[go: up one dir, main page]

CN117186177B - Duck blood cell protein peptide with uric acid reducing activity and preparation method thereof - Google Patents

Duck blood cell protein peptide with uric acid reducing activity and preparation method thereof Download PDF

Info

Publication number
CN117186177B
CN117186177B CN202210607233.2A CN202210607233A CN117186177B CN 117186177 B CN117186177 B CN 117186177B CN 202210607233 A CN202210607233 A CN 202210607233A CN 117186177 B CN117186177 B CN 117186177B
Authority
CN
China
Prior art keywords
duck
protease
seq
polypeptide
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210607233.2A
Other languages
Chinese (zh)
Other versions
CN117186177A (en
Inventor
江正强
张鹏
闫巧娟
常畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN202210607233.2A priority Critical patent/CN117186177B/en
Publication of CN117186177A publication Critical patent/CN117186177A/en
Application granted granted Critical
Publication of CN117186177B publication Critical patent/CN117186177B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种具有降尿酸活性的鸭血球蛋白肽及其制备方法,属于食品生物技术领域。本发明提供了一种制备鸭血蛋白肽的方法,所述鸭血蛋白肽具有氨基酸序列是SEQ ID No.1‑5的5种肽段,所述方法包括步骤S1)、向鸭血红蛋白中加入蛋白酶A,获得酶解液M1;S2)、向酶解液M1中加入蛋白酶B,获得酶解液M2;所述蛋白酶A为菠萝来源的蛋白酶,所述蛋白酶B选自来源于嗜热脂肪芽孢杆菌的蛋白酶和来源于铜绿假单胞菌的蛋白酶中的一种或两种。本发明为我国禽类血液的深加工提供了新的选择,丰富了肽类产品种类,具有较大的经济和社会效益。The present invention discloses a duck blood globulin peptide with uric acid lowering activity and a preparation method thereof, and belongs to the field of food biotechnology. The present invention provides a method for preparing duck blood protein peptide, the duck blood protein peptide has 5 peptide segments whose amino acid sequence is SEQ ID No.1-5, and the method includes steps S1), adding protease A to duck hemoglobin to obtain enzymolysis solution M1; S2), adding protease B to enzymolysis solution M1 to obtain enzymolysis solution M2; the protease A is a protease derived from pineapple, and the protease B is selected from one or two of the protease derived from thermophilic bacillus and the protease derived from Pseudomonas aeruginosa. The present invention provides a new choice for the deep processing of poultry blood in my country, enriches the types of peptide products, and has greater economic and social benefits.

Description

一种具有降尿酸活性的鸭血球蛋白肽及其制备方法A duck hemoglobin peptide with uric acid-lowering activity and preparation method thereof

技术领域Technical Field

本发明属于食品生物技术领域,具体涉及一种具有降尿酸活性的鸭血球蛋白肽及其制备方法。The invention belongs to the field of food biotechnology, and in particular relates to a duck hemoglobin peptide with uric acid-lowering activity and a preparation method thereof.

背景技术Background Art

血液是肉类加工过程中的副产物,我国血液资源非常丰富。以鸭为例,2019年我国鸭存栏量约为24.61亿只,且逐年增加。按照血液中蛋白含量约18%计算,每年约产生4.42万吨鸭血蛋白。血液中可能携带致病菌或有毒代谢物,易被病原微生物污染,导致血液收集和贮藏不便,只有少量血液以血粉、血豆腐或饲料等形式加工利用(Diab etal.Membranes,2020,10,257)。为了合理利用血液蛋白资源,血液的深加工利用具有重要的意义。血红蛋白是血液的主要蛋白成分,存在于红血球中,占血液总蛋白质含量的80%。血球粉一般采用直接喷雾干燥的方式加工生产,血球细胞膜破裂有限,导致消化吸收率不高,限制了其在食品和饲料工业中的应用。血红蛋白由血红素和珠蛋白组成,呈红棕色,具有刺激的血腥味。血球深加工过程中会释放血色素,血色素中的二价铁可迅速被氧化成三价铁,影响产品的外观(Alvarez et al.LWT-Food Science and Technology,2016,73:280-289)。由于鸭屠宰过程的特点及鸭血易凝固结块的性质,鸭血收集比猪血、牛血等困难。因此,我国鸭血的利用率低。国外尚未见到鸭血蛋白水解和综合利用的报道,国内报道也较少,主要集中在水解鸭血制备生物活性肽方面。以水解度、脱色程度和产物得率为指标,筛选了酸性蛋白酶、木瓜蛋白酶、碱性蛋白酶和风味蛋白酶,结果发现酸性蛋白酶能够显著降解鸭血球蛋白,产物呈乳白色,鸭血球肽的得率为60.1%,并且水解物具有抗氧化活性(郑召君等,动物营养学报,2016,28:2521-2533)。以鸭血球水解物的铁离子鳌合能力为指标,优化碱性蛋白酶水解鸭血球蛋白的水解条件,在最适条件下,鸭血球水解物的铁离子鳌合率为65.4%,可用作补铁剂(杨雁如,食品工业科技,2020,41:19)。Blood is a byproduct of meat processing, and my country has abundant blood resources. Taking ducks as an example, the number of ducks in my country in 2019 was about 2.461 billion, and it has been increasing year by year. According to the protein content of about 18% in the blood, about 44,200 tons of duck blood protein are produced each year. Blood may carry pathogenic bacteria or toxic metabolites and is easily contaminated by pathogenic microorganisms, which makes blood collection and storage inconvenient. Only a small amount of blood is processed and utilized in the form of blood meal, blood tofu or feed (Diab et al. Membranes, 2020, 10, 257). In order to rationally utilize blood protein resources, deep processing and utilization of blood is of great significance. Hemoglobin is the main protein component of blood, present in red blood cells, accounting for 80% of the total protein content of blood. Blood cell powder is generally processed and produced by direct spray drying. The rupture of the blood cell membrane is limited, resulting in low digestion and absorption rate, which limits its application in the food and feed industry. Hemoglobin is composed of heme and globin, is reddish brown, and has a pungent bloody smell. Hemoglobin is released during the deep processing of blood cells, and the divalent iron in hemoglobin can be quickly oxidized to trivalent iron, affecting the appearance of the product (Alvarez et al. LWT-Food Science and Technology, 2016, 73: 280-289). Due to the characteristics of the duck slaughtering process and the nature of duck blood that is easy to coagulate and clump, duck blood collection is more difficult than pig blood and cow blood. Therefore, the utilization rate of duck blood in my country is low. There are no reports on the hydrolysis and comprehensive utilization of duck blood protein abroad, and there are few domestic reports, mainly focusing on the preparation of bioactive peptides by hydrolyzing duck blood. Acidic protease, papain, alkaline protease and flavor protease were screened with hydrolysis degree, decolorization degree and product yield as indicators. The results showed that acidic protease can significantly degrade duck blood globulin, the product is milky white, the yield of duck blood globulin is 60.1%, and the hydrolyzate has antioxidant activity (Zheng Zhaojun et al., Journal of Animal Nutrition, 2016, 28: 2521-2533). Taking the iron ion chelation ability of duck blood globulin hydrolysate as an indicator, the hydrolysis conditions of duck blood globulin by alkaline protease were optimized. Under the optimal conditions, the iron ion chelation rate of duck blood globulin hydrolysate was 65.4%, which can be used as an iron supplement (Yang Yanru, Food Industry Science and Technology, 2020, 41:19).

生物酶水解法制备的生物活性肽大多来源于膳食蛋白,安全性高,无副作用,较传统药物具有低诱导耐药性。很多生物活性肽已被FDA批准用于治疗药品,美国、欧洲和日本市场上大约有100种多肽药物(Barbara et al.Biotechnology Advances,2018,36:415-429)。合适的蛋白酶水解血红蛋白,不仅能够脱色,而且可以得到具有生理功能活性的小分子肽(Alvarez et al.LWT-Food Science and Technology,2016,73:280-289)。利用生物酶技术水解鸭血球蛋白,充分释放血球细胞中的蛋白质,不仅能够提高蛋白利用率,而且小分子肽具有许多生理调节功能,可作为功能食品或保健品的配料。猪血球肽饲喂断奶仔猪,能够显著提高仔猪的平均日增重,降低腹泻率,并增强仔猪的免疫力(武艳军,扬州大学学报,2010)。中性蛋白酶、碱性蛋白酶和木瓜蛋白酶复配水解制备的雁血肽饲喂小鼠,显著提高了小鼠的免疫力,显著提高了小鼠脾淋巴细胞增殖能力和细胞因子分泌量(王铮,长春工业大学学报,2020)。为促进血肽在食品工业中的应用,中国畜牧业协会于2019年1月7日发布了《驼血多肽》团体标准(T/CAAA 018-2019)。该标准规定了以骆驼血制备的驼血多肽的相关指标,对其它动物来源血液制备的血肽具有一定参考价值。Most of the bioactive peptides prepared by bioenzymatic hydrolysis are derived from dietary proteins, with high safety, no side effects, and low induction of drug resistance compared to traditional drugs. Many bioactive peptides have been approved by the FDA for use in therapeutic drugs, and there are about 100 peptide drugs on the market in the United States, Europe and Japan (Barbara et al. Biotechnology Advances, 2018, 36: 415-429). Suitable protease hydrolysis of hemoglobin can not only decolorize, but also obtain small molecule peptides with physiological functional activity (Alvarez et al. LWT-Food Science and Technology, 2016, 73: 280-289). Using bioenzyme technology to hydrolyze duck hemoglobin and fully release the protein in the blood cells can not only improve the protein utilization rate, but also the small molecule peptides have many physiological regulation functions and can be used as ingredients for functional foods or health products. Feeding pig hemoglobin peptides to weaned piglets can significantly increase the average daily weight gain of piglets, reduce the diarrhea rate, and enhance the immunity of piglets (Wu Yanjun, Journal of Yangzhou University, 2010). Feeding mice with wild goose blood peptides prepared by hydrolysis of neutral protease, alkaline protease and papain significantly improved the immunity of mice, and significantly increased the proliferation capacity of spleen lymphocytes and cytokine secretion of mice (Wang Zheng, Journal of Changchun University of Technology, 2020). In order to promote the application of blood peptides in the food industry, the China Animal Husbandry Association issued the "Camel Blood Peptide" group standard (T/CAAA 018-2019) on January 7, 2019. This standard specifies the relevant indicators of camel blood peptides prepared from camel blood, which has a certain reference value for blood peptides prepared from blood of other animal sources.

血红蛋白存在于血细胞中,水解前需要破坏血细胞释放血红蛋白。血红蛋白提取主要采用酸溶液法或酸性丙酮法,当pH值低于3.5时,二价铁离子与组氨酸配位键解离,导致血红素分子断裂,从而释放血红蛋白,但是这些方法会带入其它有机物,而且水解时需要使用大量碱液调节pH,带入盐分,增加后期脱盐除杂的精制工艺和成本(钟耀广,食品科学,2004,4:66-71;Wedzicha et al.,Food Chemistry,1985,17:199-207)。也有研究采用机械方法破坏细胞壁,比如超声破壁、冻融处理、均质处理等,但是这些方法需要专业设备,增加生产工艺步骤和生产成本(吴文锦等,食品研究与开发,2021,42:90-96)。因此,需要开发一种能够方便高效处理血细胞并释放血红蛋白的方法。电解水是在有阳离子交换隔膜的电解槽内电解低浓度盐溶液得到的溶液,阳极产生具有强氧化性和低点位的酸性电解水,在阴极产生强还原性和高电位的碱性电解水。目前电解水已应用于许多领域,比如杀菌抑菌、食品保鲜、清洁剂和肉类嫩化等(Huang et al.Food Control,2008,19:329-345)。电解水处理蛋白的报道较少,利用电解水浸泡大豆结合微生物发酵,能够提高发酵大豆水提物的ACE抑制活性(Li et al.,International Journal of Food Properties,2011,14:145-156)。相比于超纯水溶解提取的杏仁蛋白,碱性电解水提取的杏仁蛋白二级结构遭到破坏(Li etal.,Food Science and Biotechnology,2018,28:15-23)。使用改进设计的电解槽浸泡处理小麦谷朊粉、花生粕和核桃粕后,三种蛋白原料水解物的ACE抑制活性显著提高(Zhanget al.LWT-Food Science and Technology,2022,154,112864)。目前,尚未见到酸性电解水溶胀破壁处理血球蛋白的报道和专利。Hemoglobin is present in blood cells, and blood cells need to be destroyed before hydrolysis to release hemoglobin. Hemoglobin extraction mainly uses acid solution method or acid acetone method. When the pH value is lower than 3.5, divalent iron ions dissociate from histidine coordination bonds, resulting in the breakage of heme molecules, thereby releasing hemoglobin, but these methods will bring in other organic matter, and a large amount of alkali solution needs to be used to adjust the pH during hydrolysis, bringing in salt, and increasing the refining process and cost of later desalination and impurity removal (Zhong Yaoguang, Food Science, 2004, 4: 66-71; Wedzicha et al., Food Chemistry, 1985, 17: 199-207). There are also studies that use mechanical methods to destroy cell walls, such as ultrasonic wall breaking, freeze-thaw treatment, homogenization treatment, etc., but these methods require professional equipment, increase production process steps and production costs (Wu Wenjin et al., Food Research and Development, 2021, 42: 90-96). Therefore, it is necessary to develop a method that can conveniently and efficiently process blood cells and release hemoglobin. Electrolyzed water is a solution obtained by electrolyzing a low-concentration salt solution in an electrolytic cell with a cation exchange membrane. The anode produces acidic electrolyzed water with strong oxidizing properties and low points, and the cathode produces alkaline electrolyzed water with strong reducing properties and high potential. At present, electrolyzed water has been applied to many fields, such as bactericidal and antibacterial, food preservation, detergents and meat tenderization (Huang et al. Food Control, 2008, 19: 329-345). There are few reports on electrolyzed water protein treatment. Soaking soybeans in electrolyzed water combined with microbial fermentation can improve the ACE inhibitory activity of fermented soybean water extract (Li et al., International Journal of Food Properties, 2011, 14: 145-156). Compared with almond protein extracted by ultrapure water dissolution, the secondary structure of almond protein extracted by alkaline electrolyzed water is destroyed (Li et al., Food Science and Biotechnology, 2018, 28: 15-23). After wheat gluten, peanut meal and walnut meal were treated with an improved electrolytic cell, the ACE inhibitory activity of the three protein raw material hydrolysates was significantly improved (Zhang et al. LWT-Food Science and Technology, 2022, 154, 112864). At present, there are no reports or patents on the swelling and wall breaking of hemoglobin by acidic electrolyzed water.

痛风是一种嘌呤核苷酸代谢障碍疾病,会引起尿酸钠结晶在关节处沉淀,伴随急性疼痛。痛风的流行率和发病率分别为6.8‰和2.89‰,且在全球范围内逐年增加(Dehlinet al.Mature Reviews Rheumatology,2020,16:380-390)。男性血清中尿酸含量高于416μmol/L(女性高于357μmol/L)定义为高尿酸血症,它是痛风发病机制中最重要的生化指标。黄嘌呤氧化酶(XOD)能够催化次黄嘌呤氧化为黄嘌呤、黄嘌呤氧化为尿酸,是人体尿酸调节系统中的关键酶。XOD增加了血液中尿酸的产生,是引起高尿酸血症和痛风的关键因素。治疗痛风和高尿酸血症的传统药物主要有别嘌呤醇和非布索坦,它们均通过抑制XOD的催化活性达到降低血清中尿酸浓度的效果。传统降尿酸药物常伴随严重的不良反应,包括过敏综合症、皮疹、影响肝脏代谢等(Jansen et al.Clinical Rheumatology,2010,29:835-840)。因此,开发具有XOD抑制活性的生物活性肽,用于高尿酸血症和痛风的防治,具有重要的经济和社会意义。Gout is a purine nucleotide metabolic disorder that causes sodium urate crystals to precipitate in the joints, accompanied by acute pain. The prevalence and incidence of gout are 6.8‰ and 2.89‰, respectively, and are increasing year by year worldwide (Dehlin et al. Mature Reviews Rheumatology, 2020, 16: 380-390). Male serum uric acid levels above 416 μmol/L (female levels above 357 μmol/L) are defined as hyperuricemia, which is the most important biochemical indicator in the pathogenesis of gout. Xanthine oxidase (XOD) can catalyze the oxidation of hypoxanthine to xanthine and xanthine to uric acid, and is a key enzyme in the human uric acid regulation system. XOD increases the production of uric acid in the blood and is a key factor in causing hyperuricemia and gout. Traditional drugs for the treatment of gout and hyperuricemia are mainly allopurinol and febuxostat, both of which achieve the effect of reducing serum uric acid concentration by inhibiting the catalytic activity of XOD. Traditional uric acid-lowering drugs are often accompanied by serious adverse reactions, including allergic syndrome, rash, and effects on liver metabolism (Jansen et al. Clinical Rheumatology, 2010, 29: 835-840). Therefore, the development of bioactive peptides with XOD inhibitory activity for the prevention and treatment of hyperuricemia and gout has important economic and social significance.

生物酶水解法制备具有XOD抑制活性的生物活性肽报道较少。多数XOD抑制肽来源于海洋鱼蛋白,比如中性蛋白酶水解的鲣鱼蛋白体外XOD IC50值为14.88mg/mL,从蓝鳍金枪鱼水解物中鉴定出的ICRK的XOD IC50值为14.18mg/mL;也有来源于其他蛋白的XOD抑制肽,比如碱性蛋白酶水解的核桃粕在20mg/mL浓度下的XOD抑制率为27.23%(Zhong etal.Food Chemistry,2021,347:129068;Bu et al.International Conference onEnergy,Environment and Bioengineering,2020,185:04062;Li et al.Food&Function,2018,9:107-116)。这些水解物的活性较低,相比于传统降尿酸药物(别嘌呤醇,IC50值为8.04μg/mL)的效果存在很大差距,尚未见到利用动物血液蛋白制备XOD抑制肽的专利和报道。理论上,肽的生物活性是由蛋白结构、蛋白酶种类和水解条件等多因素共同决定的(Udenigwe et al.Journal of Food Science,2012,77:R11-R24)。因此,选择合适的蛋白底物和蛋白酶能够富集XOD抑制肽。XOD抑制肽的构效关系研究表明,肽段中的芳香族氨基酸能够有效结合XOD催化活性中心,对XOD抑制活性起到关键作用。蛋白酶PaproA是铜绿假单胞菌(Pseudomonas aeruginosa)CAU342A发酵制备的高活性蛋白酶(孙倩等,微生物学通报,2017,44:86-95);蛋白酶GsProS8是异源表达并高密度发酵制备得到的嗜热脂肪芽孢杆菌(Geobacillus stearothermophilus)来源蛋白酶(Chang et al.BMC Biotechnology,2021,21:21)。生物信息学结合肽谱分析发现,蛋白酶PaproA和GsProS8能够特异性水解鸭血红蛋白,富集含有芳香族氨基酸的肽段,适合制备XOD抑制肽。There are few reports on the preparation of bioactive peptides with XOD inhibitory activity by bioenzymatic hydrolysis. Most XOD inhibitory peptides are derived from marine fish proteins, such as the in vitro XOD IC 50 value of bonito protein hydrolyzed by neutral protease is 14.88 mg/mL, and the XOD IC 50 value of ICRK identified from bluefin tuna hydrolysate is 14.18 mg/mL; there are also XOD inhibitory peptides derived from other proteins, such as walnut meal hydrolyzed by alkaline protease, with an XOD inhibition rate of 27.23% at a concentration of 20 mg/mL (Zhong et al. Food Chemistry, 2021, 347: 129068; Bu et al. International Conference on Energy, Environment and Bioengineering, 2020, 185: 04062; Li et al. Food & Function, 2018, 9: 107-116). The activity of these hydrolyzates is low, and there is a big gap compared to the effect of traditional uric acid-lowering drugs (allopurinol, IC 50 value is 8.04 μg/mL). There are no patents or reports on the preparation of XOD inhibitory peptides using animal blood proteins. In theory, the biological activity of peptides is determined by multiple factors such as protein structure, protease type and hydrolysis conditions (Udenigwe et al. Journal of Food Science, 2012, 77: R11-R24). Therefore, selecting suitable protein substrates and proteases can enrich XOD inhibitory peptides. The structure-activity relationship study of XOD inhibitory peptides shows that the aromatic amino acids in the peptide segment can effectively bind to the XOD catalytic active center, which plays a key role in the XOD inhibitory activity. Protease PaproA is a highly active protease produced by fermentation of Pseudomonas aeruginosa CAU342A (Sun Qian et al., Bulletin of Microbiology, 2017, 44: 86-95); protease GsProS8 is a protease derived from Geobacillus stearothermophilus produced by heterologous expression and high-density fermentation (Chang et al. BMC Biotechnology, 2021, 21: 21). Bioinformatics combined with peptide mapping analysis found that proteases PaproA and GsProS8 can specifically hydrolyze duck hemoglobin and enrich peptides containing aromatic amino acids, which are suitable for the preparation of XOD inhibitory peptides.

已有一些蛋白酶水解制备降尿酸活性肽的专利报道。专利号为ZL201310485124.9的中国发明专利公开了一种使用碱性蛋白酶和纤维素酶水解核桃粕制备具有降尿酸功效的核桃肽的方法。申请号为202010861723.6的中国发明专利公开了一种使用碱性蛋白酶水解芸豆蛋白制备具有降尿酸活性的芸豆肽的方法。申请号为202110397871.1的中国发明专利公开了一种使用木瓜蛋白酶、中性蛋白酶、碱性蛋白酶或风味蛋白酶等水解鳕鱼排粉制备具有黄嘌呤氧化酶抑制活性的鳕鱼多肽的方法。申请号为20211045403.X的中国发明专利公开了一种使用枯草杆菌蛋白酶、木瓜蛋白酶和碱性蛋白酶复配水解鲟鱼蛋白制备具有降尿酸活性的鲟鱼肽复合粉的方法。以上公开的发明专利均为使用蛋白酶水解技术制备具有降尿酸活性肽的方法。目前,尚未见到关于生物酶水解鸭血球蛋白制备降尿酸肽的专利和报道。There have been some patent reports on the preparation of uric acid-lowering active peptides by protease hydrolysis. The Chinese invention patent with patent number ZL201310485124.9 discloses a method for preparing walnut peptides with uric acid-lowering efficacy by hydrolyzing walnut meal using alkaline protease and cellulase. The Chinese invention patent with application number 202010861723.6 discloses a method for preparing kidney bean peptides with uric acid-lowering activity by hydrolyzing kidney bean protein using alkaline protease. The Chinese invention patent with application number 202110397871.1 discloses a method for preparing codfish peptides with xanthine oxidase inhibitory activity by hydrolyzing cod fillet powder using papain, neutral protease, alkaline protease or flavor protease. The Chinese invention patent with application number 20211045403.X discloses a method for preparing sturgeon peptide composite powder with uric acid-lowering activity by using subtilisin, papain and alkaline protease to hydrolyze sturgeon protein. The above-disclosed invention patents are all methods for preparing peptides with uric acid lowering activity using protease hydrolysis technology. At present, there are no patents or reports on the preparation of uric acid lowering peptides by bioenzymatic hydrolysis of duck hemoglobin.

发明内容Summary of the invention

本发明要解决的技术问题是:如何降尿酸和/或如何抑制黄嘌呤氧化酶(XOD)的活性。The technical problem to be solved by the present invention is: how to reduce uric acid and/or how to inhibit the activity of xanthine oxidase (XOD).

为解决上述技术问题。第一个方面,本发明提供一种制备鸭血蛋白肽的方法,所述鸭血蛋白肽具有下述5种肽段:In order to solve the above technical problems, in the first aspect, the present invention provides a method for preparing duck blood protein peptide, wherein the duck blood protein peptide has the following five peptide segments:

P1)、氨基酸序列为SEQ ID No.1的多肽;P1), a polypeptide having an amino acid sequence of SEQ ID No. 1;

P2)、氨基酸序列为SEQ ID No.2的多肽;P2), a polypeptide having an amino acid sequence of SEQ ID No. 2;

P3)、氨基酸序列为SEQ ID No.3的多肽;P3), a polypeptide having an amino acid sequence of SEQ ID No.3;

P4)、氨基酸序列为SEQ ID No.4的多肽;P4), a polypeptide having an amino acid sequence of SEQ ID No.4;

P5)、氨基酸序列为SEQ ID No.5的多肽;P5), a polypeptide having an amino acid sequence of SEQ ID No.5;

所述方法包括酶解鸭血红蛋白,得到酶解物,从所述酶解物中提取得到鸭血蛋白肽。The method comprises enzymatically hydrolyzing duck hemoglobin to obtain an enzymatic hydrolysate, and extracting duck blood protein peptides from the enzymatic hydrolysate.

进一步地,上述的方法中,所述酶解鸭血红蛋白包括如下步骤:Furthermore, in the above method, the enzymatic hydrolysis of duck hemoglobin comprises the following steps:

S1)、向鸭血红蛋白中加入蛋白酶A,获得酶解液M1;S1), adding protease A to duck hemoglobin to obtain enzymatic solution M1;

S2)、向酶解液M1中加入蛋白酶B,获得酶解液M2;S2), adding protease B to the enzymatic hydrolysate M1 to obtain enzymatic hydrolysate M2;

所述蛋白酶A可为菠萝来源的蛋白酶,所述蛋白酶B可为来源于嗜热脂肪芽孢杆菌的蛋白酶或来源于铜绿假单胞菌的蛋白酶。The protease A may be a protease derived from pineapple, and the protease B may be a protease derived from Bacillus stearothermophilus or a protease derived from Pseudomonas aeruginosa.

本发明中,所述菠萝来源的蛋白酶可为菠萝蛋白酶,所述菠萝蛋白酶为上海源叶生物科技有限公司的产品,其货号为:S10009;In the present invention, the pineapple-derived protease may be bromelain, and the bromelain is a product of Shanghai Yuanye Biotechnology Co., Ltd., and its product number is: S10009;

本发明中,所述来源于嗜热脂肪芽孢杆菌的蛋白酶的名称可为蛋白酶GsProS8。所述蛋白酶GsProS8的氨基酸序列如图1所示。所述蛋白酶GsProS8是将所述蛋白酶GsProS8的编码基因导入枯草芽孢杆菌表达得到的蛋白酶。所述蛋白酶GsProS8的编码基因的核苷酸序列如图1所示。In the present invention, the protease derived from Bacillus stearothermophilus can be named protease GsProS8. The amino acid sequence of the protease GsProS8 is shown in Figure 1. The protease GsProS8 is a protease obtained by introducing the coding gene of the protease GsProS8 into Bacillus subtilis for expression. The nucleotide sequence of the coding gene of the protease GsProS8 is shown in Figure 1.

本发明中,所述来源于铜绿假单胞菌的蛋白酶的名称可为蛋白酶PaproA。所述蛋白酶PaproA具体可来源于铜绿假单胞菌(Pseudomonas aeruginosa)CAU342A。所述蛋白酶PaproA的SDS-PAGE及酶谱如图2所示。In the present invention, the protease derived from Pseudomonas aeruginosa may be named as protease PaproA. The protease PaproA may be derived from Pseudomonas aeruginosa CAU342A. The SDS-PAGE and enzyme spectrum of the protease PaproA are shown in FIG2 .

具体地,所述蛋白酶GsProS8按照包括如下步骤的方法制备:Specifically, the protease GsProS8 is prepared according to a method comprising the following steps:

将表达重组蛋白酶GsProS8的枯草芽孢杆菌WB600按照1%(V/V)的接种量接入LB培养基,并在37℃下培养12h作为发酵种子液,发酵罐内装液量为1.5L,按照5%(V/V)接种量接种,发酵过程控制在37℃,利用氨水和磷酸调节pH为4.0,将溶氧维持在30%左右,待培养基中的残糖含量<1g/L时,开始流加补料培养基,高密度发酵108h后,收集发酵液,离心上清液即为蛋白酶GsProS8。其中,发酵培养基的组成为:硫酸铵2g/L、酵母浸粉3g/L、葡糖糖1g/L、氯化钠1g/L、硫酸镁0.5g/L、氯化锌0.05g/L、氯化锰0.05g/L、酵素0.1g/L、氯化钙2g/L,其余为水;补料培养基的组成为:葡萄糖500g/L、蛋白胨37.5g/L,其余为水。所述蛋白酶GsProS8的酶液的蛋白酶酶活力为3800U/mL。蛋白酶GsProS8的酶活力测定的方法参考GB/T 23527-2009:1mL酶液与1mL酪蛋白溶液在40℃保温10min后,加入2mL三氯乙酸终止反应,10000rpm离心10min,取1mL上清液加入5mL碳酸钠溶液和1mL福林酚试剂,40℃保温20min显色,于660nm处测定吸光值。以先加入三氯乙酸终止反应的酶液作为对照。每分钟水解酪蛋白产生1μg酪氨酸所需的酶量定义为1个酶活力单位(U)。Bacillus subtilis WB600 expressing the recombinant protease GsProS8 was inoculated into LB culture medium at an inoculum size of 1% (V/V), and cultured at 37°C for 12 hours as a fermentation seed liquid. The fermenter was filled with 1.5 L of liquid and inoculated at an inoculum size of 5% (V/V). The fermentation process was controlled at 37°C, the pH was adjusted to 4.0 using ammonia water and phosphoric acid, and the dissolved oxygen was maintained at about 30%. When the residual sugar content in the culture medium was less than 1 g/L, the feed culture medium was started. After 108 hours of high-density fermentation, the fermentation liquid was collected, and the centrifuged supernatant was the protease GsProS8. The composition of the fermentation medium is: 2g/L ammonium sulfate, 3g/L yeast extract, 1g/L glucose, 1g/L sodium chloride, 0.5g/L magnesium sulfate, 0.05g/L zinc chloride, 0.05g/L manganese chloride, 0.1g/L enzyme, 2g/L calcium chloride, and the rest is water; the composition of the feed medium is: 500g/L glucose, 37.5g/L peptone, and the rest is water. The protease activity of the protease GsProS8 enzyme solution is 3800U/mL. The method for determining the enzyme activity of protease GsProS8 refers to GB/T 23527-2009: 1mL enzyme solution and 1mL casein solution are incubated at 40℃ for 10min, then 2mL trichloroacetic acid is added to terminate the reaction, centrifuged at 10000rpm for 10min, 1mL supernatant is added with 5mL sodium carbonate solution and 1mL Folin phenol reagent, incubated at 40℃ for 20min to develop color, and the absorbance is measured at 660nm. The enzyme solution to which trichloroacetic acid is added to terminate the reaction is used as a control. The amount of enzyme required to hydrolyze casein to produce 1μg tyrosine per minute is defined as 1 enzyme activity unit (U).

所述蛋白酶PaproA可按照包括如下步骤的方法制备:铜绿假单胞菌(Pseudomonasaeruginosa)CAU342A在发酵培养基中30℃培养3天,收集发酵液,将所述发酵液离心,收集上清液,该上清液即为蛋白酶PaproA的酶液。其中,发酵培养基由以下原料制成:3%酒糟,1.5%酵母浸粉,0.05%吐温-80、0.5%氯化钠、0.7%磷酸钾、0.3%磷酸氢二钾、0.04%硫酸锰、其余为水,所有的百分含量均为质量百分含量。所述发酵培养基的pH为7.5。制备获得蛋白酶PaproA的酶液的蛋白酶酶活力为2653U/mL。蛋白酶PaproA的酶活力测定方法参考GB/T 23527-2009:1mL酶液与1mL酪蛋白溶液在40℃保温10min后,加入2mL三氯乙酸终止反应,10000rpm离心10min,取1mL上清液加入5mL碳酸钠溶液和1mL福林酚试剂,40℃保温20min显色,于660nm处测定吸光值。以先加入三氯乙酸终止反应的酶液作为对照。每分钟水解酪蛋白产生1μg酪氨酸所需的酶量定义为1个酶活力单位(U)。The protease PaproA can be prepared according to a method comprising the following steps: Pseudomonas aeruginosa CAU342A is cultured at 30°C in a fermentation medium for 3 days, the fermentation broth is collected, the fermentation broth is centrifuged, and the supernatant is collected, which is the enzyme solution of the protease PaproA. The fermentation medium is made of the following raw materials: 3% lees, 1.5% yeast extract powder, 0.05% Tween-80, 0.5% sodium chloride, 0.7% potassium phosphate, 0.3% dipotassium hydrogen phosphate, 0.04% manganese sulfate, and the rest is water, and all percentages are mass percentages. The pH of the fermentation medium is 7.5. The protease activity of the enzyme solution of the protease PaproA prepared is 2653U/mL. The enzyme activity determination method of protease PaproA refers to GB/T 23527-2009: 1mL enzyme solution and 1mL casein solution are incubated at 40℃ for 10min, then 2mL trichloroacetic acid is added to terminate the reaction, centrifuged at 10000rpm for 10min, 1mL supernatant is added with 5mL sodium carbonate solution and 1mL Folin phenol reagent, incubated at 40℃ for 20min to develop color, and the absorbance is measured at 660nm. The enzyme solution to which trichloroacetic acid is added to terminate the reaction is used as a control. The amount of enzyme required to hydrolyze casein to produce 1μg tyrosine per minute is defined as 1 enzyme activity unit (U).

本发明中,S1)所述鸭血红蛋白可为鸭血球蛋白溶液,所述鸭血球蛋白溶液可为鸭血球粉与酸性电解水混合溶胀破壁制备而成;In the present invention, the duck hemoglobin described in S1) can be a duck hemoglobin solution, and the duck hemoglobin solution can be prepared by mixing duck hemoglobin powder and acidic electrolyzed water to swell and break the wall;

在本发明的一个实施例中,所述鸭血球蛋白溶液为向100ml pH 3.0的酸性电解水中加入5g鸭血球粉,溶胀破壁2h得到鸭血球蛋白液;在本发明的另一个实施例中,所述鸭血球蛋白溶液为向20L pH 3.0的酸性电解水中加入1kg鸭血球粉,溶胀破壁1小时得到鸭血球蛋白液。In one embodiment of the present invention, the duck blood globulin solution is prepared by adding 5 g of duck blood cell powder to 100 ml of acidic electrolyzed water with a pH value of 3.0, and swelling and breaking the cell wall for 2 hours to obtain duck blood globulin liquid; in another embodiment of the present invention, the duck blood globulin solution is prepared by adding 1 kg of duck blood cell powder to 20 L of acidic electrolyzed water with a pH value of 3.0, and swelling and breaking the cell wall for 1 hour to obtain duck blood globulin liquid.

本发明中,鸭血球粉购买于邯郸市鑫恒生物科技有限公司;In the present invention, duck blood cell powder was purchased from Handan Xinheng Biotechnology Co., Ltd.

本发明中,酸性电解水的使用实验室自制电解槽(图3)制备,电极采用镀铂钛合金,将NaCl或KCl溶于蒸馏水,质量浓度为0.45%(w/w),然后倒入电解槽中,在电压60V、电流0.5-1A、电极间距为5-10cm条件下电解5min,阳极电解槽得到的即为酸性电解水。In the present invention, acidic electrolyzed water is prepared using a laboratory-made electrolytic cell (Figure 3), the electrode is made of platinum-plated titanium alloy, NaCl or KCl is dissolved in distilled water with a mass concentration of 0.45% (w/w), and then poured into the electrolytic cell, and electrolyzed for 5 minutes under the conditions of voltage 60V, current 0.5-1A, and electrode spacing of 5-10cm, and the anode electrolytic cell obtains acidic electrolyzed water.

在本发明的一个实施例中,S1)所述蛋白酶A的添加量和S2)所述蛋白酶B的总添加量为2000U/g鸭血球粉。进一步地,S1)所述蛋白酶A的添加量为1000U/g鸭血球粉,S2)所述蛋白酶B的添加量为1000U/g鸭血球粉。In one embodiment of the present invention, the total amount of protease A added in S1) and protease B added in S2) is 2000U/g duck blood powder. Further, the amount of protease A added in S1) is 1000U/g duck blood powder, and the amount of protease B added in S2) is 1000U/g duck blood powder.

进一步地,上述的方法中,所述方法还包括S3),所述S3)为将酶解液M2离心,收集上清液M3获得鸭血蛋白肽溶液。Furthermore, in the above method, the method also includes S3), wherein S3) is centrifuging the enzymatic hydrolyzate M2 and collecting the supernatant M3 to obtain a duck blood protein peptide solution.

本发明中,S3)中所述离心条件为8820×g离心10min。In the present invention, the centrifugation condition in S3) is 8820×g for 10 min.

进一步地,上述的方法中,所述方法还包括将上清液M3冷冻干燥获得鸭血蛋白肽的步骤。Furthermore, in the above method, the method also includes the step of freeze-drying the supernatant M3 to obtain duck blood protein peptide.

进一步地,上述的方法中,所述方法还包括从所得鸭血蛋白肽中分离得到高活性鸭血蛋白肽组分的步骤,所述步骤包括B1)和B2):Furthermore, in the above method, the method also includes the step of separating the duck blood protein peptide from the obtained duck blood protein peptide to obtain a high-activity duck blood protein peptide component, and the steps include B1) and B2):

B1)、将所述鸭血蛋白肽粉用盐酸溶液溶解,离心处理,取上清液,B1), dissolving the duck blood protein peptide powder with hydrochloric acid solution, centrifuging, and taking the supernatant,

B2)、将B1)获得的上清液进行凝胶层析,取洗脱时间为173-180min的流出液,获得高活性的鸭血蛋白肽组分F5。B2) The supernatant obtained in B1) is subjected to gel chromatography, and the effluent with an elution time of 173-180 min is taken to obtain a highly active duck blood protein peptide component F5.

本发明中,B1)所述盐酸溶液(溶剂为水,溶质为HCL)的浓度为10mM;所述离心的条件为8820×g离心10min;In the present invention, the concentration of the hydrochloric acid solution (solvent is water, solute is HCL) in B1) is 10 mM; the centrifugation condition is 8820×g for 10 min;

所述盐酸溶液的组成为:含量为36%的盐酸:水=1:1090。The composition of the hydrochloric acid solution is: hydrochloric acid with a content of 36%: water = 1:1090.

本发明中,所述凝胶层析的色谱条件为:AKTApurifier UPC-900快速蛋白液相色谱仪,色谱柱尺寸为1000×10mm,柱料为葡聚糖凝胶G-15,流动相为10mM的盐酸溶液,流速为0.8mL/min,检测:UV280nm。In the present invention, the chromatographic conditions of the gel chromatography are: AKTApurifier UPC-900 fast protein liquid chromatograph, the chromatographic column size is 1000×10 mm, the column material is Sephadex G-15, the mobile phase is 10 mM hydrochloric acid solution, the flow rate is 0.8 mL/min, and the detection is UV280 nm.

进一步地,所述高活性鸭血蛋白肽组分F5包括氨基酸序列是SEQ ID No.1-53所示的肽段。Furthermore, the highly active duck blood protein peptide component F5 includes a peptide segment having an amino acid sequence shown as SEQ ID No. 1-53.

为解决上述技术问题,第二个方面,本发明提供上述的方法制备得到的鸭血蛋白肽。In order to solve the above technical problems, in a second aspect, the present invention provides duck blood protein peptide prepared by the above method.

为解决上述技术问题,第三个方面,本发明提供多肽,所述多肽选自P1)-P5)中的一种或N种,N≤5:To solve the above technical problems, in a third aspect, the present invention provides a polypeptide, wherein the polypeptide is selected from one or N of P1)-P5), N≤5:

P1)、氨基酸序列为SEQ ID No.1的多肽;P1), a polypeptide having an amino acid sequence of SEQ ID No. 1;

P2)、氨基酸序列为SEQ ID No.2的多肽;P2), a polypeptide having an amino acid sequence of SEQ ID No. 2;

P3)、氨基酸序列为SEQ ID No.3的多肽;P3), a polypeptide having an amino acid sequence of SEQ ID No.3;

P4)、氨基酸序列为SEQ ID No.4的多肽;P4), a polypeptide having an amino acid sequence of SEQ ID No.4;

P5)、氨基酸序列为SEQ ID No.5的多肽。P5), a polypeptide having an amino acid sequence of SEQ ID No.5.

本发明中,P1)、P2)或P3)所述的多肽来源于鸭血红蛋白β亚基,所述鸭血红蛋白β亚基的Uniprot编号为P01988;P4)或P5)所述的多肽来源于鸭血红蛋白α亚基,所述鸭血红蛋白α亚基的Uniprot编号为P02115。In the present invention, the polypeptide described in P1), P2) or P3) is derived from duck hemoglobin β subunit, and the Uniprot number of the duck hemoglobin β subunit is P01988; the polypeptide described in P4) or P5) is derived from duck hemoglobin α subunit, and the Uniprot number of the duck hemoglobin α subunit is P02115.

为解决上述技术问题,第四个方面,本发明提供上述的鸭血蛋白肽和/或上述的多肽的应用,所述应用为A1)-A4)中任一项:In order to solve the above technical problems, in a fourth aspect, the present invention provides the application of the above duck blood protein peptide and/or the above polypeptide, wherein the application is any one of A1)-A4):

A1)、在制备治疗和/或预防痛风的产品中的应用;A1) Use in the preparation of products for the treatment and/or prevention of gout;

A2)、在制备降低尿酸的产品中的应用;A2) Application in the preparation of products for reducing uric acid;

A3)、在抑制黄嘌呤氧化酶活性中的应用;A3) Application in inhibiting xanthine oxidase activity;

A4)、在制备黄嘌呤氧化酶抑制剂中的应用。A4), application in the preparation of xanthine oxidase inhibitors.

为解决上述技术问题,第五个方面,本发明提供一种降尿酸的产品和/或预防和/或治疗高尿酸的产品,所述产品含有上述的鸭血球蛋白肽和/或上述的多肽。To solve the above technical problems, in a fifth aspect, the present invention provides a product for lowering uric acid and/or a product for preventing and/or treating hyperuricemia, wherein the product contains the above-mentioned duck hemoglobin peptide and/or the above-mentioned polypeptide.

本发明中,所述降尿酸体现为抑制或降低黄嘌呤氧化酶(XOD)的活性。In the present invention, the uric acid lowering is manifested as inhibiting or reducing the activity of xanthine oxidase (XOD).

本发明中,黄嘌呤氧化酶(XOD)购于Sigma公司,产品编号X4376。In the present invention, xanthine oxidase (XOD) was purchased from Sigma Company with product number X4376.

本发明中,所述产品可为食品、保健食品或药物。In the present invention, the product can be food, health food or medicine.

进一步地,上述的保健食品或药物中,所述鸭血蛋白肽可人工合成,也可由鸭血蛋白水解获得。Furthermore, in the above-mentioned health food or medicine, the duck blood protein peptide can be artificially synthesized or obtained by hydrolysis of duck blood protein.

本发明中,制备上述保健食品或药物时,还可加入载体材料。In the present invention, a carrier material may be added when preparing the above health food or medicine.

所述载体材料包括但不限于水溶性载体材料(如聚乙二醇、聚乙烯吡咯烷酮、有机酸等)、难溶性载体材料(如乙基纤维素、胆固醇硬脂酸酯等)、肠溶性载体材料(如醋酸纤维素酞酸酯和羧甲乙纤维素等)。使用这些材料可以制成多种剂型,包括但不限于片剂、胶囊、滴丸、气雾剂、丸剂、粉剂、溶液剂、混悬剂、乳剂、颗粒剂、脂质体、透皮剂、口含片、栓剂、冻干粉针剂等。可以是普通制剂、缓释制剂、控释制剂及各种微粒给药系统。为了将单位给药剂型制成片剂,可以广泛使用本领域公知的各种载体。关于载体的例子是,例如稀释剂与吸收剂,如淀粉、糊精、硫酸钙、乳糖、甘露醇、蔗糖、氯化钠、葡萄糖、尿素、碳酸钙、白陶土、微晶纤维素、硅酸铝等;湿润剂与粘合剂,如水、甘油、聚乙二醇、乙醇、丙醇、淀粉浆、糊精、糖浆、蜂蜜、葡萄糖溶液、阿拉伯胶浆、明胶浆、羧甲基纤维素钠、紫胶、甲基纤维素、磷酸钾、聚乙烯吡咯烷酮等;崩解剂,例如干燥淀粉、海藻酸盐、琼脂粉、褐藻淀粉、碳酸氢钠与枸橼酸、碳酸钙、聚氧乙烯、山梨糖醇脂肪酸酯、十二烷基磺酸钠、甲基纤维素、乙基纤维素等;崩解抑制剂,例如蔗糖、三硬脂酸甘油酯、可可脂、氢化油等;吸收促进剂,例如季铵盐、十二烷基硫酸钠等;润滑剂,例如滑石粉、二氧化硅、玉米淀粉、硬脂酸盐、硼酸、液体石蜡、聚乙二醇等。还可以将片剂进一步制成包衣片,例如糖包衣片、薄膜包衣片、肠溶包衣片,或双层片和多层片。为了将单位给药剂型制成丸剂,可以广泛使用本领域公知的各种载体。关于载体的例子是,例如稀释剂与吸收剂,如葡萄糖、乳糖、淀粉、可可脂、氢化植物油、聚乙烯吡咯烷酮、高岭土、滑石粉等;粘合剂如阿拉伯胶、黄蓍胶、明胶、乙醇、蜂蜜、液糖、米糊或面糊等;崩解剂,如琼脂粉、干燥淀粉、海藻酸盐、十二烷基磺酸钠、甲基纤维素、乙基纤维素等。为了将单位给药剂型制成栓剂,可以广泛使用本领域公知的各种载体。关于载体的例子是,例如聚乙二醇、卵磷脂、可可脂、高级醇、高级醇的酯、明胶、半合成甘油酯等。为了将单位给药剂型制成注射用制剂,如溶液剂、乳剂、冻干粉针剂和混悬剂,可以使用本领域常用的所有稀释剂,例如,水、乙醇、聚乙二醇、1,3-丙二醇、乙氧基化的异硬脂醇、多氧化的异硬脂醇、聚氧乙烯山梨醇脂肪酸酯等。另外,为了制备等渗注射液,可以向注射用制剂中添加适量的氯化钠、葡萄糖或甘油,此外,还可以添加常规的助溶剂、缓冲剂、pH调节剂等。此外,如需要,也可以向药物制剂中添加着色剂、防腐剂、香料、矫味剂、甜味剂或其它材料。The carrier material includes, but is not limited to, water-soluble carrier materials (such as polyethylene glycol, polyvinyl pyrrolidone, organic acid, etc.), poorly soluble carrier materials (such as ethyl cellulose, cholesterol stearate, etc.), enteric carrier materials (such as cellulose acetate phthalate and carboxymethyl ethyl cellulose, etc.). These materials can be used to make a variety of dosage forms, including but not limited to tablets, capsules, dripping pills, aerosols, pills, powders, solutions, suspensions, emulsions, granules, liposomes, transdermal agents, buccal tablets, suppositories, freeze-dried powder injections, etc. It can be a common preparation, a sustained-release preparation, a controlled-release preparation, and various microparticle delivery systems. In order to make a unit dosage form into a tablet, various carriers known in the art can be widely used. Examples of carriers include diluents and absorbents, such as starch, dextrin, calcium sulfate, lactose, mannitol, sucrose, sodium chloride, glucose, urea, calcium carbonate, kaolin, microcrystalline cellulose, aluminum silicate, etc.; wetting agents and binders, such as water, glycerol, polyethylene glycol, ethanol, propanol, starch slurry, dextrin, syrup, honey, glucose solution, acacia slurry, gelatin slurry, sodium carboxymethylcellulose, shellac, methylcellulose, potassium phosphate, polyvinyl pyrrolidone, etc.; disintegrants. , such as dry starch, alginate, agar powder, brown algae starch, sodium bicarbonate and citric acid, calcium carbonate, polyoxyethylene, sorbitol fatty acid esters, sodium lauryl sulfate, methyl cellulose, ethyl cellulose, etc.; disintegration inhibitors, such as sucrose, tristearate, cocoa butter, hydrogenated oil, etc.; absorption promoters, such as quaternary ammonium salts, sodium lauryl sulfate, etc.; lubricants, such as talc, silicon dioxide, corn starch, stearate, boric acid, liquid paraffin, polyethylene glycol, etc. The tablets can also be further made into coated tablets, such as sugar-coated tablets, film-coated tablets, enteric-coated tablets, or double-layer tablets and multi-layer tablets. In order to make the unit dosage form into a pill, various carriers known in the art can be widely used. Examples of carriers include diluents and absorbents, such as glucose, lactose, starch, cocoa butter, hydrogenated vegetable oil, polyvinyl pyrrolidone, kaolin, talc, etc.; binders such as gum arabic, tragacanth, gelatin, ethanol, honey, liquid sugar, rice paste or flour paste, etc.; disintegrants such as agar powder, dry starch, alginate, sodium dodecyl sulfate, methyl cellulose, ethyl cellulose, etc. In order to prepare the unit dosage form into a suppository, various carriers known in the art can be widely used. Examples of carriers include, for example, polyethylene glycol, lecithin, cocoa butter, higher alcohols, esters of higher alcohols, gelatin, semi-synthetic glycerides, etc. In order to prepare the unit dosage form into an injectable preparation, such as a solution, emulsion, freeze-dried powder injection and suspension, all diluents commonly used in the art can be used, for example, water, ethanol, polyethylene glycol, 1,3-propylene glycol, ethoxylated isostearyl alcohol, polyoxyethylene sorbitol fatty acid esters, etc. In addition, in order to prepare isotonic injections, an appropriate amount of sodium chloride, glucose or glycerol may be added to the injection preparations, and conventional cosolvents, buffers, pH adjusters, etc. may also be added. In addition, colorants, preservatives, spices, flavoring agents, sweeteners or other materials may also be added to the pharmaceutical preparations as needed.

使用上述剂型可以经口服给药。The above-mentioned dosage forms can be used for oral administration.

与现有技术相比,本发明至少具有以下优点:Compared with the prior art, the present invention has at least the following advantages:

1、本发明首次使用酸性电解水溶胀破壁血球蛋白,为酶解法制备血球蛋白肽提供了一种环保、简单高效且适合大规模生产的预处理方法;1. The present invention uses acidic electrolyzed water to swell and break the wall of hemoglobin for the first time, providing an environmentally friendly, simple, efficient and suitable pretreatment method for large-scale production for preparing hemoglobin peptides by enzymatic hydrolysis;

2、本发明利用菠萝蛋白酶与铜绿假单胞菌来源蛋白酶PaproA或嗜热脂肪芽孢杆菌来源蛋白酶GsProS8中的一种或两种分步水解鸭血球粉,通过特异性酶切的方式富集具有XOD抑制活性的肽段,制备的鸭血球蛋白肽降尿酸活性高;2. The present invention uses bromelain and one or both of the protease PaproA from Pseudomonas aeruginosa or the protease GsProS8 from Bacillus stearothermophilus to hydrolyze duck blood cell powder in steps, and enriches peptides with XOD inhibitory activity by specific enzyme cleavage. The prepared duck blood globulin peptide has high uric acid lowering activity;

3、本发明提供的双酶分步水解鸭血球粉制备降尿酸鸭血球蛋白肽的方法,产物收得率大于62%,分子量小于5000Da的部分大于95%;3. The method for preparing uric acid-lowering duck hemoglobin peptide by double-enzyme step-by-step hydrolysis of duck hemoglobin powder provided by the present invention has a product yield greater than 62%, and the fraction with a molecular weight less than 5000Da is greater than 95%;

4、本发明提供的双酶分步水解鸭血球粉制备降尿酸鸭血球蛋白肽的方法,制备的鸭血球蛋白肽粉体外XOD半抑制浓度低于0.795mg/mL,且具有良好的胃肠消化稳定性;4. The method for preparing uric acid-lowering duck hemoglobulin peptide by double-enzyme stepwise hydrolysis of duck hemoglobulin powder provided by the present invention, wherein the prepared duck hemoglobulin peptide powder has an in vitro XOD half-inhibitory concentration of less than 0.795 mg/mL and has good gastrointestinal digestion stability;

5、本发明提供的分步水解鸭血球粉制备降尿酸鸭血球蛋白肽的方法,分离鉴定出的高活性肽段IVYPW、YPWTQ和LITGLW体外XOD IC50值为0.424mg/mL、0.675mg/mL和0.743mg/mL。5. The method for preparing uric acid-lowering duck hemoglobin peptides by step-by-step hydrolysis of duck hemoglobin powder provided by the present invention, the highly active peptide segments IVYPW, YPWTQ and LITGLW separated and identified had in vitro XOD IC50 values of 0.424 mg/mL, 0.675 mg/mL and 0.743 mg/mL.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为嗜热脂肪芽孢杆菌蛋白酶GsProS8的基因、编码序列及对应的氨基酸序列。FIG. 1 shows the gene, coding sequence and corresponding amino acid sequence of Bacillus stearothermophilus protease GsProS8.

图2为铜绿假单胞菌蛋白酶PaproA发酵液SDS-PAGE及酶谱图;其中M为低分子量标准蛋白;1为粗酶液;2为蛋白酶酶谱,酶谱中出现4条具有蛋白酶活性的同工酶条带。其中有2条主带,表明其活性较高,对应蛋白的分子量为32kD和50kD。Figure 2 is the SDS-PAGE and zymogram of the fermentation broth of Pseudomonas aeruginosa protease PaproA; M is a low molecular weight standard protein; 1 is a crude enzyme solution; 2 is a protease zymogram, in which 4 isozyme bands with protease activity appear. There are 2 main bands, indicating that the activity is relatively high, and the corresponding protein molecular weights are 32kD and 50kD.

图3为实验室自制电解槽结构图。Figure 3 is a diagram of the structure of a laboratory-made electrolytic cell.

图4为蛋白酶PaproA和GsProS8水解鸭血蛋白羧基端氨基端的酶切频率。Figure 4 shows the enzymatic cleavage frequency of the carboxyl and amino termini of duck blood protein hydrolyzed by proteases PaproA and GsProS8.

图5为鸭血球蛋白肽凝胶排阻色谱分析图。FIG. 5 is a graph showing gel exclusion chromatography analysis of duck hemoglobin peptide.

具体实施方式DETAILED DESCRIPTION

下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。The present invention is further described in detail below in conjunction with specific embodiments, and the examples provided are only for illustrating the present invention, rather than for limiting the scope of the present invention. The examples provided below can be used as a guide for further improvements by those of ordinary skill in the art, and do not constitute a limitation of the present invention in any way.

下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The experimental methods in the following examples, unless otherwise specified, are all conventional methods, and are performed according to the techniques or conditions described in the literature in the field or according to the product instructions. The materials, reagents, etc. used in the following examples, unless otherwise specified, can all be obtained from commercial channels.

下述实施例中的铜绿假单胞菌(Pseudomonas aeruginosa)CAU342A为本实验室从酱油曲中筛选鉴定保存,在文献“孙倩等,铜绿假单胞菌产蛋白酶的发酵条件优化,微生物学通报,2017,44(1):86-95.”中公开,公众可以从申请人处获得上述菌株,所得菌株仅可用于验证本发明的实验,不可作为其他用途;The Pseudomonas aeruginosa CAU342A in the following examples was screened, identified and preserved by our laboratory from soy sauce koji, and is disclosed in the document "Sun Qian et al., Optimization of fermentation conditions for protease production by Pseudomonas aeruginosa, Microbiology Bulletin, 2017, 44(1): 86-95." The public can obtain the above strain from the applicant, and the obtained strain can only be used for experiments to verify the present invention and cannot be used for other purposes;

下述实施例中的表达重组蛋白酶GsProS8的枯草芽孢杆菌WB600由本实验室保存,在文献“Chang et al.High level expression and biochemical characterization ofan alkaline serine protease from Geobacillus stearothermophilus to prepareantihypertensive whey protein hydrolysate.BMC Biotechnology,2021,21:21”中公开,公众可以从申请人处获得上述菌株,所得菌株仅可用于验证本发明的实验,不可作为其他用途;The Bacillus subtilis WB600 expressing the recombinant protease GsProS8 in the following examples is preserved by this laboratory and is disclosed in the document "Chang et al. High level expression and biochemical characterization of an alkaline serine protease from Geobacillus stearothermophilus to prepare antihypertensive whey protein hydrolysate. BMC Biotechnology, 2021, 21: 21". The public can obtain the above strain from the applicant, and the obtained strain can only be used for experiments to verify the present invention and cannot be used for other purposes;

菠萝蛋白酶为上海源叶生物科技有限公司的产品,其货号为:S10009;Bromelain is a product of Shanghai Yuanye Biotechnology Co., Ltd., and its product number is: S10009;

鸭血球粉购买于邯郸市鑫恒生物科技有限公司;Duck blood cell powder was purchased from Handan Xinheng Biotechnology Co., Ltd.;

黄嘌呤氧化酶(XOD)购于Sigma公司,产品编号X4376;Xanthine oxidase (XOD) was purchased from Sigma, product number X4376;

酸性电解水的使用实验室自制电解槽(图3)制备,电极采用镀铂钛合金,将NaCl或KCl溶于蒸馏水,质量浓度为0.45%(w/w),然后倒入电解槽中,在电压60V、电流0.5-1A、电极间距为5-10cm条件下电解5min,阳极电解槽得到的即为酸性电解水;Acidic electrolyzed water was prepared using a laboratory-made electrolytic cell (Figure 3). The electrode was made of platinum-plated titanium alloy. NaCl or KCl was dissolved in distilled water with a mass concentration of 0.45% (w/w). Then it was poured into the electrolytic cell and electrolyzed for 5 minutes at a voltage of 60V, a current of 0.5-1A, and an electrode spacing of 5-10cm. The anode electrolytic cell obtained acidic electrolyzed water.

下述实施例采用SPSS 11.5统计软件对数据进行处理,实验结果以平均值±标准偏差表示,采用One-way ANOVA检验,*表示具有显著性差异(P<0.05),**表示具有极显著性差异(P<0.01),***表示具有极显著性差异(P<0.001)。The following examples were processed using SPSS 11.5 statistical software. The experimental results were expressed as mean ± standard deviation and tested using One-way ANOVA. * indicates a significant difference (P < 0.05), ** indicates a very significant difference (P < 0.01), and *** indicates a very significant difference (P < 0.001).

实施例1、单一蛋白酶GsProS8或PaproA水解鸭血球蛋白Example 1: Hydrolysis of duck hemoglobin by single protease GsProS8 or PaproA

使用pH 2.5的酸性电解水配制5%底物浓度(w/w)的鸭血球溶液,搅拌溶胀破壁2h获得鸭血球蛋白溶液,用1M的NaOH溶液或HCl溶液调节各底物溶液pH至8.0。分别添加铜绿假单胞菌蛋白酶PaproA和嗜热脂肪芽孢杆菌蛋白酶GsProS8单酶水解,加酶量均为2000U/g鸭血球粉。水解10h后,沸水浴灭活10min,离心得到两种鸭血球蛋白水解液,分别将水解液冻干,获得冻干产物,称重计算产物收得率。产物收得率计算公式如下:Use acidic electrolyzed water with pH 2.5 to prepare a duck blood globulin solution with a substrate concentration of 5% (w/w), stir and swell and break the wall for 2 hours to obtain a duck blood globulin solution, and use 1M NaOH solution or HCl solution to adjust the pH of each substrate solution to 8.0. Add Pseudomonas aeruginosa protease PaproA and Bacillus stearothermophilus protease GsProS8 single enzymes for hydrolysis, and the enzyme addition amount is 2000U/g duck blood globulin powder. After hydrolysis for 10 hours, inactivate in a boiling water bath for 10 minutes, centrifuge to obtain two duck blood globulin hydrolyzates, freeze-dry the hydrolyzates, obtain freeze-dried products, and weigh to calculate the product yield. The product yield calculation formula is as follows:

产物收得率(%)=(上清液冻干粉质量/鸭血球粉质量)×100%;Product yield (%) = (mass of supernatant freeze-dried powder/mass of duck blood cell powder) × 100%;

并将冻干产物用蒸馏水溶解至1mg/mL测定XOD抑制率。产物收得率和水解液的XOD抑制率结果如表1所示。使用LC-MS/MS对两种鸭血球蛋白水解物中的肽段进行鉴定,统计了两种蛋白酶水解鸭血红蛋白羧基端氨基端的酶切频率,如图4所示。XOD抑制活性测定参照Zhong等人(Zhong et al.Food Chemistry,2021,347:129068)的方法略有改动,具体方法如下所述:The lyophilized product was dissolved in distilled water to 1 mg/mL to determine the XOD inhibition rate. The product yield and the XOD inhibition rate of the hydrolyzate are shown in Table 1. The peptides in the two duck hemoglobin hydrolysates were identified by LC-MS/MS, and the enzymatic cleavage frequencies of the two proteases hydrolyzing the carboxyl and amino ends of duck hemoglobin were counted, as shown in Figure 4. The XOD inhibitory activity determination was slightly modified according to the method of Zhong et al. (Zhong et al. Food Chemistry, 2021, 347: 129068), and the specific method is as follows:

50μL水解液样品中加入150μL黄嘌呤氧化酶(XOD)溶液(0.05U/mL),37℃保温5min后,加入150μL的黄嘌呤溶液开始反应。60min后加入100μL的盐酸溶液(1M)结束反应,290nm下测定吸光度。缓冲液作为阴性对照,别嘌呤醇作为阳性对照。XOD抑制率计算公式如下:Add 150 μL of xanthine oxidase (XOD) solution (0.05 U/mL) to 50 μL of hydrolyzate sample, keep at 37°C for 5 minutes, and then add 150 μL of xanthine solution to start the reaction. After 60 minutes, add 100 μL of hydrochloric acid solution (1M) to end the reaction, and measure the absorbance at 290 nm. Buffer solution is used as a negative control, and allopurinol is used as a positive control. The XOD inhibition rate is calculated as follows:

其中A1——样品吸光度;A2——样品空白;A3——阴性对照;A4——阳性对照。Where A1 is sample absorbance; A2 is sample blank; A3 is negative control; A4 is positive control.

表1.蛋白酶GsProS8和PaproA单酶水解鸭血球蛋白水解结果Table 1. Hydrolysis results of duck hemoglobin by protease GsProS8 and PaproA

*1mg/mL蛋白浓度下测定水解液XOD抑制活性。 * XOD inhibitory activity of hydrolysate was measured at 1 mg/mL protein concentration.

测定结果如表1所示,蛋白酶GsProS8和PaproA单酶水解鸭血球蛋白后,水解物在1mg/mL浓度下XOD抑制率分别达到了57.5%和64.7%,表现较高的XOD抑制活性,但是二者水解鸭血球蛋白产物收得率较低,分别为16.4%和28%。两种蛋白酶对鸭血红蛋白的酶切位点主要集中在疏水性氨基酸(甲硫氨酸和亮氨酸)和芳香族氨基酸(苯丙氨酸和酪氨酸),这有利于XOD抑制肽片段的释放。The results are shown in Table 1. After the protease GsProS8 and PaproA hydrolyzed duck hemoglobin, the XOD inhibition rates of the hydrolyzates at a concentration of 1 mg/mL reached 57.5% and 64.7%, respectively, showing high XOD inhibition activity, but the yields of the duck hemoglobin hydrolyzed products were low, 16.4% and 28%, respectively. The cleavage sites of the two proteases on duck hemoglobin are mainly concentrated in hydrophobic amino acids (methionine and leucine) and aromatic amino acids (phenylalanine and tyrosine), which is conducive to the release of XOD inhibitory peptide fragments.

蛋白酶GsProS8的氨基酸序列如图1所示。蛋白酶GsProS8是将蛋白酶GsProS8的编码基因导入枯草芽孢杆菌得到重组菌,经高密度发酵108h得到的蛋白酶。蛋白酶GsProS8的编码基因的核苷酸序列如图1所示。蛋白酶GsProS8按照如下步骤的方法制备:The amino acid sequence of protease GsProS8 is shown in Figure 1. Protease GsProS8 is a protease obtained by introducing the coding gene of protease GsProS8 into Bacillus subtilis to obtain a recombinant bacterium and fermenting it at high density for 108 hours. The nucleotide sequence of the coding gene of protease GsProS8 is shown in Figure 1. Protease GsProS8 is prepared according to the following steps:

将重组蛋白酶GsProS8枯草芽孢杆菌WB600按照1%(V/V)的接种量介入LB培养基,并在37℃下培养12h作为发酵种子液,发酵罐内装液量为1.5L,按照5%(V/V)接种量接种,发酵过程控制在37℃,利用氨水和磷酸调节pH为4.0,将溶氧维持在30%左右,待培养基中的残糖含量<1g/L时,开始流加补料培养基,高密度发酵108h后,收集发酵液,离心上清液即为蛋白酶GsProS8。其中发酵培养基的组成为:硫酸铵2g/L、酵母浸粉3g/L、葡糖糖1g/L、氯化钠1g/L、硫酸镁0.5g/L、氯化锌0.05g/L、氯化锰0.05g/L、酵素0.1g/L、氯化钙2g/L,其余为水;补料培养基的组成为:葡萄糖500g/L、蛋白胨37.5g/L,其余为水。按照下述方法测定上述蛋白酶GsProS8的酶液的蛋白酶酶活力,结果表明该蛋白酶PaproA的酶液的蛋白酶酶活力为3800U/mL。蛋白酶GsProS8的酶活力测定的方法参考GB/T 23527-2009,具体步骤为:1mL蛋白酶GsProS8的酶液与1mL酪蛋白溶液(溶剂为pH为7.5的NaH2PO4-Na2HPO4缓冲溶液,溶质是酪蛋白)在40℃保温10min后,加入2mL三氯乙酸终止反应,10000rpm离心10min,取1mL上清液加入5mL碳酸钠溶液和1mL福林酚试剂,40℃保温20min显色,于660nm处测定吸光值。以先加入三氯乙酸终止反应的酶液作为对照。将在40℃、pH为7.5的条件下每分钟水解酪蛋白产生1μg酪氨酸所需的酶量定义为1个酶活力单位(U)。The recombinant protease GsProS8 Bacillus subtilis WB600 was introduced into LB culture medium at an inoculation rate of 1% (V/V) and cultured at 37°C for 12 hours as fermentation seed liquid. The liquid volume in the fermenter was 1.5L and inoculated at an inoculation rate of 5% (V/V). The fermentation process was controlled at 37°C, the pH was adjusted to 4.0 using ammonia water and phosphoric acid, and the dissolved oxygen was maintained at about 30%. When the residual sugar content in the culture medium was <1g/L, the feed culture medium was started. After 108 hours of high-density fermentation, the fermentation liquid was collected, and the centrifuged supernatant was the protease GsProS8. The composition of the fermentation medium is: 2g/L ammonium sulfate, 3g/L yeast extract, 1g/L glucose, 1g/L sodium chloride, 0.5g/L magnesium sulfate, 0.05g/L zinc chloride, 0.05g/L manganese chloride, 0.1g/L enzyme, 2g/L calcium chloride, and the rest is water; the composition of the feed medium is: 500g/L glucose, 37.5g/L peptone, and the rest is water. The protease activity of the enzyme solution of the protease GsProS8 was determined according to the following method, and the results showed that the protease activity of the enzyme solution of the protease PaproA was 3800U/mL. The method for determining the enzyme activity of protease GsProS8 refers to GB/T 23527-2009, and the specific steps are as follows: 1 mL of protease GsProS8 enzyme solution and 1 mL of casein solution (the solvent is NaH 2 PO 4 -Na 2 HPO 4 buffer solution with a pH of 7.5, and the solute is casein) are kept at 40°C for 10 minutes, and then 2 mL of trichloroacetic acid is added to terminate the reaction, and the reaction is centrifuged at 10000 rpm for 10 minutes. 1 mL of supernatant is added with 5 mL of sodium carbonate solution and 1 mL of Folin phenol reagent, and the reaction is kept at 40°C for 20 minutes for color development, and the absorbance is measured at 660 nm. The enzyme solution in which trichloroacetic acid is first added to terminate the reaction is used as a control. The amount of enzyme required to hydrolyze casein to produce 1 μg of tyrosine per minute at 40°C and pH 7.5 is defined as 1 enzyme activity unit (U).

所述蛋白酶PaproA的SDS-PAGE及酶谱如图2所示。酶谱中出现4条具有蛋白酶活性的同工酶条带。其中有2条主带,表明其活性较高,对应蛋白的分子量为32kD和50kD。所述蛋白酶PaproA按照包括如下步骤的方法制备:将铜绿假单胞菌(Pseudomonas aeruginosa)CAU342A在发酵培养基中30℃培养3天,收集发酵液,将所述发酵液离心,收集上清液,该上清液即为蛋白酶PaproA的酶液。其中,发酵培养基由以下原料制成:3%酒糟,1.5%酵母浸粉,0.05%吐温-80,0.5%氯化钠,0.7%磷酸钾,0.3%磷酸氢二钾,0.04%硫酸锰和水,所有的百分含量均为质量百分含量。所述发酵培养基的pH为7.5。按照下述方法测定上述蛋白酶PaproA的酶液的蛋白酶酶活力,结果表明该蛋白酶PaproA的酶液的蛋白酶酶活力为2653U/mL。蛋白酶PaproA的酶活力测定方法参考GB/T 23527-2009:1mL蛋白酶PaproA的酶液与1mL酪蛋白溶液(溶剂为pH为7.5的NaH2PO4-Na2HPO4缓冲溶液,溶质是酪蛋白)在40℃保温10min后,加入2mL三氯乙酸终止反应,10000rpm离心10min,取1mL上清液加入5mL碳酸钠溶液和1mL福林酚试剂,40℃保温20min显色,于660nm处测定吸光值。以先加入三氯乙酸终止反应的酶液作为对照。将在40℃、pH为7.5的条件下每分钟水解酪蛋白产生1μg酪氨酸所需的酶量定义为1个酶活力单位(U)。The SDS-PAGE and zymogram of the protease PaproA are shown in Figure 2. Four isozyme bands with protease activity appear in the zymogram. Among them, there are two main bands, indicating that its activity is relatively high, and the molecular weight of the corresponding protein is 32kD and 50kD. The protease PaproA is prepared according to a method comprising the following steps: Pseudomonas aeruginosa CAU342A is cultured in a fermentation medium at 30°C for 3 days, the fermentation broth is collected, the fermentation broth is centrifuged, and the supernatant is collected, which is the enzyme solution of the protease PaproA. Among them, the fermentation medium is made of the following raw materials: 3% lees, 1.5% yeast extract powder, 0.05% Tween-80, 0.5% sodium chloride, 0.7% potassium phosphate, 0.3% dipotassium hydrogen phosphate, 0.04% manganese sulfate and water, and all percentages are mass percentages. The pH of the fermentation medium is 7.5. The enzyme activity of the enzyme solution of the protease PaproA was determined according to the following method. The results showed that the enzyme activity of the enzyme solution of the protease PaproA was 2653U/mL. The enzyme activity determination method of the protease PaproA refers to GB/T 23527-2009: 1mL of the enzyme solution of the protease PaproA and 1mL of the casein solution (the solvent is a NaH 2 PO 4 -Na 2 HPO 4 buffer solution with a pH of 7.5, and the solute is casein) are incubated at 40°C for 10 minutes, and then 2mL of trichloroacetic acid is added to terminate the reaction. The reaction is centrifuged at 10000rpm for 10 minutes, and 1mL of the supernatant is added with 5mL of sodium carbonate solution and 1mL of Folin phenol reagent. The color is developed by incubating at 40°C for 20 minutes, and the absorbance is measured at 660nm. The enzyme solution in which the reaction is terminated by adding trichloroacetic acid first is used as a control. The amount of enzyme required to hydrolyze casein to produce 1μg of tyrosine per minute at 40°C and pH 7.5 is defined as 1 enzyme activity unit (U).

实施例2、高活性降尿酸鸭血肽的水解条件优化Example 2: Optimization of hydrolysis conditions of highly active uric acid-lowering duck blood peptide

配制5%底物浓度的鸭血球粉混悬液(100ml pH 3.0的酸性电解水中加入5g鸭血球粉得到的液体),溶胀破壁2h得到鸭血球蛋白液。使用1M的氢氧化钠或盐酸溶液调节体系pH至最适条件,使用酸性蛋白酶、菠萝蛋白酶、铜绿假单胞菌来源蛋白酶PaproA和嗜热脂肪芽孢杆菌蛋白酶GsProS8,以单酶或者两种酶分步水解的方式水解鸭血球粉,总加酶量均为2000U,具体水解方式见表2。蛋白酶PaproA的酶活力测定方法参考GB/T 23527-2009:1mL酶液与1mL酪蛋白溶液在40℃保温10min后,加入2mL三氯乙酸终止反应,10000rpm离心10min,取1mL上清液加入5mL碳酸钠溶液和1mL福林酚试剂,40℃保温20min显色,于660nm处测定吸光值。以先加入三氯乙酸终止反应的酶液作为对照。每分钟水解酪蛋白产生1μg酪氨酸所需的酶量定义为1个酶活力单位(U)。单酶水解加酶量为2000U/g鸭血球粉,在各自最适条件下水解10h。双酶复配水解第一步,蛋白酶A加酶量为1000U/g鸭血球粉,在其最适条件下水解6h;第二步,调节体系pH,蛋白酶B加酶量为1000U/g鸭血球粉,在其最适条件下继续水解4h。水解结束后,沸水浴灭活10min,离心(8820×g离心10min)得到鸭血球蛋白水解液,上清液冻干并测定XOD抑制活性。产物收得率测定方法参考实施例1。水解条件及测定结果如表2所示。XOD抑制活性参考实施例1,根据水解物XOD抑制活性选取5个浓度,分别测定各浓度的XOD抑制率(表3),根据浓度和XOD抑制率,使用SPSS软件非线性回归计算各水解物IC50值。Prepare a duck blood cell powder suspension with a substrate concentration of 5% (liquid obtained by adding 5g duck blood cell powder to 100ml acidic electrolyzed water with pH 3.0), and swell and break the wall for 2h to obtain duck blood globulin liquid. Use 1M sodium hydroxide or hydrochloric acid solution to adjust the system pH to the optimal condition, use acid protease, bromelain, Pseudomonas aeruginosa source protease PaproA and thermophilic Bacillus stearothermophilus protease GsProS8, hydrolyze duck blood cell powder in a single enzyme or two enzyme step-by-step hydrolysis mode, the total enzyme addition amount is 2000U, and the specific hydrolysis method is shown in Table 2. The enzyme activity determination method of protease PaproA refers to GB/T 23527-2009: 1mL enzyme solution and 1mL casein solution are kept at 40℃ for 10min, then 2mL trichloroacetic acid is added to terminate the reaction, centrifuged at 10000rpm for 10min, 1mL supernatant is added with 5mL sodium carbonate solution and 1mL Folin phenol reagent, kept at 40℃ for 20min to develop color, and the absorbance is measured at 660nm. The enzyme solution to which trichloroacetic acid is added to terminate the reaction is used as a control. The amount of enzyme required to hydrolyze casein to produce 1μg tyrosine per minute is defined as 1 enzyme activity unit (U). The amount of enzyme added for single enzyme hydrolysis is 2000U/g duck blood cell powder, and the hydrolysis is carried out for 10h under the respective optimal conditions. In the first step of the double enzyme compound hydrolysis, the amount of protease A added was 1000U/g duck blood powder, and the hydrolysis was carried out under its optimal conditions for 6h; in the second step, the pH of the system was adjusted, and the amount of protease B added was 1000U/g duck blood powder, and the hydrolysis was continued for 4h under its optimal conditions. After the hydrolysis was completed, the duck blood globulin hydrolyzate was inactivated in a boiling water bath for 10min, centrifuged (8820×g centrifugation for 10min) to obtain the duck blood globulin hydrolyzate, and the supernatant was freeze-dried and the XOD inhibitory activity was determined. The product yield determination method refers to Example 1. The hydrolysis conditions and the determination results are shown in Table 2. XOD inhibitory activity refers to Example 1, and 5 concentrations are selected according to the XOD inhibitory activity of the hydrolyzate, and the XOD inhibition rate of each concentration is determined respectively (Table 3). According to the concentration and XOD inhibition rate, the IC 50 value of each hydrolyzate is calculated using SPSS software nonlinear regression.

表2.水解条件及其各水解物XOD抑制活性Table 2. Hydrolysis conditions and XOD inhibitory activity of each hydrolyzate

表3.不同浓度下各水解物XOD抑制活性Table 3. XOD inhibitory activity of hydrolysates at different concentrations

作为本实施例的实施方式,菠萝蛋白酶与蛋白酶GsProS8和PaproA复配使用后,明显提高了鸭血球粉的产物收得率,达到了54%以上,而且提高了水解物的XOD抑制活性;菠萝蛋白酶分别与PaproA和GsProS8水解鸭血球粉制备的鸭血球蛋白肽的XOD半抑制浓度分别达到0.795mg/mL和0.744mg/mL。酸性蛋白酶单酶复配蛋白酶PaproA或GsProS8水解鸭血球粉,虽然明显提高了蛋白回收率,但是水解物的XOD抑制活性大幅下降。As an implementation method of this embodiment, after bromelain is used in combination with proteases GsProS8 and PaproA, the product yield of duck blood cell powder is significantly improved, reaching more than 54%, and the XOD inhibitory activity of the hydrolyzate is improved; the XOD half-inhibition concentration of duck blood globulin peptides prepared by hydrolyzing duck blood cell powder with bromelain, PaproA and GsProS8 respectively reaches 0.795 mg/mL and 0.744 mg/mL. Although the acid protease single enzyme combined with protease PaproA or GsProS8 to hydrolyze duck blood cell powder significantly improves the protein recovery rate, the XOD inhibitory activity of the hydrolyzate is greatly reduced.

实施例3、高活性肽段的分离鉴定Example 3: Isolation and identification of highly active peptides

使用10mM的盐酸溶液平衡G15凝胶柱(1000×10mm),将实施例2获得的鸭血球蛋白肽(菠萝蛋白酶复配蛋白酶GsProS8水解)用10mM的盐酸溶液(36%的浓盐酸:纯水=1:1090)溶解,8820×g离心10min,取上清液进行凝胶层析。采用凝胶层析分离法,色谱条件:AKTApurifier UPC-900快速蛋白液相色谱仪;流动相:10mM的盐酸溶液;流速:0.8mL/min;检测:UV280nm。结果如图5所示,分离得到5个组分,其中F5组分XOD抑制活性最高。nanoLC-MS/MS分析,F5组分中鉴定的肽段序列如表4所示。对其中5条肽段进行了人工合成验证,并测定XOD抑制活性,结果如表5所示。XOD抑制活性测定方法参考实施例2。A G15 gel column (1000×10 mm) was equilibrated with a 10 mM hydrochloric acid solution, and the duck hemoglobin peptide (bromelain compound protease GsProS8 hydrolysis) obtained in Example 2 was dissolved with a 10 mM hydrochloric acid solution (36% concentrated hydrochloric acid: pure water = 1:1090), centrifuged at 8820×g for 10 min, and the supernatant was taken for gel chromatography. The gel chromatography separation method was adopted, and the chromatographic conditions were: AKTApurifier UPC-900 fast protein liquid chromatograph; mobile phase: 10 mM hydrochloric acid solution; flow rate: 0.8 mL/min; detection: UV280 nm. As shown in FIG5 , 5 components were separated, among which the F5 component had the highest XOD inhibitory activity. According to nanoLC-MS/MS analysis, the peptide sequence identified in the F5 component is shown in Table 4. Five of the peptides were artificially synthesized and verified, and the XOD inhibitory activity was measured, and the results are shown in Table 5. The XOD inhibitory activity determination method refers to Example 2.

表4.F5组分中鉴定的肽段Table 4. Peptides identified in fraction F5

*母体蛋白在UniProt数据库中的编号 * The parent protein number in the UniProt database

表5.合成肽段的XOD抑制活性Table 5. XOD inhibitory activity of synthetic peptides

作为本实施例的实施方式,鸭血球蛋白肽分离得到五个组分,其中F5组分XOD抑制活性最高,其体外XOD IC50值为0.489mg/mL。所述F5组分中共鉴定得到53条肽段,主要来源于鸭血红蛋白α-链(P01988)和β-链(P02115),肽段序列中大部分含有芳香族氨基酸。合成验证了其中5条可能具有XOD抑制活性的肽段,其中IVYPW、YPWTQ和LITGLW的XOD抑制活性较高,IC50值分别为0.424mg/mL、0.675mg/mL和0.743mg/mL。As an implementation method of this embodiment, duck hemoglobin peptides were separated to obtain five components, among which the F5 component had the highest XOD inhibitory activity, and its in vitro XOD IC 50 value was 0.489 mg/mL. A total of 53 peptides were identified in the F5 component, mainly derived from duck hemoglobin α-chain (P01988) and β-chain (P02115), and most of the peptide sequences contained aromatic amino acids. Synthesis verified that 5 of the peptides may have XOD inhibitory activity, among which IVYPW, YPWTQ and LITGLW had higher XOD inhibitory activity, with IC 50 values of 0.424 mg/mL, 0.675 mg/mL and 0.743 mg/mL, respectively.

实施例4、降尿酸活性鸭血球蛋白肽公斤级制备及其分子量测定Example 4: Preparation of kilogram-scale duck hemoglobin peptide with uric acid-lowering activity and determination of its molecular weight

酶解罐中加入20L pH 3.0的酸性电解水,启动搅拌桨,缓慢加入1kg鸭血球粉,溶胀破壁1h得到鸭血红蛋白溶液。利用蠕动泵向酶解罐中加入1M的氢氧化钠溶液调节pH值至7.5,加热器加热至45-55℃保温。鸭血红蛋白液中加入3.5g菠萝蛋白酶(1×106U),水解4h后,调节体系pH值为8.0。加入380mL铜绿假单胞菌来源蛋白酶酶液(1×106U)继续水解6h,两步水解后沸水浴灭活冷却至室温,得到酶解液。将得到的酶解液进行板框过滤得到肽溶液,旋蒸浓缩得到浓缩肽溶液。将得到的浓缩肽溶液喷雾干燥即得菠萝蛋白酶与铜绿假单胞菌来源蛋白酶复配水解制备的鸭血球蛋白肽粉(DHH_BP)。Add 20L of acidic electrolyzed water with pH 3.0 to the enzymolysis tank, start the stirring paddle, slowly add 1kg of duck blood globulin powder, swell and break the wall for 1h to obtain duck hemoglobin solution. Use a peristaltic pump to add 1M sodium hydroxide solution to the enzymolysis tank to adjust the pH value to 7.5, and heat the heater to 45-55℃ for insulation. Add 3.5g bromelain (1×10 6 U) to the duck hemoglobin solution, and after hydrolysis for 4h, adjust the system pH to 8.0. Add 380mL of Pseudomonas aeruginosa-derived protease enzyme solution (1×10 6 U) and continue hydrolysis for 6h. After two-step hydrolysis, inactivate in a boiling water bath and cool to room temperature to obtain an enzymolysis solution. The obtained enzymolysis solution is plate-and-frame filtered to obtain a peptide solution, and concentrated by rotary evaporation to obtain a concentrated peptide solution. The obtained concentrated peptide solution is spray-dried to obtain duck hemoglobin peptide powder (DHH_BP) prepared by composite hydrolysis of bromelain and Pseudomonas aeruginosa-derived protease.

酶解罐中加入20L pH 3.0的酸性电解水,启动搅拌桨,缓慢加入1kg鸭血球粉,调节体系pH值为3.0,溶胀破壁1h得到鸭血红蛋白溶液。以蠕动泵向酶解罐中加入1M的氢氧化钠溶液调节pH值至7.5,加热器加热至45-55℃保温。向鸭血红蛋白混悬液中加入3.5g菠萝蛋白酶(1×106U),水解4h后,调节体系pH值为8.5。加入260mL嗜热脂肪芽孢杆菌来源蛋白酶酶液(1×106U)继续水解6h,两步水解后沸水浴灭活冷却至室温,得到酶解液。将得到的酶解液进行板框过滤得到肽溶液,旋蒸浓缩得到浓缩肽溶液。将得到的浓缩肽溶液喷雾干燥即得菠萝蛋白酶与嗜热脂肪芽孢杆菌蛋白酶复配水解制备的鸭血球蛋白肽粉(DHH_BG)。Add 20L of acidic electrolyzed water with pH 3.0 to the enzymolysis tank, start the stirring paddle, slowly add 1kg of duck blood ball powder, adjust the pH value of the system to 3.0, and swell and break the wall for 1h to obtain duck hemoglobin solution. Use a peristaltic pump to add 1M sodium hydroxide solution to the enzymolysis tank to adjust the pH value to 7.5, and heat the heater to 45-55℃ for insulation. Add 3.5g bromelain (1×10 6 U) to the duck hemoglobin suspension, and after hydrolysis for 4h, adjust the pH value of the system to 8.5. Add 260mL of thermophilic Bacillus stearothermophilus protease enzyme solution (1×10 6 U) and continue hydrolysis for 6h. After two-step hydrolysis, inactivate in boiling water bath and cool to room temperature to obtain enzymolysis solution. The obtained enzymolysis solution is plate-frame filtered to obtain a peptide solution, and concentrated by rotary evaporation to obtain a concentrated peptide solution. The obtained concentrated peptide solution is spray-dried to obtain duck hemoglobin peptide powder (DHH_BG) prepared by composite hydrolysis of bromelain and thermophilic Bacillus stearothermophilus protease.

将喷雾干燥得到的肽粉称重,计算产品收得率,计算如下:Weigh the peptide powder obtained by spray drying and calculate the product yield as follows:

产品收得率(%)=(干燥所得肽粉质量/鸭血球粉质量)×100%Product yield (%) = (mass of peptide powder obtained by drying/mass of duck blood cell powder) × 100%

上述获得的降尿酸鸭血球蛋白肽的分子量进行测定,采用HPLC法,测定色谱条件:安捷伦高效液相色谱仪1260;色谱柱:TSKgel-G2000SWXL column(7.8×300mm);流动相:乙腈/纯水/三氟乙酸:45/50/0.1(v/v/v);检测:UV214nm;流速:0.5mL/min;柱温:30℃。结果如表6所示。The molecular weight of the uric acid-lowering duck hemoglobulin peptide obtained above was determined by HPLC method, and the chromatographic conditions were: Agilent high performance liquid chromatograph 1260; chromatographic column: TSKgel-G2000SWXL column (7.8×300mm); mobile phase: acetonitrile/pure water/trifluoroacetic acid: 45/50/0.1 (v/v/v); detection: UV214nm; flow rate: 0.5mL/min; column temperature: 30°C. The results are shown in Table 6.

表6.两种降尿酸活性鸭血球蛋白肽的分子量分布Table 6. Molecular weight distribution of two duck hemoglobin peptides with uric acid lowering activity

作为本实施例的实施方式,所述水解1kg鸭血球蛋白共得到672g DHH_BG和620gDHH_BP,产品收得率分别为67.2%和62%,分子量小于5000Da的组分占比分别为96.8%和96.5%。As an implementation method of this example, the hydrolysis of 1 kg of duck hemoglobulin obtained a total of 672 g DHH_BG and 620 g DHH_BP, with product yields of 67.2% and 62% respectively, and components with a molecular weight less than 5000 Da accounted for 96.8% and 96.5% respectively.

实施例5、鸭血球蛋白肽胃肠消化稳定性实验Example 5: Gastrointestinal digestion stability test of duck hemoglobin peptide

实施例4制备的鸭血球蛋白肽进行体外模拟胃肠消化,参照Tavares等的方法略有改动,具体方法如下所述:The duck hemoglobulin peptide prepared in Example 4 was subjected to simulated gastrointestinal digestion in vitro, with reference to the method of Tavares et al. with slight modifications. The specific method is as follows:

将鸭血球肽溶于去离子水中,使用稀盐酸溶液调节肽溶液pH值为2.0,加入胃蛋白酶(E:S 2.5%,w/w),置于恒温摇床中在37℃水解90min,然后用0.1M的氢氧化钠溶液调节肽溶液pH值至7.5,加入胰蛋白酶(E:S 2.5%,w/w),置于恒温摇床中在37℃水解2h。反应结束后,在沸水中保温10min灭酶,冷却后10000r/min离心10min,取上清液冻干后,测定模拟消化后的鸭血球肽XOD抑制活性,具体测定方法如实施例2所述。The duck blood globulin peptide was dissolved in deionized water, the pH value of the peptide solution was adjusted to 2.0 with a dilute hydrochloric acid solution, pepsin (E: S 2.5%, w/w) was added, and the solution was placed in a constant temperature shaker at 37°C for hydrolysis for 90 min, and then the pH value of the peptide solution was adjusted to 7.5 with a 0.1M sodium hydroxide solution, trypsin (E: S 2.5%, w/w) was added, and the solution was placed in a constant temperature shaker at 37°C for hydrolysis for 2 h. After the reaction was completed, the enzyme was incubated in boiling water for 10 min to inactivate the enzyme, cooled and centrifuged at 10000 r/min for 10 min, the supernatant was freeze-dried, and the XOD inhibitory activity of the duck blood globulin peptide after simulated digestion was determined, and the specific determination method was as described in Example 2.

作为本实施例优选的实施方式,实施例4所述两种鸭血球蛋白肽DHH_BG和DHH_BP,经体外模拟胃肠消化后,其XOD IC50值从0.744mg/mL和0.795mg/mL提升至0.959mg/mL和0.892mg/mL,具有良好的胃肠消化稳定性。As a preferred embodiment of this embodiment, the XOD IC 50 values of the two duck hemoglobulin peptides DHH_BG and DHH_BP described in Example 4 increased from 0.744 mg/mL and 0.795 mg/mL to 0.959 mg/mL and 0.892 mg/mL after simulated gastrointestinal digestion in vitro, and had good gastrointestinal digestion stability.

以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。The present invention has been described in detail above. For those skilled in the art, without departing from the purpose and scope of the present invention, and without the need to carry out unnecessary experimental conditions, the present invention can be implemented in a wide range under equivalent parameters, concentrations and conditions. Although the present invention provides specific embodiments, it should be understood that the present invention can be further improved. In a word, according to the principles of the present invention, the application is intended to include any changes, uses or improvements to the present invention, including departure from the disclosed scope in the application, and changes made with conventional techniques known in the art.

序列表Sequence Listing

<110> 中国农业大学<110> China Agricultural University

<120> 一种具有降尿酸活性的鸭血球蛋白肽及其制备方法<120> A duck hemoglobin peptide with uric acid lowering activity and its preparation method

<140> 2022106072332<140> 2022106072332

<141> 2022-05-31<141> 2022-05-31

<160> 54<160> 54

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 5<211> 5

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 1<400> 1

Ile Val Tyr Pro TrpIle Val Tyr Pro Trp

1 51 5

<210> 2<210> 2

<211> 5<211> 5

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 2<400> 2

Tyr Pro Trp Thr GlnTyr Pro Trp Thr Gln

1 51 5

<210> 3<210> 3

<211> 6<211> 6

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 3<400> 3

Leu Ile Thr Gly Leu TrpLeu Ile Thr Gly Leu Trp

1 51 5

<210> 4<210> 4

<211> 4<211> 4

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 4<400> 4

Tyr Pro Gln ThrTyr Pro Gln Thr

11

<210> 5<210> 5

<211> 5<211> 5

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 5<400> 5

Tyr Phe Pro His PheTyr Phe Pro His Phe

1 51 5

<210> 6<210> 6

<211> 6<211> 6

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 6<400> 6

Tyr Pro Trp Thr Gln ArgTyr Pro Trp Thr Gln Arg

1 51 5

<210> 7<210> 7

<211> 6<211> 6

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 7<400> 7

Ile Val Tyr Pro Trp ThrIle Val Tyr Pro Trp Thr

1 51 5

<210> 8<210> 8

<211> 5<211> 5

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 8<400> 8

Leu Ile Val Tyr ProLeu Ile Val Tyr Pro

1 51 5

<210> 9<210> 9

<211> 6<211> 6

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 9<400> 9

Leu Ile Val Tyr Pro TrpLeu Ile Val Tyr Pro Trp

1 51 5

<210> 10<210> 10

<211> 6<211> 6

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 10<400> 10

Val Tyr Pro Trp Thr GlnVal Tyr Pro Trp Thr Gln

1 51 5

<210> 11<210> 11

<211> 7<211> 7

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 11<400> 11

Leu Ile Val Tyr Pro Trp ThrLeu Ile Val Tyr Pro Trp Thr

1 51 5

<210> 12<210> 12

<211> 4<211> 4

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 12<400> 12

Pro Trp Thr GlnPro Trp Thr Gln

11

<210> 13<210> 13

<211> 4<211> 4

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 13<400> 13

Thr Phe Ala GlnThr Phe Ala Gln

11

<210> 14<210> 14

<211> 5<211> 5

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 14<400> 14

Thr Phe Ala Gln LeuThr Phe Ala Gln Leu

1 51 5

<210> 15<210> 15

<211> 6<211> 6

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 15<400> 15

Pro Trp Thr Gln Arg PhePro Trp Thr Gln Arg Phe

1 51 5

<210> 16<210> 16

<211> 4<211> 4

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 16<400> 16

Val Val Pro TrpVal Val Pro Trp

11

<210> 17<210> 17

<211> 4<211> 4

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 17<400> 17

Thr Gly Leu TrpThr Gly Leu Trp

11

<210> 18<210> 18

<211> 5<211> 5

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 18<400> 18

Ile Thr Gly Leu TrpIle Thr Gly Leu Trp

1 51 5

<210> 19<210> 19

<211> 5<211> 5

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 19<400> 19

Val Val Pro Trp ThrVal Val Pro Trp Thr

1 51 5

<210> 20<210> 20

<211> 4<211> 4

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 20<400> 20

Leu Ile Val TyrLeu Ile Val Tyr

11

<210> 21<210> 21

<211> 8<211> 8

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 21<400> 21

Leu Ile Val Tyr Pro Trp Thr GlnLeu Ile Val Tyr Pro Trp Thr Gln

1 51 5

<210> 22<210> 22

<211> 4<211> 4

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 22<400> 22

Ile Val Tyr ProIle Val Tyr Pro

11

<210> 23<210> 23

<211> 7<211> 7

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 23<400> 23

Val Asp Pro Glu Asn Phe ArgVal Asp Pro Glu Asn Phe Arg

1 51 5

<210> 24<210> 24

<211> 7<211> 7

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 24<400> 24

Leu Leu Ile Val Tyr Pro TrpLeu Leu Ile Val Tyr Pro Trp

1 51 5

<210> 25<210> 25

<211> 10<211> 10

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 25<400> 25

Leu His Val Asp Pro Glu Asn Phe Arg LeuLeu His Val Asp Pro Glu Asn Phe Arg Leu

1 5 101 5 10

<210> 26<210> 26

<211> 9<211> 9

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 26<400> 26

Leu Leu Ile Val Tyr Pro Trp Thr GlnLeu Leu Ile Val Tyr Pro Trp Thr Gln

1 51 5

<210> 27<210> 27

<211> 9<211> 9

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 27<400> 27

His Val Asp Pro Glu Asn Phe Arg LeuHis Val Asp Pro Glu Asn Phe Arg Leu

1 51 5

<210> 28<210> 28

<211> 6<211> 6

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 28<400> 28

Ala Ala Trp Gln Lys LeuAla Ala Trp Gln Lys Leu

1 51 5

<210> 29<210> 29

<211> 7<211> 7

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 29<400> 29

Ala Trp Gln Lys Leu Val ArgAla Trp Gln Lys Leu Val Arg

1 51 5

<210> 30<210> 30

<211> 11<211> 11

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 30<400> 30

Thr Ala Glu Glu Lys Gln Leu Ile Thr Gly LeuThr Ala Glu Glu Lys Gln Leu Ile Thr Gly Leu

1 5 101 5 10

<210> 31<210> 31

<211> 6<211> 6

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 31<400> 31

Trp Gln Lys Leu Val ArgTrp Gln Lys Leu Val Arg

1 51 5

<210> 32<210> 32

<211> 21<211> 21

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 32<400> 32

Ala Asp Cys Gly Ala Glu Ala Leu Ala Arg Leu Leu Ile Val Tyr ProAla Asp Cys Gly Ala Glu Ala Leu Ala Arg Leu Leu Ile Val Tyr Pro

1 5 10 151 5 10 15

Trp Thr Gln Arg PheTrp Thr Gln Arg Phe

2020

<210> 33<210> 33

<211> 10<211> 10

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 33<400> 33

Val His Trp Thr Ala Glu Glu Lys Gln LeuVal His Trp Thr Ala Glu Glu Lys Gln Leu

1 5 101 5 10

<210> 34<210> 34

<211> 10<211> 10

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 34<400> 34

Ile Val Tyr Pro Trp Thr Gln Arg Phe PheIle Val Tyr Pro Trp Thr Gln Arg Phe Phe

1 5 101 5 10

<210> 35<210> 35

<211> 6<211> 6

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 35<400> 35

Ala Ser Leu Asp Lys PheAla Ser Leu Asp Lys Phe

1 51 5

<210> 36<210> 36

<211> 4<211> 4

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 36<400> 36

Glu Tyr Gly AlaGlu Tyr Gly Ala

11

<210> 37<210> 37

<211> 6<211> 6

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 37<400> 37

Thr Tyr Phe Pro His PheThr Tyr Phe Pro His Phe

1 51 5

<210> 38<210> 38

<211> 5<211> 5

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 38<400> 38

Phe Pro His Phe AspPhe Pro His Phe Asp

1 51 5

<210> 39<210> 39

<211> 4<211> 4

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 39<400> 39

Phe His Pro PhePhe His Pro Phe

11

<210> 40<210> 40

<211> 5<211> 5

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 40<400> 40

Thr Tyr Phe Pro HisThr Tyr Phe Pro His

1 51 5

<210> 41<210> 41

<211> 11<211> 11

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 41<400> 41

Thr Pro Glu Val His Ala Ser Leu Asp Lys PheThr Pro Glu Val His Ala Ser Leu Asp Lys Phe

1 5 101 5 10

<210> 42<210> 42

<211> 14<211> 14

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 42<400> 42

Phe Ile Ala Tyr Pro Gln Thr Lys Thr Tyr Phe Pro His PhePhe Ile Ala Tyr Pro Gln Thr Lys Thr Tyr Phe Pro His Phe

1 5 101 5 10

<210> 43<210> 43

<211> 10<211> 10

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 43<400> 43

Val Gly Ala Val Leu Thr Ala Lys Tyr ArgVal Gly Ala Val Leu Thr Ala Lys Tyr Arg

1 5 101 5 10

<210> 44<210> 44

<211> 7<211> 7

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 44<400> 44

Lys Thr Tyr Phe Pro His PheLys Thr Tyr Phe Pro His Phe

1 51 5

<210> 45<210> 45

<211> 12<211> 12

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 45<400> 45

Asp Leu Ser His Gly Ser Ala Gln Ile Lys Ala HisAsp Leu Ser His Gly Ser Ala Gln Ile Lys Ala His

1 5 101 5 10

<210> 46<210> 46

<211> 12<211> 12

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 46<400> 46

Ile His His Pro Ala Ala Leu Thr Pro Glu Val HisIle His His Pro Ala Ala Leu Thr Pro Glu Val His

1 5 101 5 10

<210> 47<210> 47

<211> 7<211> 7

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 47<400> 47

Tyr Phe Pro His Phe Asp LeuTyr Phe Pro His Phe Asp Leu

1 51 5

<210> 48<210> 48

<211> 15<211> 15

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 48<400> 48

Ala Val Asn His Ile Asp Asp Ile Ala Gly Ala Leu Ser Lys LeuAla Val Asn His Ile Asp Asp Ile Ala Gly Ala Leu Ser Lys Leu

1 5 10 151 5 10 15

<210> 49<210> 49

<211> 8<211> 8

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 49<400> 49

Ala Glu Thr Leu Glu Arg Met PheAla Glu Thr Leu Glu Arg Met Phe

1 51 5

<210> 50<210> 50

<211> 8<211> 8

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 50<400> 50

Thr Tyr Phe Pro His Phe Asp LeuThr Tyr Phe Pro His Phe Asp Leu

1 51 5

<210> 51<210> 51

<211> 4<211> 4

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 51<400> 51

Ala Leu Val GluAla Leu Val Glu

11

<210> 52<210> 52

<211> 18<211> 18

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 52<400> 52

Leu Val Val Val Ala Ile His His Pro Ala Ala Leu Thr Pro Glu ValLeu Val Val Val Ala Ile His His Pro Ala Ala Leu Thr Pro Glu Val

1 5 10 151 5 10 15

His AlaHis Ala

<210> 53<210> 53

<211> 12<211> 12

<212> PRT<212> PRT

<213> 绿头鸭指名亚种(Anas platyrhynchos platyrhynchos )<213> Mallard duck nominate subspecies (Anas platyrhynchos platyrhynchos )

<400> 53<400> 53

Asp Lys Leu His Val Asp Pro Glu Asn Phe Arg LeuAsp Lys Leu His Val Asp Pro Glu Asn Phe Arg Leu

1 5 101 5 10

<210> 54<210> 54

<211> 382<211> 382

<212> PRT<212> PRT

<213> 嗜热脂肪芽孢杆菌(Geobacillus stearothermophilus)<213> Geobacillus stearothermophilus

<400> 54<400> 54

Met Arg Gly Lys Lys Val Trp Ile Ser Leu Leu Phe Ala Leu Ala LeuMet Arg Gly Lys Lys Val Trp Ile Ser Leu Leu Phe Ala Leu Ala Leu

1 5 10 151 5 10 15

Ile Phe Thr Met Ala Phe Gly Ser Thr Ser Pro Ala Gln Ala Ala GlyIle Phe Thr Met Ala Phe Gly Ser Thr Ser Pro Ala Gln Ala Ala Gly

20 25 3020 25 30

Lys Ser Asn Gly Glu Lys Lys Tyr Ile Val Gly Phe Lys Gln Thr MetLys Ser Asn Gly Glu Lys Lys Tyr Ile Val Gly Phe Lys Gln Thr Met

35 40 4535 40 45

Ser Thr Met Ser Ala Ala Lys Lys Lys Asp Val Ile Ser Glu Lys GlySer Thr Met Ser Ala Ala Lys Lys Lys Asp Val Ile Ser Glu Lys Gly

50 55 6050 55 60

Gly Lys Val Gln Lys Gln Phe Lys Tyr Val Asp Ala Ala Ser Ala ThrGly Lys Val Gln Lys Gln Phe Lys Tyr Val Asp Ala Ala Ser Ala Thr

65 70 75 8065 70 75 80

Leu Asn Glu Lys Ala Val Lys Glu Leu Lys Lys Asp Pro Ser Val AlaLeu Asn Glu Lys Ala Val Lys Glu Leu Lys Lys Asp Pro Ser Val Ala

85 90 9585 90 95

Tyr Val Glu Glu Asp His Val Ala Gln Ala Tyr Ala Gln Ser Val ProTyr Val Glu Glu Asp His Val Ala Gln Ala Tyr Ala Gln Ser Val Pro

100 105 110100 105 110

Tyr Gly Val Ser Gln Ile Lys Ala Pro Ala Leu His Ser Gln Gly PheTyr Gly Val Ser Gln Ile Lys Ala Pro Ala Leu His Ser Gln Gly Phe

115 120 125115 120 125

Thr Gly Ser Asn Val Lys Val Ala Val Ile Asp Ser Gly Ile Asp SerThr Gly Ser Asn Val Lys Val Ala Val Ile Asp Ser Gly Ile Asp Ser

130 135 140130 135 140

Ser His Pro Asp Leu Lys Val Ala Gly Gly Ala Ser Met Val Pro SerSer His Pro Asp Leu Lys Val Ala Gly Gly Ala Ser Met Val Pro Ser

145 150 155 160145 150 155 160

Glu Thr Asn Pro Phe Gln Asp Asn Asn Ser His Gly Thr His Val AlaGlu Thr Asn Pro Phe Gln Asp Asn Asn Ser His Gly Thr His Val Ala

165 170 175165 170 175

Gly Thr Val Ala Ala Leu Asn Asn Ser Val Gly Val Leu Gly Val AlaGly Thr Val Ala Ala Leu Asn Asn Ser Val Gly Val Leu Gly Val Ala

180 185 190180 185 190

Pro Ser Ala Ser Leu Tyr Ala Val Lys Val Leu Gly Ala Asp Gly SerPro Ser Ala Ser Leu Tyr Ala Val Lys Val Leu Gly Ala Asp Gly Ser

195 200 205195 200 205

Gly Gln Tyr Ser Trp Ile Ile Asn Gly Ile Glu Trp Ala Ile Ala TyrGly Gln Tyr Ser Trp Ile Ile Asn Gly Ile Glu Trp Ala Ile Ala Tyr

210 215 220210 215 220

Asn Met Asp Val Ile Asn Met Ser Leu Gly Gly Pro Ser Gly Ser AlaAsn Met Asp Val Ile Asn Met Ser Leu Gly Gly Pro Ser Gly Ser Ala

225 230 235 240225 230 235 240

Ala Leu Lys Ala Ala Val Asp Lys Ala Val Ala Ser Gly Ile Val ValAla Leu Lys Ala Ala Val Asp Lys Ala Val Ala Ser Gly Ile Val Val

245 250 255245 250 255

Val Ala Ala Ala Gly Asn Glu Gly Thr Ser Gly Ser Ser Ser Thr ValVal Ala Ala Ala Gly Asn Glu Gly Thr Ser Gly Ser Ser Ser Thr Val

260 265 270260 265 270

Gly Tyr Pro Gly Lys Tyr Pro Ser Val Ile Ala Val Gly Ala Val AsnGly Tyr Pro Gly Lys Tyr Pro Ser Val Ile Ala Val Gly Ala Val Asn

275 280 285275 280 285

Ser Ser Asn Gln Arg Ala Ser Phe Ser Ser Val Gly Ser Glu Leu AspSer Ser Asn Gln Arg Ala Ser Phe Ser Ser Val Gly Ser Glu Leu Asp

290 295 300290 295 300

Val Met Ala Pro Gly Val Ser Ile Gln Ser Thr Leu Pro Gly Asn LysVal Met Ala Pro Gly Val Ser Ile Gln Ser Thr Leu Pro Gly Asn Lys

305 310 315 320305 310 315 320

Tyr Gly Ala Tyr Asn Gly Thr Ser Met Ala Ser Pro His Val Ala GlyTyr Gly Ala Tyr Asn Gly Thr Ser Met Ala Ser Pro His Val Ala Gly

325 330 335325 330 335

Ala Ala Ala Leu Ile Leu Ser Lys His Pro Asn Trp Thr Asn Thr GlnAla Ala Ala Leu Ile Leu Ser Lys His Pro Asn Trp Thr Asn Thr Gln

340 345 350340 345 350

Val Arg Ser Ser Leu Glu Asn Thr Thr Thr Lys Leu Gly Asp Ala PheVal Arg Ser Ser Leu Glu Asn Thr Thr Thr Lys Leu Gly Asp Ala Phe

355 360 365355 360 365

Tyr Tyr Gly Lys Gly Leu Ile Asn Val Gln Ala Ala Ala GlnTyr Tyr Gly Lys Gly Leu Ile Asn Val Gln Ala Ala Ala Gln

370 375 380370 375 380

Claims (7)

1.一种制备鸭血蛋白肽的方法,其特征在于:所述鸭血蛋白肽具有下述5种肽段:1. A method for preparing duck blood protein peptide, characterized in that: the duck blood protein peptide has the following five peptide segments: P1)、氨基酸序列为SEQ ID No.1的多肽;P1), a polypeptide having an amino acid sequence of SEQ ID No. 1; P2)、氨基酸序列为SEQ ID No.2的多肽;P2), a polypeptide having an amino acid sequence of SEQ ID No. 2; P3)、氨基酸序列为SEQ ID No.3的多肽;P3), a polypeptide having an amino acid sequence of SEQ ID No.3; P4)、氨基酸序列为SEQ ID No.4的多肽;P4), a polypeptide having an amino acid sequence of SEQ ID No.4; P5)、氨基酸序列为SEQ ID No.5的多肽;P5), a polypeptide having an amino acid sequence of SEQ ID No.5; 所述方法包括酶解鸭血红蛋白,得到酶解物,从所述酶解物中提取得到鸭血蛋白肽的步骤,所述酶解鸭血红蛋白包括如下步骤:The method comprises the steps of enzymolyzing duck hemoglobin to obtain an enzymolyzate, and extracting duck blood protein peptides from the enzymolyzate. The enzymolyzing duck hemoglobin comprises the following steps: S1)、向鸭血红蛋白中加入蛋白酶A,获得酶解液M1;S1), adding protease A to duck hemoglobin to obtain enzymatic solution M1; S2)、向酶解液M1中加入蛋白酶B,获得酶解液M2;S2), adding protease B to the enzymatic hydrolysate M1 to obtain enzymatic hydrolysate M2; S3)、将酶解液M2离心,收集上清液M3;S3), centrifuging the enzymatic hydrolyzate M2 and collecting the supernatant M3; S4)、将上清液M3冷冻干燥获得具有抑制黄嘌呤氧化酶活性的鸭血蛋白肽,S4), freeze-drying the supernatant M3 to obtain duck blood protein peptides with xanthine oxidase inhibitory activity, 所述蛋白酶A为菠萝蛋白酶,The protease A is bromelain, 所述蛋白酶B为蛋白酶GsProS8,所述蛋白酶GsProS8的氨基酸序列为SEQ ID No.54。The protease B is protease GsProS8, and the amino acid sequence of the protease GsProS8 is SEQ ID No.54. 2.根据权利要求1所述的方法,其特征在于:所述方法还包括从所述具有抑制黄嘌呤氧化酶活性的鸭血蛋白肽中分离得到高活性鸭血蛋白肽的步骤,所述步骤包括B1)和B2):2. The method according to claim 1, characterized in that: the method further comprises the step of separating the duck blood protein peptide with high activity from the duck blood protein peptide having the activity of inhibiting xanthine oxidase, and the steps include B1) and B2): B1)、将所述鸭血蛋白肽粉用盐酸溶液溶解,离心处理,取上清液;B1), dissolving the duck blood protein peptide powder with hydrochloric acid solution, centrifuging and taking the supernatant; B2)、将B1)获得的上清液进行凝胶层析,取洗脱时间为173-180 min的流出液,获得名称为高活性的鸭血蛋白肽组分F5的鸭血蛋白肽,B2), the supernatant obtained in B1) is subjected to gel chromatography, and the effluent with an elution time of 173-180 min is taken to obtain a duck blood protein peptide named as a highly active duck blood protein peptide component F5, 所述凝胶层析的色谱条件为:AKTApurifier UPC-900快速蛋白液相色谱仪,色谱柱尺寸:1000×10 mm,柱料:葡聚糖凝胶G-15,流动相:10mM的盐酸溶液,流速:0.8 mL/min,检测:UV280 nm。The chromatographic conditions of the gel chromatography are: AKTApurifier UPC-900 fast protein liquid chromatograph, chromatographic column size: 1000×10 mm, column material: Sephadex G-15, mobile phase: 10 mM hydrochloric acid solution, flow rate: 0.8 mL/min, detection: UV280 nm. 3.根据权利要求2所述的方法,其特征在于:所述高活性的鸭血蛋白肽组分F5具有氨基酸序列是SEQ ID No.1-53的肽段。3. The method according to claim 2, characterized in that the highly active duck blood protein peptide component F5 has an amino acid sequence of a peptide segment of SEQ ID No. 1-53. 4.由权利要求1-3中任一项所述的方法制备得到的鸭血蛋白肽,所述鸭血蛋白肽具有下述5种肽段:4. The duck blood protein peptide prepared by the method according to any one of claims 1 to 3, wherein the duck blood protein peptide has the following five peptide segments: P1)、氨基酸序列为SEQ ID No.1的多肽;P1), a polypeptide having an amino acid sequence of SEQ ID No. 1; P2)、氨基酸序列为SEQ ID No.2的多肽;P2), a polypeptide having an amino acid sequence of SEQ ID No. 2; P3)、氨基酸序列为SEQ ID No.3的多肽;P3), a polypeptide having an amino acid sequence of SEQ ID No.3; P4)、氨基酸序列为SEQ ID No.4的多肽;P4), a polypeptide having an amino acid sequence of SEQ ID No.4; P5)、氨基酸序列为SEQ ID No.5的多肽。P5), a polypeptide having an amino acid sequence of SEQ ID No.5. 5.多肽,其特征在于:所述多肽为氨基酸序列为SEQ ID No.3的多肽或氨基酸序列为SEQ ID No.5的多肽。5. A polypeptide, characterized in that: the polypeptide is a polypeptide with an amino acid sequence of SEQ ID No.3 or a polypeptide with an amino acid sequence of SEQ ID No.5. 6.组合物,其特征在于,所述组合物为下述任一种:6. The composition is characterized in that the composition is any one of the following: B1)由氨基酸序列是SEQ ID No.3的多肽与SEQ ID NO.1-2、4-5所示多肽中的任意一种、两种、三种或四种多肽组成;B1) is composed of a polypeptide having an amino acid sequence of SEQ ID No. 3 and any one, two, three or four of the polypeptides shown in SEQ ID NOs. 1-2 and 4-5; B2) 由氨基酸序列是SEQ ID No.5的多肽与SEQ ID NO.1-2、4所示多肽中的任意一种、两种或三种多肽组成。B2) It is composed of a polypeptide having an amino acid sequence of SEQ ID No. 5 and any one, two or three of the polypeptides shown in SEQ ID NOs. 1-2 and 4. 7.权利要求4所述的鸭血蛋白肽、权利要求5所述的多肽和/或权利要求6所述的组合物在下述任一项中的应用:7. Use of the duck blood protein peptide according to claim 4, the polypeptide according to claim 5 and/or the composition according to claim 6 in any of the following: A1)、在抑制黄嘌呤氧化酶活性中的应用,所述应用为非疾病诊断和治疗中的应用;A1) Application in inhibiting xanthine oxidase activity, wherein the application is non-disease diagnosis and treatment; A2)、在制备黄嘌呤氧化酶抑制剂中的应用。A2) Application in the preparation of xanthine oxidase inhibitors.
CN202210607233.2A 2022-05-31 2022-05-31 Duck blood cell protein peptide with uric acid reducing activity and preparation method thereof Active CN117186177B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210607233.2A CN117186177B (en) 2022-05-31 2022-05-31 Duck blood cell protein peptide with uric acid reducing activity and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210607233.2A CN117186177B (en) 2022-05-31 2022-05-31 Duck blood cell protein peptide with uric acid reducing activity and preparation method thereof

Publications (2)

Publication Number Publication Date
CN117186177A CN117186177A (en) 2023-12-08
CN117186177B true CN117186177B (en) 2024-08-23

Family

ID=88983767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210607233.2A Active CN117186177B (en) 2022-05-31 2022-05-31 Duck blood cell protein peptide with uric acid reducing activity and preparation method thereof

Country Status (1)

Country Link
CN (1) CN117186177B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119040424A (en) * 2024-10-17 2024-11-29 仲恺农业工程学院 Chicken hemoglobin peptide and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011119484A1 (en) * 2010-03-23 2011-09-29 Iogenetics, Llc Bioinformatic processes for determination of peptide binding
CN105367624A (en) * 2015-11-25 2016-03-02 刘天军 Preparation method and application of LLVV-Hemorphin-6 peptide

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055738A2 (en) * 2001-01-12 2002-07-18 Incyte Genomics Inc Molecules for disease detection and treatment
EP2511844B1 (en) * 2006-10-10 2015-08-12 XRpro Sciences, Inc. X-ray microscope
WO2012055408A1 (en) * 2010-10-27 2012-05-03 Quantibact A/S Capture of target dna and rna by probes comprising intercalator molecules
US20170290778A1 (en) * 2016-04-12 2017-10-12 Illustris Pharmaceuticals, Inc. Compositions for topical application of compounds
DE112017002105T5 (en) * 2016-04-21 2019-04-25 Sphingotec Therapeutics Gmbh Method for the determination of DPP3 and therapeutic methods
EP3694489A4 (en) * 2017-10-11 2021-06-30 Illustris Pharmaceuticals, Inc. METHOD AND COMPOSITION OF TOPICAL ADMINISTRATION
CN110669814B (en) * 2019-11-01 2021-04-06 中国农业大学 Wheat protein peptide with blood pressure lowering activity and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011119484A1 (en) * 2010-03-23 2011-09-29 Iogenetics, Llc Bioinformatic processes for determination of peptide binding
CN105367624A (en) * 2015-11-25 2016-03-02 刘天军 Preparation method and application of LLVV-Hemorphin-6 peptide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Novel hemoglobin-derived xanthine oxidase inhibitory peptides: Enzymatic preparation and inhibition mechanisms;Peng Zhang等;Journal of Functional Foods;20230220;第102卷;第105459页 *

Also Published As

Publication number Publication date
CN117186177A (en) 2023-12-08

Similar Documents

Publication Publication Date Title
CN104263789B (en) The method that in-vitro simulated gastro-intestinal digestion prepares green fin black scraper Puffer fish-skin anti-oxidation peptide liquid
CN107384844B (en) A kind of recombinant escherichia coli producing phospholipase D and its application
CN107760659B (en) Method for high yield of recombinant proline aminopeptidase through fermentation and preparation of debittered rice peptide
CN114507702B (en) Marine antarctic krill peptide and application thereof
CN110669814B (en) Wheat protein peptide with blood pressure lowering activity and preparation method thereof
CN116589533A (en) Antarctic krill small molecule active peptide and its preparation method and application
CN111685286A (en) Oyster peptide with blood fat reducing function and preparation method and application thereof
CN111418700A (en) Tuna peptide, extraction method thereof and application of tuna peptide as antihypertensive agent
CN112662724B (en) Deer blood polypeptide and extraction method and application thereof
CN117186177B (en) Duck blood cell protein peptide with uric acid reducing activity and preparation method thereof
CN108949617B (en) A kind of Bacillus subtilis and its application, a kind of enzyme preparation
JP7057827B2 (en) Gliadin decomposition process to obtain gluten-free flour
Li et al. Identification of angiotensin‐converting enzyme inhibitory peptides from peanut meal (Arachis hypogaea Linn) fermented by Lactobacillus pentosus using MALDI‐TOF–MS and LC–MS/MS
CN111635919A (en) Method for preparing collagen oligopeptide by hydrolyzing animal skin with Bacillus subtilis
CN106701877A (en) Method for preparing ACE inhibitory peptide derived from oysters
Gao et al. Identification and functional mechanism of novel angiotensin I converting enzyme inhibitory dipeptides from Xerocomus badius cultured in shrimp processing waste medium
CN103224973B (en) Method of fementing shrimp heads to prepare active substances, chitin and organic acidity calcium
JP4278831B2 (en) Enzyme solution and its production method, enzyme agent, proteolytic enzyme agent, proteolytic enzyme producing bacterium
CN117305395A (en) Mixed bacteria fermentation product rich in small molecule polypeptide and preparation process thereof
CN113999884B (en) Preparation method of turtle bioactive peptide
CN116083257A (en) Strain for preparing pig ham-derived active peptide, preparation method and application thereof
CN115947787A (en) Duck liver protein source antioxidant functional peptide and preparation method and application thereof
CN105861606A (en) Method of using surfactant to increase yield of Hb polypeptide prepared through degradation of hemoglobin by aspergillus niger
CN111909978B (en) A method for directional preparation of LPP-rich hydrolysate from corn gluten meal by using fermentation method
CN117343132B (en) An ACE inhibitory peptide derived from salmon skin and its preparation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant