CN117171842A - Urban slow-moving bridge health monitoring and digital twin system - Google Patents
Urban slow-moving bridge health monitoring and digital twin system Download PDFInfo
- Publication number
- CN117171842A CN117171842A CN202310983465.2A CN202310983465A CN117171842A CN 117171842 A CN117171842 A CN 117171842A CN 202310983465 A CN202310983465 A CN 202310983465A CN 117171842 A CN117171842 A CN 117171842A
- Authority
- CN
- China
- Prior art keywords
- information
- module
- digital twin
- bridge
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 39
- 230000036541 health Effects 0.000 title claims abstract description 25
- 238000012423 maintenance Methods 0.000 claims abstract description 138
- 238000004458 analytical method Methods 0.000 claims abstract description 78
- 238000010276 construction Methods 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 66
- 238000012545 processing Methods 0.000 claims abstract description 50
- 238000005457 optimization Methods 0.000 claims abstract description 46
- 238000006243 chemical reaction Methods 0.000 claims abstract description 39
- 238000012546 transfer Methods 0.000 claims abstract description 32
- 230000003993 interaction Effects 0.000 claims abstract description 19
- 238000007726 management method Methods 0.000 claims description 99
- 230000004044 response Effects 0.000 claims description 53
- 230000008569 process Effects 0.000 claims description 42
- 230000006870 function Effects 0.000 claims description 40
- 238000005516 engineering process Methods 0.000 claims description 39
- 238000004364 calculation method Methods 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 22
- 238000004891 communication Methods 0.000 claims description 20
- 238000013461 design Methods 0.000 claims description 19
- 238000012916 structural analysis Methods 0.000 claims description 19
- 238000012360 testing method Methods 0.000 claims description 19
- 230000010354 integration Effects 0.000 claims description 18
- 238000004088 simulation Methods 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 14
- 238000004422 calculation algorithm Methods 0.000 claims description 14
- 238000013527 convolutional neural network Methods 0.000 claims description 14
- 238000011156 evaluation Methods 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 13
- 239000000725 suspension Substances 0.000 claims description 13
- 238000012549 training Methods 0.000 claims description 12
- 238000012937 correction Methods 0.000 claims description 11
- 230000008447 perception Effects 0.000 claims description 10
- 230000003449 preventive effect Effects 0.000 claims description 10
- 238000010586 diagram Methods 0.000 claims description 9
- 238000007781 pre-processing Methods 0.000 claims description 9
- 238000013480 data collection Methods 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 8
- 238000013136 deep learning model Methods 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 7
- 238000013439 planning Methods 0.000 claims description 6
- 238000010200 validation analysis Methods 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 5
- 238000010835 comparative analysis Methods 0.000 claims description 5
- 201000004569 Blindness Diseases 0.000 claims description 4
- 230000007613 environmental effect Effects 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 238000009430 construction management Methods 0.000 claims description 3
- 238000009472 formulation Methods 0.000 claims description 3
- 230000008676 import Effects 0.000 claims description 3
- 238000010801 machine learning Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000011176 pooling Methods 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 3
- 238000013528 artificial neural network Methods 0.000 claims description 2
- 230000001186 cumulative effect Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 54
- 238000011161 development Methods 0.000 description 30
- 230000018109 developmental process Effects 0.000 description 30
- 230000008901 benefit Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000012804 iterative process Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000013433 optimization analysis Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000012088 reference solution Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000033772 system development Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000012351 Integrated analysis Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000008140 language development Effects 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
技术领域Technical field
本发明涉及建筑工程智能建造、智慧建造与智能运营维护技术领域,特别是涉及桥梁工程的建造与运营监控领域,尤其涉及桥梁智能化建造运营监控的应用工具和实现方法,具体为一种城市慢行桥梁健康监测与数字孪生系统。The present invention relates to the technical fields of intelligent construction of construction projects, intelligent construction and intelligent operation and maintenance, in particular to the field of construction and operation monitoring of bridge projects, and in particular to application tools and implementation methods for intelligent construction and operation monitoring of bridges. Specifically, it is an urban slow-speed Bridge health monitoring and digital twin system.
背景技术Background technique
以信息化、智能化为特征的数字化时代的到来推动了桥梁工程技术的发展与创新,有必要将BIM、物联网、数字孪生、无人机实景建模、边缘设备等战略性新兴产业技术与桥梁工程相融合,从智能设计、智能施工、智能运维等多个维度,推进桥梁工业化、数字化、智能化升级。The arrival of the digital age characterized by informatization and intelligence has promoted the development and innovation of bridge engineering technology. It is necessary to integrate strategic emerging industry technologies such as BIM, Internet of Things, digital twins, UAV real-life modeling, and edge equipment with The integration of bridge engineering will promote the industrialization, digitalization, and intelligent upgrading of bridges from multiple dimensions such as intelligent design, intelligent construction, and intelligent operation and maintenance.
BIM技术是建筑行业顺应时代发展的产物。“物联网”的概念是在1999年提出的,即把所有物品通过射频识别等信息传感设备与互联网连接起来,实现智能化识别和管理。物联网技术起源于传媒领域,是信息科技产业的第三次革命,通过信息传感设备,按约定的协议,将任何物体与网络相连接,物体通过信息传播媒介进行信息交换和通信,以实现智能化识别、定位、跟踪、监管等功能。而数字孪生概念最早是由美国NASA明确提出的,其含义是指依照现实世界中的事物,高度精准地建立与之对应的数字信息模型,进行现实叙述、仿真模拟和预测评估等操作。数字孪生技术的提出,作为物理世界与数字世界交互、共融的桥梁,它被寄予厚望。但是目前数字孪生技术主要在工业级的高精度产业,在桥梁工程领域内的应用仍有待提升。无人机实景建模是客观还原现实场景的三维模型,具有单体化、实体化、结构化、语义化的特点,通过融合人工建模技术、倾斜摄影技术、激光雷达技术形成可空间量算和综合分析的立体模型,呈现集多种模型优点于一体的三维数据场景结果。边缘计算着重要解决的问题,是传统云计算(或者说是中央计算)模式下存在的高延迟、网络不稳定和低带宽问题。BIM technology is a product of the construction industry that adapts to the development of the times. The concept of "Internet of Things" was proposed in 1999, which connects all items to the Internet through information sensing devices such as radio frequency identification to achieve intelligent identification and management. The Internet of Things technology originated in the media field and is the third revolution in the information technology industry. Through information sensing equipment and according to the agreed protocol, any object is connected to the network. The objects exchange information and communicate through the information communication media to achieve Intelligent identification, positioning, tracking, supervision and other functions. The concept of digital twins was first clearly proposed by NASA in the United States. Its meaning is to highly accurately establish corresponding digital information models based on things in the real world, and perform operations such as reality narration, simulation, and prediction evaluation. The proposal of digital twin technology has high hopes as a bridge for interaction and integration between the physical world and the digital world. However, currently digital twin technology is mainly used in industrial-grade high-precision industries, and its application in the field of bridge engineering still needs to be improved. UAV real-life modeling is a three-dimensional model that objectively restores real scenes. It has the characteristics of singleness, materialization, structure, and semantics. It integrates artificial modeling technology, oblique photography technology, and laser radar technology to form a spatially quantifiable model. and comprehensively analyzed three-dimensional models, presenting three-dimensional data scene results that integrate the advantages of multiple models. The important problems that edge computing solves are the problems of high latency, network instability and low bandwidth that exist in the traditional cloud computing (or central computing) model.
工程智能建造是在工程建造要素资源数字化的基础上,以工程建筑信息模型为载体,以自动化装备、物联网信息技术为手段,实现数字链驱动下,状态识别、误差分析、误差预测、评估修正、动态调整等全过程建造行为的辅助指导与决策,最终实现工程结构产品高精度、高质量、高效率交付的创新建造模式。数字孪生技术结合物联网的数据采集,充分利用模型与传感器更新、运营历史数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成对桥梁的映射,实现对桥梁历史状况的了解、对当前运行状态的评估并对桥梁的状态和行为进行模拟和诊断,预测健康状况演变趋势和可能发生的病害与风险(同济大学.一种基于数字孪生平台的模块化建筑物健康监测系统:202011276245.9[P].2021-02-19)。Engineering intelligent construction is based on the digitization of engineering construction element resources, using the engineering construction information model as the carrier, and using automation equipment and Internet of Things information technology as means to realize status identification, error analysis, error prediction, and evaluation correction driven by digital chains. , dynamic adjustment and other auxiliary guidance and decision-making for the whole process of construction behavior, and ultimately realize an innovative construction model with high precision, high quality and high efficiency for the delivery of engineering structural products. Digital twin technology combines the data collection of the Internet of Things, makes full use of model and sensor updates, and historical operation data, integrates multi-disciplinary, multi-physical quantities, multi-scale, and multi-probability simulation processes to complete the mapping of bridges in virtual space and realize the mapping of bridges. Understand the historical conditions, evaluate the current operating status, simulate and diagnose the status and behavior of the bridge, and predict the evolution trend of health conditions and possible diseases and risks (Tongji University. A modular building based on a digital twin platform Health Monitoring System: 202011276245.9[P].2021-02-19).
综上所诉的技术发展背景,可以认识到数字孪生技术是一项作用巨大但却较为复杂,本发明借助物联网技术与BIM技术相结合,可以推动数字孪生技术在工程建设领域的发展。对于城市慢行桥梁来说,其智能化建造技术的发展也亟待推动以此来适应行业领域时代的发展。目前,对于桥梁的健康监测也有采用了无线数字传输(朱俊,高建,王磊.一种用于桥梁健康监测的无线数字传输装置[P].江苏省:CN208985362U,2019-06-14.),这可以极大提高桥梁数据的监测效率,这体现了物联网技术的优越性。因此,需要提出一种基于BIM+GIS+FEM技术与物联网技术打造的数字孪生系统来智能化城市慢行桥梁施工过程及运维过程的方法。Based on the technological development background mentioned above, it can be realized that digital twin technology has a huge role but is relatively complex. The present invention can promote the development of digital twin technology in the field of engineering construction by combining the Internet of Things technology and BIM technology. For urban slow-moving bridges, the development of intelligent construction technology also needs to be promoted to adapt to the development of the industry. At present, wireless digital transmission is also used for bridge health monitoring (Zhu Jun, Gao Jian, Wang Lei. A wireless digital transmission device for bridge health monitoring [P]. Jiangsu Province: CN208985362U, 2019-06-14.), This can greatly improve the monitoring efficiency of bridge data, which reflects the superiority of IoT technology. Therefore, it is necessary to propose a digital twin system based on BIM+GIS+FEM technology and IoT technology to intelligently intelligentize the construction and operation and maintenance processes of urban slow-moving bridges.
发明内容Contents of the invention
为了解决有限元分析和建筑信息模型(BIM)的合理交互,城市慢行桥梁施工运维过程和物联网技术相结合的数字孪生系统建立,以及智能化城市慢行桥梁建造过程的问题,本发明提出了城市慢行桥梁智能建造、智能运维的数字孪生系统,并用于智能化城市慢行桥梁建造过程,包括BIM+GIS模块、物联网模块、数据处理模块和施工模拟模块,以BIM+GIS模块、数据处理模块和施工模拟模块为基础建立大跨度钢桥施工的数字孪生体,然后基于物联网模块把数字孪生体部分和物理实体部分实现数据交互,建立城市慢行桥梁建造数字孪生系统,通过物联网技术实现的数据交互可以实时反映预制构件在运输以及安装等状态下的内力状况和物理特征,就可实现智能化大跨度钢桥的建造过程。如管理人员可以根据依据BIM等技术建立的数字孪生体对比分析构件是否合格。同时,数字孪生系统可以实时模拟来映射具体的施工建造过程。此外,数字孪生系统可以模拟拟采取的施工过程来预测施工过程,从而进行分析并做出科学的决策来指导施工。In order to solve the problems of reasonable interaction between finite element analysis and building information model (BIM), the establishment of a digital twin system that combines the construction, operation and maintenance process of urban slow-moving bridges with Internet of Things technology, and the construction process of intelligent urban slow-moving bridges, the present invention A digital twin system for intelligent construction and intelligent operation and maintenance of urban slow-moving bridges is proposed and used in the construction process of intelligent urban slow-moving bridges, including BIM+GIS module, Internet of Things module, data processing module and construction simulation module, with BIM+GIS module, data processing module and construction simulation module as the basis to establish a digital twin of long-span steel bridge construction, and then based on the Internet of Things module to realize data interaction between the digital twin part and the physical entity part, and establish a digital twin system for urban slow-moving bridge construction. Data interaction realized through Internet of Things technology can reflect the internal force conditions and physical characteristics of prefabricated components during transportation and installation in real time, thus realizing the construction process of intelligent long-span steel bridges. For example, managers can compare and analyze whether components are qualified based on digital twins established based on BIM and other technologies. At the same time, the digital twin system can simulate in real time to map the specific construction process. In addition, the digital twin system can simulate the proposed construction process to predict the construction process, thereby conducting analysis and making scientific decisions to guide construction.
本发明至少通过如下技术方案之一实现。The present invention is realized through at least one of the following technical solutions.
一种城市慢行桥梁健康监测与数字孪生系统,包括BIM建模模块、实景模型模块、全生命周期运维管理模块、数字孪生基础模块、数字孪生数据转换及优化模块、数字孪生应用模块;An urban slow-traffic bridge health monitoring and digital twin system, including a BIM modeling module, a real-life model module, a full life cycle operation and maintenance management module, a digital twin basic module, a digital twin data conversion and optimization module, and a digital twin application module;
所述BIM建模模块包括用于构件信息设计分类的统一命名和注解标准单元、用于创建桥梁复杂曲线曲面构件的建模模块、用于创建桥梁规整构件的建模模块、用于不同软件之间构件信息转换的模型转换模块;The BIM modeling module includes unified naming and annotation standard units for component information design classification, a modeling module for creating complex curved surface components of bridges, a modeling module for creating regular components of bridges, and a modeling module for creating bridges with regular components. Model conversion module for converting component information between components;
所述实景模型模块包括无人机模块、停机坪模块、直播推流模块、三维重构模块、格式转换模块;无人机模块集成有RTK定位及高分辨率摄像头;停机坪模块实现无人机低电量自动返航充电功能与作业环境感知功能,停机坪感知风速、雨淋、光照飞行环境,从而判断是否具备飞行条件,实现自动化作业;直播推流模块使用无人机进行实时监控,远程随时查看作业实况,图片、视频成果自动回传、归档,方便实景建模时调用图片进行三维重构;The real-life model module includes a UAV module, an apron module, a live streaming module, a three-dimensional reconstruction module, and a format conversion module; the UAV module integrates RTK positioning and high-resolution cameras; the apron module implements UAV It has a low-battery automatic return-to-home charging function and an operating environment sensing function. The tarmac senses wind speed, rain, and light flight conditions to determine whether flight conditions are met and realize automated operations; the live streaming module uses drones for real-time monitoring and remote viewing at any time. Live work, pictures, and video results are automatically returned and archived, making it convenient to call pictures for three-dimensional reconstruction during real-life modeling;
三维重构模块通过添加照片及坐标、添加像控点及其坐标、对齐照片、建立密集点云、生成网格、生成纹理,最终形成实景模型,实景模型是利用对物理实体的多角度图片集进行三维重构;格式转换模块将OSGB格式的实景模型转化为3D Tiles格式。The three-dimensional reconstruction module finally forms a real-life model by adding photos and coordinates, adding image control points and their coordinates, aligning photos, building dense point clouds, generating grids, and generating textures. The real-life model is a collection of multi-angle pictures of physical entities. Perform three-dimensional reconstruction; the format conversion module converts the real-life model in OSGB format into 3D Tiles format.
所述全生命周期运维管理模块包括用于综合信息应用的6D BIM初期信息单元、用于桥梁信息更新修正的综合运维信息单元、用于数字孪生体应用成果管理的全生命周期信息运维管理模块;The full life cycle operation and maintenance management module includes a 6D BIM initial information unit for comprehensive information application, a comprehensive operation and maintenance information unit for bridge information update and correction, and a full life cycle information operation and maintenance for digital twin application results management. Management module;
所述数字孪生基础模块包括用于施工阶段现场工况及桥梁反应信息采集的各类传感器单元、用于运维阶段实时识别跟踪及采集慢行桥梁荷载分布的各类传感器单元、用于传输信息的无线通信传输单元、用于处理信息的数据处理单元、桥梁悬索索力计算边缘设备单元;The digital twin basic module includes various sensor units used for collecting on-site working conditions and bridge response information during the construction phase, various sensor units used for real-time identification and tracking during the operation and maintenance phase and collecting the load distribution of slow-moving bridges, and various sensor units used for transmitting information. Wireless communication transmission unit, data processing unit for processing information, bridge suspension cable force calculation edge device unit;
所述数字孪生数据转换及优化模块包括用于包含单元信息在内的6D BIM初步信息提取及转换单元、用于有限元结构数值分析的工况信息单元、用于实时荷载工况下慢行桥梁结构反力的计算及预警单元、用于不同工况下模拟分析的结构反应对比单元、单元参数及网格优化单元;The digital twin data conversion and optimization module includes a 6D BIM preliminary information extraction and conversion unit including unit information, a working condition information unit used for numerical analysis of finite element structures, and a slow-moving bridge under real-time load conditions. Structural reaction force calculation and early warning unit, structural reaction comparison unit for simulation analysis under different working conditions, unit parameters and grid optimization unit;
所述数字孪生应用模块包括结合有限元分析及智能分析的数字孪生体应用模块、用于数字孪生层应用信息交互的信息转接模块。The digital twin application module includes a digital twin application module that combines finite element analysis and intelligent analysis, and an information transfer module for digital twin layer application information interaction.
进一步地,6D BIM初期信息单元包括桥梁实景模型及结构模型信息(3D)、整体进度规划信息(4D)、工程量及成本信息(5D)、结构分析相关信息(6D),其中的结构分析相关信息(6D)包括单元参数及网格划分信息、材料属性信息、工况荷载信息、边界条件处理信息和结构表面裂缝损伤信息;Further, the initial information unit of 6D BIM includes bridge real-life model and structural model information (3D), overall schedule planning information (4D), project quantity and cost information (5D), and structural analysis related information (6D), among which structural analysis related information Information (6D) includes unit parameters and mesh division information, material property information, working condition load information, boundary condition processing information and structural surface crack damage information;
所述全生命周期信息运维管理模块通过各类数据的汇集融合、数据轻量化及储存备用,搭建综合运维的信息数据库,将不同阶段的多维数据统一更新储存在服务器端,以供客户在Web端调取信息调取及访问,并将调取的信息与BIM轻量化模型相结合进行查看和输出。The full life cycle information operation and maintenance management module builds a comprehensive operation and maintenance information database through the collection and integration of various types of data, data lightweighting and storage backup, and uniformly updates and stores multi-dimensional data at different stages on the server side for customers to use. The web side retrieves and accesses information, and combines the retrieved information with the BIM lightweight model for viewing and output.
6D BIM初期信息单元的多维信息是基于三维模型信息进行添加和完善的,多维信息通过轻量化后,与生命周期信息运维管理模块之间进行交互。The multi-dimensional information of the initial information unit of 6D BIM is added and improved based on the three-dimensional model information. After being lightweight, the multi-dimensional information interacts with the life cycle information operation and maintenance management module.
进一步地,所述数字孪生体应用模块包括根据实时荷载工况计算的有限元数值分析结果、结合历史样本分析结果建立用于智能分析的工况桥梁反应数据库、结合数据库进行智能预测及安全评估单元、基于卷积神经网络的结构损伤识别单元、数字孪生应用层其余有效信息单元,其中,智能预测包括提取不同时间相似工况的桥梁内力结果,分析桥梁关键部位内力变化情况,及整体内力分布情况进行预测;Further, the digital twin application module includes finite element numerical analysis results calculated based on real-time load conditions, a working condition bridge response database for intelligent analysis based on historical sample analysis results, and an intelligent prediction and safety assessment unit combined with the database. , the structural damage identification unit based on the convolutional neural network, and the remaining effective information units of the digital twin application layer. Among them, the intelligent prediction includes extracting the internal force results of the bridge under similar working conditions at different times, analyzing the internal force changes in key parts of the bridge, and the overall internal force distribution. make predictions;
所述信息转接模块将数字孪生体应用模块中的信息转接并传输至生命周期信息运维管理模块,进而通过生命周期信息运维管理模块的信息查看及输出单元实现与6D BIM初期信息单元之间的信息交互。The information transfer module transfers and transmits the information in the digital twin application module to the life cycle information operation and maintenance management module, and then realizes the integration with the 6D BIM initial information unit through the information viewing and output unit of the life cycle information operation and maintenance management module. information interaction between.
进一步地,数字孪生应用层其余有效信息单元包括根据优化后的有限元模型单元及网格参数对BIM结构分析相关信息进行更新,为6D BIM初期信息单元的第六维度结构分析信息提供初期单元及网格参数的取值范围;根据不同工况下的各种类型桥梁反应对比及误差分析,对有限元结构分析模型进行边界类型选择与边界简化、荷载模拟有效性及桥梁反应监测布置点位进行评估;依据有限元分析及智能分析的结果,自动化生成桥梁结构的预防性养护决策及评估文件。Further, the remaining effective information units of the digital twin application layer include updating BIM structural analysis-related information based on the optimized finite element model units and grid parameters, providing initial units and sixth-dimensional structural analysis information for the 6D BIM initial information unit. The value range of grid parameters; based on the comparison and error analysis of various types of bridge responses under different working conditions, boundary type selection and boundary simplification, load simulation effectiveness, and bridge response monitoring layout points are carried out for the finite element structural analysis model. Assessment; based on the results of finite element analysis and intelligent analysis, automatically generate preventive maintenance decisions and assessment documents for bridge structures.
所述智能分析通过历史样本分析结果工况反应数据库对有限元模型边界条件、单元参数及网格信息进行优化,以使有限元结果接近实测值。The intelligent analysis optimizes the finite element model boundary conditions, unit parameters and grid information through the working condition response database of historical sample analysis results, so that the finite element results are close to the actual measured values.
进一步地,基于卷积神经网络的结构损伤识别单元包括以下步骤:Further, the structural damage identification unit based on convolutional neural network includes the following steps:
数据收集和预处理:由无人机贴近摄影收集包含结构表面图像的数据集,对数据集进行预处理,包括调整图像大小、灰度化、去噪操作;Data collection and preprocessing: A data set containing structural surface images is collected by drone close-up photography, and the data set is preprocessed, including image resizing, grayscale, and denoising operations;
将数据划分并设置CNN的网络架构模型:将数据集划分为训练集、验证集和测试集,设置卷积层的数量和大小、激活函数、池化层的类型和参数;网络训练:使用训练集对CNN进行训练,训练过程中,通过反向传播算法更新网络参数以最小化损失函数;Divide the data and set up the CNN network architecture model: divide the data set into a training set, a validation set and a test set, set the number and size of the convolutional layers, activation function, pooling layer type and parameters; network training: use training Sets are used to train the CNN. During the training process, the network parameters are updated through the back propagation algorithm to minimize the loss function;
模型评估:使用独立的测试数据集评估网络的性能,评价指标为准确率,超参数调优:根据验证集的性能,调整网络架构和超参数,包括学习率、批次大小、正则化参数;Model evaluation: Use an independent test data set to evaluate the performance of the network. The evaluation index is accuracy. Hyperparameter tuning: Based on the performance of the validation set, adjust the network architecture and hyperparameters, including learning rate, batch size, and regularization parameters;
模型测试:使用测试集评估最终模型的性能。Model testing: Use the test set to evaluate the performance of the final model.
进一步地,桥梁悬索索力计算边缘设备单元包括数字孪生操作系统(DTOS)、加速度传感器、频域数据滤波处理及索力计算模块、悬索受力状况无线通信传输单元;多个边缘设备通过高速数据通讯协议连接组成数字孪生边缘装备,通过手机客户端APP、PC客户端APP或者网页版上的数字孪生边缘装备无线远程管理平台进行统一管理;Furthermore, the bridge suspension cable force calculation edge device unit includes a digital twin operating system (DTOS), an acceleration sensor, a frequency domain data filtering and cable force calculation module, and a suspension cable force status wireless communication transmission unit; multiple edge devices communicate through high-speed The data communication protocol is connected to form digital twin edge equipment, which is managed uniformly through the digital twin edge equipment wireless remote management platform on the mobile client APP, PC client APP or web version;
频域数据滤波处理及索力计算模块按照预设的时间间隔采集目标拉索的时域数据,并利用快速傅里叶变换方法将所述时域数据转换成频域数据,以构建频谱图,利用二阶导数法识别出所述频谱图中所有的波峰数据,继而通过波峰数据计算目标拉索的索力。The frequency domain data filtering processing and cable force calculation module collects the time domain data of the target cable at preset time intervals, and uses the fast Fourier transform method to convert the time domain data into frequency domain data to construct a spectrogram, The second-order derivative method is used to identify all the wave peak data in the spectrum diagram, and then the cable force of the target cable is calculated through the wave peak data.
进一步地,所述的用于实时荷载工况下慢行桥梁结构反力的计算及预警单元包括跨摄像头行人识别与轨迹追踪模块、匿名行人重量检测模块、有限元数值分析模块及结果输出模块、有限元结果误差评估模块、阈值警报模块;Further, the calculation and early warning unit for slow-moving bridge structure reaction force under real-time load conditions includes a cross-camera pedestrian recognition and trajectory tracking module, an anonymous pedestrian weight detection module, a finite element numerical analysis module and a result output module. Finite element result error evaluation module and threshold alarm module;
跨摄像头行人识别与轨迹追踪模块利用监控视频的时序、空间关系来优化推理出多摄像机网络拓扑图设计和优化行人识别深度学习模型,从而实现基于行人外观的行人识别功能,在行人识别深度学习模型的基础上实现多摄像头之间的动态时延拓扑网络模型为搜索提供较为优化的检测顺序,从而减少搜索的盲目性。The cross-camera pedestrian recognition and trajectory tracking module uses the timing and spatial relationships of surveillance videos to optimize and infer the multi-camera network topology design and optimize the pedestrian recognition deep learning model, thereby realizing the pedestrian recognition function based on the appearance of pedestrians. In the pedestrian recognition deep learning model Based on this, the dynamic delay topology network model between multiple cameras is implemented to provide a more optimized detection sequence for the search, thereby reducing the blindness of the search.
进一步地,所述单元参数及网格优化单元的更新迭代实现过程包括两个层面:通过综合运维信息单元进行现场运维信息更新以及通过不同工况下桥梁反应误差对比分析进行单元参数及网格优化及单元信息的迭代更新,其中,综合运维信息单元更新内容包括现场工况信息的采集及导入、各种桥梁反应信息的采集及对比分析、通过现场外观测量及构件试验获取的几何参数及材料特性综合运维信息。Furthermore, the update and iterative implementation process of the unit parameters and grid optimization unit includes two levels: on-site operation and maintenance information update through the comprehensive operation and maintenance information unit, and unit parameter and network optimization through comparative analysis of bridge response errors under different working conditions. Grid optimization and iterative update of unit information. Among them, the comprehensive operation and maintenance information unit update content includes the collection and import of on-site working condition information, the collection and comparative analysis of various bridge response information, and the geometric parameters obtained through on-site appearance measurement and component testing. and comprehensive operation and maintenance information on material properties.
实现所述的一种城市慢行桥梁健康监测与数字孪生系统的方法,包括以下步骤:The method for implementing the above-mentioned urban slow-traffic bridge health monitoring and digital twin system includes the following steps:
步骤一、重构桥梁及其周边环境的实景模型,反映真实的物理实体;Step 1: Reconstruct the real-life model of the bridge and its surrounding environment to reflect the real physical entities;
步骤二、建立桥梁结构的BIM三维信息模型;Step 2: Establish a BIM three-dimensional information model of the bridge structure;
步骤三、构建数字孪生基础层,具体包括采集桥梁整体状态数据,并将数据传输至数据处理单元和轻量化数据处理;Step 3: Build the digital twin base layer, which specifically includes collecting the overall status data of the bridge, transmitting the data to the data processing unit and lightweight data processing;
步骤四、将数字孪生数据进行转换及优化;Step 4: Convert and optimize the digital twin data;
步骤五、搭建以数字孪生体层级架构为基础的智能运维管理平台,具体是通过信息转接模块,实现数字孪生应用模块与全生命周期信息运维管理模块之间的信息转接及综合应用。Step 5: Build an intelligent operation and maintenance management platform based on the digital twin hierarchical architecture. Specifically, through the information transfer module, the information transfer and comprehensive application between the digital twin application module and the full life cycle information operation and maintenance management module are realized. .
进一步地,所述智能运维管理平台将数字孪生应用模块、信息转接模块、全生命周期信息运维管理模块进行分层,具体分为数据感知层、数字孪生体数据处理层、数字孪生体应用层和智能建造与运维管理层;Further, the intelligent operation and maintenance management platform layers the digital twin application module, the information transfer module, and the full life cycle information operation and maintenance management module, specifically into the data perception layer, the digital twin data processing layer, and the digital twin Application layer and intelligent construction and operation and maintenance management layer;
所述数据感知层包括各种类型IoT传感器、桥梁悬索索力计算边缘设备、RTK定位技术无人机、环境与桥梁结构监测模块、人机料法环智能识别模块以及行人识别与轨迹追踪模块;The data sensing layer includes various types of IoT sensors, bridge suspension cable force calculation edge devices, RTK positioning technology drones, environment and bridge structure monitoring modules, human-machine, material, law and environmental intelligent identification modules, and pedestrian identification and trajectory tracking modules;
所述数字孪生体数据处理层包括桥梁数字孪生体建模、精细实景三维建模模块、现场荷载工况反应数据、力学性能检测数据及其余有效运维数据,并对数据进行汇集整理、融合交换、轻量化预处理,最终针对不同模块需求建立有效的信息数据库;The digital twin data processing layer includes bridge digital twin modeling, precise real-life three-dimensional modeling modules, on-site load condition response data, mechanical performance testing data and other effective operation and maintenance data, and collects, organizes, integrates and exchanges the data. , lightweight preprocessing, and finally establish an effective information database according to different module requirements;
所述数字孪生体应用层包括桥梁结构数字孪生体、BIM系统、GIS系统、有限元模拟仿真系统、以数据库为基础的综合运维管理系统、基于智能预警分析的预防性评估系统、基于知识图谱及机器学习的养护方案制定系统及其余数字孪生拓展应用、基于卷积神经网络的结构表面裂缝的损伤识别;The digital twin application layer includes the bridge structure digital twin, BIM system, GIS system, finite element simulation system, database-based comprehensive operation and maintenance management system, preventive assessment system based on intelligent early warning analysis, knowledge map-based And machine learning maintenance plan formulation system and other digital twin expansion applications, damage identification of structural surface cracks based on convolutional neural network;
智能建造与运维管理层包括以不同信息维度划分的三维模型、施工进度信息、工程量成本信息、结构分析的多维信息,以不同建造阶段划分的规划设计、施工管理、运营维护等多阶段信息、以及信息录入及管理、各分项协同交流、预防性养护决策等功能模块;The intelligent construction and operation and maintenance management layer includes multi-dimensional information such as three-dimensional models, construction progress information, project quantity and cost information, and structural analysis divided into different information dimensions, and multi-stage information such as planning and design, construction management, and operation and maintenance divided into different construction stages. , as well as functional modules such as information entry and management, collaborative communication of various sub-items, and preventive maintenance decision-making;
数据感知层的输出端与数字孪生数据处理层的输入端相连接,数字孪生数据处理层的输出端与数字孪生体应用层的输入端相连接,数字孪生体应用层的输出端与智能建造与运维管理层的输入端相连接。The output end of the data sensing layer is connected to the input end of the digital twin data processing layer, the output end of the digital twin data processing layer is connected to the input end of the digital twin application layer, and the output end of the digital twin application layer is connected to the intelligent construction and The input terminal of the operation and maintenance management layer is connected.
与现有的技术相比,本发明的有益效果为:Compared with existing technology, the beneficial effects of the present invention are:
1、本发明对城市慢行桥梁BIM+GIS+FEM模型结合物联网、数字孪生等技术的深化应用具有一定的参考价值,对促进行业BIM应用做出参考。1. This invention has certain reference value for the in-depth application of urban slow-traffic bridge BIM+GIS+FEM models combined with Internet of Things, digital twins and other technologies, and provides a reference for promoting BIM applications in the industry.
2、城市慢行桥梁数字孪生体的建立实时反映城市慢行桥梁建造工况,对促进城市慢行桥梁建造数字化具有重要意义。2. The establishment of digital twins of urban slow-travel bridges reflects the construction conditions of urban slow-travel bridges in real time, which is of great significance to promoting the digitalization of urban slow-travel bridge construction.
3、本发明以数字孪生技术来智能化城市慢行桥梁建造过程,为桥梁建造技术优化有重大指导意义。同时符合了未来行业的发展方向,促进了行业的快速发展,有巨大的实用价值和经济效益。3. This invention uses digital twin technology to intelligentize the urban slow-moving bridge construction process, which has great guiding significance for the optimization of bridge construction technology. At the same time, it conforms to the future development direction of the industry, promotes the rapid development of the industry, and has huge practical value and economic benefits.
附图说明Description of drawings
图1为实施例的模块层级示意图;Figure 1 is a schematic diagram of the module level of the embodiment;
图2为实施例一种城市慢行桥梁健康监测与数字孪生系统结构流程图;Figure 2 is a structural flow chart of an urban slow-traffic bridge health monitoring and digital twin system according to the embodiment;
图3为实施例数字孪生体的层级架构示意图;Figure 3 is a schematic diagram of the hierarchical architecture of the digital twin according to the embodiment;
图4为实施例边缘设备的层级架构示意图;Figure 4 is a schematic diagram of the hierarchical architecture of an edge device according to an embodiment;
图5为实施例一种城市慢行桥梁健康监测与数字孪生方法的流程示意图。Figure 5 is a schematic flowchart of an urban slow-traffic bridge health monitoring and digital twin method according to the embodiment.
具体实施方式Detailed ways
下面将结合具体的实施案例并参照附图对本发明进行更加详细的阐明。应当理解,示例仅是为了更加具体的说明本发明的实现的过程,从而便于业内人士理解,但本发明并不限于此。在本发明的主要构思下,进行一些简单的变形或改进,都在本发明的保护范围之内。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。The present invention will be explained in more detail below with reference to specific implementation examples and the accompanying drawings. It should be understood that the examples are only for illustrating the implementation process of the present invention more specifically to facilitate understanding by those in the industry, but the present invention is not limited thereto. Based on the main concept of the present invention, some simple deformations or improvements may be made within the protection scope of the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
在本发明所述实例中,除非另有明确的规定和限定说明,术语“转换”、“连接”、“转接”、“更新”、“交互”、“实现”等术语应做广义理解。例如,转接可以是两者的简单转接,也可以是通过中间媒介的间接转接;交互可以是两个单元直接交互,也可以是通过某些技术手段在内的间接交互。对于不同的实际情况,可以根据需要理解上述术语的具体含义。In the examples described in the present invention, unless otherwise explicitly stated and limited, the terms "conversion", "connection", "transfer", "update", "interaction", "implementation" and other terms should be understood in a broad sense. For example, the transfer can be a simple transfer between the two, or it can be an indirect transfer through an intermediary; the interaction can be a direct interaction between the two units, or it can be an indirect interaction including certain technical means. For different actual situations, the specific meanings of the above terms can be understood as needed.
如图1所示,一种城市慢行桥梁健康监测与数字孪生系统,包括BIM综合建模及信息管理子系统和基于BIM-GIS-FEM的数字孪生技术子系统,其中BIM综合建模及信息管理子系统包括BIM(建筑信息模型)建模模块、实景模型模块、全生命周期运维管理模块;基于BIM-GIS-FEM的数字孪生技术子系统包括数字孪生基础模块、数字孪生数据转换及优化模块和数字孪生应用模块。As shown in Figure 1, an urban slow-traffic bridge health monitoring and digital twin system includes a BIM comprehensive modeling and information management subsystem and a digital twin technology subsystem based on BIM-GIS-FEM. The BIM comprehensive modeling and information management subsystem The management subsystem includes BIM (Building Information Model) modeling module, reality model module, and full life cycle operation and maintenance management module; the digital twin technology subsystem based on BIM-GIS-FEM includes digital twin basic module, digital twin data conversion and optimization modules and digital twin application modules.
如图1所示的BIM建模模块,用于实现复杂桥梁结构的不同类型构件之间的精确建模,具体的,所述的BIM建模模块包括多种综合建模及转换软件(例如Revit、Rhino、3dxMAX),可以根据复杂桥梁结构的需求运用各种三维数字建模软件进行建模,然后将创建的模型通过模型转换软件整合到统一的BIM软件中进行后续的信息完善及综合应用;The BIM modeling module shown in Figure 1 is used to achieve accurate modeling between different types of components of complex bridge structures. Specifically, the BIM modeling module includes a variety of comprehensive modeling and conversion software (such as Revit , Rhino, 3dxMAX), various three-dimensional digital modeling software can be used for modeling according to the needs of complex bridge structures, and then the created models can be integrated into unified BIM software through model conversion software for subsequent information improvement and comprehensive application;
通过制定统一的命名及注解标准,为各类建模软件不同构件的统一信息管理提供便利。不同建模软件直接可以通过模型建模软件进行构件模型的转换及定位对接,最终在综合信息管理能力更好及工程应用性更合理的BIM软件平台中实现整体模型的拼接整合及信息管理。By formulating unified naming and annotation standards, it facilitates unified information management of different components of various modeling software. Different modeling software can directly convert and position the component models through the model modeling software, and finally realize the splicing integration and information management of the overall model in the BIM software platform with better comprehensive information management capabilities and more reasonable engineering application.
所述制定统一的命名及注解标准包括:单位工程名称+位置+节段号+构件类别+细部单元划分信息等,建立针对全桥构件的信息分类及编码方法,最终形成类似于“XX-XX.XX.XX.XX”分层信息管理的统一标准。The unified naming and annotation standards mentioned above include: unit project name + location + section number + component category + detailed unit division information, etc., establishing an information classification and coding method for the full bridge components, and finally forming a similar "XX-XX" .XX.XX.XX” unified standard for hierarchical information management.
所述实景建模模块包括无人机模块、停机坪模块、直播推流模块、三维重构模块、格式转换模块。无人机模块集成有RTK定位及高分辨率摄像头。停机坪模块实现无人机低电量自动返航充电功能与作业环境感知功能,停机坪感知风速、雨淋、光照等飞行环境,从而判断是否具备飞行条件,实现自动化作业。直播推流模块允许无人机进行实时监控,方便在线监控作业现场,可远程随时查看作业实况。图片、视频成果自动回传、归档,方便实景建模时调用图片进行三维重构,免去人员介入进行插拔存储卡传输图片的过程。三维重构过程通常包含以下步骤:添加照片及坐标、添加像控点及其坐标、对齐照片、建立密集点云、生成网格、生成纹理,最终形成实景模型。实景模型是利用对物理实体的多角度图片集进行三维重构的成果。实景模型常用的格式为OSGB格式,需要转换为可以顺畅地在网页上浏览、操作的轻量化3D Tiles格式。格式转换模块将OSGB格式的实景模型转化为3D Tiles格式。The real-life modeling module includes a drone module, an apron module, a live streaming module, a three-dimensional reconstruction module, and a format conversion module. The drone module integrates RTK positioning and high-resolution cameras. The apron module realizes the low-power automatic return-to-home charging function of the drone and the operating environment sensing function. The apron senses wind speed, rain, light and other flight environments to determine whether the flight conditions are met and realize automated operations. The live streaming module allows real-time monitoring by drones, which facilitates online monitoring of the job site and enables remote viewing of the actual work status at any time. Pictures and video results are automatically returned and archived, which facilitates the use of pictures for three-dimensional reconstruction during real-life modeling, eliminating the need for personnel to intervene in the process of inserting and unplugging memory cards to transfer pictures. The three-dimensional reconstruction process usually includes the following steps: adding photos and coordinates, adding image control points and their coordinates, aligning photos, building dense point clouds, generating meshes, generating textures, and finally forming a real-life model. Reality models are the result of three-dimensional reconstruction using multi-angle pictures of physical entities. The commonly used format for real-life models is OSGB format, which needs to be converted into lightweight 3D Tiles format that can be browsed and operated smoothly on the web. The format conversion module converts the real-life model in OSGB format into 3D Tiles format.
所述全生命周期信息运维管理模块,用于分类和储存桥梁全生命周期过程中的运维管理信息,并将相关信息处理成格式化表达方式,以便于与6D BIM(六维建筑信息模型)进行信息交互,该模块的呈现方式可以借鉴基于网页轻量化的综合信息管理平台进行实时展示;The full life cycle information operation and maintenance management module is used to classify and store the operation and maintenance management information during the whole life cycle of the bridge, and process the relevant information into a formatted expression to facilitate integration with 6D BIM (six-dimensional building information model). ) for information interaction. The presentation method of this module can be based on the comprehensive information management platform based on lightweight web pages for real-time display;
如图1所示,所述全生命周期运维管理模块包括初期设计建模过程的6D BIM初期信息单元、用于桥梁信息更新修正的综合运维信息单元、用于数字孪生体应用成果管理的全生命周期信息运维管理;As shown in Figure 1, the full life cycle operation and maintenance management module includes the 6D BIM initial information unit for the initial design modeling process, the comprehensive operation and maintenance information unit for bridge information update and correction, and the digital twin application result management Full life cycle information operation and maintenance management;
所述6D BIM初期信息单元包括桥梁三维模型信息3D、整体进度规划信息4D、工程量及成本信息5D、结构分析相关信息6D;施工过程中定期更新的模型修正过程的现场监测信息和单元参数优化信息;后期综合运维信息及来自数字孪生功能层的应用信息。The 6D BIM initial information unit includes bridge three-dimensional model information 3D, overall schedule planning information 4D, project quantity and cost information 5D, structural analysis related information 6D; on-site monitoring information and unit parameter optimization of the model revision process that are regularly updated during the construction process information; later comprehensive operation and maintenance information and application information from the digital twin functional layer.
其中的结构分析相关信息(6D)包括单元参数及网格划分信息、材料属性信息、工况荷载信息、边界条件处理信息和结构表面裂缝损伤信息;The structural analysis related information (6D) includes unit parameters and mesh division information, material property information, working condition load information, boundary condition processing information and structural surface crack damage information;
6D BIM初期信息单元的多维信息是基于三维模型信息进行添加和完善的,多维信息通过轻量化后,与生命周期信息运维管理模块之间进行交互。The multi-dimensional information of the initial information unit of 6D BIM is added and improved based on the three-dimensional model information. After being lightweight, the multi-dimensional information interacts with the life cycle information operation and maintenance management module.
综合运维信息单元包括涉及几何参数及材料特性的结构几何信息、力学性能信息、检查试验信息、评定决策信息和维修建议信息。其中,涉及几何参数及材料特性的结构几何信息或力学性能信息用于更新6D BIM初期信息单元;其余的有效运维信息用于更新全生命周期信息运维管理模块。The comprehensive operation and maintenance information unit includes structural geometry information, mechanical performance information, inspection and test information, assessment decision-making information and maintenance recommendation information involving geometric parameters and material properties. Among them, structural geometry information or mechanical performance information involving geometric parameters and material properties are used to update the 6D BIM initial information unit; the remaining effective operation and maintenance information is used to update the full life cycle information operation and maintenance management module.
所述全生命周期信息运维管理模块包括建立综合数据库单元、配置应用服务器单元、数据调用及反馈单元、信息查看及输出单元。综合数据库单元通过各类各阶段数据的汇集融合、数据轻量化及储存备用等过程,搭建综合运维的信息数据库。将信息数据库统一连接到服务器端,以供客户在Web端或其他客服终端进行后台服务器的信息调取及访问,并将调取的信息与BIM轻量化模型相结合进行查看和输出等功能。The full life cycle information operation and maintenance management module includes a comprehensive database unit, a configuration application server unit, a data call and feedback unit, and an information viewing and output unit. The comprehensive database unit builds an information database for comprehensive operation and maintenance through processes such as collection and integration of data at various stages, data lightweighting, and storage and backup. Unifiedly connect the information database to the server so that customers can retrieve and access information from the backend server on the Web or other customer service terminals, and combine the retrieved information with the BIM lightweight model for viewing and output functions.
所述边缘设备单元是以高性能微型开发板及周边设备为核心机,采用分布式边缘装备系统架构,以采集的监控大数据和边缘端人工智能深度学习算法为驱动,基于边缘端推理框架,与土木工程项目运维过程实时监测与并网运行,面向土木工程设计、施工与运维的全生命周期,锚定基准建模、全面感知、实时预测的数字孪生目标及策略,基于E-BIM/E-GIS/E-HIM/E-AIM以及物理/数据/知识驱动的数字孪生体基准状态、动态演化管理与预测性运行维护决策赋能平台,实现边缘端物联网运行监测—数字孪生体迭代优化—结构健康状况演化趋势预测集成与高效协同。The edge device unit is based on a high-performance micro development board and peripheral equipment as the core machine, adopts a distributed edge equipment system architecture, is driven by the collected monitoring big data and edge-side artificial intelligence deep learning algorithms, and is based on the edge-side inference framework. Real-time monitoring and grid-connected operation of the operation and maintenance process of civil engineering projects, facing the full life cycle of civil engineering design, construction and operation and maintenance, anchoring the digital twin goals and strategies of baseline modeling, comprehensive perception, and real-time prediction, based on E-BIM /E-GIS/E-HIM/E-AIM and physical/data/knowledge-driven digital twin baseline status, dynamic evolution management and predictive operation and maintenance decision-making enabling platform to achieve edge IoT operation monitoring - digital twin Iterative optimization—integration and efficient collaboration of structural health evolution trend prediction.
所述数字孪生基础模块,用于现场工况及各类桥梁反应信息采集、通信传输及数据初步处理等,通过不同传感器所采集的数据进行汇集融合、轻量化处理、数据转接等过程,为建立综合的运维数据库提供基础条件,并将轻量化的有效现场工况信息输入有限元分析软件中进行特定荷载下的桥梁反应分析。这是构建复杂桥梁结构数字孪生体的基础,为数字孪生数据转换及优化模块提供现场信息来源。The digital twin basic module is used for on-site working conditions and various types of bridge response information collection, communication transmission and preliminary data processing, etc., through the collection and fusion, lightweight processing, data transfer and other processes of data collected by different sensors, for Establish a comprehensive operation and maintenance database to provide basic conditions, and input lightweight effective on-site working condition information into finite element analysis software to conduct bridge response analysis under specific loads. This is the basis for building a digital twin of a complex bridge structure and provides an on-site information source for the digital twin data conversion and optimization module.
具体的,所述数字孪生基础模块包括用于施工阶段现场工况及桥梁反应信息采集的各类传感器单元、用于运维阶段实时识别跟踪检及采集慢行桥梁荷载分布的各类传感器单元、用于采集信息的无线通信传输单元、用于采集信息的数据处理单元、桥梁悬索索力计算边缘设备单元;各类传感器单元包括各类传感器。Specifically, the digital twin basic module includes various sensor units used for collecting on-site working conditions and bridge response information during the construction phase, various sensor units used for real-time identification, tracking and inspection during the operation and maintenance phase, and collecting slow-moving bridge load distribution. Wireless communication transmission unit for collecting information, data processing unit for collecting information, bridge suspension cable force calculation edge device unit; various sensor units include various types of sensors.
桥梁悬索索力计算边缘设备单元包括数字孪生操作系统(DTOS)、高灵敏度加速度传感器、频域数据滤波处理及索力计算模块、悬索受力状况无线通信传输单元;边缘设备集成的无线通信传输单元支持无线宽带(WIFI)与5G/4G商用网络,可以根据现场作业环境决定采取哪一种无线通讯方式进行数据传输。若边缘设备放置处有WIFI覆盖,通过现场WIFI网络将边缘设备接入现场局域网,采用文件传输协议(FTP)在局域网内将数据传输到数据库中,从而可被调用到智能运维管理平台中进行显示。若边缘设备放置处无局域网覆盖,则可使用5G或4G商用网络,此时需要在边缘设备上插入有效的SIM卡,采用TCP协议或者FTP协议进行数据传输。多个边缘设备通过高速数据通讯协议连接组成数字孪生边缘装备,通过手机客户端APP、PC客户端APP或者网页版上的数字孪生边缘装备无线远程管理平台进行统一管理。The bridge suspension cable force calculation edge device unit includes a digital twin operating system (DTOS), a high-sensitivity acceleration sensor, a frequency domain data filtering processing and cable force calculation module, a suspension cable stress status wireless communication transmission unit; edge device integrated wireless communication transmission The unit supports wireless broadband (WIFI) and 5G/4G commercial networks, and can decide which wireless communication method to use for data transmission based on the on-site operating environment. If there is WIFI coverage where the edge device is placed, connect the edge device to the on-site LAN through the on-site WIFI network, and use File Transfer Protocol (FTP) to transfer the data to the database in the LAN, so that it can be called into the intelligent operation and maintenance management platform. show. If there is no local area network coverage where the edge device is placed, a 5G or 4G commercial network can be used. In this case, a valid SIM card needs to be inserted into the edge device and the TCP protocol or FTP protocol is used for data transmission. Multiple edge devices are connected through high-speed data communication protocols to form digital twin edge equipment, which is managed uniformly through the digital twin edge equipment wireless remote management platform on the mobile client APP, PC client APP or web version.
频域数据滤波处理及索力计算模块按照预设的时间间隔采集目标拉索的时域数据,并利用快速傅里叶变换方法将所述时域数据转换成频域数据,以构建频谱图,利用二阶导数法识别出所述频谱图中所有的波峰数据,继而通过波峰数据计算目标拉索的索力。The frequency domain data filtering processing and cable force calculation module collects the time domain data of the target cable at preset time intervals, and uses the fast Fourier transform method to convert the time domain data into frequency domain data to construct a spectrogram, The second-order derivative method is used to identify all the wave peak data in the spectrum diagram, and then the cable force of the target cable is calculated through the wave peak data.
所述的各类传感器单元主要包括布设在桥梁主跨和桥塔处的温度传感器和风速风向仪,布设在桥梁主体结构控制点位桥面底部的静力水准仪、光纤光栅应变仪,布设在桥梁端部支撑处及桥墩支座处的位移传感器和加速度传感器,布设在斜拉索或主缆上的索力计算边缘设备,布置在桥面上用于行人识别的红外感应监控摄像头、布置于桥梁出入闸口用于获取荷载大小的压力传感器、无人机及其机带摄像头、以及布设在跨中和塔顶处的GNSS传感器等。The various sensor units described mainly include temperature sensors and wind speed and direction meters arranged at the main span and tower of the bridge, static levels and fiber Bragg grating strain gauges arranged at the bottom of the bridge deck at the control points of the main structure of the bridge. Displacement sensors and acceleration sensors at the end supports and pier supports, cable force calculation edge equipment arranged on the stay cables or main cables, infrared induction surveillance cameras arranged on the bridge deck for pedestrian identification, arranged on the bridge The entrance and exit gates are used to obtain pressure sensors of load size, drones and their cameras, and GNSS sensors arranged in the middle of the span and at the top of the tower.
具体的,各种传感器采集的信息经过不同的区域转发节点通过5G无线通信的方式与数据处理单元相连接,所述数据处理单元通过对采集的数据整合分类和轻量化处理,进一步实现数据格式规范化以提高信息适用性,有利于有限元分析的现场工况荷载快速输入及不同类型桥梁反应的误差对比。特别地,索力计算边缘设备具备数据处理能力,可直接将计算结果及结论通过5G无线通信的方式传到全生命周期运维管理模块。Specifically, the information collected by various sensors is connected to the data processing unit through 5G wireless communication through different regional forwarding nodes. The data processing unit further standardizes the data format by integrating, classifying and lightweighting the collected data. In order to improve the applicability of information, it is conducive to the rapid input of on-site working condition loads for finite element analysis and the error comparison of different types of bridge responses. In particular, Soli computing edge devices have data processing capabilities and can directly transmit calculation results and conclusions to the full life cycle operation and maintenance management module through 5G wireless communication.
图1所述的数字孪生数据转换及优化模块,用于构建与现实结构相对应的数字孪生体。通过二次开发插件实现BIM初期信息与有限元模型信息之间的提取及转换,在此基础上根据实时荷载进行有限元分析结果桥梁反应与现场采集的桥梁反应的误差对比分析,经过不断迭代过程对模型转换中的单元参数和网格优化信息进行优化更新,直到不同工况荷载下的桥梁反应对比均能满足误差条件。The digital twin data conversion and optimization module described in Figure 1 is used to build a digital twin corresponding to the real structure. Through the secondary development plug-in, the extraction and conversion between the initial BIM information and the finite element model information are realized. On this basis, the error comparison analysis of the finite element analysis results of the bridge response and the bridge response collected on site is carried out based on the real-time load. After a continuous iterative process The unit parameters and grid optimization information in the model conversion are optimized and updated until the comparison of bridge responses under different working conditions and loads can meet the error conditions.
具体的,所述的数字孪生数据转换及优化模块包括包含单元信息在内的6D BIM初期信息提取及转换单元、用于有限元结构数值分析的模型及工况信息单元、用于实时荷载工况下慢行桥梁结构反力的计算及预警单元、用于特定工况下模拟分析结构的各种类型桥梁反应对比单元、基于智能优化算法的单元参数及网格优化单元。Specifically, the digital twin data conversion and optimization module includes a 6D BIM initial information extraction and conversion unit including unit information, a model and working condition information unit for numerical analysis of finite element structures, and a real-time load condition unit. Calculation and early warning unit for structural reaction force of slow-moving bridges, various types of bridge response comparison units for simulating and analyzing structures under specific working conditions, unit parameters and grid optimization units based on intelligent optimization algorithms.
所述有限元结构数值分析的工况信息单元将慢行桥梁实时荷载工况输入都有限元模型中。所述用于特定工况下模拟分析的结构反应对比单元,桥梁结构专家组确定一系列特定的不利荷载工况,计算出这些不利工况下的桥梁反应,确定桥梁反应的危险阈值。用此阈值与实时荷载工况下的桥梁反应对比。The working condition information unit of the numerical analysis of the finite element structure inputs the real-time load conditions of the slow-moving bridge into the finite element model. According to the structural response comparison unit used for simulation analysis under specific working conditions, the bridge structure expert group determines a series of specific adverse load conditions, calculates the bridge response under these adverse working conditions, and determines the danger threshold of the bridge reaction. Use this threshold to compare the bridge response under real-time load conditions.
所述基于智能优化算法的单元参数及网格优化单元,通过历史样本分析结果工况反应数据库对有限元模型边界条件、单元参数及网格信息进行优化,以使有限元结果接近实测值。解决了建筑信息模型(BIM)没有考虑结构模拟分析中的单元参数及网格信息,缺乏必要的单元参数优化及建筑信息模型修正过程,无法完全等效地模拟现实桥梁的问题。The unit parameters and grid optimization units based on the intelligent optimization algorithm optimize the finite element model boundary conditions, unit parameters and grid information through the historical sample analysis results working condition response database, so that the finite element results are close to the measured values. It solves the problem that the building information model (BIM) does not consider the unit parameters and grid information in the structural simulation analysis, lacks the necessary unit parameter optimization and building information model correction process, and cannot simulate the real bridge completely equivalently.
所述初步信息提取及转换单元主要包括构件信息及单元信息,其中的构件信息可通过人工直接输入或调整几何参数及材料特性等运维信息对6D BIM初期信息单元进行更新;单元信息则基于智能优化算法的单元参数及网格优化单元,通过循环迭代过程进行单元参数更新及网格优化,最终将模型修正成与现实桥梁结构相一致的数字孪生体。The preliminary information extraction and conversion unit mainly includes component information and unit information. The component information can be updated through manual direct input or adjustment of operation and maintenance information such as geometric parameters and material properties to update the 6D BIM initial information unit; the unit information is based on intelligent The unit parameters and grid optimization units of the optimization algorithm are updated through a cyclic iterative process, and the model is finally modified into a digital twin that is consistent with the real bridge structure.
所述单元参数及网格优化单元的迭代更新实现过程包括两个层面,在宏观层面上,可通过综合运维信息单元进行现场运维信息修改,进而更新6D BIM初期信息单元和初步信息提取及转换单元,实现有限元结分析模型的信息更新优化;其中,综合运维信息单元更新内容主要包括现场工况信息的采集及导入、各种桥梁反应信息的采集及对比分析、通过现场外观测量及构件试验获取的几何参数及材料特性综合运维信息。在微观层面上,可通过不同工况下各类桥梁反应误差对比和智能优化分析,以使有限元结果接近实测值。智能优化分析通过历史样本分析结果工况反应数据库对单元参数及网格优化及相关单元信息进行持续性的迭代更新。The iterative update implementation process of the unit parameters and grid optimization units includes two levels. At the macro level, on-site operation and maintenance information can be modified through the comprehensive operation and maintenance information unit, and then the 6D BIM initial information unit and preliminary information extraction and conversion unit to realize information update and optimization of the finite element analysis model; among them, the update content of the comprehensive operation and maintenance information unit mainly includes the collection and import of on-site working condition information, the collection and comparative analysis of various bridge response information, through on-site appearance measurement and Comprehensive operation and maintenance information on geometric parameters and material properties obtained through component testing. At the micro level, the finite element results can be made close to the actual measured values through comparison of response errors of various bridges under different working conditions and intelligent optimization analysis. Intelligent optimization analysis continuously and iteratively updates unit parameters, grid optimization and related unit information through the working condition response database of historical sample analysis results.
所述单元参数及网格优化单元包括对单元种类、网格类型、单元划分细度初步信息的迭代优化,在满足不同工况下误差要求的基础上,将优化完善后的信息传输至数字孪生应用模块进行分类储存,可借助信息转接模块将信息传输至全生命周期信息运维管理模块,进而指导更新6D BIM初期信息单元所包含的结构分析单元参数及网格信息。The unit parameters and grid optimization unit include iterative optimization of preliminary information on unit types, grid types, and unit division fineness. On the basis of meeting error requirements under different working conditions, the optimized and improved information is transmitted to the digital twin. The application module performs classified storage and can use the information transfer module to transmit information to the full life cycle information operation and maintenance management module, thereby guiding the update of structural analysis unit parameters and grid information contained in the initial information unit of 6D BIM.
所述的用于实时荷载工况下慢行桥梁结构反力的计算及预警单元包括跨摄像头行人识别与轨迹追踪模块、匿名行人重量检测模块、有限元数值分析模块及结果输出模块、有限元结果误差评估模块、阈值警报模块。The calculation and early warning unit for the reaction force of slow-moving bridge structures under real-time load conditions includes a cross-camera pedestrian recognition and trajectory tracking module, an anonymous pedestrian weight detection module, a finite element numerical analysis module and a result output module, and a finite element result module. Error evaluation module, threshold alarm module.
所述匿名行人重量检测模块设于慢行桥梁出入口闸机处,对过闸行人进行匿名称重记录并实时跟踪行人位置。通过此方法,可以在任何时段准确确定慢行桥梁的实时荷载工况,此荷载工况亦是施加在桥梁对应的有限元数值分析模型上的荷载工况,从而通过有限元计算得到实时桥梁反应。有限元计算的桥梁应变与预埋应变计的应变值进行对比分析,评估有限元结果误差、验证有限元模型的有效性准确性。The anonymous pedestrian weight detection module is installed at the entrance and exit gates of slow-moving bridges to anonymously weigh and record pedestrians passing through the gates and track their locations in real time. Through this method, the real-time load condition of the slow-moving bridge can be accurately determined at any time period. This load condition is also the load condition imposed on the corresponding finite element numerical analysis model of the bridge, so that the real-time bridge response can be obtained through finite element calculation. . The bridge strain calculated by finite element and the strain value of embedded strain gauge were compared and analyzed to evaluate the error of finite element result and verify the validity and accuracy of the finite element model.
跨摄像头行人识别与轨迹追踪模块利用监控视频的时序、空间关系来优化推理出多摄像机网络拓扑图设计和优化行人识别深度学习模型,从而实现基于行人外观的行人识别功能,在行人识别深度学习模型的基础上实现多摄像头之间的动态时延拓扑网络模型为搜索提供较为优化的检测顺序,从而减少搜索的盲目性。The cross-camera pedestrian recognition and trajectory tracking module uses the timing and spatial relationships of surveillance videos to optimize and infer the multi-camera network topology design and optimize the pedestrian recognition deep learning model, thereby realizing the pedestrian recognition function based on the appearance of pedestrians. In the pedestrian recognition deep learning model Based on this, the dynamic delay topology network model between multiple cameras is implemented to provide a more optimized detection sequence for the search, thereby reducing the blindness of the search.
有限元结果误差评估模块从数据库中获取特定工况下的参考解,即慢行桥梁上各传感器监测到的数值。对此工况下有限元计算结果与参考解进行比较,采用误差指标为H1误差(半正定误差)和L2误差(平方根误差)。只有误差小于某一用户设定值时,有限元模型可被认为有效,可以将结果显示到智能运维管理平台中。阈值警报模块可监控特定有限元计算结果。将采集到的慢行桥梁实时荷载工况施加到有限元模型上进行计算,当特定有限元计算结果,比如桥梁挠度等,超过规范容许值时,慢行桥梁出入闸口将会被设定为“只出不进”状态,同时智能运维管理平台会向特定权限用户发送警报消息;当特定有限元计算结果大幅超过规范容许值时,将会触发慢行桥梁警报系统,广播敦促桥上行人下桥避险。The finite element result error evaluation module obtains the reference solution under specific working conditions from the database, that is, the values monitored by each sensor on the slow-moving bridge. The finite element calculation results under this working condition are compared with the reference solution, and the error indicators used are H1 error (positive semi-definite error) and L2 error (square root error). Only when the error is less than a certain user-set value, the finite element model can be considered valid, and the results can be displayed on the intelligent operation and maintenance management platform. Threshold alarm modules monitor specific finite element calculation results. The collected real-time load conditions of the slow-moving bridge are applied to the finite element model for calculation. When specific finite element calculation results, such as bridge deflection, etc., exceed the allowable value of the specification, the entrance and exit gate of the slow-moving bridge will be set to " At the same time, the intelligent operation and maintenance management platform will send alarm messages to users with specific permissions; when the specific finite element calculation results significantly exceed the allowable value of the specification, the slow-moving bridge alarm system will be triggered and a broadcast will be issued to urge pedestrians on the bridge to get off. Bridge to avoid danger.
关于建筑信息模型(BIM)与有限元结构分析模型之间的二次开发插件主要涉及任何一种与.NET兼容的语言(例如C#、C++、F#、Visual Basic.NET等)以及集成了多种计算机语言的开发工具。此外,还有针对开发者提供的SDK文件和一些官方提供的开发插件,包含了许多帮助文件和源代码例子及方法。The secondary development plug-in between Building Information Model (BIM) and finite element structural analysis model mainly involves any language compatible with .NET (such as C#, C++, F#, Visual Basic.NET, etc.) and integrates a variety of Computer language development tools. In addition, there are SDK files provided for developers and some officially provided development plug-ins, including many help files and source code examples and methods.
在二次开发插件的数据信息转换类型上,主要包括构件单元尺寸及坐标位置等几何信息;弹性模量、泊松比、密度及强度等材质特性;有限元分析采用的单元种类及大小、网格划分的类型及细度。其中,几何信息和材质特性可以通过综合运维信息单元的现场数据采集或同期构件试验方法进行阶段性更新;单元参数及网格优化单元通过有限元分析结果桥梁反应与现场实测桥梁反应的误差对比、单元信息调整和循环迭代的过程实现优化。The data information conversion type of the secondary development plug-in mainly includes geometric information such as component unit size and coordinate position; material properties such as elastic modulus, Poisson's ratio, density and strength; unit type and size, network used in finite element analysis The type and fineness of grid division. Among them, the geometric information and material properties can be updated periodically through on-site data collection of the comprehensive operation and maintenance information unit or the simultaneous component testing method; the unit parameters and grid optimization unit can be compared with the errors of the bridge response from the finite element analysis results and the on-site measured bridge response. , unit information adjustment and cycle iteration process to achieve optimization.
其中,6D BIM初期信息单元的转换采用二次开发插件生成命令流的方法,在模型迭代修正的过程中采用在有限元软件直接添加或修改相关参数的形式,进而可以在有限元软件中的修正处理步骤信息和求解分析结果信息以命令流的方式导出到特定格式的文件中,以便于后期应用的数据转接和交互。Among them, the initial information unit conversion of 6D BIM adopts the method of secondary development plug-in to generate command flow. In the process of iterative correction of the model, the relevant parameters are directly added or modified in the finite element software, and then the correction can be made in the finite element software. The processing step information and solution analysis result information are exported to a file in a specific format in the form of a command stream to facilitate data transfer and interaction in later applications.
图1所示,所述数字孪生应用模块包括结合有限元分析及智能分析的数字孪生体应用模块、用于数字孪生层应用信息交互的信息转接模块。所述信息转接模块将数字孪生应用模块中的信息转接并传输至生命周期信息运维管理模块,进而通过生命周期信息运维管理模块的信息查看及输出单元实现与6D BIM初期信息单元之间的信息交互。As shown in Figure 1, the digital twin application module includes a digital twin application module that combines finite element analysis and intelligent analysis, and an information transfer module for digital twin layer application information interaction. The information transfer module transfers and transmits the information in the digital twin application module to the life cycle information operation and maintenance management module, and then realizes the integration with the 6D BIM initial information unit through the information viewing and output unit of the life cycle information operation and maintenance management module. information exchange between.
所述数字孪生体应用模块主要包括按实际荷载实时计算的有限元数值分析结果、结合历史样本分析结果创建用于智能分析的工况桥梁反应数据库、结合数据库进行智能预测及安全评估单元、基于卷积神经网络的结构损伤识别单元、数字孪生应用层其余有效信息单元等,通过结合历史样本建立各种工况条件下的桥梁反应数据库,借助智能优化算法进行数据库的智能化应用及分析,可对孪生结构进行桥梁反应预测及安全评估和其余应用层有效信息管理。数字孪生应用模块开拓了数字孪生体层级架构与有限元数值分析之间的融合应用,并进一步通过信息转接模块与全生命周期信息运维管理模块相连接,为实现桥梁的全生命周期智能化运营管理提供架构基础。The digital twin application module mainly includes the finite element numerical analysis results calculated in real time according to the actual load, the working condition bridge response database for intelligent analysis created by combining the historical sample analysis results, the intelligent prediction and safety assessment unit combined with the database, and the volume-based The structural damage identification unit of the cumulative neural network and the remaining effective information units of the digital twin application layer are combined with historical samples to establish a bridge response database under various working conditions. Intelligent optimization algorithms are used to intelligently apply and analyze the database, which can The twin structure performs bridge response prediction and safety assessment and effective information management in other application layers. The digital twin application module pioneers the integration application between the digital twin hierarchical architecture and finite element numerical analysis, and further connects the information transfer module with the full life cycle information operation and maintenance management module to realize the full life cycle intelligence of the bridge. Operations management provides the architectural foundation.
基于卷积神经网络的结构损伤识别单元包括以下步骤:The structural damage identification unit based on convolutional neural network includes the following steps:
数据收集和预处理:由无人机贴近摄影收集包含结构表面图像的数据集,对数据集进行预处理,包括调整图像大小、灰度化、去噪操作;Data collection and preprocessing: A data set containing structural surface images is collected by drone close-up photography, and the data set is preprocessed, including image resizing, grayscale, and denoising operations;
将数据划分并设置CNN的网络架构模型:将数据集划分为训练集、验证集和测试集,设置卷积层的数量和大小、激活函数、池化层的类型和参数;网络训练:使用训练集对CNN进行训练,训练过程中,通过反向传播算法更新网络参数以最小化损失函数;Divide the data and set up the CNN network architecture model: divide the data set into a training set, a validation set and a test set, set the number and size of the convolutional layers, activation function, pooling layer type and parameters; network training: use training Sets are used to train the CNN. During the training process, the network parameters are updated through the back propagation algorithm to minimize the loss function;
模型评估:使用独立的测试数据集评估网络的性能,评价指标为准确率,超参数调优:根据验证集的性能,调整网络架构和超参数,包括学习率、批次大小、正则化参数;Model evaluation: Use an independent test data set to evaluate the performance of the network. The evaluation index is accuracy. Hyperparameter tuning: Based on the performance of the validation set, adjust the network architecture and hyperparameters, including learning rate, batch size, and regularization parameters;
模型测试:使用测试集评估最终模型的性能。Model testing: Use the test set to evaluate the performance of the final model.
数字孪生应用层其余有效信息单元包括根据优化后的有限元模型单元及网格参数对BIM结构分析相关信息进行更新,为6D BIM初期信息单元的第六维度结构分析信息提供初期单元及网格参数的取值范围;根据不同工况下的各种类型桥梁反应对比及误差分析,对有限元结构分析模型进行边界类型选择与边界简化、荷载模拟有效性及桥梁反应监测布置点位进行评估;依据有限元分析及智能分析的结果,自动化生成桥梁结构的预防性养护决策及评估文件。The remaining effective information units of the digital twin application layer include updating BIM structural analysis-related information based on the optimized finite element model units and grid parameters, and providing initial unit and grid parameters for the sixth-dimensional structural analysis information of the 6D BIM initial information unit. The value range of The results of finite element analysis and intelligent analysis automatically generate preventive maintenance decision-making and assessment documents for the bridge structure.
智能分析通过历史样本分析结果工况反应数据库对有限元模型边界条件、单元参数及网格信息进行优化,以使有限元结果接近实测值。解决了建筑信息模型(BIM)没有考虑结构模拟分析中的单元参数及网格信息,缺乏必要的单元参数优化及建筑信息模型修正过程,无法完全等效地模拟现实桥梁的问题。Intelligent analysis optimizes the finite element model boundary conditions, unit parameters and grid information through the working condition response database of historical sample analysis results, so that the finite element results are close to the actual measured values. It solves the problem that the building information model (BIM) does not consider the unit parameters and grid information in the structural simulation analysis, lacks the necessary unit parameter optimization and building information model correction process, and cannot simulate the real bridge completely equivalently.
所述数字孪生应用模块、全生命周期信息运维管理模块与6D BIM初期信息的转接交互需要借助多种格式信息转换文件进行,主要包括二次开发插件提取生成的满足有限元分析软件参数化设计语言具体要求的命令流文件、模型修正预处理阶段使用的inp文件、求解结果数据储存的res文件和动画文件等。关于数字孪生应用模块相关功能的实现需要结合多方面技术原理,主要涉及样本数据库建立、结合智能优化算法的桥梁反应预测、智能化的拓展应用、综合信息展示平台开发等。The transfer and interaction between the digital twin application module, the full life cycle information operation and maintenance management module and the 6D BIM initial information need to be carried out with the help of information conversion files in multiple formats, mainly including secondary development plug-in extraction and generation that meet the parameterization of finite element analysis software. Command flow files with specific requirements for the design language, inp files used in the model correction preprocessing stage, res files and animation files for storing solution result data, etc. The implementation of relevant functions of the digital twin application module requires the combination of various technical principles, which mainly involves the establishment of sample databases, bridge response prediction combined with intelligent optimization algorithms, intelligent expanded applications, and the development of comprehensive information display platforms.
具体的,以数字孪生应用模块为基础的智能运维管理平台,融合了数字孪生体的硬软件基础,主要包括数据感知层、数字孪生体数据处理层、数字孪生应用层、智能建造与运维管理层。数据感知层包括各种类型传感器的多维度数据采集和不同数据源的分类储存传输;数字孪生体数据处理层是在桥梁数字孪生体建模的基础上,对采集数据进行相关处理,包括数据汇集、交互融合、轻量化及导出分析等,进而构建信息综合数据库;数字孪生应用层包括桥梁结构数字孪生体、BIM系统、GIS系统、有限元模拟仿真系统、以数据库为基础的综合运维管理系统、智能预警评估系统及其余数字孪生拓展应用;智能建造与运维管理层以数字孪生融合平台的拓展应用为基础,可以分模块展示多维数据并实现全生命周期管理。Specifically, the intelligent operation and maintenance management platform based on the digital twin application module integrates the hardware and software foundation of the digital twin, and mainly includes the data perception layer, the digital twin data processing layer, the digital twin application layer, and intelligent construction and operation and maintenance. management. The data perception layer includes multi-dimensional data collection from various types of sensors and classified storage and transmission of different data sources; the digital twin data processing layer is based on the bridge digital twin modeling and performs related processing on the collected data, including data collection. , interactive fusion, lightweight and export analysis, etc., to build a comprehensive information database; the digital twin application layer includes the bridge structure digital twin, BIM system, GIS system, finite element simulation system, and database-based comprehensive operation and maintenance management system , intelligent early warning assessment system and other expanded applications of digital twins; intelligent construction and operation and maintenance management are based on the expanded applications of the digital twin integration platform, which can display multi-dimensional data in modules and achieve full life cycle management.
本发明对建模精度提出更高的要求,对模型进行单元参数和网格信息的迭代优化,结合综合运维信息对桥梁信息模型进行持续更新,主要是为了构建更真实的数字孪生体,为进行实时有限元分析、建立更加可靠的历史信息数据库、根据特定自然灾害或结构病害条件下的桥梁安全评估和桥梁反应预测提供现实保障。通过无人机倾斜摄影及贴近摄影的应用,对现场桥梁进行精细实景建模并对现场的桥梁结构进行损伤识别,帮助运维人员及时排查出容易损坏的部位,并及时提供相应的维护措施或施工方案。This invention puts forward higher requirements for modeling accuracy, performs iterative optimization of unit parameters and grid information on the model, and continuously updates the bridge information model in combination with comprehensive operation and maintenance information, mainly to build a more realistic digital twin for Conduct real-time finite element analysis, establish a more reliable historical information database, and provide realistic guarantees for bridge safety assessment and bridge response prediction under specific natural disasters or structural disease conditions. Through the application of drone oblique photography and close-up photography, precise real-life modeling of on-site bridges and damage identification of on-site bridge structures can be used to help operation and maintenance personnel identify easily damaged parts in a timely manner and provide corresponding maintenance measures or Construction plan.
下面结合图2,以某城市慢行桥梁为实施例,说明基于BIM-GIS-FEM的桥梁结构数字孪生体的方法,包括以下步骤。The following is combined with Figure 2, taking a slow-moving bridge in a certain city as an example to illustrate the method of digital twin of a bridge structure based on BIM-GIS-FEM, which includes the following steps.
步骤一、定期重构桥梁及其周边环境的实景模型,包括:Step 1. Regularly reconstruct the real-life model of the bridge and its surrounding environment, including:
a.五向倾斜摄影与贴近摄影。五向倾斜摄影用于建粗模,贴近摄影用于建精模。在施工阶段,定期进行远距离的五向倾斜摄影以直观地监控项目进度;在运维阶段,以五向倾斜摄影得到的粗模为基础,进行贴近摄影,监控桥梁各构部件的健康状况。a. Five-way tilt photography and close-up photography. Five-way oblique photography is used to build rough models, and close-up photography is used to build fine models. During the construction phase, long-distance five-way tilt photography is regularly performed to visually monitor the project progress; during the operation and maintenance phase, close-up photography is performed based on the rough mold obtained from the five-way tilt photography to monitor the health of each component of the bridge.
步骤二、建立桥梁的BIM三维信息模型,包括:Step 2: Establish the BIM three-dimensional information model of the bridge, including:
b.桥梁构件信息设计分类:对桥梁构件依据复杂程度进行初步的分类,结合构件信息分类及编码标准统一管理。所述的构件信息包括几何尺寸及坐标位置、弹性模量、泊松比、密度及强度材质特性等;采用符合传统建筑行业出图风格和工程人员操作习惯的BIM建模软件,建立桥梁构件模型。b. Bridge component information design classification: preliminary classification of bridge components based on complexity, and unified management based on component information classification and coding standards. The component information includes geometric dimensions and coordinate positions, elastic modulus, Poisson's ratio, density and strength material properties, etc.; the bridge component model is established using BIM modeling software that conforms to the drawing style of the traditional construction industry and the operating habits of engineering personnel. .
步骤三、数字孪生基础模块的实现过程,包括:Step 3. The implementation process of the digital twin basic module, including:
c.数据采集:为实现对桥梁整体状态数据的采集,确定某城市慢行桥梁的主要控制点位,根据实际要求布设相关传感器。其中包括布设在桥梁主跨和桥塔处的温度传感器和风速风向仪,布设在桥梁主体结构控制点位桥面底部的静力水准仪、光纤光栅应变仪,布设在桥梁端部支撑处及桥墩支座处的位移传感器和加速度传感器,布设在主缆和拉杆上的索力计算边缘设备,布设在跨中和塔顶处的GNSS传感器,布置在桥面上用于行人识别的红外感应监控摄像头,布置于桥梁出入闸口用于获取荷载大小的压力传感器,无人机及其机带摄像头等。c. Data collection: In order to collect the overall status data of the bridge, determine the main control points of slow-moving bridges in a certain city, and deploy relevant sensors according to actual requirements. These include temperature sensors and wind speed and direction meters arranged at the main span and tower of the bridge, static levels and fiber Bragg grating strain gauges arranged at the bottom of the bridge deck at the control points of the main structure of the bridge, and at the end supports and pier supports of the bridge. Displacement sensors and acceleration sensors at the base, cable force calculation edge equipment arranged on the main cables and tie rods, GNSS sensors arranged at the mid-span and at the top of the tower, infrared induction surveillance cameras arranged on the bridge deck for pedestrian identification, Pressure sensors arranged at the bridge entrance and exit gates to obtain the load size, drones and their attached cameras, etc.
d.数据传输:各类传感器采集的信息经过不同的区域转发节点转接至数据处理单元,其中的现场工况荷载信息和各类桥梁反应信息可以通过无线通信方式远程传输至数据处理单元;索力计算边缘设备可将计算好的索力或者悬索安全状况通过无线通信方式远程传输到全生命周期运维管理模块。d. Data transmission: The information collected by various sensors is transferred to the data processing unit through different regional forwarding nodes. The on-site working condition load information and various bridge response information can be remotely transmitted to the data processing unit through wireless communication; The force computing edge device can remotely transmit the calculated cable force or suspension safety status to the full life cycle operation and maintenance management module through wireless communication.
e.数据处理:来自现场采集的各类信息体量庞杂,需要经过整合分类和轻量化处理以提高信息的实用性。本实施例建议采用压缩算法做为轻量化手段,对时序性连续变量进行偏差检测处理和压缩过滤简化,不仅能够准确地反映数据实际趋势,而且可以大幅度减少信息数据的储存空间。通过数据轻量化处理后的桥梁信息包括用于有限元数值分析的实时工况荷载信息,用于与特定工况下数值分析结果进行对比的现场各类桥梁反应信息,以及用于完善和更新桥梁BIM信息的相关运维信息等。所述整合分类是把具体的不同类型的数据储存到不同的数据库,为了方便后面的数据分析和调用。e. Data processing: The various types of information collected from the field are complex and need to be integrated, classified and lightweight to improve the usefulness of the information. This embodiment suggests using a compression algorithm as a lightweight means to perform deviation detection processing and compression filtering simplification on sequential continuous variables, which can not only accurately reflect the actual trend of the data, but also significantly reduce the storage space of information data. The bridge information processed through lightweight data includes real-time working condition load information for finite element numerical analysis, on-site bridge response information for various types of bridges for comparison with numerical analysis results under specific working conditions, and for improving and updating bridges. Related operation and maintenance information of BIM information, etc. The integrated classification is to store specific different types of data in different databases in order to facilitate subsequent data analysis and retrieval.
步骤四、数字孪生数据交换及优化模块的基本过程,包括:Step 4. The basic process of digital twin data exchange and optimization module, including:
f.基于BIM3D API的二次开发插件应用:BIM3D API的数据交互功能可供用户进行二次开发应用,主要包括:获取构件的几何图形和相关参数数据、创建或修改模型元素、创建可用于快速实现重复操作命令的UI插件以及实现模型信息共享等功能。可尽量选用具有更优越操作能力和语言特性的C#语言进行插件的二次开发,根据BIM3D的软件配套要求选用合适的开发工具。依次通过导出BIM3D三维模型的几何信息(构件尺寸和坐标定位)、物理信息(弹性模量、泊松比、材质密度等)、单元信息(单元种类和形状、网格类型和划分细度等)以及模型的边界条件处理信息等,转换成有限元软件NERAP相对应的命令流文件。本案例采用NERAP版本的命令流标准定义txt输出格式,最终生成包含有限元分析必要信息的txt文档。f. Secondary development plug-in application based on BIM3D API: The data interaction function of BIM3D API can be used by users for secondary development applications. It mainly includes: obtaining the geometry and related parameter data of components, creating or modifying model elements, and creating tools that can be used to quickly Implement UI plug-ins for repeated operation commands and implement functions such as model information sharing. You can try to use the C# language with superior operating capabilities and language features for secondary development of plug-ins, and select appropriate development tools according to the BIM3D software supporting requirements. In turn, the geometric information (component size and coordinate positioning), physical information (elastic modulus, Poisson's ratio, material density, etc.), and unit information (unit type and shape, mesh type, and division fineness, etc.) of the BIM3D three-dimensional model are exported. And the boundary condition processing information of the model, etc., are converted into command flow files corresponding to the finite element software NERAP. This case uses the NERAP version of the command flow standard to define the txt output format, and finally generates a txt document containing the necessary information for finite element analysis.
g.有限元模型的单元参数及网格优化:由于桥梁结构的几何参数和材料特性等信息是不断变化的,因此需要对相关的运维数据进行定期更新并及时反映在建筑信息模型中,以便于二次开发插件对BIM相关信息进行重复转换和有限元模型的更新。在此基础上,对比在不同工况下有限元数值分析的桥梁反应结果和现场实测桥梁反应之间的误差,通过设定单元参数和网格类型等变量并结合智能优化算法进行组合优化分析,最终确定满足各种工况下桥梁反应误差要求的变量取值范围。可以针对不同的模型深度要求选择不同的单元类型(如各种实体、杆、梁、板、壳单元),这些单元类型各自适用的模拟范围都有所区别;针对网格类型和网格大小的选取,实体单元可以选择不同节点数量的四面体、六面体,网格大小的合理与否可以通过前后两次调整网格细度后控制部位的应力应变值变化范围来判断,如果应力应变值变化在5%以内则认为细度取值相对合理。g. Unit parameters and mesh optimization of the finite element model: Since the geometric parameters and material properties of the bridge structure are constantly changing, the relevant operation and maintenance data need to be updated regularly and reflected in the building information model in a timely manner so that Use secondary development plug-ins to repeatedly convert BIM-related information and update finite element models. On this basis, by comparing the error between the bridge response results of finite element numerical analysis under different working conditions and the on-site measured bridge response, a combination optimization analysis is performed by setting variables such as unit parameters and grid types and combining with intelligent optimization algorithms. Finally determine the variable value range that meets the bridge response error requirements under various working conditions. Different unit types (such as various solid, rod, beam, plate, and shell units) can be selected for different model depth requirements. The applicable simulation ranges of these unit types are different; for grid type and grid size When selecting, the solid unit can choose tetrahedrons or hexahedrons with different numbers of nodes. Whether the mesh size is reasonable or not can be judged by the change range of the stress and strain values of the control part after adjusting the mesh fineness twice. If the stress and strain values change within Within 5%, the fineness value is considered relatively reasonable.
h.有限元模型修改及分析结果数据转接:由于单元参数和网格优化的迭代过程需要多次重复修改相关参数,如果通过修改建筑信息模型的单元相关信息显然不够便捷,因此也可采用在有限元软件NERAP中直接修改单元相关参数的方法实现模型修正。通过对模型几何信息、单元信息和相关拓扑信息的优化过程,生成更精确可靠的数字孪生模型并进行荷载模拟分析,进而对特定工况荷载下的位移桥梁反应进行误差对比和分析。有限元模型输入的前处理相关信息和模型分析后处理结果信息可以通过有限元软件NERAP内置的命令流导出功能,生成可供其他安全计算分析模块调取使用的inp文件;求解结果则以res文件的进行保存,可供桥梁全生命周期运维管理模块调用并进行三维模型应力或位移云图的数据重建和平台展示。当桥梁的几何信息、拓扑信息及结构分析相关信息(如单元网格、材料属性、工况荷载和边界处理等信息)需要改变时,可以生成更新的inp文件和res文件以覆盖上一次的输出结果。h. Finite element model modification and analysis result data transfer: Since the iterative process of unit parameters and grid optimization requires repeated modification of relevant parameters many times, it is obviously not convenient to modify the unit-related information of the building information model, so it can also be used in Model correction can be achieved by directly modifying unit-related parameters in the finite element software NERAP. Through the optimization process of model geometric information, unit information and related topology information, a more accurate and reliable digital twin model is generated and load simulation analysis is performed, and then error comparison and analysis of the displacement bridge response under specific working conditions are performed. The pre-processing related information input by the finite element model and the model analysis post-processing result information can be exported through the built-in command flow function of the finite element software NERAP to generate an inp file that can be retrieved and used by other safety calculation analysis modules; the solution results are in a res file It can be saved and can be called by the bridge life cycle operation and maintenance management module to perform data reconstruction and platform display of the three-dimensional model stress or displacement cloud diagram. When the bridge's geometric information, topology information and structural analysis-related information (such as unit mesh, material properties, working load and boundary processing information) need to be changed, updated inp files and res files can be generated to overwrite the last output. result.
步骤五、搭建以数字孪生体为基础的智能运维管理平台。Step 5: Build an intelligent operation and maintenance management platform based on the digital twin.
如图2所示,数字孪生应用模块可通过信息转接模块与全生命周期信息运维管理模块实现信息转接,数字孪生应用模块在于智能化功能目标的实现;全生命周期信息运维管理模块在于各类数据的汇集融合、储存备用、调用查看以及交互拓展等功能;信息转接模块用于数字孪生层应用信息的交换。可以利用上述三个模块进行分层融合,搭建一个以数字孪生体为基础的智能化融合平台,进而实现整桥项目全生命周期信息的智能化运维管理。如图3所示,以数字孪生体的层级架构为基础搭建智能运维管理平台,该平台融合数字孪生体的硬软件基础,主要包括数据感知层、数字孪生体数据处理层、数字孪生应用层和智能建造与运维管理层。As shown in Figure 2, the digital twin application module can realize information transfer through the information transfer module and the full life cycle information operation and maintenance management module. The digital twin application module lies in the realization of intelligent functional goals; the full life cycle information operation and maintenance management module It lies in the functions of collection and integration, storage and backup, calling and viewing, and interactive expansion of various types of data; the information transfer module is used for the exchange of application information in the digital twin layer. The above three modules can be used for hierarchical integration to build an intelligent integration platform based on digital twins, thereby realizing intelligent operation and maintenance management of the entire life cycle information of the entire bridge project. As shown in Figure 3, an intelligent operation and maintenance management platform is built based on the hierarchical architecture of the digital twin. This platform integrates the hardware and software foundation of the digital twin and mainly includes the data perception layer, the digital twin data processing layer, and the digital twin application layer. and intelligent construction and operations management.
i.数据感知层及数字孪生体数据处理层:数据感知层可以针对不同信息源对所需检测的区域进行全面感知和采集,主要包括各种类型IoT传感器、悬索索力计算边缘设备、RTK定位技术无人机、行人识别与轨迹追踪模块、人机料法环智能识别模块以及船舶;其中,环境与桥梁结构监测模块以环境检测器和大疆无人机点云扫描为基础,主要对桥梁的内外部环境和主体结构施工情况进行检测,包括周围环境的空气质量、桥梁外围的温度或湿度变化、不同气候条件下的日照时间和桥梁结构的实时施工进度;人机料法环智能识别模块以生物特征识别技术和卫星定位技术为基础,对进出施工现场的人员、设备、原材料进行智能识别和快速定位,进而对相关工法标准和环境影响情况进行评估分析和统筹管理;行人识别与轨迹追踪模块可系统充分利用监控视频的时序、空间关系来优化推理出多摄像机网络拓扑图,主要功能为通过设计和优化行人识别深度学习模型从而实现基于行人外观的行人识别功能,在模型的基础上实现多摄像头之间的动态时延拓扑网络模型为搜索提供较为优化的检测顺序,从而减少搜索的盲目性;数字孪生体数据处理层以桥梁数字孪生体建模为基础,对全面感知的数据进行汇集整理、融合交换、轻量化预处理,最终针对不同模块需求建立有效的信息数据库。数据感知层及数字孪生体数据处理层的具体实现过程如步骤二及步骤三所述,下面介绍以数字孪生体层级架构为基础的智能运维管理平台基本实现过程。i. Data perception layer and digital twin data processing layer: The data perception layer can comprehensively perceive and collect the areas required for detection based on different information sources, mainly including various types of IoT sensors, cable force calculation edge devices, and RTK positioning. Technical drones, pedestrian recognition and trajectory tracking modules, intelligent recognition modules for human-machine, material, law, and environment, and ships; among them, the environment and bridge structure monitoring module is based on environmental detectors and DJI drone point cloud scanning, mainly for bridges Detect the internal and external environment and the construction status of the main structure, including the air quality of the surrounding environment, temperature or humidity changes around the bridge, sunshine time under different climate conditions and the real-time construction progress of the bridge structure; intelligent identification module for man-machine, material, law and environment Based on biometric identification technology and satellite positioning technology, intelligent identification and rapid positioning of personnel, equipment, and raw materials entering and exiting the construction site are carried out, and then relevant construction method standards and environmental impact conditions are evaluated, analyzed, and managed as a whole; pedestrian identification and trajectory tracking The module can systematically make full use of the timing and spatial relationships of surveillance videos to optimize and infer the multi-camera network topology. The main function is to design and optimize the pedestrian recognition deep learning model to realize the pedestrian recognition function based on the appearance of pedestrians. It is implemented on the basis of the model. The dynamic delay topology network model between multiple cameras provides a more optimized detection sequence for the search, thereby reducing the blindness of the search; the digital twin data processing layer is based on the bridge digital twin modeling to collect comprehensively perceived data Organize, integrate and exchange, lightweight preprocessing, and finally establish an effective information database according to different module requirements. The specific implementation process of the data perception layer and digital twin data processing layer is as described in steps two and three. The basic implementation process of the intelligent operation and maintenance management platform based on the digital twin hierarchical architecture is introduced below.
j.数字孪生应用层:数字孪生应用层以数字孪生应用模块为基础,针对该模块相关功能的硬软件实现要求,结合接收的数据预处理层信息进行整合分析。数字孪生应用层以桥梁结构数字孪生体为应用主体,可以实现包括BIM系统、GIS系统、有限元模拟仿真系统、以数据库为基础的综合运维管理系统、预防性评估系统、养护方案制定系统及数字孪生拓展功能等。j. Digital twin application layer: The digital twin application layer is based on the digital twin application module. Based on the hardware and software implementation requirements of the module's related functions, it conducts integrated analysis based on the received data preprocessing layer information. The digital twin application layer takes the digital twin of the bridge structure as the application main body and can implement BIM system, GIS system, finite element simulation system, database-based comprehensive operation and maintenance management system, preventive assessment system, maintenance plan formulation system and Digital twin expansion functions, etc.
具体过程包括:运维管理系统的开发主要涉及脚本语言选定、服务器开发和数据库搭建等步骤。本实施例建议以6D BIM初期信息、现场综合运维信息和数字孪生应用模块转接的有效信息为基础,结合不同工况桥梁反应的历史样本,搭建免费开源的MySQL数据库作为全生命周期运维信息数据库;在高配置计算机中采用具有开放源代码并支持跨平台应用的Apache作为Web服务器软件,便于在不同移动设备上浏览查询相关信息;选用PHP(超文本预处理器)作为Web开发的脚本语言,PHP语言支持绝大多数的操作系统和数据库。基于PHP+Apache+MySQL的开发组合,可以在Windows操作系统上进行项目开发和动态网站的具体功能设计等,最终搭建以数据库为基础的综合运维管理系统。预防性评估系统的主要内容包括对结构桥梁反应进行智能预测及安全评估、对结构损伤部位进行有效识别,主要涉及智能优化算法、模态参数识别、结构损伤识别等知识基础。养护方案制系统主要包括自动化生成维护措施或施工方案等,主要涉及机器学习、知识图谱构建等知识基础。本实施案例建议采用基于res结果文件设置相应设计变量和目标函数的方法,建立不同构件结构参数或材料性能等变化参数与各种结构部位变形之间的映射关系,采用智能优化算法(如深度学习CNN)对特定工况下的桥梁结构桥梁反应进行预测,并借助有限元分析结果验证参数设置合理性及变形预测准确性。深度学习CNN主要用于处理类网格结构的数据,对于有时间序列的实时信息以及图像数据的分析与识别具有显著优势。采用不同桥梁反应变量合理范围的限值控制方法,对结构桥梁反应的预测结果进行安全性、适用性和耐久性综合评估,生成自动化报表、维护措施、施工建议及评估报告。基于现场实测桥梁反应的结构损伤识别过程,本案例建议采用一种先设计模态参数提取方法,得到模态参数识别模型,然后根据模态参数识别结构损伤的检测方法。该检测方法可以识别结构损伤部位并计算损伤指数,再根据损伤指数来判断结构损伤严重程度,进而得到结构损伤的相关检测报告,生成桥梁结构预防性养护决策和健康评估报告。The specific process includes: The development of the operation and maintenance management system mainly involves steps such as script language selection, server development and database construction. This embodiment proposes to build a free and open source MySQL database for full life cycle operation and maintenance based on the initial information of 6D BIM, on-site comprehensive operation and maintenance information and effective information transferred from the digital twin application module, combined with historical samples of bridge responses under different working conditions. Information database; Apache, which has open source code and supports cross-platform applications, is used as the Web server software in high-configuration computers to facilitate browsing and querying related information on different mobile devices; PHP (Hypertext Preprocessor) is selected as the script for Web development Language, PHP language supports most operating systems and databases. Based on the development combination of PHP+Apache+MySQL, project development and specific function design of dynamic websites can be carried out on the Windows operating system, and finally a comprehensive operation and maintenance management system based on the database can be built. The main contents of the preventive assessment system include intelligent prediction and safety assessment of structural bridge reactions, effective identification of structural damage parts, and mainly involve knowledge bases such as intelligent optimization algorithms, modal parameter identification, and structural damage identification. The maintenance plan system mainly includes the automated generation of maintenance measures or construction plans, etc., and mainly involves knowledge bases such as machine learning and knowledge graph construction. This implementation case recommends setting the corresponding design variables and objective functions based on the res result file, establishing a mapping relationship between changing parameters such as structural parameters or material properties of different components and the deformation of various structural parts, and using intelligent optimization algorithms (such as deep learning CNN) predicts the bridge response of the bridge structure under specific working conditions, and uses finite element analysis results to verify the rationality of parameter settings and the accuracy of deformation prediction. Deep learning CNN is mainly used to process data with a grid-like structure, and has significant advantages for the analysis and recognition of time series real-time information and image data. Using the limit control method within the reasonable range of different bridge response variables, the safety, applicability and durability of the prediction results of the structural bridge response are comprehensively evaluated, and automated reports, maintenance measures, construction suggestions and evaluation reports are generated. Based on the structural damage identification process of the bridge response measured on site, this case recommends a detection method that first designs a modal parameter extraction method to obtain a modal parameter identification model, and then identifies structural damage based on the modal parameters. This detection method can identify structural damage parts and calculate the damage index, and then judge the severity of structural damage based on the damage index, and then obtain relevant detection reports of structural damage, and generate preventive maintenance decisions and health assessment reports for the bridge structure.
在数字孪生体修正完善的基础上,可以通过有限元数值模拟的方法实时准确地分析现场工况荷载下结构桥梁反应,这是数字孪生体的“实时感知”基本功能;结合历史样本建立不同工况桥梁反应数据库,这是数字孪生体的“基准建模”基本功能;结合数据库和智能优化算法进行智能预测及安全评估,这是数字孪生体的“精准预测”基本功能。当现场监测到的桥梁运维信息或桥梁结构力学性能参数有变动时,例如构件的几何尺寸误差、材料属性变化、结构新增病害、支座改变等,这些信息将会通过构件细部调整、材料弹性模量及刚度调整、构件连接方式及空间位置调整等人工信息录入方式反映到BIM系统信息的更新过程中,进而通过二次开发插件的转换方式重新生成有限元分析模型;而对于现场工况和结构边界条件等运维信息的变化,可直接通过有限元软件NERAP进行相应的荷载施加及边界单元调整,经过循环迭代的单元参数优化过程,最后将满足特定条件的信息传输至综合运维系统进行储存应用。On the basis of the correction and improvement of the digital twin, the finite element numerical simulation method can be used to accurately analyze the structural bridge response under on-site working conditions in real time. This is the basic function of the digital twin's "real-time perception"; different engineering models can be established based on historical samples. The bridge response database is the basic function of "benchmark modeling" of the digital twin; the combination of the database and intelligent optimization algorithms for intelligent prediction and safety assessment is the basic function of "accurate prediction" of the digital twin. When there are changes in the bridge operation and maintenance information or bridge structure mechanical performance parameters monitored on site, such as component geometric size errors, changes in material properties, new structural diseases, changes in supports, etc., this information will be adjusted through component details, materials, etc. Manual information input methods such as elastic modulus and stiffness adjustment, component connection methods and spatial position adjustment are reflected in the update process of BIM system information, and then the finite element analysis model is regenerated through the conversion method of secondary development plug-ins; and for on-site working conditions Changes in operation and maintenance information such as structural boundary conditions and structural boundary conditions can be directly applied through the finite element software NERAP for corresponding load application and boundary unit adjustment. After an iterative unit parameter optimization process, information that meets specific conditions is finally transmitted to the comprehensive operation and maintenance system. Perform storage applications.
k.智能建造与运维管理层:智能建造与运维管理层可以与数字孪生应用层进行全面的信息交互融合,充分结合计算机硬软件及应用开发优势,搭建满足全生命周期运维管理要求的数字孪生融合平台。该数字孪生融合平台包含了规划设计、施工管理、运营维护等不同阶段的信息模块,整合了3D建筑模型、4D施工进度、5D工程量成本、6D结构分析等不同维度的信息模块,开拓各部门信息录入管理、各分项协同设计交流等模块。k. Intelligent construction and operation and maintenance management: Intelligent construction and operation and maintenance management can conduct comprehensive information interaction and integration with the digital twin application layer, fully combine the advantages of computer hardware and software and application development, and build an intelligent construction and operation and maintenance management system that meets the requirements of full life cycle operation and maintenance. Digital twin fusion platform. This digital twin integration platform includes information modules at different stages such as planning and design, construction management, operation and maintenance, etc. It integrates information modules from different dimensions such as 3D building model, 4D construction progress, 5D project quantity and cost, 6D structural analysis, etc., to develop various departments. Modules such as information entry management, collaborative design and communication of each sub-item.
关于数字孪生融合平台的信息系统搭建和实现过程,主要包括数据库的调用和管理平台的功能开发,可以通过网络编辑技术进行管理平台相关功能开发,通过数据库系统开发技术实现数据的采集、储存和分析,通过API技术实现桥梁BIM模型轻量化处理并在Web端便捷显示,实现轻量化的三维模型与各阶段多维度信息相结合,追求可视化信息的最大化应用。本实施例建议采用浏览器/服务器(Browser/Server)网络系统架构,运用PHP网络编程通过统一的HTML和Javascript语言开发数字孪生智能运维管理平台BIM-MAG的基本应用,使用MySQL数据库系统开发技术实现数据的采集、储存与分析,并与通过WebGL等技术轻量化处理后的BIM模型相结合,最终实现将不同阶段的多维数据统一存储在服务器端。客户端可以通过不同设备的Web端以域名的方式向后台服务器发送请求并进行特定信息的调取及访问,系统可以将基本工程信息、运维管理信息和分析结果信息存储到服务器上,以供客户在BIM-MAG管理平台上进行各种操作、多维度浏览和个性化处理。基本的系统框架分为Web层、业务功能层以及数据访问层,Web层支持用户进行信息查询和信息录入管理等操作;业务功能层用于实施业务和数据规则,主要负责业务功能的处理和实现;数据访问层用于整合存储数据信息并负责数据库的访问和调用,主要包括桥梁设计施工阶段的实体三维模型信息、桥梁运维阶段的各类监测信息、数字孪生应用分析的结果信息等。Regarding the information system construction and implementation process of the digital twin fusion platform, it mainly includes the invocation of the database and the function development of the management platform. The related functions of the management platform can be developed through network editing technology, and the collection, storage and analysis of data can be realized through database system development technology. , using API technology to realize lightweight processing of bridge BIM models and convenient display on the Web, realizing the combination of lightweight 3D models and multi-dimensional information at each stage, and pursuing the maximum application of visual information. This embodiment recommends adopting a browser/server network system architecture, using PHP network programming to develop the basic application of the digital twin intelligent operation and maintenance management platform BIM-MAG through unified HTML and Javascript languages, and using MySQL database system development technology Realize the collection, storage and analysis of data, and combine it with the BIM model processed through lightweight technologies such as WebGL, and finally realize the unified storage of multi-dimensional data at different stages on the server side. Clients can send requests to the backend server in the form of domain names through the Web terminals of different devices and retrieve and access specific information. The system can store basic engineering information, operation and maintenance management information, and analysis result information on the server for later use. Customers perform various operations, multi-dimensional browsing and personalized processing on the BIM-MAG management platform. The basic system framework is divided into Web layer, business function layer and data access layer. The Web layer supports users to perform operations such as information query and information entry management; the business function layer is used to implement business and data rules and is mainly responsible for the processing and implementation of business functions. ; The data access layer is used to integrate and store data information and is responsible for database access and invocation, which mainly includes entity three-dimensional model information in the bridge design and construction stage, various monitoring information in the bridge operation and maintenance stage, and result information of digital twin application analysis, etc.
此外,还可以在智能运维管理平台BIM-MAG的基础上开发多种拓展功能,主要包括:场景加载、分层级浏览、对象访问及搜索等查询功能,针对不同对象的多种控制效果和动画演示功能,以及通过摄像机视角控制、界面数据动态展示、温湿度云图及粒子效果图等各种可视化功能。搭建针对大跨度复杂桥梁结构的数字孪生智能运维管理平台,有助于全生命周期管理的信息技术融合与应用,推进建筑行业从简单的三维信息化向孪生体数字化发展。In addition, a variety of extended functions can be developed based on the intelligent operation and maintenance management platform BIM-MAG, mainly including: scene loading, hierarchical browsing, object access and search and other query functions, as well as various control effects and controls for different objects. Animation demonstration function, as well as various visualization functions such as camera perspective control, dynamic display of interface data, temperature and humidity cloud diagrams, and particle effect diagrams. Building a digital twin intelligent operation and maintenance management platform for large-span complex bridge structures will facilitate the integration and application of information technology in full life cycle management and promote the development of the construction industry from simple three-dimensional informatization to twin digitalization.
本领域技术人员容易理解,以上所述的某大跨度异形塔混合梁悬索桥仅为本发明的某个较佳实施例而已,并不用于限制本发明,凡是在本发明的精神和原则之内所作的相关修改、等同替换或改进等,均属于本发明的保护范围之内。Those skilled in the art can easily understand that the above-mentioned large-span hybrid beam suspension bridge with special-shaped towers is only a preferred embodiment of the present invention and is not intended to limit the present invention. Everything is done within the spirit and principles of the present invention. Relevant modifications, equivalent substitutions or improvements, etc., all fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310983465.2A CN117171842A (en) | 2023-08-04 | 2023-08-04 | Urban slow-moving bridge health monitoring and digital twin system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310983465.2A CN117171842A (en) | 2023-08-04 | 2023-08-04 | Urban slow-moving bridge health monitoring and digital twin system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117171842A true CN117171842A (en) | 2023-12-05 |
Family
ID=88943925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310983465.2A Pending CN117171842A (en) | 2023-08-04 | 2023-08-04 | Urban slow-moving bridge health monitoring and digital twin system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117171842A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117387559A (en) * | 2023-12-12 | 2024-01-12 | 华东交通大学 | Concrete bridge monitoring system and method based on digital twin |
CN117494905A (en) * | 2023-12-27 | 2024-02-02 | 贵州路桥集团有限公司 | Construction method and system for digital counterweight balance arch bridge |
CN117557970A (en) * | 2024-01-12 | 2024-02-13 | 深圳市博安智控科技有限公司 | Intelligent building management method, system and storage medium based on digital twin |
CN117611015A (en) * | 2024-01-22 | 2024-02-27 | 衡水烨通建设工程有限公司 | Real-time monitoring system for quality of building engineering |
CN117629549A (en) * | 2024-01-26 | 2024-03-01 | 辛集中交建设有限公司 | Bridge building health monitoring and safety early warning system |
CN117670242A (en) * | 2023-12-08 | 2024-03-08 | 格瑞利(江苏)智能科技有限公司 | Digital twinning-based smart city management method and system |
CN117787659A (en) * | 2024-02-23 | 2024-03-29 | 中建照明有限公司 | Smart city energy management system and method based on 5G |
CN117824756A (en) * | 2024-02-29 | 2024-04-05 | 深圳市腾信建设股份有限公司 | Building structure monitoring method, equipment and storage medium |
CN117974072A (en) * | 2024-03-29 | 2024-05-03 | 南京峟思工程仪器有限公司 | Processing method and system for vibrating wire type spot welding strain gauge |
CN118032487A (en) * | 2024-04-12 | 2024-05-14 | 同济大学 | Digital twin system for on-line monitoring hole extrusion reinforced plate fatigue damage |
CN118097056A (en) * | 2024-04-29 | 2024-05-28 | 南京信大卫星应用研究院有限公司 | Urban planning construction method and system based on digital twinning |
CN118194409A (en) * | 2024-04-03 | 2024-06-14 | 中路高科交通检测检验认证有限公司 | 3D Visual Construction Management System |
CN118332655A (en) * | 2024-04-26 | 2024-07-12 | 张家口泰保工程监理咨询有限责任公司 | Road and bridge detection method, system and storage medium |
CN118468469A (en) * | 2024-04-25 | 2024-08-09 | 中国建筑第四工程局有限公司 | Tunnel construction monitoring method based on parallel construction superposition effect analysis |
CN118504847A (en) * | 2024-07-19 | 2024-08-16 | 贵州交建信息科技有限公司 | Intelligent beam field management method and system based on digital twin technology |
CN119091262A (en) * | 2024-11-11 | 2024-12-06 | 深圳市城市交通规划设计研究中心股份有限公司 | Road internal void development state early warning method, electronic device and storage medium |
CN119378873A (en) * | 2024-10-16 | 2025-01-28 | 青岛理工大学 | A digital twin intelligent operation, maintenance and evaluation system for energy dissipation and shock absorption components |
-
2023
- 2023-08-04 CN CN202310983465.2A patent/CN117171842A/en active Pending
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117670242A (en) * | 2023-12-08 | 2024-03-08 | 格瑞利(江苏)智能科技有限公司 | Digital twinning-based smart city management method and system |
CN117387559A (en) * | 2023-12-12 | 2024-01-12 | 华东交通大学 | Concrete bridge monitoring system and method based on digital twin |
CN117387559B (en) * | 2023-12-12 | 2024-03-12 | 华东交通大学 | Concrete bridge monitoring system and method based on digital twin |
CN117494905A (en) * | 2023-12-27 | 2024-02-02 | 贵州路桥集团有限公司 | Construction method and system for digital counterweight balance arch bridge |
CN117494905B (en) * | 2023-12-27 | 2024-03-08 | 贵州路桥集团有限公司 | Construction method and system for digital counterweight balance arch bridge |
CN117557970A (en) * | 2024-01-12 | 2024-02-13 | 深圳市博安智控科技有限公司 | Intelligent building management method, system and storage medium based on digital twin |
CN117557970B (en) * | 2024-01-12 | 2024-04-05 | 深圳市博安智控科技有限公司 | Intelligent building management method, system and storage medium based on digital twin |
CN117611015B (en) * | 2024-01-22 | 2024-03-29 | 衡水烨通建设工程有限公司 | Real-time monitoring system for quality of building engineering |
CN117611015A (en) * | 2024-01-22 | 2024-02-27 | 衡水烨通建设工程有限公司 | Real-time monitoring system for quality of building engineering |
CN117629549B (en) * | 2024-01-26 | 2024-04-09 | 辛集中交建设有限公司 | Bridge building health monitoring and safety early warning system |
CN117629549A (en) * | 2024-01-26 | 2024-03-01 | 辛集中交建设有限公司 | Bridge building health monitoring and safety early warning system |
CN117787659A (en) * | 2024-02-23 | 2024-03-29 | 中建照明有限公司 | Smart city energy management system and method based on 5G |
CN117824756B (en) * | 2024-02-29 | 2024-05-28 | 深圳市腾信建设股份有限公司 | Building structure monitoring method, equipment and storage medium |
CN117824756A (en) * | 2024-02-29 | 2024-04-05 | 深圳市腾信建设股份有限公司 | Building structure monitoring method, equipment and storage medium |
CN117974072A (en) * | 2024-03-29 | 2024-05-03 | 南京峟思工程仪器有限公司 | Processing method and system for vibrating wire type spot welding strain gauge |
CN117974072B (en) * | 2024-03-29 | 2024-06-04 | 南京峟思工程仪器有限公司 | Processing method and system for vibrating wire type spot welding strain gauge |
CN118194409B (en) * | 2024-04-03 | 2024-11-15 | 中路高科交通检测检验认证有限公司 | 3D Visual Construction Management System |
CN118194409A (en) * | 2024-04-03 | 2024-06-14 | 中路高科交通检测检验认证有限公司 | 3D Visual Construction Management System |
CN118032487A (en) * | 2024-04-12 | 2024-05-14 | 同济大学 | Digital twin system for on-line monitoring hole extrusion reinforced plate fatigue damage |
CN118468469A (en) * | 2024-04-25 | 2024-08-09 | 中国建筑第四工程局有限公司 | Tunnel construction monitoring method based on parallel construction superposition effect analysis |
CN118468469B (en) * | 2024-04-25 | 2025-01-21 | 中国建筑第四工程局有限公司 | Tunnel construction monitoring method based on parallel construction superposition effect analysis |
CN118332655A (en) * | 2024-04-26 | 2024-07-12 | 张家口泰保工程监理咨询有限责任公司 | Road and bridge detection method, system and storage medium |
CN118097056A (en) * | 2024-04-29 | 2024-05-28 | 南京信大卫星应用研究院有限公司 | Urban planning construction method and system based on digital twinning |
CN118504847A (en) * | 2024-07-19 | 2024-08-16 | 贵州交建信息科技有限公司 | Intelligent beam field management method and system based on digital twin technology |
CN119378873A (en) * | 2024-10-16 | 2025-01-28 | 青岛理工大学 | A digital twin intelligent operation, maintenance and evaluation system for energy dissipation and shock absorption components |
CN119091262A (en) * | 2024-11-11 | 2024-12-06 | 深圳市城市交通规划设计研究中心股份有限公司 | Road internal void development state early warning method, electronic device and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN117171842A (en) | Urban slow-moving bridge health monitoring and digital twin system | |
CN113806978B (en) | Digital Twin and Method of Bridge Structure Based on BIM-FEM | |
Pan et al. | A BIM-data mining integrated digital twin framework for advanced project management | |
Wu et al. | Critical review of data-driven decision-making in bridge operation and maintenance | |
Hu et al. | Digital twin: A state-of-the-art review of its enabling technologies, applications and challenges | |
Yu et al. | Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: advances, challenges, and opportunities | |
CN116843845A (en) | A spatial data integration method and system applied to digital twin cities | |
CN109614697A (en) | A kind of bridge management system based on BIM | |
CN117494905B (en) | Construction method and system for digital counterweight balance arch bridge | |
CN116776444A (en) | Digital twinning-based immersed tube tunnel construction method and system | |
CN117128448A (en) | LNG storage tank structure intelligent monitoring system | |
CN116596321B (en) | Building risk monitoring and evaluating method and system based on neural network | |
CN117387559B (en) | Concrete bridge monitoring system and method based on digital twin | |
Chacón et al. | Digital twinning of building construction processes. Case study: A reinforced concrete cast-in structure | |
CN117371949B (en) | Three-dimensional visual model-based power transmission line construction safety monitoring method and system | |
Hu et al. | An intelligent BIM-enabled digital twin framework for real-time structural health monitoring using wireless IoT sensing, digital signal processing, and structural analysis | |
CN118332655A (en) | Road and bridge detection method, system and storage medium | |
Zou et al. | Systematic framework for post-earthquake bridge inspection through UAV and 3D BIM reconstruction | |
Adebiyi et al. | Digital twins and civil engineering phases: Reorienting adoption strategies | |
CN118246104B (en) | A concrete composite structure assembled building structure system | |
Liu | Research on the design of digital twin system for construction safety | |
CN113987837A (en) | Railway route selection evaluation system and method | |
CN118798830A (en) | Construction progress management method and system of cast-in-place box girder based on BIM | |
CN118551582A (en) | Sluice multi-metadata digital twin method and system | |
Chang et al. | Digital Twins in Transportation Infrastructure: An Investigation of the Key Enabling Technologies, Applications, and Challenges |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |