117247912 A CN 117247912A
Authority
CN
China
Prior art keywords
antimony
iii
arso
oxidase
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310744501.XA
Other languages
English (en)
Inventor
张隽
唐诗侗
沈洁
赵方杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN202310744501.XA priority Critical patent/CN117247912A/zh
Publication of CN117247912A publication Critical patent/CN117247912A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种粘着剑菌锑氧化酶基因arsO及其应用,本发明提供了一个分离和克隆粘着剑菌ST2的编码Sb(III)氧化酶的基因arsO,该基因具有如SEQ ID.NO:1所示的核苷酸序列;研究表明,该基因编码的酶能够催化毒性较强的三价锑[Sb(III)]氧化至毒性较弱的五价锑[Sb(V)],具有应用于环境锑污染净化的潜能。纯化的ArsO可以体外氧化Sb(III)为Sb(V),有利于我们开发新的重金属污染修复方法,为我们探究新型Sb(III)氧化酶和完善相关Sb(III)氧化机制提供了新的思路。为环境中锑污染的原位微生物修复提供理论基础和技术支持。

Description

一种粘着剑菌锑氧化酶基因arsO及其应用
技术领域
本发明属于细菌基因工程领域,涉及一种粘着剑菌ST2锑氧化酶基因及其应用。通过锑生长氧化实验以及异源表达等方法,克隆了一个来源于粘着剑菌ST2的新型锑氧化酶基因arsO。该基因编码的酶催化毒性较强的三价锑[Sb(III)]氧化至毒性较弱的五价锑[Sb(V)],具有应用于环境锑污染净化的潜能。
背景技术
锑是一种剧毒的重金属元素,位于元素周期表中第5周期VA族,广泛分布于岩石、大气、土壤沉积物及水体中。其无机形态主要是单质锑[Sb(0)]、三价锑[Sb(III)]和五价锑[Sb(V)],有机形态主要为三甲基锑化合物。Sb(III)的毒性强于Sb(V),无机锑的毒性强于有机锑。人类长期接触锑可造成皮肤、上呼吸道、心、肝、肺等组织明显损害,最终导致机体的癌变。锑的用途广泛,包括生产陶瓷、玻璃、合金、电池、油漆、烟火材料及阻燃剂等,还可用来治疗各种寄生虫病。工业“三废”、机动车尾气的排放、污水灌溉和农药、除草剂、化肥等的使用以及矿业的发展,使大量的锑及其化合物进入到大气、水和土壤,并最终进入动植物及人体中。据国际癌症研究署(IARC)报道,充分的证据表明Sb(III)对环境中的动物有致癌作用。由于锑的毒性和生物有效性,锑及其化合物被美国环保局及欧盟列为优先污染物。虽然锑污染严重威胁人类生命健康,但一些微生物却对环境中高浓度锑表现出极强的适应性,并在锑的地球化学循环中扮演着重要的角色。因此了解微生物的锑抗性机制,研究锑抗性相关的功能基因有助于我们从基因水平了解微生物对锑的解毒机制。为环境中锑污染的修复提供理论基础和技术支持,并更好的认识锑元素的地球化学循环。
细菌锑氧化可以将环境中的Sb(III)转化为毒性较低的Sb(V),降低环境毒性,对环境锑污染修复具有重要意义。迄今为止,科研工作者相继从不同种属中分离出50多株Sb(III)氧化菌。目前发现的锑氧化菌中,存在两种类型:第一类锑氧化菌既可以氧化Sb(III)又可以氧化As(III);第二类锑氧化细菌中不能氧化As(III),但也可以氧化Sb(III)。虽然砷和锑位于同一主族,但以上结果说明细菌As(III)氧化和Sb(III)氧化是两个相对独立的过程,细菌内应该存在与砷氧化酶基因完全不同的锑氧化酶基因。
因此,申请人通过比较转录组组学等方法分析找出粘着剑菌ST2中的锑氧化酶基因arsO,并采用菌株生长氧化实验以及异源表达等方法鉴定该酶锑氧化的功能。arsO基因的发现有利于我们研究锑氧化及抗性的分子机制,填补目前国内外对于锑氧化酶基因研究领域的空白。其异源表达可以为构建基因工程菌修复环境中的锑污染提供理论依据和技术支撑。
发明内容
本发明的目的在于提了一种Sb(III)氧化酶基因arsO及其编码的蛋白和应用。
本发明的目的可以通过以下技术方案实现:
本发明提供了一个分离和克隆粘着剑菌ST2的编码Sb(III)氧化酶的基因arsO,并对其进行功能验证及应用。该基因具有如SEQ ID.NO:1所示的核苷酸序列;
本发明还提供了由上述的锑氧化酶基因arsO编码的锑氧化酶蛋白,该蛋白具有如SEQ ID NO.2所示的氨基酸序列。
本发明还提供了用于扩增上述锑氧化酶基因arsO的引物,它包括正向引物:5’-GAAGGAGATATACATATGACGGACCACATCTATGACG-3’和反向引物:5’-TGGTGGTGGTGCTCGAGATCCGAACGCGCGTTTTCGG-3’。
本发明还提供了含有上述锑氧化酶基因arsO的生物材料。该生物材料可以为重组载体、表达盒、转基因细胞系或转基因重组菌。
申请人前期工作是以分离自广东省汕头市砷污染水稻田中的Ensifer adhaerensST2(参见:Zhang,J.,Chai,C.-W.,ThomasArrigo,L.K.,Zhao,S.-C.,Kretzschmar,R.,Zhao,F.-J.,2020.Nitrite accumulation is required for microbial anaerobic ironoxidation,but not for arsenite oxidation,in two heterotrophicdenitrifiers.Environmental Science&Technology 54,4036-4045)为研究对象,在加20μM Sb(III)和不加Sb(III)条件下进行比较转录组学研究。经转录组测序后发现,arsO基因表达量上调。通过比对发现该基因编码的蛋白属于黄素单加氧酶家族,该家族蛋白主要参与参与调控生物体对内源性及外源性物质代谢。因此推测arsO可能为粘着剑菌ST2中的Sb(III)氧化酶,并通过Sb(III)生长氧化实验以及异源表达等方法鉴定其锑氧化的功能。
Ensifer adhaerens ST2的生物材料保藏信息:分类命名为Ensifer adhaerensST2,保藏于中国典型培养物保藏中心(CCTCC),保藏时间2019年12月31号,保藏编号CCTCCNO:M20191138。
为深入证实ArsO的Sb(III)氧化能力,本发明通过原核表达系统表达并纯化ArsO蛋白,并在体外检测其对Sb(III)的氧化能力。利用带NdeI和XhoI酶切位点的引物arsO-F(5′-GAAGGAGATATACATATGACGGACCACATCTATGACG-3′)/arsO-R(5-′TGGTGGTGGTGCTCGAGATCCGAACGCGCGTTTTCGG-3′)扩增完整的arsO基因片段,并将其与pET-29a(+)表达载体连接构建成重组载体后,转入表达菌株即大肠杆菌BL21中。
大肠杆菌pET29a-arsO的酶学特征
本发明构建的重组大肠杆菌Escherichia.coli BL21/pET29a-arsO最适生长温度37℃;具有卡那霉素(Kan)抗性。将重组的表达菌株E.coli BL21(pET29a-arsO)在37℃培养至OD600nm约为0.6-0.8时加入0.3mM IPTG,16℃过夜诱导培养。离心收集菌体后,用磷酸盐缓冲液重悬菌体,超声破碎10分钟,离心,收集上清,用镍离子亲和层析柱对ArsO进行纯化,SDS-PAGE蛋白电泳检测纯化效果,条带大小与理论预测的大小(40kDa)相一致(图7)。
加入10μM Sb(III),200μM辅酶NADPH或者NADH,1μM ArsO蛋白,以20mM Tris-HCL(pH=7.0)作为缓冲体系,37℃孵育0、10、20、30、40、50、60min后取样通过高效液相色谱-氢化物发生-原子荧光光谱仪检测ArsO体外氧化Sb(III)的能力,以不加辅酶NADPH或者NADH的处理为阴性对照。结果表明,相比于不加ArsO蛋白的处理,加入1μM ArsO蛋白只可以在辅酶NADPH或者NADH存在下氧化Sb(III)为Sb(V),并且NADPH可以显著提高ArsO催化Sb(III)的氧化。以上结果表明ArsO只有在辅酶NADPH/NADH的协同下才具有氧化Sb(III)的能力(见图9)。
本发明还提供了上述的锑氧化酶基因arsO,上述的锑氧化酶蛋白,或上述的生物材料在以下(1)~(3)中的至少一种应用:
(1)提高菌株对三价锑[Sb(III)]的抗性;
(2)催化三价锑[Sb(III)]氧化至五价锑[Sb(V)];
(3)修复环境中的锑污染中的应用。
作为一种优选技术方案,通过向目标菌株中转入上述的锑氧化酶基因arsO提高菌株对三价锑[Sb(III)]的抗性。
作为一种优选技术方案,通过所述锑氧化酶基因arsO的异源表达构建基因工程菌修复环境中的锑污染。
作为一种优选技术方案,上述的锑氧化酶蛋白通过以下(1)和(2)中的至少一种方式催化三价锑[Sb(III)]氧化至五价锑[Sb(V)]:
(1)锑氧化酶蛋白在辅酶NADPH或/和NADH的协同下催化三价锑[Sb(III)]氧化至五价锑[Sb(V)];
(2)在辅酶NADPH或/和NADH的协同下,外源添加FAD增强锑氧化酶催化三价锑[Sb(III)]氧化至五价锑[Sb(V)]的活性。
本发明的优点如下:
1.目前我国重金属污染严重,研究细菌锑氧化功能基因有助于我们从基因水平上了解微生物对锑的解毒机制,也能使我们更好的认识地球上锑元素的物质循环。
2.纯化的ArsO可以体外氧化Sb(III)为Sb(V),有利于我们开发新的重金属污染修复方法,为我们探究新型Sb(III)氧化酶和完善相关Sb(III)氧化机制提供了新的思路。为环境中锑污染的原位微生物修复提供理论基础和技术支持。
附图说明
图1:菌株ST2对不同浓度的Sb(III)和Sb(V)的抗性。
图2:菌株ST2对10μM Sb(III)的抗性和氧化;
其中,(A)存在和不存在10μM Sb(III)的情况下ST2的生长,以及(B)ST2在CDM培养基中转化10μM的Sb(Ⅲ)。
图3:菌株ST2体内的arsO基因广泛存在。
图4:ArsO蛋白与黄素单加氧酶ArsV以及ArsH的系统发育分析。
图5:ArsO同源蛋白序列多重比较。
图6:arsO的异源表达赋予大肠杆菌AW3110 Sb(III)抗性。
图7:纯化后的ArsO蛋白聚丙烯酰胺凝胶电泳图。
图8:ArsO蛋白体内结合辅基的鉴定;其中,(A)蛋白变性上清液的HPLC图谱,(B)蛋白变性上清液的紫外可见吸收光谱。
图9:纯化后的ArsO蛋白对10μM Sb(III)的氧化情况。
图10:外源添加辅基FAD增加Sb(III)氧化酶ArsO的活性。
具体实施方式
下面结合具体实施例,进一步阐述本发明。下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1好氧条件下菌株ST2对Sb(III)和Sb(V)的抗性的研究
CDM培养基组成为(g/L):100mL溶液A(MgSO4·7H2O 20g/L,NH4Cl 10g/L,Na2SO410g/L,K2HPO4·3H2O 0.13g/L,CaCl2·2H2O 0.67g/L,C3H5NaO3 50g/L),2.5mL溶液B(FeSO4·7H2O 1.33g/L),10mL溶液C(NaHCO3 79.8g/L),用双蒸水补足1L。上述所有溶液用双蒸水配制,溶液A进行高温(121℃20min)灭菌,溶液B和溶液C使用0.22μm滤膜过滤灭菌。
将菌株ST2培养至对数生长期后按初始OD600 nm为0.02接种到装有3mL CDM培养基的试管中,并加入不同浓度的Sb(III)和Sb(V)。其中Sb(III)的终浓度分别为0-150μM,Sb(V)的终浓度为0-500μM,每个处理设置三个重复,置于30℃恒温摇床200rpm转速振荡培养5天后取样。使用紫外分光光度计在600nm波长处检测生长状态,并拟合Log-logistic方程计算出菌株ST2在Sb(III)和Sb(V)处理下的半抑制浓度。实验结果表明菌株ST2对Sb(III)、Sb(V)具有较高抗性,半抑制浓度分别为68.32μM和402.51μM(图1)。
实施例2好氧条件下菌株ST2对Sb(III)的氧化特性的研究
选取10μM Sb(III)的实验处理,将ST2培养至对数生长期后按初始OD600 nm为0.02接种装有到25mL CDM培养基的锥形瓶中,设置空白对照组(0μM)和10μM Sb(III)处理,每组三个平行,此外还设置两组实验质量控制组即分别向装有25mL CDM培养基的小锥形瓶中加入终浓度为10μM的Sb(III)和10μM的Sb(V),每组设置三个平行。置于30℃恒温摇床200rpm转速振荡培养,在不同的培养时间(0-120h)取样。部分样品用于测量生长情况,部分样品离心后取上清按照对应处理浓度统一稀释到终浓度为2μM,使用0.22μm滤膜过滤去除杂质,放置4℃冰箱保存,待5天后样品全部取完,使用HPLC-AFS进行检测并测定锑形态。结果表明菌株ST2在CDM培养基中5天内可以将10μM Sb(III)完全氧化为Sb(V)(图2)。
实施例3Sb(III)氧化酶基因arsO的克隆及功能验证
3.1细菌基因组总DNA的提取和分析
3.1.1细菌基因组总DNA的提取
菌株ST2基因组总DNA采用高盐法进行提取,基因组总DNA溶于TE缓冲液(pH8.0)中,置于-20℃保藏。
3.1.2Sb(III)氧化酶基因arsO基因在微生物中广泛分布
基因组测序结果:在基因组预测分析结果中,检索砷抗性基因簇,找到1个注释为FAD依赖型的黄素单加氧酶的基因,在NCBI上比较分析该基因在不同来源的菌株的分布情况(图3)。
3.1.3ArsO蛋白序列同源分析
为了验证菌株ST2中假定的Sb(III)氧化酶基因arsO与同源基因以及相似功能基因的系统发育亲缘关系,将菌株ST2中的arsO基因序列用NCBI数据库的BLAST功能进行比对分析,下载同源以及相似功能基因的序列,用软件MEGA 7.0构建系统进化树(图4)。并使用Clustal_W2进行蛋白序列的多重比较(图5)。
3.2Sb(III)氧化酶基因arsO的扩增及表达菌的构建
3.2.1Sb(III)氧化酶基因arsO的PCR扩增
以正向引物:5’-GAAGGAGATATACATATGACGGACCACATCTATGACG-3’和反向引物5’-TGGTGGTGGTGCTCGAGATCCGAACGCGCGTTTTCGG-3’为引物,用PCR从菌株ST2总DNA中扩增出Sb(III)氧化酶基因序列。
扩增体系:
PCR扩增程序:
a.95℃变性3min;
b.95℃变性1.5min,57℃退火0.5min,72℃延伸1.5min,进行30个循环;
c.72℃延伸10min,冷却到室温。
3.2.2arsO片段和pET29a(+)用NdeI和XhoI双酶切。
酶切体系:
在37℃水浴中,反应3h以上。酶切产物进行的琼脂糖凝胶电泳切胶回收。将两个片段进行酶连,酶连产物转化砷敏感大肠杆菌AW3110(来自于实验室储藏菌株,其最早源于1995年由Carlin等人在Journal of Bacteriology期刊上发表的题为《The ars operon ofEscherichia coli confers arsenical and antimonial resistance.》的文章中)和表达宿主菌BL21(DE3)感受态细胞获得arsO重组表达菌株AW3110和表达宿主菌BL21(DE3)获得AW3110(pET29a-arsO)和BL21(pET29a-arsO)的表达菌株;将pET29a(+)质粒转化砷敏感大肠杆菌AW3110感受态细胞获得菌株AW3110(pET29a(+))做空白对照。
3.3arsO赋予E coli AW3110 Sb(III)的抗性
将培养至对数后期的菌株AW3110(pET29a(+))和AW3110(pET29a-arsO)都按照初始OD600 nm为0.02接种于3mL的20×ST液体培养基(含0.02g/L葡萄糖和50mg/L卡那霉素)中,同时加入不同浓度的Sb(III)处理和0.3mM IPTG,Sb(III)的终浓度梯度设置为:0,20,50,100和200μM;每组实验设置三个重复。培养12小时用紫外分光光度计在600nm处检测菌株的生长情况。实验结果表明,arsO的表达可显著提高砷敏感大肠杆菌AW3110对Sb(III)的抗性(图6)。
3.4Sb(III)氧化酶ArsO的表达、纯化和功能验证
BL21(pET29a-arsO)在LB培养基中培养至OD600 nm为0.6到0.8之间,加入0.3mMIPTG,16℃过夜培养。离心收集菌体,用磷酸盐缓冲液重悬菌体,超声破碎10分钟,离心,收集上清,用镍离子亲和层析柱对ArsO进行纯化,SDS-PAGE蛋白电泳检测纯化效果,条带大小与理论预测的大小(40kDa)相一致(图7)。
3.5ArsO的体外活性研究
3.5.1Sb(III)氧化酶ArsO为结合FAD辅基的黄素单加氧酶
蛋白混合液体系,取100μM纯化好的ArsO蛋白加入50mM的Tris-HCl缓冲液(pH=7.0)中,总体系为1mL。之后将蛋白混合液进行热变性,90℃加热5min后离心取上清进行上样。以FMN、FAD以及核黄素(维生素B2)为标准制备混标。采用来自美国的沃特世超高效液相色谱仪(Waters ACQUITY UPLC H-Class PLUS series;WatersCorp;Ireland)进行分离和鉴定,使用的色谱柱为Acquity UPLC HSS T3,1.8μm,2.1 by 100mmcolumn;USA。在450nm处检测黄素,其中黄素腺嘌呤二核苷酸(FAD)、黄素单核苷酸(FMN)以及核黄素(维生素B2)的保留时间分别为6.32,6.98和7.53min。最后根据已知浓度的FAD标准曲线,计算蛋白中辅基FAD的含量。结果表明,ArsO结合的辅基为FAD,含量为每摩尔纯化后的ArsO蛋白体内有0.62摩尔的FAD(图8)。
3.5.2纯化的ArsO蛋白可以在辅酶NADPH/NADH协同下氧化Sb(III)
酶活反应体系:20mM Tris-HCL(pH=7.0),10μM Sb(III),200μM辅酶NADPH(NADH)和1μM纯化后的ArsO蛋白,37℃反应并在指定时间取培养液过滤,通过HPLC-AFS进行检测并测定锑形态。结果表明,纯化蛋白ArsO在辅酶NADPH/NADH存在条件下,60分钟内可以氧化60%的Sb(III)(图9)。
3.5.3外源添加辅基FAD可以增加黄素单加氧酶ArsO对Sb(III)氧化的活性
反应体系为:25mM Tris-HCl(pH=7.0),200μM NADPH/NADH,不同浓度的FAD,10μMSb(III),1μM纯化好的ArsO蛋白,总反应体系为1mL。反应前,将除蛋白和NADPH/NADH外的其它液体混匀孵育5min后,再依次加入ArsO蛋白,NADPH或者NADH,保持反应温度为37℃。反应以NADPH/NADH加入后开始启动,在0-30min内监测340nm波长处吸光度的下降。通过对NADPH/NADH消耗速率来衡量ArsO的活性,并且通过与标准ArsO蛋白酶活实验(即以200μMNADPH/NADH为辅助因子,不加FAD)比较计算相对活性。结果表明,外源添加FAD可以增强Sb(III)氧化酶ArsO的活性(图10)。

Claims (10)

1.一种锑氧化酶基因arsO,该基因具有如SEQ ID NO.1所示的核苷酸序列。
2.权利要求1所述的锑氧化酶基因arsO编码的锑氧化酶蛋白。
3.根据权利要求2所述的锑氧化酶蛋白,其特征在于,该蛋白具有如SEQ ID NO.2所示的氨基酸序列。
4.用于扩增权利要求1所述锑氧化酶基因arsO的引物,其特征在于,它包括正向引物:5’-GAAGGAGATATACATATGACGGACCACATCTATGACG-3’和反向引物:5’-TGGTGGTGGTGCTCGAGATCCGAACGCGCGTTTTCGG-3’。
5.含有权利要求1所述锑氧化酶基因arsO的生物材料。
6.根据权利要求5所述的生物材料,其特征在于,该生物材料为重组载体、表达盒、转基因细胞系或转基因重组菌。
7.权利要求1中所述的锑氧化酶基因arsO,权利要求2或4中所述的锑氧化酶蛋白,或权利要求5或6中所述的生物材料在以下(1)~(3)中的至少一种应用:
(1)提高菌株对三价锑[Sb(III)]的抗性;
(2)催化三价锑[Sb(III)]氧化至五价锑[Sb(V)];
(3)修复环境中的锑污染中的应用。
8.根据权利要求7所述的应用,其特征在于,通过向目标菌株中转入权利要求1所述的锑氧化酶基因arsO提高菌株对三价锑[Sb(III)]的抗性。
9.根据权利要求7所述的应用,其特征在于,通过所述锑氧化酶基因arsO的异源表达构建基因工程菌修复环境中的锑污染。
10.根据权利要求7所述的应用,其特征在于,所述的锑氧化酶蛋白通过以下(1)和(2)中的至少一种方式催化三价锑[Sb(III)]氧化至五价锑[Sb(V)]:
(1)锑氧化酶蛋白在辅酶NADPH或/和NADH的协同下催化三价锑[Sb(III)]氧化至五价锑[Sb(V)];
(2)在辅酶NADPH或/和NADH的协同下,外源添加FAD增强锑氧化酶催化三价锑[Sb(III)]氧化至五价锑[Sb(V)]的活性。
CN202310744501.XA 2023-06-21 2023-06-21 一种粘着剑菌锑氧化酶基因arsO及其应用 Pending CN117247912A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310744501.XA CN117247912A (zh) 2023-06-21 2023-06-21 一种粘着剑菌锑氧化酶基因arsO及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310744501.XA CN117247912A (zh) 2023-06-21 2023-06-21 一种粘着剑菌锑氧化酶基因arsO及其应用

Publications (1)

Publication Number Publication Date
CN117247912A true CN117247912A (zh) 2023-12-19

Family

ID=89127071

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310744501.XA Pending CN117247912A (zh) 2023-06-21 2023-06-21 一种粘着剑菌锑氧化酶基因arsO及其应用

Country Status (1)

Country Link
CN (1) CN117247912A (zh)

Similar Documents

Publication Publication Date Title
Versantvoort et al. Comparative genomics of Candidatus Methylomirabilis species and description of Ca. Methylomirabilis lanthanidiphila
Huang et al. Arsenic methylation by a novel ArsM As (III) S‐adenosylmethionine methyltransferase that requires only two conserved cysteine residues
Bachate et al. Oxidation of arsenite by two β-proteobacteria isolated from soil
Barkay et al. Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment
Arp et al. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea
Yan et al. Arsenic demethylation by a C· As lyase in cyanobacterium Nostoc sp. PCC 7120
Shi et al. Multi-omics reveal various potential antimonate reductases from phylogenetically diverse microorganisms
Nguyen et al. Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor
Yasir et al. NAD (P) H-dependent thioredoxin-disulfide reductase TrxR is essential for tellurite and selenite reduction and resistance in Bacillus sp. Y3
Durante-Rodríguez et al. ArxA from Azoarcus sp. CIB, an anaerobic arsenite oxidase from an obligate heterotrophic and mesophilic bacterium
Chang et al. Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines
Ospino et al. Arsenite oxidation by a newly isolated Betaproteobacterium possessing arx genes and diversity of the arx gene cluster in bacterial genomes
Wang et al. Gene cloning, expression, and reducing property enhancement of nitrous oxide reductase from Alcaligenes denitrificans strain TB
Sasi et al. Transcriptome analysis of a novel and highly resistant hydrocarbon-degrading bacteria during the removal of phenol and 2, 4-dichlorophenol
Lescure et al. Simple or complex organic substrates inhibit arsenite oxidation and aioA gene expression in two β-Proteobacteria strains
CN116790526B (zh) 一种活不动杆菌中烷烃单加氧酶编码基因、编码蛋白及其应用
Wu et al. Anoxygenic phototrophic arsenite oxidation by a Rhodobacter strain
CN117247912A (zh) 一种粘着剑菌锑氧化酶基因arsO及其应用
CN113735282B (zh) 一种老黄酶oye2蛋白及其在铬污染中的应用
Morimoto et al. A nitrogenase-like enzyme is involved in the novel anaerobic assimilation pathway of a sulfonate, isethionate, in the photosynthetic bacterium Rhodobacter capsulatus
US10036072B2 (en) Mercury methylation genes in bacteria and archaea
CN112680464B (zh) 一种单甲基砷和三价锑氧化酶基因arsV及其编码的蛋白和应用
KR101247206B1 (ko) 카드뮴 검출용 바이오센서 및 이의 제조 방법
CN119932057B (zh) 双酚F降解基因簇bpf及其应用
CN106811427B (zh) 角度双加氧酶基因dpeA1A2及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination