[go: up one dir, main page]

CN117130473A - Input device with tactile sensing and correction device sensing - Google Patents

Input device with tactile sensing and correction device sensing Download PDF

Info

Publication number
CN117130473A
CN117130473A CN202310598419.0A CN202310598419A CN117130473A CN 117130473 A CN117130473 A CN 117130473A CN 202310598419 A CN202310598419 A CN 202310598419A CN 117130473 A CN117130473 A CN 117130473A
Authority
CN
China
Prior art keywords
piezoelectric
correction
determining
signal
events
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310598419.0A
Other languages
Chinese (zh)
Inventor
P·A·沃福克
S·W·哈特森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synaptics Inc
Original Assignee
Synaptics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/185,952 external-priority patent/US11972056B2/en
Application filed by Synaptics Inc filed Critical Synaptics Inc
Publication of CN117130473A publication Critical patent/CN117130473A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

A method is provided. The method comprises the following steps: obtaining, by the processing system and using the piezoelectric device, a piezoelectric signal associated with a user input on a sensing region of the input device; obtaining, by the processing system and using a correction device, a correction signal associated with the user input on the sensing region of the input device; determining, by the processing system and based on the piezoelectric signal and the correction signal, one or more events to be performed in response to the user input; and executing, by the processing system, the one or more events.

Description

具有触觉感测和校正设备感测的输入设备Input device with tactile sensing and correction device sensing

对相关申请的交叉引用Cross-references to related applications

本专利申请要求于2022年5月27日提交的美国临时专利申请No.63/346,367的权益,其以其整体通过引用而被并入本文。This patent application claims the benefit of U.S. Provisional Patent Application No. 63/346,367, filed on May 27, 2022, which is incorporated herein by reference in its entirety.

技术领域Technical field

本公开总体上涉及感测触摸板,并且更具体地涉及与压电设备和校正设备(例如,电容性传感器)集成的感测触摸板。The present disclosure relates generally to sensing touch panels, and more specifically to sensing touch panels integrated with piezoelectric devices and correction devices (eg, capacitive sensors).

背景技术Background technique

诸如触摸传感器设备(通常还被称为触摸板、压力板(forcepad)、触摸传感器设备或其他此类设备)之类的输入设备广泛用于各种电子系统。输入设备通常包含通常由表面所区别的感测区,其中输入设备确定一个或多个输入对象的存在、位置和/或运动。输入设备可为电子系统提供输入接口。例如,输入设备可用于较大的电子系统(诸如集成在笔记本或台式计算机中、或外置于笔记本或台式计算机的不透明触摸板)。输入设备还可用于较小的电子系统(诸如集成在蜂窝电话中的触摸屏)。Input devices such as touch sensor devices (also commonly referred to as touch pads, forcepads, touch sensor devices, or other such devices) are widely used in a variety of electronic systems. Input devices typically include a sensing area, typically distinguished by a surface, where the input device determines the presence, position, and/or motion of one or more input objects. Input devices provide input interfaces for electronic systems. For example, the input device may be used in a larger electronic system (such as an opaque touchpad integrated into or external to a notebook or desktop computer). Input devices may also be used in smaller electronic systems (such as touch screens integrated into cell phones).

触觉设备可被配置成向用户提供触觉反馈(例如,可听和振动反馈)。例如,输入设备可检测由用户进行的输入并且向该用户提供触觉反馈,诸如可听反馈(例如,模拟鼠标点击的声音)和指示检测到输入的振动反馈(例如,轻微振动)。触觉设备可以是和/或包含压电设备(例如,压电致动器)。压电设备能够充当致动器和传感器两者。然而,难以将压电设备单独用于静态力测量,因为存在来自所生成的固定电荷的电子的连续损失。因此,在某些情况下,压电设备难以确定对用户输入的合适响应。Haptic devices may be configured to provide tactile feedback (eg, audible and vibratory feedback) to the user. For example, the input device may detect input by a user and provide tactile feedback to the user, such as audible feedback (eg, a sound that simulates a mouse click) and vibratory feedback (eg, a slight vibration) indicating that the input is detected. The haptic device may be and/or include a piezoelectric device (eg, a piezoelectric actuator). Piezoelectric devices are capable of functioning as both actuators and sensors. However, it is difficult to use piezoelectric devices alone for static force measurements because there is a continuous loss of electrons from the generated fixed charge. Therefore, in some cases, piezoelectric devices have difficulty determining an appropriate response to user input.

发明内容Contents of the invention

本发明内容被提供以便介绍以下进一步描述的呈简化形式的概念的选择。本发明内容不旨在必然标识本公开的关键特征或必要特征。本公开可包含以下各个方面和实施例。This summary is provided to introduce a selection of concepts in a simplified form that are further described below. This summary is not intended to necessarily identify key features or essential features of the disclosure. The present disclosure may include the following various aspects and embodiments.

在一示例性实施例中,本公开提供了一种使用输入设备的处理系统的方法。该方法包括:由处理系统并且使用压电设备来获得与输入设备的感测区上的用户输入相关联的压电信号;由处理系统并且使用校正设备来获得与输入设备的感测区上的用户输入相关联的校正信号;由处理系统并且基于压电信号和校正信号来确定响应于用户输入而要被执行的一个或多个事件;以及由处理系统来执行所述一个或多个事件。In an exemplary embodiment, the present disclosure provides a method of a processing system using an input device. The method includes: obtaining, by a processing system and using a piezoelectric device, a piezoelectric signal associated with a user input on a sensing area of the input device; obtaining, by the processing system and using a correction device, a piezoelectric signal associated with a user input on a sensing area of the input device. The user inputs an associated correction signal; determining, by the processing system, one or more events to be performed in response to the user input and based on the piezoelectric signal and the correction signal; and performing the one or more events by the processing system.

在另一示例性实施例中,本公开提供了一种输入设备。该输入设备包括:一个或多个压电设备,所述一个或多个压电设备被配置成测量与感测区上的用户输入相关联的压电信号;一个或多个校正设备,所述一个或多个压电设备被配置成测量与感测区上的用户输入相关联的校正信号;以及处理系统。处理系统被配置成:获得压电信号;获得校正信号;基于压电信号和校正信号来确定响应于用户输入而要被执行的一个或多个事件;以及执行所述一个或多个事件。In another exemplary embodiment, the present disclosure provides an input device. The input device includes: one or more piezoelectric devices configured to measure piezoelectric signals associated with user input on the sensing area; one or more correction devices, the One or more piezoelectric devices configured to measure correction signals associated with user input on the sensing area; and a processing system. The processing system is configured to: obtain the piezoelectric signal; obtain the correction signal; determine one or more events to be performed in response to the user input based on the piezoelectric signal and the correction signal; and perform the one or more events.

在还有的另一示例性实施例中,本公开提供一种非瞬态计算机可读介质,所述非瞬态计算机可读介质具有存储在其上的处理器可执行指令,处理器可执行指令在被执行时促成以下操作的执行:使用压电设备来获得与输入设备的感测区上的用户输入相关联的压电信号;使用校正设备来获得与输入设备的感测区上的用户输入相关联的校正信号;基于压电信号和校正信号来确定响应于用户输入而要被执行的一个或多个事件;以及执行所述一个或多个事件。In yet another exemplary embodiment, the present disclosure provides a non-transitory computer-readable medium having processor-executable instructions stored thereon, the non-transitory computer-readable medium having processor-executable instructions stored thereon. The instructions, when executed, cause the performance of: using a piezoelectric device to obtain a piezoelectric signal associated with a user input on a sensing area of the input device; using a correction device to obtain a piezoelectric signal associated with a user input on a sensing area of the input device; inputting an associated correction signal; determining one or more events to be performed in response to the user input based on the piezoelectric signal and the correction signal; and performing the one or more events.

下面参考附图对另外的特征和方面进行附加的详细描述。Additional features and aspects are described in additional detail below with reference to the accompanying drawings.

附图说明Description of the drawings

图1是描绘根据本公开的一个或多个示例的输入设备的框图。1 is a block diagram depicting an input device according to one or more examples of the present disclosure.

图2A是描绘根据本公开的一个或多个示例的输入设备的另一框图。Figure 2A is another block diagram depicting an input device in accordance with one or more examples of the present disclosure.

图2B示出了根据本公开的一个或多个示例的输入设备的顶视图。Figure 2B illustrates a top view of an input device in accordance with one or more examples of the present disclosure.

图2C示出了根据本公开的一个或多个示例的输入设备的侧视图。Figure 2C shows a side view of an input device according to one or more examples of the present disclosure.

图3是根据本公开的一个或多个示例、针对使用包含压电设备和校正设备的输入设备的示例性过程的流程图。3 is a flowchart of an exemplary process for using an input device including a piezoelectric device and a correction device in accordance with one or more examples of the present disclosure.

图4是根据本公开的一个或多个示例、针对压电力传感器的频率响应的图形表示。4 is a graphical representation of frequency response for a piezoelectric force sensor in accordance with one or more examples of the present disclosure.

具体实施方式Detailed ways

以下详细描述本质上是示例性的,并且不旨在限制本公开或本公开的应用和使用。此外,不意图受在前述背景技术、发明内容和附图说明或以下具体实施方式中所呈现的任何明示或暗示的理论的约束。The following detailed description is exemplary in nature and is not intended to limit the disclosure or the application and uses of the disclosure. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding background, brief summary and brief description of the drawings, or the following detailed description.

在以下详细描述中,阐述了许多具体细节以便提供对所公开技术的更透彻理解。然而,对于本领域普通技术人员将显而易见的是,在没有这些具体细节的情况下可实践所公开的技术。在其他实例中,尚未详细描述公知的特征以避免不必要地使描述复杂化。In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the disclosed technology. However, it will be apparent to one of ordinary skill in the art that the disclosed technology may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.

本公开的各种示例提供了集成压电设备(例如,压电致动器和/或传感器)和输入设备内的校正设备的输入设备和方法。例如,存在对将压电设备(例如,致动器)用于输入设备(例如,触觉触摸板或压力板)的强烈期望,因为这些压电设备是薄且轻的。由于所述压电设备还可用作换能器,因此非常有吸引力的是将与力传感器非常相同的致动器用于检测力。当压电设备由于施加的力而变形时,它生成可被测量的电压。感测电路可使用专用集成电路(ASIC)而被集成到压电触觉驱动器中。然而,难以将压电设备用于静态测量。对于固定变形,某个量的电荷被移位,从而导致电压可被测量。但是,不管用户动作还是无动作,该电荷都缓慢漏掉,并且所测量的电压随时间而减小。另外,驱动压电设备用于触觉功能性可能破坏力测量。此外,在某些实例中,可以使用来自压电设备的确切测量结果来确定由用户所施加的力。然而,这些测量结果中的任何噪声或传感器模型中的误差可能导致误差的累积,从而导致不准确的结果。Various examples of the present disclosure provide input devices and methods that integrate a piezoelectric device (eg, a piezoelectric actuator and/or sensor) and a correction device within the input device. For example, there is a strong desire to use piezoelectric devices (eg, actuators) for input devices (eg, tactile touch pads or pressure pads) because these piezoelectric devices are thin and light. Since the piezoelectric device can also act as a transducer, it is very attractive to use very same actuators as force sensors for detecting force. When a piezoelectric device deforms due to an applied force, it generates a voltage that can be measured. Sensing circuitry can be integrated into the piezoelectric haptic driver using an application specific integrated circuit (ASIC). However, it is difficult to use piezoelectric devices for static measurements. For a fixed deformation, some amount of charge is displaced, resulting in a voltage that can be measured. However, regardless of user action or inaction, this charge slowly leaks out and the measured voltage decreases over time. Additionally, driving piezoelectric devices for haptic functionality may disrupt force measurements. Additionally, in some instances, exact measurements from the piezoelectric device may be used to determine the force exerted by the user. However, any noise in these measurements or errors in the sensor model can cause errors to accumulate, leading to inaccurate results.

因此,本公开描述了具有电子电路的输入设备(例如,触觉压力板),所述电子电路被配置成获得测量印刷电路板组件(PCBA)的偏转的校正信号(例如,电容性测量结果)和/或测量压电设备(例如,压电致动器)的变形的电压信号。附加地和/或备选地,通过将所述校正信号与所述电压信号结合起来,处理系统能够使用所述校正信号和电压信号来确定(例如,估计)由用户所提供的一个或多个施加的力。附加地和/或备选地,校正设备可以是和/或包含被配置成测量压电设备(例如,压电换能器)的压缩(compression)/偏转的一个或多个电容性传感器,并且甚至可以与压电设备集成。Accordingly, the present disclosure describes an input device (eg, a tactile pressure plate) having electronic circuitry configured to obtain a correction signal (eg, a capacitive measurement) that measures deflection of a printed circuit board assembly (PCBA) and /or measure the voltage signal of the deformation of a piezoelectric device (eg, a piezoelectric actuator). Additionally and/or alternatively, by combining the correction signal with the voltage signal, a processing system can use the correction signal and the voltage signal to determine (e.g., estimate) one or more values provided by a user. The force exerted. Additionally and/or alternatively, the correction device may be and/or include one or more capacitive sensors configured to measure compression/deflection of a piezoelectric device (eg, a piezoelectric transducer), and It can even be integrated with piezoelectric devices.

例如,本公开的示例提供了将压电设备与校正设备(例如,电容性传感器)集成的输入设备。例如,诸如便携式设备(例如,膝上型计算机)之类的输入设备可使用触摸板和/或压力板技术(例如,包含手指压力或力灵敏度的触摸板),其使用触觉致动器(例如,压电设备)以便生成适当的点击以模仿常规触摸板的机械点击。例如,压力板可测量在表面上的任何地方施加的力,并且当施加的力超过阈值时,触觉致动器可提供触觉反馈,就像存在机械点击一样。换句话说,传统触摸板可包含机械机构,当它们被致动和/或下压时,该机械机构提供点击噪声和感觉。然而,在一些输入设备(例如,某些触摸板,诸如具有压力板技术的触摸板)中,当被致动或下压时,所述输入设备不会物理地生成点击噪声或感觉。相反,触觉设备/触觉致动器(诸如压电设备)用于模拟传统的点击噪声和感觉,由此提供模拟传统触摸板的点击噪声和感觉(例如,振动)的触觉反馈。For example, examples of the present disclosure provide input devices that integrate piezoelectric devices with correction devices (eg, capacitive sensors). For example, input devices such as portable devices (e.g., laptop computers) may use touchpad and/or pressure pad technology (e.g., touchpads that include finger pressure or force sensitivity) that use tactile actuators (e.g., , a piezoelectric device) in order to generate appropriate clicks to mimic the mechanical clicks of a conventional touchpad. For example, a pressure plate can measure force applied anywhere on a surface, and tactile actuators can provide tactile feedback when the applied force exceeds a threshold, as if there were a mechanical click. In other words, conventional touchpads may contain mechanical mechanisms that provide a click noise and feel when they are actuated and/or depressed. However, in some input devices (eg, certain touchpads, such as those with pressure pad technology), the input device does not physically generate a click noise or sensation when actuated or depressed. In contrast, haptic devices/tactile actuators (such as piezoelectric devices) are used to simulate traditional click noise and feel, thereby providing tactile feedback that simulates the click noise and feel (eg, vibration) of a traditional touchpad.

然而,如上所提到的,仅使用压电设备可能在检测某些类型的用户输入时遇到缺点,因为针对压电设备而测量的结果电压随时间缓慢漏掉。因此,在某些示例(诸如当用户推按触摸传感器并保持时)中,压电设备可最初生成随时间而缓慢泄漏(例如,在幅值上减小)的电压。这可类似于当用户在触摸传感器上推按并且在一时间段内缓慢释放力时的输出值,这使得处理系统难以在不同类型的用户输入之间进行区分(例如,用户相对于推按并缓慢释放而推按并保持)。因此,本申请的示例描述了使用压电设备连同另一设备(例如,诸如电容性传感器之类的校正设备)的输入设备(例如,触摸板设备或压力板设备),以计及压电设备随时间的泄漏。However, as mentioned above, using only piezoelectric devices may encounter disadvantages in detecting certain types of user input because the resulting voltage measured against the piezoelectric device slowly leaks out over time. Thus, in some examples, such as when a user pushes and holds on a touch sensor, a piezoelectric device may initially generate a voltage that slowly leaks (eg, decreases in magnitude) over time. This can be similar to the output value when a user pushes on a touch sensor and slowly releases the force over a period of time, making it difficult for the processing system to distinguish between different types of user input (e.g., the user pushes versus pushing and slowly releasing the force over a period of time). Press and hold while releasing slowly). Thus, examples herein describe an input device (eg, a touchpad device or a pressure plate device) using a piezoelectric device in conjunction with another device (eg, a correction device such as a capacitive sensor), to account for the piezoelectric device. Leakage over time.

例如,在一些示例中,输入设备可包含校正设备,诸如一个或多个电容性传感器。所述电容性传感器可补偿压电设备的缺点,并且电容性感测可已经被包含在输入设备(例如,压力板或触摸板)中,这降低了对并入完全分离的设备/传感器以校正压电设备的缺点的要求。然而,单独将电容性传感器用作力传感器也可能在检测用户输入时产生困难。例如,测量力引起的偏转的电容性传感器对制造变化非常敏感并且需要仔细校准。因此,鉴于校准这些电容性传感器的困难,输入设备可能也无法单独使用所述电容性传感器。For example, in some examples, the input device may include a correction device, such as one or more capacitive sensors. The capacitive sensor can compensate for the shortcomings of piezoelectric devices, and capacitive sensing can already be included in the input device (e.g., a pressure pad or touch pad), which reduces the need to incorporate a completely separate device/sensor to correct for pressure. Requirements for the shortcomings of electrical equipment. However, using capacitive sensors alone as force sensors may also create difficulties in detecting user input. For example, capacitive sensors that measure force-induced deflection are very sensitive to manufacturing variations and require careful calibration. Therefore, input devices may not be able to use the capacitive sensors alone given the difficulty of calibrating these capacitive sensors.

因此,除了其他优点之外,集成了压电设备和校正设备(例如,电容性传感器)两者的输入设备可分别降低使用这些设备的缺点。例如,电容性传感器可用于校正使用压电设备的缺点(例如,电压随时间的泄漏),且压电设备可用于校正使用电容性传感器的缺点(例如,电容性传感器的板之间的变化距离所引起的校准电容性传感器的困难,其可能改变电容性测量结果/信号的幅值)。换句话说,校正设备和压电设备可提供分开的传感器信号/测量结果,其可用于分别覆盖每个设备的缺点,且因此通过使用压电设备和校正设备两者,输入设备可以能够确保用户输入正确。Thus, among other advantages, input devices that integrate both piezoelectric devices and correction devices (eg, capacitive sensors) may reduce the disadvantages of using these devices, respectively. For example, capacitive sensors can be used to correct for disadvantages of using piezoelectric devices (e.g., leakage of voltage over time), and piezoelectric devices can be used to correct for disadvantages of using capacitive sensors (e.g., varying distances between plates of capacitive sensors) Difficulties caused by calibrating capacitive sensors, which may change the capacitive measurement/amplitude of the signal). In other words, the correction device and the piezoelectric device may provide separate sensor signals/measurements which may be used to cover the shortcomings of each device respectively, and thus by using both the piezoelectric device and the correction device, the input device may be able to ensure that the user Entered correctly.

图1是描绘根据本公开的一个或多个示例的输入设备的框图。输入设备100可包含处理系统110、输入对象115、感测区120和触摸传感器125。例如,触摸传感器125可包含图2A中所示的校正设备(例如,电容性传感器)和/或压电设备。1 is a block diagram depicting an input device according to one or more examples of the present disclosure. Input device 100 may include processing system 110, input object 115, sensing area 120, and touch sensor 125. For example, touch sensor 125 may include a correction device (eg, a capacitive sensor) and/or a piezoelectric device shown in Figure 2A.

输入设备100可以被配置成向电子系统提供输入。如本文中所使用的,术语“电子系统”(或“电子设备”)广泛地指代能够电子地处理信息的任何系统。电子系统的一些非限制性示例包含所有大小和形状的个人计算机,诸如台式计算机、膝上型计算机、上网本计算机、平板、web浏览器、电子书阅读器、个人数字助理(PDA)和可穿戴计算机(诸如智能手表和活动跟踪器设备)。电子系统的附加示例包含复合输入设备,诸如包含输入设备100和分开的操纵杆或键开关的物理键盘。电子系统的进一步示例包含外围设备,诸如数据输入设备(包含遥控器和鼠标)和数据输出设备(包含显示屏和打印机)。其他示例包含数据输出设备(例如,显示屏和打印机)、远程终端、信息亭和视频游戏机(例如,视频游戏控制台、便携式游戏设备和类似物)。其他示例包含通信设备(包含蜂窝电话,诸如智能电话)和媒体设备(包含记录器、编辑器和播放器,诸如电视、机顶盒、音乐播放器、数码相框和数码相机)。另外,电子系统可以是输入设备的主机或从机。Input device 100 may be configured to provide input to an electronic system. As used herein, the term "electronic system" (or "electronic device") refers broadly to any system capable of processing information electronically. Some non-limiting examples of electronic systems include personal computers of all sizes and shapes, such as desktop computers, laptop computers, netbook computers, tablets, web browsers, e-book readers, personal digital assistants (PDAs), and wearable computers (Such as smart watches and activity tracker devices). Additional examples of electronic systems include composite input devices, such as a physical keyboard that includes input device 100 and separate joysticks or key switches. Further examples of electronic systems include peripheral devices such as data input devices (including remote controls and mice) and data output devices (including display screens and printers). Other examples include data output devices (eg, display screens and printers), remote terminals, kiosks, and video game consoles (eg, video game consoles, portable gaming devices, and the like). Other examples include communication devices (including cellular phones, such as smartphones) and media devices (including recorders, editors, and players, such as televisions, set-top boxes, music players, digital photo frames, and digital cameras). Additionally, the electronic system may be a master or slave of the input device.

输入设备100可被实现为电子系统的物理部分,或者能够与电子系统物理地分离。备选地,输入设备100可与电子系统物理地分离。视情况而定,输入设备100可使用以下的任何一个或多个来与电子系统的部分进行通信:总线、网络和其他有线或无线互连件。示例包含互集成电路(I2C)、串行外围接口(SPI)、个人系统/2(PS/2)、通用串行总线(USB)、蓝牙、射频(RF)和红外数据协会(IRDA)。The input device 100 may be implemented as a physical part of the electronic system, or may be physically separate from the electronic system. Alternatively, input device 100 may be physically separated from the electronic system. As appropriate, the input device 100 may communicate with portions of the electronic system using any one or more of the following: buses, networks, and other wired or wireless interconnects. Examples include Inter Integrated Circuit (I2C), Serial Peripheral Interface (SPI), Personal System/2 (PS/2), Universal Serial Bus (USB), Bluetooth, Radio Frequency (RF), and Infrared Data Association (IRDA).

在一些示例中,输入设备100可对应于被配置成感测由感测区120中的一个或多个输入对象115提供的输入的接近传感器设备(例如,还被称作“触摸板”或“触摸传感器设备”)。示例输入对象115包含手指、触控笔和类似物。感测区120可涵盖输入设备100上方、周围、之中和/或附近的任何空间,其中输入设备100能够检测(诸如由一个或多个输入对象115提供的)用户输入。感测区120的大小、形状和/或位置(例如,相对于电子系统)可取决于实际实现方式而变化。In some examples, input device 100 may correspond to a proximity sensor device (eg, also referred to as a "touchpad" or "touchpad") configured to sense input provided by one or more input objects 115 in sensing area 120 . Touch Sensor Device"). Example input objects 115 include fingers, styluses, and the like. Sensing area 120 may encompass any space above, around, in, and/or near input device 100 where input device 100 is capable of detecting user input (such as provided by one or more input objects 115 ). The size, shape, and/or location (eg, relative to the electronic system) of sensing area 120 may vary depending on the actual implementation.

附加地和/或备选地,输入设备100可对应于包含执行接近和/或力检测的功能性的压力板。力检测是检测被施加到输入表面的力的量的能力。接近检测是感测由感测区120中的一个或多个输入对象115提供的输入的能力。触摸传感器125可用于力检测和/或接近检测,并且可进一步用于触觉反馈控制。Additionally and/or alternatively, the input device 100 may correspond to a pressure plate containing functionality to perform proximity and/or force detection. Force detection is the ability to detect the amount of force being applied to an input surface. Proximity detection is the ability to sense input provided by one or more input objects 115 in sensing area 120 . Touch sensor 125 may be used for force detection and/or proximity detection, and may further be used for tactile feedback control.

在一些变型中,感测区120在一个或多个方向上从输入设备100的表面延伸到空间中,例如直到信噪比降到适合于对象检测的阈值以下。例如,此感测区120在特定方向上延伸到的距离在各种示例中可处于小于一毫米、数毫米、数厘米或更多的量级上,并且可随着所使用的感测技术的类型和/或所期望的准确度而变化。在一些实例中,输入设备100检测某些输入,所述输入涉及与输入设备100的任何表面没有物理接触、与输入设备100的输入表面(例如,触摸表面)接触、与耦合有一定量的施加的力或压力的输入设备100的输入表面接触和/或其组合。In some variations, sensing area 120 extends into space from the surface of input device 100 in one or more directions, such as until the signal-to-noise ratio falls below a threshold suitable for object detection. For example, the distance to which this sensing area 120 extends in a particular direction may be on the order of less than a millimeter, several millimeters, several centimeters, or more in various examples, and may vary with the sensing technology used. Varies depending on type and/or desired accuracy. In some examples, input device 100 detects certain inputs that involve no physical contact with any surface of input device 100 , contact with an input surface (eg, a touch surface) of input device 100 , coupling with a certain amount of applied The input surface of the force or pressure input device 100 contacts and/or a combination thereof.

在各种示例中,输入表面可由传感器电极驻留在其内的输入设备100的外壳的表面、由施加在传感器电极或任何壳体上的面板等来提供。在一些变型中,感测区120在被投影到输入设备100的输入表面上时具有矩形形状。In various examples, the input surface may be provided by the surface of the housing of the input device 100 within which the sensor electrodes reside, by a panel applied to the sensor electrodes or any housing, or the like. In some variations, sensing area 120 has a rectangular shape when projected onto the input surface of input device 100 .

在一些实例中,输入设备100可使用各种感测技术来检测用户输入。示例感测技术可包含电容性感测技术和/或其他类型的感测技术。在一些示例中,输入设备100可使用诸如一个或多个电容性传感器之类的校正设备来检测用户输入。例如,感测区120可包含一个或多个电容性感测元件(例如,传感器电极)以创建电场。输入设备100可基于传感器电极的电容的改变来检测输入。例如,接触到(或紧邻于)电场的对象可导致传感器电极中的电压和/或电流的改变。电压和/或电流的这种改变可被检测为指示用户输入的“信号”。传感器电极可按阵列或其他配置来布置以检测感测区120内的多个点处的输入。在一些方面,一些传感器电极可欧姆地短路在一起以形成较大的传感器电极。一些电容性感测技术可使用提供均匀电阻层的电阻片。In some examples, input device 100 may use various sensing technologies to detect user input. Example sensing technologies may include capacitive sensing technologies and/or other types of sensing technologies. In some examples, input device 100 may detect user input using a correction device such as one or more capacitive sensors. For example, sensing region 120 may include one or more capacitive sensing elements (eg, sensor electrodes) to create an electric field. Input device 100 may detect input based on changes in capacitance of sensor electrodes. For example, objects in contact with (or in close proximity to) an electric field can cause changes in voltage and/or current in the sensor electrodes. This change in voltage and/or current may be detected as a "signal" indicative of user input. Sensor electrodes may be arranged in an array or other configuration to detect input at multiple points within sensing area 120 . In some aspects, some sensor electrodes can be ohmically shorted together to form a larger sensor electrode. Some capacitive sensing techniques use resistive strips that provide a uniform layer of resistance.

示例电容性感测技术可基于“自电容”(还被称作“绝对电容”)和/或“互电容”(还被称作“跨电容”)。绝对电容性感测方法检测传感器电极与输入对象之间的电容性耦合的改变。例如,传感器电极附近的输入对象可更改传感器电极附近的电场,因此改变所测量的电容性耦合。在一些变型中,输入设备100可通过相对于参考电压调制传感器电极并且检测传感器电极与输入对象之间的电容性耦合来实现绝对电容性感测。所述参考电压可基本上为恒定或可变化。在一些方面,所述参考电压可对应于接地参考电压。Example capacitive sensing techniques may be based on "self-capacitance" (also known as "absolute capacitance") and/or "mutual capacitance" (also known as "transcapacitance"). Absolute capacitive sensing methods detect changes in the capacitive coupling between the sensor electrodes and the input object. For example, an input object near a sensor electrode can change the electric field near the sensor electrode, thus changing the measured capacitive coupling. In some variations, input device 100 may implement absolute capacitive sensing by modulating sensor electrodes relative to a reference voltage and detecting capacitive coupling between the sensor electrodes and the input object. The reference voltage may be substantially constant or variable. In some aspects, the reference voltage may correspond to a ground reference voltage.

在一些实例中,输入设备100可使用跨电容感测技术。跨电容感测方法检测传感器电极之间的电容性耦合的改变。例如,传感器电极附近的输入对象或接地可更改传感器电极之间的电场,因此改变所测量的传感器电极的电容性耦合。在一些实例中,输入设备100可通过检测一个或多个发射器传感器电极(又作“发射器电极”或“发射器”)与一个或多个接收器传感器电极(又作“接收器电极”或“接收器”)之间的电容性耦合来实现跨电容感测。发射器传感器电极上的信号可相对于参考电压(例如,系统地(system ground))而被调制以发射发射器信号,而接收器传感器电极可相对于所述参考电压而被保持在基本上恒定的电压以接收结果信号。所述参考电压可以是基本上恒定的电压或者可以是系统地。结果信号可能被环境干扰(例如,其他电磁信号)以及接触到或紧邻于传感器电极的输入对象或接地所影响。In some examples, input device 100 may use transcapacitive sensing technology. Transcapacitive sensing methods detect changes in capacitive coupling between sensor electrodes. For example, an input object or ground near the sensor electrodes can change the electric field between the sensor electrodes and therefore change the measured capacitive coupling of the sensor electrodes. In some examples, the input device 100 can detect one or more transmitter sensor electrodes (also referred to as "transmitter electrodes" or "emitters") and one or more receiver sensor electrodes (also referred to as "receiver electrodes"). or "receiver") to achieve transcapacitive sensing. The signal on the transmitter sensor electrode may be modulated relative to a reference voltage (eg, system ground) to transmit the transmitter signal, and the receiver sensor electrode may be maintained substantially constant relative to the reference voltage. voltage to receive the resulting signal. The reference voltage may be a substantially constant voltage or may be system ground. The resulting signal may be affected by environmental interference (e.g., other electromagnetic signals) as well as input objects or ground that are in contact with or in close proximity to the sensor electrodes.

处理系统110可被配置成操作输入设备100的硬件以检测感测区120中的输入。在一些实例中,处理系统110可控制一个或多个传感器电极以检测感测区120中的对象。例如,处理系统110可包含一个或多个集成电路(IC)和/或被配置成经由一个或多个发射器传感器电极发射信号并且经由一个或多个接收器传感器电极接收信号的其他电路部件中的部分或全部。在一些方面,处理系统110的一个或多个部件可共同位于例如紧邻于输入设备100的感测元件中。在其它方面,处理系统110的一个或多个部件可与输入设备100的感测元件物理地分离。例如,输入设备100可以是耦合到计算设备的外围设备,并且处理系统110可被实现为由计算设备的中央处理单元(CPU)执行的软件。在另一示例中,输入设备100可被物理地集成在移动设备中,并且处理系统110可至少部分地对应于移动设备的CPU。Processing system 110 may be configured to operate the hardware of input device 100 to detect input in sensing area 120 . In some examples, processing system 110 may control one or more sensor electrodes to detect objects in sensing zone 120 . For example, processing system 110 may include one or more integrated circuits (ICs) and/or other circuit components configured to transmit signals via one or more transmitter sensor electrodes and receive signals via one or more receiver sensor electrodes. part or all of. In some aspects, one or more components of processing system 110 may be co-located, such as in proximate sensing elements of input device 100 . In other aspects, one or more components of processing system 110 may be physically separated from the sensing elements of input device 100 . For example, input device 100 may be a peripheral device coupled to a computing device, and processing system 110 may be implemented as software executed by a central processing unit (CPU) of the computing device. In another example, input device 100 may be physically integrated into the mobile device, and processing system 110 may correspond, at least in part, to a CPU of the mobile device.

在一些示例中,处理系统110可被实现为在固件、软件或其组合中实现的模块的集合。示例模块包含用于操作诸如传感器电极和显示屏之类的硬件的硬件操作模块、用于处理诸如传感器信号和位置信息之类的数据的数据处理模块、以及用于报告信息的报告模块。在一些变型中,处理系统110可包含:传感器操作模块,其被配置成操作感测元件以检测感测区120中的用户输入;识别模块,其被配置成识别手势,诸如模式改变手势;以及模式改变模块,其用于改变输入设备100和/或电子系统的操作模式。In some examples, processing system 110 may be implemented as a collection of modules implemented in firmware, software, or a combination thereof. Example modules include hardware operation modules for operating hardware such as sensor electrodes and display screens, data processing modules for processing data such as sensor signals and position information, and reporting modules for reporting information. In some variations, processing system 110 may include: a sensor operation module configured to operate sensing elements to detect user input in sensing area 120; a recognition module configured to recognize gestures, such as mode change gestures; and A mode change module for changing the operating mode of the input device 100 and/or the electronic system.

处理系统110可操作输入设备100的感测元件以产生指示感测区120中的输入(或输入的缺乏)的电信号。处理系统110可对电信号执行任何适当量的处理以转换或生成提供到电子系统的信息。例如,处理系统110可数字化经由传感器电极而接收的模拟信号和/或对所接收的信号执行滤波或调节。在一些方面,处理系统110可减去或以其他方式计及与传感器电极相关联的“基线”。例如,基线可表示当没有检测到用户输入时传感器电极的状态。因此,由处理系统110提供到电子系统的信息可反映从传感器电极接收的信号与关联于每个传感器电极的基线之间的差异。Processing system 110 may operate sensing elements of input device 100 to generate electrical signals indicative of input (or lack of input) in sensing region 120 . Processing system 110 may perform any suitable amount of processing on the electrical signals to convert or generate information that is provided to the electronic system. For example, processing system 110 may digitize analog signals received via sensor electrodes and/or perform filtering or conditioning on the received signals. In some aspects, processing system 110 may subtract or otherwise account for a "baseline" associated with a sensor electrode. For example, the baseline may represent the state of the sensor electrodes when no user input is detected. Accordingly, the information provided to the electronic system by the processing system 110 may reflect differences between the signals received from the sensor electrodes and the baseline associated with each sensor electrode.

在一些示例中,感测区120还可以是由触觉反馈所激活的区。例如,基于一个或多个获得的测量结果,处理系统110使用感测区120向用户提供触觉反馈。In some examples, sensing area 120 may also be an area activated by tactile feedback. For example, processing system 110 uses sensing area 120 to provide tactile feedback to the user based on one or more obtained measurements.

虽然图1示出了部件的示例配置,但是在不脱离本公开的范围的情况下,其他配置可被使用。例如,可组合各种部件以创建单个部件。作为另一示例,由单个部件执行的功能性可由两个或更多部件来执行。Although FIG. 1 shows an example configuration of components, other configurations may be used without departing from the scope of the present disclosure. For example, various parts can be combined to create a single part. As another example, functionality performed by a single component may be performed by two or more components.

图2A是描绘根据本公开的一个或多个示例的输入设备的框图。参考图2A,输入设备200可以是图1的输入设备100的示例。输入设备200可以包含感测区210和处理系统205。感测区210(其可以是图1的感测区120的示例)可以涵盖输入设备200上方、周围、之中和/或附近的任何空间,其中输入设备200能够检测诸如由一个或多个输入对象(为简单起见未被示出)提供的用户输入。感测区210的大小、形状和/或位置可取决于实际实现方式而变化。2A is a block diagram depicting an input device according to one or more examples of the present disclosure. Referring to FIG. 2A , input device 200 may be an example of input device 100 of FIG. 1 . Input device 200 may include sensing area 210 and processing system 205 . Sensing area 210 (which may be an example of sensing area 120 of FIG. 1 ) may encompass any space above, around, in, and/or near input device 200 where input device 200 is capable of detecting inputs such as those provided by one or more input devices. Object (not shown for simplicity) provides user input. The size, shape and/or location of sensing area 210 may vary depending on the actual implementation.

感测区210可包含校正设备212(例如,电容性传感器)和压电设备216(例如,压电致动器)。在一些实例中,感测区210可包含印刷电路板(PCB)组件,所述PCB组件包含校正设备212和压电设备216。PCB组件可包含一个或多个PCB。Sensing region 210 may include a correction device 212 (eg, a capacitive sensor) and a piezoelectric device 216 (eg, a piezoelectric actuator). In some examples, sensing area 210 may include a printed circuit board (PCB) assembly including correction device 212 and piezoelectric device 216 . A PCB assembly may contain one or more PCBs.

校正设备212可以是被配置成基于来自压电设备216的信号来校正用户输入的任何类型的设备、传感器、配置、系统和/或其他部件。例如,在一些变型中,校正设备212可以是与压电设备216相联系地被使用以确定用户动作(例如,用户输入)的整流设备。例如,因为压电传感器的电压不管用户动作如何都随时间泄漏,所以校正设备212可提供由处理系统205用来确定用户动作的分开的传感器信号(例如,如果用户实际上从感测区210释放输入对象,或者如果所述用户仍然正在感测区210上持住输入对象)。在一些实例中,校正设备212可用于校正由压电设备216提供的信号。在其它实例中,压电设备216可用于校正和/或校准校正设备212的信号。Correction device 212 may be any type of device, sensor, configuration, system, and/or other component configured to correct user input based on signals from piezoelectric device 216 . For example, in some variations, correction device 212 may be a rectifying device used in connection with piezoelectric device 216 to determine user actions (eg, user input). For example, because the voltage of a piezoelectric sensor leaks over time regardless of user action, calibration device 212 may provide a separate sensor signal that is used by processing system 205 to determine user action (e.g., if the user actually releases from sensing area 210 input object, or if the user is still holding the input object on the sensing area 210). In some examples, correction device 212 may be used to correct the signal provided by piezoelectric device 216 . In other examples, piezoelectric device 216 may be used to correct and/or calibrate the signal of correction device 212 .

在一些示例中,校正设备212是和/或包含一个或多个电容性传感器。所述电容性传感器可包含在感测区210中和/或周围产生电场的传感器电极的阵列。输入设备200可凭借检测通过校正设备212(例如,电容性传感器)的电场和/或电容的改变来感测用户输入。在一些变型中,校正设备212(例如,电容性传感器)可包含发射器传感器电极和接收器传感器电极(为简单起见未被示出)。在一些实例中,校正设备212(例如,电容性传感器)可用作力传感器(例如,能够检测用户的力)。该力可以是与交互于传感器区210的输入对象相关联的力值。In some examples, correction device 212 is and/or includes one or more capacitive sensors. The capacitive sensor may include an array of sensor electrodes that generate an electric field in and/or around the sensing area 210 . Input device 200 may sense user input by detecting changes in electric field and/or capacitance through correction device 212 (eg, a capacitive sensor). In some variations, correction device 212 (eg, a capacitive sensor) may include transmitter sensor electrodes and receiver sensor electrodes (not shown for simplicity). In some examples, calibration device 212 (eg, a capacitive sensor) may function as a force sensor (eg, capable of detecting a user's force). The force may be a force value associated with an input object interacting with sensor region 210 .

压电设备216可以是使用压电感测来检测用户输入和/或检测由输入对象所施加的力的任何类型的设备(例如,压电设备216可用作力传感器)。例如,压电设备216可以是换能器。压电设备216可提供与输入对象/用户输入相关联的信号/测量结果(例如,电压信号)。例如,如前所提到的,压电设备216可以测量施加的力的改变,但是随着电荷随时间泄漏,当该施加的力在准静态条件下缓慢改变时,可能存在问题。Piezoelectric device 216 may be any type of device that uses piezoelectric sensing to detect user input and/or detect force exerted by an input object (eg, piezoelectric device 216 may function as a force sensor). For example, piezoelectric device 216 may be a transducer. Piezoelectric device 216 may provide a signal/measurement (eg, voltage signal) associated with the input object/user input. For example, as mentioned previously, the piezoelectric device 216 can measure changes in applied force, but there may be problems when the applied force changes slowly in quasi-static conditions as charge leaks over time.

因此,压电设备216与校正设备212(例如,电容性传感器)相联系地被使用,以便检测由输入对象施加的力和/或以其它方式检测用户输入。例如,电容性传感器可用作力传感器,但是这些传感器直接测量由于来自施加的力的偏转而引起的电容的改变,但是对制造变化非常敏感。电容性传感器可能要求复杂的校准和感测算法来在测量的电容与施加的力之间进行映射。因此,电容性力传感器与输入设备200(例如,压电触觉压力板)中的压电设备216集成。结合压电设备216使用电容性传感器可取得较高的性能力感测。Accordingly, piezoelectric device 216 is used in connection with a correction device 212 (eg, a capacitive sensor) to detect forces exerted by an input object and/or to otherwise detect user input. For example, capacitive sensors can be used as force sensors, but these sensors directly measure changes in capacitance due to deflection from applied force, but are very sensitive to manufacturing variations. Capacitive sensors may require complex calibration and sensing algorithms to map between measured capacitance and applied force. Thus, the capacitive force sensor is integrated with the piezoelectric device 216 in the input device 200 (eg, a piezoelectric tactile pressure plate). Using a capacitive sensor in conjunction with the piezoelectric device 216 can achieve higher sexual performance sensing.

校正设备212和压电设备216可耦合到处理系统205。处理系统205可包含硬件和/或软件元件。处理系统205控制压电设备216和校正设备212的操作。例如,校正设备212可包含电容性传感器,并且处理系统205可操作电容性传感器以确定与输入对象(例如,输入对象115)相关联的压力和/或位置。Calibration device 212 and piezoelectric device 216 may be coupled to processing system 205 . Processing system 205 may include hardware and/or software elements. Processing system 205 controls the operation of piezoelectric device 216 and correction device 212 . For example, calibration device 212 may include a capacitive sensor, and processing system 205 may operate the capacitive sensor to determine pressure and/or position associated with an input object (eg, input object 115 ).

在一些实例中,处理系统205可包含触摸控制器或处理器(例如,被配置成检测用户输入和/或执行动作的控制器或处理器)。在其他实例中,触摸控制器可与处理系统205分离。例如,处理系统205可包含将触摸控制器与电容性传感器耦合或连接的电路。In some examples, processing system 205 may include a touch controller or processor (eg, a controller or processor configured to detect user input and/or perform actions). In other examples, the touch controller may be separate from processing system 205. For example, processing system 205 may include circuitry that couples or connects a touch controller with a capacitive sensor.

压电设备216可耦合到处理系统205。处理系统205可控制压电设备216,以便检测来自压电设备216的力信号和/或向用户提供触觉反馈。例如,处理系统205可响应于来自压电设备216和校正设备212的信号提供触觉反馈。在一些实例中,处理系统205可包含电路和/或处理器或控制器,其被配置成检测来自校正设备212和压电设备216的信号并执行动作(例如,提供触觉反馈)。Piezoelectric device 216 may be coupled to processing system 205 . Processing system 205 may control piezoelectric device 216 to detect force signals from piezoelectric device 216 and/or provide tactile feedback to the user. For example, processing system 205 may provide tactile feedback in response to signals from piezoelectric device 216 and correction device 212 . In some examples, processing system 205 may include circuitry and/or a processor or controller configured to detect signals from correction device 212 and piezoelectric device 216 and perform actions (eg, provide tactile feedback).

图2B示出了根据本公开的一个或多个示例的输入设备200的顶视图220。例如,输入设备200包含四个压电设备216(例如,压电致动器)和四个校正设备212(例如,电容性传感器)。每个压电设备216处于校正设备212之一的内部。Figure 2B illustrates a top view 220 of input device 200 in accordance with one or more examples of the present disclosure. For example, input device 200 includes four piezoelectric devices 216 (eg, piezoelectric actuators) and four correction devices 212 (eg, capacitive sensors). Each piezoelectric device 216 is located within one of the correction devices 212 .

图2C示出了根据本公开的一个或多个示例的输入设备200的侧视图230。例如,如侧视图230中所示的,输入设备200包含触摸传感器印刷电路板(PCB)、压电换能器和安装支架。电容性触摸电极232在顶部上被示出,并且电容性校正电极234(例如,校正设备212)在底部被示出。Figure 2C shows a side view 230 of the input device 200 in accordance with one or more examples of the present disclosure. For example, as shown in side view 230, input device 200 includes a touch sensor printed circuit board (PCB), a piezoelectric transducer, and a mounting bracket. Capacitive touch electrode 232 is shown on the top, and capacitive correction electrode 234 (eg, correction device 212) is shown on the bottom.

图3是根据本公开的一个或多个示例、针对使用包含压电设备和校正设备的输入设备的示例性过程300的流程图。过程300可由输入设备100或200,并且特别是图1和2A中所示的处理系统110或205来执行。然而,将认识到,包含如图1和2A中所示的附加和/或更少部件的输入设备可用于执行过程300,以下框中的任何框可按任何适合的顺序被执行,以及过程300可在任何适合的环境中被执行。图3的描述、图示和过程仅仅是示例性的,并且过程300可使用用于使用包含压电设备和校正设备的输入设备的其它描述、说明和过程。3 is a flowchart of an exemplary process 300 for using an input device including a piezoelectric device and a correction device, in accordance with one or more examples of the present disclosure. Process 300 may be performed by input device 100 or 200, and particularly processing system 110 or 205 shown in Figures 1 and 2A. However, it will be appreciated that input devices containing additional and/or fewer components as shown in Figures 1 and 2A may be used to perform process 300, that any of the following blocks may be performed in any suitable order, and that process 300 Can be executed in any suitable environment. The description, illustrations, and processes of FIG. 3 are exemplary only, and process 300 may employ other descriptions, illustrations, and processes for using input devices including piezoelectric devices and correction devices.

在操作中,在框302,处理系统205使用与输入设备的感测区上的用户输入相关联的压电信号来获得。例如,用户可使用输入对象(例如,输入对象115)来在输入设备(例如,输入设备100或200)上的感测区(例如,感测区120或210)上提供用户输入。处理系统205可获得与用户输入相关联的压电信号。例如,当用户向下按压到输入设备的感测区时,压电设备216由于该动作可偏转(例如,材料的弯曲)和/或下压。基于该偏转和/或下压,压电设备216可生成提供到处理系统205的信号(例如,电压信号)。In operation, at block 302, the processing system 205 obtains using piezoelectric signals associated with user input on a sensing area of the input device. For example, a user may use an input object (eg, input object 115) to provide user input on a sensing area (eg, sensing area 120 or 210) on an input device (eg, input device 100 or 200). Processing system 205 may obtain piezoelectric signals associated with user input. For example, when a user presses down onto a sensing area of the input device, piezoelectric device 216 may deflect (eg, bending of the material) and/or press down as a result of this action. Based on the deflection and/or depression, the piezoelectric device 216 may generate a signal (eg, a voltage signal) that is provided to the processing system 205 .

图4是根据本公开的一个或多个示例、针对压电力传感器的频率响应的图形表示。例如,图4示出了曲线图400,其示出了作为x轴上的激励频率404的函数的y轴上的压电设备216的输出电压信号402的幅值。例如,如果用户提供具有固定振幅的正弦信号,则压电设备216在该频率提供具有所指示幅值的正弦输出信号。在峰值之前的水平平坦区中,输出的幅值相对独立于频率。在较低频率,输出信号的幅值减小到零。因此,如果力被减慢,即使力相同,则不存在或存在非常小的输出信号。在可能不出现在触摸板/压力板上的高频,提供谐振峰值。因此,如所示出的那样,压电设备216在水平平坦区正常操作(例如,基于用户输入的频率提供输出电压),但是在较低频率(例如,在静态或准静态条件期间,诸如当用户缓慢地从感测区进行释放时),极少甚至没有电压信号可被检测到。4 is a graphical representation of frequency response for a piezoelectric force sensor in accordance with one or more examples of the present disclosure. For example, FIG. 4 shows a graph 400 showing the amplitude of the output voltage signal 402 of the piezoelectric device 216 on the y-axis as a function of the excitation frequency 404 on the x-axis. For example, if the user provides a sinusoidal signal with a fixed amplitude, the piezoelectric device 216 provides a sinusoidal output signal at that frequency with the indicated amplitude. In the horizontal flat area before the peak, the amplitude of the output is relatively independent of frequency. At lower frequencies, the amplitude of the output signal decreases to zero. Therefore, if the force is slowed down, i.e. the force is the same, there is no or a very small output signal. Provides resonant peaks at high frequencies that may not appear on the touchpad/pressure pad. Therefore, as shown, piezoelectric device 216 operates normally in the horizontal flat region (eg, provides an output voltage based on the frequency of user input), but at lower frequencies (eg, during static or quasi-static conditions, such as when When the user releases slowly from the sensing area), little or no voltage signal can be detected.

因此,鉴于图4中所示的压电设备216的输出分布,处理系统205可使用来自另一设备/传感器(诸如,校正设备212)的另外的信号来确定用户输入。在框304,处理系统205使用校正设备获得与输入设备的感测区上的用户输入相关联的校正信号。换句话说,对于相同的用户动作(例如,用户在感测区上向下按压),处理系统205可获得两个分开的信号——来自校正设备212的一个集合以及来自压电设备216的一个集合。如前所提到的,在一些实例中,校正设备212包含一个或多个电容性传感器。因此,在框304,处理系统205可从电容性传感器获得电容性信号。在一些实例中,电容性信号可被映射到大体上校准的力信号。例如,处理系统205可以从电容性传感器获得测量结果/信号并且将这些测量结果/信号转换成力测量结果。Therefore, given the output distribution of piezoelectric device 216 shown in Figure 4, processing system 205 may use additional signals from another device/sensor, such as calibration device 212, to determine user input. At block 304, the processing system 205 uses the correction device to obtain a correction signal associated with the user input on the sensing area of the input device. In other words, for the same user action (eg, the user presses down on the sensing area), the processing system 205 may obtain two separate signals—one from the set of correction devices 212 and one from the piezoelectric device 216 gather. As mentioned previously, in some examples, calibration device 212 includes one or more capacitive sensors. Accordingly, at block 304, the processing system 205 may obtain a capacitive signal from the capacitive sensor. In some examples, the capacitive signal can be mapped to a substantially calibrated force signal. For example, processing system 205 may obtain measurements/signals from capacitive sensors and convert these measurements/signals into force measurements.

在框306,处理系统205基于校正信号和压电信号来确定要响应于用户输入而被执行的一个或多个事件。在框308,处理系统205执行所述一个或多个事件。所述一个或多个事件可以是和/或包含向用户提供触觉反馈,这在上文被描述。例如,处理系统205可以将压电和校正信号与一个或多个阈值进行比较,并且基于该比较向用户提供触觉反馈。At block 306, the processing system 205 determines one or more events to be executed in response to the user input based on the correction signal and the piezoelectric signal. At block 308, the processing system 205 executes the one or more events. The one or more events may be and/or include providing tactile feedback to the user, as described above. For example, processing system 205 may compare the piezoelectric and correction signals to one or more thresholds and provide tactile feedback to the user based on the comparison.

例如,用户可使用输入对象来提供用户输入,诸如在感测区上向下按压(例如,向下推按)。压电设备216可基于此动作提供电压信号,但该信号可缓慢漏掉(例如,在幅值上减小)。电容传感器可提供在所施加的力恒定时保持恒定的电容性信号,但是电容性信号可不被映射到力值。因此,通过使用两个信号,处理系统205可校正两个传感器的任何缺点并且向用户提供适当的反馈。例如,压电设备216的初始信号(例如,力值)可能是可靠的,即使稍后在信号泄漏时,其并不一样可靠。此外,尽管电容性信号可不表示力测量结果,但是它们直接与所施加的力相关。例如,用户可以在感测区上施加0.5牛顿(N)的力。压电设备216可提供指示所述0.5N的力的压电信号(例如,在第一时刻处的电压信号的第一幅值)。(一个或多个)电容性传感器的输出可以是可不同于压电信号的第一值(例如,“X”)。用户可继续在感测区上保持该力值。在此跨度期间,压电设备216可泄漏电压,使得压电信号逐渐减小且难以区分此泄漏与力值的减小(例如,确定电压信号的幅值在一时间段内从第一幅值减小)。然而,在该相同的时间跨度期间,由电容性传感器检测的电容性信号仍然可保持基本上恒定,例如,仍然读取指示电压的下降可能基本上是由于泄漏电荷而不是施加的力的减小的X。因此,最初,处理系统205可使用压电设备216来执行事件(例如,提供对于“点击”的第一触觉反馈)。例如,处理系统205可以将在第一时刻由压电信号(例如,0.5N的力)指示的电压信号与阈值(例如,第一阈值)进行比较。基于该比较,处理系统205可确定执行第一触觉反馈。For example, the user may use the input object to provide user input, such as pressing down on the sensing area (eg, push down). Piezoelectric device 216 may provide a voltage signal based on this action, but the signal may slowly leak (eg, decrease in amplitude). Capacitive sensors may provide a capacitive signal that remains constant when the applied force is constant, but the capacitive signal may not be mapped to a force value. Therefore, by using both signals, the processing system 205 can correct for any shortcomings of both sensors and provide appropriate feedback to the user. For example, an initial signal (eg, a force value) from piezoelectric device 216 may be reliable, even if it is not as reliable later when the signal leaks. Furthermore, although capacitive signals may not represent force measurements, they are directly related to the applied force. For example, the user can exert a force of 0.5 Newtons (N) on the sensing area. Piezoelectric device 216 may provide a piezoelectric signal indicative of the 0.5 N force (eg, a first amplitude of the voltage signal at a first time instant). The output of the capacitive sensor(s) may be a first value (eg, "X") that may be different from the piezoelectric signal. The user can continue to maintain this force value on the sensing area. During this span, the piezoelectric device 216 may leak voltage such that the piezoelectric signal gradually decreases and it is difficult to distinguish this leakage from a decrease in force value (e.g., determining the amplitude of the voltage signal from a first amplitude over a period of time decrease). However, during this same time span, the capacitive signal detected by the capacitive sensor may still remain substantially constant, e.g., a drop in reading indicating voltage may still be substantially due to leakage charge rather than a decrease in applied force. of X. Thus, initially, processing system 205 may use piezoelectric device 216 to perform an event (eg, provide first tactile feedback for a "click"). For example, the processing system 205 may compare the voltage signal indicated by the piezoelectric signal (eg, a force of 0.5 N) at a first time instant to a threshold (eg, a first threshold). Based on this comparison, processing system 205 may determine to perform first tactile feedback.

之后,处理系统205可将电容性传感器用于后续事件(例如,提供对于“解除点击(unclick)”的第二触觉反馈,其表示用户从感测区释放输入对象)。例如,用户可缓慢地从感测区释放输入对象。在某个阈值(例如,0.25N),处理系统205可执行后续事件。然而,由于压电信号的泄漏,处理系统205可能无法确保此后续事件发生。例如,难以确定用户是否缓慢释放,因为它将具有与用户保持达某个量的时间一样的类似输出电压分布。因此,处理系统205可使用电容性传感器来确定用户是否实际释放或仍然在保持。例如,如果用户缓慢释放,则由电容性传感器提供的电容性信号将指示缓慢释放(例如,从X缓慢减小到另一值,诸如0.5*X)。如果用户保持,则电容性信号将保持基本上恒定(例如,保持在X)。因此,处理系统205可使用由电容性传感器检测到的初始电容值(例如,0.9N)来确定新阈值(例如,校正阈值)。例如,处理系统205可依赖于电容性信号的比例保持基本上恒定。因此,给定0.25N阈值和0.5N的初始压电信号,处理系统205可以确定电容性信号的新校正阈值,诸如0.5*X(例如,由电容性传感器检测到的初始量的一半)。在一些情况下,压电信号与电容性信号之间的比较可能不是完全线性的(例如,鉴于0.5N初始值和0.25N阈值,减小了一半)。因此,处理系统205可基于初始电容信号(例如,X)和非线性因子来确定新的校正阈值。例如,处理系统205可使用65%或70%的非线性因子。因此,处理系统205可将新的校正阈值确定为0.65*X或0.7*X。处理系统205可以基于校正阈值(例如,当电容信号达到校正阈值时)执行所述一个或多个事件(例如,解除点击触觉反馈事件)。在一些变型中,处理系统205可基于初始电容值和/或使用一个或多个公式、查找表和/或其他算法来确定校正阈值。例如,处理系统205可以使用查找表来根据初始电容值确定校正阈值。The processing system 205 may then use the capacitive sensor for subsequent events (eg, provide a second tactile feedback for an "unclick" indicating the user's release of the input object from the sensing area). For example, the user can slowly release the input object from the sensing area. At some threshold (eg, 0.25N), processing system 205 may perform subsequent events. However, due to leakage of the piezoelectric signal, the processing system 205 may not ensure that this subsequent event occurs. For example, it is difficult to determine if the user releases slowly because it will have a similar output voltage distribution as if the user holds it for a certain amount of time. Therefore, processing system 205 may use a capacitive sensor to determine whether the user actually releases or is still holding. For example, if the user releases slowly, the capacitive signal provided by the capacitive sensor will indicate a slow release (eg, a slow decrease from X to another value, such as 0.5*X). If the user holds, the capacitive signal will remain substantially constant (e.g., remain at X). Therefore, the processing system 205 may use the initial capacitance value detected by the capacitive sensor (eg, 0.9 N) to determine a new threshold (eg, a correction threshold). For example, processing system 205 may rely on the ratio of the capacitive signal to remain substantially constant. Therefore, given a threshold of 0.25N and an initial piezoelectric signal of 0.5N, the processing system 205 can determine a new corrected threshold for the capacitive signal, such as 0.5*X (eg, half the initial amount detected by the capacitive sensor). In some cases, the comparison between the piezoelectric and capacitive signals may not be completely linear (eg, reduced by half given a 0.5N initial value and a 0.25N threshold). Accordingly, processing system 205 may determine a new correction threshold based on the initial capacitance signal (eg, X) and the nonlinearity factor. For example, processing system 205 may use a nonlinearity factor of 65% or 70%. Therefore, processing system 205 may determine the new correction threshold to be 0.65*X or 0.7*X. The processing system 205 may execute the one or more events (eg, deactivate a click tactile feedback event) based on a correction threshold (eg, when the capacitive signal reaches the correction threshold). In some variations, processing system 205 may determine the correction threshold based on the initial capacitance value and/or using one or more formulas, lookup tables, and/or other algorithms. For example, processing system 205 may use a lookup table to determine the correction threshold based on the initial capacitance value.

在一些示例中,处理系统205可将校正设备212用于次级事件(例如,向用户提供“解除点击”触觉反馈)。例如,处理系统205可将电容性信号与校正阈值进行比较,以确定是否执行所述事件。在其他示例中,处理系统205可将校正设备212和压电设备216两者用于诸如“解除点击”事件之类的次级事件。例如,压电设备216可检测用户进行的突然移动或动作,如上所提到的。因此,处理系统205可将电容性传感器信号用作校正或辅助检查以确定用户动作是否准确。例如,基于指示解除点击事件的压电设备216(例如,当压电信号达到0.25N阈值时),处理系统205可在那时确定电容性信号的值。基于电容性信号保持基本上恒定,处理系统205可确定压电信号的减小是由泄漏引起的而不是由用户从传感器区释放引起的。因此,处理系统205可不向用户提供触觉反馈。基于电容性信号被减小了某个百分比(例如,减小到新的校正阈值和/或减小到不同的值),处理系统205可以确定压电信号的减小由用户引起,并且可执行诸如提供触觉反馈之类的事件。In some examples, processing system 205 may use correction device 212 for secondary events (eg, to provide "unclick" tactile feedback to the user). For example, processing system 205 may compare the capacitive signal to a correction threshold to determine whether to perform the event. In other examples, processing system 205 may use both correction device 212 and piezoelectric device 216 for secondary events such as "unclick" events. For example, piezoelectric device 216 may detect sudden movements or actions made by the user, as mentioned above. Therefore, the processing system 205 may use the capacitive sensor signal as a correction or auxiliary check to determine whether the user's actions were accurate. For example, based on piezoelectric device 216 indicating a release click event (eg, when the piezoelectric signal reaches a 0.25N threshold), processing system 205 may determine the value of the capacitive signal at that time. Based on the capacitive signal remaining substantially constant, the processing system 205 may determine that the decrease in the piezoelectric signal is caused by leakage and not by user release from the sensor area. Therefore, processing system 205 may not provide tactile feedback to the user. Based on the capacitive signal being reduced by a certain percentage (e.g., reduced to a new correction threshold and/or reduced to a different value), processing system 205 may determine that the reduction in the piezoelectric signal was caused by the user, and may perform Events such as providing tactile feedback.

在一些实例中,处理系统205可针对每个单独的用户输入确定校正设备212的新的校正阈值。例如,基于用户在感测区上按压的位置,电容性传感器可提供不同的幅值。例如,如果用户在感测区的中心部分上按压,则电容性传感器可检测第一信号,诸如某个值(例如,“Y”),而如果用户在按压感测区的边缘部分上按压,则电容性传感器可检测第二信号,诸如0.8*Y。因此,处理系统205可为每个用户输入确定新的校正阈值。In some examples, processing system 205 may determine a new correction threshold for correction device 212 for each individual user input. For example, capacitive sensors can provide different amplitudes based on where the user presses on the sensing area. For example, if the user presses on a central portion of the sensing area, the capacitive sensor may detect a first signal, such as a certain value (eg, "Y"), whereas if the user presses on an edge portion of the pressing sensing area, The capacitive sensor can then detect a second signal, such as 0.8*Y. Therefore, processing system 205 may determine a new correction threshold for each user input.

在一些示例中,处理系统205可跟踪与压电信号和/或校正信号相关联的历史数据。例如,处理系统205可确定历史中的关键点,并且将那些关键点用作触发点(例如,当处理系统205执行触觉事件时,诸如当基于校正信号低于校正阈值来执行触觉事件时)。触发点可与一个或多个力阈值相关联,所述力阈值用于确定是否执行所述一个或多个事件。例如,历史数据可跟踪压电信号随时间衰减多快。基于历史数据,处理系统205可确定是否执行所述一个或多个事件。例如,如果指示压电信号的正常衰减的历史数据与同当前压电信号相关联的电流数据的比较是类似的,则处理系统205可确定压电信号正在正常衰减并且可不执行所述一个或多个事件。如果指示压电信号的正常衰减的历史数据与同当前压电信号相关联的电流数据的比较是实质上不同的(例如,在统计上对某个阈值或统计值有显著意义),那么处理系统205可确定压电信号正在不正常衰减且可执行所述一个或多个事件。In some examples, processing system 205 may track historical data associated with piezoelectric signals and/or correction signals. For example, processing system 205 may determine key points in the history and use those key points as trigger points (eg, when processing system 205 performs a haptic event, such as when a haptic event is performed based on a correction signal being below a correction threshold). A trigger point may be associated with one or more force thresholds that are used to determine whether to perform the one or more events. For example, historical data can track how quickly a piezoelectric signal decays over time. Based on historical data, processing system 205 may determine whether to perform the one or more events. For example, if a comparison of historical data indicating normal decay of the piezoelectric signal and current data associated with the current piezoelectric signal is similar, processing system 205 may determine that the piezoelectric signal is decaying normally and may not perform one or more of the event. If a comparison of historical data indicative of normal attenuation of a piezoelectric signal and current data associated with a current piezoelectric signal is substantially different (e.g., statistically significant for a certain threshold or statistical value), then the processing system 205 may determine that the piezoelectric signal is decaying abnormally and the one or more events may be performed.

在一些变型中,压电信号可用于执行电容传感器的初始校准。例如,电容传感器可被校准并且在校准之后保持校准达某个量的时间。因此,基于压电信号(例如,指示施加的力对应于电容性信号的X的值的压电信号的0.5N),处理系统205可校准电容信号。例如,基于在第一时刻的压电信号和校正信号的幅值,处理系统205可校准校正设备212。In some variations, piezoelectric signals may be used to perform initial calibration of the capacitive sensor. For example, a capacitive sensor may be calibrated and remain calibrated for a certain amount of time after calibration. Thus, based on the piezoelectric signal (eg, 0.5N of the piezoelectric signal indicating that the applied force corresponds to the value of X of the capacitive signal), the processing system 205 may calibrate the capacitive signal. For example, processing system 205 may calibrate correction device 212 based on the amplitude of the piezoelectric signal and the correction signal at the first time instant.

在一些实例中,诸如在绘图应用中,变更输入压力以改变绘图效果(诸如线厚度)是有用的。因此,处理系统205可使用压电信号和校正信号来确定施加的压力的变化,并且相应地调整绘图效果(例如,线厚度)。例如,当压力以快速改变的方式而被施加时,处理系统205可获得压电信号和校正信号的同步测量结果。压电信号可被映射到力,所述力然后可提供校正信号到力的映射。该校正信号到力映射可用于确定在所述压力改变正缓慢改变时施加的压力的变化。在一些实例中,处理系统205可细化多个绘图事件上的力映射。附加地和/或备选地,当应用力映射时,处理系统205可向最近的绘图事件提供较多的权重,并且向较旧的事件提供较少的权重。In some instances, such as in drawing applications, it is useful to vary the input pressure to change the drawing effect, such as line thickness. Accordingly, the processing system 205 may use the piezoelectric signal and the correction signal to determine changes in applied pressure and adjust the drawing effect (eg, line thickness) accordingly. For example, when pressure is applied in a rapidly changing manner, the processing system 205 can obtain simultaneous measurements of the piezoelectric signal and the correction signal. The piezoelectric signal can be mapped to force, which can then provide a mapping of the correction signal to force. This correction signal to force mapping can be used to determine changes in applied pressure when the pressure change is slowly changing. In some examples, processing system 205 may refine the force mapping over multiple drawing events. Additionally and/or alternatively, when applying force mapping, processing system 205 may provide more weight to recent drawing events and less weight to older events.

在一些示例中,本公开可用于在指向之后的点击。例如,如果用户在指向时已经施加轻压力,则压电设备216可能失去对轻力的跟踪,使得难以在规定的点击阈值点击。为了为用户提供均匀的体验,电容性传感器可以跟踪指向交互期间的相对力,并且确保当用户意图点击时,点击发生在用户期望的阈值。In some examples, the present disclosure may be used for clicks following pointing. For example, if the user has applied light pressure while pointing, the piezoelectric device 216 may lose tracking of the light force, making it difficult to click at the specified click threshold. To provide a uniform experience for users, capacitive sensors can track relative forces during pointing interactions and ensure that when a user intends to click, the click occurs at the user's desired threshold.

在一些变型中,如果所施加的力在触觉事件期间改变,则压电设备可能没有检测到力的这种改变。电容性传感器可在该事件期间跟踪所施加的力并且用作对重新启动压电感测的参考。例如,电容传感器可检测触觉事件开始时的第一值(例如,Z)和触觉事件结束时的第二值(例如,0.5*Z)。因此,基于50%的减小,处理系统205可以在触觉事件期间相应地估计力的改变(例如,50%减小)。In some variations, if the applied force changes during a haptic event, the piezoelectric device may not detect such change in force. The capacitive sensor can track the force applied during this event and serve as a reference for reinitiating piezoelectric sensing. For example, a capacitive sensor may detect a first value at the beginning of a tactile event (eg, Z) and a second value at the end of the tactile event (eg, 0.5*Z). Therefore, based on the 50% reduction, the processing system 205 can estimate the change in force during the haptic event accordingly (eg, the 50% reduction).

在一些实例中,如果使用单个通道来驱动和感测所有压电设备/致动器,则存在单个力测量结果。电容性偏转测量可用于估计每个手指的力。处理系统205可以使用这个以使得在手掌搁置在输入设备的感测区上时点击手势能够被认出。例如,为了能够估计每个手指(或接触区域)的力,处理系统205可获得接触点的历史以及同步的压电测量结果和电容性偏转测量结果。例如,如果用户要将两个手指放置在触摸板上的相对边缘上,则在一个边缘上的推按将导致在该边缘附近的较大偏转,而在相对边缘上的推按将导致该相对边缘附近的较大偏转。输入设备200(例如,感测区210)的偏转的模型以及不同位置处的施加的力如何导致不同的电容性偏转测量结果,允许处理系统205确定(例如,创建)将电容性偏转测量结果加上接触点映射到每个接触点的力的逆模型。因此,当压电测量结果指示施加的力的增加时,使用电容性偏转测量结果和逆模型,处理系统205可确定例如力的增加是否来自作为搁置在触摸板的一个部分上的手掌的大接触片(contact patch)或者是作为在触摸板的不同区域中进行接触的手指的较小的接触片。In some examples, if a single channel is used to drive and sense all piezoelectric devices/actuators, there is a single force measurement. Capacitive deflection measurements can be used to estimate the force on each finger. The processing system 205 can use this to enable the tap gesture to be recognized when the palm rests on the sensing area of the input device. For example, to be able to estimate the force of each finger (or contact area), the processing system 205 may obtain a history of contact points and simultaneous piezoelectric measurements and capacitive deflection measurements. For example, if the user were to place two fingers on opposite edges of the touchpad, a push on one edge would result in a larger deflection near that edge, while a push on the opposite edge would result in a larger deflection near that edge. Large deflections near edges. A model of the deflection of the input device 200 (eg, sensing region 210 ) and how applied force at different locations results in different capacitive deflection measurements allows the processing system 205 to determine (eg, create) a capacitive deflection measurement plus An inverse model that maps the upper contact points to the forces at each contact point. Thus, when piezoelectric measurements indicate an increase in applied force, using the capacitive deflection measurements and the inverse model, processing system 205 can determine, for example, whether the increase in force is from a large contact as a palm resting on a portion of the touchpad contact patches, or smaller contact patches that serve as fingers making contact in different areas of the touch pad.

在一些示例中,当压电设备被校准时,通常通过在测试点的集合施加已知的力,然后电容性传感器可被线性化。电容性传感器可具有对偏转的非线性响应。因此,处理系统205可生成简单模型,该简单模型使传感器对所施加力的响应中的每个线性化。这使得以上描述的功能更简单。这比如果电容性传感器是仅存的传感器所需的校准要简单得多。In some examples, when a piezoelectric device is calibrated, typically by applying a known force at a set of test points, the capacitive sensor can then be linearized. Capacitive sensors can have a non-linear response to deflection. Therefore, the processing system 205 can generate a simple model that linearizes each of the sensor's responses to the applied force. This makes the functionality described above simpler. This is much simpler than the calibration required if the capacitive sensor was the only sensor left.

在一些变型中,处理系统205可使用压电信号(例如,压电力测量结果)来周期性地重新校准电容性力感测。例如,如果单个手指在电容性传感器中的一个正上方的位置中向下,则它能够用于重新校准该(一个或多个)电容性传感器。处理系统205可获得同步压电信号和电容性信号的序列。通过手指直接在电容性传感器上(或在其他校准位置中),处理系统205可使用对应于压电信号的力值来更新从电容性信号到力值的映射。附加地和/或备选地,处理系统205可使用电容性力感测来确定压电设备216是否需要校准和/或校准压电设备216。In some variations, processing system 205 may use piezoelectric signals (eg, piezoelectric force measurements) to periodically recalibrate capacitive force sensing. For example, if a single finger points down in a position directly above one of the capacitive sensors, it can be used to recalibrate the capacitive sensor(s). The processing system 205 may obtain a sequence of synchronized piezoelectric and capacitive signals. With a finger directly on the capacitive sensor (or in other calibration position), the processing system 205 can use the force value corresponding to the piezoelectric signal to update the mapping from the capacitive signal to the force value. Additionally and/or alternatively, processing system 205 may use capacitive force sensing to determine whether piezoelectric device 216 requires calibration and/or to calibrate piezoelectric device 216 .

在一些实例中,校正设备212可以是备选的力传感器,诸如应变仪。应变仪通常测量由于来自其附接的对象的偏转的应变而引起的电阻的改变。偏转归因于所施加的力,但是校准所施加的力与由应变仪所测量的电阻的改变之间的映射通常不是直接的。通过当力以快速改变的方式被施加时采用来自压电设备216和应变仪的同步测量结果的序列,处理系统205可使用经由压电设备216测量的力来校准应变仪。在一些示例中,校正设备212可监测压电设备216。一旦校正设备212被校准,校正设备212就可用于检测来自压电设备216的测量的力的偏离。在一些示例中,附加的和/或备选的传感器(例如,附加于电容性传感器的传感器或除了电容性传感器之外的传感器)可用于监测压电设备并补偿其固有的缺点。通过理解压电设备216可如何随时间、使用和操作条件而偏离,处理系统205可使用压电设备216和校正设备和212的组合来最佳地测量该偏离并校正不同的力映射。In some examples, calibration device 212 may be an alternative force sensor, such as a strain gauge. Strain gauges typically measure changes in electrical resistance due to strain from deflection of the object to which they are attached. Deflection is attributed to the applied force, but the mapping between the calibrated applied force and the change in resistance measured by the strain gauge is often not straightforward. By employing a sequence of simultaneous measurements from the piezoelectric device 216 and the strain gauge when force is applied in a rapidly changing manner, the processing system 205 can use the force measured via the piezoelectric device 216 to calibrate the strain gauge. In some examples, calibration device 212 may monitor piezoelectric device 216 . Once the calibration device 212 is calibrated, the calibration device 212 may be used to detect deviations in the measured force from the piezoelectric device 216 . In some examples, additional and/or alternative sensors (eg, sensors in addition to or in addition to the capacitive sensor) may be used to monitor the piezoelectric device and compensate for its inherent shortcomings. By understanding how piezoelectric device 216 may deviate over time, use, and operating conditions, processing system 205 may use a combination of piezoelectric device 216 and correction devices 212 to optimally measure this deviation and correct for different force maps.

本文引用的所有参考文献(包含出版物、专利申请和专利)通过引用而特此被并入,其程度如同每个参考文献被单独地和具体地指示成通过引用而被并入并且在本文中以其整体而被阐述。All references (including publications, patent applications, and patents) cited herein are hereby incorporated by reference to the same extent as if each reference was individually and specifically indicated to be incorporated by reference and were herein designated as It is described as a whole.

在描述本发明的上下文中术语“一(a/an)”和“该”以及“至少一个”和类似的指示物的使用(尤其是在以下权利要求的上下文中)应被解释成涵盖单数和复数,除非本文另有指示或与上下文明确矛盾。术语“至少一个”之后接着一个或多个项目的列举(例如,“A和B中的至少一个”)的使用应被解释成意指从所列出的项目中选择的一个项目(A或B)或所列出的项目中的两个或更多项目的任何组合(A和B),除非本文另有指示或与上下文明确矛盾。除非另有说明,否则术语“包括”、“具有”、“包含”和“含有”应解释为开放式术语(即,意指“包含但不限于”)。除非本文另有指示,否则本文的值范围的叙述仅旨在用作各自参考落入范围内的每个单独值的速记方法,并且每个单独值被并入到说明书中,就好像其在本文中单独被记载一样。本文描述的所有方法能够以任何适合的顺序来执行,除非本文另有指示或者以其他方式与上下文明确矛盾。除非另外要求保护,否则本文提供的任何和所有示例或示例性语言(例如,“诸如”)的使用仅旨在更好地说明本发明并且不对本发明的范围构成限制。说明书中的任何语言都不应被解释为指示如对本发明的实践必不可少的任何未要求保护的元素。The use of the terms "a/an" and "the" as well as "at least one" and similar referents in the context of describing the invention (especially in the context of the following claims) should be interpreted to cover the singular and Plural unless otherwise indicated herein or otherwise clearly contradicted by context. Use of the term "at least one" followed by a listing of one or more items (e.g., "at least one of A and B") should be construed to mean that one item is selected from the listed items (A or B ) or any combination of two or more of the listed items (A and B), unless otherwise indicated herein or otherwise clearly contradicted by context. Unless stated otherwise, the terms "includes," "has," "includes," and "contains" are to be construed as open-ended terms (i.e., meaning "including but not limited to"). Unless otherwise indicated herein, recitations of value ranges herein are intended only as a shorthand method of respective reference to each individual value falling within the range, and each individual value is incorporated into the specification as if it were herein are recorded separately. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (eg, "such as") provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

本文描述了示例性实施例。在阅读前面的描述后,那些示例性实施例的变型对于本领域的普通技术人员而言可变得显而易见。发明人预期所属领域技术人员在适当的情况下采用这些变型,并且发明人的意图是本发明以与本文具体描述的方式以外的方式而被实践。因此,本发明包含随附于其的权利要求中记载的主题的所有修改和等同物,如由适用的法律允许的。此外,以上描述的元件在其所有可能变型中的任何组合都被本发明涵盖,除非本文另有指示或以其他方式与上下文明确矛盾。Example embodiments are described herein. Variations to those exemplary embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect those skilled in the art to employ such variations as appropriate, and it is the inventors' intention that the invention be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Furthermore, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Claims (20)

1.一种方法,包括:1. A method including: 由处理系统并且使用压电设备来获得与输入设备的感测区上的用户输入相关联的压电信号;Obtaining, by the processing system and using the piezoelectric device, a piezoelectric signal associated with the user input on the sensing area of the input device; 由所述处理系统并且使用校正设备来获得与所述输入设备的所述感测区上的所述用户输入相关联的校正信号;obtaining, by the processing system and using a correction device, a correction signal associated with the user input on the sensing area of the input device; 由所述处理系统并且基于所述压电信号和所述校正信号来确定响应于所述用户输入而要被执行的一个或多个事件;以及determining, by the processing system and based on the piezoelectric signal and the correction signal, one or more events to be performed in response to the user input; and 由所述处理系统来执行所述一个或多个事件。The one or more events are performed by the processing system. 2.根据权利要求1所述的方法,其中获得所述压电信号包括从多个压电设备获得多个压电信号,其中所述校正设备包括多个电容性传感器,并且其中所述多个电容性传感器中的每个与来自所述多个压电设备中的相应压电设备相关联。2. The method of claim 1, wherein obtaining the piezoelectric signal includes obtaining a plurality of piezoelectric signals from a plurality of piezoelectric devices, wherein the correction device includes a plurality of capacitive sensors, and wherein the plurality of Each of the capacitive sensors is associated with a corresponding piezoelectric device from the plurality of piezoelectric devices. 3.根据权利要求1所述的方法,其中执行响应于所述用户输入而要被执行的所述一个或多个事件包括响应于所述用户输入向用户提供触觉反馈。3. The method of claim 1, wherein performing the one or more events to be performed in response to the user input includes providing tactile feedback to the user in response to the user input. 4.根据权利要求1所述的方法,其中确定所述一个或多个事件包括:基于在第一时刻的压电测量结果的第一幅值超过第一阈值来确定提供第一触觉反馈,并且其中执行所述一个或多个事件包括向用户提供所述第一触觉反馈。4. The method of claim 1, wherein determining the one or more events includes determining to provide first tactile feedback based on a first amplitude of the piezoelectric measurement at the first time exceeding a first threshold, and wherein performing the one or more events includes providing the first tactile feedback to a user. 5.根据权利要求4所述的方法,其中确定响应于所述用户输入而要被执行的所述一个或多个事件进一步包括:5. The method of claim 4, wherein determining the one or more events to be performed in response to the user input further comprises: 基于在所述第一时刻的所述压电测量结果的所述第一幅值来确定所述校正信号的校正阈值;determining a correction threshold for the correction signal based on the first amplitude of the piezoelectric measurement at the first time; 将所述校正信号与所述校正阈值进行比较;以及comparing the correction signal to the correction threshold; and 基于所述比较来确定提供第二触觉反馈,以及determining to provide second tactile feedback based on the comparison, and 其中执行所述一个或多个事件进一步包括向所述用户提供所述第二触觉反馈。wherein performing the one or more events further includes providing the second tactile feedback to the user. 6.根据权利要求5所述的方法,其中确定所述校正信号的所述校正阈值包括:6. The method of claim 5, wherein determining the correction threshold of the correction signal includes: 根据所述校正信号来确定与所述第一时刻相关联的初始电容值;以及determining an initial capacitance value associated with the first moment in time based on the correction signal; and 基于所述初始电容值来确定所述校正阈值。The correction threshold is determined based on the initial capacitance value. 7.根据权利要求5所述的方法,其中确定提供所述第二触觉反馈包括:7. The method of claim 5, wherein determining to provide the second tactile feedback includes: 确定所述压电测量结果指示在一时间段内从所述第一幅值的幅值减小;determining that the piezoelectric measurement indicates a decrease in amplitude from the first amplitude within a period of time; 确定所述校正信号指示低于所述校正阈值的至少一个电容值;以及determining that the correction signal indicates at least one capacitance value below the correction threshold; and 基于在所述时间段内从所述第一幅值的所述幅值减小和低于所述校正阈值的所述至少一个电容值来确定提供所述第二触觉反馈。The determination to provide the second tactile feedback is based on the at least one capacitance value being reduced from the amplitude of the first amplitude and below the correction threshold within the time period. 8.根据权利要求4所述的方法,其中确定响应于所述用户输入而要被执行的所述一个或多个事件进一步包括:8. The method of claim 4, wherein determining the one or more events to be performed in response to the user input further comprises: 确定所述压电测量结果指示在一时间段内从所述第一幅值的幅值减小;determining that the piezoelectric measurement indicates a decrease in amplitude from the first amplitude within a period of time; 基于将所述电容值与校正阈值进行比较,确定所述校正信号指示由所述校正信号指示的电容值在所述时间段内保持基本上不变;以及determining that the correction signal indicates that the capacitance value indicated by the correction signal remains substantially unchanged during the time period based on comparing the capacitance value to a correction threshold; and 基于在所述时间段内从所述第一幅值的所述幅值减小以及在所述时间段内保持基本上不变的所述电容值,确定不提供第二触觉反馈。It is determined not to provide second tactile feedback based on the capacitance value being reduced from the first amplitude within the time period and remaining substantially unchanged during the time period. 9.根据权利要求1所述的方法,进一步包括:9. The method of claim 1, further comprising: 基于所述压电信号、所述校正信号以及执行所述一个或多个事件来生成历史数据,其中所述历史数据包括指示所述压电信号的正常衰减的一个或多个力阈值;generating historical data based on the piezoelectric signal, the correction signal, and performing the one or more events, wherein the historical data includes one or more force thresholds indicative of normal attenuation of the piezoelectric signal; 使用所述压电设备来获得与新用户输入相关联的新压电信号;using the piezoelectric device to obtain new piezoelectric signals associated with new user inputs; 基于将所述新压电信号与指示所述压电信号的所述正常衰减的所述历史数据进行比较来确定执行新触觉事件;以及determining to perform a new haptic event based on comparing the new piezoelectric signal with the historical data indicative of the normal attenuation of the piezoelectric signal; and 执行所述新触觉事件。Execute the new haptic event. 10.根据权利要求1所述的方法,其中确定响应于所述用户输入而要被执行的所述一个或多个事件包括:10. The method of claim 1, wherein determining the one or more events to be performed in response to the user input includes: 在第一时刻确定所述压电信号的幅值;Determining the amplitude of the piezoelectric signal at a first moment; 在所述第一时刻确定所述校正信号的幅值;以及Determining the amplitude of the correction signal at the first instant; and 基于所述压电信号的所述幅值和所述校正信号的所述幅值来确定校准所述校正设备;以及determining to calibrate the correction device based on the amplitude of the piezoelectric signal and the amplitude of the correction signal; and 其中执行所述一个或多个事件包括校准所述校正设备。wherein performing said one or more events includes calibrating said calibration device. 11.根据权利要求1所述的方法,其中所述校正设备是应变仪。11. The method of claim 1, wherein the correction device is a strain gauge. 12.一种输入设备,包括:12. An input device comprising: 一个或多个压电设备,所述一个或多个压电设备被配置成测量与感测区上的用户输入相关联的压电信号;one or more piezoelectric devices configured to measure piezoelectric signals associated with user input on the sensing area; 一个或多个校正设备,所述一个或多个校正设备被配置成测量与所述感测区上的所述用户输入相关联的校正信号;以及one or more correction devices configured to measure correction signals associated with the user input on the sensing area; and 处理系统,所述处理系统被配置成:A processing system configured to: 获得所述压电信号;Obtain the piezoelectric signal; 获得所述校正信号;Obtain the correction signal; 基于所述压电信号和所述校正信号来确定响应于所述用户输入而要被执行的一个或多个事件;以及determining one or more events to be performed in response to the user input based on the piezoelectric signal and the correction signal; and 执行所述一个或多个事件。Execute the one or more events. 13.根据权利要求12所述的输入设备,其中确定所述一个或多个事件包括:基于在第一时刻的压电测量结果的第一幅值超过第一阈值来确定提供第一触觉反馈,并且其中执行所述一个或多个事件包括向用户提供所述第一触觉反馈。13. The input device of claim 12, wherein determining the one or more events includes determining to provide first tactile feedback based on a first amplitude of the piezoelectric measurement at the first time exceeding a first threshold, and wherein performing the one or more events includes providing the first tactile feedback to the user. 14.根据权利要求13所述的输入设备,其中确定响应于所述用户输入而要被执行的所述一个或多个事件进一步包括:14. The input device of claim 13, wherein determining the one or more events to be performed in response to the user input further comprises: 基于在所述第一时刻的所述压电测量结果的所述第一幅值来确定所述校正信号的校正阈值;determining a correction threshold for the correction signal based on the first amplitude of the piezoelectric measurement at the first time; 将所述校正信号与所述校正阈值进行比较;以及comparing the correction signal to the correction threshold; and 基于所述比较确定提供第二触觉反馈,以及determining to provide second tactile feedback based on the comparison, and 其中执行所述一个或多个事件进一步包括向所述用户提供所述第二触觉反馈。wherein performing the one or more events further includes providing the second tactile feedback to the user. 15.根据权利要求14所述的输入设备,其中确定所述校正信号的所述校正阈值包括:15. The input device of claim 14, wherein determining the correction threshold of the correction signal includes: 根据所述校正信号确定与所述第一时刻相关联的初始电容值;以及Determining an initial capacitance value associated with the first moment in time based on the correction signal; and 基于所述初始电容值确定所述校正阈值。The correction threshold is determined based on the initial capacitance value. 16.如权利要求14所述的输入设备,其中确定提供所述第二触觉反馈包括:16. The input device of claim 14, wherein determining to provide the second tactile feedback includes: 确定所述压电测量结果指示在一时间段内从所述第一幅值的幅值减小;determining that the piezoelectric measurement indicates a decrease in amplitude from the first amplitude within a period of time; 确定所述校正信号指示低于所述校正阈值的至少一个电容值;以及determining that the correction signal indicates at least one capacitance value below the correction threshold; and 基于在所述时间段内从所述第一幅值的所述幅值减小和低于所述校正阈值的所述至少一个电容值来确定提供所述第二触觉反馈。The determination to provide the second tactile feedback is based on the at least one capacitance value being reduced from the amplitude of the first amplitude and below the correction threshold within the time period. 17.根据权利要求13所述的输入设备,其中确定响应于所述用户输入而要被执行的所述一个或多个事件进一步包括:17. The input device of claim 13, wherein determining the one or more events to be performed in response to the user input further comprises: 确定所述压电测量结果指示在一时间段内从所述第一幅值的幅值减小;determining that the piezoelectric measurement indicates a decrease in amplitude from the first amplitude within a period of time; 基于将所述电容值与校正阈值进行比较,确定所述校正信号指示由所述校正信号指示的电容值在所述时间段内保持基本上不变;以及determining that the correction signal indicates that the capacitance value indicated by the correction signal remains substantially unchanged during the time period based on comparing the capacitance value to a correction threshold; and 基于在所述时间段内从所述第一幅值的所述幅值减小以及在所述时间段内保持基本上不变的所述电容值,确定不提供第二触觉反馈。It is determined not to provide second tactile feedback based on the capacitance value being reduced from the first amplitude within the time period and remaining substantially unchanged during the time period. 18.根据权利要求12所述的输入设备,其中所述处理系统进一步被配置成:18. The input device of claim 12, wherein the processing system is further configured to: 基于所述压电信号、所述校正信号以及执行所述一个或多个事件来生成历史数据,其中所述历史数据包括指示所述压电信号的正常衰减的一个或多个力阈值;generating historical data based on the piezoelectric signal, the correction signal, and performing the one or more events, wherein the historical data includes one or more force thresholds indicative of normal attenuation of the piezoelectric signal; 使用所述一个或多个压电设备来获得与新用户输入相关联的新压电信号;using the one or more piezoelectric devices to obtain new piezoelectric signals associated with new user input; 基于将所述新压电信号与指示所述压电信号的所述正常衰减的所述历史数据进行比较来确定执行新触觉事件;以及determining to perform a new haptic event based on comparing the new piezoelectric signal with the historical data indicative of the normal attenuation of the piezoelectric signal; and 执行所述新触觉事件。Execute the new haptic event. 19.根据权利要求12所述的输入设备,其中所述一个或多个校正设备包括多个电容性传感器或一个或多个应变仪。19. The input device of claim 12, wherein the one or more correction devices include a plurality of capacitive sensors or one or more strain gauges. 20.一种非瞬态计算机可读介质,所述非瞬态计算机可读介质具有存储在其上的处理器可执行指令,所述处理器可执行指令在被执行时促成以下操作的执行:20. A non-transitory computer-readable medium having processor-executable instructions stored thereon that, when executed, cause the performance of: 使用压电设备来获得与输入设备的感测区上的用户输入相关联的压电信号;using a piezoelectric device to obtain a piezoelectric signal associated with user input on a sensing area of the input device; 使用校正设备来获得与所述输入设备的所述感测区上的所述用户输入相关联的校正信号;using a correction device to obtain a correction signal associated with the user input on the sensing area of the input device; 基于所述压电信号和所述校正信号来确定响应于所述用户输入而要被执行的一个或多个事件;以及determining one or more events to be performed in response to the user input based on the piezoelectric signal and the correction signal; and 执行所述一个或多个事件。Execute the one or more events.
CN202310598419.0A 2022-05-27 2023-05-25 Input device with tactile sensing and correction device sensing Pending CN117130473A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US63/346367 2022-05-27
US18/185,952 US11972056B2 (en) 2022-05-27 2023-03-17 Input device having haptics sensing and corrective device sensing
US18/185952 2023-03-17

Publications (1)

Publication Number Publication Date
CN117130473A true CN117130473A (en) 2023-11-28

Family

ID=88855392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310598419.0A Pending CN117130473A (en) 2022-05-27 2023-05-25 Input device with tactile sensing and correction device sensing

Country Status (1)

Country Link
CN (1) CN117130473A (en)

Similar Documents

Publication Publication Date Title
CN107092385B (en) Force calibration for temperature
CN105556443B (en) Method and apparatus for click detection of pressure sensitive panel using dynamic threshold
US20120319987A1 (en) System and method for calibrating an input device
CN102667398B (en) Flexible capacitive sensor array
US9377888B2 (en) System and method for measuring individual force in multi-object sensing
US9164605B1 (en) Force sensor baseline calibration
US9024907B2 (en) Input device with capacitive force sensor and method for constructing the same
CN107436694B (en) Force sensor with uniform response along axis
CN107924243B (en) Pressure sensing touch system and computing device with same
WO2014054754A1 (en) Input device and control method using input device
CN107305451A (en) Pressure sensing touch display device
WO2009094200A1 (en) Integrated force sensitive lens and software
WO2017142837A1 (en) Use based force auto-calibration
TW201636790A (en) Mode distinguishing method, touch-point locating method and touch control circuit
CN108027679B (en) Calibration of force sensitive devices
CN108734097B (en) Integrated fingerprint and force sensor
US9921692B2 (en) Hinged input device
US20190138125A1 (en) Differential force sensing referenced to display
CN107797692B (en) Touch force estimation
US12260022B2 (en) Input device having haptics sensing and corrective device sensing
CN117130473A (en) Input device with tactile sensing and correction device sensing
CN107562256B (en) Hybrid force measurement
KR20170074615A (en) Flexible Display
CN105739752B (en) Top mount clickplate module
US20180260066A1 (en) Touch sensing device and control method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination