[go: up one dir, main page]

CN117226852A - Soft exoskeletons control method and device - Google Patents

Soft exoskeletons control method and device Download PDF

Info

Publication number
CN117226852A
CN117226852A CN202311490476.3A CN202311490476A CN117226852A CN 117226852 A CN117226852 A CN 117226852A CN 202311490476 A CN202311490476 A CN 202311490476A CN 117226852 A CN117226852 A CN 117226852A
Authority
CN
China
Prior art keywords
actuator
gas flow
proportional valve
exoskeleton
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311490476.3A
Other languages
Chinese (zh)
Other versions
CN117226852B (en
Inventor
师文远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202311490476.3A priority Critical patent/CN117226852B/en
Publication of CN117226852A publication Critical patent/CN117226852A/en
Application granted granted Critical
Publication of CN117226852B publication Critical patent/CN117226852B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)
  • Manipulator (AREA)

Abstract

The embodiment of the invention provides a soft exoskeleton control method and a device, which belong to the technical field of robots, and can calculate the gas flow estimation of an electromagnetic proportional valve by utilizing a gas flow model and a driving voltage of the electromagnetic proportional valve, generate a flow control command by utilizing a dynamics model and a gas flow estimation of an actuator, extract a target flow from the flow control command, and control the electromagnetic proportional valve to work according to the gas flow estimation and the target flow, so that the actuator of the soft exoskeleton can work by obtaining the torque and the bending angle of the soft exoskeleton based on the target flow and the dynamics model of the actuator, and the dynamics model is obtained by taking the product of the torque and the angular speed of the soft exoskeleton as output power and constructing based on the output power, so that the dynamics model of the soft exoskeleton actuator is not limited by inertia quality, resistance and traction, thereby improving the stability and the robustness of the soft exoskeleton control.

Description

软体外骨骼控制方法及装置Software exoskeleton control method and device

技术领域Technical field

本发明涉及机器人技术领域,具体而言,涉及一种软体外骨骼控制方法及装置。The present invention relates to the field of robotic technology, and specifically to a soft exoskeleton control method and device.

背景技术Background technique

机械外骨骼或称动力外骨骼(Powered exoskeleton),是一种由钢铁的框架构成并且可让人穿上的机器装置,这个装备可以提供额外能量来供四肢运动。机械外骨骼包括刚性外骨骼和软体外骨骼,软体外骨骼是用特殊软材料制作的一类柔性外骨骼,由软体本身的变形传递动力和实现运动。新兴的可穿戴外骨骼机器人是软体外骨骼,通过驱动人体骨关节旋转来辅助人的肢体运动,能增强人肢体的力量,并替代医生在康复过程中提供肢体的运动训练。A mechanical exoskeleton, or powered exoskeleton, is a mechanical device made of a steel frame that can be worn by people. This equipment can provide extra energy for the movement of the limbs. Mechanical exoskeletons include rigid exoskeletons and soft exoskeletons. Soft exoskeletons are a type of flexible exoskeleton made of special soft materials. The deformation of the software itself transmits power and enables movement. The emerging wearable exoskeleton robot is a soft exoskeleton that assists human limb movement by driving the rotation of human bone joints. It can enhance the strength of human limbs and replace doctors in providing limb movement training during the rehabilitation process.

由于软体外骨骼受到不确定的人肢体惯性质量、自主用力的制约,通用的基于欧拉-拉格朗日动力学建模的控制方法不适用于穿戴式气动软体外骨骼致动器。因此,亟需一种适用于软体外骨骼的高稳定性和高鲁棒性的控制方法。Since the soft exoskeleton is restricted by the uncertain inertial mass of the human limb and autonomous force, the general control method based on Euler-Lagrangian dynamic modeling is not suitable for wearable pneumatic soft exoskeleton actuators. Therefore, there is an urgent need for a high-stability and robust control method suitable for soft exoskeletons.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种软体外骨骼控制方法、装置及电子设备,其能够改善目前的外骨骼控制方法应用于软体外骨骼所导致的稳定性和鲁棒性低的问题。In view of this, the purpose of the present invention is to provide a soft exoskeleton control method, device and electronic equipment, which can improve the problems of low stability and robustness caused by the current exoskeleton control method being applied to soft exoskeletons.

为了实现上述目的,本发明实施方式采用的技术方案如下:In order to achieve the above objects, the technical solutions adopted in the embodiments of the present invention are as follows:

第一方面,本发明实施方式提供一种软体外骨骼控制方法,应用于所述软体外骨骼的控制系统,所述软体外骨骼还包括电磁比例阀和致动器,所述方法包括:In a first aspect, an embodiment of the present invention provides a method for controlling a soft exoskeleton, which is applied to the control system of the soft exoskeleton. The soft exoskeleton further includes an electromagnetic proportional valve and an actuator. The method includes:

基于所述电磁比例阀在当前时刻的驱动电压,利用所述电磁比例阀的气体流量模型,计算出所述电磁比例阀的气体流量估计量;Based on the driving voltage of the electromagnetic proportional valve at the current moment, use the gas flow model of the electromagnetic proportional valve to calculate the gas flow estimate of the electromagnetic proportional valve;

利用所述致动器的动力学模型和所述气体流量估计量,计算出运动估计量;其中,所述运动估计量包括扭矩估计量和弯曲角度估计量中的至少一个;Using the dynamic model of the actuator and the gas flow estimate, a motion estimate is calculated; wherein the motion estimate includes at least one of a torque estimate and a bending angle estimate;

根据当前时刻的控制命令、所述运动估计量和所述气体流量估计量,生成流量控制命令;Generate a flow control command according to the control command at the current moment, the motion estimate and the gas flow estimate;

从所述流量控制命令中提取出目标流量,根据所述气体流量估计量和所述目标流量,计算出所述电磁比例阀的目标驱动电压;Extract the target flow rate from the flow control command, and calculate the target drive voltage of the electromagnetic proportional valve based on the gas flow estimate and the target flow rate;

控制所述电磁比例阀按所述目标驱动电压工作,以使所述致动器基于所述目标流量和所述致动器的动力学模型,得到所述软体外骨骼的扭矩或弯曲角度;Control the electromagnetic proportional valve to operate according to the target driving voltage, so that the actuator can obtain the torque or bending angle of the soft exoskeleton based on the target flow rate and the dynamic model of the actuator;

其中,所述致动器的动力学模型为以所述软体外骨骼的扭矩和角速度的乘积作为输出功率,并基于所述输出功率构建得到。Wherein, the dynamic model of the actuator is constructed based on the product of the torque and the angular velocity of the soft exoskeleton as the output power.

进一步的,所述致动器还包括致动控制器,所述方法还包括构建所述致动控制器的步骤,该步骤包括:Further, the actuator further includes an actuation controller, and the method further includes the step of constructing the actuation controller, which step includes:

将所述软体外骨骼的扭矩和角速度的乘积,作为所述软体外骨骼的输出功率;The product of the torque and the angular velocity of the soft exoskeleton is used as the output power of the soft exoskeleton;

基于所述输出功率和所述气体流量模型输出的气体流量,构建所述致动器的动力学模型;Construct a dynamic model of the actuator based on the output power and the gas flow output by the gas flow model;

使用线性化算法对所述动力学模型进行处理,得到致动控制器。The dynamic model is processed using a linearization algorithm to obtain an actuation controller.

进一步的,所述基于所述输出功率和所述气体流量模型输出的气体流量,构建所述致动器的动力学模型的步骤,包括:Further, the step of constructing a dynamic model of the actuator based on the output power and the gas flow output by the gas flow model includes:

利用理想气体状态方程,表示出所述致动器容腔内的气体体积;Use the ideal gas equation of state to express the gas volume in the actuator chamber;

使用气体压强和所述电磁比例阀输入的气体流量的乘积,表示出输入气体功率;Use the product of the gas pressure and the gas flow rate input by the solenoid proportional valve to express the input gas power;

基于所述气体体积和气体压强的乘积,表示出所述致动器的积蓄势能;Express the accumulated potential energy of the actuator based on the product of the gas volume and the gas pressure;

根据所述输入气体功率表示出输入能量,根据所述输出功率表示出输出能量,根据所述角速度表示出软体外骨骼的弯曲角度;The input energy is expressed according to the input gas power, the output energy is expressed according to the output power, and the bending angle of the soft exoskeleton is expressed according to the angular velocity;

以所述气体流量模型输出的气体流量作为系统输入,以所述输入气体能量、所述积蓄势能、所述输出能量和所述弯曲角度作为系统状态变量,使用所述输出功率计算动态助力扭矩,基于虚功原理计算静态扭矩,构建所述致动器的非线性状态空间模型。The gas flow output by the gas flow model is used as system input, the input gas energy, the accumulated potential energy, the output energy and the bending angle are used as system state variables, and the output power is used to calculate the dynamic assist torque, The static torque is calculated based on the principle of virtual work, and the nonlinear state space model of the actuator is constructed.

进一步的,所述动力学模型包括:Further, the dynamic model includes:

其中,,/>,/>表征气体流量,/>表征气体压强,/>表征摩尔气体常数,/>表征温度,/>表征空气的摩尔质量,/>表征气体质量,/>表征动态响应时滞,/>表征外骨骼内腔的高度,/>表征外骨骼内腔的横截面积,/>表征转换效率,/>表征输入气体能量,/>表征积蓄势能,/>表征输出能量,/>表征软体外骨骼的弯曲角度。in, ,/> ,/> Characterizing gas flow,/> Characterizing gas pressure,/> Characterizing the molar gas constant,/> Characterizing temperature,/> Characterizes the molar mass of air,/> Characterize gas quality,/> Characterizes dynamic response time delay,/> Characterizes the height of the exoskeleton cavity,/> Characterizes the cross-sectional area of the exoskeleton lumen,/> Characterizes conversion efficiency,/> Characterizes the input gas energy,/> Represents accumulated potential energy,/> Characterizes the output energy,/> Characterizes the bending angle of the soft exoskeleton.

进一步的,所述利用所述致动器的动力学模型和所述气体流量估计量,计算出运动估计量的步骤,包括:Further, the step of calculating the motion estimate using the dynamic model of the actuator and the gas flow estimate includes:

当控制模式为动态助力模式时,基于所述气体流量估计量以及所述软体外骨骼内腔的气体压强和温度,利用所述致动器的动力学模型,得到所述致动器的扭矩估计量;When the control mode is the dynamic assist mode, the torque estimate of the actuator is obtained by using the dynamic model of the actuator based on the gas flow estimate and the gas pressure and temperature of the inner cavity of the soft exoskeleton. quantity;

当控制模式为肢体被动模式时,基于所述气体流量估计量以及所述软体外骨骼内腔的气体压强和温度,利用所述致动器的动力学模型,得到所述致动器的弯曲角度估计量。When the control mode is the limb passive mode, based on the gas flow estimate and the gas pressure and temperature of the soft exoskeleton cavity, the bending angle of the actuator is obtained by using the dynamic model of the actuator estimator.

进一步的,所述方法还包括构建所述电磁比例阀的气体流量模型的步骤,该步骤包括:Further, the method also includes the step of constructing a gas flow model of the electromagnetic proportional valve, which step includes:

基于所述电磁比例阀的实验输入电压和实验气体流量,拟合出所述电磁比例阀的电压流量方程;其中,所述电压流量方程表示所述电磁比例阀的输入电压、流量系数和有效开口面积的关系;Based on the experimental input voltage and experimental gas flow of the electromagnetic proportional valve, the voltage flow equation of the electromagnetic proportional valve is fitted; wherein the voltage flow equation represents the input voltage, flow coefficient and effective opening of the electromagnetic proportional valve area relationship;

基于Sanville流量公式和所述电压流量方程,得到所述电磁比例阀的气体流量模型。Based on the Sanville flow formula and the voltage flow equation, a gas flow model of the electromagnetic proportional valve is obtained.

进一步的,所述基于所述电磁比例阀的实验输入电压和实验气体流量,拟合出所述电磁比例阀的电压流量方程的步骤,包括:Further, the step of fitting the voltage flow equation of the electromagnetic proportional valve based on the experimental input voltage and experimental gas flow of the electromagnetic proportional valve includes:

使用最小二乘法,对所述电磁比例阀的实验输入电压和实验气体流量进行曲线拟合,得到电压流量方程。Using the least squares method, curve fitting was performed on the experimental input voltage and experimental gas flow rate of the electromagnetic proportional valve to obtain the voltage flow equation.

进一步的,所述气体流量模型包括:Further, the gas flow model includes:

其中,表征气体流量,/>表征电压流量方程,/>表征摩尔气体常数,/>表征温度,/>表征气源压强,/>表征容腔内气体压强,/>表征驱动电压。in, Characterizing gas flow,/> Characterizing the voltage-flow equation,/> Characterizing the molar gas constant,/> Characterizing temperature,/> Indicates the gas source pressure,/> Characterizes the gas pressure in the chamber,/> Characterizes the driving voltage.

进一步的,所述线性化算法包括雅可比矩阵线性化、泰勒展开和非线性动态逆控制中的任一种。Further, the linearization algorithm includes any one of Jacobian matrix linearization, Taylor expansion and nonlinear dynamic inverse control.

第二方面,本发明实施方式提供一种软体外骨骼控制装置,应用于所述软体外骨骼的控制系统,所述软体外骨骼还包括电磁比例阀和致动器,所述软体外骨骼控制装置包括流量估计模块、运动估计模块、估计计算模块、反馈计算模块和控制模块;In a second aspect, embodiments of the present invention provide a soft exoskeleton control device, which is applied to the control system of the soft exoskeleton. The soft exoskeleton further includes an electromagnetic proportional valve and an actuator. The soft exoskeleton control device Including flow estimation module, motion estimation module, estimation calculation module, feedback calculation module and control module;

所述流量估计模块,用于基于所述电磁比例阀在当前时刻的驱动电压,利用所述电磁比例阀的气体流量模型,计算出所述电磁比例阀的气体流量估计量;The flow estimation module is used to calculate the gas flow estimate of the electromagnetic proportional valve based on the driving voltage of the electromagnetic proportional valve at the current moment and using the gas flow model of the electromagnetic proportional valve;

所述运动估计模块,用于利用所述致动器的动力学模型和所述气体流量估计量,计算出运动估计量;其中,所述运动估计量包括扭矩估计量和弯曲角度估计量中的至少一个;The motion estimation module is used to calculate a motion estimate using the dynamic model of the actuator and the gas flow estimate; wherein the motion estimate includes a torque estimate and a bending angle estimate. at least one;

所述估计计算模块,用于根据当前时刻的控制命令、所述运动估计量和所述气体流量估计量,生成流量控制命令;The estimation calculation module is used to generate a flow control command according to the control command at the current moment, the motion estimate and the gas flow estimate;

所述反馈计算模块,用于从接收的流量控制命令中提取出目标流量,根据所述气体流量估计量和所述目标流量,计算出所述电磁比例阀的目标驱动电压;The feedback calculation module is used to extract the target flow rate from the received flow control command, and calculate the target drive voltage of the electromagnetic proportional valve according to the gas flow estimate and the target flow rate;

所述控制模块,用于控制所述电磁比例阀按所述目标驱动电压工作,以使所述致动器基于所述目标流量和所述致动器的动力学模型,得到所述软体外骨骼的扭矩或弯曲角度;The control module is used to control the electromagnetic proportional valve to operate according to the target driving voltage, so that the actuator obtains the soft exoskeleton based on the target flow rate and the dynamic model of the actuator. torque or bending angle;

其中,所述致动器的动力学模型为以所述软体外骨骼的扭矩和角速度的乘积作为输出功率,并基于所述输出功率构建得到。Wherein, the dynamic model of the actuator is constructed based on the product of the torque and the angular velocity of the soft exoskeleton as the output power.

第三方面,本发明实施方式提供一种电子设备,包括处理器和存储器,所述存储器存储有能够被所述处理器执行的机器可执行指令,所述处理器可执行所述机器可执行指令以实现如第一方面所述的软体外骨骼控制方法。In a third aspect, embodiments of the present invention provide an electronic device, including a processor and a memory. The memory stores machine-executable instructions that can be executed by the processor. The processor can execute the machine-executable instructions. To implement the software exoskeleton control method described in the first aspect.

第四方面,本发明实施方式提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的软体外骨骼控制方法。In a fourth aspect, embodiments of the present invention provide a storage medium on which a computer program is stored. When the computer program is executed by a processor, the software exoskeleton control method as described in the first aspect is implemented.

本发明实施方式提供的软体外骨骼控制方法及装置,软体外骨骼的比例阀控制器可以基于电磁比例阀在当前时刻的驱动电压,利用电磁比例阀的气体流量模型,计算出电磁比例阀的气体流量估计量,并利用致动器的动力学模型和气体流量估计量,计算出运动估计量,从而根据当前时刻的控制命令、运动估计量和气体流量估计量生成流量控制命令,从流量控制命令中提取出目标流量,根据气体流量估计量和目标流量计算出电磁比例阀的目标驱动电压,从而控制电磁比例阀按目标驱动电压工作,使软体外骨骼的致动器基于目标流量和致动器的动力学模型,得到软体外骨骼的扭矩和弯曲角度,以进行工作,且软体外骨骼的致动器的动力学模型为以软体外骨骼的扭矩和角速度的乘积作为输出功率,并基于输出功率构建得到,使软体外骨骼致动器的动力学模型不受人肢体和外骨骼的惯性质量的制约,从而能够极大地提高软体外骨骼控制的稳定性和鲁棒性。According to the software exoskeleton control method and device provided by the embodiment of the present invention, the proportional valve controller of the software exoskeleton can calculate the gas flow rate of the electromagnetic proportional valve based on the driving voltage of the electromagnetic proportional valve at the current moment and using the gas flow model of the electromagnetic proportional valve. Flow estimate, and use the actuator's dynamic model and gas flow estimate to calculate the motion estimate, thereby generating a flow control command based on the control command, motion estimate, and gas flow estimate at the current moment, from the flow control command The target flow rate is extracted from the gas flow estimate and the target flow rate, and the target driving voltage of the electromagnetic proportional valve is calculated, thereby controlling the electromagnetic proportional valve to work according to the target driving voltage, so that the actuator of the soft exoskeleton is based on the target flow rate and the actuator The dynamic model of the soft exoskeleton is used to obtain the torque and bending angle of the soft exoskeleton to perform work, and the dynamic model of the actuator of the soft exoskeleton is based on the output power of the product of the torque and angular velocity of the soft exoskeleton. It is constructed so that the dynamic model of the soft exoskeleton actuator is not restricted by the inertial mass of the human limb and the exoskeleton, thereby greatly improving the stability and robustness of the soft exoskeleton control.

为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施方式,并配合所附附图,作详细说明如下。In order to make the above objects, features and advantages of the present invention more obvious and easy to understand, the preferred embodiments are described in detail below along with the accompanying drawings.

附图说明Description of drawings

为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施方式,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings needed to be used in the embodiments will be briefly introduced below. It should be understood that the following drawings only show certain embodiments of the present invention and therefore do not It should be regarded as a limitation of the scope. For those of ordinary skill in the art, other relevant drawings can be obtained based on these drawings without exerting creative efforts.

图1示出了本发明实施方式提供的软体外骨骼控制系统的结构示意图。Figure 1 shows a schematic structural diagram of a software exoskeleton control system provided by an embodiment of the present invention.

图2示出了本发明实施方式提供的软体外骨骼控制方法的控制原理图。Figure 2 shows a control principle diagram of the software exoskeleton control method provided by the embodiment of the present invention.

图3示出了本发明实施方式提供的软体外骨骼控制方法的流程示意图之一。FIG. 3 shows one of the schematic flow charts of the software exoskeleton control method provided by the embodiment of the present invention.

图4示出了本发明实施方式提供的软体外骨骼控制方法的流程示意图之二。Figure 4 shows the second schematic flowchart of the software exoskeleton control method provided by the embodiment of the present invention.

图5示出了本发明实施方式提供的软体外骨骼控制方法的流程示意图之三。Figure 5 shows the third schematic flowchart of the software exoskeleton control method provided by the embodiment of the present invention.

图6示出了本发明实施方式提供的软体外骨骼控制装置的方框示意图。Figure 6 shows a block diagram of a software exoskeleton control device provided by an embodiment of the present invention.

图7示出了本发明实施方式提供的电子设备的方框示意图。FIG. 7 shows a block diagram of an electronic device provided by an embodiment of the present invention.

附图标记说明:100-软体外骨骼控制系统;10-软体外骨骼;20-控制盒;21-电磁比例阀;22-压力传感器;23-压力电磁阀;24-排气电磁阀;25-真空电磁阀;26-控制器;27-气动泵;28-温度传感器;30-角度传感器;40-力传感器;50-惯性测量单元;60-软体外骨骼控制装置;601-流量估计模块;602-运动估计模块;603-估计计算模块;604-反馈计算模块;605-控制模块;70-电子设备。Explanation of reference signs: 100-soft exoskeleton control system; 10-soft exoskeleton; 20-control box; 21-electromagnetic proportional valve; 22-pressure sensor; 23-pressure solenoid valve; 24-exhaust solenoid valve; 25- Vacuum solenoid valve; 26-controller; 27-pneumatic pump; 28-temperature sensor; 30-angle sensor; 40-force sensor; 50-inertial measurement unit; 60-soft exoskeleton control device; 601-flow estimation module; 602 -Motion estimation module; 603-estimation calculation module; 604-feedback calculation module; 605-control module; 70-electronic equipment.

具体实施方式Detailed ways

下面将结合本发明实施方式中附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。通常在此处附图中描述和示出的本发明实施方式的组件可以以各种不同的配置来布置和设计。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations.

因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明的实施方式,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式,都属于本发明保护的范围。Accordingly, the following detailed description of embodiments of the invention provided in the appended drawings is not intended to limit the scope of the claimed invention, but rather to represent selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without any creative work fall within the scope of protection of the present invention.

需要说明的是,术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that relational terms such as "first" and "second" are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that these entities or operations are mutually exclusive. any such actual relationship or sequence exists between them. Furthermore, the terms "comprises," "comprises," or any other variations thereof are intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also those not expressly listed other elements, or elements inherent to the process, method, article or equipment. Without further limitation, an element defined by the statement "comprises a..." does not exclude the presence of additional identical elements in a process, method, article, or apparatus that includes the stated element.

新兴的可穿戴外骨骼机器人通过驱动人体骨关节旋转来辅助人的肢体运动,能增强人肢体的力量,替代医生在康复过程中提供肢体的运动训练。穿戴式软体外骨骼是用特殊软材料制作的一类柔性外骨骼,由软体本身的变形传递动力和实现运动。刚性外骨骼致动器能够产生辅助运动所需的扭矩和精确运动,然而,机械复杂性、重量和尺寸、外骨骼与人体关节对齐问题、人体关节运动的顺应性和安全性方面的生物力学人机耦合问题,阻碍了其广泛使用的真正潜力。相比之下,软体外骨骼的方法因为重量轻并具有高度柔顺性,能够适应人体运动,防止任务过程中对人体的损伤,特别是使用高弹力布料折叠制作的穿戴式软体外骨骼具有完全可穿戴和轻量化的潜力。The emerging wearable exoskeleton robot assists human limb movement by driving the rotation of human bone joints. It can enhance the strength of human limbs and replace doctors in providing limb movement training during the rehabilitation process. Wearable soft exoskeleton is a type of flexible exoskeleton made of special soft materials. The deformation of the software itself transmits power and realizes movement. Rigid exoskeleton actuators are capable of generating the torque and precise motion required for assisted locomotion; however, biomechanics in terms of mechanical complexity, weight and size, exoskeleton and human joint alignment issues, compliance and safety of human joint motion Machine-to-machine coupling issues hinder its true potential for widespread use. In contrast, the soft exoskeleton method is light in weight and highly flexible, and can adapt to human movement and prevent damage to the human body during tasks. In particular, wearable soft exoskeletons made of folded and folded high-elastic fabrics have complete Wearable and lightweight potential.

压缩空气注入软体外骨骼的致动器后,气体压强使致动器具有弯曲刚度和膨胀的弧长,从而能够驱动外骨骼机器人。软体外骨骼的基本物理定律比刚性外骨骼更为复杂,其内在复杂性体现为软材料的可伸缩性、弹性变形、高柔韧性结构的无限多个运动自由度,需要设计特殊的约束结构限制无用的运动自由度,高效率地将气动能量传递到帮助肢体弯曲的最优部位,达到最佳的生物力学人机耦合。结构约束的方法有纤维约束、肋状结构和独立气室结构波纹管结构。依据结构和材料特性的数学建模方法有:分段恒定曲率方法,欧拉-伯努利梁方程,Cosserat杆理论,采用超弹性材料应力应变理论和几何分析方法建立软体致动器弯曲角度的数学模型,有限元建模方法。After compressed air is injected into the actuator of the soft exoskeleton, the gas pressure gives the actuator a bending stiffness and an expanded arc length, allowing it to drive the exoskeleton robot. The basic physical laws of a soft exoskeleton are more complex than those of a rigid exoskeleton. Its inherent complexity is reflected in the scalability, elastic deformation, and infinite freedom of movement of a highly flexible structure of soft materials, which requires the design of special constraints and structural restrictions. Useless freedom of movement, efficiently transmits pneumatic energy to the optimal part to help limb bending, achieving the best biomechanical human-machine coupling. Structural restraint methods include fiber restraint, rib structure and independent air chamber structure bellows structure. Mathematical modeling methods based on structure and material properties include: piecewise constant curvature method, Euler-Bernoulli beam equation, Cosserat rod theory, using superelastic material stress and strain theory and geometric analysis methods to establish the bending angle of the software actuator. Mathematical models, finite element modeling methods.

当前的软体外骨骼的控制系统通常沿用传统机器人的欧拉-拉格朗日动力学模型,欧拉-拉格朗日动力学模型的力等于整体质量与加速度的乘积。然而,当软体外骨骼穿戴到人的肢体合为一体运动时,致动器模型受到不确定人肢体负载的制约:1)模型中的惯性质量是两者的总和;肢体惯性质量因人而异,特别是拿放物体会导致惯性质量的改变,需要额外的传感器来校准;2)人的肢体随意自主用力对外骨骼的牵引力或阻力,导致模型中的合力不确定。Current soft exoskeleton control systems usually follow the Euler-Lagrangian dynamics model of traditional robots. The force of the Euler-Lagrangian dynamics model is equal to the product of the overall mass and acceleration. However, when the soft exoskeleton is worn until the human limb moves as one, the actuator model is restricted by the uncertain human limb load: 1) The inertial mass in the model is the sum of the two; the limb inertial mass varies from person to person. , especially holding and placing objects will lead to changes in inertial mass, requiring additional sensors for calibration; 2) The traction or resistance of human limbs on the exoskeleton due to arbitrary and independent force, leading to uncertainty in the resultant force in the model.

不同于传统机器人,穿戴式软体外骨骼机器人是以助力为目的,给予与人肢体弯曲方向相同的助力动态扭矩或静态扭矩。显然,软体外骨骼的助力与欧拉-拉格朗日动力学模型的力不相同,从而导致基于欧拉-拉格朗日动力学建模的控制方法应用于软体外骨骼控制时,存在稳定性和鲁棒性低的问题。Different from traditional robots, wearable soft exoskeleton robots are designed to provide power assistance and provide dynamic torque or static torque in the same direction as the bending direction of human limbs. Obviously, the force assist of the soft exoskeleton is different from the force of the Euler-Lagrangian dynamic model, which leads to instability when the control method based on the Euler-Lagrangian dynamic model is applied to the control of the soft exoskeleton. The problem of low performance and robustness.

基于上述考虑,本发明实施方式提供一种软体外骨骼控制方法,其能够改善目前的软体外骨骼控制所存在的稳定性和鲁棒性低的问题。Based on the above considerations, embodiments of the present invention provide a soft exoskeleton control method, which can improve the problems of low stability and robustness existing in the current soft exoskeleton control.

本发明实施方式提供的软体外骨骼控制方法,可以应用于如图1所示的软体外骨骼控制系统100中,软体外骨骼控制系统100可以包括软体外骨骼10、控制盒20、角度传感器30、力传感器40和惯性测量单元50,控制盒20内安装有控制器26(即微处理器)、气源压强传感器、电磁比例阀21、内腔气压力传感器22、温度传感器28、电动的气动泵27、压力电磁阀23、真空电磁阀25、排气电磁阀24和PWM电压驱动等。The software exoskeleton control method provided by the embodiment of the present invention can be applied to the software exoskeleton control system 100 as shown in Figure 1. The software exoskeleton control system 100 can include a software exoskeleton 10, a control box 20, an angle sensor 30, Force sensor 40 and inertial measurement unit 50. The control box 20 is equipped with a controller 26 (i.e. microprocessor), an air source pressure sensor, an electromagnetic proportional valve 21, an inner cavity air pressure sensor 22, a temperature sensor 28, and an electric pneumatic pump. 27. Pressure solenoid valve 23, vacuum solenoid valve 25, exhaust solenoid valve 24 and PWM voltage drive, etc.

软体外骨骼10可以是手部软体外骨骼10机器人,可以包括拇指、食指、中指、无名指、小指、手腕和手肘等助力部,拇指、食指、中指、无名指和小指助力部中的任一个按序连接力传感器40、柔性角度传感器30、温度传感器28、内腔气压力传感器22、电磁比例阀21和气源压强传感器,手腕和手肘等助力部按序连接力传感器40、惯性测量单元50、温度传感器28、内腔气压力传感器22、电磁比例阀21和气源压强传感器。The soft exoskeleton 10 may be a hand soft exoskeleton 10 robot, and may include power-assisting parts such as the thumb, index finger, middle finger, ring finger, little finger, wrist, and elbow, and any one of the power-assisting parts of the thumb, index finger, middle finger, ring finger, and little finger. The force sensor 40, the flexible angle sensor 30, the temperature sensor 28, the inner cavity air pressure sensor 22, the electromagnetic proportional valve 21 and the air source pressure sensor are connected in sequence. The force sensor 40 and the inertial measurement unit 50 are connected in sequence to the power-assisted parts such as the wrist and elbow. , temperature sensor 28, inner cavity air pressure sensor 22, electromagnetic proportional valve 21 and air source pressure sensor.

控制器26包括电磁比例阀21、气动泵27、压力电磁阀23、真空电磁阀25、排气电磁阀24和电磁比例阀21的控制器,以及扭矩控制器、角度控制器和流量控制器。The controller 26 includes controllers of the electromagnetic proportional valve 21, the pneumatic pump 27, the pressure solenoid valve 23, the vacuum solenoid valve 25, the exhaust solenoid valve 24 and the electromagnetic proportional valve 21, as well as the torque controller, the angle controller and the flow controller.

柔性角度传感器30,用于测量所连接的手指的弯曲角度。The flexible angle sensor 30 is used to measure the bending angle of the connected finger.

惯性测量单元50,用于测量手腕和手肘的弯曲角度。The inertial measurement unit 50 is used to measure the bending angle of the wrist and elbow.

压力电磁阀23,用于向软体外骨骼10充气。The pressure solenoid valve 23 is used to inflate the soft exoskeleton 10 .

真空电磁阀25,用于向软体外骨骼10抽气。The vacuum solenoid valve 25 is used to pump air to the soft exoskeleton 10 .

排气电磁阀24,用于向软体外骨骼10放气。The exhaust solenoid valve 24 is used to deflate the soft exoskeleton 10 .

电磁比例阀21,用于控制所在助力部的气体流量。The electromagnetic proportional valve 21 is used to control the gas flow of the booster part where it is located.

控制器26,用于控制每个电磁比例阀21的驱动电压。The controller 26 is used to control the driving voltage of each electromagnetic proportional valve 21.

在一种可能的实施方式中,本发明实施方式提供了一种软体外骨骼控制方法,该软体外骨骼控制方法的控制原理如图2所示,包括控制器、电磁比例阀和软体外骨骼的致动器,电磁比例阀的数学模型为气体流量模型H1,致动器的数学模式为动力学模型H2,可以根据电磁比例阀的气体流量模型得到气体流量估计量,并利用致动器的动力学模型和气体流量估计量,计算出运动估计量,以该气体流量估计量和运动估计量反馈至控制器来调节电磁比例阀的进气流量,进而基于该进气流量控制软体外骨骼的扭矩或弯曲角度,实现闭环控制,构成一个稳定的气体流量控制系统。In a possible implementation, the embodiment of the present invention provides a software exoskeleton control method. The control principle of the software exoskeleton control method is shown in Figure 2, including a controller, an electromagnetic proportional valve and a software exoskeleton. The mathematical model of the actuator and electromagnetic proportional valve is the gas flow model H1, and the mathematical model of the actuator is the dynamic model H2. The gas flow estimate can be obtained based on the gas flow model of the electromagnetic proportional valve and the power of the actuator is used. The chemical model and gas flow estimate are used to calculate the motion estimate. The gas flow estimate and motion estimate are fed back to the controller to adjust the intake air flow of the electromagnetic proportional valve, and then control the torque of the software exoskeleton based on the intake air flow. or bending angle to achieve closed-loop control and form a stable gas flow control system.

需要说明的是,图2中是扭矩控制器,/>角度控制器,/>是流量控制器,/>表示气体质量流量,/>表示气体流量估计量,/>表示扭矩估计量,/>表示弯曲角度估计量,u表示系统输入。扭矩控制器、角度控制器和流量控制器可以采用PID控制方法或者滑模控制方法。It should be noted that in Figure 2 Is the torque controller,/> Angle controller,/> Is the flow controller,/> Represents gas mass flow,/> Represents the gas flow estimate,/> Represents the torque estimate,/> represents the bending angle estimate, u represents the system input. Torque controller, angle controller and flow controller can adopt PID control method or sliding mode control method.

图2中的控制系统可以有两种控制策略:扭矩控制和弯曲角度控制。(1)扭矩控制被用于动态助力模式(动态助力模块下,软体外骨骼的力量附加到人的肢体,增加人体肌肉产生的力量),此时,开关闭合,开关/>打开。在动态助力模式下,扭矩命令/>可以是一个恒定值(恒定助力),也可以是来自一个安置在上肢相应皮肤表面的肌电传感器的输出信号,作为控制软体外骨骼机器人的扭矩命令/>,作用力随肌电信号强弱而改变。(2)弯曲角度控制用于肢体被动模式(例如,康复初期,肢体不能自行弯曲,由软体外骨骼牵引运动),此时,开关/>闭合,开关/>打开。此时的控制命令可以是由护理者发出的角度命令/>The control system in Figure 2 can have two control strategies: torque control and bending angle control. (1) Torque control is used in the dynamic assist mode (under the dynamic assist module, the power of the soft exoskeleton is added to the human limbs to increase the force generated by the human muscles). At this time, the switch closed, switch/> Open. In dynamic assist mode, torque command/> It can be a constant value (constant assist), or it can be an output signal from a myoelectric sensor placed on the corresponding skin surface of the upper limb, as a torque command for controlling the soft exoskeleton robot/> , the force changes with the strength of the electromyographic signal. (2) The bending angle control is used in the passive mode of the limb (for example, in the early stage of rehabilitation, the limb cannot bend on its own and is pulled by the soft exoskeleton). At this time, the switch/> closed, switch/> Open. The control command at this time can be an angle command issued by the caregiver/> .

参照图3,软体外骨骼控制方法可以包括以下步骤。在本实施方式中,以软体外骨骼控制方法应用于图1中的软体外骨骼控制系统100来举例说明。Referring to Figure 3, the software exoskeleton control method may include the following steps. In this embodiment, the software exoskeleton control method is applied to the software exoskeleton control system 100 in FIG. 1 as an example.

S11,基于电磁比例阀在当前时刻的驱动电压,利用电磁比例阀的气体流量模型,计算出电磁比例阀的气体流量估计量。S11. Based on the driving voltage of the electromagnetic proportional valve at the current moment, use the gas flow model of the electromagnetic proportional valve to calculate the gas flow estimate of the electromagnetic proportional valve.

S13,利用致动器的动力学模型和气体流量估计量,计算出运动估计量。S13, use the dynamic model of the actuator and the gas flow estimate to calculate the motion estimate.

需要说明的是,在动态助力模式下,运动估计量可以包括扭矩估计量,在肢体被动模式下,运动估计量可以包括弯曲角度估计量。It should be noted that in the dynamic assist mode, the motion estimate may include a torque estimate, and in the limb passive mode, the motion estimate may include a bending angle estimate.

S15,根据当前时刻的控制命令、运动估计量和气体流量估计量,生成流量控制命令。S15: Generate a flow control command based on the control command, motion estimate and gas flow estimate at the current moment.

S17,从流量控制命令中提取出目标流量,根据气体流量估计量和标流量,计算出电磁比例阀的目标驱动电压。S17, extract the target flow rate from the flow control command, and calculate the target drive voltage of the electromagnetic proportional valve based on the estimated gas flow rate and the standard flow rate.

S19,控制电磁比例阀按目标驱动电压工作,以使致动器基于目标流量和致动器的动力学模型,得到软体外骨骼的扭矩或弯曲角度。S19, control the electromagnetic proportional valve to work according to the target driving voltage, so that the actuator can obtain the torque or bending angle of the soft exoskeleton based on the target flow rate and the dynamic model of the actuator.

在本实施方式中,致动器的动力学模型为以所述软体外骨骼10的扭矩和角速度的乘积作为输出功率,并基于所述输出功率构建得到。In this embodiment, the dynamic model of the actuator is constructed based on the product of the torque and the angular velocity of the soft exoskeleton 10 as the output power.

以电磁比例阀21为与手腕助力部连接的电磁比例阀21为例,控制器26在接收到流量控制命令时,获取当前时刻的与手腕助力部连接的电磁比例阀21的驱动电压,利用电磁比例阀21的气体流量模型,计算出该电磁比例阀21的气体流量估计量。Taking the electromagnetic proportional valve 21 as an example of the electromagnetic proportional valve 21 connected to the wrist assist part, when receiving the flow control command, the controller 26 obtains the driving voltage of the electromagnetic proportional valve 21 connected to the wrist assist part at the current time, and uses the electromagnetic The gas flow model of the proportional valve 21 is used to calculate the gas flow estimate of the electromagnetic proportional valve 21 .

根据用户选定的控制模式(可以是动态助力模式,也可以是肢体被动模式),控制器26利用致动器的动力学模型和气体流量估计量,计算出运动估计量。在动态助力模式,运动估计量是扭矩估计量,在肢体被动模式下,运动估计量是弯曲角度估计量。According to the control mode selected by the user (which can be a dynamic assist mode or a limb passive mode), the controller 26 uses the dynamic model of the actuator and the gas flow estimate to calculate the motion estimate. In the dynamic assist mode, the motion estimator is the torque estimator, and in the limb passive mode, the motion estimator is the bending angle estimator.

进而控制器26根据运动估计量、当前时刻的控制命令和气体流量估计量,计算出目标流量,生成流量控制命令。控制器26可以根据控制命令中的弯曲角度或扭矩,计算出控制命令中的控制量与弯曲角度或扭矩的差值,进而根据该差值查找或计算出对应的气体流量差值,进而根据该气体流量差值和气体流量估计量,计算出目标流量,生成流量控制命令。Furthermore, the controller 26 calculates the target flow rate based on the motion estimate, the control command at the current time, and the gas flow rate estimate, and generates a flow control command. The controller 26 can calculate the difference between the control quantity in the control command and the bending angle or torque according to the bending angle or torque in the control command, and then search or calculate the corresponding gas flow difference according to the difference, and then according to the difference The gas flow difference and gas flow estimate are used to calculate the target flow and generate a flow control command.

从流量控制命令中提取出与手腕助力部连接的电磁比例阀21的目标流量。进而根据气体流量估计量和目标流量,计算出电磁比例阀21的目标驱动电压。The target flow rate of the electromagnetic proportional valve 21 connected to the wrist assist unit is extracted from the flow control command. Furthermore, the target drive voltage of the electromagnetic proportional valve 21 is calculated based on the estimated gas flow rate and the target flow rate.

例如,可以根据气体流量估计量和目标流量间的差值,在预先设置的与手腕助力部连接的电磁比例阀21的流量差值与电压调节值的对应关系表中,查找出该差值对应的电压调节值,得到目标驱动电压。也可以直接使用目标驱动电压计算公式,计算出目标驱动电压。For example, based on the difference between the gas flow estimate and the target flow, the difference correspondence can be found in the preset correspondence table between the flow difference and the voltage adjustment value of the electromagnetic proportional valve 21 connected to the wrist assist part. voltage adjustment value to obtain the target driving voltage. You can also directly use the target driving voltage calculation formula to calculate the target driving voltage.

在得到目标驱动电压后,控制器26控制与手腕助力部连接的电磁比例阀21按该目标驱动电压进行工作,从而使电磁比例阀21的气体流量达到目标流量,进而软体外骨骼10的致动器能够基于目标流量的气体和制动器的动力学模型,得到手腕助力部的扭矩和弯曲角度,以实现对手腕助力部进行运动。After obtaining the target driving voltage, the controller 26 controls the electromagnetic proportional valve 21 connected to the wrist assist part to operate according to the target driving voltage, so that the gas flow rate of the electromagnetic proportional valve 21 reaches the target flow rate, thereby actuating the soft exoskeleton 10 The device can obtain the torque and bending angle of the wrist assist part based on the target flow rate of gas and the dynamic model of the brake, so as to realize the movement of the wrist assist part.

上述软体外骨骼控制方法中,软体外骨骼的致动器的动力学模型为以软体外骨骼的扭矩和角速度的乘积作为输出功率,并基于输出功率构建得到,使软体外骨骼致动器的动力学模型不受人肢体和外骨骼的惯性质量、阻力和牵引力的制约,同时实现闭环无扭矩和无角度传感器控制,从而能够极大地提高软体外骨骼控制的稳定性和鲁棒性。In the above-mentioned soft exoskeleton control method, the dynamic model of the soft exoskeleton actuator is based on the product of the soft exoskeleton's torque and angular velocity as the output power, and is constructed based on the output power, so that the power of the soft exoskeleton actuator The learning model is not restricted by the inertial mass, resistance and traction force of the human limbs and exoskeleton, and at the same time achieves closed-loop torque-free and angle-sensorless control, which can greatly improve the stability and robustness of the soft exoskeleton control.

对于步骤S13,在不同的控制模式下,计算出的运动估计量有所不同。当控制模式为动态助力模式时,基于气体流量估计量以及软体外骨骼内腔的气体压强和温度,利用致动器的动力学模型,得到所述致动器的扭矩估计量。当控制模式为肢体被动模式时,基于气体流量估计量以及软体外骨骼内腔的气体压强和温度,利用致动器的动力学模型,得到致动器的弯曲角度估计量。For step S13, the calculated motion estimation amount is different in different control modes. When the control mode is the dynamic assist mode, based on the gas flow estimate and the gas pressure and temperature of the inner cavity of the soft exoskeleton, the dynamic model of the actuator is used to obtain the torque estimate of the actuator. When the control mode is the limb passive mode, the bending angle estimate of the actuator is obtained by using the dynamic model of the actuator based on the gas flow estimate and the gas pressure and temperature in the soft exoskeleton cavity.

进一步的,软体外骨骼的致动器可以包括制动控制器,为了实现软体外骨骼致动器的控制不受人肢体和外骨骼的惯性质量、阻力和牵引力的制约,使用理想气体状态方程和能量转换原理构建软体外骨骼致动器的动力学模型。在一种可能的实施方式中,参照图4,构建制动控制器的步骤可以通过以下方式实现。Furthermore, the actuator of the soft exoskeleton can include a brake controller. In order to realize that the control of the soft exoskeleton actuator is not restricted by the inertial mass, resistance and traction force of the human limb and the exoskeleton, the ideal gas state equation and The energy conversion principle is used to construct the dynamic model of the soft exoskeleton actuator. In a possible implementation, referring to Figure 4, the step of building a brake controller can be implemented in the following manner.

S21,将软体外骨骼的扭矩和角速度的乘积,作为软体外骨骼的输出功率。S21, the product of the torque and the angular velocity of the soft exoskeleton is used as the output power of the soft exoskeleton.

S23,基于输出功率和气体流量模型输出的气体流量,构建致动器的动力学模型。S23: Construct a dynamic model of the actuator based on the output power and the gas flow output by the gas flow model.

S25,使用线性化算法对动力学模型进行处理,得到致动控制器。S25, use the linearization algorithm to process the dynamics model to obtain the actuation controller.

进一步的,由于输入致动器的气体动能、致动器积蓄的势能、对外输出的转动动能和能量损耗遵从能量守恒定律,步骤S23可以实施为以下方式:Further, since the gas kinetic energy input to the actuator, the potential energy accumulated by the actuator, the external rotational kinetic energy and energy loss comply with the law of energy conservation, step S23 can be implemented in the following manner:

23-1,利用理想气体状态方程,表示出致动器容腔内的气体体积。23-1, use the ideal gas equation of state to express the gas volume in the actuator chamber.

23-2,使用气体压强和电磁比例阀输入的气体流量的乘积,表示出输入气体功率。23-2. Use the product of the gas pressure and the gas flow rate input by the solenoid proportional valve to express the input gas power.

23-3,基于气体体积和气体压强的乘积,表示出致动器的积蓄势能。23-3, based on the product of gas volume and gas pressure, represents the accumulated potential energy of the actuator.

23-4,根据输入气体功率表示出输入气体能量,根据输出功率表示出输出能量,根据角速度表述出软体外骨骼的弯曲角度。23-4. The input gas energy is expressed according to the input gas power, the output energy is expressed according to the output power, and the bending angle of the soft exoskeleton is expressed according to the angular velocity.

应当理解的是,输入气体能量的导数是输入气体功率,输出能量的导数是输出功率,弯曲角度的导数是角速度,因此,由输入气体功率、输出功率和角速度可以分别表示出输入气体能量、输出能量和弯曲角度。It should be understood that the derivative of the input gas energy is the input gas power, the derivative of the output energy is the output power, and the derivative of the bending angle is the angular velocity. Therefore, the input gas power, output power and angular velocity can respectively express the input gas energy, output energy and bending angle.

23-5,以气体流量模型输出的气体流量作为系统输入,以输入气体能量、积蓄势能、输出能量和弯曲角度作为系统状态变量,使用输出功率计算动态助力扭矩,基于虚功原理计算静态扭矩,构建致动器的非线性状态空间模型。23-5, use the gas flow output by the gas flow model as the system input, use the input gas energy, accumulated potential energy, output energy and bending angle as the system state variables, use the output power to calculate the dynamic assist torque, and calculate the static torque based on the principle of virtual work, Construct a nonlinear state space model of the actuator.

电磁比例阀输出的气体通过导气管进入软体外骨骼的致动器内腔,因此,从电磁比例阀流入到致动器的气体质量M是气体质量流量G的积分,可以表示为:,其中G表示气体质量流量,/>表示气体密度。The gas output by the solenoid proportional valve enters the actuator cavity of the soft exoskeleton through the air conduit. Therefore, the gas mass M flowing from the solenoid proportional valve to the actuator is the integral of the gas mass flow rate G, which can be expressed as: , where G represents the gas mass flow rate,/> represents the gas density.

致动器容腔内的气体参数用理想气体状态方程可以表示为:,其中,p是容腔内气体压强(Pa),V为气体体积(m³),T为温度(K),R为摩尔气体常数=8.314J/(mol/>K),M为气体的质量(g),空气的摩尔质量μ=29g/mol,T为温度(K)。The gas parameters in the actuator chamber can be expressed as: , where p is the gas pressure in the chamber (Pa), V is the gas volume (m³), T is the temperature (K), R is the molar gas constant =8.314J/(mol/> K), M is the mass of the gas (g), the molar mass of air μ =29g/mol, and T is the temperature (K).

因此,电磁比例阀的输入气体功率为气体流量和气体压强的乘积,可以表示为:P in表示输入气体功率。Therefore, the input gas power of the solenoid proportional valve is the product of gas flow and gas pressure, which can be expressed as: , P in represents the input gas power.

求导数,并且/>,即可得到致动器容腔内气体体积的变化率,可以表示为:/>right Find the derivative, and/> , the change rate of the gas volume in the actuator chamber can be obtained, which can be expressed as:/> .

致动器容腔(即内腔)内积蓄的势能等于气体压强与气体体积的乘积,即。致动器容腔的积蓄势能的变化率/>可以表示为:,其中,/>表示致动器容腔的积蓄势能变化率,/>,/>The potential energy accumulated in the actuator cavity (i.e. inner cavity) is equal to the product of gas pressure and gas volume, that is . Rate of change of accumulated potential energy in actuator chamber/> It can be expressed as: , where,/> Represents the rate of change of accumulated potential energy in the actuator chamber,/> ,/> .

进一步的,,/>further, ,/> .

致动器的输出功能等于输入气体功率减去积蓄势能的变化率,可以表示为:P out表示输出功率,η表示转换效率。The output function of the actuator is equal to the input gas power minus the rate of change of the accumulated potential energy, which can be expressed as: , P out represents the output power, and eta represents the conversion efficiency.

软体外骨骼的各助力部的弯曲角度由致动器轴向膨胀的几何公式进行表示,为:,/>表示未充气时致动器容腔的体积,S表示内腔横截面积,/>是致动器内腔的高度,/>表示致动器(即软体外骨骼)的弯曲角度。The bending angle of each assisting part of the soft exoskeleton is expressed by the geometric formula of the axial expansion of the actuator, which is: ,/> represents the volume of the actuator cavity when not inflated, S represents the cross-sectional area of the inner cavity, /> is the height of the actuator cavity,/> Represents the bending angle of the actuator (i.e., soft exoskeleton).

进行求导得到:/>,此时将/>代入,即可得到/>right By derivation, we get:/> , at this time/> Substitute and you will get/> .

而致动器(即软体外骨骼)的输出功率可以表示为扭矩和角速度的乘积,因此,扭矩可以表示为:,/>表示扭矩。The output power of the actuator (ie, soft exoskeleton) can be expressed as the product of torque and angular velocity. Therefore, the torque can be expressed as: ,/> Represents torque.

基于上述原理,设系统状态变量为:;/>;/>;/>。其中,/>表示输入气体能量,/>表示致动器储存的势能,即积蓄势能,/>表示输出能量。设系统输入变量为:/>。系统输出变量为:/>;/>Based on the above principle, let the system state variable be: ;/> ;/> ;/> . Among them,/> Represents the input gas energy,/> Represents the potential energy stored by the actuator, that is, accumulated potential energy,/> Represents the output energy. Let the system input variable be:/> . The system output variable is:/> ;/> .

;/>;/>;/>,因此,即可得到动态方程:and ;/> ;/> ;/> , therefore, the dynamic equation can be obtained: .

进一步的,致动器的静态扭矩根据虚功原理进行计算,当角速度等于零时,使用虚功原理计算扭矩/>,静态扭矩被使用为动态扭矩/>的初始值,并考虑到软体外骨骼的气体温度变化不大,可以将气体视为等温膨胀过程,即转换效率为100%,以简化致动器的模型。Further, the static torque of the actuator is calculated according to the principle of virtual work. When the angular velocity When equal to zero, use the principle of virtual work to calculate torque/> , the static torque is used as the dynamic torque/> The initial value of , and considering that the gas temperature of the soft exoskeleton does not change much, the gas can be regarded as an isothermal expansion process, that is, the conversion efficiency is 100%, to simplify the actuator model.

,/>,/>代入上述动态方程,即可得到/>,即Will ,/> ,/> and Substituting into the above dynamic equation, we can get/> ,Right now .

进一步的,可以表示为:/>,/>是一个非线性函数,p是气体压力传感器的测量值,/>是系统输入。further, It can be expressed as:/> , ,/> is a nonlinear function, p is the measured value of the gas pressure sensor,/> is the system input.

进一步的,考虑到由于致动器内腔的气体压强决定软体弯曲刚度,而建立气体压强的过程、导管里气体流速、弹性应变过程导致系统存在动态响应时滞,在系统输出中引入动态响应时滞,此时,非线性系统的输出为:,/>,即,/>,/>表示动态响应时滞。Furthermore, considering that the gas pressure in the inner cavity of the actuator determines the bending stiffness of the software, and the process of establishing gas pressure, the gas flow rate in the conduit, and the elastic strain process lead to a dynamic response time lag in the system, when introducing dynamic response into the system output lag, at this time, the output of the nonlinear system is: ,/> , , that is,/> ,/> Represents dynamic response delay.

因此,动力学模型可以表示为:,其中,/>Therefore, the dynamic model can be expressed as: , where,/> .

对于步骤S25,为了简化在后续动力学模型使用时人机耦合控制器的设计和状态估是包括雅可比矩阵线性化、泰勒展开和非线性动态逆控制中的任一种。For step S25, in order to simplify the design and state estimation of the human-machine coupling controller when using the subsequent dynamic model, any one of Jacobian matrix linearization, Taylor expansion and nonlinear dynamic inverse control is included.

雅可比矩阵线性化即可导函数雅可比矩阵线性化方法,使用从致动器系统非线性状态空间模型(即致动器的动力学模型)中导出的状态转移雅可比矩阵、输入雅可比矩阵、输出雅可比矩阵,用于设计线性控制器,以及设计卡尔曼速度和扭矩估计器,即可得到用于无速度和无扭矩的软体外骨骼控制器。Jacobian matrix linearization, that is, the derivative function Jacobian matrix linearization method, uses the state transition Jacobian matrix derived from the nonlinear state space model of the actuator system (i.e., the dynamic model of the actuator), the input Jacobian matrix , output the Jacobian matrix, which is used to design linear controllers, and design Kalman speed and torque estimators, you can get a soft exoskeleton controller for speed-free and torque-free.

研究致动器系统非线性状态空间模型(即致动器的动力学模型)的泰勒展开线性化状态空间模型,也可以设计出线性控制器。A linear controller can also be designed by studying the Taylor expansion linearized state space model of the actuator system's nonlinear state space model (i.e., the dynamic model of the actuator).

通过研究软体外骨骼致动器的动力学模型的非线性动态逆控制方法和非线性系统反馈线性化控制算法,将软体致动器的非线性方程转换为易于控制的线性形式,也可以得到线性致动控制器。By studying the nonlinear dynamic inverse control method of the dynamic model of the soft exoskeleton actuator and the nonlinear system feedback linearization control algorithm, the nonlinear equation of the soft exoskeleton actuator is converted into an easy-to-control linear form, and the linear form can also be obtained Activate the controller.

进一步的,为了提高动力学模型的有效性和线性化算法的准确性,可以将将制作好的外骨骼安装到具有生物力学特性人工仿生上肢模型的试验台上,进行气体驱动外骨骼实验。用空气质量流量仪记录比例阀输出的气体质量流量,压强传感器记录比例阀气源压强、致动器内腔压强,力/扭矩仪记录致动器的输出扭矩,角度传感器记录弯曲角度。在得到各项数据后,进行实验验证,分析出动力学模型的误差,并根据该误差对动力学模型(即线性化后得到的控制器模型)结构和参数进行优化。Furthermore, in order to improve the effectiveness of the dynamic model and the accuracy of the linearization algorithm, the prepared exoskeleton can be installed on the test bench of the artificial bionic upper limb model with biomechanical properties to conduct gas-driven exoskeleton experiments. Use an air mass flow meter to record the gas mass flow output by the proportional valve, a pressure sensor to record the gas source pressure of the proportional valve and the pressure in the actuator cavity, a force/torque meter to record the output torque of the actuator, and an angle sensor to record the bending angle. After obtaining various data, conduct experimental verification, analyze the error of the dynamic model, and optimize the structure and parameters of the dynamic model (that is, the controller model obtained after linearization) based on the error.

实验验证可以分为直接驱动实验、人机耦合控制实验、无角度和无扭矩传感器控制实验三种方法。Experimental verification can be divided into three methods: direct drive experiment, human-machine coupling control experiment, and angle-free and torque-less sensor control experiment.

采用直接驱动实验时,为动力学模型设计多个激励电压信号,驱动外骨骼运动,并记录实验数据,并将实验数据与动力学模型的计算机仿真结果比较,得到并分析动力学模型的误差,以优化动力学模型结构和参数,直到获得精确匹配(即优化后)的动力学模型。When using direct drive experiments, multiple excitation voltage signals are designed for the dynamic model to drive the movement of the exoskeleton, and the experimental data are recorded. The experimental data are compared with the computer simulation results of the dynamic model, and the errors of the dynamic model are obtained and analyzed. To optimize the kinetic model structure and parameters until an exact matching (i.e. optimized) kinetic model is obtained.

采用人机耦合控制实验时,使用人工仿生上肢模型,测量和分析线性化控制算法的误差,用于优化模型的线性化算法。When using human-machine coupling control experiments, an artificial bionic upper limb model is used to measure and analyze the errors of the linearization control algorithm, which is used to optimize the linearization algorithm of the model.

采用无角度和无扭矩传感器控制实验,可以验证和优化动力学模型的线性化估计器的精度。Using angle- and torque-free sensor control experiments, the accuracy of the linearized estimator of the dynamic model can be verified and optimized.

为了进一步验证动力学模型的通用性和有效性,并优化动力学模型,可以使用不同约束结构的硅胶软体外骨骼致动器和高弹力布料折叠制作的软体外骨骼致动器进行驱动实验。In order to further verify the versatility and effectiveness of the dynamic model and optimize the dynamic model, driving experiments can be conducted using silicone soft exoskeleton actuators with different constraint structures and soft exoskeleton actuators made by folding high-elastic fabrics.

上述步骤S21至S25及其进一步的实施方式中,通过设系统状态变量为x=[Ein,Ep,Eout,],系统输入u=G,系统输出/>,建立了一个软体外骨骼的致动器的非线性状态空间模型H2,即动力学模型。在该动力学模型中,致动器内腔的气体压强将决定软体致动器弯曲所需的刚度,并引入气体压强的过程、导管里气体流速、弹性应变过程所导致的系统的动态响应时滞,用功率计算助力动态扭矩,虚功原理计算静态扭矩,使得不受人肢体惯性质量、阻力或牵引力的制约。同时,使用线性化算法对致动器的动力学模型进行处理,可以研究和分析线性化带来的误差和不精确性,为控制器和状态估计器设计提供准确的气动软体外骨骼致动器模型的线性化算法,即线性化的制动控制器,提升动力学模型的可控制性和可观测性,确保控制所需的反馈信息可被测量或观测,进而有助于提升软体外骨骼控制的鲁棒性。In the above steps S21 to S25 and its further implementation, by assuming the system state variable as x=[E in ,E p ,E out , ], system input u = G , system output/> , a nonlinear state space model H2, the dynamic model, of a soft exoskeleton actuator was established. In this dynamic model, the gas pressure in the actuator cavity will determine the stiffness required for bending of the soft actuator, and the dynamic response time of the system caused by the process of gas pressure, gas flow rate in the conduit, and elastic strain process will be introduced. Hysteresis, using power to calculate the dynamic torque of the assist, and the principle of virtual work to calculate the static torque, so that it is not restricted by the inertial mass, resistance or traction force of the human body. At the same time, the linearization algorithm is used to process the dynamic model of the actuator, and the errors and inaccuracies caused by linearization can be studied and analyzed to provide accurate pneumatic soft exoskeleton actuators for controller and state estimator design. The linearization algorithm of the model, that is, the linearized brake controller, improves the controllability and observability of the dynamic model and ensures that the feedback information required for control can be measured or observed, thereby helping to improve software exoskeleton control. of robustness.

进一步的,本发明实施方式提供的软体外骨骼控制方法还可以包括构建电磁比例阀的气体流量模型的步骤,考虑到电磁比例阀的气体流动近似为理想气体通过收缩喷管的一维等熵流动,即流过电磁比例阀的气体质量流量是由阀门的有效开口面积及出入端口的压强比等因素来决定,因此可以引入Sanville气体质量流量公式和理想气体状态方程,建立电磁比例阀的非线性模型。在一种可能的实施方式中,参照图5,可以通过以下步骤实现。Furthermore, the soft exoskeleton control method provided by the embodiment of the present invention may also include the step of constructing a gas flow model of the electromagnetic proportional valve, considering that the gas flow of the electromagnetic proportional valve is approximately a one-dimensional isentropic flow of ideal gas through the shrinking nozzle. , that is, the gas mass flow rate flowing through the electromagnetic proportional valve is determined by factors such as the effective opening area of the valve and the pressure ratio of the inlet and outlet ports. Therefore, the Sanville gas mass flow formula and the ideal gas state equation can be introduced to establish the nonlinearity of the electromagnetic proportional valve. Model. In a possible implementation, referring to Figure 5, it can be implemented through the following steps.

S31,基于电磁比例阀的实验输入电压和实验气体流量,拟合出电磁比例阀的电压流量方程。S31. Based on the experimental input voltage and experimental gas flow of the electromagnetic proportional valve, fit the voltage flow equation of the electromagnetic proportional valve.

在本实施方式中,电压流量方程表示电磁比例阀21的输入电压、流量系数和有效开口面积的关系。In this embodiment, the voltage-flow equation represents the relationship between the input voltage, the flow coefficient, and the effective opening area of the electromagnetic proportional valve 21 .

S32,基于Sanville流量公式和电压流量方程,得到电磁比例阀的气体流量模型。S32, based on the Sanville flow formula and voltage flow equation, obtain the gas flow model of the electromagnetic proportional valve.

可以通过流量计和传感器获取电磁比例阀的多组实验输入电压和实验气体流量,进而可以使用最小二乘法、逐步回归法、多项式拟合、对数拟合和伽马调节等,对电磁比例阀的多组实验输入电压和实验气体流量进行曲线拟合,得到电压流量方程,在本实施方式电压流量方程可以表示为Multiple sets of experimental input voltages and experimental gas flow rates of the electromagnetic proportional valve can be obtained through flow meters and sensors, and then the least squares method, stepwise regression method, polynomial fitting, logarithmic fitting, and gamma adjustment can be used to analyze the electromagnetic proportional valve. Curve fitting is performed on multiple sets of experimental input voltages and experimental gas flows to obtain the voltage flow equation. In this embodiment, the voltage flow equation can be expressed as .

电磁比例阀的气体流量遵循Sanville流量公式,因此,可以使用Sanville流量公式对电磁比例阀的气体流量进行表示。The gas flow rate of the solenoid proportional valve follows the Sanville flow formula. Therefore, the gas flow rate of the solenoid proportional valve can be expressed using the Sanville flow formula.

Sanville流量公式为:,其中,/>表征气体流量,C表征比例阀的流量系数(衡量阀门的流通能力),A表征比例阀的有效开口面积,/>表征摩尔气体常数,/>表征温度,/>表征气源压强,/>表征容腔内气体压强,/>表征驱动电压,/>为一种计算方式。The Sanville flow formula is: , where,/> Characterizes the gas flow, C represents the flow coefficient of the proportional valve (measuring the flow capacity of the valve), A represents the effective opening area of the proportional valve,/> Characterizing the molar gas constant,/> Characterizing temperature,/> Indicates the gas source pressure,/> Characterizes the gas pressure in the chamber,/> Characterizing the driving voltage,/> as a calculation method.

将电压流量方程代入Sanville流量公式,即可得到电磁比例阀的气体流量模型,气体流量模型可以表示为:,此时,/>表示电磁比例阀的驱动电压,在这个模型中,输入变量是比例阀驱动电压u,输出变量是气体流量G,状态变量是气源压强和内腔气压强。By substituting the voltage flow equation into the Sanville flow formula, the gas flow model of the electromagnetic proportional valve can be obtained. The gas flow model can be expressed as: , at this time,/> Represents the driving voltage of the electromagnetic proportional valve. In this model, the input variable is the proportional valve driving voltage u, the output variable is the gas flow rate G , and the state variables are the gas source pressure and the inner cavity gas pressure.

通过上述步骤S31及S32,即可得到高精确度的电磁比例阀的气体流量模型。Through the above steps S31 and S32, a highly accurate gas flow model of the electromagnetic proportional valve can be obtained.

上述软体外骨骼控制方法中,提出使用理想气体状态方程、气体能量转换、软体致动器弯曲做功的物理学原理,建立软体外骨骼的致动器的动力学模型,该动力学模型不受人肢体惯性质量、阻力或牵引力的制约,适用于不同结构的气动软体外骨骼致动器,并基于该动力学模型,结合电磁比例阀的气体流量模型,对电磁比例阀的驱动电压进行反馈调节,从而能够极大地提升软体外骨骼控制的稳定性和鲁棒性。In the above-mentioned soft exoskeleton control method, it is proposed to use the physical principles of the ideal gas state equation, gas energy conversion, and bending work of the soft actuator to establish a dynamic model of the actuator of the soft exoskeleton. This dynamic model is not subject to human influence. The constraints of limb inertial mass, resistance or traction are applicable to pneumatic soft exoskeleton actuators of different structures. Based on this dynamic model and combined with the gas flow model of the electromagnetic proportional valve, the driving voltage of the electromagnetic proportional valve is feedback adjusted. This can greatly improve the stability and robustness of software exoskeleton control.

基于与上述软体外骨骼控制方法相同的构思,在一种可能的实施方式中,还提供了一种软体外骨骼控制装置60,可以应用于图1中的软体外骨骼控制系统100中。参照图6,软体外骨骼控制装置60可以包括流量估计模块601、运动估计模块602、估计计算模块603、反馈计算模块604和控制模块605。Based on the same concept as the above-mentioned software exoskeleton control method, in a possible implementation, a software exoskeleton control device 60 is also provided, which can be applied to the software exoskeleton control system 100 in FIG. 1 . Referring to FIG. 6 , the software exoskeleton control device 60 may include a flow estimation module 601 , a motion estimation module 602 , an estimation calculation module 603 , a feedback calculation module 604 and a control module 605 .

流量估计模块601,用于基于电磁比例阀在当前时刻的驱动电压,利用电磁比例阀的气体流量模型,计算出电磁比例阀的气体流量估计量。The flow estimation module 601 is used to calculate the gas flow estimate of the electromagnetic proportional valve based on the driving voltage of the electromagnetic proportional valve at the current moment and using the gas flow model of the electromagnetic proportional valve.

运动估计模块602,用于利用致动器的动力学模型和气体流量估计量,计算出运动估计量。其中,运动估计量包括扭矩估计量和弯曲角度估计量中的至少一个。The motion estimation module 602 is used to calculate the motion estimate using the dynamic model of the actuator and the gas flow estimate. The motion estimate includes at least one of a torque estimate and a bending angle estimate.

估计计算模块603,用于根据当前时刻的控制命令、运动估计量和所述气体流量估计量,生成流量控制命令。The estimation calculation module 603 is configured to generate a flow control command based on the control command at the current moment, the motion estimate, and the gas flow estimate.

反馈计算模块604,用于从接收的流量控制命令中提取出目标流量,根据气体流量估计量和所述目标流量,计算出电磁比例阀的目标驱动电压。The feedback calculation module 604 is used to extract the target flow rate from the received flow control command, and calculate the target drive voltage of the electromagnetic proportional valve according to the gas flow estimate and the target flow rate.

控制模块605,用于控制电磁比例阀按目标驱动电压工作,以使致动器基于所述目标流量和所述致动器的动力学模型,得到软体外骨骼的扭矩和弯曲角度。The control module 605 is used to control the electromagnetic proportional valve to operate according to the target driving voltage, so that the actuator can obtain the torque and bending angle of the soft exoskeleton based on the target flow rate and the dynamic model of the actuator.

其中,致动器的动力学模型为以软体外骨骼的扭矩和角速度的乘积作为输出功率,并基于输出功率构建得到。Among them, the dynamic model of the actuator is based on the product of the torque and angular velocity of the soft exoskeleton as the output power, and is constructed based on the output power.

进一步的,还可以包括模型构建模块,模型构建模型用于实现上述步骤S21-S25以及步骤S31-S32。Furthermore, a model building module may also be included, and the model building model is used to implement the above steps S21-S25 and steps S31-S32.

上述软体外骨骼控制装置60中,通过流量估计模块601、运动估计模块602、估计计算模块603、反馈计算模块604和控制模块605的协同作用,基于电磁比例阀在当前时刻的驱动电压,利用电磁比例阀的气体流量模型,计算出电磁比例阀的气体流量估计量,并利用致动器的动力学模型和气体流量估计量,计算出运动估计量,从而根据当前时刻的控制命令、运动估计量和气体流量估计量生成流量控制命令,从流量控制命令中提取出目标流量,根据气体流量估计量和目标流量计算出电磁比例阀的目标驱动电压,从而控制电磁比例阀按目标驱动电压工作,使软体外骨骼的致动器基于目标流量和致动器的动力学模型,得到软体外骨骼的扭矩和弯曲角度,以进行工作,且软体外骨骼的致动器的动力学模型为以软体外骨骼的扭矩和角速度的乘积作为输出功率,并基于输出功率构建得到,使软体外骨骼致动器的动力学模型不受人肢体和外骨骼的惯性质量的制约,从而能够极大地提高软体外骨骼控制的稳定性和鲁棒性。In the above-mentioned software exoskeleton control device 60, through the synergy of the flow estimation module 601, the motion estimation module 602, the estimation calculation module 603, the feedback calculation module 604 and the control module 605, based on the driving voltage of the electromagnetic proportional valve at the current moment, the electromagnetic The gas flow model of the proportional valve calculates the gas flow estimate of the electromagnetic proportional valve, and uses the dynamic model of the actuator and the gas flow estimate to calculate the motion estimate, so as to calculate the motion estimate based on the control command and motion estimate at the current moment. and the gas flow estimate to generate a flow control command, extract the target flow rate from the flow control command, calculate the target drive voltage of the electromagnetic proportional valve based on the gas flow estimate and the target flow rate, thereby controlling the electromagnetic proportional valve to work according to the target drive voltage, so that Based on the target flow rate and the dynamic model of the actuator, the actuator of the soft exoskeleton obtains the torque and bending angle of the soft exoskeleton to work, and the dynamic model of the actuator of the soft exoskeleton is based on the soft exoskeleton. The product of torque and angular velocity is used as the output power and is constructed based on the output power, so that the dynamic model of the soft exoskeleton actuator is not restricted by the inertial mass of the human limb and the exoskeleton, thereby greatly improving the control of the soft exoskeleton stability and robustness.

关于软体外骨骼控制装置60的具体限定可以参见上文中对于软体外骨骼10控制方法的限定,在此不再赘述。上述软体外骨骼控制装置60中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于电子设备70中的处理器中,也可以以软件形式存储于电子设备70的存储器中,以便于处理器调用执行以上各个模块对应的操作。For specific limitations on the software exoskeleton control device 60, please refer to the above limitations on the control method of the software exoskeleton 10, which will not be described again here. Each module in the above-mentioned software exoskeleton control device 60 can be implemented in whole or in part by software, hardware and combinations thereof. Each of the above modules may be embedded in or independent of the processor in the electronic device 70 in the form of hardware, or may be stored in the memory of the electronic device 70 in the form of software, so that the processor can call and execute operations corresponding to the above modules.

在一种实施方式中,提供了一种电子设备70,该电子设备70可以是终端,其内部结构图可以如图7所示。该电子设备70包括通过系统总线连接的处理器、存储器、通信接口和输入装置。其中,该电子设备70的处理器用于提供计算和控制能力。该电子设备70的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备70的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、近场通信(NFC)或其他技术实现。该计算机程序被处理器执行时实现如上述实施方式提供的软体外骨骼10控制方法。In one embodiment, an electronic device 70 is provided. The electronic device 70 may be a terminal, and its internal structure diagram may be as shown in FIG. 7 . The electronic device 70 includes a processor, memory, communication interface and input device connected through a system bus. Wherein, the processor of the electronic device 70 is used to provide computing and control capabilities. The memory of the electronic device 70 includes non-volatile storage media and internal memory. The non-volatile storage medium stores operating systems and computer programs. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media. The communication interface of the electronic device 70 is used for wired or wireless communication with external terminals. The wireless mode can be implemented through WIFI, operator network, near field communication (NFC) or other technologies. When the computer program is executed by the processor, the control method of the software exoskeleton 10 provided in the above embodiments is implemented.

图7中示出的结构,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的电子设备70的限定,具体的电子设备70可以包括比图7中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。The structure shown in Figure 7 is only a block diagram of a part of the structure related to the solution of the present invention, and does not constitute a limitation on the electronic device 70 to which the solution of the present invention is applied. The specific electronic device 70 may include other components than those in Figure 7 More or fewer parts are shown, or certain parts are combined, or have different parts arrangements.

在一种实施方式中,本发明提供的软体外骨骼控制装置60可以实现为一种计算机程序的形式,计算机程序可在如图7所示的电子设备70上运行。电子设备70的存储器中可存储组成该软体外骨骼控制装置60的各个程序模块,比如,图6所示的流量估计模块601、运动估计模块602、估计计算模块603、反馈计算模块604和控制模块605。各个程序模块构成的计算机程序使得处理器执行本说明书中描述的软体外骨骼10控制方法中的步骤。In one embodiment, the software exoskeleton control device 60 provided by the present invention can be implemented in the form of a computer program, and the computer program can run on the electronic device 70 as shown in FIG. 7 . The memory of the electronic device 70 can store various program modules that make up the software exoskeleton control device 60, such as the flow estimation module 601, the motion estimation module 602, the estimation calculation module 603, the feedback calculation module 604 and the control module shown in Figure 6 605. The computer program composed of each program module causes the processor to execute the steps in the method for controlling the software exoskeleton 10 described in this specification.

例如,图7所示的电子设备70可以通过如图6所示的软体外骨骼控制装置60中的流量估计模块601执行步骤S11。电子设备70可以通过运动估计模块602执行步骤S13。电子设备70可以通过估计计算模块603执行步骤S15。电子设备70可以通过反馈计算模块604执行步骤S17。电子设备70可以通过控制模块605执行步骤S19。For example, the electronic device 70 shown in FIG. 7 may perform step S11 through the flow estimation module 601 in the software exoskeleton control device 60 shown in FIG. 6 . The electronic device 70 may perform step S13 through the motion estimation module 602. The electronic device 70 may perform step S15 through the estimation calculation module 603 . The electronic device 70 may perform step S17 through the feedback calculation module 604. The electronic device 70 may perform step S19 through the control module 605.

在一种实施方式中,提供了一种电子设备70,包括存储器和处理器,该存储器存储有机器可执行指令,该处理器执行机器可执行指令时实现以下步骤:基于电磁比例阀在当前时刻的驱动电压,利用电磁比例阀的气体流量模型,计算出电磁比例阀的气体流量估计量;利用致动器的动力学模型和气体流量估计量,计算出运动估计量;根据当前时刻的控制命令、运动估计量和气体流量估计量,生成流量控制命令;从流量控制命令中提取出目标流量,根据气体流量估计量和标流量,计算出电磁比例阀的目标驱动电压;控制电磁比例阀按目标驱动电压工作,以使致动器基于目标流量和致动器的动力学模型,得到软体外骨骼的扭矩和弯曲角度。In one embodiment, an electronic device 70 is provided, including a memory and a processor. The memory stores machine-executable instructions. When the processor executes the machine-executable instructions, it implements the following steps: based on the electromagnetic proportional valve at the current moment The driving voltage of the electromagnetic proportional valve is used to calculate the gas flow estimate of the electromagnetic proportional valve; the motion estimate is calculated using the dynamic model of the actuator and the gas flow estimate; according to the control command at the current moment , motion estimate and gas flow estimate, generate a flow control command; extract the target flow rate from the flow control command, and calculate the target drive voltage of the electromagnetic proportional valve according to the gas flow estimate and standard flow rate; control the electromagnetic proportional valve according to the target The driving voltage is operated so that the actuator obtains the torque and bending angle of the soft exoskeleton based on the target flow rate and the dynamic model of the actuator.

在一种实施方式中,提供了一种存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如下步骤:基于电磁比例阀在当前时刻的驱动电压,利用电磁比例阀的气体流量模型,计算出电磁比例阀的气体流量估计量;利用致动器的动力学模型和气体流量估计量,计算出运动估计量;根据当前时刻的控制命令、运动估计量和气体流量估计量,生成流量控制命令;从接收的流量控制命令中提取出目标流量,根据气体流量估计量和标流量,计算出电磁比例阀的目标驱动电压;控制电磁比例阀按目标驱动电压工作,以使致动器基于目标流量和致动器的动力学模型,得到软体外骨骼的扭矩和弯曲角度。In one embodiment, a storage medium is provided with a computer program stored thereon. When the computer program is executed by a processor, the following steps are implemented: based on the driving voltage of the electromagnetic proportional valve at the current moment, utilizing the gas flow rate of the electromagnetic proportional valve. model to calculate the gas flow estimate of the electromagnetic proportional valve; use the actuator's dynamic model and gas flow estimate to calculate the motion estimate; based on the control command, motion estimate and gas flow estimate at the current moment, generate Flow control command; extract the target flow rate from the received flow control command, calculate the target drive voltage of the electromagnetic proportional valve based on the gas flow estimate and the standard flow rate; control the electromagnetic proportional valve to operate according to the target drive voltage to make the actuator Based on the target flow rate and the dynamic model of the actuator, the torque and bending angle of the soft exoskeleton are obtained.

在本发明所提供的几个实施方式中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施方式仅仅是示意性的,例如,附图中的流程图和框图显示了根据本发明的多个实施方式的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。In the several embodiments provided by the present invention, it should be understood that the disclosed devices and methods can also be implemented in other ways. The device implementations described above are only illustrative. For example, the flowcharts and block diagrams in the accompanying drawings show the possible implementation architecture, functions and functions of the devices, methods and computer program products according to various embodiments of the present invention. operate. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components for implementing the specified logical function(s). Executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved. It will also be noted that each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts. , or can be implemented using a combination of specialized hardware and computer instructions.

另外,在本发明各个实施方式中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。In addition, each functional module in each embodiment of the present invention can be integrated together to form an independent part, each module can exist alone, or two or more modules can be integrated to form an independent part.

所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。If the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present invention essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product. The computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in various embodiments of the present invention. The aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .

以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection scope of the present invention.

Claims (10)

1.一种软体外骨骼控制方法,其特征在于,应用于所述软体外骨骼的控制系统,所述软体外骨骼还包括电磁比例阀和致动器,所述方法包括:1. A soft exoskeleton control method, characterized in that, applied to the control system of the soft exoskeleton, the soft exoskeleton further includes an electromagnetic proportional valve and an actuator, and the method includes: 基于所述电磁比例阀在当前时刻的驱动电压,利用所述电磁比例阀的气体流量模型,计算出所述电磁比例阀的气体流量估计量;Based on the driving voltage of the electromagnetic proportional valve at the current moment, use the gas flow model of the electromagnetic proportional valve to calculate the gas flow estimate of the electromagnetic proportional valve; 利用所述致动器的动力学模型和所述气体流量估计量,计算出运动估计量;其中,所述运动估计量包括扭矩估计量和弯曲角度估计量中的至少一个;Using the dynamic model of the actuator and the gas flow estimate, a motion estimate is calculated; wherein the motion estimate includes at least one of a torque estimate and a bending angle estimate; 根据当前时刻的控制命令、所述运动估计量和所述气体流量估计量,生成流量控制命令;Generate a flow control command according to the control command at the current moment, the motion estimate and the gas flow estimate; 从所述流量控制命令中提取出目标流量,根据所述气体流量估计量和所述目标流量,计算出所述电磁比例阀的目标驱动电压;控制所述电磁比例阀按所述目标驱动电压工作,以使所述致动器基于所述目标流量和所述致动器的动力学模型,得到所述软体外骨骼的扭矩或弯曲角度;Extract the target flow rate from the flow control command, calculate the target drive voltage of the electromagnetic proportional valve according to the gas flow estimate and the target flow rate; control the electromagnetic proportional valve to operate according to the target drive voltage , so that the actuator can obtain the torque or bending angle of the soft exoskeleton based on the target flow rate and the dynamic model of the actuator; 其中,所述致动器的动力学模型为以所述软体外骨骼的扭矩和角速度的乘积作为输出功率,并基于所述输出功率构建得到。Wherein, the dynamic model of the actuator is constructed based on the product of the torque and the angular velocity of the soft exoskeleton as the output power. 2.根据权利要求1所述的软体外骨骼控制方法,其特征在于,所述致动器还包括致动控制器,所述方法还包括构建所述致动控制器的步骤,该步骤包括:2. The soft exoskeleton control method according to claim 1, wherein the actuator further includes an actuation controller, and the method further includes the step of constructing the actuation controller, which step includes: 将所述软体外骨骼的扭矩和角速度的乘积,作为所述软体外骨骼的输出功率;The product of the torque and the angular velocity of the soft exoskeleton is used as the output power of the soft exoskeleton; 基于所述输出功率和所述气体流量模型输出的气体流量,构建所述致动器的动力学模型;Construct a dynamic model of the actuator based on the output power and the gas flow output by the gas flow model; 使用线性化算法对所述动力学模型进行处理,得到致动控制器。The dynamic model is processed using a linearization algorithm to obtain an actuation controller. 3.根据权利要求2所述的软体外骨骼控制方法,其特征在于,所述基于所述输出功率和所述气体流量模型输出的气体流量,构建所述致动器的动力学模型的步骤,包括:3. The software exoskeleton control method according to claim 2, characterized in that the step of constructing a dynamic model of the actuator based on the output power and the gas flow output by the gas flow model, include: 利用理想气体状态方程,表示出所述致动器容腔内的气体体积;Use the ideal gas equation of state to express the gas volume in the actuator chamber; 使用气体压强和所述电磁比例阀输入的气体流量的乘积,表示出输入气体功率;Use the product of the gas pressure and the gas flow rate input by the solenoid proportional valve to express the input gas power; 基于所述气体体积和气体压强的乘积,表示出所述致动器的积蓄势能;Express the accumulated potential energy of the actuator based on the product of the gas volume and the gas pressure; 根据所述输入气体功率表示出输入气体能量,根据所述输出功率表示出输出能量,根据所述角速度表示出软体外骨骼的弯曲角度;The input gas energy is expressed according to the input gas power, the output energy is expressed according to the output power, and the bending angle of the soft exoskeleton is expressed according to the angular velocity; 以所述气体流量模型输出的气体流量作为系统输入,以所述输入气体能量、所述积蓄势能、所述输出能量和所述弯曲角度作为系统状态变量,使用所述输出功率计算动态助力扭矩,基于虚功原理计算静态扭矩,构建所述致动器的非线性状态空间模型。The gas flow output by the gas flow model is used as system input, the input gas energy, the accumulated potential energy, the output energy and the bending angle are used as system state variables, and the output power is used to calculate the dynamic assist torque, The static torque is calculated based on the principle of virtual work, and the nonlinear state space model of the actuator is constructed. 4.根据权利要求1至3中任一项所述的软体外骨骼控制方法,其特征在于,所述动力学模型包括:4. The software exoskeleton control method according to any one of claims 1 to 3, characterized in that the dynamic model includes: 其中,,/>,/>表征气体流量,表征气体压强,/>表征摩尔气体常数,/>表征温度,/>表征空气的摩尔质量,/>表征气体质量,/>表征动态响应时滞,/>表征外骨骼内腔的高度,/>表征外骨骼内腔的横截面积,/>表征转换效率,/>表征输入能量,/>表征积蓄势能,/>表征输出能量,/>表征软体外骨骼的弯曲角度。in, ,/> ,/> Characterizing gas flow, Characterizing gas pressure,/> Characterizing the molar gas constant,/> Characterizing temperature,/> Characterizes the molar mass of air,/> Characterize gas quality,/> Characterizes dynamic response time delay,/> Characterizes the height of the exoskeleton cavity,/> Characterizes the cross-sectional area of the exoskeleton lumen,/> Characterizes conversion efficiency,/> Characterizes the input energy,/> Represents accumulated potential energy,/> Characterizes the output energy,/> Characterizes the bending angle of the soft exoskeleton. 5.根据权利要求1至3中任一项所述的软体外骨骼控制方法,其特征在于,所述利用所述致动器的动力学模型和所述气体流量估计量,计算出运动估计量的步骤,包括:5. The software exoskeleton control method according to any one of claims 1 to 3, characterized in that the motion estimate is calculated using the dynamic model of the actuator and the gas flow estimate. The steps include: 当控制模式为动态助力模式时,基于所述气体流量估计量以及所述软体外骨骼内腔的气体压强和温度,利用所述致动器的动力学模型,得到所述致动器的扭矩估计量;When the control mode is the dynamic assist mode, the torque estimate of the actuator is obtained by using the dynamic model of the actuator based on the gas flow estimate and the gas pressure and temperature of the inner cavity of the soft exoskeleton. quantity; 当控制模式为肢体被动模式时,基于所述气体流量估计量以及所述软体外骨骼内腔的气体压强和温度,利用所述致动器的动力学模型,得到所述致动器的弯曲角度估计量。When the control mode is the limb passive mode, based on the gas flow estimate and the gas pressure and temperature of the soft exoskeleton cavity, the bending angle of the actuator is obtained by using the dynamic model of the actuator estimator. 6.根据权利要求1至3中任一项所述的软体外骨骼控制方法,其特征在于,所述方法还包括构建所述电磁比例阀的气体流量模型的步骤,该步骤包括:6. The software exoskeleton control method according to any one of claims 1 to 3, characterized in that the method further includes the step of constructing a gas flow model of the electromagnetic proportional valve, which step includes: 基于所述电磁比例阀的实验输入电压和实验气体流量,拟合出所述电磁比例阀的电压流量方程;其中,所述电压流量方程表示所述电磁比例阀的输入电压、流量系数和有效开口面积的关系;Based on the experimental input voltage and experimental gas flow of the electromagnetic proportional valve, the voltage flow equation of the electromagnetic proportional valve is fitted; wherein the voltage flow equation represents the input voltage, flow coefficient and effective opening of the electromagnetic proportional valve area relationship; 基于Sanville流量公式和所述电压流量方程,得到所述电磁比例阀的气体流量模型。Based on the Sanville flow formula and the voltage flow equation, a gas flow model of the electromagnetic proportional valve is obtained. 7.根据权利要求6所述的软体外骨骼控制方法,其特征在于,所述基于所述电磁比例阀的实验输入电压和实验气体流量,拟合出所述电磁比例阀的电压流量方程的步骤,包括:7. The software exoskeleton control method according to claim 6, characterized in that the step of fitting the voltage flow equation of the electromagnetic proportional valve based on the experimental input voltage and experimental gas flow of the electromagnetic proportional valve ,include: 使用最小二乘法,对所述电磁比例阀的实验输入电压和实验气体流量进行曲线拟合,得到电压流量方程。Using the least squares method, curve fitting was performed on the experimental input voltage and experimental gas flow rate of the electromagnetic proportional valve to obtain the voltage flow equation. 8.根据权利要求6所述的软体外骨骼控制方法,其特征在于,所述气体流量模型包括:8. The software exoskeleton control method according to claim 6, wherein the gas flow model includes: 其中,表征气体流量,/>表征电压流量方程,/>表征摩尔气体常数,/>表征温度,/>表征气源压强,/>表征容腔内气体压强,/>表征驱动电压。in, Characterizing gas flow,/> Characterizing the voltage-flow equation,/> Characterizing the molar gas constant,/> Characterizing temperature,/> Indicates the gas source pressure,/> Characterizes the gas pressure in the chamber,/> Characterizes the driving voltage. 9.根据权利要求2所述的软体外骨骼控制方法,其特征在于,所述线性化算法包括雅可比矩阵线性化、泰勒展开和非线性动态逆控制中的任一种。9. The software exoskeleton control method according to claim 2, wherein the linearization algorithm includes any one of Jacobian matrix linearization, Taylor expansion and nonlinear dynamic inverse control. 10.一种软体外骨骼控制装置,其特征在于,应用于所述软体外骨骼的控制系统,所述软体外骨骼还包括电磁比例阀和致动器,所述软体外骨骼控制装置包括流量估计模块、运动估计模块、估计计算模块、反馈计算模块和控制模块;10. A soft exoskeleton control device, characterized in that, applied to the control system of the soft exoskeleton, the soft exoskeleton further includes an electromagnetic proportional valve and an actuator, and the soft exoskeleton control device includes a flow estimation module, motion estimation module, estimation calculation module, feedback calculation module and control module; 所述流量估计模块,用于基于所述电磁比例阀在当前时刻的驱动电压,利用所述电磁比例阀的气体流量模型,计算出所述电磁比例阀的气体流量估计量;The flow estimation module is used to calculate the gas flow estimate of the electromagnetic proportional valve based on the driving voltage of the electromagnetic proportional valve at the current moment and using the gas flow model of the electromagnetic proportional valve; 所述运动估计模块,用于利用所述致动器的动力学模型和所述气体流量估计量,计算出运动估计量;其中,所述运动估计量包括扭矩估计量和弯曲角度估计量中的至少一个;The motion estimation module is used to calculate a motion estimate using the dynamic model of the actuator and the gas flow estimate; wherein the motion estimate includes a torque estimate and a bending angle estimate. at least one; 所述估计计算模块,用于根据当前时刻的控制命令、所述运动估计量和所述气体流量估计量,生成流量控制命令;The estimation calculation module is used to generate a flow control command according to the control command at the current moment, the motion estimate and the gas flow estimate; 所述反馈计算模块,用于从所述流量控制命令中提取出目标流量,根据所述气体流量估计量和所述目标流量,计算出所述电磁比例阀的目标驱动电压;The feedback calculation module is used to extract the target flow rate from the flow control command, and calculate the target drive voltage of the electromagnetic proportional valve according to the gas flow estimate and the target flow rate; 所述控制模块,用于控制所述电磁比例阀按所述目标驱动电压工作,以使所述致动器基于所述目标流量和所述致动器的动力学模型,得到所述软体外骨骼的扭矩或弯曲角度;The control module is used to control the electromagnetic proportional valve to operate according to the target driving voltage, so that the actuator obtains the soft exoskeleton based on the target flow rate and the dynamic model of the actuator. torque or bending angle; 其中,所述致动器的动力学模型为以所述软体外骨骼的扭矩和角速度的乘积作为输出功率,并基于所述输出功率构建得到。Wherein, the dynamic model of the actuator is constructed based on the product of the torque and the angular velocity of the soft exoskeleton as the output power.
CN202311490476.3A 2023-11-10 2023-11-10 Software exoskeleton control method and device Active CN117226852B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311490476.3A CN117226852B (en) 2023-11-10 2023-11-10 Software exoskeleton control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311490476.3A CN117226852B (en) 2023-11-10 2023-11-10 Software exoskeleton control method and device

Publications (2)

Publication Number Publication Date
CN117226852A true CN117226852A (en) 2023-12-15
CN117226852B CN117226852B (en) 2024-01-26

Family

ID=89088316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311490476.3A Active CN117226852B (en) 2023-11-10 2023-11-10 Software exoskeleton control method and device

Country Status (1)

Country Link
CN (1) CN117226852B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118092146A (en) * 2024-04-28 2024-05-28 山东第一医科大学附属省立医院(山东省立医院) Self-adaptive traction control method of knee joint tractor
CN119388401A (en) * 2024-12-03 2025-02-07 西南交通大学 Sensorless control method and device for pneumatic soft actuator, pneumatic soft actuator and electronic equipment

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066106A (en) * 1998-05-29 2000-05-23 Emergency Medical Systems, Inc. Modular CPR assist device
CN103192406A (en) * 2013-04-08 2013-07-10 北京航空航天大学 Robot joint driver with variable rigidity
CN107139208A (en) * 2017-06-26 2017-09-08 上海交通大学 Dielectric elastomer machinery wrist joint
CN110303478A (en) * 2019-07-29 2019-10-08 北京理工大学 A walking-assisted flexible exoskeleton and its control method
US20190358113A1 (en) * 2017-01-10 2019-11-28 Wandercraft Method for moving an exoskeleton
US20210122040A1 (en) * 2018-04-17 2021-04-29 Vrije Universiteit Brussel Decentralized rotary actuator
US20220054073A1 (en) * 2020-07-16 2022-02-24 Tata Consultancy Services Limited Personalized neuromotor rehabilitation therapy for upper limb using a neuromusculoskeletal arm model
US20220226183A1 (en) * 2019-06-07 2022-07-21 Osind Medi Tech Private Limited A self driven rehabilitation device and method thereof
CN115087417A (en) * 2020-02-10 2022-09-20 万德克拉夫特公司 Method for generating and moving exoskeleton trajectories
US20220331195A1 (en) * 2019-06-24 2022-10-20 Carolyn Liqing Ren Air microfluidics and air minifluidics enabled active compression device, apparel, and method
CN115720515A (en) * 2020-05-27 2023-02-28 漫游机械人技术公司 Direct Drive Pneumatic Actuators for Mobile Robots
CN115755592A (en) * 2023-01-10 2023-03-07 常熟理工学院 Multimodal control method and exoskeleton for adjusting the motion state of three-degree-of-freedom exoskeleton
CN117001641A (en) * 2023-08-16 2023-11-07 上海交通大学 Configurable grid structure pneumatic artificial muscles and functional devices

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066106A (en) * 1998-05-29 2000-05-23 Emergency Medical Systems, Inc. Modular CPR assist device
CN103192406A (en) * 2013-04-08 2013-07-10 北京航空航天大学 Robot joint driver with variable rigidity
US20190358113A1 (en) * 2017-01-10 2019-11-28 Wandercraft Method for moving an exoskeleton
CN107139208A (en) * 2017-06-26 2017-09-08 上海交通大学 Dielectric elastomer machinery wrist joint
US20210122040A1 (en) * 2018-04-17 2021-04-29 Vrije Universiteit Brussel Decentralized rotary actuator
US20220226183A1 (en) * 2019-06-07 2022-07-21 Osind Medi Tech Private Limited A self driven rehabilitation device and method thereof
US20220331195A1 (en) * 2019-06-24 2022-10-20 Carolyn Liqing Ren Air microfluidics and air minifluidics enabled active compression device, apparel, and method
CN110303478A (en) * 2019-07-29 2019-10-08 北京理工大学 A walking-assisted flexible exoskeleton and its control method
CN115087417A (en) * 2020-02-10 2022-09-20 万德克拉夫特公司 Method for generating and moving exoskeleton trajectories
CN115720515A (en) * 2020-05-27 2023-02-28 漫游机械人技术公司 Direct Drive Pneumatic Actuators for Mobile Robots
US20220054073A1 (en) * 2020-07-16 2022-02-24 Tata Consultancy Services Limited Personalized neuromotor rehabilitation therapy for upper limb using a neuromusculoskeletal arm model
CN115755592A (en) * 2023-01-10 2023-03-07 常熟理工学院 Multimodal control method and exoskeleton for adjusting the motion state of three-degree-of-freedom exoskeleton
CN117001641A (en) * 2023-08-16 2023-11-07 上海交通大学 Configurable grid structure pneumatic artificial muscles and functional devices

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDOH, E.; HUANG, X.: "Magnetorheological Damper Design and Numerical Analysis for Assistive knee exoskeleton", 2023 4TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING (ICMTIM), pages 62 - 65 *
BEYL, P: "Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons", IEEE/ASME TRANSACTIONS ON MECHATRONICS, vol. 19, no. 3, pages 1046 - 1056, XP011545216, DOI: 10.1109/TMECH.2013.2268942 *
曹品: "柔性下肢外骨骼的设计与信号检测", 电工技术, no. 2021, pages 61 - 62 *
王飞洋: "编织型气动人工肌肉的特性研究与改进制备", 中国优秀硕士学位论文全文数据库, no. 3, pages 140 - 68 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118092146A (en) * 2024-04-28 2024-05-28 山东第一医科大学附属省立医院(山东省立医院) Self-adaptive traction control method of knee joint tractor
CN119388401A (en) * 2024-12-03 2025-02-07 西南交通大学 Sensorless control method and device for pneumatic soft actuator, pneumatic soft actuator and electronic equipment
CN119388401B (en) * 2024-12-03 2025-07-18 西南交通大学 Sensorless control method and device for pneumatic soft actuator, pneumatic soft actuator and electronic equipment

Also Published As

Publication number Publication date
CN117226852B (en) 2024-01-26

Similar Documents

Publication Publication Date Title
CN117226852B (en) Software exoskeleton control method and device
Park et al. Development of force observer in series elastic actuator for dynamic control
Van Damme et al. Proxy-based sliding mode control of a planar pneumatic manipulator
Wang et al. Parameter identification and model-based nonlinear robust control of fluidic soft bending actuators
Taheri et al. Force and stiffness backstepping-sliding mode controller for pneumatic cylinders
CN110703604B (en) Exoskeleton dynamic model parameter identification method and exoskeleton device
Liu et al. A light soft manipulator with continuously controllable stiffness actuated by a thin McKibben pneumatic artificial muscle
Mancisidor et al. Kinematical and dynamical modeling of a multipurpose upper limbs rehabilitation robot
JP2011069816A (en) System and method for calibrating rotary absolute position sensor
Zhang et al. A wearable soft knee exoskeleton using vacuum-actuated rotary actuator
Van Damme et al. Modeling hysteresis in pleated pneumatic artificial muscles
Guo et al. Design and experiments of pneumatic soft actuators
Haghshenas-Jaryani Adaptive quasi-static motion control of a soft robotic exo-digit in physical human-wearable-soft-robot-interaction
Yang et al. Self-pumping actuation module and its application in untethered soft robots
Erler et al. Experimental comparison of nonlinear motion control methods for a variable stiffness actuator
Zhou et al. Optimization of spring constant of a pneumatic artificial muscle-spring driven antagonistic structure
Taheri et al. Design of robust nonlinear force and stiffness controller for pneumatic actuators
CN114721258B (en) Backstepping control method for lower extremity exoskeleton based on nonlinear extended state observer
Tang et al. Characterization of pneumatic artificial muscle system in an opposing pair configuration
CN112140110A (en) Method and system for calculating actual moment of patient of rehabilitation robot
Smoljkic et al. Compliance computation for continuum types of robots
Andrikopoulos et al. A switched system modeling approach for a Pneumatic Muscle Actuator
Zhou et al. A pneumatic-actuated flexible robotic arm with rigid backbone for high-precision and safe manipulation
Guan et al. A bio-inspired variable-stiffness method based on antagonism
Martin et al. Sensors, identification, and low level control of a flexible anthropomorphic robot hand

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant