CN117160483A - Catalyst for treating exhaust emissions from methanol fuel engines and preparation method and application thereof - Google Patents
Catalyst for treating exhaust emissions from methanol fuel engines and preparation method and application thereof Download PDFInfo
- Publication number
- CN117160483A CN117160483A CN202311021817.2A CN202311021817A CN117160483A CN 117160483 A CN117160483 A CN 117160483A CN 202311021817 A CN202311021817 A CN 202311021817A CN 117160483 A CN117160483 A CN 117160483A
- Authority
- CN
- China
- Prior art keywords
- active component
- layer
- carrier
- titanium
- manganese
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 239000003054 catalyst Substances 0.000 title claims abstract description 64
- 239000000446 fuel Substances 0.000 title claims abstract description 10
- 238000002360 preparation method Methods 0.000 title description 12
- 239000010936 titanium Substances 0.000 claims abstract description 42
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 42
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 40
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910052802 copper Inorganic materials 0.000 claims abstract description 37
- 239000010949 copper Substances 0.000 claims abstract description 37
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 31
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 19
- 238000000576 coating method Methods 0.000 claims description 49
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 39
- 239000011248 coating agent Substances 0.000 claims description 39
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 30
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 23
- 229910052726 zirconium Inorganic materials 0.000 claims description 23
- 239000002002 slurry Substances 0.000 claims description 17
- 239000000919 ceramic Substances 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 150000003839 salts Chemical class 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- 238000005470 impregnation Methods 0.000 claims description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 239000011572 manganese Substances 0.000 claims description 10
- 230000003197 catalytic effect Effects 0.000 claims description 9
- 238000003980 solgel method Methods 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 239000002202 Polyethylene glycol Substances 0.000 claims description 6
- 229920001223 polyethylene glycol Polymers 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 238000006068 polycondensation reaction Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims 2
- 230000003301 hydrolyzing effect Effects 0.000 claims 2
- 238000007654 immersion Methods 0.000 claims 2
- 239000012466 permeate Substances 0.000 claims 2
- 238000000975 co-precipitation Methods 0.000 claims 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 abstract description 64
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 abstract description 32
- 235000019253 formic acid Nutrition 0.000 abstract description 32
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 19
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 abstract description 14
- 238000006243 chemical reaction Methods 0.000 abstract description 14
- 229910021529 ammonia Inorganic materials 0.000 abstract description 9
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 abstract description 8
- 229910001928 zirconium oxide Inorganic materials 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 45
- 239000010970 precious metal Substances 0.000 description 27
- 239000007789 gas Substances 0.000 description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 230000036541 health Effects 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 239000006255 coating slurry Substances 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- MECMQNITHCOSAF-UHFFFAOYSA-N manganese titanium Chemical compound [Ti].[Mn] MECMQNITHCOSAF-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000007613 slurry method Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- QDZRBIRIPNZRSG-UHFFFAOYSA-N titanium nitrate Chemical compound [O-][N+](=O)O[Ti](O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O QDZRBIRIPNZRSG-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- -1 titanium ions Chemical class 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
Description
技术领域Technical field
本发明属于甲醇燃料发动机汽车排放的尾气处理领域,具体涉及处理甲醇燃料发动机汽车排放的尾气的催化剂。The invention belongs to the field of exhaust gas treatment for methanol-fueled engine vehicles, and specifically relates to a catalyst for treating exhaust gases emitted from methanol-fueled engine vehicles.
背景技术Background technique
随着汽车数量的不断增加,汽车尾气排放对环境和人类健康带来了严重的影响。甲醛和甲酸是甲醇燃料发动机汽车尾气中的主要有害物质,它们对空气质量和人体健康都有潜在的危害。因此,研发高效的甲醇燃料汽车的尾气处理的催化剂,特别是用于冷启动时降低甲醛和甲酸排放的催化剂具有重要意义。As the number of cars continues to increase, vehicle exhaust emissions have had a serious impact on the environment and human health. Formaldehyde and formic acid are the main harmful substances in vehicle exhaust from methanol-fueled engines. They are potentially harmful to air quality and human health. Therefore, it is of great significance to develop efficient catalysts for exhaust gas treatment of methanol-fueled vehicles, especially catalysts used to reduce formaldehyde and formic acid emissions during cold starts.
目前,针对转化甲醇燃料汽车尾气中甲醛和甲酸的催化剂,主要采用的是含贵金属的传统催化剂。贵金属如铂、钯和铑等具有较高的催化活性和稳定性,能够有效地降解甲醛和甲酸。这些贵金属通常涂覆在蜂窝陶瓷等载体上,形成催化剂。Currently, traditional catalysts containing precious metals are mainly used as catalysts for converting formaldehyde and formic acid in the exhaust of methanol-fueled vehicles. Precious metals such as platinum, palladium and rhodium have high catalytic activity and stability and can effectively degrade formaldehyde and formic acid. These precious metals are usually coated on carriers such as honeycomb ceramics to form catalysts.
然而,现有技术中存在如下问题:首先,贵金属催化剂成本较高。其次,贵金属催化剂对于甲醇燃料汽车尾气中甲醛和甲酸的催化活性有一定的限制,特别是在冷启动时,汽车排气及后处理温度较低,催化剂对甲酸的活性会降低甚至完全失效。最后,甲醇燃料发动机启动时,发动机缝隙中残留的燃料被氧化产生大量的甲醛和甲酸,对于使用尿素水溶液及含氨的防冻液后处理系统的甲醇燃料发动机,排放的甲酸与后处理(主要为混合器和选择性催化还原催化剂等)残留的氨气接触并反应会生成氰化物,对环境和人体健康造成潜在的危害。综上所述,现有技术在甲醇燃料汽车尾气催化剂的开发中存在催化活性不高、成本较高,以及甲醇稀燃发动机后处理可能存在甲酸与氨气反应生成氰化物等问题。因此,有必要研发一种新型催化剂,能够在降低甲醛和甲酸排放的同时解决上述问题。However, there are the following problems in the existing technology: First, the cost of noble metal catalysts is relatively high. Secondly, precious metal catalysts have certain limitations on the catalytic activity of formaldehyde and formic acid in the exhaust of methanol-fueled vehicles. Especially during cold start, when the vehicle exhaust and after-treatment temperatures are low, the activity of the catalyst for formic acid will be reduced or even completely ineffective. Finally, when a methanol-fueled engine is started, the fuel remaining in the engine gaps is oxidized to produce a large amount of formaldehyde and formic acid. For methanol-fueled engines that use urea aqueous solution and ammonia-containing antifreeze after-treatment systems, the formic acid emissions are related to the after-treatment (mainly Mixers and selective catalytic reduction catalysts, etc.) contact and react with residual ammonia to generate cyanide, causing potential harm to the environment and human health. In summary, the existing technology in the development of methanol fuel vehicle exhaust catalysts has problems such as low catalytic activity and high cost, and the post-processing of methanol lean-burn engines may cause the reaction of formic acid and ammonia to generate cyanide. Therefore, it is necessary to develop a new catalyst that can solve the above problems while reducing formaldehyde and formic acid emissions.
发明内容Contents of the invention
为了解决上述技术问题,本发明提供了一种处理甲醇燃料汽车尾气的催化剂,通过分段涂覆不同的催化剂,第一活性组成部分和第二活性组成部分之间配合使用,在不降低催化剂对甲醇转化性能的同时,降低了含贵金属活性组分的涂覆量,并且克服了催化剂对甲酸和甲醛的活性降低,并且克服了排放的甲酸与残留的氨气接触并反应会生成氰化物的问题。In order to solve the above technical problems, the present invention provides a catalyst for treating methanol fuel vehicle exhaust. By coating different catalysts in sections, the first active component and the second active component are used in conjunction with each other without reducing the catalyst's efficiency. While improving methanol conversion performance, it reduces the coating amount of active components containing precious metals, overcomes the reduced activity of the catalyst for formic acid and formaldehyde, and overcomes the problem that discharged formic acid contacts and reacts with residual ammonia to generate cyanide. .
本发明提供了一种处理甲醇燃料汽车尾气的催化剂,所述催化剂包括在载体上涂覆有含贵金属的第一活性组成部分,以及含锰、钛和铜的一种或多种的氧化锆材料的第二活性组成部分;第一活性组成部分涂覆在所述载体的第一层,第二活性组成部分涂覆在第一活性组成部分的上层;或所述第一活性组成部分涂覆在所述载体的第一层后区,所述第二活性组成部分涂覆在所述载体的第一层前区;所述第一层前区为尾气进气端部分,所述第一层后区为尾气出气端部分。The invention provides a catalyst for treating methanol fuel automobile exhaust. The catalyst includes a first active component containing precious metals coated on a carrier, and a zirconium oxide material containing one or more of manganese, titanium and copper. a second active component; the first active component is coated on the first layer of the carrier, and the second active component is coated on the upper layer of the first active component; or the first active component is coated on The rear area of the first layer of the carrier, the second active component is coated on the front area of the first layer of the carrier; the front area of the first layer is the exhaust gas inlet end part, and the rear area of the first layer The area is the exhaust end part of the exhaust gas.
作为本发明的某些实施方案,所述载体选自蜂窝陶瓷、金属载体。As some embodiments of the present invention, the carrier is selected from honeycomb ceramics and metal carriers.
作为本发明的某些实施方案,所述含贵金属的第一活性组成部分的贵金属为含Pt、Rh、和Pd的一种或多种金属氧化物。As some embodiments of the present invention, the noble metal of the first active component containing noble metal is one or more metal oxides containing Pt, Rh, and Pd.
作为本发明的某些实施方案,所述含锰、钛和铜的一种或种的氧化锆材料的第二活性组成部分为高孔隙率多孔材料。As some embodiments of the present invention, the second active component of the zirconia material containing one or more types of manganese, titanium and copper is a high-porosity porous material.
作为本发明的某些实施方案,所述含贵金属的第一活性组成部分的贵金属总量为5~150gpcf。作为本发明的某些实施方案,所述含贵金属的第一活性组成部分的贵金属总量为30~90gpcf。As some embodiments of the present invention, the total amount of precious metals in the first active component containing precious metals is 5 to 150 gpcf. As some embodiments of the present invention, the total amount of precious metals in the first active component containing precious metals is 30 to 90 gpcf.
所述含贵金属的第一活性组成部分的贵金属总量选自5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、130、135、140、145、150、155、160gpcf。The total amount of precious metals in the first active component containing precious metals is selected from 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 130, 135, 140, 145, 150, 155, 160gpcf.
作为本发明的某些实施方案,所述含锰、钛和铜的一种或多种的氧化锆材料的第二活性组成部分的涂覆量,是所述含贵金属的第一活性组成部分涂覆量的1-40%。As some embodiments of the present invention, the coating amount of the second active component of the zirconia material containing one or more of manganese, titanium and copper is the coating amount of the first active component containing noble metal. 1-40% of covering amount.
所述含锰、钛和铜的一种或多种的氧化锆材料的第二活性组成部分的涂覆量为所述含贵金属的第一活性组成部分涂覆量的1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、20、21、22、23、24、25、26、27、28、29、30、30、31、32、33、34、35、36、37、38、39、40%。The coating amount of the second active component of the zirconia material containing one or more of manganese, titanium and copper is 1, 2, 3 or 4 times the coating amount of the first active component containing noble metal. ,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,20,21,22,23,24,25,26,27,28 , 29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40%.
作为本发明的某些实施方案,所述含锰、钛和铜的一种或多种的氧化锆材料第二活性组成部分中含锰、钛、铜比例分别为:锰/锆(wt%):0~40%;钛/锆(wt%):0~40%;铜/锆(wt%):0~10%。As some embodiments of the present invention, the second active component of the zirconia material containing one or more of manganese, titanium and copper contains manganese, titanium and copper in a ratio of: manganese/zirconium (wt%) : 0 to 40%; titanium/zirconium (wt%): 0 to 40%; copper/zirconium (wt%): 0 to 10%.
锰比例选自锰/锆(wt%):0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、20、21、22、23、24、25、26、27、28、29、30、30、31、32、33、34、35、36、37、38、39、40%。The manganese ratio is selected from manganese/zirconium (wt%): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40%.
钛比例选自钛/锆(wt%):0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、20、21、22、23、24、25、26、27、28、29、30、30、31、32、33、34、35、36、37、38、39、40%。The titanium ratio is selected from titanium/zirconium (wt%): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40%.
铜比例选自铜/锆(wt%):0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、20%。The copper ratio is selected from copper/zirconium (wt%): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20%.
作为本发明的某些实施方案,第一活性组成部分采用上加料涂覆或下推浆方式涂覆。As some embodiments of the present invention, the first active component is coated by top-feed coating or push-down slurry.
上加料涂覆是指涂覆的浆料从载体上方被吸进载体的涂覆方式。Top-loading coating refers to a coating method in which the coating slurry is sucked into the carrier from above.
下推浆方式涂覆是指涂覆的浆料从载体下方被挤压进载体的涂覆方式。Push-down slurry coating refers to a coating method in which the coating slurry is squeezed into the carrier from below.
作为本发明的某些实施方案,第二活性组成部分通过溶胶-凝胶法或浸渍法涂覆。As some embodiments of the invention, the second active ingredient is applied by a sol-gel process or a dipping process.
作为本发明的某些实施方案,第二活性组成部分通过溶胶-凝胶涂层方法制备是将易水解的含锰、钛、铜的一种或多种前驱体盐与含锆材料混合溶于去离子水中,加入0.5~5倍前驱体盐质量的柠檬酸,然后再加入2%~30%柠檬酸质量的聚乙二醇,经水解缩聚形成溶胶后烘干,最后在400~700℃高温中热处理后形成活性组分。As some embodiments of the present invention, the second active component is prepared by a sol-gel coating method by mixing one or more precursor salts containing easily hydrolyzable manganese, titanium, and copper with a zirconium-containing material and dissolving in In deionized water, add 0.5 to 5 times the mass of citric acid as the precursor salt, and then add 2% to 30% of the mass of citric acid as polyethylene glycol. After hydrolysis and polycondensation to form a sol, it is dried, and finally heated at a high temperature of 400 to 700°C. The active component is formed after moderate heat treatment.
溶胶-凝胶涂层方法中柠檬酸的加入量选自前驱体盐质量的0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5倍。The amount of citric acid added in the sol-gel coating method is selected from 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5 times.
溶胶-凝胶涂层方法中聚乙二醇的加入量选自柠檬酸质量的2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、20、21、22、23、24、25、26、27、28、29、30%。The amount of polyethylene glycol added in the sol-gel coating method is selected from 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 by mass of citric acid. ,17,18,19,20,20,21,22,23,24,25,26,27,28,29,30%.
溶胶-凝胶涂层方法中高温中热处理的温度选自400、410、420、430、440、450、460、470、480、490、500、500、510、520、530、540、550、560、570、580、590、600、610、620、630、640、650、660、670、680、690、700℃。The temperature of high and medium heat treatment in the sol-gel coating method is selected from 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 500, 510, 520, 530, 540, 550, 560 , 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700℃.
作为本发明的某些实施方案,第二活性组成部分通过浸渍法制备是将含锰、钛、铜的一种或多种前驱体盐介质浸泡在含锆材料中,使介质渗透到材料表面并形成涂层,然后在400~700℃高温中焙烧形成活性组分。As some embodiments of the present invention, the second active component is prepared by an impregnation method, which involves soaking one or more precursor salt media containing manganese, titanium, and copper in a zirconium-containing material, allowing the media to penetrate into the surface of the material and The coating is formed and then fired at a high temperature of 400 to 700°C to form the active component.
浸渍法制备中高温中焙烧温度选自400、410、420、430、440、450、460、470、480、490、500、500、510、520、530、540、550、560、570、580、590、600、610、620、630、640、650、660、670、680、690、700℃。The medium to high temperature and medium roasting temperatures prepared by the impregnation method are selected from 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700℃.
作为本发明的某些实施方案,第二活性组成部分通过溶胶-凝胶法或浸渍法制备后的与去离子水混合配置成固含量在10-60%w/w浆料,搅拌均匀后研磨得到所需的第二活性组成部分浆料。As some embodiments of the present invention, the second active component prepared by the sol-gel method or impregnation method is mixed with deionized water to form a slurry with a solid content of 10-60% w/w, stirred evenly and then ground. The desired second active ingredient slurry is obtained.
浆料固含量选自10、11、12、13、14、15、16、17、18、19、20、20、21、22、23、24、25、26、27、28、29、30、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60%w/w。The solid content of the slurry is selected from 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60% w/w.
作为本发明的某些实施方案,所述载体的第一层后区长度为大于或等于所述载体的长度1/2;所述载体的第一层前区为小于等于所述载体的长度1/2的前半部分。As some embodiments of the present invention, the length of the rear area of the first layer of the carrier is greater than or equal to 1/2 of the length of the carrier; the length of the front area of the first layer of the carrier is less than or equal to the length 1 of the carrier The first half of /2.
本发明提供了一种制备所述催化剂的方法,所述方法包括如下步骤:在所述载体的第一层涂覆第一活性组成部分,在涂覆了第一活性组成部分的第一层之上涂覆第二活性组成部分,作为第二层;或在所述载体的第一层后区涂覆第一活性组成部分,在所述载体的第一层前区涂覆第二活性组成部分;所述载体的第一层前区为尾气进气端部分,所述载体第一层后区为尾气出气端部分;其中,所述第一活性组成部分为含贵金属的第一活性组成部分,其中贵金属为含Pt、Rh、和Pd的一种或多种金属氧化物,所述第二活性组成部分为含锰、钛或铜的一种或种的氧化锆材料。The invention provides a method for preparing the catalyst. The method includes the following steps: coating a first active component on the first layer of the carrier, and coating the first layer on the first active component. Coating a second active component on the carrier as the second layer; or coating the first active component on the rear area of the first layer of the carrier, and coating the second active component on the front area of the first layer of the carrier ; The front area of the first layer of the carrier is the exhaust gas inlet end part, and the rear area of the first layer of the carrier is the exhaust gas outlet end part; wherein, the first active component is a first active component containing precious metal, The noble metal is one or more metal oxides containing Pt, Rh, and Pd, and the second active component is a zirconium oxide material containing one or more types of manganese, titanium, or copper.
作为本发明的某些实施方案,所述载体选自蜂窝陶瓷、金属载体。As some embodiments of the present invention, the carrier is selected from honeycomb ceramics and metal carriers.
作为本发明的某些实施方案,所述含贵金属的第一活性组成部分的贵金属总量为5~150gpcf。作为本发明的某些实施方案,所述含贵金属的第一活性组成部分的贵金属总量为30~90gpcf。As some embodiments of the present invention, the total amount of precious metals in the first active component containing precious metals is 5 to 150 gpcf. As some embodiments of the present invention, the total amount of precious metals in the first active component containing precious metals is 30 to 90 gpcf.
作为本发明的某些实施方案,所述含锰、钛和/或铜的一种或多种的氧化锆材料的第二活性组成部分的涂覆量,是所述含贵金属的第一活性组成部分涂覆量的1-40%。As some embodiments of the present invention, the coating amount of the second active component of the zirconia material containing one or more of manganese, titanium and/or copper is the first active component containing noble metal. 1-40% of partial coating amount.
作为本发明的某些实施方案,所述含锰、钛和/或铜的一种或多种的氧化锆材料的第二活性组成部分中含锰、钛、铜的比例分别为:锰/锆(wt%):0~40%;钛/锆(wt%):0~40%;铜/锆(wt%):0~10%。As some embodiments of the present invention, the second active component of the zirconium oxide material containing one or more types of manganese, titanium and/or copper contains manganese, titanium and copper in a ratio of: manganese/zirconium respectively. (wt%): 0 to 40%; titanium/zirconium (wt%): 0 to 40%; copper/zirconium (wt%): 0 to 10%.
作为本发明的某些实施方案,所述步骤(1)中所述第一活性组成部分采用上加料涂覆或下推浆方式涂覆;所述步骤(2)中所述第二活性组成部分通过溶胶-凝胶法、或浸渍法涂覆。As some embodiments of the present invention, the first active component in the step (1) is coated by top-feed coating or push-down slurry; the second active component in the step (2) Coating by sol-gel method or dipping method.
作为本发明的某些实施方案,所述步骤(2)中所述第二活性组成部分通过溶胶-凝胶涂层方法制备,是将易水解的含锰、钛、铜的一种或多种前驱体盐与含锆材料混合溶于去离子水中,加入0.5~5倍前驱体盐质量的柠檬酸,然后再加入2%~30%柠檬酸质量的聚乙二醇,经水解缩聚形成溶胶后烘干,最后在400~700℃高温中热处理后形成活性组分。As some embodiments of the present invention, the second active component in step (2) is prepared by a sol-gel coating method, which is one or more easily hydrolyzable compounds containing manganese, titanium, and copper. The precursor salt and the zirconium-containing material are mixed and dissolved in deionized water, 0.5 to 5 times the mass of the precursor salt is added in citric acid, and then 2% to 30% of the mass of citric acid polyethylene glycol is added. After hydrolysis and polycondensation to form a sol After drying and finally heat treatment at a high temperature of 400 to 700°C, the active component is formed.
作为本发明的某些实施方案,所述第二活性组成部分通过浸渍法制备,是将含锰、钛、铜的一种或多种前驱体盐介质浸泡在含锆材料中,然后使介质渗透到材料表面并形成涂层,然后在400~700℃高温中焙烧形成活性组分。As some embodiments of the present invention, the second active component is prepared by an impregnation method, which involves soaking one or more precursor salt media containing manganese, titanium, and copper in a zirconium-containing material, and then permeating the media It reaches the surface of the material and forms a coating, and then is fired at a high temperature of 400 to 700°C to form active components.
作为本发明的某些实施方案,所述第二活性组成部分通过溶胶-凝胶法或浸渍法制备后的与去离子水混合配置成固含量在10-60%浆料,搅拌均匀后研磨得到所需的第二活性组成部分浆料。As some embodiments of the present invention, the second active component prepared by the sol-gel method or impregnation method is mixed with deionized water to form a slurry with a solid content of 10-60%, stirred evenly and then ground to obtain Desired second active ingredient slurry.
作为本发明的某些实施方案,所述载体的第一层后区的长度为大于或等于所述载体的长度1/2;所述载体的第一层前区的长度为小于等于所述载体的长度1/2。As some embodiments of the present invention, the length of the rear area of the first layer of the carrier is greater than or equal to 1/2 of the length of the carrier; the length of the front area of the first layer of the carrier is less than or equal to the length of the carrier length 1/2.
本发明还提供了所述的催化剂在催化处理甲醇燃料汽车尾气中的用途。The invention also provides the use of the catalyst in catalytically treating methanol fuel automobile exhaust.
如上所述,本发明的一种处理甲醇燃料发动机汽车排放的尾气的催化剂及其制备方法和应用,具有以下有益效果:As mentioned above, the catalyst of the present invention for treating exhaust gas emitted by methanol-fueled engine vehicles and its preparation method and application have the following beneficial effects:
1、在蜂窝陶瓷的第一层或第一层后区上涂覆含贵金属的第一活性组成部分。这一技术手段能够满足排温处于中高温度段对甲醇、甲醛和甲酸的降解效率,从而满足催化剂活性需求。1. Coat the first active component containing precious metal on the first layer or the rear area of the first layer of honeycomb ceramics. This technical means can meet the degradation efficiency of methanol, formaldehyde and formic acid in the medium and high exhaust temperature range, thereby meeting the catalyst activity requirements.
2、在蜂窝陶瓷的第二层或第一层前区上涂覆含锰、钛或铜的一种或多种的氧化锆材料,作为第二活性组成部分。这一技术手段可以减少对贵金属的需求,降低催化剂的成本。第二活性组成部分可以在第一活性组成部分或载体的表面形成一层高孔隙率的组分,在低温时吸附,高温时释放甲醛及甲酸。进而提高催化剂对甲醛和甲酸的降解效率。2. Coat the second layer or the front area of the first layer of the honeycomb ceramic with one or more zirconium oxide materials containing manganese, titanium or copper as the second active component. This technical means can reduce the demand for precious metals and reduce the cost of catalysts. The second active component can form a layer of high-porosity component on the surface of the first active component or carrier, which absorbs at low temperatures and releases formaldehyde and formic acid at high temperatures. This further improves the catalyst's degradation efficiency of formaldehyde and formic acid.
通过上述催化剂的结构,也能够避免甲醇稀燃发动机冷启动产生的甲酸与后处理(主要为混合器和选择性催化还原催化剂等)残留氨气接触并反应生成氰化物。即,第二活性组成部分的存在可以在低温时吸附,高温时释放甲醛及甲酸。避免低温时甲酸和氨气接触,阻止氰化物的生成,因此可以有效减少对环境和人体健康的潜在危害。Through the structure of the above catalyst, it is also possible to prevent the formic acid produced by the cold start of the methanol lean-burn engine from contacting the residual ammonia gas in the post-processing (mainly the mixer and selective catalytic reduction catalyst, etc.) and reacting to generate cyanide. That is, the presence of the second active component can adsorb formaldehyde and formic acid at low temperatures and release formaldehyde and formic acid at high temperatures. Avoid contact between formic acid and ammonia at low temperatures and prevent the formation of cyanide, thus effectively reducing potential harm to the environment and human health.
3、本发明催化剂的第二活性组成部分和第一活性组成部分之间发生了协同作用,增加了中高温下甲醇、甲醛和甲酸的转化效率。3. A synergistic effect occurs between the second active component and the first active component of the catalyst of the present invention, which increases the conversion efficiency of methanol, formaldehyde and formic acid at medium and high temperatures.
综上所述,本申请的技术方案通过在蜂窝陶瓷的第一层或第一层后区涂覆含第一活性组成部分,以及在第二层或第一层前区涂覆含第二催化试,来提高催化剂的催化活性,降低成本,并避免甲酸与氨气反应生成氰化物。这通过第一活性组成部分和第二活性组成部分的共同作用,可以有效实现成本降低、排放温度低于300℃时甲醛和甲酸排放明显降低以及甲醇稀燃发动机排放不产生氰化物。In summary, the technical solution of this application is to coat the first layer or the rear area of the honeycomb ceramics with the first active component, and to coat the second layer or the front area of the first layer with the second catalytic component. Test to improve the catalytic activity of the catalyst, reduce costs, and avoid the reaction of formic acid and ammonia to form cyanide. Through the joint action of the first active component and the second active component, it is possible to effectively reduce costs, significantly reduce formaldehyde and formic acid emissions when the emission temperature is lower than 300°C, and produce no cyanide in methanol lean-burn engine emissions.
附图说明Description of drawings
图1显示为本发明实施例与参比例中催化剂甲醇稀燃发动机台架甲醇转化率、甲酸和氰化物生成量随温度变化曲线图。Figure 1 shows a graph showing changes in methanol conversion rate, formic acid and cyanide production with temperature on a catalyst methanol lean-burn engine bench in Examples and Reference Examples of the present invention.
具体实施方式Detailed ways
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The present invention will be further described below with reference to specific examples. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of protection of the present invention. Those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments. Various details in this specification can also be modified or changed in various ways based on different viewpoints and applications without departing from the spirit of the present invention.
应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围;在本发明说明书和权利要求书中,除非文中另外明确指出,单数形式“一个”、“一”和“这个”包括复数形式。当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。It should be understood that the terms used in the embodiments of the present invention are for describing specific embodiments, and are not intended to limit the scope of the present invention; in the description and claims of the present invention, unless the context clearly indicates otherwise, the singular form "a ”, “a” and “the” include the plural form. When the examples give numerical ranges, it should be understood that, unless otherwise stated in the present invention, both endpoints of each numerical range and any value between the two endpoints can be selected.
除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In addition to the specific methods, equipment, and materials used in the embodiments, those skilled in the art can also use methods, equipment, and materials described in the embodiments of the present invention based on their understanding of the prior art and the description of the present invention. Any methods, equipment and materials similar or equivalent to those in the prior art may be used to implement the present invention.
除非另外说明,本发明中所公开的实验方法、检测方法、制备方法均采用本技术领域常规的及相关领域的常规技术。Unless otherwise stated, the experimental methods, detection methods, and preparation methods disclosed in the present invention all adopt conventional techniques in this technical field and related fields.
制备实施例1本发明甲醇燃料汽车尾气催化剂的制备方法Preparation Example 1 Preparation method of methanol fuel automobile exhaust catalyst of the present invention
本申请的催化剂的结构包括涂覆在蜂窝陶瓷上的第一层和/或第二层,第一层涂覆含贵金属传统催化剂,第二层涂覆含锰、钛和铜的一种或多种的氧化锆材料,或第一层后区涂覆含贵金属传统催化剂,第一层前区涂覆含锰、钛和铜的一种或多种的氧化锆材料。第一层前区为尾气进气端部分,第一层后区为尾气出气端部分。具体制备方法如下:The structure of the catalyst of the present application includes a first layer and/or a second layer coated on honeycomb ceramics. The first layer is coated with a traditional catalyst containing precious metals, and the second layer is coated with one or more catalysts containing manganese, titanium and copper. A kind of zirconium oxide material, or the back area of the first layer is coated with a traditional catalyst containing precious metals, and the front area of the first layer is coated with one or more zirconium oxide materials containing manganese, titanium and copper. The front area of the first layer is the exhaust gas inlet end part, and the rear area of the first layer is the exhaust gas outlet part. The specific preparation method is as follows:
步骤1:准备含贵金属传统催化剂的涂料。将总量50gpcf(克/立方英尺)贵金属比例Pt/Rh/Pd=5:2:1的金属溶液与含铈、铝的金属氧化物材料进行搅拌混合,然后研磨,制成浆料。Step 1: Prepare coatings containing precious metal traditional catalysts. Stir and mix a metal solution with a precious metal ratio of Pt/Rh/Pd = 5:2:1 in a total amount of 50 gpcf (grams per cubic foot) and a metal oxide material containing cerium and aluminum, and then grind it to form a slurry.
步骤2:涂覆第一层或第一层后区。将步骤1得到的浆料采用下推浆方式均匀地涂覆在蜂窝陶瓷的第一层后区上。涂覆长度为载体长度的1/2。Step 2: Apply the first coat or first coat back area. Apply the slurry obtained in step 1 evenly on the rear area of the first layer of honeycomb ceramics using a push-down slurry method. The coating length is 1/2 the length of the carrier.
步骤3:固定涂料。在500℃/2h空气气氛下通过烧结工艺将涂料固定在蜂窝陶瓷的第一层后区上。Step 3: Set paint. The coating is fixed on the rear area of the first layer of honeycomb ceramics through a sintering process under an air atmosphere of 500°C/2h.
步骤4:准备含锰、钛的氧化锆材料的浆料。以2C4H6MnO4·4H2O:1Ti(NO3)2:7Zr(NO3)4(C4H6MnO4·4H2O和Ti(NO3)2以及Zr(NO3)4摩尔比为2:1:7)为前驱体,采用溶液-溶胶的方法,首先将上述前驱体溶于去离子水中,加入2倍锰和钛离子质量的柠檬酸(柠檬酸质量为锰和钛的元素质量和的2倍),然后再加入10%柠檬酸质量的聚乙二醇,在80℃下搅拌至溶液沉透明状。最后110℃烘干2h转入500℃马弗炉中,空气气氛焙烧5h。将上述通过溶液-溶胶方法制备的含锰、钛的氧化锆材料与去离子水配置成固含量35%水性涂料。Step 4: Prepare the slurry of zirconia material containing manganese and titanium. Take 2C 4 H 6 MnO 4 ·4H 2 O: 1Ti(NO 3 ) 2 : 7Zr(NO 3 ) 4 (C 4 H 6 MnO 4 ·4H 2 O and Ti(NO 3 ) 2 and Zr(NO 3 ) 4 The molar ratio is 2:1:7) as the precursor, using the solution-sol method. First, dissolve the above precursor in deionized water, and add citric acid with 2 times the mass of manganese and titanium ions (the mass of citric acid is manganese and titanium). 2 times the sum of the mass of elements), then add 10% polyethylene glycol by mass of citric acid, and stir at 80°C until the solution becomes transparent. Finally, it was dried at 110°C for 2 hours, transferred to a muffle furnace at 500°C, and roasted in an air atmosphere for 5 hours. The manganese- and titanium-containing zirconia materials prepared by the solution-sol method were mixed with deionized water to form a water-based coating with a solid content of 35%.
步骤5:涂覆第一层前区。将步骤4得到的浆料采用下推浆方式均匀地涂覆在蜂窝陶瓷的第一层前区上。涂覆长度为载体长度的1/2,涂覆量为第一活性组成部分涂覆量的20%。Step 5: Apply the first coat of front area. Apply the slurry obtained in step 4 evenly on the front area of the first layer of honeycomb ceramics using a push-down slurry method. The coating length is 1/2 of the carrier length, and the coating amount is 20% of the coating amount of the first active component.
步骤6:固定涂料。在500℃/2h空气气氛下通过烧结工艺将涂层固定在蜂窝陶瓷的第一层前区上。Step 6: Set paint. The coating is fixed on the front area of the first layer of honeycomb ceramics through a sintering process under an air atmosphere of 500°C/2h.
制备实施例2Preparation Example 2
重复实施例1的步骤1、2和3制得相同贵金属浓度比例含第一层后区的蜂窝陶瓷载体催化剂。Repeat steps 1, 2 and 3 of Example 1 to prepare a honeycomb ceramic carrier catalyst containing the first layer back zone with the same precious metal concentration ratio.
步骤4:准备与实施例1相同比例含锰、钛的氧化锆材料的浆料。将硝酸锰与硝酸钛溶于去离子水中,采用浸渍法,浸渍在氧化锆粉体上。然后110℃烘干2h转移至650℃马弗炉中,空气气氛焙烧2h。将上述通过浸渍方法制备的含锰、钛的氧化锆材料配置成固含量35%水性涂料。Step 4: Prepare a slurry of zirconium oxide material containing manganese and titanium in the same proportion as in Example 1. Dissolve manganese nitrate and titanium nitrate in deionized water, and use the impregnation method to impregnate the zirconia powder. Then it was dried at 110°C for 2 hours, transferred to a muffle furnace at 650°C, and roasted in an air atmosphere for 2 hours. The manganese-titanium-containing zirconia material prepared by the impregnation method was configured into a water-based coating with a solid content of 35%.
重复实施例1的步骤5和6。最终制得催化剂。Repeat steps 5 and 6 of Example 1. Finally, the catalyst is obtained.
参比例:Reference ratio:
重复上述步骤1、2和3制得相同贵金属浓度比例,且涂覆量与本申请的实施例制备方法的催化剂成品的第一活性组成部分和第二活性组成部分总量相同。Repeat the above steps 1, 2 and 3 to obtain the same precious metal concentration ratio, and the coating amount is the same as the total amount of the first active component and the second active component of the finished catalyst according to the embodiment preparation method of the present application.
催化剂性能评价:将通过以上制备得到的催化剂封装,并在甲醇稀燃发动机台架上,根据GB17691-2018法规要求测试催化剂稳态点甲醇转化效率及甲酸、氰化物排放值。所得结果如附图1所示。Catalyst performance evaluation: The catalyst prepared above was packaged and placed on a methanol lean-burn engine bench to test the catalyst steady-state methanol conversion efficiency and formic acid and cyanide emission values in accordance with the requirements of GB17691-2018 regulations. The results obtained are shown in Figure 1.
实施例3制备实施例1、2和参比例的催化剂的催化效果Example 3 Catalytic effects of catalysts prepared in Examples 1, 2 and Reference Examples
由发动机台架测试结果图1可知:It can be seen from the engine bench test results in Figure 1:
1、制备实施例1、2两种不同方法制备的第二活性组成部分组分涂覆后得到的催化剂对污染物的转化性能基本一致。1. The catalysts obtained after coating the second active component prepared by two different methods in Preparation Examples 1 and 2 have basically the same conversion performance on pollutants.
2、三个催化剂样品对甲醇的转化性能基本一致,低温段本发明的催化剂对甲醇的转化的性能稍好。表明制备实施例1、2催化剂以较低成本实现相同催化性能的要求。2. The methanol conversion performance of the three catalyst samples is basically the same, and the methanol conversion performance of the catalyst of the present invention in the low-temperature section is slightly better. It shows that the catalysts of Preparation Examples 1 and 2 can achieve the same catalytic performance requirements at a lower cost.
3、本发明的催化剂在低温时甲酸生成量明显低于参比例催化剂,表明涂覆的第一层前区组分增加了催化剂对甲酸的低温活性。3. The amount of formic acid generated by the catalyst of the present invention at low temperature is significantly lower than that of the reference catalyst, indicating that the coated first layer of front zone components increases the low-temperature activity of the catalyst towards formic acid.
4、本发明的催化剂基本未检测到氰化物的生成,表明涂覆的第一层前区组分避免了甲酸与氨气反应生成氰化物的问题。4. The catalyst of the present invention basically does not detect the formation of cyanide, indicating that the coated first layer of front zone components avoids the problem of cyanide generated by the reaction between formic acid and ammonia.
5、制备实施例1、2两种不同方法制备的第一活性组成部分中贵金属及涂敷量低于参比例的催化剂贵金属比例和涂敷量,然而两实施例催化剂对甲醇转化效率与参比样基本一致。说明本发明第二活性组成部分和第一活性组成部分之间发生了协同作用,确保了对甲醇的转化效率。5. The precious metal proportion and coating amount of the first active component prepared by two different methods in Preparation Examples 1 and 2 are lower than the precious metal proportion and coating amount of the catalyst of the reference ratio. However, the methanol conversion efficiency of the catalysts in the two examples is different from that of the reference ratio. Basically the same. This shows that there is a synergistic effect between the second active component and the first active component of the present invention, ensuring the conversion efficiency of methanol.
综上,该催化剂的制备方法简单、成本较低,适用于甲醇稀燃发动机冷启动时排放的甲醛和甲酸的催化降解,避免了甲酸与氨气反应生成氰化物,能大规模生产和应用。In summary, the preparation method of this catalyst is simple and low-cost. It is suitable for the catalytic degradation of formaldehyde and formic acid emitted during cold start of methanol lean-burn engines. It avoids the reaction of formic acid and ammonia to generate cyanide, and can be produced and applied on a large scale.
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。The above are only preferred embodiments of the present invention, and do not limit the present invention in any form or substance. It should be pointed out that for those of ordinary skill in the art, without departing from the methods of the present invention, they will also Several improvements and additions can be made, and these improvements and additions should also be considered as the protection scope of the present invention. Those skilled in the art who are familiar with the art can make slight changes, modifications and equivalent changes based on the technical content disclosed above without departing from the spirit and scope of the invention. Equivalent embodiments; at the same time, any equivalent changes, modifications and evolutions made to the above embodiments based on the essential technology of the present invention still fall within the scope of the technical solution of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311021817.2A CN117160483A (en) | 2023-08-14 | 2023-08-14 | Catalyst for treating exhaust emissions from methanol fuel engines and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311021817.2A CN117160483A (en) | 2023-08-14 | 2023-08-14 | Catalyst for treating exhaust emissions from methanol fuel engines and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117160483A true CN117160483A (en) | 2023-12-05 |
Family
ID=88936681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311021817.2A Pending CN117160483A (en) | 2023-08-14 | 2023-08-14 | Catalyst for treating exhaust emissions from methanol fuel engines and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117160483A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070064068A (en) * | 2005-12-16 | 2007-06-20 | 에스케이 주식회사 | Manufacturing method of oxidation catalyst for exhaust gas purification of diesel engine |
CN109174077A (en) * | 2018-10-17 | 2019-01-11 | 安徽菲扬新材料有限公司 | A kind of vehicle maintenance service catalyst and preparation method thereof |
CN111939898A (en) * | 2020-09-08 | 2020-11-17 | 中自环保科技股份有限公司 | Methanol fuel automobile exhaust purification catalyst and preparation method thereof |
CN111939917A (en) * | 2020-08-26 | 2020-11-17 | 无锡威孚环保催化剂有限公司 | DPF catalyst with good sulfur resistance and preparation method thereof |
CN116571271A (en) * | 2023-07-14 | 2023-08-11 | 无锡威孚环保催化剂有限公司 | Non-noble metal catalyst suitable for treating various VOCs and preparation method thereof |
-
2023
- 2023-08-14 CN CN202311021817.2A patent/CN117160483A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070064068A (en) * | 2005-12-16 | 2007-06-20 | 에스케이 주식회사 | Manufacturing method of oxidation catalyst for exhaust gas purification of diesel engine |
CN109174077A (en) * | 2018-10-17 | 2019-01-11 | 安徽菲扬新材料有限公司 | A kind of vehicle maintenance service catalyst and preparation method thereof |
CN111939917A (en) * | 2020-08-26 | 2020-11-17 | 无锡威孚环保催化剂有限公司 | DPF catalyst with good sulfur resistance and preparation method thereof |
CN111939898A (en) * | 2020-09-08 | 2020-11-17 | 中自环保科技股份有限公司 | Methanol fuel automobile exhaust purification catalyst and preparation method thereof |
CN116571271A (en) * | 2023-07-14 | 2023-08-11 | 无锡威孚环保催化剂有限公司 | Non-noble metal catalyst suitable for treating various VOCs and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
赵振东等: "《汽车设计》", vol. 1, 31 January 2020, 《机械工业出版社》, pages: 304 - 305 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100553748C (en) | nitrogen oxide removal catalyst system and nitrogen oxide removal method | |
CN104415780B (en) | A kind of denitrating catalyst and preparation method thereof | |
CN114247448B (en) | Oxidation catalyst for exhaust gas post-treatment of diesel engine and its manufacturing method | |
CN104353457B (en) | Exhaust gas purifying catalyst and method for manufacturing the same | |
CN102909020B (en) | Sulfur-resistant catalytic-combustion catalyst and preparation method thereof | |
CN109590014B (en) | Integral diesel vehicle tail gas oxidation catalyst and preparation method thereof | |
CN102527402A (en) | Catalyst combinations and methods and systems for oxidizing nitric oxide in a gas stream | |
CN102188971B (en) | Quadruple effect catalyst of diesel tail gas and preparation method and application of quadruple effect catalyst | |
CN101352682B (en) | A kind of preparation method of pre-oxidation catalyst for diesel vehicle | |
CN105121008A (en) | Catalyst composition and exhaust gas purifying method | |
CN113600188B (en) | Catalyst for purifying tail gas of gasoline car and preparation method thereof | |
CN101007274A (en) | Preparation method of rare earth composite oxides coating Pt-supported catalyst | |
CN112058261B (en) | Integral diesel exhaust gas oxidation catalyst, preparation method and application | |
CN116723888A (en) | Preparation of supported metal nanoparticles using polyamines for three-way catalytic applications | |
CN100482341C (en) | Catalyst for decontaminating tail gas of motorcar and preparation method | |
CN111715223A (en) | Novel Pd-Rh three-way catalyst and preparation method thereof | |
CN117769459A (en) | Polymaleic acid-assisted metal nanoparticle synthesis for three-way catalytic applications | |
CN114251158A (en) | Diesel engine exhaust particulate matter catalytic filter and manufacturing method thereof | |
CN100374199C (en) | A kind of preparation method of cerium-zirconium composite oxide supported palladium catalyst | |
JPH10258232A (en) | Catalyst for exhaust gas purification and manufacture thereof | |
CN117160483A (en) | Catalyst for treating exhaust emissions from methanol fuel engines and preparation method and application thereof | |
CN112246251B (en) | Natural gas automobile exhaust purification catalyst and preparation method thereof | |
WO2012160437A1 (en) | Exhaust gas control system, exhaust gas purification catalyst and method for the production of exhaust gas purification catalyst | |
CN116510747A (en) | Three-way catalyst and preparation method thereof | |
CN112316961B (en) | Automobile exhaust treatment catalyst and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |