CN117187275A - Expression system, construction method and application thereof - Google Patents
Expression system, construction method and application thereof Download PDFInfo
- Publication number
- CN117187275A CN117187275A CN202311474775.8A CN202311474775A CN117187275A CN 117187275 A CN117187275 A CN 117187275A CN 202311474775 A CN202311474775 A CN 202311474775A CN 117187275 A CN117187275 A CN 117187275A
- Authority
- CN
- China
- Prior art keywords
- nadk
- gene
- expression system
- expression
- plasmid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/75—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/77—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01023—NAD+ kinase (2.7.1.23)
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
技术领域Technical field
本申请涉及合成生物技术和基因工程领域,具体涉及一种表达系统及其构建方法和应用。This application relates to the fields of synthetic biotechnology and genetic engineering, specifically to an expression system and its construction method and application.
背景技术Background technique
质粒是一类独立于染色体的可自主复制的遗传因子,在代谢工程研究中被广泛用于目标基因的过表达。相比于基因组整合表达,利用人工质粒表达目标基因具有操作简单、拷贝数高、目标基因表达量高等优点。然而,目前人工开发的质粒载体经常存在不稳定性问题,即重组菌在培养过程中丢失质粒而失去原有的表型特征,进而造成发酵生产不稳定。多数人工质粒都携带有抗生素抗性基因,在实验室发酵过程中添加相应抗生素,可以维持质粒稳定;然而在工业发酵中,抗生素的添加不仅极大地增加成本,而且会限制特定发酵产品的使用范围。再者,抗生素的滥用存在生态安全方面的隐患,可能导致超级耐药菌的出现。因此,开发不依赖于抗生素筛选压力的质粒稳定表达系统,具有重要的应用价值。Plasmids are a type of genetic elements that are independent of chromosomes and can replicate autonomously. They are widely used in metabolic engineering research for the overexpression of target genes. Compared with genome-integrated expression, the use of artificial plasmids to express target genes has the advantages of simple operation, high copy number, and high target gene expression. However, currently artificially developed plasmid vectors often suffer from instability problems, that is, the recombinant bacteria lose their plasmids and lose their original phenotypic characteristics during the culture process, thus causing unstable fermentation production. Most artificial plasmids carry antibiotic resistance genes. Adding corresponding antibiotics during laboratory fermentation can maintain the stability of the plasmid; however, in industrial fermentation, the addition of antibiotics not only greatly increases the cost, but also limits the scope of use of specific fermentation products. . Furthermore, the misuse of antibiotics poses ecological safety risks and may lead to the emergence of super-resistant bacteria. Therefore, the development of a stable plasmid expression system that does not rely on antibiotic selection pressure has important application value.
研究者已开发了一些维持质粒稳定传代的方法。比如,利用毒素-抗毒素系统(如parD和parE),或者利用操纵子-阻遏蛋白中和系统(即Operator-repressor titration,ORT)。但这些方法会增加细胞的生理负担,导致生长减慢以及影响目标产品的合成。也有部分研究者也尝试敲除基因组上的infA、ispH和lpxA等,再采用质粒进行回补表达,可使细胞的生长依赖于质粒的存在,从而保证质粒稳定传代。然而目前已报道的这些基因在采用质粒表达时,多拷贝质粒往往导致表达量上调,反过来导致细胞代谢不平衡,或者负反馈调节降低质粒的拷贝数,从而影响重组菌株的目标产品生产效率。Researchers have developed methods to maintain stable passage of plasmids. For example, the use of toxin-antitoxin systems (such as parD and parE ), or the use of operator-repressor neutralization systems (ie, Operator-repressor titration, ORT). However, these methods increase the physiological burden on cells, resulting in slower growth and affecting the synthesis of target products. Some researchers have also tried to knock out infA , ispH , lpxA , etc. on the genome, and then use plasmids for complementary expression, which can make the growth of cells dependent on the presence of plasmids, thereby ensuring stable passage of plasmids. However, when these genes have been reported to be expressed using plasmids, multi-copy plasmids often lead to up-regulation of expression levels, which in turn leads to cellular metabolic imbalance, or negative feedback regulation reduces the copy number of the plasmid, thereby affecting the production efficiency of the target product of the recombinant strain.
发明内容Contents of the invention
基于此,本申请提供nadK基因用于构建一种表达系统,利用该系统可实现载体不依赖于抗生素选择性压力而稳定遗传,此外,nadK基因在该表达系统的过表达不会导致细胞代谢负担加重、甚至可促进目标代谢产物的合成,对于以微生物为细胞工厂、采用合成生物技术高产目标代谢产物非常重要。Based on this, this application provides the nadK gene for constructing an expression system, which can be used to achieve stable inheritance of the vector without relying on antibiotic selective pressure. In addition, overexpression of the nadK gene in this expression system will not cause cellular metabolic burden. Aggravating or even promoting the synthesis of target metabolites is very important for using microorganisms as cell factories and using synthetic biotechnology to produce high-yield target metabolites.
具体技术方案如下:The specific technical solutions are as follows:
一种表达系统,所述表达系统包括nadK基因缺失型宿主细胞和表达载体,所述nadK基因缺失型宿主细胞中含有所述的表达载体;所述表达载体包括nadK基因。An expression system, the expression system includes a nadK gene-deficient host cell and an expression vector, the nadK gene-deficient host cell contains the expression vector; the expression vector includes the nadK gene.
在其中一个实施例中,所述表达载体还包括目的基因。In one embodiment, the expression vector further includes a gene of interest.
一种表达系统的构建方法,包括如下步骤:A method for constructing an expression system, including the following steps:
将上述表达载体转化至宿主细胞;及Transform the above expression vector into host cells; and
敲除所述宿主细胞基因组上nadK基因。Knock out the nadK gene in the host cell genome.
nadK基因在构建载体稳定的表达系统中的应用。Application of nadK gene in constructing vector stable expression system.
所述的表达系统在外源蛋白如外源酶表达,或目标代谢产物合成中的应用。The expression system is used in the expression of exogenous proteins, such as exogenous enzymes, or the synthesis of target metabolites.
相对于传统技术,本申请具备如下有益效果:Compared with traditional technology, this application has the following beneficial effects:
本申请基于nadK基因开发了一种载体稳定表达系统,既可以提高在不添加抗生素的条件下宿主细胞中载体的传代稳定性;又可促进外源蛋白或外源酶的表达,以及目标代谢产物的合成。进一步将上述的表达系统用于外源蛋白或外源酶的稳定高表达,以及各种目标代谢产物的合成。This application developed a vector stable expression system based on the nadK gene, which can not only improve the passage stability of the vector in host cells without adding antibiotics, but also promote the expression of exogenous proteins or exogenous enzymes, as well as target metabolites. Synthesis. The above-mentioned expression system is further used for the stable and high expression of exogenous proteins or exogenous enzymes, and the synthesis of various target metabolites.
附图说明Description of the drawings
图1为携带nadK基因的质粒pET32a-PnhM-mcherry-nadK的构建示意图;Figure 1 is a schematic diagram of the construction of plasmid pET32a-PnhM-mcherry-nadK carrying the nadK gene;
图2为重组大肠杆菌VG1△nadK(pET32a-PnhM-mcherry-nadK)的构建示意图;Figure 2 is a schematic diagram of the construction of recombinant E. coli VG1△ nadK (pET32a-PnhM-mcherry-nadK);
图3为重组大肠杆菌VG1△nadK(pET32a-PnhM-mcherry-nadK)与VG1(pET32a-PnhM-mcherry)的质粒稳定性对比;Figure 3 shows the plasmid stability comparison of recombinant E. coli VG1△nadK (pET32a-PnhM-mcherry-nadK) and VG1 (pET32a-PnhM-mcherry);
图4为重组大肠杆菌VG1△nadK(pET32a-PnhM-mcherry-nadK)与VG1(pET32a-PnhM-mcherry)的荧光强度对比;Figure 4 is a comparison of the fluorescence intensity of recombinant E. coli VG1△nadK (pET32a-PnhM-mcherry-nadK) and VG1 (pET32a-PnhM-mcherry);
图5为重组大肠杆菌VG1△nadK(pTU14-nadK)与VG1(pTU14)的质粒稳定性对比;Figure 5 shows the plasmid stability comparison of recombinant E. coli VG1△nadK (pTU14-nadK) and VG1 (pTU14);
图6为重组枯草芽孢THY7△nadK(pHT08-Pg3-lacZ-nadK)与THY7 (pHT08-Pg3-lacZ)的质粒稳定性对比;Figure 6 is a comparison of the plasmid stability of recombinant Bacillus subtilis THY7△nadK (pHT08-Pg3-lacZ-nadK) and THY7 (pHT08-Pg3-lacZ);
图7为重组红色红球菌THdAdN△nadK(pNVSm-SBMDB-nadK)与THdAdN(pNVSm-SBMDB)的质粒稳定性对比;Figure 7 is a comparison of the plasmid stability of recombinant Rhodococcus rubrum THdAdN△nadK (pNVSm-SBMDB-nadK) and THdAdN (pNVSm-SBMDB);
图8为重组谷氨酸棒杆菌ATCC13032△nadK(pXMJ19-Ptac-ssehasA-hasB-nadK)与ATCC13032 (pXMJ19-Ptac-ssehasA-hasB)的质粒稳定性对比。Figure 8 is a comparison of the plasmid stability of recombinant Corynebacterium glutamicum ATCC13032△nadK (pXMJ19-Ptac-ssehasA-hasB-nadK) and ATCC13032 (pXMJ19-Ptac-ssehasA-hasB).
具体实施方式Detailed ways
为使本申请的上述目的、特征和优点能够更加明显易懂,下面对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。In order to make the above objects, features and advantages of the present application more obvious and understandable, the specific implementation modes of the present application are described in detail below. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present application. However, the present application can be implemented in many other ways different from those described here. Those skilled in the art can make similar improvements without violating the connotation of the present application. Therefore, the present application is not limited by the specific embodiments disclosed below.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field to which this application belongs. The terminology used herein in the description of the application is for the purpose of describing specific embodiments only and is not intended to limit the application.
本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
本申请一实施方式提供了一种表达载体,该表达载体包括nadK基因。One embodiment of the present application provides an expression vector, which includes the nadK gene.
nadK基因(NAD Kinase)是指编码NAD激酶的基因。nadK基因可以是nadK基因的全部核苷酸片段或部分核苷酸片段。只要能够编码NAD激酶的任意核苷酸片段均属于本申请的保护范围内。 nadK gene (NAD Kinase) refers to the gene encoding NAD kinase. The nadK gene may be the entire nucleotide fragment or part of the nucleotide fragment of the nadK gene. Any nucleotide fragment that can encode NAD kinase falls within the protection scope of this application.
在一个具体示例中,表达载体还包括目的基因。In a specific example, the expression vector also includes the gene of interest.
在一个具体示例中,表达载体还包括启动子和终止子。In a specific example, the expression vector also includes a promoter and a terminator.
在一个具体示例中,目的基因与nadK基因可以由同一启动子或不同的启动子启动转录表达。In a specific example, the target gene and the nadK gene can be transcribed and expressed by the same promoter or different promoters.
在一个具体示例中,表达载体为质粒。可选地,质粒包括pUC系列、pET系列、pNV系列和pXMJ19及其衍生质粒。进一步可选地,质粒包括pUC19、pET32a、pNV18、pXMJ19及其衍生质粒。In a specific example, the expression vector is a plasmid. Alternatively, plasmids include pUC series, pET series, pNV series and pXMJ19 and their derivative plasmids. Further optionally, plasmids include pUC19, pET32a, pNV18, pXMJ19 and derivative plasmids thereof.
在一个具体示例中,目的基因包括目标代谢产物合成相关基因。可选地,目标代谢产物合成相关基因包括目标代谢产物合成相关酶基因。可选地,目标代谢产物包括但不限于透明质酸和PHA。可选地,PHA包括PHB。In a specific example, the target genes include genes related to target metabolite synthesis. Optionally, the target metabolite synthesis-related genes include target metabolite synthesis-related enzyme genes. Alternatively, target metabolites include, but are not limited to, hyaluronic acid and PHA. Optionally, the PHA includes PHB.
在一个具体示例中,目的基因包括荧光报告基因、腈水合酶基因、β-半乳糖苷酶基因、透明质酸合成相关基因和PHA合成相关基因。In a specific example, the target genes include fluorescent reporter genes, nitrile hydratase genes, β-galactosidase genes, hyaluronic acid synthesis-related genes and PHA synthesis-related genes.
可选地,透明质酸合成相关基因包括编码透明质酸合成酶的基因hasA和编码UDP-葡萄糖脱氢酶的基因hasB中的一种或多种。Optionally, the hyaluronic acid synthesis-related genes include one or more of the gene hasA encoding hyaluronic acid synthase and the gene hasB encoding UDP-glucose dehydrogenase.
生物体内,透明质酸合成酶和/或UDP-葡萄糖脱氢酶可催化合成透明质酸。In vivo, hyaluronic acid synthase and/or UDP-glucose dehydrogenase can catalyze the synthesis of hyaluronic acid.
可选地,PHA合成相关基因包括PHB合成相关基因,PHB合成相关基因包括编码β-酮硫解酶的基因phaA、编码乙酰乙酰辅酶A还原酶的基因phaB和编码PHA聚合酶的基因phaC中的一种或多种。Optionally, the PHA synthesis-related genes include PHB synthesis-related genes, and the PHB synthesis-related genes include the gene phaA encoding β-ketothiolase, the gene phaB encoding acetoacetyl-CoA reductase, and the gene phaC encoding PHA polymerase. one or more.
生物体内,β-酮硫解酶、乙酰乙酰辅酶A还原酶和/或PHA聚合酶可催化合成PHB。In vivo, β-ketothiolase, acetoacetyl-CoA reductase and/or PHA polymerase can catalyze the synthesis of PHB.
在一个具体示例中,所述nadK基因的来源包括大肠杆菌、枯草芽孢杆菌、红球菌或者谷氨酸棒杆菌。In a specific example, the source of the nadK gene includes Escherichia coli, Bacillus subtilis, Rhodococcus or Corynebacterium glutamicum.
在一个具体示例中,所述nadK基因的核苷酸片段选自SEQ ID NO:1~5中的任意一种。In a specific example, the nucleotide fragment of the nadK gene is selected from any one of SEQ ID NO: 1 to 5.
本申请一实施方式还提供了nadK基因在构建载体稳定的表达系统中的应用。One embodiment of the present application also provides the application of the nadK gene in constructing a vector-stable expression system.
nadK基因是一种生长必需基因,其编码的烟酰胺腺嘌呤二核苷酸(NAD)激酶是生物体内唯一能够催化NAD+磷酸化生成NADP+的酶,其过表达可以提高NADP(H)的含量,对于NADPH依赖途径比如氨基酸/蛋白质、油酸和聚β羟基烷酸酯(Polyhydroxyalkanoates,简称PHA;代表性的,是聚羟基丁酸酯(Poly-β-hydroxybutyrate,简称PHB))等产物的合成都有促进作用。同时NAD激酶的活性受到NADPH的负反馈调控,NADPH含量过高会反过来抑制NAD激酶活性,从而避免细胞代谢平衡失调,即 NAD激酶的过表达不会显著增加细胞代谢负担。 The nadK gene is an essential gene for growth. The nicotinamide adenine dinucleotide (NAD) kinase it encodes is the only enzyme in the body that can catalyze the phosphorylation of NAD + to generate NADP + . Its overexpression can increase the concentration of NADP(H). Content, for products of NADPH-dependent pathways such as amino acids/proteins, oleic acid and polyhydroxyalkanoates (PHA; representative, Poly-β-hydroxybutyrate (PHB)) Synthesis has a promoting effect. At the same time, the activity of NAD kinase is regulated by negative feedback of NADPH. Excessive NADPH content will in turn inhibit the activity of NAD kinase, thus avoiding imbalance of cellular metabolic balance. That is, overexpression of NAD kinase will not significantly increase the metabolic burden of cells.
本申请一实施方式还提供了一种表达系统,通过表达载体回补宿主菌基因组中nadK基因缺失,从而使表达载体在无抗生素添加的情况下稳定存在于菌体中并行使表达功能。具体地,该表达系统包括nadK基因缺失型宿主细胞和上述任一项的表达载体,nadK基因缺失型宿主细胞中含有上述的表达载体。One embodiment of the present application also provides an expression system that uses an expression vector to compensate for the deletion of the nadK gene in the host bacterial genome, so that the expression vector can stably exist in the bacterial cell and perform its expression function without the addition of antibiotics. Specifically, the expression system includes a nadK gene-deficient host cell and any of the above expression vectors, and the nadK gene-deficient host cell contains the above-mentioned expression vector.
在一个具体示例中,宿主细胞包括原核宿主细胞和真核宿主细胞。In a specific example, host cells include prokaryotic host cells and eukaryotic host cells.
可选地,原核宿主细胞包括大肠杆菌、枯草芽孢杆菌、红球菌和谷氨酸棒杆菌中的一种或多种。Alternatively, the prokaryotic host cell includes one or more of E. coli, Bacillus subtilis, Rhodococcus, and Corynebacterium glutamicum.
该表达系统具有如下优势:一方面提高了宿主细胞(例如基因工程菌株)的表达载体的传代稳定性,在不添加抗生素的条件下传代培养12次,质粒保留率均大于93%,而对照菌的质粒保留率均低于45%;另一方面促进了各种外源蛋白的表达及目标代谢产物的合成,例如重要微生物合成产物如PHB、透明质酸和腈水合酶等的合成,其中PHB的产量提高15.6%,透明质酸产量提高30.4%,腈水合酶的发酵酶活提高26%。This expression system has the following advantages: on the one hand, it improves the passage stability of the expression vector of host cells (such as genetically engineered strains). After 12 passages of culture without adding antibiotics, the plasmid retention rate was greater than 93%, while the control strain The plasmid retention rates are all less than 45%; on the other hand, it promotes the expression of various foreign proteins and the synthesis of target metabolites, such as the synthesis of important microbial synthetic products such as PHB, hyaluronic acid and nitrile hydratase, among which PHB The production of hyaluronic acid increased by 15.6%, the production of hyaluronic acid increased by 30.4%, and the fermentation enzyme activity of nitrile hydratase increased by 26%.
在一个具体示例中,宿主细胞中nadK基因缺失包括宿主细胞的基因组上nadK基因全长或部分的敲除。In a specific example, deletion of the nadK gene in the host cell includes complete or partial knockout of the nadK gene in the genome of the host cell.
在一个具体示例中,nadK基因的敲除方法包括采用CRISPR基因编辑方法、Red重组方法或者同源重组方法来完成。可选地,同源重组方法为同源重组双交换法。In a specific example, the nadK gene knockout method includes using CRISPR gene editing method, Red recombination method or homologous recombination method. Optionally, the homologous recombination method is a homologous recombination double crossover method.
本申请一实施方式还提供了一种表达系统的构建方法,包括如下步骤:An embodiment of the present application also provides a method for constructing an expression system, including the following steps:
将上述表达载体转化至宿主细胞;及Transform the above expression vector into host cells; and
敲除宿主细胞基因组上nadK基因。Knock out the nadK gene in the host cell genome.
需要说明的是,表达系统的构建方法中的两个步骤可以不分先后顺序。只要能构建出本申请所述的表达系统即可。本领域技术人员可根据需要进行操作。It should be noted that the two steps in the expression system construction method may be performed in no particular order. As long as the expression system described in this application can be constructed. Those skilled in the art can perform operations as needed.
本申请一实施方式还提供了一种不依赖于抗生素筛选压力而维持载体(例如质粒)稳定传代的方法,将上述表达载体转化至宿主菌中,敲除所述宿主菌的基因组上nadK基因,使nadK基因缺少的宿主菌依赖于表达载体,在后续传代过程中使表达载体(例如质粒)稳定存在于菌体中。同时,可以促进外源基因(目的基因)的表达及目标代谢产物的合成。One embodiment of the present application also provides a method for maintaining stable passage of a vector (such as a plasmid) without relying on antibiotic selection pressure. The above expression vector is transformed into a host bacterium, and the nadK gene on the genome of the host bacterium is knocked out. Host bacteria lacking the nadK gene rely on expression vectors, allowing the expression vectors (such as plasmids) to stably exist in the bacteria during subsequent passages. At the same time, it can promote the expression of foreign genes (target genes) and the synthesis of target metabolites.
为了实现重组微生物稳定高表达外源蛋白及发酵合成目标代谢产物,本申请一实施方式还提供了一种高效表达外源蛋白和/或合成目标代谢产物的方法,包括:In order to achieve stable and high expression of foreign proteins by recombinant microorganisms and fermentation to synthesize target metabolites, one embodiment of the present application also provides a method for efficiently expressing foreign proteins and/or synthesizing target metabolites, including:
含有上述的表达载体的nadK基因缺失型宿主细胞经培养表达外源蛋白和/或发酵合成目标代谢产物。The nadK gene-deficient host cells containing the above-mentioned expression vector are cultured to express foreign proteins and/or ferment to synthesize target metabolites.
在一个具体示例中,红色荧光蛋白表达的培养基包括LB培养基。In a specific example, the medium for red fluorescent protein expression includes LB medium.
在一个具体示例中,β-半乳糖苷酶表达的培养基包括含有0.5 mM~0.6 mM异丙基-β-D-硫代半乳糖苷的LB培养基。In a specific example, the culture medium for β-galactosidase expression includes LB medium containing 0.5 mM~0.6 mM isopropyl-β-D-thiogalactopyranoside.
在一个具体示例中,PHB发酵的培养基包括含有20 g/L~30 g/L葡萄糖的LB培养基。In a specific example, the medium for PHB fermentation includes LB medium containing 20 g/L~30 g/L glucose.
在一个具体示例中,腈水合酶发酵的培养基包括葡萄糖25 g/L~28 g/L,尿素10g/L~15 g/L,酵母膏1 g/L~2 g/L,蛋白胨10 g/L~12 g/L,KH2PO43 g/L~5 g/L,K2HPO43 g/L~5 g/L,MgSO4·7H2O 1 g/L~2 g/L,味精1 g/L~2 g/L,CoCl20.08 mM~0.1 mM,pH值为7.0~7.5。In a specific example, the culture medium for nitrile hydratase fermentation includes glucose 25 g/L~28 g/L, urea 10g/L~15 g/L, yeast extract 1 g/L~2 g/L, and peptone 10 g /L~12 g/L, KH 2 PO 4 3 g/L~5 g/L, K 2 HPO 4 3 g/L~5 g/L, MgSO 4 ·7H 2 O 1 g/L~2 g/ L, MSG 1 g/L~2 g/L, CoCl 2 0.08 mM~0.1 mM, pH value 7.0~7.5.
在一个具体示例中,透明质酸发酵的培养基包括葡萄糖35 g/L~40 g/L,硫酸铵25g/L~30 g/L,玉米浆粉15 g/L~20 g/L,磷酸二氢钾1 g/L~2 g/L,磷酸氢二钾1 g/L~2 g/L,七水合硫酸镁2 g/L~3 g/L,七水合硫酸亚铁0.05 g/L~0.08 g/L,七水合硫酸锰0.05 g/L~0.08 g/L,pH值为7.0~7.2。In a specific example, the culture medium for hyaluronic acid fermentation includes glucose 35 g/L~40 g/L, ammonium sulfate 25g/L~30 g/L, corn steep liquor 15 g/L~20 g/L, phosphoric acid Potassium dihydrogen 1 g/L~2 g/L, dipotassium hydrogen phosphate 1 g/L~2 g/L, magnesium sulfate heptahydrate 2 g/L~3 g/L, ferrous sulfate heptahydrate 0.05 g/L ~0.08 g/L, manganese sulfate heptahydrate 0.05 g/L~0.08 g/L, pH value 7.0~7.2.
本申请一实施方式还提供了上述的表达系统在外源蛋白表达,或目标代谢产物合成中的应用。One embodiment of the present application also provides the application of the above-mentioned expression system in the expression of exogenous proteins or the synthesis of target metabolites.
可选地,外源蛋白包括外源酶。Optionally, the exogenous protein includes exogenous enzymes.
可选地,目标代谢产物包括外源酶催化合成的目标代谢产物。Optionally, the target metabolite includes a target metabolite synthesized by exogenous enzyme catalysis.
在一个具体示例中,外源蛋白包括但不限于荧光蛋白、β-半乳糖苷酶、腈水合酶、腈水解酶、环氧化物水解酶、透明质酸合成酶、UDP-葡萄糖脱氢酶、β-酮硫解酶、乙酰乙酰辅酶A还原酶和PHA聚合酶中的至少一种。In a specific example, foreign proteins include, but are not limited to, fluorescent proteins, β-galactosidase, nitrile hydratase, nitrilase, epoxide hydrolase, hyaluronic acid synthase, UDP-glucose dehydrogenase, At least one of β-ketothiolase, acetoacetyl-CoA reductase and PHA polymerase.
在一个具体示例中,目标代谢产物包括PHA和/或透明质酸。In a specific example, target metabolites include PHA and/or hyaluronic acid.
下面将结合实施例对本申请的实施方案进行详细描述。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。下列实施例中未注明具体条件的实验方法,优先参考本申请中给出的指引,还可以按照本领域的实验手册或常规条件,还可以按照制造厂商所建议的条件,或者参考本领域已知的实验方法。The embodiments of the present application will be described in detail below with reference to examples. It should be understood that these examples are only used to illustrate the present application and are not intended to limit the scope of the present application. For experimental methods that do not indicate specific conditions in the following examples, priority is given to the guidelines given in this application. You can also follow the experimental manuals or conventional conditions in this field. You can also follow the conditions recommended by the manufacturer, or refer to the experimental methods in this field. Known experimental methods.
下述的具体实施例中,涉及原料组分的量度参数,如无特别说明,可能存在称量精度范围内的细微偏差。涉及温度和时间参数,允许仪器测试精度或操作精度导致的可接受的偏差。In the following specific examples, the measurement parameters of raw material components are involved. Unless otherwise specified, there may be slight deviations within the range of weighing accuracy. Temperature and time parameters are involved, allowing for acceptable deviations due to instrument testing accuracy or operating accuracy.
实施例1构建基因组nadK缺陷型重组大肠杆菌VG1△nadK(pET32a-PnhM-mcherry-nadK)和VG1△nadK(pTU14-nadK)Example 1 Construction of genomic nadK- deficient recombinant E. coli VG1△nadK (pET32a-PnhM-mcherry-nadK) and VG1△nadK (pTU14-nadK)
基于nadK基因构建大肠杆菌质粒稳定表达系统,用于红色荧光报告基因的表达以及PHB的合成。An Escherichia coli plasmid stable expression system was constructed based on nadK gene for the expression of red fluorescent reporter gene and the synthesis of PHB.
1. 构建携带nadK的质粒pET32a-PnhM-mcherry-nadK和pTU14-nadK,方法包括如下步骤:1. Construct plasmids pET32a-PnhM-mcherry-nadK and pTU14-nadK carrying nadK. The method includes the following steps:
红色荧光蛋白基因mcherry的表达载体pET32a-PnhM-mcherry的构建方法如下:pET32a(Novagen商业化质粒载体)由XbaI和EcoRI酶切得到骨架;启动子PnhM及mcherry基因由金唯智生物技术有限公司合成(SEQ ID NO:1),使用引物PnhM-F、mcherry-R扩增得到PnhM-mcherry片段;两者由Gibson连接,转化大肠杆菌VG1(CN1086203C),复苏培养后涂布含100 μg/mL氨苄青霉素的LB平板,得到VG1(pET32a-PnhM-mcherry)。The construction method of the expression vector pET32a-PnhM-mcherry of the red fluorescent protein gene mcherry is as follows: pET32a (Novagen commercial plasmid vector) was digested by Xba I and Eco RI to obtain the backbone; the promoter PnhM and mcherry genes were obtained by Jinweizhi Biotechnology Co., Ltd. Synthesize (SEQ ID NO: 1), use primers PnhM-F and mcherry-R to amplify the PnhM-mcherry fragment; the two are connected by Gibson, transformed into E. coli VG1 (CN1086203C), resuscitated and cultured, and spread with 100 μg/mL LB plate of ampicillin was used to obtain VG1 (pET32a-PnhM-mcherry).
质粒载体pET32a-PnhM-mcherry-nadK的构建方法如图1所示,具体如下:pET32a-PnhM-mcherry由EcoRI酶切得到质粒骨架;以pXMJ19(HonorGene商业化质粒载体)为模板,采用引物rrnB-F、rrnB-R扩增终止子rrnB;以大肠杆菌VG1为模板,使用引物nadK-F、nadK-R扩增nadK基因及其启动子(SEQ ID NO:2);三个片段经Gibson连接,转化大肠杆菌VG1,复苏培养后涂布含100 μg/mL氨苄青霉素的LB平板,得到VG1(pET32a-PnhM-mcherry-nadK)。The construction method of the plasmid vector pET32a-PnhM-mcherry-nadK is shown in Figure 1. The details are as follows: pET32a-PnhM-mcherry is digested with Eco RI to obtain the plasmid backbone; pXMJ19 (HonorGene commercial plasmid vector) is used as the template, and the primer rrnB is used -F, rrnB-R amplify the terminator rrnB; use E. coli VG1 as a template, use primers nadK-F, nadK-R to amplify the nadK gene and its promoter (SEQ ID NO: 2); the three fragments are connected by Gibson , transform E. coli VG1, resuscitate and culture, and then spread on LB plates containing 100 μg/mL ampicillin to obtain VG1 (pET32a-PnhM-mcherry-nadK).
用于PHB合成的质粒载体pTU14-nadK的构建方法如下:pTU14质粒(CN1086203C)由AflII酶切得到质粒骨架;以pET32a-PnhM-mcherry-nadK为模板,使用引物rrnB-F2和引物nadK-R2扩增得到终止子及nadK片段;两者采用Gibson连接,转化大肠杆菌VG1,复苏培养后涂布含100 μg/mL氨苄青霉素的LB平板,得到VG1(pTU14-nadK)。The construction method of the plasmid vector pTU14-nadK used for PHB synthesis is as follows: the pTU14 plasmid (CN1086203C) is digested by Afl II to obtain the plasmid backbone; pET32a-PnhM-mcherry-nadK is used as the template, and primer rrnB-F2 and primer nadK-R2 are used The terminator and nadK fragment were amplified; the two were connected using Gibson, and transformed into E. coli VG1. After recovery and culture, they were spread on LB plates containing 100 μg/mL ampicillin to obtain VG1 (pTU14-nadK).
PnhM-mcherry序列(SEQ ID NO:1):PnhM-mcherry sequence (SEQ ID NO:1):
acatctacacattgacatccgttccgatgtgatgtaaaaattgtcacgcgcatgcttaattaagaaggagatatacatatggtgagcaagggcgaggaggataacatggccatcatcaaggagttcatgcgcttcaaggtgcacatggagggctccgtgaacggccacgagttcgagatcgagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggtggccccctgcccttcgcctgggacatcctgtcccctcagttcatgtacggctccaaggcctacgtgaagcaccccgccgacatccccgactacttgaagctgtccttccccgagggcttcaagtgggagcgcgtgatgaacttcgaggacggcggcgtggtgaccgtgacccaggactcctccctgcaggacggcgagttcatctacaaggtgaagctgcgcggcaccaacttcccctccgacggccccgtaatgcagaaaaagaccatgggctgggaggcctcctccgagcggatgtaccccgaggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggacggcggccactacgacgctgaggtcaagaccacctacaaggccaagaagcccgtgcagctgcccggcgcctacaacgtcaacatcaagttggacatcacctcccacaacgaggactacaccatcgtggaacagtacgaacgcgccgagggccgccactccaccggcggcatggacgagctgtacaagtga。acatctacacattgacatccgttccgatgtgatgtaaaaattgtcacgcgcatgcttaattaagaaggagatatacatatggtgagcaagggcgaggaggataacatggccatcatcaaggagttcatgcgcttcaaggtgcacatggagggctccgtgaacggccacgagttcgagatcgagggcgagggcgagggccgcccctacga gggcacccagaccgccaagctgaaggtgaccaagggtggccccctgcccttcgcctgggacatcctgtcccctcagttcatgtacggctccaaggcctacgtgaagcaccccgccgacatccccgactacttgaagctgtccttccccgagggcttcaagtgggagcgcgtgatgaacttcgaggacggcggcgtggtgacc gtgacccaggactcctccctgcaggacggcgagttcatctacaaggtgaagctgcgcggcaccaacttcccctccgacggccccgtaatgcagaaaaagaccatgggctgggaggcctcctccgagcggatgtaccccgaggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggacggcggccactacgacgctgaggt caagaccaccctacaaggccaagaagcccgtgcagctgcccggcgcctacaacgtcaacatcaagttggacatcacctcccacaacgaggactacaccatcgtggaacagtacgaacgcgccgagggccgccactccaccggcggcatggacgagctgtacaagtga.
大肠杆菌nadK基因序列(SEQ ID NO:2):Escherichia coli nadK gene sequence (SEQ ID NO:2):
tgctgatccatgataatttcttccggggcttgcccctcaggcgttttctgttctttactactcatgaatttctccgcgtttttttcgcattcatctcgctaacttcgcttattatggggatcagtttcagggtttcaagggaagcactcacattgtcatcaatcttcgcaacaaggacctcggaaaaatgaataatcatttcaagtgtattggcattgtgggacacccacggcaccccactgcactgacaacacatgaaatgctctaccgctggctgtgcacaaaaggttacgaggtcatcgttgagcaacaaatcgctcacgaactgcaactgaagaatgtgaaaactggcacgctcgcggagattgggcaactagctgatctcgcggtagtcgttggtggcgacggtaatatgctgggcgcggcacgcacactcgcccgttacgatattaaagttattggaatcaaccgtggcaacctgggtttcctgactgaccttgaccccgataacgcccagcaacagttagccgatgtgctggaaggccactacatcagcgagaaacgttttttgctggaagcgcaagtctgtcagcaagattgccagaaacgcatcagcaccgcgataaatgaagtggtgcttcatccaggcaaagtggcgcatatgattgagttcgaagtgtatatcgacgagatctttgcgttttctcagcgatctgatggactaattatttcgacgccaacaggctccaccgcctattccctctctgcaggcggtcctattctgaccccctctctggatgcgattaccctggtgcccatgttcccgcatacgttgtcagcacgaccactggtcataaacagcagcagcacgatccgtctgcgtttttcgcatcgccgtaacgacctggaaatcagttgcgacagccagatagcactgccgattcaggaaggtgaagatgtcctgattcgtcgctgtgattaccatctgaatctgattcatccgaaagattacagttatttcaacacattaagcaccaagctcggctggtcaaaaaaattattctaa。tgctgatccatgataatttcttccggggcttgcccctcaggcgttttctgttctttactactcatgaatttctccgcgtttttttcgcattcatctcgctaacttcgcttattatggggatcagtttcagggtttcaagggaagcactcacattgtcatcaatcttcgcaacaaggacctcggaaaaatga ataatcatttcaagtgtattggcattgtgggacacccacggcaccccactgcactgacaacacatgaaatgctctaccgctggctgtgcacaaaaggttacgaggtcatcgttgagcaacaaatcgctcacgaactgcaactgaagaatgtgaaaactggcacgctcgcggagatgggcaactagctgatctcgcggtagtcgttgg tggcgacggtaatatgctgggcgcggcacgcacactcgcccgttacgatattaaagttattggaatcaaccgtggcaacctgggtttcctgactgaccttgaccccgataacgcccagcaacagttagccgatgtgctggaaggccactacatcagcgagaaacgttttttgctggaagcgcaagtctgtcagca agattgccagaaacgcatcagcaccgcgataaatgaagtggtgcttcatccaggcaaagtggcgcatatgattgagttcgaagtgtatatcgacgagatctttgcgttttctcagcgatctgatggactaattatttcgacgccaacaggctccaccgcctattccctctctgcaggcggtcctattctgaccccctctctgg atgcgattaccctggtgcccatgttcccgcatacgttgtcagcacgaccactggtcataaacagcagcagcacgatccgtctgcgtttttcgcatcgccgtaacgacctggaaatcagttgcgacagccagatagcactgccgattcaggaaggtgaagatgtcctgattcgtcgctgtgattaccatctgaatct gattcatccgaaagattacagttatttcaacacattaagcaccaagctcggctggtcaaaaaaattattctaa.
上述过程所用引物如表1。The primers used in the above process are shown in Table 1.
表1引物及序列Table 1 Primers and sequences
2. 利用Red重组方法构建基因组nadK缺陷型重组大肠杆菌,构建流程如图2所示,具体步骤如下:2. Use the Red recombination method to construct genomic nadK- deficient recombinant E. coli. The construction process is shown in Figure 2. The specific steps are as follows:
将含有Red重组酶的质粒pEcCas(Addgene编号#73227)导入到上述的重组大肠杆菌VG1(pET32a-PnhM-mcherry-nadK)和VG1(pTU14-nadK)中,复苏培养后涂布含100 μg/mL氨苄青霉素和50 μg/mL卡那霉素的LB平板,得到VG1 (pEcCas+pET32a-PnhM-mcherry-nadK)和VG1 (pEcCas+pTU14-nadK),制备成电转化感受态细胞。Introduce the plasmid pEcCas (Addgene No. #73227) containing Red recombinase into the above-mentioned recombinant E. coli VG1 (pET32a-PnhM-mcherry-nadK) and VG1 (pTU14-nadK). After recovery and culture, apply 100 μg/mL Ampicillin and 50 μg/mL kanamycin were added to the LB plate to obtain VG1 (pEcCas+pET32a-PnhM-mcherry-nadK) and VG1 (pEcCas+pTU14-nadK), which were prepared into electrotransformation competent cells.
以E. coliS17-1(商业化菌株,ATCC47055)为模板,使用引物Sm-F、Sm-R扩增壮观霉素抗性基因表达盒;以E. coliVG1为模板,使用引物nad-up-F、nad-up-R扩增nadK基因的上游同源臂;使用引物nadK-down-F和nadK-down-R,扩增nadK基因的下游同源臂;将上述三个PCR片段,通过overlap PCR融合得到敲除用的线性片段nadK-arm-Sm。Use E. coli S17-1 (commercial strain, ATCC47055) as the template, use primers Sm-F and Sm-R to amplify the spectinomycin resistance gene expression cassette; use E. coli VG1 as the template, use the primer nad-up -F and nad-up-R amplify the upstream homology arm of the nadK gene; use primers nadK-down-F and nadK-down-R to amplify the downstream homology arm of the nadK gene; put the above three PCR fragments through Overlap PCR fusion resulted in the linear fragment nadK-arm-Sm for knockout.
将nadK-arm-Sm分别电激转化(pEcCas+pET32a-PnhM-mcherry-nadK)和VG1(pEcCas+pTU14-nadK),复苏培养后涂布在含有100 μg/mL氨苄青霉素、50 μg/mL卡那霉素和50 μg/mL壮观霉素的LB平板上,37℃培养24小时,挑选单菌落进行PCR验证,确保nadK基因被删除。进一步将菌落划线到含100 μg/mL氨苄青霉素和10%蔗糖的LB平板,利用蔗糖反向筛选使pEcCas质粒丢失,得到最终的基因工程菌株VG1△nadK(pET32a-PnhM-mcherry-nadK)和VG1△nadK(pTU14-nadK),用于后续的评价。NadK-arm-Sm was electroporated into (pEcCas+pET32a-PnhM-mcherry-nadK) and VG1 (pEcCas+pTU14-nadK) respectively. After recovery and culture, it was spread on cards containing 100 μg/mL ampicillin and 50 μg/mL. On the LB plate of namycin and 50 μg/mL spectinomycin, incubate at 37°C for 24 hours, and select single colonies for PCR verification to ensure that the nadK gene is deleted. The colonies were further streaked onto LB plates containing 100 μg/mL ampicillin and 10% sucrose, and the pEcCas plasmid was lost using sucrose reverse screening to obtain the final genetically engineered strains VG1△nadK (pET32a-PnhM-mcherry-nadK) and VG1ΔnadK (pTU14-nadK), used for subsequent evaluation.
上述过程所用引物如表2。The primers used in the above process are shown in Table 2.
表2引物及序列Table 2 Primers and sequences
实施例2构建基因组nadK缺陷型重组枯草芽孢杆菌THY-7△nadK(pHT08-Pg3-lacZ-nadK)Example 2 Construction of genomic nadK- deficient recombinant Bacillus subtilis THY-7△nadK (pHT08-Pg3-lacZ-nadK)
本实施例利用CRISPR/Cas9方法构建基因组nadK缺陷型重组枯草芽孢杆菌,并用于β-半乳糖苷酶的表达,具体步骤如下:This example uses the CRISPR/Cas9 method to construct a genomic nadK- deficient recombinant Bacillus subtilis and use it to express β-galactosidase. The specific steps are as follows:
首先构建携带nadK基因的质粒载体pHT08-Pg3-lacZ-nadK,方法如下:质粒pTH08-Pg3-lacZ(Jiao, et al., Biotechnol. Bioeng., 2017, 114: 832-842.),由SalI酶切得到质粒骨架;以pET32a-PnhM-mcherry-nadK为模板,使用rrnB-F3、nadK-R3扩增nadK基因表达盒;两者采用Gibson连接,转化Top10感受态细胞,构建得到pHT08-Pg3-lacZ-nadK。First, the plasmid vector pHT08-Pg3-lacZ-nadK carrying the nadK gene was constructed as follows: Plasmid pTH08-Pg3-lacZ (Jiao, et al., Biotechnol. Bioeng., 2017, 114: 832-842.), generated by Sal I The plasmid skeleton was obtained by enzyme digestion; using pET32a-PnhM-mcherry-nadK as a template, rrnB-F3 and nadK-R3 were used to amplify the nadK gene expression cassette; the two were connected using Gibson, and Top10 competent cells were transformed to construct pHT08-Pg3- lacZ-nadK.
然后构建用于nadK基因敲除的CRISPR质粒,方法如下:质粒pJOE8999(Altenbuchner, Applied and Environmental Microbiology, 2016, 82, 5421–5427)经BsaI酶切得到质粒骨架;引物nadK-sgRNA1-F、nadK-sgRNA1-R有20 bp的互补配对区域,末端4 bp为BsaI酶的粘性末端,可与质粒骨架互补,将两引物稀释至100 μmol/L,各取1 μL加水稀释至10 μL,混合体系95℃变性5 min,再以0.1℃/s降温至25℃,退火形成dsDNA。使用T4DNA连接酶连接退火产物和质粒骨架,得到pJOE-sgRNA1。进一步,使用SfiI酶切pJOE-sgRNA1得到质粒骨架;以枯草芽孢杆菌THY-7(Jiao, et al., Biotechnol. Bioeng.,2017, 114: 832-842.)为模板,使用nadK-up-F2、nadK-up-R2扩增nadK基因的上游同源臂,使用引物nadK-down-F2、nadK-down-R2扩增nadK基因的下游同源臂;三者经Gibson连接得到pJOE-sgRNA1-nadKarm。Then the CRISPR plasmid for nadK gene knockout was constructed as follows: the plasmid pJOE8999 (Altenbuchner, Applied and Environmental Microbiology, 2016, 82, 5421–5427) was digested with Bsa I to obtain the plasmid backbone; primers nadK-sgRNA1-F, nadK -sgRNA1-R has a 20 bp complementary pairing region, and the end 4 bp is the sticky end of BsaI enzyme, which can be complementary to the plasmid backbone. Dilute the two primers to 100 μmol/L, add 1 μL of each and dilute to 10 μL with water, and mix the system Denature at 95°C for 5 minutes, then cool to 25°C at 0.1°C/s, and anneal to form dsDNA. Use T4 DNA ligase to connect the annealing product and the plasmid backbone to obtain pJOE-sgRNA1. Further, pJOE-sgRNA1 was digested with Sfi I to obtain the plasmid skeleton; using Bacillus subtilis THY-7 (Jiao, et al., Biotechnol. Bioeng., 2017, 114: 832-842.) as the template, nadK-up- F2 and nadK-up-R2 were used to amplify the upstream homology arm of the nadK gene, and primers nadK-down-F2 and nadK-down-R2 were used to amplify the downstream homology arm of the nadK gene; the three were connected by Gibson to obtain pJOE-sgRNA1- nadKarm.
枯草芽孢杆菌THY-7的基因组nadK(SEQ ID NO:3)敲除采用CRISPR技术(Altenbuchner, Applied and Environmental Microbiology, 2016, 82, 5421–5427),具体如下:将pHT08-Pg3-lacZ-nadK导入THY-7得到THY-7(pHT08-Pg3-lacZ-nadK)。将质粒pJOE-sgRNA1-nadKarm电激转化至THY-7(pHT08-Pg3-lacZ-nadK),经复苏培养后涂布在同时含有15ug/mL卡那霉素、5 ug/mL氯霉素和0.2%甘露糖的LB平板,30℃培养24小时长出单菌落,通过菌落PCR确认nadK基因完成敲除。进一步将菌落接种到不含抗生素的LB培养基中37℃培养12小时,稀释涂布平板后长出菌落,挑取多个菌落划线到含卡那霉素的平板上验证是否生长,不生长表示菌落已经消除pJOE-sgRNA1-nadKarm质粒,可用于后续的评价。The genome nadK (SEQ ID NO:3) of Bacillus subtilis THY-7 was knocked out using CRISPR technology (Altenbuchner, Applied and Environmental Microbiology, 2016, 82, 5421–5427). The details are as follows: pHT08-Pg3-lacZ-nadK was introduced THY-7 gives THY-7(pHT08-Pg3-lacZ-nadK). Plasmid pJOE-sgRNA1-nadKarm was transformed into THY-7 (pHT08-Pg3-lacZ-nadK) by electroporation, and after recovery and culture, it was spread on a solution containing 15ug/mL kanamycin, 5ug/mL chloramphenicol and 0.2 % mannose on the LB plate, cultured at 30°C for 24 hours to grow a single colony, and colony PCR was used to confirm that the nadK gene was completely knocked out. Further inoculate the colonies into antibiotic-free LB medium and culture at 37°C for 12 hours. After dilution and coating on the plate, colonies will grow. Pick multiple colonies and streak them onto a plate containing kanamycin to verify whether they grow or not. Indicates that the colony has eliminated the pJOE-sgRNA1-nadKarm plasmid and can be used for subsequent evaluation.
枯草芽孢杆菌nadK序列(SEQ ID NO:3):Bacillus subtilis nadK sequence (SEQ ID NO:3):
atgaaatttgccgtatcatcaaaaggagatcaagtttctgatacgctgaaaagcaaaatacaggcgtatttattggattttgatatggaactggatgaaaatgaaccggaaatcgttatttcagtcggaggcgacggaacgcttttgtatgcttttcacagatacagcgaccgtttggacaaaacagcatttgtcggcgttcacacaggtcatctgggtttttatgccgactgggttcctcatgaaattgaaaaacttgttcttgccatcgcgaaaacgccgtatcatacagtcgaatatccgcttctcgaagtcattgtgacctatcacgaaaacgagcgggaagaaagatacttagctttgaatgaatgtacgattaaaagcatcgaaggaagccttgttgctgatgtggaaatcaaagggcagctctttgaaaccttccggggcgacggcctctgcctgtcaactccatcaggcagcacagcctacaataaggcgctgggcggagcgattatccatccgtctatcagggcgatccagcttgcggaaatggcttcaattaataaccgcgtgttccgtacggtcgggtcacctctgcttctcccatcccatcatgattgcatgattaagccgagaaacgaagttgactttcaagtgacgattgaccatttaacccttctccataaggatgtaaagtcgatccgctgccaagttgcatccgaaaaagtgcggtttgcgagattccgtccgtttccattttggaaaagagtccaggattcgtttattggaaaaggtgaatag。atgaaatttgccgtatcatcaaaaggagatcaagtttctgatacgctgaaaagcaaaaatacaggcgtatttattggattttgatatggaactggatgaaaatgaaccggaaatcgttatttcagtcggaggcgacggaacgcttttgtatgcttttcacagatacagcgaccgtttggacaaaacagcatt tgtcggcgttcacacaggtcatctgggtttttatgccgactgggttcctcatgaaattgaaaaacttgttcttgccatcgcgaaaacgccgtatcatacagtcgaatatccgcttctcgaagtcattgtgacctatcacgaaaacgagcgggaagaaagatacttagctttgaatgaatgtacgattaaaagcatcga aggaagccttgttgctgatgtggaaatcaaagggcagctctttgaaaccttccggggcgacggcctctgcctgtcaactccatcaggcagcacagcctacaataaggcgctgggcggagcgattatccatccgtctatcagggcgatccagcttgcggaaatggcttcaattaataaccgcgtgttccgtacggtc gggtcacctctgcttctcccatcccatcatgattgcatgattaagccgagaaacgaagttgactttcaagtgacgattgaccatttaacccttctccataaggatgtaaagtcgatccgctgccaagttgcatccgaaaaagtgcggtttgcgagattccgtccgtttccattttggaaaagagtccaggattcgtttat ggaaaaggtgaatag.
上述过程所用引物如表3。The primers used in the above process are shown in Table 3.
表3引物及序列Table 3 Primers and sequences
实施例3构建基因组nadK缺陷型重组红色红球菌THdAdN△nadK(pNVSm-SBMDB-nadK)Example 3 Construction of genome nadK- deficient recombinant Rhodococcus rubra THdAdN△nadK (pNVSm-SBMDB-nadK)
本实施例的目的是利用同源重组双交换法构建基因组nadK缺陷型重组红色红球菌,并用于腈水合酶的表达,具体步骤如下:The purpose of this example is to use the homologous recombination double-exchange method to construct a genomic nadK- deficient recombinant Rhodococcus rubrum and use it for the expression of nitrile hydratase. The specific steps are as follows:
首先构建携带nadK基因的质粒载体pNVSm-SBMDB-nadK,方法如下:质粒载体pNVSm-SBMDB(CN107177581A)由EcoRI酶切得到质粒骨架;以pET32a-PnhM-mcherry-nadK为模板,使用rrnB-F4、nadK-R4扩增nadK基因表达盒;两者采用Gibson连接,转化Top10感受态细胞,涂布到含有50 μg/mL壮观霉素的平板,构建得到pNVSm-SBMDB-nadK。First, construct the plasmid vector pNVSm-SBMDB-nadK carrying the nadK gene. The method is as follows: The plasmid vector pNVSm-SBMDB (CN107177581A) is digested with Eco RI to obtain the plasmid backbone; using pET32a-PnhM-mcherry-nadK as the template, use rrnB-F4, nadK-R4 amplifies the nadK gene expression cassette; the two are connected using Gibson, transformed into Top10 competent cells, and spread onto a plate containing 50 μg/mL spectinomycin to construct pNVSm-SBMDB-nadK.
构建用于敲除红色红球菌nadK基因的自杀质粒pK18mobsacB-nadK-Rr,方法如下:商业化质粒pK18mobsacB由HindIII和XbaI酶切得到骨架;以红色红球菌THdAdN(CN105420154A)为模板,使用nadK-up-F3、nadK-up-R3扩增nadK基因的上游同源臂,使用引物nadK-down-F3、nadK-down-R3扩增nadK基因的下游同源臂;三者经Gibson连接得到pK18mobsacB-nadK-Rr。The suicide plasmid pK18mobsacB-nadK-Rr for knocking out the nadK gene of Rhodococcus rubrum was constructed as follows: the commercial plasmid pK18mobsacB was digested with Hin dIII and Xba I to obtain the skeleton; using Rhodococcus rubrum THdAdN (CN105420154A) as a template, nadK was used -up-F3 and nadK-up-R3 amplified the upstream homology arm of nadK gene, and used primers nadK-down-F3 and nadK-down-R3 to amplify the downstream homology arm of nadK gene; the three were connected by Gibson to obtain pK18mobsacB -nadK-Rr.
进一步采用同源重组双交换的方法敲除红色红球菌THdAN基因组的nadK基因(SEQID NO:4),具体如下:将pNVSm-SBMDB-nadK导入红色红球菌THdAdN,得到THdAdN(pNVSm-SBMDB-nadK);电激转化自杀质粒 pK18mobsacB-nadK-Rr,复苏培养后涂布至含有25 μg/mL卡那霉素和50 μg/mL壮观霉素的LB平板,通过单交换将其整合至基因组中;单交换菌落进一步涂布到含50 μg/mL壮观霉素、100 g/L蔗糖的LB平板,28℃培养3天长出菌落,通过菌落PCR验证nadK基因是否成功敲除。成功敲除的菌落命名为THdAdN△nadK(pNVSm-SBMDB-nadK)。The homologous recombination double exchange method was further used to knock out the nadK gene (SEQID NO: 4) of the Rhodococcus rubrum THdAN genome, as follows: pNVSm-SBMDB-nadK was introduced into Rhodococcus rubrum THdAdN to obtain THdAdN (pNVSm-SBMDB-nadK). ; The suicide plasmid pK18mobsacB-nadK-Rr was transformed by electroporation, and after recovery and culture, it was spread on an LB plate containing 25 μg/mL kanamycin and 50 μg/mL spectinomycin, and integrated into the genome through single exchange; single The exchanged colonies were further spread onto LB plates containing 50 μg/mL spectinomycin and 100 g/L sucrose, and cultured at 28°C for 3 days to grow colonies. Colony PCR was used to verify whether the nadK gene was successfully knocked out. The successfully knocked-out colony was named THdAdN△nadK (pNVSm-SBMDB-nadK).
红色红球菌nadK序列(SEQ ID NO:4):Rhodococcus rubrum nadK sequence (SEQ ID NO:4):
gtgaccacagatagtgcagcgcccggcccggagcgcgcgacccgcgaggtcctgctcgtgtcccactcgggacgggtcgagatcgccgcgacggcgcagcgcacggcgaagatcttcggcgaggccggcatcgggctgcgggtgctcgacgacgaggtcgccagcaccggtctgggtcccctggccggacccgagggccgggtccgcatcgtcgaacccggaccggacgccgcccggggttgcgagatggtgatcgtgctcggcggcgacggcagtttcctgcgcgccgccgaactggcccagtgcgcgacggtgcccgtgctcggaatcaacctgggacgcatcggtttcctcgccgaggccgagaccgagcatctcgaggaggcgctggcacaggtggtgcgccgcgagtaccgggtcgaggagcggatgacgctggacgtcgcgatccgggtcgacgacgcgatcgtcgaccggggatgggcgctcaacgaggccagcctcgagaacaagtcccgcctgggcgtgctcgaggtggtgctcgaggtcgacggtcggccggtgtcggcgttcggatgcgacggagtgctgatcgccaccccgaccggctcgaccgcctacgcgttctccgccggcggcccgatcgtctggccggaactcgaagcgttgctggtgattcccagcaacgcccacgctctgttcgcccggcccatggtgaccagcccggaatcgctgatcgccgtggagaccctcgccggcagccacgacgggctggtgttctgcgacggccgccgcaccctcgacctgcccgcgggtgggcggctcgaggtggtccgcggcaagcatcccgtgcggtgggtgcgcctggactcggcgccgttcgccgaccgaatggtgcgcaagttcgatcttccggtgaagggctggcggggaaggagactgtga。gtgaccacagatagtgcagcgcccggcccggagcgcgcgacccgcgaggtcctgctcgtgtcccactcgggacgggtcgagatcgccgcgacggcgcagcgcacggcgaagatcttcggcgaggccggcatcgggctgcgggtgctcgacgacgaggtcgccagcaccggtctgggtcccctgg ccggacccgagggccgggtccgcatcgtcgaacccggaccggacgccgcccggggttgcgagatggtgatcgtgctcggcggcgacggcagtttcctgcgcgccgccgaactggcccagtgcgcgacggtgcccgtgctcggaatcaacctgggacgcatcggtttcctcgccgaggccgagaccga gcatctcgaggaggcgctggcacaggtggtgcgccgcgagtaccgggtcgaggagcggatgacgctggacgtcgcgatccgggtcgacgacgcgatcgtcgaccggggatgggcgctcaacgaggccagcctcgagaacaagtcccgcctgggcgtgctcgaggtggtgctcgaggtcgacggtc ggccggtgtcggcgttcggatgcgacggagtgctgatcgccaccccgaccggctcgaccgcctacgcgttctccgccggcggcccgatcgtctggccggaactcgaagcgttgctggtgattcccagcaacgcccacgctctgttcgcccggcccatggtgaccagccgggaatcgctgatcgccgt ggagaccctcgccggcagccacgacgggctggtgttctgcgacggccgccgcaccctcgacctgcccgcgggtgggcggctcgaggtggtccgcggcaagcatcccgtgcggtgggtgcgcctggactcggcgccgttcgccgaccgaatggtgcgcaagttcgatcttccggtgaagggctggcgggg aaggagactgtga.
上述过程所用引物如表4。The primers used in the above process are shown in Table 4.
表4引物及序列Table 4 Primers and sequences
实施例4构建基因组nadK缺失型重组谷氨酸棒杆菌ATCC13032△nadK(pXMJ19-Ptac-ssehasA-hasB-nadK)Example 4 Construction of genomic nadK-deleted recombinant Corynebacterium glutamicum ATCC13032△nadK (pXMJ19-Ptac-ssehasA-hasB-nadK)
本实施例是利用同源重组双交换法构建基因组nadK缺陷型谷氨酸棒杆菌,并用于透明质酸的合成,具体步骤如下:In this example, the homologous recombination double-exchange method is used to construct the genomic nadK- deficient Corynebacterium glutamicum and use it for the synthesis of hyaluronic acid. The specific steps are as follows:
首先构建质粒pXMJ19-Ptac-ssehasA-hasB-nadK,方法如下:质粒pXMJ19-Ptac-ssehasA-hasB(Cheng, et al., Biotechnology Journal, 2016, 11, 574–584)由EcoRI酶切得到质粒骨架;以pET32a-PnhM-mcherry-nadK为模板,使用rrnB-F5、nadK-R5扩增nadK基因表达盒;两者采用Gibson连接,转化Top10感受态细胞,涂布到含有10 μg/mL氯霉素的平板,构建得到pXMJ19-Ptac-ssehasA-hasB-nadK。First, plasmid pXMJ19-Ptac-ssehasA-hasB-nadK was constructed as follows: Plasmid pXMJ19-Ptac-ssehasA-hasB (Cheng, et al., Biotechnology Journal, 2016, 11, 574–584) was digested with Eco RI to obtain the plasmid backbone. ; Using pET32a-PnhM-mcherry-nadK as a template, use rrnB-F5 and nadK-R5 to amplify the nadK gene expression cassette; the two are connected by Gibson, transform Top10 competent cells, and spread to contain 10 μg/mL chloramphenicol. The plate was constructed to obtain pXMJ19-Ptac-ssehasA-hasB-nadK.
构建用于敲除谷氨酸棒杆菌nadK基因的自杀质粒pK18mobsacB-nadK-Cg,方法如下:质粒pK18mobsacB(成方宇文献)由HindIII和XbaI酶切得到骨架;以谷氨酸棒杆菌ATCC13032为模板,使用nadK-up-F4、nadK-up-R4扩增nadK基因的上游同源臂,使用引物nadK-down-F4、nadK-down-R4扩增nadK基因的下游同源臂;三者经Gibson连接得到pK18mobsacB-nadK-Cg。The suicide plasmid pK18mobsacB-nadK-Cg for knocking out the nadK gene of Corynebacterium glutamicum was constructed as follows: the plasmid pK18mobsacB (Cheng Fangyu literature) was digested with Hin dIII and Xba I to obtain the skeleton; the skeleton was obtained from Corynebacterium glutamicum ATCC13032 As a template, use nadK-up-F4 and nadK-up-R4 to amplify the upstream homology arm of the nadK gene, and use the primers nadK-down-F4 and nadK-down-R4 to amplify the downstream homology arm of the nadK gene; the three pK18mobsacB-nadK-Cg was obtained via Gibson ligation.
进一步采用同源重组双交换的方法敲除谷氨酸棒杆菌ATCC13032基因组的nadK基因(SEQ ID NO:5),具体如下:将pXMJ19-Ptac-ssehasA-hasB-nadK导入谷氨酸棒杆菌ATCC13032,得到ATCC13032 (pNVSm-SBMDB-nadK);电激转化自杀质粒pK18mobsacB-nadK-Cg,复苏培养后涂布至含有25 μg/mL卡那霉素和5 μg/mL氯霉素的LB平板,通过单交换将其整合至基因组中;单交换菌落进一步涂布到含5 μg/mL氯霉素、100 g/L蔗糖的LB平板,30℃培养2天长出菌落,通过菌落PCR验证nadK基因是否成功敲除。成功敲除的菌落命名为ATCC13032△nadK(pXMJ19-Ptac-ssehasA-hasB-nadK)。The homologous recombination double exchange method was further used to knock out the nadK gene (SEQ ID NO: 5) in the genome of Corynebacterium glutamicum ATCC13032, as follows: pXMJ19-Ptac-ssehasA-hasB-nadK was introduced into Corynebacterium glutamicum ATCC13032, ATCC13032 (pNVSm-SBMDB-nadK) was obtained; the suicide plasmid pK18mobsacB-nadK-Cg was transformed by electroporation. After recovery and culture, it was spread onto an LB plate containing 25 μg/mL kanamycin and 5 μg/mL chloramphenicol. Exchange to integrate it into the genome; the single-exchange colony was further spread on an LB plate containing 5 μg/mL chloramphenicol and 100 g/L sucrose, and cultured at 30°C for 2 days to grow colonies, and colony PCR was used to verify whether the nadK gene was successfully knocked out. remove. The successfully knocked-out colony was named ATCC13032△nadK (pXMJ19-Ptac-ssehasA-hasB-nadK).
谷氨酸棒杆菌nadK序列(SEQ ID NO:5):Corynebacterium glutamicum nadK sequence (SEQ ID NO:5):
atgactgcacccacgaacgctggggaactcaggcgagttttgctggttccacacaccgggcgttcttccaatattgaatccgccatcttggcagccaagctgctcgacgatgctggaatcgatgtgagggtgctgatcaatgatgcagatgatccaattgcagagcactccgttttaggccgtttcacccatgtcaggcacgctgcagacgccgctgacggcgcagaactagttctggtgctgggtggagatggcaccttcctccgcgcagcagatatggcccacgctgttgatttgcctgttctgggcatcaacctaggccatgtgggattcttggctgaatgggagtctgactcacttgaagaggcactcaaacgtgtgatcgaccgcgattaccgtattgaagatcgcatgaccttaactgtcgttgtcctagacggcggtggagaagaaatcggccgaggctgggctctcaatgaggtcagtattgaaaacttaaaccgcaggggagtgctcgatgcaaccctcgaggtagatgcacgaccagttgcttcctttggttgcgatggcgtgctgatttccaccccaaccggctccaccgcttatgcattttccgccggtggtcctgtactgtggccagaactcgatgccatcttggtggttcctaataacgcccacgcgctgtttaccaaaccgctggttgtgagcccaaaatccaccgtagctgtggaatccaattcagatacttcagcagcgatggccgtcatggatggtttccgtcccattcctatgcctccaggatcccgtgttgaggtcaccaggggtgagcgtcccgtgcgttgggtgaggcttgattcttcaccgtttaccgaccgacttgtgagcaaattaaggctccccgttaccggttggcggggtccgcaaaaacaggcggaaaataaagatcccaggtcagcggggtaa。atgactgcacccacgaacgctggggaactcaggcgagttttgctggttccacacaccgggcgttcttccaatattgaatccgccatcttggcagccaagctgctcgacgatgctggaatcgatgtgagggtgctgatcaatgatgcagatgatccaatgcagagcactccgttttaggccgtttcacccatgt caggcacgctgcagacgccgctgacggcgcagaactagttctggtgctgggtggagatggcaccttcctccgcgcagcagatatggcccacgctgttgatttgcctgttctgggcatcaacctaggccatgtgggattcttggctgaatgggagtctgactcacttgaagaggcactcaaacgtgtgatcgaccgcg attaccgtattgaagatcgcatgaccttaactgtcgttgtcctagacggcggtggagaagaaatcggccgaggctgggctctcaatgaggtcagtattgaaaacttaaaccgcaggggagtgctcgatgcaaccctcgaggtagatgcacgaccagttgcttcctttggttgcgatggcgtgctgatttccaccccaaccggctcc accgcttatgcattttccgccggtggtcctgtactgtggccagaactcgatgccatcttggtggttcctaataacgcccacgcgctgtttacccaaaccgctggttgtgagcccaaaatccaccgtagctgtggaatccaattcagatacttcagcagcgatggccgtcatggatggtttccgtcccattcctatg cctccaggatcccgtgttgaggtcaccaggggtgagcgtcccgtgcgttgggtgaggcttgattcttcaccgtttaccgaccgacttgtgagcaaattaaggctccccgttaccggttggcggggtccgcaaaaacaggcggaaaaataaagatcccaggtcagcggggtaa.
上述过程所用引物如表5。The primers used in the above process are shown in Table 5.
表5引物及序列Table 5 Primers and sequences
实施例5重组菌株VG1△nadK(pET32a-PnhM-mcherry-nadK)及对照菌VG1(pET32a-PnhM-mcherry)的质粒稳定性和荧光强度评价Example 5 Evaluation of plasmid stability and fluorescence intensity of recombinant strain VG1△nadK (pET32a-PnhM-mcherry-nadK) and control strain VG1 (pET32a-PnhM-mcherry)
本实施例是评价基于nadK基因构建的质粒稳定表达系统对于重组大肠杆菌的红色荧光蛋白表达强度及稳定性的影响。This example evaluates the impact of a plasmid stable expression system constructed based on the nadK gene on the expression intensity and stability of red fluorescent protein in recombinant E. coli.
重组菌株VG1△nadK(pET32a-PnhM-mcherry-nadK)及对照菌VG1(pET32a-PnhM-mcherry),分别接种至不含抗生素的LB培养基,37℃传代培养累计12次,每次的转接比例为1%,培养时间为12小时,每次培养结束后测定mcherry荧光强度,将菌液适当稀释后涂布到不含或者含100 μg/mL氨苄青霉素的LB平板上,并进行菌落计数,计算质粒保留率(即抗生素平板与无抗生素平板上的菌落数的比值)。The recombinant strain VG1△nadK (pET32a-PnhM-mcherry-nadK) and the control strain VG1 (pET32a-PnhM-mcherry) were respectively inoculated into LB medium without antibiotics, and subcultured at 37°C for a total of 12 times. Each transfer The ratio is 1% and the culture time is 12 hours. After each culture, the mcherry fluorescence intensity is measured. The bacterial solution is appropriately diluted and spread onto an LB plate without or containing 100 μg/mL ampicillin, and the colonies are counted. Calculate plasmid retention (i.e., the ratio of the number of colonies on antibiotic plates to antibiotic-free plates).
传代过程中的质粒保留率如图3所示,转接12次后,对照菌VG1(pET32a-PnhM-mcherry)的质粒保留率仅有25%,而VG1△nadK(pET32a-PnhM-mcherry-nadK)的质粒保留率为95%,说明本申请的方法可以显著提高质粒的传代稳定性。传代过程中的荧光强度的变化如图4所示,质粒上过表达nadK基因对初始荧光强度几乎没有影响,但显著提升提高了传代过程中荧光强度的稳定性。The plasmid retention rate during passage is shown in Figure 3. After 12 transfers, the plasmid retention rate of the control strain VG1 (pET32a-PnhM-mcherry) was only 25%, while the plasmid retention rate of VG1△nadK (pET32a-PnhM-mcherry-nadK ), the plasmid retention rate was 95%, indicating that the method of the present application can significantly improve the passage stability of the plasmid. The changes in fluorescence intensity during the passage process are shown in Figure 4. Overexpression of the nadK gene on the plasmid has almost no effect on the initial fluorescence intensity, but significantly improves the stability of the fluorescence intensity during the passage process.
实施例6重组菌株VG1△nadK(pTU14-nadK)和对照菌VG1(pTU14)的质粒稳定性和PHB产量评价Example 6 Evaluation of plasmid stability and PHB production of recombinant strain VG1△nadK (pTU14-nadK) and control strain VG1 (pTU14)
本实施例是评价基于nadK基因构建的质粒稳定表达系统对于重组大肠杆菌的PHB产量及质粒传代稳定性的影响。This example is to evaluate the impact of a plasmid stable expression system constructed based on the nadK gene on the PHB yield and plasmid passage stability of recombinant E. coli.
重组菌株VG1△nadK(pTU14-nadK)及对照菌VG1(pTU14),分别接种至不含抗生素、含20 g/L葡萄糖的LB培养基,37℃传代培养累计12次,每次的转接比例为1%,培养时间为12小时,每次培养结束后将菌液适当稀释后涂布到不含或者含100 μg/mL氨苄青霉素的LB平板上,并进行菌落计数,计算质粒保留率(即抗生素平板与无抗生素平板上的菌落数的比值)。第1次和第12次传代的培养液,按照1%的比例接种至含30g/L葡萄糖的LB培养基中,37℃、200 rpm培养48小时,测定PHB含量(测定方法参考CN1086203C)。The recombinant strain VG1△nadK (pTU14-nadK) and the control strain VG1 (pTU14) were inoculated into LB medium without antibiotics and containing 20 g/L glucose, and subcultured at 37°C for a total of 12 times. The transfer ratio of each time is 1%, and the culture time is 12 hours. After each culture, the bacterial solution is appropriately diluted and spread on an LB plate without or containing 100 μg/mL ampicillin, and the colonies are counted to calculate the plasmid retention rate (i.e. The ratio of the number of colonies on antibiotic plates to those on antibiotic-free plates). The culture fluid of the 1st and 12th passage was inoculated into LB medium containing 30g/L glucose at a ratio of 1%, cultured at 37°C and 200 rpm for 48 hours, and the PHB content was measured (refer to CN1086203C for the measurement method).
传代过程中的质粒保留率如图5所示,转接12次后,对照菌VG1(pTU14)的质粒保留率为45%,而VG1△nadK(pTU14-nadK)的质粒保留率为96%。第1次和第12次转接菌液的PHB产量如表6所示,VG1△nadK(pTU14-nadK)的初始PHB产量比对照菌提高15.6%;传代12次后,VG1△nadK(pTU14-nadK)的产量基本不变(初始水平的94.2%),而对照菌产量仅剩余39.2%。结果表明,本申请基于nadK的质粒稳定表达系统不仅可以提高大肠杆菌的质粒传代稳定性,而且对于PHB的合成有促进作用。The plasmid retention rate during passage is shown in Figure 5. After 12 transfers, the plasmid retention rate of the control strain VG1 (pTU14) was 45%, while the plasmid retention rate of VG1△nadK (pTU14-nadK) was 96%. The PHB production of the 1st and 12th transfer bacterial solution is shown in Table 6. The initial PHB production of VG1△nadK (pTU14-nadK) was 15.6% higher than that of the control bacteria; after 12 passages, the PHB production of VG1△nadK (pTU14- The production of nadK) was basically unchanged (94.2% of the initial level), while the production of the control strain remained only 39.2%. The results show that the plasmid stable expression system based on nadK of this application can not only improve the stability of plasmid passage in E. coli, but also promote the synthesis of PHB.
表6重组大肠杆菌的PHB产量对比Table 6 PHB production comparison of recombinant E. coli
进一步,5 L发酵罐里发酵培养VG1△nadK(pTU14-nadK)和VG1(pTU14)。挑取单菌落接种到含20 g/L葡萄糖的LB培养基中,37℃培养12小时后,按照10%比例接种至5 L发酵罐(含40 g/L葡萄糖的LB培养基,装液量2 L),培养温度为37℃、初始搅拌转速为200-400rpm,pH控制为6.5-7.5,发酵过程中根据需要补加酵母膏、葡萄糖和硫酸铵,使发酵前期和中期的葡萄糖浓度维持在20~40 g/L,硫酸铵浓度维持在1~2 g/L,碳氮比保持在10~20之间;当溶氧降低时,逐步调整搅拌转速,使溶氧保持在5%以上,发酵48~65 h小时结束。在不添加抗生素条件下,发酵培养48小时,PHB产量高达152 g/L;而对比菌株VG1(pTU14)不添加抗生素的PHB产量仅为88 g/L,在添加抗生素条件下,PHB产量为102 g/L。基于nadK基因的质粒稳定表达系统显著提高了重组菌株的质粒稳定性和目标产物PHB的产量。Further, VG1△nadK (pTU14-nadK) and VG1 (pTU14) were fermented and cultured in a 5 L fermentor. Pick a single colony and inoculate it into LB medium containing 20 g/L glucose. After culturing at 37°C for 12 hours, inoculate it into a 5 L fermenter at a ratio of 10% (LB medium containing 40 g/L glucose, filling volume 2 L), the culture temperature is 37°C, the initial stirring speed is 200-400 rpm, and the pH is controlled at 6.5-7.5. During the fermentation process, yeast extract, glucose and ammonium sulfate are added as needed to maintain the glucose concentration in the early and middle stages of fermentation. 20~40 g/L, the ammonium sulfate concentration is maintained at 1~2 g/L, and the carbon-nitrogen ratio is maintained between 10~20; when the dissolved oxygen decreases, gradually adjust the stirring speed to keep the dissolved oxygen above 5%. Fermentation is completed after 48~65 hours. Without the addition of antibiotics, the PHB production was as high as 152 g/L after 48 hours of fermentation culture; while the PHB production of the comparison strain VG1 (pTU14) without the addition of antibiotics was only 88 g/L, and under the conditions of the addition of antibiotics, the PHB production was 102 g/L. The plasmid stable expression system based on the nadK gene significantly improved the plasmid stability of the recombinant strain and the production of the target product PHB.
实施例7重组枯草芽孢杆菌THY-7△nadK(pHT08-Pg3-lacZ-nadK)和对照菌THY-7(pHT08-Pg3-lacZ)的质粒稳定性和β-半乳糖苷酶活性评价Example 7 Evaluation of plasmid stability and β-galactosidase activity of recombinant Bacillus subtilis THY-7△nadK (pHT08-Pg3-lacZ-nadK) and control strain THY-7 (pHT08-Pg3-lacZ)
本实施例是评价基于nadK基因构建的质粒稳定表达系统对于重组枯草芽孢杆菌的β-半乳糖苷酶活性及质粒传代稳定性的影响。This example is to evaluate the impact of a plasmid stable expression system constructed based on the nadK gene on the β-galactosidase activity and plasmid passage stability of recombinant Bacillus subtilis.
重组菌株THY-7△nadK(pHT08-Pg3-lacZ-nadK)及对照菌THY-7 (pHT08-Pg3-lacZ),分别接种至不含抗生素、含有0.5mM异丙基-β-D-硫代半乳糖苷的LB培养基,37℃传代培养累计12次,每次的转接比例为1%,培养时间为12小时,每次培养结束后将菌液适当稀释后涂布到不含或者含5ug/mL氯霉素的LB平板上,并进行菌落计数,计算质粒保留率(即抗生素平板与无抗生素平板上的菌落数的比值)。第1次和第12次传代的培养液,测定β-半乳糖苷酶活性(测定方法参考Jiao, et al., Biotechnol. Bioeng., 2017, 114: 832-842.)。The recombinant strain THY-7△nadK (pHT08-Pg3-lacZ-nadK) and the control strain THY-7 (pHT08-Pg3-lacZ) were inoculated into antibiotic-free and containing 0.5mM isopropyl-β-D-thio Galactoside's LB medium was subcultured at 37°C for a total of 12 times, with a transfer ratio of 1% each time and a culture time of 12 hours. After each culture, the bacterial solution was appropriately diluted and spread to a level that did not contain or contain on an LB plate with 5ug/mL chloramphenicol, and count the colonies to calculate the plasmid retention rate (i.e., the ratio of the number of colonies on the antibiotic plate and the antibiotic-free plate). In the culture medium of the 1st and 12th passage, β-galactosidase activity was measured (for the measurement method, please refer to Jiao, et al., Biotechnol. Bioeng., 2017, 114: 832-842.).
传代过程中的质粒保留率如图6所示,转接12次后,对照菌THY-7 (pHT08-Pg3-lacZ)的质粒保留率仅为12%,而THY-7△nadK(pHT08-Pg3-lacZ-nadK)的质粒保留率达到97%。第1次和第12次转接菌液的β-半乳糖苷酶活性如表7所示,THY-7△nadK(pHT08-Pg3-lacZ-nadK)的初始β-半乳糖苷酶活性与对照菌几乎没有区别,但传代12次后显著高于对照菌。结果表明,基于nadK的质粒稳定表达系统可以提高重组枯草芽孢的质粒传代稳定性。The plasmid retention rate during passage is shown in Figure 6. After 12 transfers, the plasmid retention rate of the control strain THY-7 (pHT08-Pg3-lacZ) was only 12%, while that of THY-7△nadK (pHT08-Pg3 -lacZ-nadK) plasmid retention rate reached 97%. The β-galactosidase activity of the 1st and 12th transfer bacterial solution is shown in Table 7. The initial β-galactosidase activity of THY-7△nadK (pHT08-Pg3-lacZ-nadK) and the control There was almost no difference between the bacteria, but after 12 passages, it was significantly higher than the control bacteria. The results show that the nadK -based plasmid stable expression system can improve the plasmid passage stability of recombinant Bacillus subtilis spores.
表7 重组枯草芽孢杆菌的β-半乳糖苷酶活性对比Table 7 Comparison of β-galactosidase activities of recombinant Bacillus subtilis
实施例8重组红色红球菌THdAdN△nadK(pNVSm-SBMDB-nadK)和对照菌THdAdN(pNVSm-SBMDB)的质粒稳定性和腈水合酶活性评价Example 8 Evaluation of plasmid stability and nitrile hydratase activity of recombinant Rhodococcus rubrum THdAdN△nadK (pNVSm-SBMDB-nadK) and control strain THdAdN (pNVSm-SBMDB)
本实施例是评价基于nadK基因构建的质粒稳定表达系统对于重组红色红球菌的腈水合酶活性及质粒传代稳定性的影响。This example is to evaluate the impact of a plasmid stable expression system constructed based on the nadK gene on the nitrile hydratase activity and plasmid passage stability of recombinant Rhodococcus rubrum.
重组菌株THdAdN△nadK(pNVSm-SBMDB-nadK)及对照菌THdAdN (pNVSm-SBMDB),分别接种至不含抗生素的红球菌种子培养基(葡萄糖10-50 g/L,酵母膏1-4 g/L,蛋白胨1-10g/L,KH2PO40.2-3 g/L,K2HPO40.2-3 g/L,MgSO4·7H2O 0.2-3 g/L,味精1 g/L,pH值为7.5),28℃传代培养累计12次,每次的转接比例为1%,培养时间为36小时,每次培养结束后将菌液适当稀释后涂布到不含或者含50ug/mL壮观霉素的LB平板上,并进行菌落计数,计算质粒保留率(即抗生素平板与无抗生素平板上的菌落数的比值)。第1次和第12次传代的培养液,接种至红球菌发酵培养基(腈水合酶发酵的培养基包括葡萄糖25 g/L,尿素10 g/L,酵母膏1 g/L,蛋白胨10g/L,KH2PO43 g/L,K2HPO43 g/L,MgSO4·7H2O 1 g/L,味精1 g/L,CoCl20.08mM,pH值为7.5),28℃、200rpm发酵培养48小时,测定腈水合酶活性(方法参考CN107177581A)。The recombinant strain THdAdN△nadK (pNVSm-SBMDB-nadK) and the control strain THdAdN (pNVSm-SBMDB) were inoculated into Rhodococcus seed culture medium without antibiotics (glucose 10-50 g/L, yeast extract 1-4 g/ L, peptone 1-10g/L, KH 2 PO 4 0.2-3 g/L, K 2 HPO 4 0.2-3 g/L, MgSO 4 ·7H 2 O 0.2-3 g/L, MSG 1 g/L, pH value is 7.5), subcultured at 28°C for a total of 12 times, the transfer ratio each time was 1%, and the culture time was 36 hours. After each culture, the bacterial solution was appropriately diluted and spread to a level that did not contain or contained 50ug/ mL of spectinomycin on the LB plate, and the colonies were counted to calculate the plasmid retention rate (i.e., the ratio of the number of colonies on the antibiotic plate and the antibiotic-free plate). The culture broth of the 1st and 12th passages was inoculated into Rhodococcus fermentation medium (the medium for nitrile hydratase fermentation includes glucose 25 g/L, urea 10 g/L, yeast extract 1 g/L, and peptone 10g/L). L, KH 2 PO 4 3 g/L, K 2 HPO 4 3 g/L, MgSO 4 ·7H 2 O 1 g/L, MSG 1 g/L, CoCl 2 0.08mM, pH value 7.5), 28℃ , ferment and culture at 200 rpm for 48 hours, and measure nitrile hydratase activity (method reference CN107177581A).
传代过程中的质粒保留率如图7所示,转接12次后,对照菌THdAdN (pNVSm-SBMDB)的质粒保留率仅为34%,而THdAdN△nadK(pNVSm-SBMDB-nadK)的质粒保留率达到93%。使用第1次和第12次转接菌液进行发酵培养,腈水合酶活性如表8所示,THdAdN△nadK(pNVSm-SBMDB-nadK)的初始腈水合酶活性比对照菌提高25%,且传代12次酶活几乎没有降低;而对照菌在传代12次后酶活降低至原有水平的26%。结果表明,基于nadK的质粒稳定表达系统不仅可以提高重组红色红球菌的质粒传代稳定性,而且对于腈水合酶的表达具有明显的促进作用。The plasmid retention rate during passage is shown in Figure 7. After 12 transfers, the plasmid retention rate of the control strain THdAdN (pNVSm-SBMDB) was only 34%, while the plasmid retention rate of THdAdN△nadK (pNVSm-SBMDB-nadK) The rate reaches 93%. The 1st and 12th transfer strains were used for fermentation culture. The nitrile hydratase activity is shown in Table 8. The initial nitrile hydratase activity of THdAdN△nadK (pNVSm-SBMDB-nadK) was 25% higher than that of the control strain, and There was almost no decrease in enzyme activity after 12 passages; while the enzyme activity of the control bacteria decreased to 26% of the original level after 12 passages. The results show that the nadK-based plasmid stable expression system can not only improve the plasmid passage stability of recombinant Rhodococcus rubrum, but also significantly promote the expression of nitrile hydratase.
表8 重组红色红球菌的腈水合酶活性对比Table 8 Comparison of nitrile hydratase activities of recombinant Rhodococcus rubrum
实施例9重组谷氨酸棒杆菌ATCC13032△nadK(pXMJ19-Ptac-ssehasA-hasB-nadK)和对照菌ATCC13032 (pXMJ19-Ptac-ssehasA-hasB)的质粒稳定性和透明质酸产量评价Example 9 Evaluation of plasmid stability and hyaluronic acid production of recombinant Corynebacterium glutamicum ATCC13032△nadK (pXMJ19-Ptac-ssehasA-hasB-nadK) and control strain ATCC13032 (pXMJ19-Ptac-ssehasA-hasB)
本实施例是评价基于nadK基因构建的质粒稳定表达系统对于重组谷氨酸棒杆菌的透明质酸产量及质粒传代稳定性的影响。This example is to evaluate the impact of a plasmid stable expression system constructed based on the nadK gene on the hyaluronic acid production and plasmid passage stability of recombinant Corynebacterium glutamicum.
重组谷氨酸棒杆菌ATCC13032△nadK(pXMJ19-Ptac-ssehasA-hasB-nadK)和对照菌ATCC13032 (pXMJ19-Ptac-ssehasA-hasB),分别接种至不含抗生素、含有20g/L葡萄糖的LB培养基,30℃传代培养累计12次,每次的转接比例为1%,培养时间为24小时,每次培养结束后将菌液适当稀释后涂布到不含或者含5ug/mL氯霉素的LB平板上,并进行菌落计数,计算质粒保留率(即抗生素平板与无抗生素平板上的菌落数的比值)。第1次和第12次传代的培养液,接种至发酵培养基(葡萄糖40 g/L,硫酸铵30 g/L,玉米浆粉20 g/L,磷酸二氢钾1g/L,磷酸氢二钾1 g/L,七水合硫酸镁2 g/L,七水合硫酸亚铁0.05 g/L,七水合硫酸锰0.05g/L,pH值为7.2),28℃培养3小时后加入1mM异丙基-β-D-硫代半乳糖苷,继续培养至48小时,测定透明质酸浓度(测定方法参考Cheng,et al., Biotechnology Journal, 2016,11, 574–584)。Recombinant Corynebacterium glutamicum ATCC13032△nadK (pXMJ19-Ptac-ssehasA-hasB-nadK) and control strain ATCC13032 (pXMJ19-Ptac-ssehasA-hasB) were inoculated into LB medium without antibiotics and containing 20g/L glucose. , a total of 12 times of subculture at 30°C, the transfer ratio of each time is 1%, and the culture time is 24 hours. After each culture, the bacterial solution is appropriately diluted and spread into a medium without or containing 5ug/mL chloramphenicol. on the LB plate, and count the colonies to calculate the plasmid retention rate (i.e., the ratio of the number of colonies on the antibiotic plate and the antibiotic-free plate). The culture broth of the 1st and 12th passages was inoculated into the fermentation medium (glucose 40 g/L, ammonium sulfate 30 g/L, corn steep liquor 20 g/L, potassium dihydrogen phosphate 1g/L, dihydrogen phosphate Potassium 1 g/L, magnesium sulfate heptahydrate 2 g/L, ferrous sulfate heptahydrate 0.05 g/L, manganese sulfate heptahydrate 0.05g/L, pH value 7.2), add 1mM isopropyl after incubation at 28°C for 3 hours -β-D-thiogalactopyranoside, continue culturing for 48 hours, and measure the hyaluronic acid concentration (refer to Cheng, et al., Biotechnology Journal, 2016, 11, 574–584 for the measurement method).
传代过程中的质粒保留率如图8所示,转接12次后,对照菌ATCC13032 (pXMJ19-Ptac-ssehasA-hasB)的质粒几乎完全丢失,而ATCC13032△nadK(pXMJ19-Ptac-ssehasA-hasB-nadK)的质粒保留率达到94%。使用第1次和第12次转接菌液进行发酵培养,透明质酸产量如表9所示,ATCC13032△nadK(pXMJ19-Ptac-ssehasA-hasB-nadK)的初始透明质酸产量比对照菌提高30.4%,传代12次后的产量为原水平的92%;而对照菌在传代12次后产量为零。结果表明,基于nadK的质粒稳定表达系统不仅可以提高谷氨酸棒杆菌的质粒传代稳定性,而且对于透明质酸的合成具有明显的促进作用。The plasmid retention rate during passage is shown in Figure 8. After 12 transfers, the plasmid of the control strain ATCC13032 (pXMJ19-Ptac-ssehasA-hasB) was almost completely lost, while the plasmid of ATCC13032△nadK (pXMJ19-Ptac-ssehasA-hasB- nadK) plasmid retention rate reached 94%. The first and twelfth transfer strains were used for fermentation culture. The hyaluronic acid production is shown in Table 9. The initial hyaluronic acid production of ATCC13032△nadK (pXMJ19-Ptac-ssehasA-hasB-nadK) was higher than that of the control bacteria. 30.4%, and the yield after 12 passages was 92% of the original level; while the yield of the control strain was zero after 12 passages. The results show that the nadK-based plasmid stable expression system can not only improve the plasmid passage stability of Corynebacterium glutamicum, but also significantly promote the synthesis of hyaluronic acid.
表9 重组谷氨酸棒杆菌的透明质酸产量对比Table 9 Comparison of hyaluronic acid production by recombinant Corynebacterium glutamicum
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined in any way. To simplify the description, not all possible combinations of the technical features in the above-described embodiments are described. However, as long as there is no contradiction in the combination of these technical features, All should be considered to be within the scope of this manual.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准,说明书可以用于解释权利要求的内容。The above-described embodiments only express several implementation modes of the present application, and their descriptions are relatively specific and detailed, but they should not be construed as limiting the scope of the invention patent. It should be noted that, for those of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present application, and these all fall within the protection scope of the present application. Therefore, the scope of protection of the patent of this application shall be determined by the appended claims, and the description may be used to interpret the content of the claims.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311474775.8A CN117187275B (en) | 2023-11-08 | 2023-11-08 | Expression system, construction method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311474775.8A CN117187275B (en) | 2023-11-08 | 2023-11-08 | Expression system, construction method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117187275A true CN117187275A (en) | 2023-12-08 |
CN117187275B CN117187275B (en) | 2024-03-12 |
Family
ID=89005690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311474775.8A Active CN117187275B (en) | 2023-11-08 | 2023-11-08 | Expression system, construction method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117187275B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130084600A1 (en) * | 2010-06-01 | 2013-04-04 | William Marsh Rice University | Native nad-dependent gapdh replaced with nadp-dependent gapdh plus nadk |
CN103443267A (en) * | 2011-01-18 | 2013-12-11 | Cj第一制糖株式会社 | A microorganism having enhanced L-amino acids productivity and a method for producing the L-amino acids by using the same |
CN105695488A (en) * | 2016-04-20 | 2016-06-22 | 河南大学 | New application of Arabidopsis Thaliana gene At1G21640 in plant drought resistance |
CN110387381A (en) * | 2018-04-16 | 2019-10-29 | 中国科学院微生物研究所 | Construction and application of a high-efficiency expression system for recombinant proteins of Corynebacterium glutamicum |
CN110628800A (en) * | 2019-09-05 | 2019-12-31 | 武汉科技大学 | A kind of construction method and application of chiral alcohol high-efficiency production recombinant bacteria |
CN114214354A (en) * | 2021-12-31 | 2022-03-22 | 天津科技大学 | A kind of double vector expression system and its construction method and application |
WO2022241027A1 (en) * | 2021-05-13 | 2022-11-17 | Lygos, Inc. | Recombinant host cells and methods for producing l-lactic acid |
-
2023
- 2023-11-08 CN CN202311474775.8A patent/CN117187275B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130084600A1 (en) * | 2010-06-01 | 2013-04-04 | William Marsh Rice University | Native nad-dependent gapdh replaced with nadp-dependent gapdh plus nadk |
CN103443267A (en) * | 2011-01-18 | 2013-12-11 | Cj第一制糖株式会社 | A microorganism having enhanced L-amino acids productivity and a method for producing the L-amino acids by using the same |
CN105695488A (en) * | 2016-04-20 | 2016-06-22 | 河南大学 | New application of Arabidopsis Thaliana gene At1G21640 in plant drought resistance |
CN110387381A (en) * | 2018-04-16 | 2019-10-29 | 中国科学院微生物研究所 | Construction and application of a high-efficiency expression system for recombinant proteins of Corynebacterium glutamicum |
CN110628800A (en) * | 2019-09-05 | 2019-12-31 | 武汉科技大学 | A kind of construction method and application of chiral alcohol high-efficiency production recombinant bacteria |
WO2022241027A1 (en) * | 2021-05-13 | 2022-11-17 | Lygos, Inc. | Recombinant host cells and methods for producing l-lactic acid |
CN114214354A (en) * | 2021-12-31 | 2022-03-22 | 天津科技大学 | A kind of double vector expression system and its construction method and application |
Non-Patent Citations (5)
Title |
---|
AIQI SHI等: "Activating transhydrogenase and NAD kinase in combination for improving isobutanol production", METAB ENG, vol. 16, pages 10 * |
PENG-HUI HONG等: "Effect of NADH kinase on poly-3-hydroxybutyrate production by recombinant Escherichia coli", J BIOSCI BIOENG, vol. 122, no. 06, pages 685 - 688 * |
YOUXIANG LIANG等: "A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH", METAB ENG, vol. 57, pages 10 * |
吴丽丽等: "水稻OSNADK3基因的克隆及其遗传转化", 核农学报, vol. 25, no. 05, pages 863 - 870 * |
陈静怡等: "高GC含量基因NADK2的扩增及其真核表达载体的构建", 中国细胞生物学学报, vol. 39, no. 04, pages 458 - 462 * |
Also Published As
Publication number | Publication date |
---|---|
CN117187275B (en) | 2024-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019227512A1 (en) | Recombinant bacillus subtilis engineered bacteria capable of efficiently expressing keratinase | |
CN102165056B (en) | Microorganism for producing L-amino acids and method for producing L-amino acids using same | |
CN110904018B (en) | 5-aminolevulinic acid production strain and construction method and application thereof | |
CN110305827A (en) | A recombinant bacterium with high hyaluronic acid production and its construction method and application | |
Zhang et al. | Cell catalysis of citrate to itaconate by engineered Halomonas bluephagenesis | |
Zhou et al. | Construction of an alkaline protease overproducer strain based on Bacillus licheniformis 2709 using an integrative approach | |
JP2020506722A (en) | Genetically optimized microorganisms for producing target molecules | |
CN117645967A (en) | Bacillus subtilis chassis cell suitable for high-density fermentation enzyme production | |
CN106062177B (en) | Corynebacteria microorganism with the improved ability for generating L-lysine and the method for using it to generate L-lysine | |
KR102112286B1 (en) | Gene related to acid resistance and methanotrophs comprising the same | |
US7018829B1 (en) | Metabolically engineered microbial cell with an altered metabolite production | |
CN113073074A (en) | Genetically engineered bacterium for efficiently synthesizing riboflavin and application thereof | |
CN104894043A (en) | Engineering bacteria for producing gamma-aminobutyric acid and construction method and application thereof | |
CN115058374A (en) | Recombinant zymomonas mobilis for synthesizing acetoin by utilizing pyruvic acid and construction method and application thereof | |
CN118389385B (en) | A kind of Escherichia coli for synthesizing blue and its construction method and application | |
CN117187275B (en) | Expression system, construction method and application thereof | |
CN117701486B (en) | A recombinant bacterium for producing PHA and its construction method and application | |
CN118956630A (en) | A recombinant bacterium for producing (-)-α-bisabolol and its construction method and application | |
CN110835621A (en) | Genetically engineered bacterium and application thereof in producing xylitol | |
KR20230034134A (en) | Recombinant microorganism producing mevalonic acid and method for preparing mevalonic acid using the same | |
CN116333953A (en) | A kind of genetically engineered bacterium with high yield of cytidine nucleoside and its application | |
US20230002796A1 (en) | Method for inducing microbial mutagenesis to produce lactic acid | |
Mandal et al. | Applications of genome editing in extremophiles | |
JP2023521310A (en) | Recombinant vector for transformation that improves glutamine-producing ability and strain introduced with the same | |
CN108384740B (en) | A kind of Bacillus subtilis for high density fermentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |