CN117126094A - Synthesis method of 2, 5-diaminopyrrole compound - Google Patents
Synthesis method of 2, 5-diaminopyrrole compound Download PDFInfo
- Publication number
- CN117126094A CN117126094A CN202311097683.2A CN202311097683A CN117126094A CN 117126094 A CN117126094 A CN 117126094A CN 202311097683 A CN202311097683 A CN 202311097683A CN 117126094 A CN117126094 A CN 117126094A
- Authority
- CN
- China
- Prior art keywords
- diaminopyrrole
- compound
- trifluoroacetanilide
- mmol
- synthesizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- -1 2, 5-diaminopyrrole compound Chemical class 0.000 title claims abstract description 35
- 238000001308 synthesis method Methods 0.000 title claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000002904 solvent Substances 0.000 claims abstract description 18
- 150000002527 isonitriles Chemical class 0.000 claims abstract description 16
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 13
- HBHBLOXMPLUXQU-UHFFFAOYSA-N 1h-pyrrole-2,5-diamine Chemical class NC1=CC=C(N)N1 HBHBLOXMPLUXQU-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000003054 catalyst Substances 0.000 claims abstract description 9
- 150000002940 palladium Chemical class 0.000 claims abstract description 9
- 239000000654 additive Substances 0.000 claims abstract description 8
- 239000002585 base Substances 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 5
- 239000012295 chemical reaction liquid Substances 0.000 claims abstract 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 78
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 51
- 239000000047 product Substances 0.000 claims description 50
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims description 28
- 239000001257 hydrogen Substances 0.000 claims description 28
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 claims description 28
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 claims description 28
- 238000004440 column chromatography Methods 0.000 claims description 27
- 238000003756 stirring Methods 0.000 claims description 27
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 15
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 claims description 14
- 229910000024 caesium carbonate Inorganic materials 0.000 claims description 14
- 239000012074 organic phase Substances 0.000 claims description 13
- HUWYHUWGOALRSQ-UHFFFAOYSA-N C1=CC=CC=C1.BrC#C Chemical compound C1=CC=CC=C1.BrC#C HUWYHUWGOALRSQ-UHFFFAOYSA-N 0.000 claims description 9
- 238000003786 synthesis reaction Methods 0.000 claims description 7
- 230000000996 additive effect Effects 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 239000003513 alkali Substances 0.000 claims description 5
- 125000001424 substituent group Chemical group 0.000 claims description 5
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 claims description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical group CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 claims description 2
- 239000000460 chlorine Substances 0.000 claims description 2
- 239000012043 crude product Substances 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 claims description 2
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 claims description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 2
- 238000011403 purification operation Methods 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 239000011780 sodium chloride Substances 0.000 claims description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 2
- 239000000203 mixture Substances 0.000 claims 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims 1
- 229910052794 bromium Inorganic materials 0.000 claims 1
- 229910052801 chlorine Inorganic materials 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 5
- 238000007363 ring formation reaction Methods 0.000 abstract description 5
- 238000001228 spectrum Methods 0.000 description 48
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 24
- 229910052799 carbon Inorganic materials 0.000 description 24
- 239000012046 mixed solvent Substances 0.000 description 15
- 239000003208 petroleum Substances 0.000 description 14
- 239000003480 eluent Substances 0.000 description 13
- 238000012512 characterization method Methods 0.000 description 12
- FAGLEPBREOXSAC-UHFFFAOYSA-N tert-butyl isocyanide Chemical compound CC(C)(C)[N+]#[C-] FAGLEPBREOXSAC-UHFFFAOYSA-N 0.000 description 11
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 8
- 239000012141 concentrate Substances 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 150000003233 pyrroles Chemical class 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 3
- QARVLSVVCXYDNA-UHFFFAOYSA-N phenyl bromide Natural products BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- UEXCJVNBTNXOEH-UHFFFAOYSA-N Ethynylbenzene Chemical group C#CC1=CC=CC=C1 UEXCJVNBTNXOEH-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 150000001728 carbonyl compounds Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 125000004494 ethyl ester group Chemical group 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- WWKUHNUESPCMSE-UHFFFAOYSA-N 2,2,2-trifluoro-n-(3-fluorophenyl)acetamide Chemical compound FC1=CC=CC(NC(=O)C(F)(F)F)=C1 WWKUHNUESPCMSE-UHFFFAOYSA-N 0.000 description 1
- TYEUVUSAPIDKLP-UHFFFAOYSA-N 2,2,2-trifluoro-n-(3-methylphenyl)acetamide Chemical compound CC1=CC=CC(NC(=O)C(F)(F)F)=C1 TYEUVUSAPIDKLP-UHFFFAOYSA-N 0.000 description 1
- BLMWCZBKCOBVAM-UHFFFAOYSA-N 2,2,2-trifluoro-n-(4-nitrophenyl)acetamide Chemical compound [O-][N+](=O)C1=CC=C(NC(=O)C(F)(F)F)C=C1 BLMWCZBKCOBVAM-UHFFFAOYSA-N 0.000 description 1
- IQHSSYROJYPFDV-UHFFFAOYSA-N 2-bromo-1,3-dichloro-5-(trifluoromethyl)benzene Chemical group FC(F)(F)C1=CC(Cl)=C(Br)C(Cl)=C1 IQHSSYROJYPFDV-UHFFFAOYSA-N 0.000 description 1
- BPVHWNVBBDHIQU-UHFFFAOYSA-N 2-bromoethynylbenzene Chemical group BrC#CC1=CC=CC=C1 BPVHWNVBBDHIQU-UHFFFAOYSA-N 0.000 description 1
- FKVIYERFOLSTTM-UHFFFAOYSA-N 2-fluoro-n-phenylacetamide Chemical group FCC(=O)NC1=CC=CC=C1 FKVIYERFOLSTTM-UHFFFAOYSA-N 0.000 description 1
- YVPXQMYCTGCWBE-UHFFFAOYSA-N 2-isocyano-2,4,4-trimethylpentane Chemical compound CC(C)(C)CC(C)(C)[N+]#[C-] YVPXQMYCTGCWBE-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 238000003445 Hantzsch reaction Methods 0.000 description 1
- 238000006945 Knorr synthesis reaction Methods 0.000 description 1
- 238000006086 Paal-Knorr synthesis reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical class [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006352 cycloaddition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 150000008049 diazo compounds Chemical class 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000003402 intramolecular cyclocondensation reaction Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- VRKVCIVKSRGSLU-UHFFFAOYSA-N n-(3-chlorophenyl)-2,2,2-trifluoroacetamide Chemical compound FC(F)(F)C(=O)NC1=CC=CC(Cl)=C1 VRKVCIVKSRGSLU-UHFFFAOYSA-N 0.000 description 1
- XZFNWXWUNXBELP-UHFFFAOYSA-N n-(3-cyanophenyl)-2,2,2-trifluoroacetamide Chemical compound FC(F)(F)C(=O)NC1=CC=CC(C#N)=C1 XZFNWXWUNXBELP-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000006464 oxidative addition reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/30—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
- C07D207/34—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
本发明公开了一种2,5‑二氨基吡咯类化合物的合成方法。该合成方法为:在反应器中,N‑三氟乙酰苯胺类化合物、炔卤、异腈、钯盐催化剂、碱、添加剂、溶剂,于60℃下搅拌反应,反应液经分离纯化,得到2,5‑二氨基吡咯类化合物。本发明方法发展了N‑三氟乙酰苯胺、炔卤和异腈的三组分四分子串联环化反应构建了一系列高度官能化的2,5‑二氨基吡咯类化合物。反应条件温和、原料易得、操作简单、区域选择性好以及底物普适性广是反应的主要特点。
The invention discloses a method for synthesizing 2,5-diaminopyrroles compounds. The synthesis method is as follows: in a reactor, N-trifluoroacetanilide compounds, alkyne halides, isonitriles, palladium salt catalysts, bases, additives, and solvents are stirred and reacted at 60°C. The reaction liquid is separated and purified to obtain 2 ,5‑diaminopyrrole compounds. The method of the invention develops a three-component four-molecule series cyclization reaction of N-trifluoroacetanilide, alkyne halide and isonitrile to construct a series of highly functionalized 2,5-diaminopyrroles compounds. Mild reaction conditions, easy availability of raw materials, simple operation, good regioselectivity and wide substrate versatility are the main characteristics of the reaction.
Description
技术领域Technical field
本发明属于有机合成技术领域,具体涉及一种2,5-二氨基吡咯类化合物的合成方法。The invention belongs to the technical field of organic synthesis, and specifically relates to a method for synthesizing 2,5-diaminopyrrole compounds.
背景技术Background technique
吡咯及其衍生物作为一类重要的五元芳香杂环化合物,是许多天然产物或具有生物活性的物质的关键组成部分。因其特殊的化学性质和生物活性而被广泛应用于医药、材料、染料等众多领域,因此发展新策略来合成该类化合物也是近年来科学家们的研究热点之一。传统合成吡咯类化合物的方法如Knorr反应、Hantzsch反应、Paal-Knorr反应等主要都是利用羰基化合物和胺缩合来实现(Knorr,L.Ann.1886,236,290;Hantzsch,A.Ber.Dtsch.Chem.Ges.1890,23,1474;Knorr,L.Dtsch.Chem.Ges.1884,17,1635;Paal,C.Ber.Dtsch.Chem.Ges.1885,18,367)。但上述反应通常需要涉及高温、强酸等苛刻且危险的条件,因此使用范围比较受限。Pyrrole and its derivatives, as an important class of five-membered aromatic heterocyclic compounds, are key components of many natural products or biologically active substances. Because of their special chemical properties and biological activities, they are widely used in many fields such as medicine, materials, dyes, etc. Therefore, developing new strategies to synthesize such compounds has also been one of the research hotspots of scientists in recent years. Traditional methods for synthesizing pyrrole compounds such as Knorr reaction, Hantzsch reaction, Paal-Knorr reaction, etc. are mainly realized by condensation of carbonyl compounds and amines (Knorr, L. Ann. 1886, 236, 290; Hantzsch, A. Ber. Dtsch. Chem .Ges.1890,23,1474; Knorr, L.Dtsch.Chem.Ges.1884,17,1635; Paal, C.Ber.Dtsch.Chem.Ges.1885,18,367). However, the above reactions usually require harsh and dangerous conditions such as high temperature and strong acid, so the scope of use is relatively limited.
通过过渡金属催化环化来实现吡咯及其衍生物的合成是近几十年来最受科学家们青睐的合成策略之一,如[4+1]、[3+2]、[3+1+1]、[2+1+1+1]环加成反应等。在已报道过的过渡金属催化合成吡咯及其衍生物的方法中(D.Srimani,Y.B.David,D.Milstein,Angew.Chem.Int.Ed.2013,125,4104;J.Liu,Z.X.Fang,Q.Zhang,Q Liu,X.Bi,Angew.Chem.Int.Ed.2013,52,6953;J.Y.Liao,P.L.Shao,Y.Zhao,J.Am.Chem.Soc.2015,137,628;J.Peng,Y.Gao,W.Hu,Y.Gao,M.Hu,W.Wu,Y.Ren,H.Jiang,Org.Lett.2016,18,5924;G.Qiu,Q.Wang,J.Zhu,Org.Lett.2017,19,270;Y.Zhou,L.Zhou,L.T.Jesikiewicz,P.Liu,S.L.B,J.Am.Chem.Soc.2020,142,9908;K.Huang,J.B.Liu,Z.F.Chen,Y.C.Wang,S.Yadav,G.Qiu,Org.Lett.2020,22,5931),除了简单的吡咯,多取代吡咯化合物的合成通常都需要使用一些较为复杂的化合物作为起始原料,操作繁琐且原子经济性较差。因此,发展使用简单原料、通过一步构建多取代吡咯化合物的新合成方法仍具有重要价值。The synthesis of pyrrole and its derivatives through transition metal-catalyzed cyclization is one of the most popular synthetic strategies favored by scientists in recent decades, such as [4+1], [3+2], [3+1+1 ], [2+1+1+1] cycloaddition reaction, etc. In the reported transition metal catalyzed synthesis of pyrrole and its derivatives (D.Srimani, Y.B.David, D.Milstein, Angew.Chem.Int.Ed.2013, 125, 4104; J.Liu, Z.X.Fang, Q.Zhang, Q Liu, ,Y.Gao,W.Hu,Y.Gao,M.Hu,W.Wu,Y.Ren,H.Jiang,Org.Lett.2016,18,5924;G.Qiu,Q.Wang,J.Zhu ,Org.Lett.2017,19,270;Y.Zhou,L.Zhou,L.T.Jesikiewicz,P.Liu,S.L.B,J.Am.Chem.Soc.2020,142,9908;K.Huang,J.B.Liu,Z.F.Chen, Y.C.Wang, S.Yadav, G.Qiu, Org.Lett.2020,22,5931), in addition to simple pyrrole, the synthesis of multi-substituted pyrrole compounds usually requires the use of some more complex compounds as starting materials, which is cumbersome and Atomic economy is poor. Therefore, it is still of great value to develop new synthetic methods that use simple raw materials to construct multi-substituted pyrrole compounds in one step.
异腈是一类含(-NC)结构的高活性小分子,其特殊的价键结构赋予了其丰富的化学性质,近几十年来通过过渡金属催化异腈与各种试剂如胺、烯烃、炔烃、重氮化合物、羰基化合物等的偶联环化反应,构建了许多含氮杂环化合物(Peng,J.;Gao,Yang.;Zhu,C.;Liu,B.;Gao,Y.;Hu,M.;Wu,W.;Jiang,H.J.Org.Chem.2017,82,3581;Wang,J.;Gao,D.-W.;Huang,J.;Tang,S.;Xiong,Z.;Hu,H.;You,S.-L.;Zhu,Q.ACS Catalysis.2017,7,3832;Wu,W.;Li,M.;Zheng,J.;Hu,W.;Li,C.;Jiang,H.Chem.Commun.2018,54,6855;Yuan,W.K.;Liu,Y.F.;Lan,Z.;Wen,L.R.;Li,M.Org.Lett.2018,20,7158;Collet,J.W.;Van Der Nol,E.A.;Roose,T.R.;Maes,B.U.W.;Ruijter,E.;Orru,R.V.A.J.Org.Chem.2020,85,7378;Zhu,Y.-M.;Fang,Y.;Li,H.;Xu,X.P.;Ji,S.-J.Org.Lett.2021,23,7342;Li,M.;Zhang,R.;Gao,Q.;Jiang,H.;Lei,M.;Wu,W.Angew.Chem.Int.Ed.2022,61,e202208203)。然而目前绝大多数方法均为单异腈参与反应,尽管近些年双分子或者多分子异腈参与合成杂环化合物的反应也时有报道,但大多数情况下异腈的反应位点单一,缺乏选择性。这在一定程度上限制了异腈化学的多样性发展;此外,同时利用两分子简单的异腈来实现官能化2,5-二氨基吡咯类化合物合成也还未有报道。综上所述,利用简单的N-三氟乙酰苯胺类化合物、炔卤和两分子异腈来实现2,5-二氨基吡咯类化合物合成,通过串联环化过程一步高效构建新的碳碳键和碳氮键,除了方法学上的新颖性之外,其应用前景也值得期待。Isonitrile is a type of highly active small molecule containing (-NC) structure. Its special valence bond structure gives it rich chemical properties. In recent decades, isonitrile has been combined with various reagents such as amines, alkenes, etc. through transition metal catalysis. Coupling cyclization reactions of alkynes, diazo compounds, carbonyl compounds, etc., have constructed many nitrogen-containing heterocyclic compounds (Peng, J.; Gao, Yang.; Zhu, C.; Liu, B.; Gao, Y. ;Hu,M.;Wu,W.;Jiang,H.J.Org.Chem.2017,82,3581;Wang,J.;Gao,D.-W.;Huang,J.;Tang,S.;Xiong,Z .;Hu,H.;You,S.-L.;Zhu,Q.ACS Catalysis.2017,7,3832;Wu,W.;Li,M.;Zheng,J.;Hu,W.;Li, C.; Jiang, H. Chem. Commun. 2018, 54, 6855; Yuan, W. K.; Liu, Y. F.; Lan, Z.; Wen, L. R.; Li, M. Org. Lett. 2018, 20, 7158; Collet, J.W.;Van Der Nol,E.A.;Roose,T.R.;Maes,B.U.W.;Ruijter,E.;Orru,R.V.A.J.Org.Chem.2020,85,7378;Zhu,Y.-M.;Fang,Y.;Li,H .; Xu, X.P.; Ji, S.-J.Org.Lett.2021,23,7342; Li, M.; Zhang, R.; Gao, Q.; Jiang, H.; Lei, M.; Wu, W. Angew. Chem. Int. Ed. 2022, 61, e202208203). However, most of the current methods use monoisonitrile to participate in the reaction. Although in recent years, bimolecular or multi-molecular isonitrile reactions have been reported from time to time to synthesize heterocyclic compounds, but in most cases, the reaction site of isonitrile is single. Lack of selectivity. This limits the development of the diversity of isonitrile chemistry to a certain extent; in addition, the simultaneous use of two molecules of simple isonitriles to achieve the synthesis of functionalized 2,5-diaminopyrroles has not yet been reported. In summary, a simple N-trifluoroacetanilide compound, an alkyne halide and two molecules of isonitrile are used to synthesize 2,5-diaminopyrrole compounds, and a new carbon-carbon bond is efficiently constructed in one step through a tandem cyclization process. and carbon-nitrogen bonds. In addition to the novelty of the methodology, its application prospects are also worth looking forward to.
发明内容Contents of the invention
本发明的目的在于针对现有技术的缺点和不足,提供了一种2,5-二氨基吡咯类化合物的合成方法。该方法以简单易得的N-三氟乙酰苯胺与炔卤为原料,以常见的钯盐作为催化剂,铯盐作为碱,溴化锂为添加剂,水和甲苯为混合溶剂,采用碱促进、钯催化环化为策略,选择性地构建了2位和5位氨基取代的吡咯衍生物,具有原子经济性高、选择性单一、操作简单安全及底物适用性广等优点,在实际生产和研究中具备良好的应用前景。The object of the present invention is to provide a synthesis method of 2,5-diaminopyrroles compounds in view of the shortcomings and deficiencies of the prior art. This method uses simple and easily available N-trifluoroacetanilide and alkyne halide as raw materials, a common palladium salt as a catalyst, a cesium salt as a base, lithium bromide as an additive, water and toluene as a mixed solvent, and uses alkali promotion and palladium catalytic ring As a strategy, we selectively constructed pyrrole derivatives substituted with amino groups at the 2- and 5-positions. It has the advantages of high atom economy, single selectivity, simple and safe operation, and wide substrate applicability. It has the advantages of practical production and research. Good application prospects.
本发明的目的通过如下技术方案实现。The object of the present invention is achieved through the following technical solutions.
一种2,5-二氨基吡咯类化合物的合成方法,包含如下步骤:A method for synthesizing 2,5-diaminopyrrole compounds, including the following steps:
在反应器中,加入底物N-三氟乙酰苯胺类化合物、炔卤,钯盐催化剂、碱、添加剂、水和溶剂,在40~100℃下搅拌反应,反应结束后冷却至室温,产物经分离纯化,得到所述2,5-二氨基吡咯类化合物。In the reactor, add the substrate N-trifluoroacetanilide compound, alkyne halide, palladium salt catalyst, alkali, additives, water and solvent, stir the reaction at 40~100°C, cool to room temperature after the reaction is completed, and the product is Separate and purify to obtain the 2,5-diaminopyrroles compound.
进一步地,合成过程的化学反应方程式如下所示:Further, the chemical reaction equation of the synthesis process is as follows:
式中,R1为N-三氟乙酰苯胺上取代基,选自氢、3-氟、3-氯、3-甲基、3-氰基、4-甲氧基、4-烯基中的一种以上;In the formula, R 1 is a substituent on N-trifluoroacetanilide, selected from hydrogen, 3-fluoro, 3-chloro, 3-methyl, 3-cyano, 4-methoxy, and 4-alkenyl. more than one kind;
R2为炔卤上取代基,为氢、4-溴、4-甲基、4-甲酸甲酯基、3-氯;R 2 is the substituent on the alkyne halide, which is hydrogen, 4-bromo, 4-methyl, 4-methylcarboxylate, or 3-chloro;
R3为异腈上取代基,为叔丁基、1,1,3,3-四甲基丁基。R 3 is a substituent on the isonitrile, which is tert-butyl or 1,1,3,3-tetramethylbutyl.
进一步地,所述N-三氟乙酰苯胺类化合物为N-三氟乙酰苯胺;所述炔卤为(溴乙炔基)苯。Further, the N-trifluoroacetanilide compound is N-trifluoroacetanilide; the alkyne halide is (bromoethynyl)benzene.
进一步地,所述钯盐催化剂为四(三苯基膦)钯、氯化钯、醋酸钯中的一种或两种以上。Further, the palladium salt catalyst is one or more of tetrakis(triphenylphosphine)palladium, palladium chloride, and palladium acetate.
进一步地,所述钯盐催化剂的加入量与N-三氟乙酰苯胺类化合物的摩尔比为0.05~0.1:1。Further, the molar ratio of the added amount of the palladium salt catalyst to the N-trifluoroacetanilide compound is 0.05 to 0.1:1.
进一步地,所述炔卤的加入量与N-三氟乙酰苯胺类化合物的摩尔比为1.5~3.0:1。Further, the molar ratio of the added amount of the alkyne halide to the N-trifluoroacetanilide compound is 1.5 to 3.0:1.
进一步地,所述碱为碳酸铯、碳酸钾、1,8-二氮杂双环[5.4.0]十一碳-7-烯中的一种或两种以上。Further, the base is one or more of cesium carbonate, potassium carbonate, and 1,8-diazabicyclo[5.4.0]undec-7-ene.
进一步地,所述碱的加入量与N-三氟乙酰苯胺类化合物的摩尔比为1.0~3.0:1。Further, the molar ratio of the added amount of the base to the N-trifluoroacetanilide compound is 1.0 to 3.0:1.
进一步地,所述添加剂为氯化钠、溴化钾、溴化锂中的一种或两种以上。Further, the additive is one or more of sodium chloride, potassium bromide, and lithium bromide.
进一步地,所述添加剂的加入量与N-三氟乙酰苯胺类化合物的摩尔比为0.5~2.0:1。Further, the molar ratio of the added amount of the additive to the N-trifluoroacetanilide compound is 0.5 to 2.0:1.
进一步地,所述溶剂为二氯乙烷、二甲基亚砜、1,4-二氧化六环、甲苯中的一种或水和甲苯按体积比为1:100的混合溶剂。Further, the solvent is one of dichloroethane, dimethyl sulfoxide, 1,4-dioxide, toluene or a mixed solvent of water and toluene in a volume ratio of 1:100.
进一步地,所述搅拌反应的时间为4~16小时,优选为8~12小时。Further, the stirring reaction time is 4 to 16 hours, preferably 8 to 12 hours.
进一步地,所述分离纯化的操作为:将反应液用乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压蒸除有机溶剂,得粗产物,经柱层析提纯,得到所述2,5-二氨基吡咯类化合物。Further, the separation and purification operation is as follows: extract the reaction solution with ethyl acetate, combine the organic phases, dry with anhydrous magnesium sulfate, filter, and evaporate the organic solvent under reduced pressure to obtain a crude product, which is purified by column chromatography. The 2,5-diaminopyrroles compounds are obtained.
更进一步地,所述柱层析的洗脱液为石油醚和乙酸乙酯按体积比20~150:1的混合溶剂,优选石油醚和乙酸乙酯按体积比50~100:1的混合溶剂。Furthermore, the eluent of the column chromatography is a mixed solvent of petroleum ether and ethyl acetate in a volume ratio of 20 to 150:1, preferably a mixed solvent of petroleum ether and ethyl acetate in a volume ratio of 50 to 100:1. .
本发明合成方法的反应原理是在碱的促进下,N-三氟乙酰苯胺、炔卤和一分子异腈发生加成反应生成烯基卤中间体,随后钯盐催化剂与该中间体发生氧化加成,经另一分子异腈迁移插入,分子内环化、还原消除和异构化得到2,5-二氨基吡咯类化合物。The reaction principle of the synthesis method of the present invention is that under the promotion of alkali, N-trifluoroacetanilide, alkyne halide and a molecule of isonitrile undergo an addition reaction to form an alkenyl halide intermediate, and then the palladium salt catalyst undergoes oxidative addition with the intermediate. After another molecule of isonitrile migrates and inserts, 2,5-diaminopyrrole compounds are obtained through intramolecular cyclization, reduction elimination and isomerization.
与现有技术相比,本发明具有如下优点及有益效果:Compared with the existing technology, the present invention has the following advantages and beneficial effects:
(1)本发明发展了N-三氟乙酰苯胺、炔卤和异腈在钯催化下的串联环化反应构建2,5-二氨基吡咯类化合物的合成方法,且其中的基础原料N-三氟乙酰苯胺可通过廉价的苯胺和三氟乙酸酐合成,炔卤可通过苯乙炔和N-卤代丁二酰亚胺一步制得,具有原料简单易得、操作安全简单、条件温和、原子经济性高以及底物适用性广的特点;(1) The present invention develops a synthetic method for constructing 2,5-diaminopyrrole compounds through the tandem cyclization reaction of N-trifluoroacetanilide, alkyne halide and isonitrile under palladium catalysis, and the basic raw material N-trifluoroacetanilide is Fluoroacetanilide can be synthesized from cheap aniline and trifluoroacetic anhydride, and alkyne halide can be prepared in one step from phenylacetylene and N-halogenated succinimide. The raw materials are easy to obtain, the operation is safe and simple, the conditions are mild, and the atoms are economical. Features of high stability and wide substrate applicability;
(2)本发明合成方法操作便捷且转化效率高,同时对官能团的容忍性好,因而有望应用于实际工业生产和进一步的衍生化。(2) The synthesis method of the present invention is easy to operate, has high conversion efficiency, and has good tolerance to functional groups, so it is expected to be applied to actual industrial production and further derivatization.
附图说明Description of the drawings
图1和图2分别是实施例1所得目标产物的氢谱图和碳谱图;Figures 1 and 2 are respectively the hydrogen spectrum and the carbon spectrum of the target product obtained in Example 1;
图3和图4分别是实施例2所得目标产物的氢谱图和碳谱图;Figures 3 and 4 are respectively the hydrogen spectrum and the carbon spectrum of the target product obtained in Example 2;
图5和图6分别是实施例3所得目标产物的氢谱图和碳谱图;Figure 5 and Figure 6 are respectively the hydrogen spectrum and the carbon spectrum of the target product obtained in Example 3;
图7和图8分别是实施例4所得目标产物的氢谱图和碳谱图;Figures 7 and 8 are respectively the hydrogen spectrum and the carbon spectrum of the target product obtained in Example 4;
图9和图10分别是实施例5所得目标产物的氢谱图和碳谱图;Figures 9 and 10 are respectively the hydrogen spectrum and the carbon spectrum of the target product obtained in Example 5;
图11和图12分别是实施例6所得目标产物的氢谱图和碳谱图;Figures 11 and 12 are respectively the hydrogen spectrum and the carbon spectrum of the target product obtained in Example 6;
图13和图14分别是实施例7所得目标产物的氢谱图和碳谱图;Figures 13 and 14 are respectively the hydrogen spectrum and the carbon spectrum of the target product obtained in Example 7;
图15和图16分别是实施例8所得目标产物的氢谱图和碳谱图;Figures 15 and 16 are respectively the hydrogen spectrum and the carbon spectrum of the target product obtained in Example 8;
图17和图18分别是实施例9所得目标产物的氢谱图和碳谱图;Figures 17 and 18 are respectively the hydrogen spectrum and the carbon spectrum of the target product obtained in Example 9;
图19和图20分别是实施例10所得目标产物的氢谱图和碳谱图;Figures 19 and 20 are respectively the hydrogen spectrum and the carbon spectrum of the target product obtained in Example 10;
图21和图22分别是实施例11所得目标产物的氢谱图和碳谱图;Figures 21 and 22 are respectively the hydrogen spectrum and the carbon spectrum of the target product obtained in Example 11;
图23和图24分别是实施例12所得目标产物的氢谱图和碳谱图。Figures 23 and 24 are respectively the hydrogen spectrum and the carbon spectrum of the target product obtained in Example 12.
具体实施方式Detailed ways
以下结合具体实施例及附图对本发明的技术方案作进一步详细的描述,但本发明的保护范围及实施方式不限于此。The technical solution of the present invention will be described in further detail below with reference to specific embodiments and drawings, but the scope and implementation of the present invention are not limited thereto.
实施例1Example 1
在反应管中加入0.1毫摩尔N-三氟乙酰苯胺、0.01毫摩尔四(三苯基膦)钯、0.2毫摩尔碳酸铯、0.1毫摩尔溴化锂,0.2毫摩尔(溴乙炔)苯,0.3毫摩尔叔丁基异腈,1.0毫升甲苯和0.7毫摩尔水作为溶剂,在60℃下转速500rpm下搅拌反应12小时;停止搅拌,加入5mL水,用乙酸乙酯萃取3次,合并有机相并使用0.5g无水硫酸镁干燥,过滤,减压浓缩,再通过柱层析分离纯化,所用的柱层析洗脱液为体积比50:1的石油醚:乙酸乙酯混合溶剂,得到目标产物,产率92%。Add 0.1 mmol N-trifluoroacetanilide, 0.01 mmol tetrakis (triphenylphosphine) palladium, 0.2 mmol cesium carbonate, 0.1 mmol lithium bromide, 0.2 mmol (bromoacetylene) benzene, 0.3 mmol into the reaction tube. Tert-butyl isonitrile, 1.0 ml of toluene and 0.7 mmol of water were used as solvents, and the reaction was stirred at 60°C and 500 rpm for 12 hours; stop stirring, add 5 mL of water, and extract 3 times with ethyl acetate. Combine the organic phases and use 0.5 g of free Dry over magnesium sulfate, filter, concentrate under reduced pressure, and then separate and purify through column chromatography. The column chromatography eluent used is a petroleum ether:ethyl acetate mixed solvent with a volume ratio of 50:1 to obtain the target product with a yield of 92 %.
所得目标产物的氢谱图和碳谱图分别如图1和图2所示,结构表征数据如下所示:The hydrogen spectrum and carbon spectrum of the obtained target product are shown in Figure 1 and Figure 2 respectively, and the structural characterization data are as follows:
1H NMR(400MHz,CDCl3)δ7.66(d,J=6.8Hz,2H),7.51(t,J=7.6Hz,2H),7.44-7.36(m,3H),7.31-7.21(m,3H),6.32(s,1H),2.93(s,1H),1.05(s,9H),0.67(s,9H); 1 H NMR (400MHz, CDCl 3 ) δ7.66 (d, J = 6.8 Hz, 2H), 7.51 (t, J = 7.6 Hz, 2H), 7.44-7.36 (m, 3H), 7.31-7.21 (m, 3H),6.32(s,1H),2.93(s,1H),1.05(s,9H),0.67(s,9H);
13C NMR(100MHz,CDCl3)δ158.2(q,J=32.7Hz),137.2,136.7,130.9,129.1,128.5,128.3,128.0,127.5,125.6,122.6,118.0,116.5(q,J=288.4Hz),109.1,63.2,55.5,29.9,26.9. 13 C NMR (100MHz, CDCl 3 ) δ 158.2 (q, J = 32.7Hz), 137.2, 136.7, 130.9, 129.1, 128.5, 128.3, 128.0, 127.5, 125.6, 122.6, 118.0, 116.5 (q, J = 288.4 Hz),109.1,63.2,55.5,29.9,26.9.
IR(KBr)νmax 3388,2972,1703,1598,1527,1497,1371,1195,1154,755,701cm-1;IR(KBr)ν max 3388,2972,1703,1598,1527,1497,1371,1195,1154,755,701cm -1 ;
HRMS(ESI)Calcd for C25H33N2Si[M+H]+:458.2414,Found458.2407。HRMS(ESI)Calcd for C 25 H 33 N 2 Si[M+H] + :458.2414, Found458.2407.
经以上数据推断目标产物的结构如下:Based on the above data, the structure of the target product is deduced as follows:
实施例2Example 2
在反应管中加入0.1毫摩尔N-(3-氟苯基)-2,2,2-三氟乙酰胺、0.01毫摩尔四(三苯基膦)钯、0.2毫摩尔碳酸铯、0.1毫摩尔溴化锂,0.2毫摩尔(溴乙炔)苯,0.3毫摩尔叔丁基异腈,1.0毫升甲苯和0.7毫摩尔水作为溶剂,在60℃下转速500rpm下搅拌反应12小时;停止搅拌,加入5mL水,用乙酸乙酯萃取3次,合并有机相并使用0.5g无水硫酸镁干燥,过滤,减压浓缩,再通过柱层析分离纯化,所用的柱层析洗脱液为体积比50:1的石油醚:乙酸乙酯混合溶剂,得到目标产物,产率90%。Add 0.1 mmol N-(3-fluorophenyl)-2,2,2-trifluoroacetamide, 0.01 mmol tetrakis(triphenylphosphine)palladium, 0.2 mmol cesium carbonate, and 0.1 mmol into the reaction tube. Lithium bromide, 0.2 mmol (bromoacetylene) benzene, 0.3 mmol tert-butyl isonitrile, 1.0 ml toluene and 0.7 mmol water are used as solvents, stir the reaction at 60°C and 500 rpm for 12 hours; stop stirring, add 5 mL water, and use acetic acid Extract with ethyl ester three times, combine the organic phases, dry with 0.5g anhydrous magnesium sulfate, filter, concentrate under reduced pressure, and then separate and purify through column chromatography. The column chromatography eluent used is petroleum ether with a volume ratio of 50:1. : Ethyl acetate mixed solvent to obtain the target product with a yield of 90%.
所得目标产物的氢谱图和碳谱图分别如图3和图4所示,结构表征数据如下所示:The hydrogen spectrum and carbon spectrum of the obtained target product are shown in Figure 3 and Figure 4 respectively, and the structural characterization data are as follows:
1H NMR(400MHz,CDCl3)δ7.54(d,J=6.8Hz,2H),7.47-7.40(m,1H),7.37(t,J=7.6Hz,2H),7.23(t,J=7.6Hz,1H),7.12-7.02(m,3H),6.28(s,1H),2.74(s,1H),1.05(s,9H),0.64(s,9H); 1 H NMR (400MHz, CDCl 3 ) δ7.54 (d, J=6.8Hz, 2H), 7.47-7.40 (m, 1H), 7.37 (t, J=7.6Hz, 2H), 7.23 (t, J= 7.6Hz,1H),7.12-7.02(m,3H),6.28(s,1H),2.74(s,1H),1.05(s,9H),0.64(s,9H);
13C NMR(100MHz,CDCl3)δ162.7(d,J=246.2Hz),158.2(q,J=32.9Hz),138.8(d,J=9.7Hz),136.4,131.0,130.1(d,J=9.0Hz),128.4,128.1,125.9,124.2,122.6,118.6,117.9(q,J=288.2Hz),116.3(d,J=23.4Hz),114.4,114.6,109.7,63.4,55.6,29.9,27.0. 13 C NMR (100MHz, CDCl 3 ) δ 162.7 (d, J = 246.2Hz), 158.2 (q, J = 32.9Hz), 138.8 (d, J = 9.7Hz), 136.4, 131.0, 130.1 (d, J =9.0Hz),128.4,128.1,125.9,124.2,122.6,118.6,117.9(q,J=288.2Hz),116.3(d,J=23.4Hz),114.4,114.6,109.7,63.4,55.6,29.9,27.0 .
IR(KBr)νmax 3739,2969,1701,1631,1599,1524,1491,1393,1161,861,760,694cm-1;IR(KBr)ν max 3739,2969,1701,1631,1599,1524,1491,1393,1161,861,760,694cm -1 ;
HRMS(ESI)Calcd for C26H35N2Si[M+H]+:466.3040,Found466.3034。HRMS(ESI)Calcd for C 26 H 35 N 2 Si[M+H] + :466.3040, Found466.3034.
经以上数据推断目标产物的结构如下:Based on the above data, the structure of the target product is deduced as follows:
实施例3Example 3
在反应管中加入0.1毫摩尔N-(3-氯苯基)-2,2,2-三氟乙酰胺、0.01毫摩尔四(三苯基膦)钯、0.2毫摩尔碳酸铯、0.1毫摩尔溴化锂,0.2毫摩尔(溴乙炔)苯,0.3毫摩尔叔丁基异腈,1.0毫升甲苯和0.7毫摩尔水作为溶剂,在60℃下转速500rpm下搅拌反应12小时;停止搅拌,加入5mL水,用乙酸乙酯萃取3次,合并有机相并使用0.5g无水硫酸镁干燥,过滤,减压浓缩,再通过柱层析分离纯化,所用的柱层析洗脱液为体积比50:1的石油醚:乙酸乙酯混合溶剂,得到目标产物,产率78%。Add 0.1 mmol N-(3-chlorophenyl)-2,2,2-trifluoroacetamide, 0.01 mmol tetrakis(triphenylphosphine)palladium, 0.2 mmol cesium carbonate, and 0.1 mmol into the reaction tube. Lithium bromide, 0.2 mmol (bromoacetylene) benzene, 0.3 mmol tert-butyl isonitrile, 1.0 ml toluene and 0.7 mmol water are used as solvents, stir the reaction at 60°C and 500 rpm for 12 hours; stop stirring, add 5 mL water, and use acetic acid Extract with ethyl ester three times, combine the organic phases, dry with 0.5g anhydrous magnesium sulfate, filter, concentrate under reduced pressure, and then separate and purify through column chromatography. The column chromatography eluent used is petroleum ether with a volume ratio of 50:1. : Ethyl acetate mixed solvent to obtain the target product with a yield of 78%.
所得目标产物的氢谱图和碳谱图分别如图5和图6所示,结构表征数据如下所示:The hydrogen spectrum and carbon spectrum of the obtained target product are shown in Figure 5 and Figure 6 respectively, and the structural characterization data are as follows:
1H NMR(400MHz,CDCl3)δ7.52(d,J=6.8Hz,2H),7.43-7.32(m,5H),7.25-7.20(m,1H),7.15(dt,J=7.8,2.0Hz,1H),6.28(s,1H),2.81(s,1H),1.05(s,9H),0.64(s,9H); 1 H NMR (400MHz, CDCl 3 ) δ7.52 (d, J = 6.8 Hz, 2H), 7.43-7.32 (m, 5H), 7.25-7.20 (m, 1H), 7.15 (dt, J = 7.8, 2.0 Hz,1H),6.28(s,1H),2.81(s,1H),1.05(s,9H),0.64(s,9H);
13C NMR(100MHz,CDCl3)δ158.23(q,J=32.8Hz),138.6,136.3,134.4,131.1,129.9,129.0,1208.4,128.1,127.5,126.5,126.0,122.6,118.7,117.9(q,J=288.2Hz),109.8,63.4,55.6,29.9,27.0. 13 C NMR (100MHz, CDCL 3 ) Δ158.23 (q, J = 32.8Hz), 138.6,136.3,134.4,131.1,129.0, 1208.4, 128.5, 126.5,122.6,118.7,117 .9 (Q ,J=288.2Hz),109.8,63.4,55.6,29.9,27.0.
IR(KBr)νmax 2972,1703,1592,1526,1481,1367,1267,1197,1158,760,699cm-1;IR(KBr)ν max 2972,1703,1592,1526,1481,1367,1267,1197,1158,760,699cm -1 ;
HRMS(ESI)Calcd for C26H35N2Si[M+H]+:492.2024,Found492.2016。HRMS(ESI)Calcd for C 26 H 35 N 2 Si[M+H] + :492.2024,Found492.2016.
经以上数据推断目标产物的结构如下:Based on the above data, the structure of the target product is deduced as follows:
实施例4Example 4
在反应管中加入0.1毫摩尔N-(3-甲基苯基)-2,2,2-三氟乙酰胺、0.01毫摩尔四(三苯基膦)钯、0.2毫摩尔碳酸铯、0.1毫摩尔溴化锂,0.2毫摩尔(溴乙炔)苯,0.3毫摩尔叔丁基异腈,1.0毫升甲苯和0.7毫摩尔水作为溶剂,在60℃下转速500rpm下搅拌反应12小时;停止搅拌,加入5mL水,用乙酸乙酯萃取3次,合并有机相并使用0.5g无水硫酸镁干燥,过滤,减压浓缩,再通过柱层析分离纯化,所用的柱层析洗脱液为体积比50:1的石油醚:乙酸乙酯混合溶剂,得到目标产物,产率94%。Add 0.1 mmol N-(3-methylphenyl)-2,2,2-trifluoroacetamide, 0.01 mmol tetrakis(triphenylphosphine)palladium, 0.2 mmol cesium carbonate, 0.1 mmol mol lithium bromide, 0.2 mmol (bromoacetylene) benzene, 0.3 mmol tert-butyl isonitrile, 1.0 ml toluene and 0.7 mmol water as solvents, stir the reaction at 60°C and 500 rpm for 12 hours; stop stirring, add 5 mL water, and use Extract three times with ethyl acetate, combine the organic phases, dry with 0.5g anhydrous magnesium sulfate, filter, concentrate under reduced pressure, and then separate and purify through column chromatography. The column chromatography eluent used is petroleum with a volume ratio of 50:1. Ether:ethyl acetate mixed solvent was used to obtain the target product with a yield of 94%.
所得目标产物的氢谱图和碳谱图分别如图7和图8所示,结构表征数据如下所示:The hydrogen spectrum and carbon spectrum of the obtained target product are shown in Figure 7 and Figure 8 respectively, and the structural characterization data are as follows:
1H NMR(400MHz,CDCl3)δ7.63(d,J=6.8Hz,2H),7.35(td,J=7.6,2.0Hz,3H),7.22-7.16(m,2H),7.03(d,J=8.4Hz,2H),6.27(s,1H),2.75(s,1H),2.41(s,3H),1.01(s,9H),0.65(s,9H); 1 H NMR (400MHz, CDCl 3 ) δ7.63 (d, J=6.8Hz, 2H), 7.35 (td, J=7.6, 2.0Hz, 3H), 7.22-7.16 (m, 2H), 7.03 (d, J=8.4Hz,2H),6.27(s,1H),2.75(s,1H),2.41(s,3H),1.01(s,9H),0.65(s,9H);
13C NMR(100MHz,CDCl3)δ158.3(q,J=32.9Hz),139.2,137.1,136.8,130.8,129.0,128.3,128.0,125.6,125.5,122.7,117.9(q,J=288.1Hz),117.8,109.0,63.2,29.9,26.9,21.4.; 13 C NMR (100MHz, CDCl 3 ) δ 158.3 (q, J = 32.9 Hz), 139.2, 137.1, 136.8, 130.8, 129.0, 128.3, 128.0, 125.6, 125.5, 122.7, 117.9 ( q, J = 288.1 Hz) ,117.8,109.0,63.2,29.9,26.9,21.4.;
IR(KBr)νmax 2969,1702,1599,1526,1490,1368,1192,1154,760,699cm-1;IR(KBr)ν max 2969,1702,1599,1526,1490,1368,1192,1154,760,699cm -1 ;
HRMS(ESI)Calcd for C25H32FN2Si[M+H]+:472.2570,Found472.2564。HRMS(ESI)Calcd for C 25 H 32 FN 2 Si[M+H] + :472.2570, Found472.2564.
经以上数据推断目标产物的结构如下:Based on the above data, the structure of the target product is deduced as follows:
实施例5Example 5
在反应管中加入0.1毫摩尔N-(3-氰基苯基)-2,2,2-三氟乙酰胺、0.01毫摩尔四(三苯基膦)钯、0.2毫摩尔碳酸铯、0.1毫摩尔溴化锂,0.2毫摩尔(溴乙炔)苯,0.3毫摩尔叔丁基异腈,1.0毫升甲苯和0.7毫摩尔水作为溶剂,在60℃下转速500rpm下搅拌反应12小时;停止搅拌,加入5mL水,用乙酸乙酯萃取3次,合并有机相并使用0.5g无水硫酸镁干燥,过滤,减压浓缩,再通过柱层析分离纯化,所用的柱层析洗脱液为体积比50:1的石油醚:乙酸乙酯混合溶剂,得到目标产物,产率86%。Add 0.1 mmol N-(3-cyanophenyl)-2,2,2-trifluoroacetamide, 0.01 mmol tetrakis(triphenylphosphine)palladium, 0.2 mmol cesium carbonate, 0.1 mmol mol lithium bromide, 0.2 mmol (bromoacetylene) benzene, 0.3 mmol tert-butyl isonitrile, 1.0 ml toluene and 0.7 mmol water as solvents, stir the reaction at 60°C and 500 rpm for 12 hours; stop stirring, add 5 mL water, and use Extract three times with ethyl acetate, combine the organic phases, dry with 0.5g anhydrous magnesium sulfate, filter, concentrate under reduced pressure, and then separate and purify through column chromatography. The column chromatography eluent used is petroleum with a volume ratio of 50:1. Ether:ethyl acetate mixed solvent was used to obtain the target product with a yield of 86%.
所得目标产物的氢谱图和碳谱图分别如图9和图10所示,结构表征数据如下所示:The hydrogen spectrum and carbon spectrum of the obtained target product are shown in Figure 9 and Figure 10 respectively, and the structural characterization data are as follows:
1H NMR(400MHz,CDCl3)δ7.70-7.63(m,2H),7.59(t,J=8.0Hz,1H),7.50(d,J=8.0Hz,1H),7.47-7.37(m,4H),7.29-7.24(m,1H),6.31(s,1H),2.95(s,1H),1.04(s,9H),0.60(s,9H); 1 H NMR (400MHz, CDCl 3 ) δ7.70-7.63(m,2H),7.59(t,J=8.0Hz,1H),7.50(d,J=8.0Hz,1H),7.47-7.37(m, 4H),7.29-7.24(m,1H),6.31(s,1H),2.95(s,1H),1.04(s,9H),0.60(s,9H);
13C NMR(100MHz,CDCl3)δ158.2(q,J=33.2Hz),138.5,135.9,132.7(d,J=15.2Hz),131.1,130.6,129.8,128.6,128.1,126.3,122.4,119.4,117.9,116.3(q,J=288.5Hz),113.0,110.4,63.6,55.8,29.8,27.0.; 13 C NMR (100MHz, CDCl 3 ) δ 158.2 (q, J = 33.2Hz), 138.5, 135.9, 132.7 (d, J = 15.2Hz), 131.1, 130.6, 129.8, 128.6, 128.1, 126.3, 122.4, 119.4 ,117.9,116.3(q,J=288.5Hz),113.0,110.4,63.6,55.8,29.8,27.0.;
IR(KBr)νmax 3387,2972,2233,1704,1592,1526,1485,1370,1197,1166,762,699cm-1;IR(KBr)ν max 3387,2972,2233,1704,1592,1526,1485,1370,1197,1166,762,699cm -1 ;
HRMS(ESI)Calcd for C25H32ClN2Si[M+H]+,483.2366,found483.2361。HRMS(ESI)Calcd for C 25 H 32 ClN 2 Si[M+H] + ,483.2366,found483.2361.
经以上数据推断目标产物的结构如下:Based on the above data, the structure of the target product is deduced as follows:
实施例6Example 6
在反应管中加入0.1毫摩尔N-(4-烯基苯基)-2,2,2-三氟乙酰胺、0.01毫摩尔四(三苯基膦)钯、0.2毫摩尔碳酸铯、0.1毫摩尔溴化锂,0.2毫摩尔(溴乙炔)苯,0.3毫摩尔叔丁基异腈,1.0毫升甲苯和0.7毫摩尔水作为溶剂,在60℃下转速500rpm下搅拌反应12小时;停止搅拌,加入5mL水,用乙酸乙酯萃取3次,合并有机相并使用0.5g无水硫酸镁干燥,过滤,减压浓缩,再通过柱层析分离纯化,所用的柱层析洗脱液为体积比50:1的石油醚:乙酸乙酯混合溶剂,得到目标产物,产率89%。Add 0.1 mmol N-(4-alkenylphenyl)-2,2,2-trifluoroacetamide, 0.01 mmol tetrakis(triphenylphosphine)palladium, 0.2 mmol cesium carbonate, 0.1 mmol mol lithium bromide, 0.2 mmol (bromoacetylene) benzene, 0.3 mmol tert-butyl isonitrile, 1.0 ml toluene and 0.7 mmol water as solvents, stir the reaction at 60°C and 500 rpm for 12 hours; stop stirring, add 5 mL water, and use Extract three times with ethyl acetate, combine the organic phases, dry with 0.5g anhydrous magnesium sulfate, filter, concentrate under reduced pressure, and then separate and purify through column chromatography. The column chromatography eluent used is petroleum with a volume ratio of 50:1. Ether:ethyl acetate mixed solvent was used to obtain the target product with a yield of 89%.
所得目标产物的氢谱图和碳谱图分别如图11和图12所示,结构表征数据如下所示:The hydrogen spectrum and carbon spectrum of the obtained target product are shown in Figure 11 and Figure 12 respectively, and the structural characterization data are as follows:
1H NMR(400MHz,CDCl3)δ7.61(d,J=7.2Hz,2H),7.35(t,J=7.6Hz,2H),7.22-7.12(m,3H),6.99(d,J=8.8Hz,2H),6.26(s,1H),3.85(s,3H),2.65(s,1H),1.03(s,9H),0.65(s,9H); 1 H NMR (400MHz, CDCl 3 ) δ7.61 (d, J=7.2Hz, 2H), 7.35 (t, J=7.6Hz, 2H), 7.22-7.12 (m, 3H), 6.99 (d, J= 8.8Hz,2H),6.26(s,1H),3.85(s,3H),2.65(s,1H),1.03(s,9H),0.65(s,9H);
13C NMR(100MHz,CDCl3)δ158.4(q,J=32.8Hz),136.8,130.9,129.9,128.2,128.0,125.6,122.7,117.6,116.5(q,J=288.1Hz),114.3,108.8,63.1,55.5,55.5,29.9,27.0; 13 C NMR (100MHz, CDCl 3 ) δ 158.4 (q, J = 32.8Hz), 136.8, 130.9, 129.9, 128.2, 128.0, 125.6, 122.7, 117.6, 116.5 (q, J = 288.1Hz), 114.3, 108.8 ,63.1,55.5,55.5,29.9,27.0;
IR(KBr)νmax 3739,3615,3365,2922,1700,1634,1516,1465,1393,1250,1188,1032,838,759,700cm-1;IR(KBr)ν max 3739,3615,3365,2922,1700,1634,1516,1465,1393,1250,1188,1032,838,759,700cm -1 ;
HRMS(ESI)Calcd for C25H32ClN2Si[M+H]+:488.2519,Found488.2512。HRMS(ESI)Calcd for C 25 H 32 ClN 2 Si[M+H] + :488.2519,Found488.2512.
经以上数据推断目标产物的结构如下:Based on the above data, the structure of the target product is deduced as follows:
实施例7Example 7
在反应管中加入0.1毫摩尔N-(4-硝基苯基)-2,2,2-三氟乙酰胺、0.01毫摩尔四(三苯基膦)钯、0.2毫摩尔碳酸铯、0.1毫摩尔溴化锂,0.2毫摩尔(溴乙炔)苯,0.3毫摩尔叔丁基异腈,1.0毫升甲苯和0.7毫摩尔水作为溶剂,在60℃下转速500rpm下搅拌反应12小时;停止搅拌,加入5mL水,用乙酸乙酯萃取3次,合并有机相并使用0.5g无水硫酸镁干燥,过滤,减压浓缩,再通过柱层析分离纯化,所用的柱层析洗脱液为体积比50:1的石油醚:乙酸乙酯混合溶剂,得到目标产物,产率90%。Add 0.1 mmol N-(4-nitrophenyl)-2,2,2-trifluoroacetamide, 0.01 mmol tetrakis(triphenylphosphine)palladium, 0.2 mmol cesium carbonate, 0.1 mmol mol lithium bromide, 0.2 mmol (bromoacetylene) benzene, 0.3 mmol tert-butyl isonitrile, 1.0 ml toluene and 0.7 mmol water as solvents, stir the reaction at 60°C and 500 rpm for 12 hours; stop stirring, add 5 mL water, and use Extract three times with ethyl acetate, combine the organic phases, dry with 0.5g anhydrous magnesium sulfate, filter, concentrate under reduced pressure, and then separate and purify through column chromatography. The column chromatography eluent used is petroleum with a volume ratio of 50:1. Ether:ethyl acetate mixed solvent was used to obtain the target product with a yield of 90%.
所得目标产物的氢谱图和碳谱图分别如图13和图14所示,结构表征数据如下所示:The hydrogen spectrum and carbon spectrum of the obtained target product are shown in Figure 13 and Figure 14 respectively, and the structural characterization data are as follows:
1H NMR(400MHz,CDCl3)δ7.60(d,J=7.2Hz,2H),7.51(d,J=8.4Hz,2H),7.36(t,J=7.6Hz,2H),7.24-7.17(m,3H),6.75(dd,J=17.6,10.8Hz,1H),6.28(s,1H),5.82(d,J=17.6Hz,1H),5.34(d,J=10.8Hz,1H),2.81(s,1H),1.03(s,9H),0.64(s,9H); 1 H NMR (400MHz, CDCl 3 ) δ7.60 (d, J = 7.2Hz, 2H), 7.51 (d, J = 8.4Hz, 2H), 7.36 (t, J = 7.6Hz, 2H), 7.24-7.17 (m,3H),6.75(dd,J=17.6,10.8Hz,1H),6.28(s,1H),5.82(d,J=17.6Hz,1H),5.34(d,J=10.8Hz,1H) ,2.81(s,1H),1.03(s,9H),0.64(s,9H);
13C NMR(100MHz,CDCl3)δ158.3(q,J=32.8Hz),136.7,136.6,136.6,135.7,130.8,128.6,128.3,128.0,126.8,125.7,122.7,118.2,116.5(q,J=288.2Hz),115.0,109.3,63.3,55.7,29.9,27.0; 13 C NMR (100MHz, CDCl 3 ) δ 158.3 (q, J = 32.8 Hz), 136.7, 136.6, 136.6, 135.7, 130.8, 128.6, 128.3, 128.0, 126.8, 125.7, 122.7, 118.2, 116.5 (q, J =288.2Hz),115.0,109.3,63.3,55.7,29.9,27.0;
IR(KBr)νmax 3411,2970,1702,1519,1370,1193,1154,912,848,759,701cm-1;IR(KBr)ν max 3411,2970,1702,1519,1370,1193,1154,912,848,759,701cm -1 ;
HRMS(ESI)Calcd for C26H35N2Si[M+H]+:484.2570,Found484.2565。HRMS(ESI)Calcd for C 26 H 35 N 2 Si[M+H] + :484.2570,Found484.2565.
经以上数据推断目标产物的结构如下:Based on the above data, the structure of the target product is deduced as follows:
。 .
实施例8Example 8
在反应管中加入0.1毫摩尔N-三氟乙酰苯胺、0.01毫摩尔四(三苯基膦)钯、0.2毫摩尔碳酸铯、0.1毫摩尔溴化锂,0.2毫摩尔1-(溴炔基)-4-溴苯,0.3毫摩尔叔丁基异腈,1.0毫升甲苯和0.7毫摩尔水作为溶剂,在60℃下转速500rpm下搅拌反应12小时;停止搅拌,加入5mL水,用乙酸乙酯萃取3次,合并有机相并使用0.5g无水硫酸镁干燥,过滤,减压浓缩,再通过柱层析分离纯化,所用的柱层析洗脱液为体积比50:1的石油醚:乙酸乙酯混合溶剂,得到目标产物,产率92%。Add 0.1 mmol N-trifluoroacetanilide, 0.01 mmol tetrakis(triphenylphosphine)palladium, 0.2 mmol cesium carbonate, 0.1 mmol lithium bromide, and 0.2 mmol 1-(bromoalkynyl)-4 into the reaction tube. - Bromobenzene, 0.3 mmol tert-butyl isonitrile, 1.0 ml toluene and 0.7 mmol water as solvents, stir the reaction at 60°C and 500 rpm for 12 hours; stop stirring, add 5 mL water, extract 3 times with ethyl acetate, and combine The organic phase was dried with 0.5g anhydrous magnesium sulfate, filtered, concentrated under reduced pressure, and then separated and purified by column chromatography. The column chromatography eluent used was a petroleum ether:ethyl acetate mixed solvent with a volume ratio of 50:1. The target product was obtained with a yield of 92%.
所得目标产物的氢谱图和碳谱图分别如图15和图16所示,结构表征数据如下所示:The hydrogen spectrum and carbon spectrum of the obtained target product are shown in Figure 15 and Figure 16 respectively, and the structural characterization data are as follows:
1H NMR(400MHz,CDCl3)δ7.57(d,J=8.4Hz,2H),7.52-7.43(m,4H),7.38(t,J=7.6Hz,1H),7.22(d,J=7.2Hz,2H),6.27(s,1H),3.00(s,1H),1.01(s,9H),0.65(s,9H); 1 H NMR (400MHz, CDCl 3 ) δ7.57 (d, J=8.4Hz, 2H), 7.52-7.43 (m, 4H), 7.38 (t, J=7.6Hz, 1H), 7.22 (d, J= 7.2Hz,2H),6.27(s,1H),3.00(s,1H),1.01(s,9H),0.65(s,9H);
13C NMR(100MHz,CDCl3)δ158.1(q,J=32.8Hz),136.9,135.6,131.2,130.8,129.5,129.3,128.4,127.8,123.0,119.2,116.8,116.4(q,J=288.2Hz),108.6,63.1,55.6,29.9,26.9; 13 C NMR (100MHz, CDCl 3 ) δ 158.1 (q, J = 32.8 Hz), 136.9, 135.6, 131.2, 130.8, 129.5, 129.3, 128.4, 127.8, 123.0, 119.2, 116.8, 116.4 ( q, J = 288.2 Hz),108.6,63.1,55.6,29.9,26.9;
IR(KBr)νmax 2970,1703,1595,1525,1491,1370,1195,1152,761,705cm-1;IR(KBr)ν max 2970,1703,1595,1525,1491,1370,1195,1152,761,705cm -1 ;
HRMS(ESI)Calcd for C26H32N3Si[M+H]+:536.1519,Found 536.1511。HRMS(ESI)Calcd for C 26 H 32 N 3 Si[M+H] + :536.1519,Found 536.1511.
经以上数据推断目标产物的结构如下:Based on the above data, the structure of the target product is deduced as follows:
实施例9Example 9
在反应管中加入0.1毫摩尔N-三氟乙酰苯胺、0.01毫摩尔四(三苯基膦)钯、0.2毫摩尔碳酸铯、0.1毫摩尔溴化锂,0.2毫摩尔1-(溴炔基)-4-溴苯,0.3毫摩尔叔丁基异腈,1.0毫升甲苯和0.7毫摩尔水作为溶剂,在60℃下转速500rpm下搅拌反应12小时;停止搅拌,加入5mL水,用乙酸乙酯萃取3次,合并有机相并使用0.5g无水硫酸镁干燥,过滤,减压浓缩,再通过柱层析分离纯化,所用的柱层析洗脱液为体积比50:1的石油醚:乙酸乙酯混合溶剂,得到目标产物,产率79%。Add 0.1 mmol N-trifluoroacetanilide, 0.01 mmol tetrakis(triphenylphosphine)palladium, 0.2 mmol cesium carbonate, 0.1 mmol lithium bromide, and 0.2 mmol 1-(bromoalkynyl)-4 into the reaction tube. - Bromobenzene, 0.3 mmol tert-butyl isonitrile, 1.0 ml toluene and 0.7 mmol water as solvents, stir the reaction at 60°C and 500 rpm for 12 hours; stop stirring, add 5 mL water, extract 3 times with ethyl acetate, and combine The organic phase was dried with 0.5g anhydrous magnesium sulfate, filtered, concentrated under reduced pressure, and then separated and purified by column chromatography. The column chromatography eluent used was a petroleum ether:ethyl acetate mixed solvent with a volume ratio of 50:1. The target product was obtained with a yield of 79%.
所得目标产物的氢谱图和碳谱图分别如图17和图18所示,结构表征数据如下所示:The hydrogen spectrum and carbon spectrum of the obtained target product are shown in Figure 17 and Figure 18 respectively, and the structural characterization data are as follows:
1H NMR(400MHz,CDCl3)δ7.51-7.44(m,4H),7.36(t,J=7.6Hz,1H),7.23(d,J=7.2Hz,2H),7.17(d,J=8.0Hz,2H),6.25(s,1H),2.60(s,1H),2.36(s,3H),1.00(s,9H),0.63(s,9H); 1 H NMR (400MHz, CDCl 3 ) δ7.51-7.44(m,4H),7.36(t,J=7.6Hz,1H),7.23(d,J=7.2Hz,2H),7.17(d,J= 8.0Hz,2H),6.25(s,1H),2.60(s,1H),2.36(s,3H),1.00(s,9H),0.63(s,9H);
13C NMR(100MHz,CDCl3)δ158.3(q,J=32.9Hz),137.3,135.2,133.7,130.7,129.1,129.0,128.6,127.8,127.4,122.5,117.9,116.5(q,J=288.1Hz),109.1,63.2,55.5,29.9,26.9,21.1; 13 C NMR (100MHz, CDCl 3 ) δ 158.3 (q, J = 32.9 Hz), 137.3, 135.2, 133.7, 130.7, 129.1, 129.0, 128.6, 127.8, 127.4, 122.5, 117.9, 116.5 ( q, J = 288.1 Hz),109.1,63.2,55.5,29.9,26.9,21.1;
IR(KBr)νmax 3465,2968,2923,1702,1530,1374,1191,1156,756,706cm-1;IR(KBr)ν max 3465,2968,2923,1702,1530,1374,1191,1156,756,706cm -1 ;
HRMS(ESI)Calcd for C25H32FN2Si[M+H]+:536.1519,Found536.1511。HRMS(ESI)Calcd for C 25 H 32 FN 2 Si[M+H] + :536.1519,Found536.1511.
经以上数据推断目标产物的结构如下:Based on the above data, the structure of the target product is deduced as follows:
实施例10Example 10
在反应管中加入0.1毫摩尔N-三氟乙酰苯胺、0.01毫摩尔四(三苯基膦)钯、0.2毫摩尔碳酸铯、0.1毫摩尔溴化锂,0.2毫摩尔4-(溴炔基)苯甲酸甲酯,0.3毫摩尔叔丁基异腈,1.0毫升甲苯和0.7毫摩尔水作为溶剂,在60℃下转速500rpm下搅拌反应12小时;停止搅拌,加入5mL水,用乙酸乙酯萃取3次,合并有机相并使用0.5g无水硫酸镁干燥,过滤,减压浓缩,再通过柱层析分离纯化,所用的柱层析洗脱液为体积比50:1的石油醚:乙酸乙酯混合溶剂,得到目标产物,产率87%。Add 0.1 mmol N-trifluoroacetanilide, 0.01 mmol tetrakis(triphenylphosphine)palladium, 0.2 mmol cesium carbonate, 0.1 mmol lithium bromide, and 0.2 mmol 4-(bromoynyl)benzoic acid into the reaction tube. Methyl ester, 0.3 mmol tert-butyl isonitrile, 1.0 ml toluene and 0.7 mmol water as solvent, stir and react at 60°C and 500 rpm for 12 hours; stop stirring, add 5 mL water, extract 3 times with ethyl acetate, and combine the organic acids The phases were dried using 0.5g anhydrous magnesium sulfate, filtered, concentrated under reduced pressure, and then separated and purified by column chromatography. The column chromatography eluent used was a petroleum ether:ethyl acetate mixed solvent with a volume ratio of 50:1 to obtain Target product, yield 87%.
所得目标产物的氢谱图和碳谱图分别如图19和图20所示,结构表征数据如下所示:The hydrogen spectrum and carbon spectrum of the obtained target product are shown in Figure 19 and Figure 20 respectively, and the structural characterization data are as follows:
1H NMR(400MHz,CDCl3)δ8.03(d,J=8.0Hz,2H),7.77(d,J=8.4Hz,2H),7.51(t,J=7.6Hz,2H),7.44-7.38(m,1H),7.23(d,J=7.2Hz,2H),6.34(s,1H),3.93(s,3H),2.66(s,1H),1.01(s,9H),0.65(s,9H); 1 H NMR (400MHz, CDCl 3 ) δ8.03 (d, J = 8.0Hz, 2H), 7.77 (d, J = 8.4Hz, 2H), 7.51 (t, J = 7.6Hz, 2H), 7.44-7.38 (m,1H),7.23(d,J=7.2Hz,2H),6.34(s,1H),3.93(s,3H),2.66(s,1H),1.01(s,9H),0.65(s, 9H);
13C NMR(100MHz,CDCl3)δ167.2,158.2(q,J=32.9Hz),141.6,136.8,131.5,129.6,129.4,128.4,128.0,127.5,127.0,123.4,117.0,116.4(q,J=288.2Hz),108.8,63.2,56.0,51.9,29.9,26.9; 13 C NMR (100MHz, CDCL 3 ) Δ167.2,158.2 (q, J = 32.9Hz), 141.6,136.8,131.5, 129.6, 129.4,128.0, 127.0, 123.0,116.4 (Q, J = J = 288.2 Hz),108.8,63.2,56.0,51.9,29.9,26.9;
IR(KBr)νmax 3467,3419,2919,1705,1635,1530,1273,1190,1109,756cm-1;IR(KBr)ν max 3467,3419,2919,1705,1635,1530,1273,1190,1109,756cm -1 ;
HRMS(ESI)Calcd for C25H32ClN2Si[M+H]+,516.2469,Found 516.2462。HRMS(ESI)Calcd for C 25 H 32 ClN 2 Si[M+H] + ,516.2469,Found 516.2462.
经以上数据推断目标产物的结构如下:Based on the above data, the structure of the target product is deduced as follows:
实施例11Example 11
在反应管中加入0.1毫摩尔N-三氟乙酰苯胺、0.01毫摩尔四(三苯基膦)钯、0.2毫摩尔碳酸铯、0.1毫摩尔溴化锂,0.2毫摩尔1-(溴炔基)-4-溴苯,0.3毫摩尔叔丁基异腈,1.0毫升甲苯和0.7毫摩尔水作为溶剂,在60℃下转速500rpm下搅拌反应12小时;停止搅拌,加入5mL水,用乙酸乙酯萃取3次,合并有机相并使用0.5g无水硫酸镁干燥,过滤,减压浓缩,再通过柱层析分离纯化,所用的柱层析洗脱液为体积比50:1的石油醚:乙酸乙酯混合溶剂,得到目标产物,产率78%。Add 0.1 mmol N-trifluoroacetanilide, 0.01 mmol tetrakis(triphenylphosphine)palladium, 0.2 mmol cesium carbonate, 0.1 mmol lithium bromide, and 0.2 mmol 1-(bromoalkynyl)-4 into the reaction tube. - Bromobenzene, 0.3 mmol tert-butyl isonitrile, 1.0 ml toluene and 0.7 mmol water as solvents, stir the reaction at 60°C and 500 rpm for 12 hours; stop stirring, add 5 mL water, extract 3 times with ethyl acetate, and combine The organic phase was dried with 0.5g anhydrous magnesium sulfate, filtered, concentrated under reduced pressure, and then separated and purified by column chromatography. The column chromatography eluent used was a petroleum ether:ethyl acetate mixed solvent with a volume ratio of 50:1. The target product was obtained with a yield of 78%.
所得目标产物的氢谱图和碳谱图分别如图21和图22所示,结构表征数据如下所示:The hydrogen spectrum and carbon spectrum of the obtained target product are shown in Figure 21 and Figure 22 respectively, and the structural characterization data are as follows:
1H NMR(400MHz,CDCl3)δ7.76-7.70(m,1H),7.56-7.47(m,3H),7.40(t,J=7.6Hz,1H),7.31-7.26(m,1H),7.22(d,J=7.2Hz,2H),7.19-7.14(m,1H),6.28(s,1H),2.62(s,1H),1.00(s,9H),0.66(s,9H); 1 H NMR (400MHz, CDCl 3 ) δ7.76-7.70 (m, 1H), 7.56-7.47 (m, 3H), 7.40 (t, J = 7.6Hz, 1H), 7.31-7.26 (m, 1H), 7.22(d,J=7.2Hz,2H),7.19-7.14(m,1H),6.28(s,1H),2.62(s,1H),1.00(s,9H),0.66(s,9H);
13C NMR(100MHz,CDCl3)δ158.2(q,J=32.8Hz),138.5,136.9,134.1,131.1,129.5,129.4,128.5,127.9,125.9,125.6,123.1,116.7,116.4(q,J=288.5Hz),108.7,63.2,55.7,30.0,27.0; 13 C NMR (100MHz, CDCl 3 ) δ 158.2 (q, J = 32.8 Hz), 138.5, 136.9, 134.1, 131.1, 129.5, 129.4, 128.5, 127.9, 125.9, 125.6, 123.1, 116.7, 116.4 (q, J =288.5Hz),108.7,63.2,55.7,30.0,27.0;
IR(KBr)νmax 3496,2968,1702,1594,1525,1370,1194,1152,760,702cm-1;IR(KBr)ν max 3496,2968,1702,1594,1525,1370,1194,1152,760,702cm -1 ;
HRMS(ESI)Calcd for C25H31Cl2N2Si[M+H]+,492.2024,Found492.2018。HRMS(ESI)Calcd for C 25 H 31 Cl 2 N 2 Si[M+H] + ,492.2024,Found492.2018.
经以上数据推断目标产物的结构如下:Based on the above data, the structure of the target product is deduced as follows:
实施例12Example 12
在反应管中加入0.1毫摩尔N-三氟乙酰苯胺、0.01毫摩尔四(三苯基膦)钯、0.2毫摩尔碳酸铯、0.1毫摩尔溴化锂,0.2毫摩尔(溴乙炔)苯,0.3毫摩尔1,1,3,3-四甲基丁基异腈,1.0毫升甲苯和0.7毫摩尔水作为溶剂,在60℃下转速500rpm下搅拌反应12小时;停止搅拌,加入5mL水,用乙酸乙酯萃取3次,合并有机相并使用0.5g无水硫酸镁干燥,过滤,减压浓缩,再通过柱层析分离纯化,所用的柱层析洗脱液为体积比50:1的石油醚:乙酸乙酯混合溶剂,得到目标产物,产率84%。Add 0.1 mmol N-trifluoroacetanilide, 0.01 mmol tetrakis (triphenylphosphine) palladium, 0.2 mmol cesium carbonate, 0.1 mmol lithium bromide, 0.2 mmol (bromoacetylene) benzene, 0.3 mmol into the reaction tube. 1,1,3,3-Tetramethylbutyl isonitrile, 1.0 ml of toluene and 0.7 mmol of water as solvents, stir and react at 60°C and 500 rpm for 12 hours; stop stirring, add 5 mL of water, and extract with ethyl acetate 3 times, combine the organic phases and use 0.5g anhydrous magnesium sulfate to dry, filter, concentrate under reduced pressure, and then separate and purify through column chromatography. The column chromatography eluent used is petroleum ether:ethyl acetate with a volume ratio of 50:1. The solvents were mixed to obtain the target product with a yield of 84%.
所得目标产物的氢谱图和碳谱图分别如图23和图24所示,结构表征数据如下所示:The hydrogen spectrum and carbon spectrum of the obtained target product are shown in Figure 23 and Figure 24 respectively, and the structural characterization data are as follows:
1H NMR(400MHz,CDCl3)δ7.60-7.56(m,2H),7.48(t,J=7.6Hz,2H),7.40-7.34(m,3H),7.26-7.19(m,3H),6.31(s,1H),3.01(s,1H),2.07(d,J=14.8Hz,1H),1.15(s,3H),1.10(s,1H),1.08-0.96(m,2H),0.85(s,3H),0.83(s,9H),0.80(s,9H),0.64(s,3H),0.55(s,3H); 1 H NMR (400MHz, CDCl 3 ) δ7.60-7.56 (m, 2H), 7.48 (t, J = 7.6Hz, 2H), 7.40-7.34 (m, 3H), 7.26-7.19 (m, 3H), 6.31(s,1H),3.01(s,1H),2.07(d,J=14.8Hz,1H),1.15(s,3H),1.10(s,1H),1.08-0.96(m,2H),0.85 (s,3H),0.83(s,9H),0.80(s,9H),0.64(s,3H),0.55(s,3H);
13C NMR(100MHz,CDCl3)δ158.1(q,J=32.5Hz),137.5,137.0,130.8,129.2,128.3,127.7,125.7,122.5,118.3,116.5(q,J=288.9Hz),109.7,68.2,59.8,56.5,49.4,31.6,31.4,31.3,29.4,28.5,26.8(d,J=28.5Hz); 13 C NMR (100MHz, CDCl 3 ) δ 158.1 (q, J = 32.5Hz), 137.5, 137.0, 130.8, 129.2, 128.3, 127.7, 125.7, 122.5, 118.3, 116.5 (q, J = 288.9Hz), 109.7 ,68.2,59.8,56.5,49.4,31.6,31.4,31.3,29.4,28.5,26.8(d,J=28.5Hz);
IR(KBr)νmax 2955,1703,1598,1492,1372,1194,1152,756,700cm-1;IR(KBr)ν max 2955,1703,1598,1492,1372,1194,1152,756,700cm -1 ;
HRMS(ESI)Calcd for C26H35N2Si[M+H]+,570.3666,found 570.3657。HRMS(ESI)Calcd for C 26 H 35 N 2 Si[M+H] + ,570.3666, found 570.3657.
经以上数据推断目标产物的结构如下:Based on the above data, the structure of the target product is deduced as follows:
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above embodiments. Any other changes, modifications, substitutions, combinations, etc. may be made without departing from the spirit and principles of the present invention. All simplifications should be equivalent substitutions, and are all included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311097683.2A CN117126094A (en) | 2023-08-29 | 2023-08-29 | Synthesis method of 2, 5-diaminopyrrole compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311097683.2A CN117126094A (en) | 2023-08-29 | 2023-08-29 | Synthesis method of 2, 5-diaminopyrrole compound |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117126094A true CN117126094A (en) | 2023-11-28 |
Family
ID=88862488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311097683.2A Pending CN117126094A (en) | 2023-08-29 | 2023-08-29 | Synthesis method of 2, 5-diaminopyrrole compound |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117126094A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117800890A (en) * | 2023-12-22 | 2024-04-02 | 南通大学 | A kind of synthesis method of 5-trifluoromethylpyrrole compounds |
-
2023
- 2023-08-29 CN CN202311097683.2A patent/CN117126094A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117800890A (en) * | 2023-12-22 | 2024-04-02 | 南通大学 | A kind of synthesis method of 5-trifluoromethylpyrrole compounds |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021169359A1 (en) | Benzodihydrofuro heterocyclic compound and preparation method therefor | |
CN117126094A (en) | Synthesis method of 2, 5-diaminopyrrole compound | |
CN114874126B (en) | Synthetic method of 3-bromoindole compound | |
CN108864164B (en) | A kind of synthetic method of primary amine-directed 2-alkynyl indole compounds | |
JP2008056615A (en) | Vinylethynylarylcarboxylic acids, process for producing the same, and process for producing thermally crosslinkable compounds using the same | |
CN110343087B (en) | Synthesis and preparation method of isoindolinone derivatives | |
CN105085563B (en) | A kind of branch allyl compound, preparation method and application | |
CN114989063B (en) | A kind of synthetic method of β-halogenated pyrrole compound | |
CN112125843B (en) | A kind of preparation method of 3-hydroxymethyl-4-phenyl-3,4-dihydroquinolinone compound | |
CN101824010B (en) | Method for synthesizing 4-aryl-4,5-dihydrofuran | |
CN104529684B (en) | The method of functional group's ortho position iodate on palladium/carbon catalysis aromatic ring | |
CN114426511A (en) | Method for preparing chiral spiro [2.4] heptane compounds through palladium-catalyzed asymmetric cycloaddition reaction | |
Zang et al. | An efficient one‐pot synthesis of pyrazolone derivatives promoted by acidic ionic liquid | |
CN110590636A (en) | A kind of 4-sulfonylpyrrolone compound and its synthetic method | |
CN108558734A (en) | Method for synthesizing 2-aryl-3-arylsulfonyl-1H-indole under catalysis of copper | |
CN109020860A (en) | A kind of 2- aryl -3- ester group polysubstituted pyrrole class compound and its method for synthesizing and refining | |
CN115785102A (en) | Synthetic method of iodo-indole quinazoline amine compound | |
CN112159344B (en) | Synthesis method of 1, 3-dimethyl-3-hydroxymethyl indoline-2-ketone compound | |
KR101006737B1 (en) | Method for preparing 2-sulfonyliminoindolin using a copper catalyst | |
CN109988090B (en) | A kind of tetrahydropyrrole derivative and its synthetic method and application | |
JPH06116236A (en) | Production of bisimide compound | |
CN110078604B (en) | Preparation method of indeno-indanone derivative | |
CN109651289B (en) | 3-thiazoline compound and synthetic method and application thereof | |
CN107129464A (en) | A kind of preparation method of the symmetrical pyridine of 2,3,5,6 4 substitution | |
CN118496160A (en) | A preparation method of imidazole compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |