CN117145792B - Fan abnormal noise detection method and fan abnormal noise detection system - Google Patents
Fan abnormal noise detection method and fan abnormal noise detection system Download PDFInfo
- Publication number
- CN117145792B CN117145792B CN202310146410.6A CN202310146410A CN117145792B CN 117145792 B CN117145792 B CN 117145792B CN 202310146410 A CN202310146410 A CN 202310146410A CN 117145792 B CN117145792 B CN 117145792B
- Authority
- CN
- China
- Prior art keywords
- sound source
- cooling fan
- sound
- source signal
- recording element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002159 abnormal effect Effects 0.000 title claims abstract description 285
- 238000001514 detection method Methods 0.000 title claims abstract description 231
- 238000001816 cooling Methods 0.000 claims abstract description 407
- 238000012360 testing method Methods 0.000 claims abstract description 77
- 238000000034 method Methods 0.000 claims abstract description 54
- 230000007246 mechanism Effects 0.000 claims abstract description 40
- 230000008569 process Effects 0.000 claims abstract description 28
- 230000003595 spectral effect Effects 0.000 claims description 111
- 238000001228 spectrum Methods 0.000 claims description 98
- 238000001914 filtration Methods 0.000 claims description 53
- 230000017525 heat dissipation Effects 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 238000005070 sampling Methods 0.000 claims description 11
- 230000035945 sensitivity Effects 0.000 claims description 10
- 239000000284 extract Substances 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 5
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000036544 posture Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000012074 hearing test Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/001—Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及测试技术领域,尤其涉及一种风扇异音检测方法及风扇异音检测系统。The present application relates to the field of testing technology, and in particular to a fan abnormal noise detection method and a fan abnormal noise detection system.
背景技术Background Art
随着电子技术的不断发展,笔记本电脑等电子设备逐渐成为人们生活和工作中较为常用的工具。笔记本电脑等电子设备在运行过程中会产生一定的热量,为了可以将产生的热量及时排出到外界的空气中,一些电子设备内可设置有散热风扇进行散热。With the continuous development of electronic technology, electronic devices such as laptops have gradually become more commonly used tools in people's lives and work. Laptops and other electronic devices will generate a certain amount of heat during operation. In order to discharge the generated heat to the outside air in time, some electronic devices may be equipped with cooling fans for heat dissipation.
散热风扇在加工、装配过程中可能会存在一些缺陷,这些存在缺陷的散热风扇在运转过程中可能会产生异音,从而给消费者带来不好的直观感受。因此,如何筛选出没有异音的散热风扇是一个需要解决的问题。There may be some defects in the processing and assembly of cooling fans. These defective cooling fans may produce abnormal noise during operation, which will bring bad intuitive experience to consumers. Therefore, how to screen out cooling fans without abnormal noise is a problem that needs to be solved.
发明内容Summary of the invention
本申请实施例提供一种风扇异音检测方法及风扇异音检测系统,通过在散热风扇以多个不同的预设转速进行运转,且散热风扇和至少一个录音元件同步旋转至多个不同的旋转角度时,对散热风扇的音源信号均进行采集,提高了散热风扇异音检测结果的准确性。The embodiments of the present application provide a fan abnormal sound detection method and a fan abnormal sound detection system, which improves the accuracy of the abnormal sound detection results of the cooling fan by collecting the sound source signals of the cooling fan when the cooling fan runs at multiple different preset speeds and the cooling fan and at least one recording element rotate synchronously to multiple different rotation angles.
第一方面,本申请实施例提出一种风扇异音检测方法,应用于风扇异音检测系统,风扇异音检测系统包括音源采集装置和异音检测模块,音源采集装置包括驱动机构、测试底板、至少一个录音元件和风扇控制模块,驱动机构分别与测试底板和至少一个录音元件相连,测试底板上固定有散热风扇,风扇控制模块与散热风扇电连接,至少一个录音元件与异音检测模块电连接。该方法包括:风扇控制模块控制散热风扇依次以多个不同的预设转速进行运转;在散热风扇以每个预设转速进行运转的情况下,驱动机构带动测试底板上的散热风扇和至少一个录音元件同步旋转至多个不同的旋转角度;在散热风扇以每个预设转速进行运转,且散热风扇和至少一个录音元件同步旋转至每个旋转角度的情况下,至少一个录音元件均采集一次散热风扇的音源信号;至少一个录音元件将采集到的每个音源信号,发送给异音检测模块;异音检测模块根据每个音源信号,检测散热风扇是否存在异音。In the first aspect, the embodiment of the present application proposes a fan abnormal sound detection method, which is applied to a fan abnormal sound detection system. The fan abnormal sound detection system includes a sound source collection device and an abnormal sound detection module. The sound source collection device includes a driving mechanism, a test base plate, at least one recording element and a fan control module. The driving mechanism is connected to the test base plate and the at least one recording element respectively. A cooling fan is fixed on the test base plate. The fan control module is electrically connected to the cooling fan, and at least one recording element is electrically connected to the abnormal sound detection module. The method includes: the fan control module controls the cooling fan to operate at a plurality of different preset speeds in sequence; when the cooling fan operates at each preset speed, the driving mechanism drives the cooling fan and at least one recording element on the test base plate to rotate synchronously to a plurality of different rotation angles; when the cooling fan operates at each preset speed, and the cooling fan and at least one recording element rotate synchronously to each rotation angle, at least one recording element collects the sound source signal of the cooling fan once; at least one recording element sends each collected sound source signal to the abnormal sound detection module; the abnormal sound detection module detects whether there is abnormal sound in the cooling fan according to each sound source signal.
这样,相对于人工检测的方式,本申请实施例采用录音元件采集散热风扇运转过程中的音源信号,并通过异音检测模块对音源信号进行分析,以自动检测散热风扇是否存在异音,在检测过程中,其受到环境噪音和检测人员的主观因素的影响比较小,从而可提高散热风扇的异音检测结果的准确性,且可以提高散热风扇的异音检测的效率。并且,相对于采用隔音箱内固定设置的录音元件,来采集散热风扇在不同旋转角度下运转时的音源信号,以进行散热风扇的异音检测,本申请实施例是在散热风扇处于多个不同的预设转速以及多个不同的旋转角度下,均采用录音元件对散热风扇的音源信号进行采集,散热风扇运行在多个不同的预设转速下,其可以提高存在异音的散热风扇在检测过程中被激发出异音的可能性,从而提高散热风扇的异音检测结果的准确性;散热风扇在旋转至多个不同的旋转角度时,录音元件与散热风扇是同步旋转的,使得在散热风扇在旋转到不同的旋转角度时,散热风扇与录音元件之间的角度和相对位置均不会发生变化,其可以提高散热风扇在不同的旋转角度下,录音元件采集到的音源信号的一致性,从而提高散热风扇的异音检测结果的准确性。In this way, compared with the manual detection method, the embodiment of the present application uses a recording element to collect the sound source signal during the operation of the cooling fan, and analyzes the sound source signal through the abnormal sound detection module to automatically detect whether there is an abnormal sound in the cooling fan. During the detection process, it is less affected by the environmental noise and the subjective factors of the detection personnel, thereby improving the accuracy of the abnormal sound detection results of the cooling fan and improving the efficiency of the abnormal sound detection of the cooling fan. Furthermore, compared with using a recording element fixedly installed in a soundproof box to collect sound source signals of the cooling fan when it is running at different rotation angles to detect abnormal sounds of the cooling fan, the embodiment of the present application uses a recording element to collect sound source signals of the cooling fan when the cooling fan is at multiple different preset speeds and multiple different rotation angles. The cooling fan runs at multiple different preset speeds, which can increase the possibility that the cooling fan with abnormal sounds will be stimulated to produce abnormal sounds during the detection process, thereby improving the accuracy of the abnormal sound detection results of the cooling fan; when the cooling fan rotates to multiple different rotation angles, the recording element and the cooling fan rotate synchronously, so that when the cooling fan rotates to different rotation angles, the angle and relative position between the cooling fan and the recording element will not change, which can improve the consistency of the sound source signals collected by the recording element at different rotation angles of the cooling fan, thereby improving the accuracy of the abnormal sound detection results of the cooling fan.
在一种可能的实现方式中,异音检测模块根据每个音源信号,检测散热风扇是否存在异音,包括:异音检测模块计算每个音源信号的平均频谱峭度和平均频谱峰值;异音检测模块计算每个音源信号的声压级;异音检测模块根据每个音源信号的平均频谱峭度、平均频谱峰值和声压级,来确定散热风扇是否存在异音。这样,本申请实施例针对散热风扇的音源信号,不仅考虑了其对应的声压级,同时还引入了平均频谱峭度和平均频谱峰值,即采用平均频谱峭度、平均频谱峰值和声压级,来共同判断散热风扇是否存在异音,提高了散热风扇的异音检测的拦截率,并降低了散热风扇的异音检测的过杀率,从而仅一步提高散热风扇的异音检测结果的准确性。In a possible implementation, the abnormal sound detection module detects whether the cooling fan has abnormal sound according to each sound source signal, including: the abnormal sound detection module calculates the average spectrum kurtosis and average spectrum peak of each sound source signal; the abnormal sound detection module calculates the sound pressure level of each sound source signal; the abnormal sound detection module determines whether the cooling fan has abnormal sound according to the average spectrum kurtosis, average spectrum peak and sound pressure level of each sound source signal. In this way, the embodiment of the present application not only considers the corresponding sound pressure level for the sound source signal of the cooling fan, but also introduces the average spectrum kurtosis and average spectrum peak, that is, the average spectrum kurtosis, average spectrum peak and sound pressure level are used to jointly determine whether the cooling fan has abnormal sound, thereby improving the interception rate of the abnormal sound detection of the cooling fan and reducing the over-kill rate of the abnormal sound detection of the cooling fan, thereby improving the accuracy of the abnormal sound detection result of the cooling fan in only one step.
在一种可能的实现方式中,异音检测模块计算每个音源信号的平均频谱峭度和平均频谱峰值,包括:异音检测模块对每个音源信号进行带通滤波处理;异音检测模块对带通滤波处理后的每个音源信号进行傅里叶变换,得到每个音源信号对应的频谱;异音检测模块提取每个音源信号对应的频谱中的待分析频带;异音检测模块根据每个音源信号对应的待分析频带,计算得到每个音源信号的平均频谱峭度和平均频谱峰值。In one possible implementation, the abnormal sound detection module calculates the average spectrum kurtosis and the average spectrum peak of each sound source signal, including: the abnormal sound detection module performs bandpass filtering on each sound source signal; the abnormal sound detection module performs Fourier transform on each sound source signal after the bandpass filtering to obtain the spectrum corresponding to each sound source signal; the abnormal sound detection module extracts the frequency band to be analyzed in the spectrum corresponding to each sound source signal; the abnormal sound detection module calculates the average spectrum kurtosis and the average spectrum peak of each sound source signal based on the frequency band to be analyzed corresponding to each sound source signal.
在一种可能的实现方式中,待分析频带包括散热风扇的转频对应的多个倍频频段。异音检测模块根据每个音源信号对应的待分析频带,计算得到每个音源信号的平均频谱峭度和平均频谱峰值,包括:异音检测模块计算每个音源信号对应的待分析频带中,包括的每个倍频频段对应的频谱峭度和频谱峰值;异音检测模块计算每个音源信号对应的待分析频带中,包括的多个倍频频段对应的频谱峭度的平均值,得到每个音源信号的平均频谱峭度;异音检测模块计算每个音源信号对应的待分析频带中,包括的多个倍频频段对应的频谱峰值的平均值,得到每个音源信号的平均频谱峰值。这样,由于出现故障的散热风扇,其对应的音源信号在经过傅里叶变换后,会产生很多转频的倍频成分,因此,基于对每个音源信号对应的频谱中的待分析频带进行分析,来计算平均频谱峭度和平均频谱峰值,可以更精确地确定散热风扇是否存在异音。In a possible implementation, the frequency band to be analyzed includes multiple octave frequency bands corresponding to the rotation frequency of the cooling fan. The abnormal sound detection module calculates the average spectrum kurtosis and average spectrum peak of each sound source signal according to the frequency band to be analyzed corresponding to each sound source signal, including: the abnormal sound detection module calculates the spectrum kurtosis and spectrum peak corresponding to each octave frequency band included in the frequency band to be analyzed corresponding to each sound source signal; the abnormal sound detection module calculates the average value of the spectrum kurtosis corresponding to multiple octave frequency bands included in the frequency band to be analyzed corresponding to each sound source signal, and obtains the average spectrum kurtosis of each sound source signal; the abnormal sound detection module calculates the average value of the spectrum peaks corresponding to multiple octave frequency bands included in the frequency band to be analyzed corresponding to each sound source signal, and obtains the average spectrum peak of each sound source signal. In this way, since the sound source signal corresponding to the faulty cooling fan will generate many octave frequency components after Fourier transformation, therefore, based on analyzing the frequency band to be analyzed in the spectrum corresponding to each sound source signal, the average spectrum kurtosis and the average spectrum peak are calculated, so as to more accurately determine whether the cooling fan has abnormal sound.
在一种可能的实现方式中,异音检测模块计算每个音源信号的声压级,包括:异音检测模块对每个音源信号进行高通滤波处理;异音检测模块采用人耳听觉模型,对高通滤波处理后的每个音源信号进行滤波处理;异音检测模块计算采用人耳听觉模型滤波处理后的每个音源信号的声压级。这样,由于一些散热风扇的异音与转频的关联比较小,但高频段的声压级有较大的差异,因此,针对高频段的声压级来作为判断散热风扇是否存在异音的另一部分检测指标,可以更精确地确定散热风扇是否存在异音。In a possible implementation, the abnormal sound detection module calculates the sound pressure level of each sound source signal, including: the abnormal sound detection module performs high-pass filtering on each sound source signal; the abnormal sound detection module uses a human ear hearing model to filter each sound source signal after high-pass filtering; the abnormal sound detection module calculates the sound pressure level of each sound source signal after filtering using the human ear hearing model. In this way, since the abnormal sound of some cooling fans is less related to the rotation frequency, but the sound pressure level in the high frequency band has a large difference, therefore, the sound pressure level in the high frequency band is used as another part of the detection index for judging whether the cooling fan has abnormal sound, so as to more accurately determine whether the cooling fan has abnormal sound.
在一种可能的实现方式中,异音检测模块计算采用人耳听觉模型滤波处理后的每个音源信号的声压级,包括:异音检测模块计算采用人耳听觉模型滤波处理后的每个音源信号对应的采样值,与模数转换的参考电压的乘积,得到每个音源信号对应的电压值;异音检测模块计算每个音源信号对应的电压值,与录音元件的灵敏度的比值,得到每个音源信号的声压;异音检测模块通过如下公式,计算得到每个音源信号的声压级:SPL=20×lg(Pe/Pref);其中,SPL表示每个音源信号的声压级,Pe表示每个音源信号的声压,Pref表示参考声压。In a possible implementation, the abnormal sound detection module calculates the sound pressure level of each sound source signal after filtering using the human ear hearing model, including: the abnormal sound detection module calculates the sampling value corresponding to each sound source signal after filtering using the human ear hearing model, and multiplies it by the reference voltage of the analog-to-digital conversion to obtain the voltage value corresponding to each sound source signal; the abnormal sound detection module calculates the ratio of the voltage value corresponding to each sound source signal to the sensitivity of the recording element to obtain the sound pressure of each sound source signal; the abnormal sound detection module calculates the sound pressure level of each sound source signal by the following formula: SPL=20×lg(P e /P ref ); wherein SPL represents the sound pressure level of each sound source signal, P e represents the sound pressure of each sound source signal, and Pref represents the reference sound pressure.
在一种可能的实现方式中,异音检测模块根据每个音源信号的平均频谱峭度、平均频谱峰值和声压级,来确定散热风扇是否存在异音,包括:当每个音源信号的平均频谱峭度均小于频谱峭度阈值、每个音源信号的平均频谱峰值均小于频谱峰值阈值,且每个音源信号的声压级均小于声压级阈值时,异音检测模块确定散热风扇不存在异音;当至少一个音源信号的平均频谱峭度大于或等于频谱峭度阈值,和/或,至少一个音源信号的平均频谱峰值大于或等于频谱峰值阈值,和/或,至少一个音源信号的声压级大于或等于声压级阈值时,异音检测模块确定散热风扇存在异音。这样,通过将音源信号的平均频谱峭度、平均频谱峰值和声压级,分别与其各自对应的阈值进行比较,来判断散热风扇是否存在异音,提高了散热风扇的异音检测的拦截率,并降低了散热风扇的异音检测的过杀率,从而仅一步提高散热风扇的异音检测结果的准确性。In a possible implementation, the abnormal sound detection module determines whether the cooling fan has abnormal sound according to the average spectrum kurtosis, average spectrum peak and sound pressure level of each sound source signal, including: when the average spectrum kurtosis of each sound source signal is less than the spectrum kurtosis threshold, the average spectrum peak of each sound source signal is less than the spectrum peak threshold, and the sound pressure level of each sound source signal is less than the sound pressure level threshold, the abnormal sound detection module determines that the cooling fan does not have abnormal sound; when the average spectrum kurtosis of at least one sound source signal is greater than or equal to the spectrum kurtosis threshold, and/or the average spectrum peak of at least one sound source signal is greater than or equal to the spectrum peak threshold, and/or the sound pressure level of at least one sound source signal is greater than or equal to the sound pressure level threshold, the abnormal sound detection module determines that the cooling fan has abnormal sound. In this way, by comparing the average spectrum kurtosis, average spectrum peak and sound pressure level of the sound source signal with their respective corresponding thresholds, it is determined whether the cooling fan has abnormal sound, which improves the interception rate of the abnormal sound detection of the cooling fan and reduces the over-kill rate of the abnormal sound detection of the cooling fan, thereby improving the accuracy of the abnormal sound detection result of the cooling fan in only one step.
在一种可能的实现方式中,风扇控制模块包括上位控制器、电压输出模块和计数器模块,上位控制器分别与电压输出模块和计数器模块电连接,电压输出模块和计数器模块还与散热风扇电连接。风扇控制模块控制散热风扇依次以多个不同的预设转速进行运转,包括:上位控制器向电压输出模块发送控制信号;电压输出模块根据控制信号,向散热风扇提供电压信号,电压信号用于驱动散热风扇进行运转;计数器模块检测散热风扇运转过程中的风扇转速,并将风扇转速发送给上位控制器;上位控制器计算风扇转速与预设转速之间的转速偏差;上位控制器根据转速偏差确定电压补偿值;上位控制器根据电压补偿值,调节其向电压输出模块发送的控制信号,进而调节电压输出模块向散热风扇提供的电压信号,调节后的电压信号用于将散热风扇运转过程中的风扇转速调节至预设转速。这样,采用上位控制器、电压输出模块和计数器模块,对散热风扇的风扇转速进行闭环控制的方式,可以实现对散热风扇的风扇转速进行精度控制,从而提高散热风扇的异音检测的稳定性。In a possible implementation, the fan control module includes a host controller, a voltage output module and a counter module, the host controller is electrically connected to the voltage output module and the counter module respectively, and the voltage output module and the counter module are also electrically connected to the heat dissipation fan. The fan control module controls the heat dissipation fan to operate at multiple different preset speeds in sequence, including: the host controller sends a control signal to the voltage output module; the voltage output module provides a voltage signal to the heat dissipation fan according to the control signal, and the voltage signal is used to drive the heat dissipation fan to operate; the counter module detects the fan speed during the operation of the heat dissipation fan and sends the fan speed to the host controller; the host controller calculates the speed deviation between the fan speed and the preset speed; the host controller determines the voltage compensation value according to the speed deviation; the host controller adjusts the control signal sent to the voltage output module according to the voltage compensation value, and then adjusts the voltage signal provided by the voltage output module to the heat dissipation fan, and the adjusted voltage signal is used to adjust the fan speed during the operation of the heat dissipation fan to the preset speed. In this way, the closed-loop control method of the fan speed of the heat dissipation fan using the host controller, the voltage output module and the counter module can realize the precision control of the fan speed of the heat dissipation fan, thereby improving the stability of the abnormal sound detection of the heat dissipation fan.
在一种可能的实现方式中,至少一个录音元件包括第一录音元件和第二录音元件,第一录音元件和第二录音元件分别位于测试底板相对的两侧;多个不同的预设转速包括第一预设转速和第二预设转速,第一预设转速为4000±50rpm,第二预设转速为2500±50rpm;多个不同的旋转角度包括第一旋转角度、第二旋转角度和第三旋转角度,第一旋转角度为0°,第二旋转角度为90°,第三旋转角度为180°。In one possible implementation, at least one recording element includes a first recording element and a second recording element, and the first recording element and the second recording element are respectively located on opposite sides of the test base plate; the multiple different preset rotation speeds include a first preset rotation speed and a second preset rotation speed, the first preset rotation speed is 4000±50rpm, and the second preset rotation speed is 2500±50rpm; the multiple different rotation angles include a first rotation angle, a second rotation angle and a third rotation angle, the first rotation angle is 0°, the second rotation angle is 90°, and the third rotation angle is 180°.
第二方面,本申请实施例提出一种风扇异音检测系统,包括音源采集装置和异音检测模块,音源采集装置包括驱动机构、测试底板、至少一个录音元件和风扇控制模块,驱动机构分别与测试底板和至少一个录音元件相连,测试底板上固定有散热风扇,风扇控制模块与散热风扇电连接,至少一个录音元件与异音检测模块电连接。风扇控制模块,用于控制散热风扇依次以多个不同的预设转速进行运转;驱动机构,用于在散热风扇以每个预设转速进行运转的情况下,带动测试底板上的散热风扇和至少一个录音元件同步旋转至多个不同的旋转角度;至少一个录音元件,用于在散热风扇以每个预设转速进行运转,且散热风扇和至少一个录音元件同步旋转至每个旋转角度的情况下,均采集一次散热风扇的音源信号;至少一个录音元件,还用于将采集到的每个音源信号,发送给异音检测模块;异音检测模块,用于根据每个音源信号,检测散热风扇是否存在异音。In the second aspect, the embodiment of the present application proposes a fan abnormal sound detection system, including a sound source collection device and an abnormal sound detection module, the sound source collection device includes a driving mechanism, a test base plate, at least one recording element and a fan control module, the driving mechanism is respectively connected to the test base plate and the at least one recording element, a cooling fan is fixed on the test base plate, the fan control module is electrically connected to the cooling fan, and the at least one recording element is electrically connected to the abnormal sound detection module. The fan control module is used to control the cooling fan to operate at a plurality of different preset speeds in sequence; the driving mechanism is used to drive the cooling fan and the at least one recording element on the test base plate to rotate synchronously to a plurality of different rotation angles when the cooling fan operates at each preset speed; the at least one recording element is used to collect the sound source signal of the cooling fan once when the cooling fan operates at each preset speed and the cooling fan and the at least one recording element rotate synchronously to each rotation angle; the at least one recording element is also used to send each collected sound source signal to the abnormal sound detection module; the abnormal sound detection module is used to detect whether there is abnormal sound in the cooling fan according to each sound source signal.
在一种可能的实现方式中,异音检测模块,具体用于:计算每个音源信号的平均频谱峭度和平均频谱峰值;计算每个音源信号的声压级;根据每个音源信号的平均频谱峭度、平均频谱峰值和声压级,来确定散热风扇是否存在异音。In one possible implementation, the abnormal sound detection module is specifically used to: calculate the average spectral kurtosis and the average spectral peak of each sound source signal; calculate the sound pressure level of each sound source signal; and determine whether the cooling fan has abnormal sound based on the average spectral kurtosis, the average spectral peak and the sound pressure level of each sound source signal.
在一种可能的实现方式中,异音检测模块,具体用于:对每个音源信号进行带通滤波处理;对带通滤波处理后的每个音源信号进行傅里叶变换,得到每个音源信号对应的频谱;提取每个音源信号对应的频谱中的待分析频带;根据每个音源信号对应的待分析频带,计算得到每个音源信号的平均频谱峭度和平均频谱峰值。In one possible implementation, the abnormal sound detection module is specifically used to: perform bandpass filtering on each sound source signal; perform Fourier transform on each sound source signal after the bandpass filtering to obtain the frequency spectrum corresponding to each sound source signal; extract the frequency band to be analyzed in the frequency spectrum corresponding to each sound source signal; and calculate the average frequency spectrum kurtosis and average frequency spectrum peak of each sound source signal based on the frequency band to be analyzed corresponding to each sound source signal.
在一种可能的实现方式中,待分析频带包括散热风扇的转频对应的多个倍频频段。异音检测模块,具体用于:计算每个音源信号对应的待分析频带中,包括的每个倍频频段对应的频谱峭度和频谱峰值;计算每个音源信号对应的待分析频带中,包括的多个倍频频段对应的频谱峭度的平均值,得到每个音源信号的平均频谱峭度;计算每个音源信号对应的待分析频带中,包括的多个倍频频段对应的频谱峰值的平均值,得到每个音源信号的平均频谱峰值。In a possible implementation, the frequency band to be analyzed includes multiple octave frequency bands corresponding to the rotation frequency of the cooling fan. The abnormal sound detection module is specifically used to: calculate the spectrum kurtosis and spectrum peak corresponding to each octave frequency band included in the frequency band to be analyzed corresponding to each sound source signal; calculate the average value of the spectrum kurtosis corresponding to the multiple octave frequency bands included in the frequency band to be analyzed corresponding to each sound source signal, and obtain the average spectrum kurtosis of each sound source signal; calculate the average value of the spectrum peaks corresponding to the multiple octave frequency bands included in the frequency band to be analyzed corresponding to each sound source signal, and obtain the average spectrum peak of each sound source signal.
在一种可能的实现方式中,异音检测模块,具体用于:对每个音源信号进行高通滤波处理;采用人耳听觉模型对高通滤波处理后的每个音源信号进行滤波处理;计算采用人耳听觉模型滤波处理后的每个音源信号的声压级。In a possible implementation, the abnormal sound detection module is specifically used to: perform high-pass filtering on each sound source signal; filter each sound source signal after the high-pass filtering using a human ear hearing model; and calculate the sound pressure level of each sound source signal after the filtering using the human ear hearing model.
在一种可能的实现方式中,异音检测模块,具体用于:计算采用人耳听觉模型滤波处理后的每个音源信号对应的采样值,与模数转换的参考电压的乘积,得到每个音源信号对应的电压值;计算每个音源信号对应的电压值,与录音元件的灵敏度的比值,得到每个音源信号的声压;通过如下公式,计算得到每个音源信号的声压级:SPL=20×lg(Pe/Pref);其中,SPL表示每个音源信号的声压级,Pe表示每个音源信号的声压,Pref表示参考声压。In a possible implementation, the abnormal sound detection module is specifically used to: calculate the product of the sampling value corresponding to each sound source signal after filtering using the human ear auditory model and the reference voltage of the analog-to-digital conversion to obtain the voltage value corresponding to each sound source signal; calculate the ratio of the voltage value corresponding to each sound source signal to the sensitivity of the recording element to obtain the sound pressure of each sound source signal; calculate the sound pressure level of each sound source signal by the following formula: SPL=20×lg(P e /P ref ); wherein SPL represents the sound pressure level of each sound source signal, P e represents the sound pressure of each sound source signal, and Pref represents the reference sound pressure.
在一种可能的实现方式中,异音检测模块,具体用于:当每个音源信号的平均频谱峭度均小于频谱峭度阈值、每个音源信号的平均频谱峰值均小于频谱峰值阈值,且每个音源信号的声压级均小于声压级阈值时,确定散热风扇不存在异音;当至少一个音源信号的平均频谱峭度大于或等于频谱峭度阈值,和/或,至少一个音源信号的平均频谱峰值大于或等于频谱峰值阈值,和/或,至少一个音源信号的声压级大于或等于声压级阈值时,确定散热风扇存在异音。In one possible implementation, the abnormal sound detection module is specifically used to: determine that there is no abnormal sound in the cooling fan when the average spectral kurtosis of each sound source signal is less than the spectral kurtosis threshold, the average spectral peak of each sound source signal is less than the spectral peak threshold, and the sound pressure level of each sound source signal is less than the sound pressure level threshold; determine that there is abnormal sound in the cooling fan when the average spectral kurtosis of at least one sound source signal is greater than or equal to the spectral kurtosis threshold, and/or the average spectral peak of at least one sound source signal is greater than or equal to the spectral peak threshold, and/or the sound pressure level of at least one sound source signal is greater than or equal to the sound pressure level threshold.
在一种可能的实现方式中,风扇控制模块包括上位控制器、电压输出模块和计数器模块,上位控制器分别与电压输出模块和计数器模块电连接,电压输出模块和计数器模块还与散热风扇电连接。上位控制器,用于向电压输出模块发送控制信号;电压输出模块,用于根据控制信号向散热风扇提供电压信号,电压信号用于驱动散热风扇进行运转;计数器模块,用于检测散热风扇运转过程中的风扇转速,并将风扇转速发送给上位控制器;上位控制器,还用于计算风扇转速与预设转速之间的转速偏差;上位控制器,还用于根据转速偏差确定电压补偿值;上位控制器,还用于根据电压补偿值,调节其向电压输出模块发送的控制信号,进而调节电压输出模块向散热风扇提供的电压信号,调节后的电压信号用于将散热风扇运转过程中的风扇转速调节至预设转速。In a possible implementation, the fan control module includes a host controller, a voltage output module and a counter module, the host controller is electrically connected to the voltage output module and the counter module respectively, and the voltage output module and the counter module are also electrically connected to the cooling fan. The host controller is used to send a control signal to the voltage output module; the voltage output module is used to provide a voltage signal to the cooling fan according to the control signal, and the voltage signal is used to drive the cooling fan to operate; the counter module is used to detect the fan speed during the operation of the cooling fan and send the fan speed to the host controller; the host controller is also used to calculate the speed deviation between the fan speed and the preset speed; the host controller is also used to determine the voltage compensation value according to the speed deviation; the host controller is also used to adjust the control signal sent to the voltage output module according to the voltage compensation value, and then adjust the voltage signal provided by the voltage output module to the cooling fan, and the adjusted voltage signal is used to adjust the fan speed during the operation of the cooling fan to the preset speed.
在一种可能的实现方式中,至少一个录音元件包括第一录音元件和第二录音元件,第一录音元件和第二录音元件分别位于测试底板相对的两侧;多个不同的预设转速包括第一预设转速和第二预设转速,第一预设转速为4000±50rpm,第二预设转速为2500±50rpm;多个不同的旋转角度包括第一旋转角度、第二旋转角度和第三旋转角度,第一旋转角度为0°,第二旋转角度为90°,第三旋转角度为180°。In one possible implementation, at least one recording element includes a first recording element and a second recording element, and the first recording element and the second recording element are respectively located on opposite sides of the test base plate; the multiple different preset rotation speeds include a first preset rotation speed and a second preset rotation speed, the first preset rotation speed is 4000±50rpm, and the second preset rotation speed is 2500±50rpm; the multiple different rotation angles include a first rotation angle, a second rotation angle and a third rotation angle, the first rotation angle is 0°, the second rotation angle is 90°, and the third rotation angle is 180°.
第二方面各可能的实现方式,效果与第一方面以及第一方面的可能的设计中的效果类似,在此不再赘述。The possible implementation methods of the second aspect have effects similar to those of the first aspect and possible designs of the first aspect, and will not be elaborated here.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本申请实施例提供的一种风扇异音检测系统的结构示意图;FIG1 is a schematic structural diagram of a fan abnormal noise detection system provided in an embodiment of the present application;
图2为本申请实施例提供的音源采集装置的结构示意图;FIG2 is a schematic diagram of the structure of a sound source acquisition device provided in an embodiment of the present application;
图3为本申请实施例提供的音源采集装置在其中一个视角下的立体结构示意图;FIG3 is a schematic diagram of the three-dimensional structure of the sound source collection device provided in an embodiment of the present application from one viewing angle;
图4为本申请实施例提供的音源采集装置中的固定支架和测试底板位置处的局部放大图;FIG4 is a partial enlarged view of the fixed bracket and the test base plate in the sound source acquisition device provided in an embodiment of the present application;
图5为相关技术提供的风扇控制模块的结构示意图;FIG5 is a schematic diagram of the structure of a fan control module provided by the related art;
图6为本申请实施例提供的风扇控制模块的结构示意图;FIG6 is a schematic diagram of the structure of a fan control module provided in an embodiment of the present application;
图7为本申请实施例提供的一种风扇异音检测方法的流程图;FIG7 is a flow chart of a method for detecting abnormal fan noise provided by an embodiment of the present application;
图8为本申请实施例采用录音元件采集散热风扇的音源信号的流程图;FIG8 is a flow chart of using a recording element to collect a sound source signal of a cooling fan according to an embodiment of the present application;
图9为本申请实施例中的异音检测模块根据音源信号检测散热风扇是否存在异音的流程图。FIG. 9 is a flow chart of an abnormal sound detection module in an embodiment of the present application detecting whether there is abnormal sound from a cooling fan according to a sound source signal.
具体实施方式DETAILED DESCRIPTION
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一芯片和第二芯片仅仅是为了区分不同的芯片,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。In order to facilitate the clear description of the technical solutions of the embodiments of the present application, in the embodiments of the present application, the words "first", "second" and the like are used to distinguish the same items or similar items with substantially the same functions and effects. For example, the first chip and the second chip are only used to distinguish different chips, and their order is not limited. Those skilled in the art can understand that the words "first", "second" and the like do not limit the quantity and execution order, and the words "first", "second" and the like do not necessarily limit them to be different.
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。It should be noted that in the embodiments of the present application, words such as "exemplary" or "for example" are used to indicate examples, illustrations or descriptions. Any embodiment or design described as "exemplary" or "for example" in the present application should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of words such as "exemplary" or "for example" is intended to present related concepts in a specific way.
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。In the embodiments of the present application, "at least one" refers to one or more, and "more than one" refers to two or more. "And/or" describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural. The character "/" generally indicates that the previous and next associated objects are in an "or" relationship. "At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items. For example, at least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
随着电子技术的不断发展,笔记本电脑等电子设备逐渐成为人们生活和工作中较为常用的工具。笔记本电脑等电子设备在运行过程中,其内部设置的器件(如处理器等)会产生一定的热量,尤其是运行在高负荷场景下,其可能会产生大量的热量。若这些热量不能及时地排出到外界的空气中,则有可能导致处理器等器件的性能下降,严重时甚至可能导致处理器等器件的损坏或者使用寿命的降低。With the continuous development of electronic technology, electronic devices such as laptops have gradually become more commonly used tools in people's lives and work. During the operation of electronic devices such as laptops, the devices installed inside them (such as processors, etc.) will generate a certain amount of heat, especially when running under high load scenarios, they may generate a lot of heat. If this heat cannot be discharged to the outside air in time, it may cause the performance of devices such as processors to decline, and in severe cases, it may even cause damage to devices such as processors or reduce their service life.
因此,为了可以将电子设备产生的热量及时排出到外界的空气中,一些电子设备内可设置有散热风扇进行散热。这样,通过散热风扇的转动,增强空气流动的速度,以将电子设备产生的热量加速排出到外界的空气中。Therefore, in order to discharge the heat generated by the electronic device to the outside air in time, some electronic devices may be provided with a heat dissipation fan for heat dissipation. In this way, the rotation of the heat dissipation fan increases the speed of air flow, so that the heat generated by the electronic device is discharged to the outside air faster.
而散热风扇在加工、装配过程中可能会存在一些缺陷,若将这些存在缺陷的散热风扇安装到电子设备中,则电子设备在运行过程中,存在缺陷的散热风扇也会进行运转,从而导致这些存在缺陷的散热风扇在运转过程中可能会产生异音,从而给消费者带来不好的直观感受。因此,在将散热风扇安装到电子设备中之前,需要对散热风扇进行异音检测,以拦截存在异音的散热风扇,从而筛选出没有异音的散热风扇。However, there may be some defects in the processing and assembly of cooling fans. If these defective cooling fans are installed in electronic devices, the defective cooling fans will also operate during the operation of the electronic devices, which may cause these defective cooling fans to produce abnormal noise during operation, thus giving consumers a bad intuitive feeling. Therefore, before installing the cooling fans in electronic devices, it is necessary to detect abnormal noises on the cooling fans to intercept the cooling fans with abnormal noises and select the cooling fans without abnormal noises.
在一些相关技术中,可以采用人工检测的方式来对散热风扇进行异音检测。具体的,检测人员手持运转过程中的散热风扇,并将其放置在检测人员的耳侧,由检测人员听取散热风扇运转过程中的声音,来判断散热风扇是否存在异音。In some related technologies, a manual detection method can be used to detect abnormal noise of the cooling fan. Specifically, the detection personnel hold the cooling fan in operation and place it next to the detection personnel's ear, and the detection personnel listens to the sound of the cooling fan in operation to determine whether the cooling fan has abnormal noise.
但是,这种人工检测的方式,在检测人员长时间听取散热风扇运转过程中的声音时,会导致检测人员的听觉疲劳,其会影响检测人员主观上对散热风扇的异音检测结果的判断,并且检测时还会受到环境噪音的影响,即人工检测的方式受到环境噪音和检测人员的主观因素的影响比较大,从而影响散热风扇的异音检测结果的准确性。此外,人工检测的方式,还存在检测效率较低的问题。However, this manual detection method will cause auditory fatigue when the inspector listens to the sound of the cooling fan for a long time, which will affect the inspector's subjective judgment of the abnormal sound detection result of the cooling fan, and the detection will also be affected by environmental noise, that is, the manual detection method is greatly affected by environmental noise and subjective factors of the inspector, thereby affecting the accuracy of the abnormal sound detection result of the cooling fan. In addition, the manual detection method also has the problem of low detection efficiency.
在另一些相关技术中,可以将散热风扇置于隔音箱内,并在隔音箱内设置一个录音元件进行音源信号的采集。在散热风扇的异音检测过程中,可以控制散热风扇旋转至不同的旋转角度,录音元件对散热风扇在不同旋转角度下运转时的音源信号进行采集,并由软件系统对散热风扇的音源信号进行分析,以检测散热风扇是否存在异音。In other related technologies, the cooling fan can be placed in a soundproof box, and a recording element can be set in the soundproof box to collect sound source signals. During the abnormal sound detection process of the cooling fan, the cooling fan can be controlled to rotate to different rotation angles, and the recording element collects the sound source signals when the cooling fan is running at different rotation angles. The software system analyzes the sound source signals of the cooling fan to detect whether the cooling fan has abnormal sounds.
但是,这种检测方式,散热风扇是运行在单一的转速下,在单一转速下可能会无法激发出散热风扇的异音,从而导致存在异音的散热风扇,可能出现在检测过程中无法检测到异音的情况发生,从而影响散热风扇的异音检测结果的准确性。并且,这种检测方式,录音元件是设置在隔音箱的固定位置处,因此,散热风扇在旋转到不同的旋转角度时,散热风扇与录音元件之间的角度和相对位置会发生变化,这样,会影响录音元件采集到的音源信号的一致性,进而影响散热风扇的异音检测结果的准确性。However, in this detection method, the cooling fan is running at a single speed, and the abnormal sound of the cooling fan may not be stimulated at a single speed, resulting in the cooling fan with abnormal sound, which may not be detected during the detection process, thus affecting the accuracy of the abnormal sound detection result of the cooling fan. In addition, in this detection method, the recording element is set at a fixed position in the soundproof box. Therefore, when the cooling fan rotates to different rotation angles, the angle and relative position between the cooling fan and the recording element will change, which will affect the consistency of the sound source signal collected by the recording element, and further affect the accuracy of the abnormal sound detection result of the cooling fan.
基于此,本申请实施例提供了一种风扇异音检测方法及风扇异音检测系统,风扇控制模块控制散热风扇依次以多个不同的预设转速进行运转,在散热风扇以每个预设转速进行运转的情况下,驱动机构带动测试底板上的散热风扇和至少一个录音元件同步旋转至多个不同的旋转角度,在散热风扇以每个预设转速进行运转,且散热风扇和至少一个录音元件同步旋转至每个旋转角度的情况下,至少一个录音元件均采集一次散热风扇的音源信号,并将其发送给异音检测模块,异音检测模块根据每个音源信号检测散热风扇是否存在异音。Based on this, an embodiment of the present application provides a fan abnormal sound detection method and a fan abnormal sound detection system. The fan control module controls the cooling fan to operate at multiple different preset speeds in sequence. When the cooling fan operates at each preset speed, the driving mechanism drives the cooling fan and at least one recording element on the test base plate to rotate synchronously to multiple different rotation angles. When the cooling fan operates at each preset speed and the cooling fan and at least one recording element rotate synchronously to each rotation angle, at least one recording element collects the sound source signal of the cooling fan once and sends it to the abnormal sound detection module. The abnormal sound detection module detects whether there is abnormal sound in the cooling fan based on each sound source signal.
这样,相对于人工检测的方式,本申请实施例采用录音元件采集散热风扇运转过程中的音源信号,并通过异音检测模块对音源信号进行分析,以自动检测散热风扇是否存在异音,在检测过程中,其受到环境噪音和检测人员的主观因素的影响比较小,从而可提高散热风扇的异音检测结果的准确性,且可以提高散热风扇的异音检测的效率。In this way, compared with the manual detection method, the embodiment of the present application uses a recording element to collect the sound source signal during the operation of the cooling fan, and analyzes the sound source signal through the abnormal sound detection module to automatically detect whether there is an abnormal sound in the cooling fan. During the detection process, it is less affected by the environmental noise and the subjective factors of the detection personnel, thereby improving the accuracy of the abnormal sound detection results of the cooling fan and improving the efficiency of the abnormal sound detection of the cooling fan.
并且,相对于采用隔音箱内固定设置的录音元件,来采集散热风扇在不同旋转角度下运转时的音源信号,以进行散热风扇的异音检测,本申请实施例是在散热风扇处于多个不同的预设转速以及多个不同的旋转角度下,均采用录音元件对散热风扇的音源信号进行采集,散热风扇运行在多个不同的预设转速下,其可以提高存在异音的散热风扇在检测过程中被激发出异音的可能性,从而提高散热风扇的异音检测结果的准确性。并且,散热风扇在旋转至多个不同的旋转角度时,录音元件与散热风扇是同步旋转的,使得在散热风扇在旋转到不同的旋转角度时,散热风扇与录音元件之间的角度和相对位置均不会发生变化,其可以提高散热风扇在不同的旋转角度下,录音元件采集到的音源信号的一致性,从而提高散热风扇的异音检测结果的准确性。Furthermore, compared with using a recording element fixedly arranged in a soundproof box to collect the sound source signal of the cooling fan when it is running at different rotation angles to detect the abnormal sound of the cooling fan, the embodiment of the present application uses a recording element to collect the sound source signal of the cooling fan when the cooling fan is at multiple different preset speeds and multiple different rotation angles. The cooling fan runs at multiple different preset speeds, which can increase the possibility that the cooling fan with abnormal sound is stimulated to produce abnormal sound during the detection process, thereby improving the accuracy of the abnormal sound detection result of the cooling fan. Furthermore, when the cooling fan rotates to multiple different rotation angles, the recording element and the cooling fan rotate synchronously, so that when the cooling fan rotates to different rotation angles, the angle and relative position between the cooling fan and the recording element will not change, which can improve the consistency of the sound source signal collected by the recording element at different rotation angles of the cooling fan, thereby improving the accuracy of the abnormal sound detection result of the cooling fan.
可以理解的是,本申请实施例中的散热风扇可以是笔记本电脑中待安装的散热风扇,当然,本申请实施例中的散热风扇还可以是其他电子设备中的散热风扇,如台式电脑中的散热风扇等,本申请实施例对散热风扇所应用到的电子设备的具体设备形态不做限定。It can be understood that the cooling fan in the embodiment of the present application can be a cooling fan to be installed in a laptop computer. Of course, the cooling fan in the embodiment of the present application can also be a cooling fan in other electronic devices, such as a cooling fan in a desktop computer, etc. The embodiment of the present application does not limit the specific device form of the electronic device to which the cooling fan is applied.
为了能够更好地理解本申请实施例,下面对本申请实施例的风扇异音检测方法及风扇异音检测系统进行详细介绍,风扇异音检测方法可以应用在风扇异音检测系统中。In order to better understand the embodiments of the present application, the fan abnormal sound detection method and the fan abnormal sound detection system of the embodiments of the present application are introduced in detail below. The fan abnormal sound detection method can be applied to the fan abnormal sound detection system.
示例性的,图1为本申请实施例提供的一种风扇异音检测系统的结构示意图。参照图1所示,风扇异音检测系统包括音源采集装置110和异音检测模块120。音源采集装置110包括驱动机构111、测试底板112、至少一个录音元件113和风扇控制模块114,驱动机构111分别与测试底板112和至少一个录音元件113相连,测试底板112上固定有散热风扇200,风扇控制模块114与散热风扇200电连接,至少一个录音元件113与异音检测模块120电连接。Exemplarily, FIG1 is a schematic diagram of the structure of a fan abnormal sound detection system provided in an embodiment of the present application. Referring to FIG1 , the fan abnormal sound detection system includes a sound source acquisition device 110 and an abnormal sound detection module 120. The sound source acquisition device 110 includes a driving mechanism 111, a test base plate 112, at least one recording element 113 and a fan control module 114, the driving mechanism 111 is respectively connected to the test base plate 112 and at least one recording element 113, a cooling fan 200 is fixed on the test base plate 112, the fan control module 114 is electrically connected to the cooling fan 200, and at least one recording element 113 is electrically connected to the abnormal sound detection module 120.
其中,风扇控制模块114用于控制散热风扇200依次以多个不同的预设转速进行运转。驱动机构111用于在散热风扇200以每个预设转速进行运转的情况下,带动测试底板112上的散热风扇200和至少一个录音元件113同步旋转至多个不同的旋转角度。至少一个录音元件113用于在散热风扇200以每个预设转速进行运转,且散热风扇200和至少一个录音元件113同步旋转至每个旋转角度的情况下,均采集一次散热风扇200的音源信号;至少一个录音元件113还用于将采集到的每个音源信号发送给异音检测模块120。异音检测模块120用于根据每个音源信号,检测散热风扇200是否存在异音。Among them, the fan control module 114 is used to control the cooling fan 200 to operate at a plurality of different preset speeds in sequence. The driving mechanism 111 is used to drive the cooling fan 200 and at least one recording element 113 on the test base plate 112 to rotate synchronously to a plurality of different rotation angles when the cooling fan 200 operates at each preset speed. At least one recording element 113 is used to collect the sound source signal of the cooling fan 200 once when the cooling fan 200 operates at each preset speed and the cooling fan 200 and at least one recording element 113 rotate synchronously to each rotation angle; at least one recording element 113 is also used to send each collected sound source signal to the abnormal sound detection module 120. The abnormal sound detection module 120 is used to detect whether there is abnormal sound in the cooling fan 200 according to each sound source signal.
在一些实施例中,音源采集装置110中的录音元件113的数量为至少一个,即音源采集装置110中的录音元件113的数量可以为1个、2个或3个等数量。本申请实施例对音源采集装置110中的录音元件113的数量不进行限定,其可以根据实际情况进行设定。In some embodiments, the number of the recording element 113 in the sound source collection device 110 is at least one, that is, the number of the recording elements 113 in the sound source collection device 110 can be 1, 2, or 3. The embodiment of the present application does not limit the number of the recording elements 113 in the sound source collection device 110, and it can be set according to actual conditions.
当音源采集装置110中的录音元件113的数量越多时,在对散热风扇200进行异音检测的过程中采集到的音源信号也就越多,则可以进一步提高存在异音的散热风扇200在检测过程中被采集到异音的可能性,从而进一步提高散热风扇200的异音检测结果的准确性。When the number of recording elements 113 in the sound source collection device 110 is greater, more sound source signals are collected during the abnormal sound detection of the cooling fan 200, which can further increase the possibility of collecting the abnormal sound of the cooling fan 200 during the detection process, thereby further improving the accuracy of the abnormal sound detection result of the cooling fan 200.
以音源采集装置110中的录音元件113的数量为两个为例,如图2所示,音源采集装置110中的至少一个录音元件113包括第一录音元件1131和第二录音元件1132,即可以将音源采集装置110中的这两个录音元件113分别称为第一录音元件1131和第二录音元件1132。也可以将第一录音元件1131称为上录音标麦,以及将第二录音元件1132称为下录音标麦。Taking the number of recording elements 113 in the sound source collection device 110 as two, as shown in FIG2 , at least one recording element 113 in the sound source collection device 110 includes a first recording element 1131 and a second recording element 1132, that is, the two recording elements 113 in the sound source collection device 110 can be respectively referred to as the first recording element 1131 and the second recording element 1132. The first recording element 1131 can also be referred to as an upper recording standard microphone, and the second recording element 1132 can be referred to as a lower recording standard microphone.
驱动机构111分别与第一录音元件1131和第二录音元件1132机械连接,且驱动机构111还与测试底板112(未在图2中示出)机械连接。在对散热风扇200进行异音检测时,可以将散热风扇200固定在测试底板112上,驱动机构111可以带动测试底板112、第一录音元件1131和第二录音元件1132,按照图2所示的箭头方向同步进行旋转,使得测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至预设的旋转角度。The driving mechanism 111 is mechanically connected to the first recording element 1131 and the second recording element 1132 respectively, and the driving mechanism 111 is also mechanically connected to the test base plate 112 (not shown in FIG. 2 ). When performing abnormal sound detection on the cooling fan 200, the cooling fan 200 can be fixed on the test base plate 112, and the driving mechanism 111 can drive the test base plate 112, the first recording element 1131 and the second recording element 1132 to rotate synchronously in the direction of the arrow shown in FIG. 2 , so that the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 rotate synchronously to a preset rotation angle.
如图3所示,驱动机构111可以包括伺服电机1111和旋转臂1112等结构,伺服电机1111可以为静音型直驱电机。伺服电机1111与旋转臂1112机械连接,旋转臂1112再与测试底板112、第一录音元件1131和第二录音元件1132机械连接。其中,第一录音元件1131和第二录音元件1132分别位于测试底板112相对的两侧。As shown in FIG3 , the driving mechanism 111 may include a servo motor 1111 and a rotating arm 1112. The servo motor 1111 may be a silent direct drive motor. The servo motor 1111 is mechanically connected to the rotating arm 1112, and the rotating arm 1112 is mechanically connected to the test base plate 112, the first recording element 1131, and the second recording element 1132. The first recording element 1131 and the second recording element 1132 are respectively located on opposite sides of the test base plate 112.
在对散热风扇200进行异音检测时,伺服电机1111驱动旋转臂1112进行转动,由于旋转臂1112还分别与测试底板112、第一录音元件1131和第二录音元件1132机械连接,因此,旋转臂1112在进行转动时,会带动测试底板112、第一录音元件1131和第二录音元件1132同步进行旋转,即测试底板112、第一录音元件1131和第二录音元件1132会随着旋转臂1112同步旋转,使得测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至预设的旋转角度。When the abnormal sound detection is performed on the cooling fan 200, the servo motor 1111 drives the rotating arm 1112 to rotate. Since the rotating arm 1112 is also mechanically connected to the test base plate 112, the first recording element 1131 and the second recording element 1132 respectively, when the rotating arm 1112 rotates, it will drive the test base plate 112, the first recording element 1131 and the second recording element 1132 to rotate synchronously, that is, the test base plate 112, the first recording element 1131 and the second recording element 1132 will rotate synchronously with the rotating arm 1112, so that the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 rotate synchronously to a preset rotation angle.
为了实现在多个旋转角度下检测散热风扇200的异音情况,本申请实施例可以采用如图3所示的伺服电机1111和旋转臂1112来控制散热风扇200进行旋转,实现对散热风扇200进行无极角度控制,即控制散热风扇200在0°至360°中的任意角度进行旋转。In order to detect abnormal sounds of the cooling fan 200 at multiple rotation angles, the embodiment of the present application can use the servo motor 1111 and the rotating arm 1112 as shown in Figure 3 to control the rotation of the cooling fan 200, thereby realizing stepless angle control of the cooling fan 200, that is, controlling the cooling fan 200 to rotate at any angle between 0° and 360°.
在对散热风扇200进行异音检测时,如图3和图4所示,散热风扇200设置在测试底板112上,并通过固定支架115将散热风扇200固定在测试底板112上。在一些实施例中,音源采集装置110中的固定支架115可以为多个。在对散热风扇200进行异音检测的过程中,固定支架115可以由电机来进行控制,以将散热风扇200固定在测试底板112上,用于驱动固定支架115的电机,与用于驱动旋转臂1112旋转的伺服电机1111不是同一个电机。When the abnormal sound detection is performed on the cooling fan 200, as shown in FIG3 and FIG4, the cooling fan 200 is set on the test base plate 112, and the cooling fan 200 is fixed on the test base plate 112 by the fixing bracket 115. In some embodiments, there can be multiple fixing brackets 115 in the sound source collection device 110. In the process of performing abnormal sound detection on the cooling fan 200, the fixing bracket 115 can be controlled by a motor to fix the cooling fan 200 on the test base plate 112. The motor used to drive the fixing bracket 115 is not the same motor as the servo motor 1111 used to drive the rotating arm 1112 to rotate.
在将散热风扇200固定在测试底板112上之后,第一录音元件1131和第二录音元件1132均与散热风扇200垂直设置。并且,在采用伺服电机1111和旋转臂1112来控制散热风扇200、第一录音元件1131和第二录音元件1132同步旋转时,第一录音元件1131与散热风扇200之间的角度和相对位置没有发生变化,第二录音元件1132与散热风扇200之间的角度和相对位置也没有发生变化。After the cooling fan 200 is fixed on the test base plate 112, the first recording element 1131 and the second recording element 1132 are both arranged perpendicular to the cooling fan 200. Furthermore, when the servo motor 1111 and the rotating arm 1112 are used to control the cooling fan 200, the first recording element 1131 and the second recording element 1132 to rotate synchronously, the angle and relative position between the first recording element 1131 and the cooling fan 200 do not change, and the angle and relative position between the second recording element 1132 and the cooling fan 200 do not change.
此外,音源采集装置110还包括支撑件116、支撑轴承117以及其他附属结构。支撑件116和支撑轴承117用于与音源采集装置110中的底座固定。In addition, the sound source collection device 110 further includes a support member 116 , a support bearing 117 and other auxiliary structures. The support member 116 and the support bearing 117 are used to be fixed to the base of the sound source collection device 110 .
在一些场景中,散热风扇200可以仅在某些放置姿态或转速状态下产生异音,因此,为了可以提高存在异音的散热风扇在检测过程中被激发出异音的可能性,本申请实施例可以采集散热风扇200在不同姿态以及不同转速状态下运转时的音源信号。In some scenarios, the cooling fan 200 may produce abnormal noise only in certain placement postures or speed states. Therefore, in order to increase the possibility that the cooling fan with abnormal noise will be stimulated to produce abnormal noise during the detection process, the embodiment of the present application can collect the sound source signal of the cooling fan 200 when it is running in different postures and different speed states.
也就是说,在风扇控制模块114控制散热风扇200以多个不同的预设转速中的每个预设转速进行运转,且驱动机构111带动散热风扇200、第一录音元件1131和第二录音元件1132,同步旋转至多个不同的旋转角度中的每个旋转角度的情况下,第一录音元件1131和第二录音元件1132均采集一次散热风扇200的音源信号。That is to say, when the fan control module 114 controls the cooling fan 200 to operate at each of a plurality of different preset speeds, and the driving mechanism 111 drives the cooling fan 200, the first recording element 1131 and the second recording element 1132 to rotate synchronously to each of a plurality of different rotation angles, the first recording element 1131 and the second recording element 1132 both collect the sound source signal of the cooling fan 200 once.
在一些实施例中,多个不同的预设转速包括第一预设转速和第二预设转速,第一预设转速大于第二预设转速,可以将第一预设转速称为中速,将第二预设转速称为低速。例如,第一预设转速为4000±50rpm,第二预设转速为2500±50rpm。In some embodiments, the plurality of different preset speeds include a first preset speed and a second preset speed, the first preset speed is greater than the second preset speed, the first preset speed can be called a medium speed, and the second preset speed can be called a low speed. For example, the first preset speed is 4000±50rpm, and the second preset speed is 2500±50rpm.
可以理解的是,第一预设转速不局限于4000±50rpm,第二预设转速也不局限于2500±50rpm,本申请实施例对第一预设转速和第二预设转速的具体数值不进行限定。It is understandable that the first preset speed is not limited to 4000±50 rpm, and the second preset speed is not limited to 2500±50 rpm. The embodiment of the present application does not limit the specific values of the first preset speed and the second preset speed.
风扇控制模块114利用电压信号控制散热风扇200进行无极调速,以将散热风扇200的风扇转速分别调节至第一预设转速和第二预设转速。无极调速指的是进行任意速度的调节,即散热风扇200在风扇控制模块114的控制下,能够实现任意连续的速度变化。The fan control module 114 uses the voltage signal to control the cooling fan 200 to perform stepless speed regulation, so as to adjust the fan speed of the cooling fan 200 to the first preset speed and the second preset speed respectively. Stepless speed regulation refers to the regulation of any speed, that is, the cooling fan 200 can achieve any continuous speed change under the control of the fan control module 114.
在一些实施例中,多个不同的旋转角度包括第一旋转角度、第二旋转角度和第三旋转角度,第一旋转角度、第二旋转角度和第三旋转角度各不相同。例如,第一旋转角度为0°,第二旋转角度为90°,第三旋转角度为180°。In some embodiments, the plurality of different rotation angles include a first rotation angle, a second rotation angle, and a third rotation angle, and the first rotation angle, the second rotation angle, and the third rotation angle are different from each other. For example, the first rotation angle is 0°, the second rotation angle is 90°, and the third rotation angle is 180°.
可以理解的是,第一旋转角度不局限于0°,第二旋转角度不局限于90°,第三旋转角度不局限于180°,本申请实施例对第一旋转角度、第二旋转角度和第三旋转角度的具体数值不进行限定。It can be understood that the first rotation angle is not limited to 0°, the second rotation angle is not limited to 90°, and the third rotation angle is not limited to 180°. The embodiment of the present application does not limit the specific values of the first rotation angle, the second rotation angle, and the third rotation angle.
驱动机构111可以控制散热风扇200分别悬停在第一旋转角度、第二旋转角度和第三旋转角度这三种姿态。以第一旋转角度为0°,第二旋转角度为90°,第三旋转角度为180°为例,当散热风扇200悬停在图3所示的水平方向,且第一录音元件1131位于测试底板112的上方,第二录音元件1132位于测试底板112的下方时,此时,散热风扇200的旋转角度为第一旋转角度0°;当散热风扇200悬停在垂直方向时,此时,散热风扇200的旋转角度为第二旋转角度90°;当散热风扇200悬停在水平方向,且第一录音元件1131位于测试底板112的下方,第二录音元件1132位于测试底板112的上方时,此时,散热风扇200的旋转角度为第三旋转角度180°。The driving mechanism 111 can control the cooling fan 200 to hover at three positions, namely, the first rotation angle, the second rotation angle, and the third rotation angle. For example, when the cooling fan 200 is hovering in the horizontal direction shown in FIG. 3 , and the first recording element 1131 is located above the test base plate 112, and the second recording element 1132 is located below the test base plate 112, the rotation angle of the cooling fan 200 is the first rotation angle of 0°; when the cooling fan 200 is hovering in the vertical direction, the rotation angle of the cooling fan 200 is the second rotation angle of 90°; when the cooling fan 200 is hovering in the horizontal direction, and the first recording element 1131 is located below the test base plate 112, and the second recording element 1132 is located above the test base plate 112, the rotation angle of the cooling fan 200 is the third rotation angle of 180°.
下面以多个不同的预设转速包括第一预设转速和第二预设转速,多个不同的旋转角度包括第一旋转角度、第二旋转角度和第三旋转角度为例,说明本申请实施例对散热风扇200进行音源信号采集的具体过程。The following takes multiple different preset rotation speeds including a first preset rotation speed and a second preset rotation speed, and multiple different rotation angles including a first rotation angle, a second rotation angle, and a third rotation angle as an example to illustrate the specific process of collecting sound source signals for the cooling fan 200 in an embodiment of the present application.
在对散热风扇200进行异音检测时,风扇控制模块114首先将散热风扇200的风扇转速调整至第一预设转速。在将散热风扇200的风扇转速调整至第一预设转速的情况下,驱动机构111先带动测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至第一旋转角度,此时的第一录音元件1131和第二录音元件1132分别采集一次散热风扇200的音源信号;驱动机构111再带动测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至第二旋转角度,此时的第一录音元件1131和第二录音元件1132分别再采集一次散热风扇200的音源信号;驱动机构111继续带动测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至第三旋转角度,此时的第一录音元件1131和第二录音元件1132分别再采集一次散热风扇200的音源信号。When performing abnormal sound detection on the cooling fan 200 , the fan control module 114 first adjusts the fan speed of the cooling fan 200 to a first preset speed. When the fan speed of the cooling fan 200 is adjusted to the first preset speed, the driving mechanism 111 first drives the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 to rotate synchronously to the first rotation angle, at which time the first recording element 1131 and the second recording element 1132 respectively collect the sound source signal of the cooling fan 200 once; the driving mechanism 111 then drives the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 to rotate synchronously to the second rotation angle, at which time the first recording element 1131 and the second recording element 1132 respectively collect the sound source signal of the cooling fan 200 once; the driving mechanism 111 continues to drive the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 to rotate synchronously to the third rotation angle, at which time the first recording element 1131 and the second recording element 1132 respectively collect the sound source signal of the cooling fan 200 once.
然后,风扇控制模块114再将散热风扇200的风扇转速调整至第二预设转速。在将散热风扇200的风扇转速调整至第二预设转速的情况下,驱动机构111先带动测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至第一旋转角度,此时的第一录音元件1131和第二录音元件1132分别采集一次散热风扇200的音源信号;驱动机构111再带动测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至第二旋转角度,此时的第一录音元件1131和第二录音元件1132分别再采集一次散热风扇200的音源信号;驱动机构111继续带动测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至第三旋转角度,此时的第一录音元件1131和第二录音元件1132分别再采集一次散热风扇200的音源信号。Then, the fan control module 114 adjusts the fan speed of the heat dissipation fan 200 to a second preset speed. When the fan speed of the cooling fan 200 is adjusted to the second preset speed, the driving mechanism 111 first drives the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 to rotate synchronously to the first rotation angle, at which time the first recording element 1131 and the second recording element 1132 respectively collect the sound source signal of the cooling fan 200 once; the driving mechanism 111 then drives the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 to rotate synchronously to the second rotation angle, at which time the first recording element 1131 and the second recording element 1132 respectively collect the sound source signal of the cooling fan 200 once; the driving mechanism 111 continues to drive the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 to rotate synchronously to the third rotation angle, at which time the first recording element 1131 and the second recording element 1132 respectively collect the sound source signal of the cooling fan 200 once.
综上,本申请实施例采用第一录音元件1131和第二录音元件1132,分别采集散热风扇200在第一预设转速时处于第一旋转角度、第二旋转角度和第三旋转角度下的音源信号,以及分别采集散热风扇200在第二预设转速时处于第一旋转角度、第二旋转角度和第三旋转角度下的音源信号。也就是说,第一录音元件1131共采集了6个音源信号,第二录音元件1132也共采集了6个音源信号,即对散热风扇200总共采集了12个音源信号。这12个音源信号可以发送给异音检测模块120,异音检测模块120可以根据这12个音源信号来检测散热风扇200是否存在异音。In summary, the embodiment of the present application uses the first recording element 1131 and the second recording element 1132 to respectively collect the sound source signals of the cooling fan 200 at the first rotation angle, the second rotation angle and the third rotation angle at the first preset speed, and respectively collect the sound source signals of the cooling fan 200 at the first rotation angle, the second rotation angle and the third rotation angle at the second preset speed. In other words, the first recording element 1131 collects a total of 6 sound source signals, and the second recording element 1132 also collects a total of 6 sound source signals, that is, a total of 12 sound source signals are collected for the cooling fan 200. These 12 sound source signals can be sent to the abnormal sound detection module 120, and the abnormal sound detection module 120 can detect whether there is an abnormal sound in the cooling fan 200 based on these 12 sound source signals.
可以理解的是,本申请实施例中的多个不同的预设转速不局限于两个预设转速,其还可以是其他数量个预设转速,如多个不同的预设转速为三个不同的预设转速,即多个不同的预设转速包括第一预设转速、第二预设转速和第三预设转速,第一预设转速、第二预设转速和第三预设转速均不同。本申请实施例对预设转速的数量不进行限定,其可以根据实际情况进行设定。It is understandable that the multiple different preset speeds in the embodiment of the present application are not limited to two preset speeds, and can also be other numbers of preset speeds, such as the multiple different preset speeds are three different preset speeds, that is, the multiple different preset speeds include a first preset speed, a second preset speed, and a third preset speed, and the first preset speed, the second preset speed, and the third preset speed are all different. The embodiment of the present application does not limit the number of preset speeds, and it can be set according to actual conditions.
相应的,本申请实施例中的多个不同的旋转角度也不局限于三个旋转角度,其还可以是其他数量个旋转角度,如多个不同的旋转角度为四个不同的旋转角度,即多个不同的旋转角度可以包括第一旋转角度、第二旋转角度、第三旋转角度和第四旋转角度,第一旋转角度、第二旋转角度、第三旋转角度和第四旋转角度均不同。本申请实施例对旋转角度的数量不进行限定,其可以根据实际情况进行设定。Accordingly, the multiple different rotation angles in the embodiment of the present application are not limited to three rotation angles, and can also be other numbers of rotation angles, such as the multiple different rotation angles are four different rotation angles, that is, the multiple different rotation angles can include a first rotation angle, a second rotation angle, a third rotation angle, and a fourth rotation angle, and the first rotation angle, the second rotation angle, the third rotation angle, and the fourth rotation angle are all different. The embodiment of the present application does not limit the number of rotation angles, and it can be set according to actual conditions.
因此,本申请实施例对散热风扇200在多个不同的预设转速以及多个不同的旋转角度下,采用录音元件113对散热风扇的音源信号进行采集,并利用异音检测模块120对采集的多个音源信号来检测散热风扇200是否存在异音,其可以提高存在异音的散热风扇200在检测过程中被激发出异音的可能性,从而提高散热风扇200的异音检测结果的准确性。Therefore, the embodiment of the present application uses a recording element 113 to collect the sound source signal of the cooling fan 200 at multiple different preset rotation speeds and multiple different rotation angles, and uses the abnormal sound detection module 120 to detect whether the cooling fan 200 has abnormal sounds based on the collected multiple sound source signals. This can increase the possibility that the cooling fan 200 with abnormal sounds will be stimulated to produce abnormal sounds during the detection process, thereby improving the accuracy of the abnormal sound detection results of the cooling fan 200.
并且,散热风扇200在旋转至多个不同的旋转角度时,散热风扇200与录音元件113之间的角度和相对位置均不会发生变化,其可以提高散热风扇200在不同的旋转角度下,录音元件113采集到的音源信号的一致性,从而提高散热风扇200的异音检测结果的准确性。Furthermore, when the cooling fan 200 rotates to a plurality of different rotation angles, the angle and relative position between the cooling fan 200 and the recording element 113 will not change, which can improve the consistency of the sound source signal collected by the recording element 113 at different rotation angles of the cooling fan 200, thereby improving the accuracy of the abnormal sound detection result of the cooling fan 200.
在一些相关技术中,如图5所示,风扇控制模块114可以包括上位控制器1141和电压输出模块1142。上位控制器1141可以向电压输出模块1142发送控制信号,电压输出模块1142可以根据控制信号向散热风扇200提供电压信号,该电压信号用于驱动散热风扇200进行运转。In some related technologies, as shown in Fig. 5, the fan control module 114 may include a host controller 1141 and a voltage output module 1142. The host controller 1141 may send a control signal to the voltage output module 1142, and the voltage output module 1142 may provide a voltage signal to the cooling fan 200 according to the control signal, and the voltage signal is used to drive the cooling fan 200 to operate.
但是,相关技术在采用上述的开环控制方式,来控制散热风扇200进行第一预设转速和第二预设转速的切换时,由于部分散热风扇200的电压-转速曲线的特性偏差,同时由于散热风扇200的结构可能存在的刮擦、偏摆、振动等问题,导致在相同电压下,不同散热风扇200的实际转速偏差较大,不同散热风扇200的转速偏差将导致散热风扇200的异音不一致,从而影响散热风扇200的异音检测结果。However, when the related technology adopts the above-mentioned open-loop control method to control the cooling fan 200 to switch between the first preset speed and the second preset speed, due to the characteristic deviation of the voltage-speed curve of some cooling fans 200, and due to the possible scratching, yaw, vibration and other problems in the structure of the cooling fan 200, the actual speed deviation of different cooling fans 200 is large under the same voltage. The speed deviation of different cooling fans 200 will cause the abnormal sound of the cooling fan 200 to be inconsistent, thereby affecting the abnormal sound detection result of the cooling fan 200.
为了实现对散热风扇200的风扇转速进行精确管控,在风扇控制模块114中加入计数器模块,实现对散热风扇200的风扇转速进行闭环控制。如图6所示,风扇控制模块114包括上位控制器1141、电压输出模块1142和计数器模块1143,上位控制器1141分别与电压输出模块1142和计数器模块1143电连接,电压输出模块1142和计数器模块1143还与散热风扇200电连接。In order to achieve accurate control of the fan speed of the cooling fan 200, a counter module is added to the fan control module 114 to achieve closed-loop control of the fan speed of the cooling fan 200. As shown in FIG6, the fan control module 114 includes an upper controller 1141, a voltage output module 1142 and a counter module 1143, and the upper controller 1141 is electrically connected to the voltage output module 1142 and the counter module 1143 respectively, and the voltage output module 1142 and the counter module 1143 are also electrically connected to the cooling fan 200.
其中,上位控制器1141用于向电压输出模块1142发送控制信号;电压输出模块1142用于根据控制信号向散热风扇200提供电压信号,电压信号用于驱动散热风扇200进行运转;计数器模块1143用于检测散热风扇200运转过程中的风扇转速,并将风扇转速发送给上位控制器1141;上位控制器1141还用于计算风扇转速与预设转速之间的转速偏差;上位控制器1141还用于根据转速偏差确定电压补偿值;上位控制器1141还用于根据电压补偿值,调节其向电压输出模块1142发送的控制信号,进而调节电压输出模块1142向散热风扇200提供的电压信号,调节后的电压信号用于将散热风扇200运转过程中的风扇转速调节至预设转速。Among them, the upper controller 1141 is used to send a control signal to the voltage output module 1142; the voltage output module 1142 is used to provide a voltage signal to the cooling fan 200 according to the control signal, and the voltage signal is used to drive the cooling fan 200 to operate; the counter module 1143 is used to detect the fan speed of the cooling fan 200 during operation, and send the fan speed to the upper controller 1141; the upper controller 1141 is also used to calculate the speed deviation between the fan speed and the preset speed; the upper controller 1141 is also used to determine the voltage compensation value according to the speed deviation; the upper controller 1141 is also used to adjust the control signal sent to the voltage output module 1142 according to the voltage compensation value, and then adjust the voltage signal provided by the voltage output module 1142 to the cooling fan 200, and the adjusted voltage signal is used to adjust the fan speed of the cooling fan 200 during operation to the preset speed.
在上位控制器1141向电压输出模块1142发送控制信号,电压输出模块1142根据控制信号向散热风扇200提供电压信号,以驱动散热风扇200进行运转时,计数器模块1143可以实时检测散热风扇200运转过程中的风扇转速,并将检测到的风扇转速发送给上位控制器1141。When the upper controller 1141 sends a control signal to the voltage output module 1142, and the voltage output module 1142 provides a voltage signal to the cooling fan 200 according to the control signal to drive the cooling fan 200 to operate, the counter module 1143 can detect the fan speed of the cooling fan 200 during operation in real time, and send the detected fan speed to the upper controller 1141.
具体的,当散热风扇200转动时,计数器模块1143会侦测到散热风扇200每旋转一周产生的频率方波信号,计数器模块1143统计预设周期内的频率方波信号的个数,计算得到散热风扇200的旋转频率,计数器模块1143根据散热风扇200的旋转频率与风扇转速之间的对应关系,换算得到散热风扇200运转过程中的风扇转速。其中,散热风扇200的旋转频率与风扇转速呈正比关系。Specifically, when the cooling fan 200 rotates, the counter module 1143 detects the frequency square wave signal generated by the cooling fan 200 every time it rotates. The counter module 1143 counts the number of frequency square wave signals within a preset period and calculates the rotation frequency of the cooling fan 200. The counter module 1143 converts the fan speed of the cooling fan 200 during operation according to the corresponding relationship between the rotation frequency of the cooling fan 200 and the fan speed. Among them, the rotation frequency of the cooling fan 200 is proportional to the fan speed.
上位控制器1141将风扇转速与预设转速进行比较,计算风扇转速与预设转速之间的差值,得到转速偏差。例如,上位控制器1141和电压输出模块1142控制散热风扇200从第一预设转速调整至第二预设转速时,上位控制器1141将计数器模块1143采集到的风扇转速与第二预设转速进行比较,计算风扇转速与第二预设转速之间的转速偏差。The upper controller 1141 compares the fan speed with the preset speed, calculates the difference between the fan speed and the preset speed, and obtains the speed deviation. For example, when the upper controller 1141 and the voltage output module 1142 control the cooling fan 200 to adjust from the first preset speed to the second preset speed, the upper controller 1141 compares the fan speed collected by the counter module 1143 with the second preset speed, and calculates the speed deviation between the fan speed and the second preset speed.
接着,上位控制器1141根据标准散热风扇的电压-转速曲线,确定转速偏差对应的电压补偿值,该电压补偿值也可称为电压插值,其用于通过电压输出模块1142对提供给散热风扇200的电压信号进行补偿,使得散热风扇200的实际风扇转速可以达到预设转速范围内,从而控制散热风扇200的异音变量。Next, the upper controller 1141 determines the voltage compensation value corresponding to the speed deviation based on the voltage-speed curve of the standard cooling fan. The voltage compensation value can also be called voltage interpolation, which is used to compensate the voltage signal provided to the cooling fan 200 through the voltage output module 1142, so that the actual fan speed of the cooling fan 200 can reach the preset speed range, thereby controlling the abnormal sound variable of the cooling fan 200.
例如,预设转速4000rpm对应的电压信号的电压值为5V,则上位控制器1141通过电压输出模块1142向散热风扇200提供5V的电压信号,此时,计数器模块1143采集到散热风扇200实际的风扇转速为3900rpm,则上位控制器1141计算得到转速偏差为100rpm,上位控制器1141确定转速偏差100rpm对应的电压补偿值为0.1V,则上位控制器1141通过电压输出模块1142向散热风扇200的电压信号进行补偿,即通过电压输出模块1142向散热风扇200提供5.1V的电压信号,以将散热风扇200的实际风扇转速调整至4000rpm。For example, if the voltage value of the voltage signal corresponding to the preset speed of 4000rpm is 5V, the upper controller 1141 provides a 5V voltage signal to the cooling fan 200 through the voltage output module 1142. At this time, the counter module 1143 collects the actual fan speed of the cooling fan 200 as 3900rpm, and the upper controller 1141 calculates that the speed deviation is 100rpm. The upper controller 1141 determines that the voltage compensation value corresponding to the speed deviation of 100rpm is 0.1V, and the upper controller 1141 compensates the voltage signal of the cooling fan 200 through the voltage output module 1142, that is, provides a 5.1V voltage signal to the cooling fan 200 through the voltage output module 1142 to adjust the actual fan speed of the cooling fan 200 to 4000rpm.
经测试,采用如图5所示的对散热风扇200的风扇转速进行开环控制的方式,散热风扇200的转速偏差可以达到±300rpm,而采用如图6所示的对散热风扇200的风扇转速进行闭环控制的方式,散热风扇200的转速偏差可以降低至50rpm。因此,本申请实施例在采用如图6所示的对散热风扇200的风扇转速进行闭环控制的方式,可以实现对散热风扇200的风扇转速进行精度控制,从而提高散热风扇200的异音检测的稳定性。After testing, by adopting the method of performing open-loop control on the fan speed of the cooling fan 200 as shown in FIG5, the speed deviation of the cooling fan 200 can reach ±300rpm, while by adopting the method of performing closed-loop control on the fan speed of the cooling fan 200 as shown in FIG6, the speed deviation of the cooling fan 200 can be reduced to 50rpm. Therefore, the embodiment of the present application adopts the method of performing closed-loop control on the fan speed of the cooling fan 200 as shown in FIG6, which can achieve precision control of the fan speed of the cooling fan 200, thereby improving the stability of abnormal sound detection of the cooling fan 200.
需要说明的是,风扇控制模块114中的上位控制器1141和异音检测模块120可以集成在一起,也可以独立设置。It should be noted that the upper controller 1141 in the fan control module 114 and the abnormal sound detection module 120 may be integrated together or independently provided.
在本申请实施例中,异音检测模块120可以为上位机,异音检测模块120具体用于:计算每个音源信号的平均频谱峭度和平均频谱峰值;计算每个音源信号的声压级;根据每个音源信号的平均频谱峭度、平均频谱峰值和声压级,来确定散热风扇200是否存在异音。In an embodiment of the present application, the abnormal sound detection module 120 may be a host computer, and the abnormal sound detection module 120 is specifically used to: calculate the average spectral kurtosis and the average spectral peak of each sound source signal; calculate the sound pressure level of each sound source signal; and determine whether the cooling fan 200 has abnormal sound based on the average spectral kurtosis, the average spectral peak and the sound pressure level of each sound source signal.
散热风扇200的异音来源可以是转子不平衡、叶片质量不均匀、叶片与外框结构件周期性碰磨以及电机绕组缠绕不均造成松脱等原因。在一些相关技术中,只关注异音本身,以采集到的音源信号中的某些频段的声压级,来判断散热风扇200是否存在异音。但是,这种方式容易受到设备噪音、环境噪音、风扇转速等影响,特别是低频段噪音干扰较多,使得声压级对低频段异音拦截效果不好,导致散热风扇200的异音检测的拦截率和过杀率都难以满足要求,从而导致在仅采用声压级来判断散热风扇200是否存在异音时,散热风扇200的异音检测结果的准确性较低的问题。The source of abnormal sound of the cooling fan 200 may be an unbalanced rotor, uneven blade quality, periodic friction between the blade and the outer frame structure, and loosening caused by uneven winding of the motor winding. In some related technologies, only the abnormal sound itself is focused on, and the sound pressure level of certain frequency bands in the collected sound source signal is used to determine whether there is abnormal sound in the cooling fan 200. However, this method is easily affected by equipment noise, environmental noise, fan speed, etc., especially the low-frequency noise interference is more, which makes the sound pressure level have a poor effect on intercepting low-frequency abnormal sound, resulting in the interception rate and over-kill rate of the abnormal sound detection of the cooling fan 200 are difficult to meet the requirements, resulting in the problem of low accuracy of the abnormal sound detection result of the cooling fan 200 when only the sound pressure level is used to determine whether there is abnormal sound in the cooling fan 200.
因此,本申请实施例针对散热风扇200的音源信号,不仅考虑了其对应的声压级,同时还聚焦特定频段,引入了平均频谱峭度和平均频谱峰值,即采用平均频谱峭度、平均频谱峰值和声压级,来共同判断散热风扇200是否存在异音,提高了散热风扇200的异音检测的拦截率,并降低了散热风扇200的异音检测的过杀率,从而进一步提高了散热风扇200的异音检测结果的准确性。Therefore, the embodiment of the present application not only takes into account the corresponding sound pressure level of the sound source signal of the cooling fan 200, but also focuses on a specific frequency band and introduces the average spectrum kurtosis and the average spectrum peak. That is, the average spectrum kurtosis, the average spectrum peak and the sound pressure level are used to jointly determine whether there is an abnormal sound in the cooling fan 200, thereby improving the interception rate of the abnormal sound detection of the cooling fan 200 and reducing the over-kill rate of the abnormal sound detection of the cooling fan 200, thereby further improving the accuracy of the abnormal sound detection result of the cooling fan 200.
在一些实施例中,异音检测模块120具体用于:对每个音源信号进行带通滤波处理;对带通滤波处理后的每个音源信号进行傅里叶变换,得到每个音源信号对应的频谱;提取每个音源信号对应的频谱中的待分析频带;根据每个音源信号对应的待分析频带,计算得到每个音源信号的平均频谱峭度和平均频谱峰值。In some embodiments, the abnormal sound detection module 120 is specifically used to: perform bandpass filtering on each sound source signal; perform Fourier transform on each sound source signal after bandpass filtering to obtain the frequency spectrum corresponding to each sound source signal; extract the frequency band to be analyzed in the frequency spectrum corresponding to each sound source signal; and calculate the average spectral kurtosis and average spectral peak of each sound source signal based on the frequency band to be analyzed corresponding to each sound source signal.
具体的,待分析频带包括散热风扇200的转频对应的多个倍频频段。异音检测模块120具体用于:计算每个音源信号对应的待分析频带中,包括的每个倍频频段对应的频谱峭度和频谱峰值;计算每个音源信号对应的待分析频带中,包括的多个倍频频段对应的频谱峭度的平均值,得到每个音源信号的平均频谱峭度;计算每个音源信号对应的待分析频带中,包括的多个倍频频段对应的频谱峰值的平均值,得到每个音源信号的平均频谱峰值。Specifically, the frequency band to be analyzed includes multiple octave frequency bands corresponding to the rotation frequency of the cooling fan 200. The abnormal sound detection module 120 is specifically used to: calculate the spectrum kurtosis and spectrum peak corresponding to each octave frequency band included in the frequency band to be analyzed corresponding to each sound source signal; calculate the average value of the spectrum kurtosis corresponding to the multiple octave frequency bands included in the frequency band to be analyzed corresponding to each sound source signal, and obtain the average spectrum kurtosis of each sound source signal; calculate the average value of the spectrum peaks corresponding to the multiple octave frequency bands included in the frequency band to be analyzed corresponding to each sound source signal, and obtain the average spectrum peak of each sound source signal.
录音元件113采集到的每个音源信号均为时域波形,在对每个音源信号进行带通滤波处理后,带通滤波处理后的每个音源信号也均为时域波形。然后,可以采用傅里叶变换(Fourier变换),将带通滤波处理后的每个音源信号变换到频域,得到每个音源信号对应的频谱。Each sound source signal collected by the recording element 113 is a time domain waveform. After each sound source signal is subjected to bandpass filtering, each sound source signal after bandpass filtering is also a time domain waveform. Then, Fourier transform can be used to transform each sound source signal after bandpass filtering into the frequency domain to obtain the spectrum corresponding to each sound source signal.
由于散热风扇200是一种旋转机械结构,其多数故障的特征频率为转频。故障的特征频率也可以用产生故障的周期来表示,转频指的是转动频率,即散热风扇200转动时的转动频率。Since the cooling fan 200 is a rotating mechanical structure, the characteristic frequency of most faults is the rotation frequency. The characteristic frequency of the fault can also be represented by the period of the fault. The rotation frequency refers to the rotation frequency, that is, the rotation frequency of the cooling fan 200 when it rotates.
如果散热风扇200的故障是单个点接触,则故障波形是频率为转频的正弦波;如果故障是线或面接触,则故障波形是相同频率(转频)、不同振幅、不同相位波形的叠加,从而产生波形的畸变,故障程度越大,波形畸变程度越大。若散热风扇200无故障,其对应的音源信号经过傅里叶变换后的频谱中不存在转频的倍频成分,若散热风扇200存在故障,其对应的音源信号在经过傅里叶变换后,对应于转频的波形会因为发生畸变,需要其倍频成分合成,使得频谱突出频率除了转频外还会产生很多转频的倍频成分。If the fault of the cooling fan 200 is a single point contact, the fault waveform is a sine wave with a frequency of the rotation frequency; if the fault is a line or surface contact, the fault waveform is a superposition of waveforms with the same frequency (rotation frequency), different amplitudes, and different phases, thereby generating waveform distortion. The greater the degree of the fault, the greater the degree of waveform distortion. If the cooling fan 200 is not faulty, the frequency spectrum of its corresponding sound source signal after Fourier transformation does not contain the frequency multiplication component of the rotation frequency. If the cooling fan 200 is faulty, the waveform corresponding to the rotation frequency will be distorted after the Fourier transformation of its corresponding sound source signal, and its frequency multiplication component needs to be synthesized, so that the prominent frequency of the spectrum will produce many frequency multiplication components of the rotation frequency in addition to the rotation frequency.
因此,在低频段,以转频的某些倍频频段作为待分析频带,即待分析频带包括散热风扇200的转频对应的多个倍频频段。针对每个音源信号对应的待分析频带中,计算其包括的每个倍频频段对应的频谱峭度和频谱峰值;然后,对每个音源信号的待分析频带中的多个倍频频段对应的频谱峭度计算平均值,得到每个音源信号的平均频谱峭度,以及对每个音源信号的待分析频带中的多个倍频频段对应的频谱峰值计算平均值,得到每个音源信号的平均频谱峰值。基于平均频谱峭度和平均频谱峰值来作为判断散热风扇200是否存在异音的其中一部分检测指标。Therefore, in the low frequency band, some octave frequency bands of the rotation frequency are used as the frequency bands to be analyzed, that is, the frequency bands to be analyzed include multiple octave frequency bands corresponding to the rotation frequency of the cooling fan 200. For each sound source signal corresponding to the frequency band to be analyzed, the spectral kurtosis and spectral peak corresponding to each octave frequency band included therein are calculated; then, the spectral kurtosis corresponding to multiple octave frequency bands in the frequency band to be analyzed of each sound source signal is averaged to obtain the average spectral kurtosis of each sound source signal, and the spectral peaks corresponding to multiple octave frequency bands in the frequency band to be analyzed of each sound source signal are averaged to obtain the average spectral peak of each sound source signal. The average spectral kurtosis and the average spectral peak are used as part of the detection indicators for judging whether there is abnormal sound in the cooling fan 200.
倍频频段对应的频谱峭度指的是倍频频段的陡峭程度,其定义为:随机变量的四阶中心矩除以标准差的四次幂,是无量纲因子,用来检验信号偏离正态分布的程度。The spectral kurtosis corresponding to the octave band refers to the steepness of the octave band, which is defined as: the fourth-order central moment of the random variable divided by the fourth power of the standard deviation. It is a dimensionless factor used to test the degree to which the signal deviates from the normal distribution.
需要说明的是,每个音源信号对应的频谱中包括很多个频段,如转频的1倍频至30倍频的频段,本申请实施例可以从音源信号对应的频谱中提取部分的倍频频段作为待分析频段。本申请实施例对待分析频带包括的倍频频段的具体范围不进行限定。It should be noted that the spectrum corresponding to each sound source signal includes many frequency bands, such as the frequency bands from 1x to 30x of the frequency conversion. The embodiment of the present application can extract some of the multiple frequency bands from the spectrum corresponding to the sound source signal as the frequency band to be analyzed. The embodiment of the present application does not limit the specific range of the multiple frequency bands included in the frequency band to be analyzed.
以每个音源信号的待分析频带包括N个倍频频段为例,在计算得到N个倍频频段中的每个倍频频段对应的频谱峭度和频谱峰值之后,对N个倍频频段对应的频谱峭度计算平均值,得到平均频谱峭度,以及对N个倍频频段对应的频谱峰值计算平均值,得到平均频谱峰值。Taking the example that the frequency band to be analyzed of each sound source signal includes N octave frequency bands, after calculating the spectral kurtosis and spectral peak corresponding to each of the N octave frequency bands, the spectral kurtosis corresponding to the N octave frequency bands is averaged to obtain the average spectral kurtosis, and the spectral peaks corresponding to the N octave frequency bands are averaged to obtain the average spectral peak.
在一些实施例中,异音检测模块120具体用于:对每个音源信号进行高通滤波处理;采用人耳听觉模型对高通滤波处理后的每个音源信号进行滤波处理;计算采用人耳听觉模型滤波处理后的每个音源信号的声压级。In some embodiments, the abnormal sound detection module 120 is specifically used to: perform high-pass filtering on each sound source signal; filter each sound source signal after high-pass filtering using a human ear auditory model; and calculate the sound pressure level of each sound source signal after filtering using the human ear auditory model.
由于一些散热风扇200的异音与转频的关联比较小,但与高频段的声压级有较大的差异。因此,在高频段,在采用高通滤波处理和人耳听觉模型滤波处理后,计算某些高频段的声压级来作为判断散热风扇200是否存在异音的另一部分检测指标。Since the abnormal sound of some cooling fans 200 is less related to the rotation frequency, but has a large difference with the sound pressure level in the high frequency band, in the high frequency band, after high-pass filtering and human ear hearing model filtering, the sound pressure level of some high frequency bands is calculated as another detection index to determine whether the cooling fan 200 has abnormal sound.
在对每个音源信号进行高通滤波处理后,可采用人耳听觉模型对高通滤波处理后的每个音源信号进行滤波处理,使得最终计算得到的声压级的客观指标与人耳的主观感受统一。After high-pass filtering is performed on each sound source signal, a human ear hearing model may be used to filter each sound source signal after high-pass filtering, so that the objective index of the sound pressure level finally calculated is consistent with the subjective feeling of the human ear.
例如,高通滤波的频率范围为10KHz至24KHz,这样,高通滤波处理和人耳听觉模型滤波处理后的每个音源信号的频率范围为10KHz至24KHz,本申请实施例对高通滤波的频率范围不作限制。For example, the frequency range of high-pass filtering is 10KHz to 24KHz. In this way, the frequency range of each sound source signal after high-pass filtering and human ear auditory model filtering is 10KHz to 24KHz. The embodiment of the present application does not limit the frequency range of high-pass filtering.
具体的,异音检测模块120具体用于:计算采用人耳听觉模型滤波处理后的每个音源信号对应的采样值,与模数转换的参考电压的乘积,得到每个音源信号对应的电压值;计算每个音源信号对应的电压值,与录音元件113的灵敏度的比值,得到每个音源信号的声压;通过如下公式,计算得到每个音源信号的声压级:SPL=20×lg(Pe/Pref);其中,SPL表示每个音源信号的声压级,Pe表示每个音源信号的声压,Pref表示参考声压。Specifically, the abnormal sound detection module 120 is specifically used to: calculate the product of the sampling value corresponding to each sound source signal after filtering using the human ear auditory model and the reference voltage of the analog-to-digital conversion to obtain the voltage value corresponding to each sound source signal; calculate the ratio of the voltage value corresponding to each sound source signal to the sensitivity of the recording element 113 to obtain the sound pressure of each sound source signal; calculate the sound pressure level of each sound source signal by the following formula: SPL=20×lg(P e /P ref ); wherein SPL represents the sound pressure level of each sound source signal, P e represents the sound pressure of each sound source signal, and Pref represents the reference sound pressure.
在听力测试或者噪声检测等研究领域,声压级(sound pressure level,SPL)是经常会用到的指标,声压级是人们为了便于应用,根据人耳对声音强弱变化响应的特性,引出的一个对数量来表示声音的大小。声压级以分贝(dB)为单位,当声压级越大时,则说明音源信号的音量越大,当声压级越小时,则说明音源信号的音量越小。In the research fields of hearing test or noise detection, sound pressure level (SPL) is a frequently used indicator. For the convenience of application, sound pressure level is a quantity derived from the characteristics of human ear's response to changes in sound intensity to indicate the size of the sound. The sound pressure level is measured in decibels (dB). The higher the sound pressure level, the louder the sound source signal. The lower the sound pressure level, the smaller the sound source signal.
在对每个音源信号进行高通滤波处理和人耳听觉模型滤波处理后,对每个音源信号进行采样,计算采样得到的采样值与模数转换的参考电压的乘积,得到每个音源信号对应的电压值,即电压值=采样值×模数转换的参考电压。电压值的单位为伏特(V),采样值的单位为帕斯卡(Pa),模数转换的参考电压的单位为V/Pa。After high-pass filtering and human hearing model filtering are performed on each sound source signal, each sound source signal is sampled, and the product of the sampled value obtained by sampling and the reference voltage of the analog-to-digital conversion is calculated to obtain the voltage value corresponding to each sound source signal, that is, voltage value = sampling value × reference voltage of analog-to-digital conversion. The unit of the voltage value is volt (V), the unit of the sampling value is Pascal (Pa), and the unit of the reference voltage of the analog-to-digital conversion is V/Pa.
接着,采用每个音源信号对应的电压值除以录音元件113的灵敏度,得到每个音源信号的声压,即声压=电压值/灵敏度。灵敏度的单位为V/Pa,声压的单位为Pa。Next, the voltage value corresponding to each sound source signal is divided by the sensitivity of the recording element 113 to obtain the sound pressure of each sound source signal, that is, sound pressure = voltage value / sensitivity. The unit of sensitivity is V/Pa, and the unit of sound pressure is Pa.
最后,采用SPL=20×lg(Pe/Pref)计算得到每个音源信号的声压级,也就是说,声压级是对每个音源信号的声压与参考声压的比值取常用对数后,再乘以20,可得到每个音源信号的声压级。Finally, the sound pressure level of each sound source signal is calculated using SPL=20×lg(P e /P ref ). That is to say, the sound pressure level is obtained by taking the common logarithm of the ratio of the sound pressure of each sound source signal to the reference sound pressure and then multiplying it by 20.
需要说明的是,模数转换的参考电压和参考声压可以是预设的固定数值。例如,模数转换的参考电压可以为4.88V/Pa,在空气中参考声压可以为2×10-5Pa。灵敏度是一个与录音元件113相关的数值。It should be noted that the reference voltage and reference sound pressure of the analog-to-digital conversion may be preset fixed values. For example, the reference voltage of the analog-to-digital conversion may be 4.88 V/Pa, and the reference sound pressure in air may be 2×10 -5 Pa. Sensitivity is a value related to the recording element 113 .
以至少一个录音元件113包括第一录音元件1131和第二录音元件1132,多个不同的预设转速包括第一预设转速和第二预设转速,多个不同的旋转角度包括第一旋转角度、第二旋转角度和第三旋转角度为例,总共可采集到12个音源信号,针对每个音源信号分别采用上述的方式,则可以计算得到12个音源信号的平均频谱峭度、平均频谱峰值和声压级。Taking at least one recording element 113 including a first recording element 1131 and a second recording element 1132, a plurality of different preset rotation speeds including a first preset rotation speed and a second preset rotation speed, and a plurality of different rotation angles including a first rotation angle, a second rotation angle and a third rotation angle as an example, a total of 12 sound source signals can be collected, and the above-mentioned method is used for each sound source signal, then the average spectral kurtosis, average spectral peak and sound pressure level of the 12 sound source signals can be calculated.
异音检测模块120具体用于:当每个音源信号的平均频谱峭度均小于频谱峭度阈值、每个音源信号的平均频谱峰值均小于频谱峰值阈值,且每个音源信号的声压级均小于声压级阈值时,确定散热风扇200不存在异音;当至少一个音源信号的平均频谱峭度大于或等于频谱峭度阈值,和/或,至少一个音源信号的平均频谱峰值大于或等于频谱峰值阈值,和/或,至少一个音源信号的声压级大于或等于声压级阈值时,确定散热风扇200存在异音。The abnormal sound detection module 120 is specifically used for: when the average spectral kurtosis of each sound source signal is less than the spectral kurtosis threshold, the average spectral peak of each sound source signal is less than the spectral peak threshold, and the sound pressure level of each sound source signal is less than the sound pressure level threshold, it is determined that there is no abnormal sound in the cooling fan 200; when the average spectral kurtosis of at least one sound source signal is greater than or equal to the spectral kurtosis threshold, and/or the average spectral peak of at least one sound source signal is greater than or equal to the spectral peak threshold, and/or the sound pressure level of at least one sound source signal is greater than or equal to the sound pressure level threshold, it is determined that there is an abnormal sound in the cooling fan 200.
异音检测模块120将每个音源信号的平均频谱峭度与频谱峭度阈值进行比较,将每个音源信号的平均频谱峰值与频谱峰值阈值进行比较,以及将每个音源信号的声压级与声压级阈值进行比较。The unusual sound detection module 120 compares the average spectrum kurtosis of each sound source signal with the spectrum kurtosis threshold, compares the average spectrum peak of each sound source signal with the spectrum peak threshold, and compares the sound pressure level of each sound source signal with the sound pressure level threshold.
以总共采集12个音源信号为例,当12个音源信号中的每个音源信号的平均频谱峭度均小于频谱峭度阈值、12个音源信号中的每个音源信号的平均频谱峰值均小于频谱峰值阈值,且12个音源信号中的每个音源信号的声压级均小于声压级阈值时,异音检测模块120确定散热风扇200不存在异音。Taking the collection of 12 sound source signals in total as an example, when the average spectral kurtosis of each of the 12 sound source signals is less than the spectral kurtosis threshold, the average spectral peak of each of the 12 sound source signals is less than the spectral peak threshold, and the sound pressure level of each of the 12 sound source signals is less than the sound pressure level threshold, the abnormal sound detection module 120 determines that there is no abnormal sound in the cooling fan 200.
而当12个音源信号中存在至少一个音源信号的平均频谱峭度大于或等于频谱峭度阈值,和/或,12个音源信号中存在至少一个音源信号的平均频谱峰值大于或等于频谱峰值阈值,和/或,12个音源信号中存在至少一个音源信号的声压级大于或等于声压级阈值时,异音检测模块120确定散热风扇200存在异音。When the average spectral kurtosis of at least one sound source signal among the 12 sound source signals is greater than or equal to the spectral kurtosis threshold, and/or the average spectral peak value of at least one sound source signal among the 12 sound source signals is greater than or equal to the spectral peak threshold, and/or the sound pressure level of at least one sound source signal among the 12 sound source signals is greater than or equal to the sound pressure level threshold, the abnormal sound detection module 120 determines that the cooling fan 200 has an abnormal sound.
需要说明的是,针对同一预设转速同一录音元件113,其在不同的旋转角度下对应的频谱峭度阈值是一样的,其在不同的旋转角度下对应的频谱峰值阈值也是一样的,其在不同的旋转角度下对应的声压级阈值也是一样的。It should be noted that, for the same recording element 113 at the same preset rotation speed, the corresponding spectral kurtosis threshold at different rotation angles is the same, the corresponding spectral peak threshold at different rotation angles is also the same, and the corresponding sound pressure level threshold at different rotation angles is also the same.
因此,以总共采集12个音源信号为例,则频谱峭度阈值共有4个,其分别为第一录音元件1131在第一预设转速下对应的频谱峭度阈值、第一录音元件1131在第二预设转速下对应的频谱峭度阈值、第二录音元件1132在第一预设转速下对应的频谱峭度阈值,以及第二录音元件1132在第二预设转速下对应的频谱峭度阈值,这4个频谱峭度阈值可能不相等;相应的,频谱峰值阈值也共有4个,其分别为第一录音元件1131在第一预设转速下对应的频谱峰值阈值、第一录音元件1131在第二预设转速下对应的频谱峰值阈值、第二录音元件1132在第一预设转速下对应的频谱峰值阈值,以及第二录音元件1132在第二预设转速下对应的频谱峰值阈值,这4个频谱峰值阈值可能不相等;相应的,声压级阈值也共有4个,其分别为第一录音元件1131在第一预设转速下对应的声压级阈值、第一录音元件1131在第二预设转速下对应的声压级阈值、第二录音元件1132在第一预设转速下对应的声压级阈值,以及第二录音元件1132在第二预设转速下对应的声压级阈值,这4个声压级阈值可能不相等。Therefore, taking the case of collecting 12 sound source signals in total as an example, there are 4 spectral kurtosis thresholds, which are the spectral kurtosis threshold corresponding to the first recording element 1131 at the first preset rotation speed, the spectral kurtosis threshold corresponding to the first recording element 1131 at the second preset rotation speed, the spectral kurtosis threshold corresponding to the second recording element 1132 at the first preset rotation speed, and the spectral kurtosis threshold corresponding to the second recording element 1132 at the second preset rotation speed. These 4 spectral kurtosis thresholds may not be equal; correspondingly, there are also 4 spectral peak thresholds, which are the spectral peak threshold corresponding to the first recording element 1131 at the first preset rotation speed, the spectral peak threshold corresponding to the first recording element 1131 at the second preset rotation speed, and the spectral peak threshold corresponding to the second recording element 1132 at the second preset rotation speed. The four spectrum peak thresholds may not be equal, namely, the spectrum peak threshold corresponding to the first preset rotation speed of the first recording element 1131, the spectrum peak threshold corresponding to the second recording element 1132 at the first preset rotation speed, and the spectrum peak threshold corresponding to the second recording element 1132 at the second preset rotation speed. Correspondingly, there are four sound pressure level thresholds, namely, the sound pressure level threshold corresponding to the first recording element 1131 at the first preset rotation speed, the sound pressure level threshold corresponding to the first recording element 1131 at the second preset rotation speed, the sound pressure level threshold corresponding to the second recording element 1132 at the first preset rotation speed, and the sound pressure level threshold corresponding to the second recording element 1132 at the second preset rotation speed. These four sound pressure level thresholds may not be equal.
上面对本申请实施例提供的风扇异音检测系统进行了详细描述,下面基于图1所示的风扇异音检测系统,对本申请实施例提供的风扇异音检测方法进行详细描述。图7为本申请实施例提供的一种风扇异音检测方法的流程图。参照图7所示,该风扇异音检测方法具体可以包括如下步骤:The above describes in detail the abnormal fan noise detection system provided in the embodiment of the present application. Based on the abnormal fan noise detection system shown in FIG1 , the abnormal fan noise detection method provided in the embodiment of the present application is described in detail below. FIG7 is a flow chart of an abnormal fan noise detection method provided in the embodiment of the present application. Referring to FIG7 , the abnormal fan noise detection method may specifically include the following steps:
步骤701,风扇控制模块控制散热风扇依次以多个不同的预设转速进行运转。Step 701: The fan control module controls the cooling fan to operate at a plurality of different preset speeds in sequence.
在对散热风扇200进行异音检测时,首先将散热风扇200放置在测试底板112的限位槽内,采用固定支架115将散热风扇200固定在测试底板112上。然后,开始测试过程,具体的,风扇控制模块114控制散热风扇200依次以多个不同的预设转速进行运转。When performing abnormal sound detection on the cooling fan 200, the cooling fan 200 is first placed in the limit groove of the test base plate 112, and the cooling fan 200 is fixed on the test base plate 112 by using the fixing bracket 115. Then, the test process starts, specifically, the fan control module 114 controls the cooling fan 200 to run at a plurality of different preset speeds in sequence.
其中,多个不同的预设转速包括第一预设转速和第二预设转速,第一预设转速为4000±50rpm,第二预设转速为2500±50rpm。也就是说,风扇控制模块114可以先控制散热风扇200以第一预设转速进行转速,再控制散热风扇200以第二预设转速进行运转。The plurality of different preset speeds include a first preset speed and a second preset speed, the first preset speed is 4000±50rpm, and the second preset speed is 2500±50rpm. In other words, the fan control module 114 can first control the cooling fan 200 to rotate at the first preset speed, and then control the cooling fan 200 to operate at the second preset speed.
在一些实施例中,风扇控制模块114包括上位控制器1141、电压输出模块1142和计数器模块1143,上位控制器1141分别与电压输出模块1142和计数器模块1143电连接,电压输出模块1142和计数器模块1143还与散热风扇200电连接。In some embodiments, the fan control module 114 includes a host controller 1141, a voltage output module 1142 and a counter module 1143. The host controller 1141 is electrically connected to the voltage output module 1142 and the counter module 1143 respectively. The voltage output module 1142 and the counter module 1143 are also electrically connected to the cooling fan 200.
具体的,风扇控制模块114可以采用如下方式,控制散热风扇200依次以多个不同的预设转速进行运转:上位控制器1141向电压输出模块1142发送控制信号;电压输出模块1142根据控制信号,向散热风扇200提供电压信号,电压信号用于驱动散热风扇200进行运转;计数器模块1143检测散热风扇200运转过程中的风扇转速,并将风扇转速发送给上位控制器1141;上位控制器1141计算风扇转速与预设转速之间的转速偏差;上位控制器1141根据转速偏差确定电压补偿值;上位控制器1141根据电压补偿值,调节其向电压输出模块1142发送的控制信号,进而调节电压输出模块1142向散热风扇200提供的电压信号,调节后的电压信号用于将散热风扇200运转过程中的风扇转速调节至预设转速。Specifically, the fan control module 114 can control the cooling fan 200 to operate at multiple different preset speeds in sequence in the following manner: the upper controller 1141 sends a control signal to the voltage output module 1142; the voltage output module 1142 provides a voltage signal to the cooling fan 200 according to the control signal, and the voltage signal is used to drive the cooling fan 200 to operate; the counter module 1143 detects the fan speed of the cooling fan 200 during operation, and sends the fan speed to the upper controller 1141; the upper controller 1141 calculates the speed deviation between the fan speed and the preset speed; the upper controller 1141 determines the voltage compensation value according to the speed deviation; the upper controller 1141 adjusts the control signal sent to the voltage output module 1142 according to the voltage compensation value, and then adjusts the voltage signal provided by the voltage output module 1142 to the cooling fan 200, and the adjusted voltage signal is used to adjust the fan speed of the cooling fan 200 during operation to the preset speed.
以多个不同的预设转速包括第一预设转速和第二预设转速为例,上位控制器1141、电压输出模块1142和计数器模块1143可以采用上述的方式,先控制散热风扇200以第一预设转速进行转速,再控制散热风扇200以第二预设转速进行运转。Taking multiple different preset speeds including a first preset speed and a second preset speed as an example, the upper controller 1141, the voltage output module 1142 and the counter module 1143 can adopt the above-mentioned method to first control the cooling fan 200 to run at the first preset speed, and then control the cooling fan 200 to run at the second preset speed.
步骤702,在散热风扇以每个预设转速进行运转的情况下,驱动机构带动测试底板上的散热风扇和至少一个录音元件同步旋转至多个不同的旋转角度。Step 702: When the cooling fan is running at each preset speed, the driving mechanism drives the cooling fan and at least one recording element on the test base plate to rotate synchronously to a plurality of different rotation angles.
步骤703,在散热风扇以每个预设转速进行运转,且散热风扇和至少一个录音元件同步旋转至每个旋转角度的情况下,至少一个录音元件均采集一次散热风扇的音源信号。Step 703: When the cooling fan is running at each preset speed and the cooling fan and at least one recording element are synchronously rotated to each rotation angle, at least one recording element collects the sound source signal of the cooling fan once.
以多个不同的预设转速包括第一预设转速和第二预设转速为例。在风扇控制模块114控制散热风扇200以第一预设转速进行运转的情况下,驱动机构111带动测试底板112上的散热风扇200和至少一个录音元件113同步旋转至多个不同的旋转角度,在散热风扇200以第一预设转速进行运转,且散热风扇200和至少一个录音元件113同步旋转至多个不同的旋转角度中的每个旋转角度的情况下,至少一个录音元件113对每个旋转角度下散热风扇200的音源信号进行采集。Take a plurality of different preset speeds including a first preset speed and a second preset speed as an example. When the fan control module 114 controls the cooling fan 200 to operate at the first preset speed, the driving mechanism 111 drives the cooling fan 200 and at least one recording element 113 on the test base plate 112 to rotate synchronously to a plurality of different rotation angles. When the cooling fan 200 operates at the first preset speed, and the cooling fan 200 and at least one recording element 113 rotate synchronously to each of the plurality of different rotation angles, at least one recording element 113 collects the sound source signal of the cooling fan 200 at each rotation angle.
接着,在风扇控制模块114控制散热风扇200以第二预设转速进行运转的情况下,驱动机构111带动测试底板112上的散热风扇200和至少一个录音元件113同步旋转至多个不同的旋转角度,在散热风扇200以第二预设转速进行运转,且散热风扇200和至少一个录音元件113同步旋转至多个不同的旋转角度中的每个旋转角度的情况下,至少一个录音元件113对每个旋转角度下散热风扇200的音源信号进行采集。Next, when the fan control module 114 controls the cooling fan 200 to operate at a second preset speed, the driving mechanism 111 drives the cooling fan 200 and at least one recording element 113 on the test base plate 112 to rotate synchronously to a plurality of different rotation angles. When the cooling fan 200 operates at the second preset speed and the cooling fan 200 and at least one recording element 113 rotate synchronously to each of a plurality of different rotation angles, at least one recording element 113 collects the sound source signal of the cooling fan 200 at each rotation angle.
在一些实施例中,至少一个录音元件113包括第一录音元件1131和第二录音元件1132,第一录音元件1131和第二录音元件1132分别位于测试底板112相对的两侧。多个不同的旋转角度包括第一旋转角度、第二旋转角度和第三旋转角度,第一旋转角度为0°,第二旋转角度为90°,第三旋转角度为180°。In some embodiments, the at least one recording element 113 includes a first recording element 1131 and a second recording element 1132, and the first recording element 1131 and the second recording element 1132 are respectively located on opposite sides of the test base plate 112. The plurality of different rotation angles include a first rotation angle, a second rotation angle, and a third rotation angle, wherein the first rotation angle is 0°, the second rotation angle is 90°, and the third rotation angle is 180°.
步骤704,至少一个录音元件将采集到的每个音源信号,发送给异音检测模块。Step 704: at least one recording element sends each sound source signal collected to an abnormal sound detection module.
步骤705,异音检测模块根据每个音源信号,检测散热风扇是否存在异音。Step 705: The abnormal sound detection module detects whether there is an abnormal sound from the cooling fan according to each sound source signal.
下面以至少一个录音元件113包括第一录音元件1131和第二录音元件1132,多个不同的预设转速包括第一预设转速和第二预设转速,多个不同的旋转角度包括第一旋转角度、第二旋转角度和第三旋转角度,且第一旋转角度为0°,第二旋转角度为90°,第三旋转角度为180°为例,说明本申请实施例对散热风扇200进行音源信号采集的具体过程。The following takes at least one recording element 113 including a first recording element 1131 and a second recording element 1132, a plurality of different preset rotation speeds including a first preset rotation speed and a second preset rotation speed, a plurality of different rotation angles including a first rotation angle, a second rotation angle and a third rotation angle, and the first rotation angle is 0°, the second rotation angle is 90°, and the third rotation angle is 180° as an example to illustrate the specific process of collecting sound source signals for the cooling fan 200 in an embodiment of the present application.
示例性的,图8为本申请实施例采用录音元件采集散热风扇的音源信号的流程图。参照图8所示,其具体可以包括如下步骤:For example, FIG8 is a flow chart of using a recording element to collect a sound source signal of a cooling fan in an embodiment of the present application. Referring to FIG8 , the process may specifically include the following steps:
步骤801,将散热风扇放置在测试底板的限位槽内。Step 801, placing the cooling fan in the limiting groove of the test base plate.
步骤802,采用固定支架将散热风扇固定在测试底板上。Step 802: fix the cooling fan on the test base plate using a fixing bracket.
在本申请实施例中,可以人工将散热风扇200放置在测试底板112的限位槽内,然后,通过电机驱动固定支架115将散热风扇200固定在测试底板112上。接着,开始执行下面的测试流程。In the embodiment of the present application, the cooling fan 200 can be manually placed in the limiting groove of the test base plate 112, and then the motor drives the fixing bracket 115 to fix the cooling fan 200 on the test base plate 112. Then, the following test process is executed.
步骤803,风扇控制模块控制散热风扇以第一预设转速进行运转。Step 803: the fan control module controls the cooling fan to operate at a first preset speed.
步骤804,在散热风扇以第一预设转速进行运转的情况下,驱动机构带动测试底板上的散热风扇、第一录音元件和第二录音元件同步旋转至0°、90°以及180°,并采用第一录音元件和第二录音元件分别采集每个旋转角度下的音源信号。Step 804, when the cooling fan is running at a first preset speed, the driving mechanism drives the cooling fan, the first recording element and the second recording element on the test base plate to rotate synchronously to 0°, 90° and 180°, and uses the first recording element and the second recording element to respectively collect the sound source signal at each rotation angle.
在风扇控制模块114控制散热风扇200以第一预设转速进行运转的情况下,驱动机构111先带动测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至0°,此时的第一录音元件1131和第二录音元件1132分别采集一次散热风扇200的音源信号;驱动机构111再带动测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至90°,此时的第一录音元件1131和第二录音元件1132分别再采集一次散热风扇200的音源信号;驱动机构111继续带动测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至180°,此时的第一录音元件1131和第二录音元件1132分别再采集一次散热风扇200的音源信号。When the fan control module 114 controls the cooling fan 200 to operate at the first preset speed, the driving mechanism 111 first drives the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 to rotate synchronously to 0°, at which time the first recording element 1131 and the second recording element 1132 respectively collect the sound source signal of the cooling fan 200 once; the driving mechanism 111 then drives the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 to rotate synchronously to 90°, at which time the first recording element 1131 and the second recording element 1132 respectively collect the sound source signal of the cooling fan 200 once; the driving mechanism 111 continues to drive the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 to rotate synchronously to 180°, at which time the first recording element 1131 and the second recording element 1132 respectively collect the sound source signal of the cooling fan 200 once.
步骤805,风扇控制模块控制散热风扇以第二预设转速进行运转。Step 805: the fan control module controls the cooling fan to operate at a second preset speed.
步骤806,在散热风扇以第二预设转速进行运转的情况下,驱动机构带动测试底板上的散热风扇、第一录音元件和第二录音元件同步旋转至0°、90°以及180°,并采用第一录音元件和第二录音元件分别采集每个旋转角度下的音源信号。Step 806, when the cooling fan is running at a second preset speed, the driving mechanism drives the cooling fan, the first recording element and the second recording element on the test base plate to rotate synchronously to 0°, 90° and 180°, and uses the first recording element and the second recording element to respectively collect the sound source signal at each rotation angle.
在第一录音元件1131和第二录音元件1132分别采集到第一预设转速下,且旋转角度分别为0°、90°以及180°情况下的音源信号之后,风扇控制模块114再将散热风扇200的风扇转速调整至第二预设转速。After the first recording element 1131 and the second recording element 1132 respectively collect the sound source signals at the first preset speed and the rotation angles of 0°, 90° and 180°, the fan control module 114 adjusts the fan speed of the cooling fan 200 to the second preset speed.
在风扇控制模块114控制散热风扇200以第二预设转速进行运转的情况下,重复执行上述的过程,即驱动机构111先带动测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至0°,此时的第一录音元件1131和第二录音元件1132分别采集一次散热风扇200的音源信号;驱动机构111再带动测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至90°,此时的第一录音元件1131和第二录音元件1132分别再采集一次散热风扇200的音源信号;驱动机构111继续带动测试底板112上的散热风扇200、第一录音元件1131和第二录音元件1132同步旋转至180°,此时的第一录音元件1131和第二录音元件1132分别再采集一次散热风扇200的音源信号。When the fan control module 114 controls the cooling fan 200 to operate at the second preset speed, the above process is repeated, that is, the driving mechanism 111 first drives the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 to rotate synchronously to 0°, at which time the first recording element 1131 and the second recording element 1132 respectively collect the sound source signal of the cooling fan 200 once; the driving mechanism 111 then drives the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 to rotate synchronously to 90°, at which time the first recording element 1131 and the second recording element 1132 respectively collect the sound source signal of the cooling fan 200 once; the driving mechanism 111 continues to drive the cooling fan 200, the first recording element 1131 and the second recording element 1132 on the test base plate 112 to rotate synchronously to 180°, at which time the first recording element 1131 and the second recording element 1132 respectively collect the sound source signal of the cooling fan 200 once.
步骤807,第一录音元件和第二录音元件将采集到的音源信号发送给异音检测模块,以检测散热风扇是否存在异音。Step 807: The first recording element and the second recording element send the collected sound source signal to the abnormal sound detection module to detect whether the cooling fan has abnormal sound.
步骤808,固定支架松开散热风扇,并取走测试底板上的散热风扇。Step 808, the fixing bracket releases the cooling fan, and removes the cooling fan on the test base plate.
在第一录音元件1131和第二录音元件1132将采集到的多个音源信号均发送给异音检测模块120之后,异音检测模块120根据多个音源信号检测散热风扇200是否存在异音,从而完成散热风扇200的异音检测流程。然后,通过电机来驱动固定支架松开散热风扇200,并人工取走测试底板112上的散热风扇200。After the first recording element 1131 and the second recording element 1132 send the collected multiple sound source signals to the abnormal sound detection module 120, the abnormal sound detection module 120 detects whether the cooling fan 200 has abnormal sound according to the multiple sound source signals, thereby completing the abnormal sound detection process of the cooling fan 200. Then, the fixing bracket is driven by the motor to release the cooling fan 200, and the cooling fan 200 on the test base plate 112 is manually removed.
示例性的,图9为本申请实施例的异音检测模块根据音源信号检测散热风扇是否存在异音的流程图。参照图9所示,其具体可以包括如下步骤:For example, FIG9 is a flow chart of the abnormal sound detection module of the embodiment of the present application detecting whether there is abnormal sound from the cooling fan according to the sound source signal. Referring to FIG9 , it may specifically include the following steps:
步骤901,异音检测模块获取录音元件采集到的每个音源信号。Step 901: The abnormal sound detection module obtains each sound source signal collected by the recording element.
在本申请实施例中,以至少一个录音元件113包括第一录音元件1131和第二录音元件1132为例,第一录音元件1131将其采集到的散热风扇200的音源信号发送给异音检测模块120,第二录音元件1132将其采集到的散热风扇200的音源信号也发送给异音检测模块120。In the embodiment of the present application, taking the example of at least one recording element 113 including a first recording element 1131 and a second recording element 1132, the first recording element 1131 sends the sound source signal of the cooling fan 200 it collects to the abnormal sound detection module 120, and the second recording element 1132 also sends the sound source signal of the cooling fan 200 it collects to the abnormal sound detection module 120.
步骤902,异音检测模块对每个音源信号进行带通滤波处理。Step 902: The abnormal sound detection module performs bandpass filtering on each sound source signal.
步骤903,异音检测模块对带通滤波处理后的每个音源信号进行傅里叶变换,得到每个音源信号对应的频谱。Step 903: The abnormal sound detection module performs Fourier transform on each sound source signal after the bandpass filtering process to obtain a frequency spectrum corresponding to each sound source signal.
步骤904,异音检测模块提取每个音源信号对应的频谱中的待分析频带。Step 904: The abnormal sound detection module extracts the frequency band to be analyzed in the frequency spectrum corresponding to each sound source signal.
步骤905,异音检测模块根据每个音源信号对应的待分析频带,计算得到每个音源信号的平均频谱峭度和平均频谱峰值。Step 905 : The abnormal sound detection module calculates the average spectrum kurtosis and the average spectrum peak value of each sound source signal according to the to-be-analyzed frequency band corresponding to each sound source signal.
在一些实施例中,待分析频带包括散热风扇200的转频对应的多个倍频频段。具体的,异音检测模块120采用如下方式,计算得到每个音源信号的平均频谱峭度和平均频谱峰值:异音检测模块120计算每个音源信号对应的待分析频带中,包括的每个倍频频段对应的频谱峭度和频谱峰值;异音检测模块120计算每个音源信号对应的待分析频带中,包括的多个倍频频段对应的频谱峭度的平均值,得到每个音源信号的平均频谱峭度;异音检测模块120计算每个音源信号对应的待分析频带中,包括的多个倍频频段对应的频谱峰值的平均值,得到每个音源信号的平均频谱峰值。In some embodiments, the frequency band to be analyzed includes multiple octave frequency bands corresponding to the rotation frequency of the cooling fan 200. Specifically, the abnormal sound detection module 120 calculates the average spectrum kurtosis and average spectrum peak value of each sound source signal in the following manner: the abnormal sound detection module 120 calculates the spectrum kurtosis and spectrum peak value corresponding to each octave frequency band included in the frequency band to be analyzed corresponding to each sound source signal; the abnormal sound detection module 120 calculates the average value of the spectrum kurtosis corresponding to multiple octave frequency bands included in the frequency band to be analyzed corresponding to each sound source signal, and obtains the average spectrum kurtosis of each sound source signal; the abnormal sound detection module 120 calculates the average value of the spectrum peak value corresponding to multiple octave frequency bands included in the frequency band to be analyzed corresponding to each sound source signal, and obtains the average spectrum peak value of each sound source signal.
因此,按照上述步骤902至步骤905的实现方式,异音检测模块120可以计算每个音源信号的平均频谱峭度和平均频谱峰值。Therefore, according to the implementation of the above steps 902 to 905, the foreign sound detection module 120 can calculate the average spectrum kurtosis and the average spectrum peak value of each sound source signal.
步骤906,异音检测模块对每个音源信号进行高通滤波处理。Step 906: The abnormal sound detection module performs high-pass filtering on each sound source signal.
步骤907,异音检测模块采用人耳听觉模型,对高通滤波处理后的每个音源信号进行滤波处理。Step 907: The abnormal sound detection module uses a human ear hearing model to filter each sound source signal after high-pass filtering.
步骤908,异音检测模块计算采用人耳听觉模型滤波处理后的每个音源信号的声压级。Step 908: The abnormal sound detection module calculates the sound pressure level of each sound source signal after filtering using the human ear hearing model.
在一些实施例中,异音检测模块120具体采用如下方式,计算得到采用人耳听觉模型滤波处理后的每个音源信号的声压级:异音检测模块120计算采用人耳听觉模型滤波处理后的每个音源信号对应的采样值,与模数转换的参考电压的乘积,得到每个音源信号对应的电压值;异音检测模块120计算每个音源信号对应的电压值,与录音元件113的灵敏度的比值,得到每个音源信号的声压;异音检测模块120通过如下公式,计算得到每个音源信号的声压级:SPL=20×lg(Pe/Pref);其中,SPL表示每个音源信号的声压级,Pe表示每个音源信号的声压,Pref表示参考声压。In some embodiments, the abnormal sound detection module 120 specifically adopts the following method to calculate the sound pressure level of each sound source signal after filtering using the human ear auditory model: the abnormal sound detection module 120 calculates the sampling value corresponding to each sound source signal after filtering using the human ear auditory model, and multiplies it by the reference voltage of the analog-to-digital conversion to obtain the voltage value corresponding to each sound source signal; the abnormal sound detection module 120 calculates the voltage value corresponding to each sound source signal, and the ratio of the sensitivity of the recording element 113 to obtain the sound pressure of each sound source signal; the abnormal sound detection module 120 calculates the sound pressure level of each sound source signal by the following formula: SPL=20×lg(P e /P ref ); wherein SPL represents the sound pressure level of each sound source signal, P e represents the sound pressure of each sound source signal, and Pref represents the reference sound pressure.
因此,按照上述步骤906和步骤908方式,异音检测模块120可以计算每个音源信号的声压级。Therefore, according to the above steps 906 and 908, the abnormal sound detection module 120 can calculate the sound pressure level of each sound source signal.
步骤909,异音检测模块根据每个音源信号的平均频谱峭度、平均频谱峰值和声压级,来确定散热风扇是否存在异音。Step 909: The abnormal sound detection module determines whether there is an abnormal sound from the cooling fan according to the average spectrum kurtosis, average spectrum peak and sound pressure level of each sound source signal.
在一些实施例中,异音检测模块120可采用如下方式,来确定散热风扇200是否存在异音:当每个音源信号的平均频谱峭度均小于频谱峭度阈值、每个音源信号的平均频谱峰值均小于频谱峰值阈值,且每个音源信号的声压级均小于声压级阈值时,异音检测模块120确定散热风扇200不存在异音;当至少一个音源信号的平均频谱峭度大于或等于频谱峭度阈值,和/或,至少一个音源信号的平均频谱峰值大于或等于频谱峰值阈值,和/或,至少一个音源信号的声压级大于或等于声压级阈值时,异音检测模块120确定散热风扇200存在异音。In some embodiments, the abnormal sound detection module 120 may use the following method to determine whether the cooling fan 200 has abnormal sound: when the average spectral kurtosis of each sound source signal is less than the spectral kurtosis threshold, the average spectral peak of each sound source signal is less than the spectral peak threshold, and the sound pressure level of each sound source signal is less than the sound pressure level threshold, the abnormal sound detection module 120 determines that the cooling fan 200 does not have abnormal sound; when the average spectral kurtosis of at least one sound source signal is greater than or equal to the spectral kurtosis threshold, and/or the average spectral peak of at least one sound source signal is greater than or equal to the spectral peak threshold, and/or the sound pressure level of at least one sound source signal is greater than or equal to the sound pressure level threshold, the abnormal sound detection module 120 determines that the cooling fan 200 has abnormal sound.
综上,本申请实施例是在散热风扇200处于多个不同的预设转速以及多个不同的旋转角度下,均采用录音元件113对散热风扇200的音源信号进行采集,散热风扇200运行在多个不同的预设转速下,其可以提高存在异音的散热风扇200在检测过程中被激发出异音的可能性,从而提高散热风扇200的异音检测结果的准确性。并且,散热风扇200在旋转至多个不同的旋转角度时,录音元件113与散热风扇200是同步旋转的,使得在散热风扇200在旋转到不同的旋转角度时,散热风扇200与录音元件113之间的角度和相对位置均不会发生变化,其可以提高散热风扇200在不同的旋转角度下,录音元件113采集到的音源信号的一致性,从而提高散热风扇200的异音检测结果的准确性。In summary, the embodiment of the present application uses the recording element 113 to collect the sound source signal of the cooling fan 200 when the cooling fan 200 is at multiple different preset speeds and multiple different rotation angles. The cooling fan 200 runs at multiple different preset speeds, which can increase the possibility that the cooling fan 200 with abnormal sound is stimulated to produce abnormal sound during the detection process, thereby improving the accuracy of the abnormal sound detection result of the cooling fan 200. In addition, when the cooling fan 200 rotates to multiple different rotation angles, the recording element 113 and the cooling fan 200 rotate synchronously, so that when the cooling fan 200 rotates to different rotation angles, the angle and relative position between the cooling fan 200 and the recording element 113 will not change, which can improve the consistency of the sound source signal collected by the recording element 113 at different rotation angles of the cooling fan 200, thereby improving the accuracy of the abnormal sound detection result of the cooling fan 200.
本申请实施例是参照根据本申请实施例的方法和设备(系统)的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理单元以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理单元执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application embodiment is described with reference to the flowchart and/or block diagram of the method and device (system) according to the embodiment of the present application. It should be understood that each process and/or box in the flowchart and/or block diagram, and the combination of the process and/or box in the flowchart and/or block diagram can be implemented by computer program instructions. These computer program instructions can be provided to a processing unit of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable data processing device to produce a machine, so that the instructions executed by the processing unit of the computer or other programmable data processing device produce a device for implementing the function specified in one process or multiple processes in the flowchart and/or one box or multiple boxes in the block diagram.
以上的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。The above specific implementation methods further illustrate the purpose, technical solutions and beneficial effects of the present application in detail. It should be understood that the above are only specific implementation methods of the present application and are not used to limit the scope of protection of the present application. Any modifications, equivalent substitutions, improvements, etc. made on the basis of the technical solutions of the present application should be included in the scope of protection of the present application.
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310146410.6A CN117145792B (en) | 2023-02-07 | 2023-02-07 | Fan abnormal noise detection method and fan abnormal noise detection system |
CN202311469464.2A CN117759553B (en) | 2023-02-07 | 2023-02-07 | Fan abnormal noise detection method and fan abnormal noise detection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310146410.6A CN117145792B (en) | 2023-02-07 | 2023-02-07 | Fan abnormal noise detection method and fan abnormal noise detection system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311469464.2A Division CN117759553B (en) | 2023-02-07 | 2023-02-07 | Fan abnormal noise detection method and fan abnormal noise detection system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117145792A CN117145792A (en) | 2023-12-01 |
CN117145792B true CN117145792B (en) | 2024-10-01 |
Family
ID=88903347
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310146410.6A Active CN117145792B (en) | 2023-02-07 | 2023-02-07 | Fan abnormal noise detection method and fan abnormal noise detection system |
CN202311469464.2A Active CN117759553B (en) | 2023-02-07 | 2023-02-07 | Fan abnormal noise detection method and fan abnormal noise detection system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311469464.2A Active CN117759553B (en) | 2023-02-07 | 2023-02-07 | Fan abnormal noise detection method and fan abnormal noise detection system |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN117145792B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117145792B (en) * | 2023-02-07 | 2024-10-01 | 荣耀终端有限公司 | Fan abnormal noise detection method and fan abnormal noise detection system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113465730A (en) * | 2021-08-02 | 2021-10-01 | 深圳鸿泽自动化科技有限公司 | Fan noise test system and test method |
CN117759553A (en) * | 2023-02-07 | 2024-03-26 | 荣耀终端有限公司 | Fan abnormal sound detection method and fan abnormal sound detection system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4188110B2 (en) * | 2003-03-12 | 2008-11-26 | カルソニックカンセイ株式会社 | PWM drive |
CN203721186U (en) * | 2013-12-12 | 2014-07-16 | 极影电子(北京)有限公司 | Cabinet and sound and video synchronously recording device |
CN105716865B (en) * | 2016-02-14 | 2018-09-28 | 成都柏森松传感技术有限公司 | A kind of foundation and application method for detecting the database of bearing running abnormal sound |
CN207198617U (en) * | 2017-05-23 | 2018-04-06 | 上海碧虎网络科技有限公司 | A kind of fan noise supervising device |
CN112096640B (en) * | 2020-09-04 | 2022-05-13 | 江苏理工学院 | A multi-directional noise detection device for a fan |
TW202229822A (en) * | 2021-01-22 | 2022-08-01 | 建準電機工業股份有限公司 | Method and system for abnormal sound testing of a fan |
CN217401236U (en) * | 2021-07-21 | 2022-09-09 | 苏州益声瑞机器人科技有限公司 | Fan production test equipment |
CN216925799U (en) * | 2022-01-14 | 2022-07-08 | 湖南赫莫尼科技有限公司 | Fan noise test machine |
-
2023
- 2023-02-07 CN CN202310146410.6A patent/CN117145792B/en active Active
- 2023-02-07 CN CN202311469464.2A patent/CN117759553B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113465730A (en) * | 2021-08-02 | 2021-10-01 | 深圳鸿泽自动化科技有限公司 | Fan noise test system and test method |
CN117759553A (en) * | 2023-02-07 | 2024-03-26 | 荣耀终端有限公司 | Fan abnormal sound detection method and fan abnormal sound detection system |
Also Published As
Publication number | Publication date |
---|---|
CN117759553A (en) | 2024-03-26 |
CN117759553B (en) | 2024-08-20 |
CN117145792A (en) | 2023-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1999996B1 (en) | Method and apparatus in an audio system | |
US11255310B2 (en) | Wind turbine noise analysis and control | |
CN117145792B (en) | Fan abnormal noise detection method and fan abnormal noise detection system | |
US7920974B2 (en) | Generating a vibration profile for a rotating cooling device in a computer system | |
CN114986725B (en) | Dicing saw cutting method, dicing device, dicing saw and medium | |
JP2003085157A (en) | Frequency analyzer by applying fft algorithm and abnormality determining device and abnormality determining system | |
TWI429892B (en) | Inspection method for fan quality | |
CN118609535B (en) | Active noise reduction system and abnormal sound detection method and device thereof | |
WO2020082217A1 (en) | Robot fault diagnosis method and system, and storage device | |
CN114754476A (en) | Air-conditioning breathing control device, method and air-conditioning system | |
CN109029696B (en) | Resonance detection method, device and storage medium | |
CN114242085A (en) | Fault diagnosis method and device for rotating equipment | |
JP2004333199A (en) | Apparatus and method for determining abnormal sound | |
JP2023117907A (en) | Acoustic diagnosis device, acoustic diagnosis method, and acoustic diagnosis program | |
JP2004333200A (en) | Apparatus and method for determining abnormal sound and program | |
US5555311A (en) | Electro-acoustic system analyzer | |
US20240141904A1 (en) | Method for analysing the state of a pump assembly and software application, storage medium and analysis device for execution of the method | |
CN117879409A (en) | Noise reduction method and system for motor control | |
CN112525544B (en) | Comparison method of vehicle acceleration performance parameters and related equipment | |
CN116805493A (en) | Sound processing method and sound processing device | |
TWI794059B (en) | Audio signal processing method and audio signal processing device | |
Aleksander et al. | A fast method for the determination of psychophysical tuning curves: further refining | |
JP7643094B2 (en) | Anomaly detection device and method | |
Comesana et al. | Integration of an end-of-line system for vibro-acoustic characterization and fault detection of automotive components based on particle velocity measurements | |
CN117553027A (en) | Testing methods and testing equipment for magnetic levitation blowers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: Unit 3401, unit a, building 6, Shenye Zhongcheng, No. 8089, Hongli West Road, Donghai community, Xiangmihu street, Futian District, Shenzhen, Guangdong 518040 Patentee after: Honor Terminal Co.,Ltd. Country or region after: China Address before: 3401, unit a, building 6, Shenye Zhongcheng, No. 8089, Hongli West Road, Donghai community, Xiangmihu street, Futian District, Shenzhen, Guangdong Patentee before: Honor Device Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |