CN117190904A - Intelligent identification and remote temperature measurement system and method for sand core of casting sand of aircraft casing - Google Patents
Intelligent identification and remote temperature measurement system and method for sand core of casting sand of aircraft casing Download PDFInfo
- Publication number
- CN117190904A CN117190904A CN202311136587.4A CN202311136587A CN117190904A CN 117190904 A CN117190904 A CN 117190904A CN 202311136587 A CN202311136587 A CN 202311136587A CN 117190904 A CN117190904 A CN 117190904A
- Authority
- CN
- China
- Prior art keywords
- image
- sand
- sand core
- target
- thermal imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Image Analysis (AREA)
Abstract
Description
技术领域Technical field
本发明涉及航空机匣铸造砂型砂芯铸造领域,具体涉及航空机匣铸造砂型砂芯智能识别与远程测温系统及方法。The invention relates to the field of aviation casing casting sand core casting, and in particular to a system and method for intelligent identification and remote temperature measurement of aviation casing casting sand cores.
背景技术Background technique
在机械制造和加工设备行业中,铸件的生产占据非常重要的地位,其中温度是铸件生产过程中的一个重要因素。在航空镁铝合金机匣砂型砂芯铸造的过程中,针对使用树脂材质(材质为树脂砂、树脂材料一般为PEP-SET,树脂砂舂制成型,密度在1.6左右,表面粗糙度一般在Ra6.3-Ra12.5之间)的砂型、砂芯,在铸造过程中,若对生产温度把控不当,容易使砂型产生吸潮、变形、缺肉等缺陷,这些缺陷又会使合金液在浇筑过程中形成卷气、夹杂、多肉以及重要特征缺失,使得浇筑生产出的铸件机械性能降低,严重的还会造成铸件的报废,因此实现对温度的准确把控在航空镁铝合金机匣砂型砂芯铸件铸造生产过程中影响重大。In the machinery manufacturing and processing equipment industry, the production of castings plays a very important role, and temperature is an important factor in the casting production process. In the process of sand core casting of aviation magnesium aluminum alloy casing, for the use of resin material (material is resin sand, the resin material is generally PEP-SET, the resin sand is hammered into shape, the density is about 1.6, and the surface roughness is generally Ra6.3-Ra12.5) sand molds and sand cores. During the casting process, if the production temperature is not properly controlled, the sand mold will easily produce defects such as moisture absorption, deformation, and lack of flesh. These defects will cause the alloy liquid to During the pouring process, air entrainment, inclusions, fleshiness and loss of important features are formed, which reduces the mechanical properties of the castings produced by pouring, and in severe cases causes the scrapping of the castings. Therefore, accurate temperature control is required in the aviation magnesium-aluminum alloy casing. Sand core castings have a significant impact on the casting production process.
在铸造领域中,美国亚什兰公司生产的PEP-SET材料的树脂在航空铝镁合金砂型铸造中被大量应用,随着航空工业的快速发展,采用PEP-SET树脂制造的铝镁合金航空机匣铸件也面临着许多生产问题,比如使用PEP-SET树脂材料的铝镁合金砂型在铸造过程中温度的监测问题,尤其是在铸造流程中砂型合型过程中目标形状的重构及工人遮挡等问题造成识别率低下的问题。In the field of casting, PEP-SET material resin produced by Ashland Company of the United States is widely used in aviation aluminum-magnesium alloy sand casting. With the rapid development of the aviation industry, aluminum-magnesium alloy aircraft made of PEP-SET resin Cassette castings also face many production problems, such as temperature monitoring problems during the casting process of aluminum-magnesium alloy sand molds using PEP-SET resin materials, especially the reconstruction of the target shape and worker occlusion during the sand mold closing process in the casting process. The problem causes low recognition rate.
现有的测温方式主要分为接触式测温与非接触式测温。为了避免破坏铸体完整性,和减少布置温度传感器对温度场分布的影响,采用非接触式测温的方法对铸件进行温度的监控,传统的非接触式手持测温仪需要工人手持测温,操作过程繁琐,只能测量砂型的局部温度,测量效率低且无法24小时测温。Existing temperature measurement methods are mainly divided into contact temperature measurement and non-contact temperature measurement. In order to avoid damaging the integrity of the casting and reduce the impact of the temperature sensor arrangement on the temperature field distribution, the non-contact temperature measurement method is used to monitor the temperature of the casting. The traditional non-contact handheld thermometer requires workers to hold the temperature measurement. The operation process is cumbersome and can only measure the local temperature of the sand mold. The measurement efficiency is low and the temperature cannot be measured 24 hours a day.
目前目标识别技术在现实生活中有着广泛的应用,特别应用在汽车无人驾驶、视频检测、工业检测以及航空航天等领域,目标识别技术通过使用计算机视觉技术和图像处理算法,对铸件进行识别,准确地检测目标铸件的温度,并且可以适应不同形状和尺寸的铸件。因此结合目标识别和非接触测温对于铸造领域是非常有必要的。Currently, target recognition technology has a wide range of applications in real life, especially in fields such as driverless cars, video inspection, industrial inspection, and aerospace. Target recognition technology uses computer vision technology and image processing algorithms to identify castings. Accurately detects the temperature of target castings and can adapt to castings of different shapes and sizes. Therefore, combining target recognition and non-contact temperature measurement is very necessary in the casting field.
发明内容Contents of the invention
为了解决航空机匣铸造过程中砂型砂芯的识别准确率低下以及温度变化导致的铸造缺陷问题,本发明提供了航空机匣铸造砂型砂芯智能识别与远程测温系统及方法。In order to solve the problems of low identification accuracy of sand mold cores and casting defects caused by temperature changes during the aviation casing casting process, the present invention provides an intelligent identification and remote temperature measurement system and method for the sand cores of aviation casing casting.
航空机匣铸造砂型砂芯智能识别与远程测温系统,包括:航空机匣铸件砂型砂芯图像采集模块、温湿度数据采集模块、航空机匣铸件砂型砂芯识别模块、环形光源、计算机和显示器;Aviation casing casting sand core intelligent identification and remote temperature measurement system, including: aviation casing casting sand core image acquisition module, temperature and humidity data acquisition module, aviation casing casting sand core identification module, ring light source, computer and display ;
其中,计算机通过航空机匣铸件砂型砂芯识别模块对图像采集模块采集到的现场砂型可见光图像进行预处理得到特征图像,将特征图像输入到基于深度学习的砂型砂芯识别模型中进行识别,将识别到的砂型砂芯边界框信息通过可见光图像与热成像图像之间的坐标关系映射到热成像图像上,对热成像图像中映射出的砂型砂芯边界框进行图像处理,得到热成像图像中目标砂型砂芯图像,结合热成像温度数据,提取目标砂型砂芯图像的温度数据,记录温度数据;Among them, the computer preprocesses the on-site sand mold visible light image collected by the image acquisition module through the aviation casing casting sand core identification module to obtain the characteristic image, and inputs the characteristic image into the sand core identification model based on deep learning for identification. The identified sand core boundary box information is mapped to the thermal imaging image through the coordinate relationship between the visible light image and the thermal imaging image. Image processing is performed on the sand core boundary box mapped in the thermal imaging image to obtain the thermal imaging image. The target sand core image is combined with the thermal imaging temperature data to extract the temperature data of the target sand core image and record the temperature data;
所述航空机匣铸件砂型砂芯图像采集模块通过热成像双光谱相机采集可见光图像和热成像图像,并将可见光图像和热成像图像以电信号的形式传输给计算机;所述双光谱相机安装在距目标砂型作业区域一段距离墙壁处,以减少现场作业对相机采集图像的干扰;The aviation casing casting sand core image acquisition module collects visible light images and thermal imaging images through a thermal imaging bispectral camera, and transmits the visible light images and thermal imaging images to the computer in the form of electrical signals; the bispectral camera is installed on A certain distance away from the wall of the target sand mold working area to reduce the interference of on-site operations on camera image collection;
所述温湿度数据采集模块通过温湿度传感器采集现场温湿度数据,并将现场环境的温湿度数据传输给计算机,所述温湿度传感器以阵列形式并联布置在砂型、砂芯四周,与所述计算机串口连接,以减少传输距离对数据传输性能的影响;The temperature and humidity data acquisition module collects on-site temperature and humidity data through temperature and humidity sensors, and transmits the temperature and humidity data of the on-site environment to the computer. The temperature and humidity sensors are arranged in parallel around the sand mold and sand core in an array form, and communicate with the computer. Serial port connection to reduce the impact of transmission distance on data transmission performance;
所述航空机匣铸件砂型砂芯识别模块用于识别目标航空机匣铸件砂型砂芯;采用YOLOv5网络模型;所述航空机匣铸造砂型砂芯识别模块构造航空机匣铸件图像的数据集,将采集到的图像数据划分为训练集、验证集、测试集;The aviation casing casting sand core identification module is used to identify the target aviation casing casting sand core; using the YOLOv5 network model; the aviation casing casting sand core identification module constructs a data set of aviation casing casting images, and The collected image data is divided into training set, verification set, and test set;
所述环形光源用于现场航空机匣铸件砂型砂芯的打光;The ring light source is used for lighting the sand core of aviation casing castings on site;
所述计算机用于对系统程序的运行以及图像的识别与处理;The computer is used to run the system program and recognize and process images;
所述显示器用于展示采集到的图像信息以及温度数据。The display is used to display the collected image information and temperature data.
航空机匣铸造砂型砂芯智能识别与远程测温方法,基于上述航空机匣铸造砂型砂芯智能识别与远程测温系统实现,包括以下步骤:The intelligent identification and remote temperature measurement method of aviation casing casting sand cores is implemented based on the above intelligent identification and remote temperature measurement system of aviation casing casting sand cores, including the following steps:
步骤1:对目标航空机匣铸造砂型砂芯进行识别前,开启环形光源;利用图像采集模块的热成像双光谱相机对铸造现场采集可见光图像和热成像图像;并将其传输给计算机;通过温湿度传感器采集铸造现场温湿度数据,并传输给计算机;Step 1: Before identifying the target aviation casing casting sand core, turn on the ring light source; use the thermal imaging dual-spectrum camera of the image acquisition module to collect visible light images and thermal imaging images of the casting site; and transmit them to the computer; through the temperature The humidity sensor collects temperature and humidity data at the casting site and transmits it to the computer;
步骤2:计算机对可见光图像进行图像预处理,包括对图像使用灰度化、图像增强与高斯滤波的方法增强图像特征;Step 2: The computer performs image preprocessing on the visible light image, including using grayscale, image enhancement and Gaussian filtering methods to enhance image features;
步骤3:建立航空机匣铸造砂型砂芯深度学习识别网络模型,将特征图像输入到航空机匣铸造砂型砂芯深度学习识别网络模型中,对图像进行识别,若识别到目标砂型,则在可见光图像中显示目标砂型的识别框,保存识别框的参数并执行步骤4,若否,则执行步骤6;Step 3: Establish a deep learning recognition network model for aviation casing casting sand cores. Input the characteristic image into the deep learning recognition network model for aviation casing casting sand cores. Recognize the image. If the target sand mold is recognized, then in the visible light The identification frame of the target sand mold is displayed in the image. Save the parameters of the identification frame and perform step 4. If not, perform step 6;
所述航空机匣铸造砂型砂芯深度学习识别网络模型的建立,包括以下步骤:The establishment of the deep learning recognition network model of the aviation casing casting sand core includes the following steps:
步骤S1、计算机控制热成像双光谱相机,相机以设定的采集频率对目标航空机匣砂型砂芯的铸造流程的可见光图像进行采集;Step S1: The computer controls the thermal imaging bispectral camera, and the camera collects visible light images of the casting process of the target aviation casing sand core at a set collection frequency;
步骤S2、多次重复步骤S1采集大量图像样本;Step S2: Repeat step S1 multiple times to collect a large number of image samples;
步骤S3、计算机对航空机匣铸造砂型砂芯可见光图像进行图像预处理,包括对图像使用灰度化、图像增强与高斯滤波的方法增强图像特征;Step S3: The computer performs image preprocessing on the visible light image of the aviation casing casting sand core, including using grayscale, image enhancement and Gaussian filtering methods to enhance image features;
步骤S4、增广图像数据,通过对预处理后的可见光图像分别进行旋转、缩放、添加椒盐噪声、添加高斯噪声以及图像明暗化处理的图像处理方式,增加图像的数量,以此提高网络模型的泛化能力;Step S4: Augment the image data, and increase the number of images by rotating, scaling, adding salt and pepper noise, adding Gaussian noise, and image shading to the preprocessed visible light images, thereby improving the performance of the network model. Generalization;
步骤S5、计算机通过labelimg软件对增广后的可见光图像中目标航空机匣铸造砂型砂芯进行目标图像边界框的标注,获得标注后的图像以及图像标注数据;Step S5: The computer uses the labelimg software to annotate the target image boundary box of the target aviation casing casting sand core in the augmented visible light image, and obtains the annotated image and image annotation data;
步骤S6、计算机随机将标注图像以及对应的图像标注数据中的70%作为训练集,20%作为验证集,10%作为测试集;Step S6: The computer randomly uses 70% of the annotated images and corresponding image annotation data as a training set, 20% as a verification set, and 10% as a test set;
步骤S7、将图像的训练集输入YOLOv5的网络模型中,训练砂型砂芯识别模型,输出训练误差和训练权重数据,达到训练网络的目的;Step S7: Input the image training set into the YOLOv5 network model, train the sand core recognition model, and output the training error and training weight data to achieve the purpose of training the network;
步骤S8、重复上述步骤,对已有目标航空机匣铸造砂型砂芯的图像样本重复多次制作训练集、验证集与测试集,并进行模型训练;每次迭代都进行损失函数的计算,并更新参数值,使损失函数的值最小,直到模型收敛;Step S8: Repeat the above steps to create a training set, a verification set and a test set for image samples of the existing target aviation casing casting sand core, and perform model training; the loss function is calculated for each iteration, and Update parameter values to minimize the value of the loss function until the model converges;
步骤S9、保存训练后的航空机匣铸造砂型砂芯模型的权重参数,利用测试集图像进行测试,达到模型的训练结果;Step S9: Save the weight parameters of the trained aviation casing casting sand core model, and use the test set images for testing to achieve the training results of the model;
步骤4:计算机输出可见光图像中目标砂型的识别框参数,包括边界框的中心点像素坐标(urgb,vrgb)、边界框的长hrgb和宽wrgb;通过可见光图像与热成像图像的坐标映射关系公式,从而获得热成像图像中的目标砂型的边界框数据,目标砂型的边界框以点(uir,vir)作为边界框的中心点像素坐标(uir,vir),以hir与wir作为边界框长和宽;坐标映射关系公式以及边界框长宽关系公式如下:Step 4: The computer outputs the identification frame parameters of the target sand mold in the visible light image, including the pixel coordinates of the center point of the bounding box (u rgb , v rgb ), the length h rgb and the width w rgb of the bounding box; through the comparison between the visible light image and the thermal imaging image The coordinate mapping relationship formula is used to obtain the bounding box data of the target sand mold in the thermal imaging image. The bounding box of the target sand mold uses the point (u ir , v ir ) as the center point pixel coordinate (u ir , v ir ) of the bounding box, and h ir and w ir are used as the length and width of the bounding box; the coordinate mapping relationship formula and the bounding box length and width relationship formula are as follows:
其中,Krgb,Kir分别为热成像双谱相机中内置的可见光相机与热成像相机的内参矩阵;Ergb,Eir分别为可见光相机与热成像相机的外参矩阵;Zrgb与Zir为尺度因子;prgb为可见光图像下的坐标,prgb=[urgb,vrgb,1]T;pir为热成像图像下的坐标,pir=[uir,vir,1]T;a,b为可见光图像与热成像图像之间x方向与y方向上的缩放比例;Among them, K rgb and K ir are the internal parameter matrices of the visible light camera and the thermal imaging camera built in the thermal imaging bispectrum camera respectively; E rgb and E ir are the external parameter matrices of the visible light camera and the thermal imaging camera respectively; Z rgb and Z ir is the scale factor; p rgb is the coordinate under the visible light image, p rgb = [u rgb ,v rgb ,1] T ; p ir is the coordinate under the thermal imaging image, p ir = [u ir ,v ir ,1] T ; a, b are the scaling ratios in the x-direction and y-direction between the visible light image and the thermal imaging image;
对热成像图像的目标边界框进行图像处理,得到目标砂型砂芯图像,结合热成像图像本身温度数据,准确提取目标砂型砂芯图像的温度数据,并计算平均温度值:Perform image processing on the target bounding box of the thermal imaging image to obtain the target sand core image. Combined with the temperature data of the thermal imaging image itself, the temperature data of the target sand core image is accurately extracted, and the average temperature value is calculated:
其中Tavg为目标的平均温度;N为识别区域的有效像素点个数;Ti为有效像素点的热成像温度;所述图像处理具体为:图像灰度化、直方图均衡化对热成像边界框区域进行图像处理得到目标砂型砂芯图像;Where T avg is the average temperature of the target; N is the number of effective pixels in the identification area; Ti is the thermal imaging temperature of the effective pixels; the image processing is specifically: image grayscale, histogram equalization for thermal imaging Perform image processing on the bounding box area to obtain the target sand core image;
步骤5:判断航空机匣铸造砂型砂芯的平均温度Tavg是否大于预设在计算机系统中的正常温度值,若大于,则为异常温度数据,若否,则为正常温度数据;Step 5: Determine whether the average temperature T avg of the aviation casing casting sand core is greater than the normal temperature value preset in the computer system. If it is greater, it is abnormal temperature data. If not, it is normal temperature data;
步骤6:计算机控制显示器显示采集到的航空机匣铸造砂型砂芯的图像及温度数据,同时,生成温度数据表格保存在本地数据库中。Step 6: The computer controls the display to display the collected image and temperature data of the aviation casing casting sand core. At the same time, a temperature data table is generated and stored in the local database.
本发明有益技术效果:The invention has beneficial technical effects:
本发明航空机匣铸造砂型砂芯智能识别与测温方法,采用非接触式测温,相较于传统的人工温度采集方法,增加了目标温度采集的稳定性,降低了人工成本,采用热成像相机对目标铸件砂型进行温度采集,并通过运用机器视觉技术准确识别目标航空机匣铸件砂型砂芯,进一步减少人工测温的误差,提高识别效率。The intelligent identification and temperature measurement method of the aviation casing casting sand core of the present invention adopts non-contact temperature measurement. Compared with the traditional manual temperature collection method, it increases the stability of target temperature collection, reduces labor costs, and uses thermal imaging. The camera collects the temperature of the target casting sand mold and accurately identifies the sand core of the target aviation casing casting by using machine vision technology to further reduce the error of manual temperature measurement and improve the identification efficiency.
利用视觉检测的技术实现了准确且不间断的实时监测,相较于传统的模板匹配识别方法,应用目标识别技术可以做到帮助机器准确地辨别和定位待铸件的位置和形状,提高产业的自动化程度以及生产效率,保证铸件质量,减少人工错误。Visual inspection technology is used to achieve accurate and uninterrupted real-time monitoring. Compared with traditional template matching recognition methods, the application of target recognition technology can help machines accurately identify and locate the position and shape of parts to be cast, improving industrial automation. degree and production efficiency, ensuring casting quality and reducing manual errors.
基于深度学习的YOLOv5的网络模型通过对大量的铝镁合金航空机匣铸件砂型砂芯图像进行训练,构建铝镁合金航空机匣铸件砂型砂芯的网络模型,极大提高了目标的识别精度,并且对铸造现场复杂的光线照射有着较高的鲁棒性,能够实现对目标的快速识别以及对遮挡图像的准确识别,提高了铸造生产的自动化程度。The network model of YOLOv5 based on deep learning is trained on a large number of sand core images of aluminum-magnesium alloy aviation casing castings to build a network model of sand cores for aluminum-magnesium alloy aviation casing castings, which greatly improves the target recognition accuracy. It also has high robustness to complex light irradiation at the casting site, can achieve rapid recognition of targets and accurate recognition of blocked images, and improves the automation of casting production.
附图说明Description of the drawings
图1为本发明实施例航空机匣铸造砂型砂芯识别与测温系统流程图。Figure 1 is a flow chart of the sand core identification and temperature measurement system for aviation casing casting sand cores according to the embodiment of the present invention.
图2为本发明实施例航空机匣铸造砂型砂芯识别与测温系统原理图。Figure 2 is a schematic diagram of the sand core identification and temperature measurement system for aviation casing casting sand cores according to the embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图与具体实施例对本发明做进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
本发明提供了航空机匣铸造砂型砂芯智能识别与远程测温系统及方法。The invention provides a system and method for intelligent identification and remote temperature measurement of aviation casing casting sand cores.
航空机匣铸造砂型砂芯智能识别与远程测温系统,如附图2所示,包括:航空机匣铸件砂型砂芯图像采集模块、温湿度数据采集模块、航空机匣铸件砂型砂芯识别模块、环形光源、计算机和显示器;Aviation casing casting sand core intelligent identification and remote temperature measurement system, as shown in Figure 2, includes: aviation casing casting sand core image acquisition module, temperature and humidity data acquisition module, aviation casing casting sand core identification module , ring lights, computers and monitors;
其中,计算机通过航空机匣铸件砂型砂芯识别模块对图像采集模块采集到的现场砂型可见光图像进行预处理得到特征图像,将特征图像输入到基于深度学习的砂型砂芯识别模型中进行识别,将识别到的砂型砂芯边界框信息通过可见光图像与热成像图像之间的坐标关系映射到热成像图像上,对热成像图像中映射出的砂型砂芯边界框进行图像处理,得到热成像图像中目标砂型砂芯图像,结合热成像温度数据,提取目标砂型砂芯图像的温度数据,记录温度数据;Among them, the computer preprocesses the on-site sand mold visible light image collected by the image acquisition module through the aviation casing casting sand core identification module to obtain the characteristic image, and inputs the characteristic image into the sand core identification model based on deep learning for identification. The identified sand core boundary box information is mapped to the thermal imaging image through the coordinate relationship between the visible light image and the thermal imaging image. Image processing is performed on the sand core boundary box mapped in the thermal imaging image to obtain the thermal imaging image. The target sand core image is combined with the thermal imaging temperature data to extract the temperature data of the target sand core image and record the temperature data;
所述航空机匣铸件砂型砂芯图像采集模块通过热成像双光谱相机采集可见光图像和热成像图像,并通过以太网将可见光图像和热成像图像以电信号的形式传输给计算机;所述双光谱相机安装在距目标砂型作业区域一段距离约8.3米,距地面约4.2米的墙壁处,以减少现场作业对相机采集图像的干扰;The aviation casing casting sand core image acquisition module collects visible light images and thermal imaging images through a thermal imaging dual spectrum camera, and transmits the visible light images and thermal imaging images to the computer in the form of electrical signals through Ethernet; the dual spectrum The camera is installed on a wall about 8.3 meters away from the target sand molding operation area and 4.2 meters above the ground to reduce the interference of on-site operations on the images collected by the camera;
所述温湿度数据采集模块通过温湿度传感器采集现场温湿度数据,并通过485总线将现场环境的温湿度数据传输给计算机,所述温湿度传感器以阵列形式并联布置在砂型、砂芯四周,由12VDC供电,通过120米长的四芯屏蔽线与所述计算机串口连接,以减少传输距离对数据传输性能的影响;The temperature and humidity data acquisition module collects on-site temperature and humidity data through temperature and humidity sensors, and transmits the temperature and humidity data of the on-site environment to the computer through the 485 bus. The temperature and humidity sensors are arranged in parallel around the sand mold and sand core in the form of an array. 12VDC power supply, connected to the computer serial port through a 120-meter-long four-core shielded cable to reduce the impact of transmission distance on data transmission performance;
所述航空机匣铸件砂型砂芯识别模块用于识别目标航空机匣铸件砂型砂芯;采用YOLOv5网络模型;所述航空机匣铸造砂型砂芯识别模块构造航空机匣铸件图像的数据集,将采集到的图像数据划分为训练集、验证集、测试集;The aviation casing casting sand core identification module is used to identify the target aviation casing casting sand core; using the YOLOv5 network model; the aviation casing casting sand core identification module constructs a data set of aviation casing casting images, and The collected image data is divided into training set, verification set, and test set;
所述环形光源用于现场航空机匣铸件砂型砂芯的打光;The ring light source is used for lighting the sand core of aviation casing castings on site;
所述计算机用于对系统程序的运行以及图像的识别与处理;The computer is used to run the system program and recognize and process images;
所述显示器用于展示采集到的图像信息以及温度数据。The display is used to display the collected image information and temperature data.
航空机匣铸造砂型砂芯智能识别与远程测温方法,基于上述航空机匣铸造砂型砂芯智能识别与远程测温系统实现,如附图1所示,包括以下步骤:The intelligent identification and remote temperature measurement method of aviation casing casting sand cores is implemented based on the above intelligent identification and remote temperature measurement system of aviation casing casting sand cores. As shown in Figure 1, it includes the following steps:
步骤1:对目标航空机匣铸造砂型砂芯进行识别前,开启环形光源;利用图像采集模块的热成像双光谱相机对铸造现场采集可见光图像和热成像图像;并将其通过以太网与485总线传输给计算机;通过温湿度传感器采集铸造现场温湿度数据,并通过485总线传输给计算机;Step 1: Before identifying the target aviation casing casting sand core, turn on the ring light source; use the thermal imaging dual-spectrum camera of the image acquisition module to collect visible light images and thermal imaging images of the casting site; and connect them to the 485 bus through the Ethernet Transmit to the computer; collect the temperature and humidity data of the casting site through the temperature and humidity sensor, and transmit it to the computer through the 485 bus;
步骤2:计算机对可见光图像进行图像预处理,包括对图像使用灰度化、图像增强与高斯滤波的方法增强图像特征;Step 2: The computer performs image preprocessing on the visible light image, including using grayscale, image enhancement and Gaussian filtering methods to enhance image features;
步骤3:建立航空机匣铸造砂型砂芯深度学习识别网络模型,将特征图像输入到航空机匣铸造砂型砂芯深度学习识别网络模型中,对图像进行识别,若识别到目标砂型,则在可见光图像中显示目标砂型的识别框并执行步骤4,若否,则执行步骤6;Step 3: Establish a deep learning recognition network model for aviation casing casting sand cores. Input the characteristic image into the deep learning recognition network model for aviation casing casting sand cores. Recognize the image. If the target sand mold is recognized, then in the visible light The identification frame of the target sand mold is displayed in the image and step 4 is performed. If not, step 6 is performed;
所述航空机匣铸造砂型砂芯深度学习识别网络模型的建立,包括以下步骤:The establishment of the deep learning recognition network model of the aviation casing casting sand core includes the following steps:
步骤S1、计算机通过内置程序控制热成像双光谱相机,相机以1min每张的频率对目标航空机匣砂型砂芯的铸造流程的可见光图像进行采集;Step S1: The computer controls the thermal imaging bispectral camera through the built-in program, and the camera collects visible light images of the casting process of the sand core of the target aviation casing at a frequency of 1 minute;
步骤S2、多次重复步骤S1采集大量图像样本;Step S2: Repeat step S1 multiple times to collect a large number of image samples;
步骤S3、计算机对航空机匣铸造砂型砂芯可见光图像进行图像预处理,包括对图像使用灰度化、图像增强与高斯滤波的方法增强图像特征;Step S3: The computer performs image preprocessing on the visible light image of the aviation casing casting sand core, including using grayscale, image enhancement and Gaussian filtering methods to enhance image features;
步骤S4、增广图像数据,通过对预处理后的可见光图像分别进行旋转、缩放、添加椒盐噪声、添加高斯噪声以及图像明暗化处理的图像处理方式,增加图像的数量,以此提高网络模型的泛化能力;Step S4: Augment the image data, and increase the number of images by rotating, scaling, adding salt and pepper noise, adding Gaussian noise, and image shading to the preprocessed visible light images, thereby improving the performance of the network model. Generalization;
步骤S5、计算机通过labelimg软件对增广后的可见光图像中目标航空机匣铸造砂型砂芯进行目标图像边界框的标注,获得标注后的图像以及图像标注数据;Step S5: The computer uses the labelimg software to annotate the target image boundary box of the target aviation casing casting sand core in the augmented visible light image, and obtains the annotated image and image annotation data;
步骤S6、计算机随机将标注图像以及对应的图像标注数据中的70%作为训练集,20%作为验证集,10%作为测试集;Step S6: The computer randomly uses 70% of the annotated images and corresponding image annotation data as a training set, 20% as a verification set, and 10% as a test set;
步骤S7、将图像的训练集输入YOLOv5的网络模型中,训练砂型砂芯识别模型,输出训练误差和训练权重数据,达到训练网络的目的;Step S7: Input the image training set into the YOLOv5 network model, train the sand core recognition model, and output the training error and training weight data to achieve the purpose of training the network;
步骤S8、重复上述步骤,对已有目标航空机匣铸造砂型砂芯的图像样本重复多次制作训练集、验证集与测试集,并进行模型训练;每次迭代都进行损失函数的计算,并更新参数值,使损失函数的值最小,直到模型收敛;同时为了避免过拟合现象的出现,迭代次数设置为500次。Step S8: Repeat the above steps to create a training set, a verification set and a test set for image samples of the existing target aviation casing casting sand core, and perform model training; the loss function is calculated for each iteration, and Update parameter values to minimize the value of the loss function until the model converges; at the same time, in order to avoid overfitting, the number of iterations is set to 500.
步骤S9、保存训练后的航空机匣铸造砂型砂芯模型的权重参数,利用测试集图像进行测试,达到模型的训练结果;Step S9: Save the weight parameters of the trained aviation casing casting sand core model, and use the test set images for testing to achieve the training results of the model;
步骤4:计算机输出可见光图像中目标砂型的识别框参数,包括边界框的中心点像素坐标(urgb,vrgb)、边界框的长hrgb和宽wrgb;通过可见光图像与热成像图像的坐标映射关系公式,从而获得热成像图像中的目标砂型的边界框数据,目标砂型的边界框以点(uir,vir)作为边界框的中心点像素坐标(uir,vir),以hir与wir作为边界框长和宽;坐标映射关系公式以及边界框长宽关系公式如下:Step 4: The computer outputs the identification frame parameters of the target sand mold in the visible light image, including the pixel coordinates of the center point of the bounding box (u rgb , v rgb ), the length h rgb and the width w rgb of the bounding box; through the comparison between the visible light image and the thermal imaging image The coordinate mapping relationship formula is used to obtain the bounding box data of the target sand mold in the thermal imaging image. The bounding box of the target sand mold uses the point (u ir , v ir ) as the center point pixel coordinate (u ir , v ir ) of the bounding box, and h ir and w ir are used as the length and width of the bounding box; the coordinate mapping relationship formula and the bounding box length and width relationship formula are as follows:
其中,Krgb,Kir分别为可见光相机与热成像相机的内参矩阵;Ergb,Eir分别为可见光相机与热成像相机的外参矩阵;Zrgb与Zir为尺度因子;prgb为可见光图像下的坐标,prgb=[urgb,vrgb,1]T;pir为热成像图像下的坐标,pir=[uir,vir,1]T;a,b为可见光图像与热成像图像之间x方向与y方向上的缩放比例;Among them, K rgb and K ir are the internal parameter matrices of the visible light camera and the thermal imaging camera respectively; E rgb and E ir are the external parameter matrices of the visible light camera and the thermal imaging camera respectively; Z rgb and Z ir are the scale factors; p rgb is the visible light The coordinates under the image, p rgb = [u rgb ,v rgb ,1] T ; p ir is the coordinate under the thermal imaging image, p ir = [u ir ,v ir ,1] T ; a, b are the visible light image and The scaling ratio in the x-direction and y-direction between thermal imaging images;
对热成像图像的目标边界框进行图像处理,得到目标砂型砂芯图像,结合热成像图像本身温度数据,准确提取目标砂型砂芯图像的温度数据,并计算平均温度值:Perform image processing on the target bounding box of the thermal imaging image to obtain the target sand core image. Combined with the temperature data of the thermal imaging image itself, the temperature data of the target sand core image is accurately extracted, and the average temperature value is calculated:
其中Tavg为目标的平均温度;N为识别区域的有效像素点个数;Ti为有效像素点的热成像温度;所述图像处理具体为:图像灰度化、直方图均衡化对热成像边界框区域进行图像处理得到目标砂型砂芯图像;Where T avg is the average temperature of the target; N is the number of effective pixels in the identification area; Ti is the thermal imaging temperature of the effective pixels; the image processing is specifically: image grayscale, histogram equalization for thermal imaging Perform image processing on the bounding box area to obtain the target sand core image;
步骤5:判断航空机匣铸造砂型砂芯的平均温度Tavg是否大于预设在计算机系统中的正常温度值,若大于,则为异常温度数据,若否,则为正常温度数据;Step 5: Determine whether the average temperature T avg of the aviation casing casting sand core is greater than the normal temperature value preset in the computer system. If it is greater, it is abnormal temperature data. If not, it is normal temperature data;
步骤6:计算机控制显示器显示采集到的航空机匣铸造砂型砂芯的图像及温度数据,同时,生成温度数据表格保存在本地数据库中。Step 6: The computer controls the display to display the collected image and temperature data of the aviation casing casting sand core. At the same time, a temperature data table is generated and stored in the local database.
本发明通过建立基于深度学习的航空机匣砂型识别网络模型,识别目标航空机匣铸件砂型,利用红外相机提取目标航空机匣铸件砂型的温度,同时通过测量现场环境湿度,减少了湿度对目标温度的影响,提高了温度测量的准确率。应用在砂型、砂芯造型制芯现场的镁铝合金机匣砂型的大批量生产模式下,监测砂芯外观结构的完整性和砂芯的平均温度。This invention establishes an aviation casing sand mold recognition network model based on deep learning to identify the target aviation casing casting sand mold, uses an infrared camera to extract the temperature of the target aviation casing casting sand mold, and at the same time, by measuring the on-site environmental humidity, reduces the impact of humidity on the target temperature. influence, improving the accuracy of temperature measurement. It is used in the mass production mode of magnesium-aluminum alloy casing sand molds at sand molds and sand core molding core manufacturing sites to monitor the integrity of the appearance structure of the sand core and the average temperature of the sand core.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311136587.4A CN117190904A (en) | 2023-09-05 | 2023-09-05 | Intelligent identification and remote temperature measurement system and method for sand core of casting sand of aircraft casing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311136587.4A CN117190904A (en) | 2023-09-05 | 2023-09-05 | Intelligent identification and remote temperature measurement system and method for sand core of casting sand of aircraft casing |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117190904A true CN117190904A (en) | 2023-12-08 |
Family
ID=89000961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311136587.4A Pending CN117190904A (en) | 2023-09-05 | 2023-09-05 | Intelligent identification and remote temperature measurement system and method for sand core of casting sand of aircraft casing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117190904A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119180761A (en) * | 2024-11-19 | 2024-12-24 | 陕西华威科技股份有限公司 | Forging temperature measurement method based on image processing |
-
2023
- 2023-09-05 CN CN202311136587.4A patent/CN117190904A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119180761A (en) * | 2024-11-19 | 2024-12-24 | 陕西华威科技股份有限公司 | Forging temperature measurement method based on image processing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112686938B (en) | Power transmission line clear distance calculation and safety alarm method based on binocular image ranging | |
CN102654464A (en) | Copper strip surface defect detection system based on multi-feature fuzzy recognition | |
CN107705293A (en) | A kind of hardware dimension measurement method based on CCD area array cameras vision-based detections | |
CN110608685A (en) | A rapid measurement method of object size based on raspberry pie | |
WO2021179400A1 (en) | Computer vision-based adaptive measurement system and method for geometric parameters in assembly process | |
CN116839650B (en) | Intelligent instrument verification system and method | |
CN116844147A (en) | Pointer instrument identification and abnormal alarm method based on deep learning | |
CN117190904A (en) | Intelligent identification and remote temperature measurement system and method for sand core of casting sand of aircraft casing | |
CN117474873B (en) | Surface treatment system before brazing of high-chromium wear-resistant castings | |
CN112101365A (en) | Power equipment key feature extraction method and system based on infrared thermal image processing | |
CN105619741B (en) | A kind of mould intelligent detecting method based on Tegra K1 | |
CN112561989A (en) | Method for identifying hoisting object in construction scene | |
CN110060339B (en) | Three-dimensional modeling method based on cloud computing graphic image | |
CN112907734A (en) | TEDS fault detection method based on virtual CRH380A model and deep learning | |
CN117593701A (en) | An intelligent inspection method and system based on image recognition | |
CN104772880B (en) | Injection molding mechanical arm mold anomaly detection method based on LMDO (Local Multilayered Difference Operator) | |
CN114812861B (en) | A circuit detection and analysis system for induction heating power supply | |
CN116432078A (en) | Building electromechanical equipment monitoring system | |
CN115502619A (en) | Temperature Monitoring System for Welding Longitudinal Seam of Pressure Vessel Shell | |
CN115908843A (en) | Superheat recognition model training method, recognition method, equipment and storage medium | |
CN114511498A (en) | Propeller vibration measurement method based on monocular vision | |
CN113643352A (en) | Natural icing on-line monitoring running wire image icing degree evaluation method | |
CN113538350B (en) | Method for identifying depth of foundation pit based on multiple cameras | |
CN119417238B (en) | Manufacturing digital twin 3D visualization control method and system | |
CN114061699B (en) | Metal liquid level measurement system of continuous ingot casting line of non ferrous metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |