CN117121025A - Management method, system and storage medium of heating ventilation air conditioning system - Google Patents
Management method, system and storage medium of heating ventilation air conditioning system Download PDFInfo
- Publication number
- CN117121025A CN117121025A CN202180096951.1A CN202180096951A CN117121025A CN 117121025 A CN117121025 A CN 117121025A CN 202180096951 A CN202180096951 A CN 202180096951A CN 117121025 A CN117121025 A CN 117121025A
- Authority
- CN
- China
- Prior art keywords
- scene
- bes
- model
- classification strategy
- strategy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007726 management method Methods 0.000 title claims abstract description 40
- 238000009423 ventilation Methods 0.000 title abstract description 12
- 238000004378 air conditioning Methods 0.000 title abstract description 11
- 238000010438 heat treatment Methods 0.000 title abstract description 11
- 238000011217 control strategy Methods 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 32
- 238000005457 optimization Methods 0.000 claims abstract description 30
- 238000004088 simulation Methods 0.000 claims abstract description 25
- 238000005265 energy consumption Methods 0.000 claims abstract description 18
- 238000011156 evaluation Methods 0.000 claims description 32
- 238000004590 computer program Methods 0.000 claims description 14
- 238000013480 data collection Methods 0.000 claims description 10
- 238000000638 solvent extraction Methods 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000004134 energy conservation Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 3
- 238000013145 classification model Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 238000003915 air pollution Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000003064 k means clustering Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000009418 renovation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Marketing (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
本发明涉及建筑能耗领域,特别是一种暖通空调系统的管理系统、方法及计算机可读存储介质。The invention relates to the field of building energy consumption, in particular to a management system, method and computer-readable storage medium for an HVAC system.
降低建筑能耗是许多国家官方能源政策的首要任务之一,而工业化国家建筑能耗的很大一部分用于供暖、通风和空调(Heating,Ventilation and Air Conditioning,HVAC)系统,以下简称暖通空调系统。在暖通空调系统中实施优化的运行参数,如冷冻水温度和送风温度,可以在不牺牲热舒适性或对建筑/系统进行重大改造的前提下,降低建筑能耗。Reducing building energy consumption is one of the top priorities of official energy policies in many countries, and a large part of building energy consumption in industrialized countries is used in heating, ventilation and air conditioning (HVAC) systems, hereinafter referred to as HVAC system. Implementing optimized operating parameters in HVAC systems, such as chilled water temperature and supply air temperature, can reduce building energy consumption without sacrificing thermal comfort or major modifications to the building/system.
然而,由于建筑、暖通空调系统的设计和控制以及外部环境的高度可变性,常规设置在日常运行中可能不一定节能。基于建筑能耗模拟(Building Energy Simulation,BES)的建筑能耗数字孪生系统是近年来为提高既有建筑的能效而应用的一种节能优化方法。However, due to high variability in the design and control of the building, HVAC system, and external environment, conventional setups may not necessarily be energy efficient in day-to-day operation. The building energy consumption digital twin system based on Building Energy Simulation (BES) is an energy-saving optimization method that has been applied in recent years to improve the energy efficiency of existing buildings.
发明内容Contents of the invention
有鉴于此,本发明实施例中一方面提出了一种暖通空调系统的管理方法,另一方面提出了一种暖通空调系统的管理系统和计算机可读存储介质,用以提高BES模型在能源性能预测中的准确性,有利于建筑节能优化。In view of this, embodiments of the present invention provide, on the one hand, a management method for an HVAC system, and on the other hand, a management system and a computer-readable storage medium for the HVAC system, to improve the performance of the BES model. Accuracy in energy performance prediction is beneficial to building energy optimization.
本发明实施例中提出的一种暖通空调管理方法,包括:根据获取的与暖通空调系统运行相关的当前场景数据以及预先确定的基准场景分类策略,确定出当前场景类别;从预先确定的对应各场景类别的建筑能耗仿真基准BES模型中激活对应所述当前场景类别的基准BES模型,得到当前基准BES模型;利用所述当前场景数据和所述当前基准BES模型确定出暖通空调系统的最优控制策略;根据所述最优控制策略控制所述暖通空调系统中的对应设备。An HVAC management method proposed in the embodiment of the present invention includes: determining the current scene category based on the obtained current scene data related to the operation of the HVAC system and a predetermined benchmark scene classification strategy; Activating the benchmark BES model corresponding to the current scenario category in the building energy consumption simulation benchmark BES model corresponding to each scenario category to obtain the current benchmark BES model; using the current scenario data and the current benchmark BES model to determine the HVAC system The optimal control strategy; controlling the corresponding equipment in the HVAC system according to the optimal control strategy.
在一个实施方式中,该方法进一步包括:收集设定数量组的历史采集的与暖通空调系统相关的历史参考数据;所述设定数量大于一设定数量阈值;利用所述历史参考数据对一初始BES模型中与场景无关的参数进行校准;根据所述历史参考数据确定当前的场景分类策略;根据所述当前的场景分类策略,将所述历史参考数据划分为不同的场景类 别,利用每个场景类别的参考数据对所述初始BES模型中与场景相关的参数进行校准,得到对应所述场景类别的候选BES模型;将所述场景分类策略确定为所述基准场景分类策略,将所述候选BES模型确定为所述基准BES模型。In one embodiment, the method further includes: collecting a set number of historically collected historical reference data related to the HVAC system; the set number being greater than a set number threshold; using the historical reference data to Calibrate the scene-independent parameters in an initial BES model; determine the current scene classification strategy based on the historical reference data; divide the historical reference data into different scene categories according to the current scene classification strategy, and use each The scene-related parameters in the initial BES model are calibrated with the reference data of each scene category to obtain a candidate BES model corresponding to the scene category; the scene classification strategy is determined as the benchmark scene classification strategy, and the scene classification strategy is The candidate BES model is determined as the baseline BES model.
在一个实施方式中,在将所述场景分类策略确定为所述基准场景分类策略,将所述候选BES模型确定为所述基准BES模型之前,进一步包括:根据场景类别的数量、场景类别之间的区分度以及对应每个场景类别的候选BES模型的仿真准确性中的任意一种或任意组合,对所述场景分类策略进行综合评估;在综合评估结果满足设定要求时,执行所述将所述场景分类策略确定为所述基准场景分类策略,将所述候选BES模型确定为所述基准BES模型的操作;否则,在综合评估结果不满足设定要求时,利用设定的策略优化算法对所述场景分类策略进行优化,将优化后的场景分类策略作为当前的场景分类策略,并返回执行所述根据所述当前的场景分类策略,将所述历史参考数据划分为不同的场景类别的操作。In one embodiment, before determining the scene classification strategy as the baseline scene classification strategy and determining the candidate BES model as the baseline BES model, the method further includes: according to the number of scene categories, the difference between scene categories Any one or any combination of the discrimination degree and the simulation accuracy of the candidate BES model corresponding to each scene category, conduct a comprehensive evaluation of the scene classification strategy; when the comprehensive evaluation results meet the set requirements, execute the described The scene classification strategy is determined as the benchmark scene classification strategy, and the candidate BES model is determined as the operation of the benchmark BES model; otherwise, when the comprehensive evaluation result does not meet the set requirements, the set strategy optimization algorithm is used Optimize the scene classification strategy, use the optimized scene classification strategy as the current scene classification strategy, and return to execute the current scene classification strategy to divide the historical reference data into different scene categories. operate.
在一个实施方式中,所述初始BES模型为利用与暖通空调系统运行相关的已知固定信息和对不确定信息的初始估值建立的BES模型,或者为当前可用的BES模型。In one embodiment, the initial BES model is a BES model established using known fixed information related to the operation of the HVAC system and an initial estimate of uncertain information, or a currently available BES model.
在一个实施方式中,所述根据所述历史参考数据确定当前的场景分类策略之前,进一步包括:确定当前是否存在历史的基准场景分类策略,若存在历史的基准场景分类策略,则根据所述历史参考数据以及所述历史的基准场景分类策略确定当前的场景分类策略,若不存在历史的基准场景分类策略,则执行所述根据所述历史参考数据确定当前的场景分类策略的操作。In one embodiment, before determining the current scene classification strategy based on the historical reference data, the method further includes: determining whether there is currently a historical baseline scene classification strategy, and if there is a historical baseline scene classification strategy, determining whether there is a historical baseline scene classification strategy. Determine the current scene classification strategy with reference to the data and the historical reference scene classification strategy. If there is no historical reference scene classification strategy, perform the operation of determining the current scene classification strategy based on the historical reference data.
在一个实施方式中,进一步包括:显示与暖通空调系统相关的信息;所述与暖通空调系统相关的信息来自所述当前场景数据、和/或所述暖通空调系统的控制信息和/或状态信息。In one embodiment, it further includes: displaying information related to the HVAC system; the information related to the HVAC system comes from the current scene data and/or control information of the HVAC system and/ or status information.
在一个实施方式中,所述场景数据包括下列信息中的至少一种或任意组合:天气信息、节假日信息、当地事件信息、建筑内与暖通空调系统和/或建筑物热性能相关的传感器采集的信息、建筑物内手动输入的与暖通空调系统相关的信息;所述历史参考数据包括历史的场景数据。In one embodiment, the scene data includes at least one or any combination of the following information: weather information, holiday information, local event information, sensor collections in the building related to HVAC systems and/or building thermal performance information, and information related to the HVAC system that is manually entered in the building; the historical reference data includes historical scene data.
本发明实施例中所提出的暖通空调系统的管理系统,包括:至少一个存储器和至少一个处理器,其中:所述至少一个存储器用于存储计算机程序;所述至少一个处理器用于调用所述至少一个存储器中存储的计算机程序使所述装置执行对应的操作,所述操作包括:根据获取的与暖通空调系统运行相关的当前场景数据以及预先确定的基准场景分类策 略,确定出当前场景类别;从预先确定的对应各场景类别的建筑能耗仿真基准BES模型中激活对应所述当前场景类别的基准BES模型,得到当前基准BES模型;利用所述当前场景数据和所述当前基准BES模型确定出暖通空调系统的最优控制策略;根据所述最优控制策略控制所述暖通空调系统中的对应设备。The management system of the HVAC system proposed in the embodiment of the present invention includes: at least one memory and at least one processor, wherein: the at least one memory is used to store the computer program; the at least one processor is used to call the The computer program stored in at least one memory causes the device to perform corresponding operations. The operations include: determining the current scene category based on the acquired current scene data related to the operation of the HVAC system and the predetermined baseline scene classification strategy. ; Activating the benchmark BES model corresponding to the current scenario category from the predetermined building energy consumption simulation benchmark BES model corresponding to each scenario category to obtain the current benchmark BES model; using the current scenario data and the current benchmark BES model to determine An optimal control strategy of the HVAC system is obtained; corresponding equipment in the HVAC system is controlled according to the optimal control strategy.
在一个实施方式中,所述操作进一步包括:收集设定数量组的历史采集的与暖通空调系统相关的历史参考数据;所述设定数量大于一设定数量阈值;利用所述历史参考数据对一初始BES模型中与场景无关的参数进行校准;根据所述历史参考数据确定当前的场景分类策略;根据所述当前的场景分类策略,将所述历史参考数据划分为不同的场景类别,利用每个场景类别的参考数据对所述初始BES模型中与场景相关的参数进行校准,得到对应所述场景类别的候选BES模型;将所述场景分类策略确定为所述基准场景分类策略,将所述候选BES模型确定为所述基准BES模型。In one embodiment, the operations further include: collecting a set number of historically collected historical reference data related to the HVAC system; the set number being greater than a set number threshold; utilizing the historical reference data Calibrate the scene-independent parameters in an initial BES model; determine the current scene classification strategy based on the historical reference data; divide the historical reference data into different scene categories according to the current scene classification strategy, using The reference data of each scene category is used to calibrate the scene-related parameters in the initial BES model to obtain a candidate BES model corresponding to the scene category; the scene classification strategy is determined as the benchmark scene classification strategy, and the The candidate BES model is determined as the base BES model.
在一个实施方式中,将所述场景分类策略确定为所述基准场景分类策略,将所述候选BES模型确定为所述基准BES模型之前,进一步包括:根据场景类别的数量、场景类别之间的区分度以及对应每个场景类别的候选BES模型的仿真准确性中的任意一种或任意组合,对所述场景分类策略进行综合评估;在综合评估结果满足设定要求时,执行将所述场景分类策略确定为所述基准场景分类策略,将所述候选BES模型确定为所述基准BES模型的操作;否则,在综合评估结果不满足设定要求时,利用设定的策略优化算法对所述场景分类策略进行优化,将优化后的场景分类策略作为当前的场景分类策略,并返回执行所述根据所述当前的场景分类策略,将所述历史参考数据划分为不同的场景类别的操作。In one embodiment, before determining the scene classification strategy as the baseline scene classification strategy and determining the candidate BES model as the baseline BES model, the method further includes: according to the number of scene categories, the distance between scene categories Any one or any combination of the discrimination and the simulation accuracy of the candidate BES model corresponding to each scene category, conduct a comprehensive evaluation of the scene classification strategy; when the comprehensive evaluation results meet the set requirements, execute the scene classification strategy The classification strategy is determined as the benchmark scene classification strategy, and the candidate BES model is determined as the operation of the benchmark BES model; otherwise, when the comprehensive evaluation result does not meet the set requirements, the set strategy optimization algorithm is used to The scene classification strategy is optimized, the optimized scene classification strategy is used as the current scene classification strategy, and the operation of dividing the historical reference data into different scene categories according to the current scene classification strategy is performed.
在一个实施方式中,所述根据所述历史参考数据确定当前的场景分类策略之前,所述操作进一步包括:确定当前是否存在历史的基准场景分类策略,若存在历史的基准场景分类策略,则根据所述历史参考数据以及所述历史的基准场景分类策略确定当前的场景分类策略,若不存在历史的基准场景分类策略,则执行所述根据所述历史参考数据确定当前的场景分类策略的操作。In one embodiment, before determining the current scene classification strategy based on the historical reference data, the operation further includes: determining whether there is currently a historical baseline scene classification strategy, and if there is a historical baseline scene classification strategy, then determining according to The historical reference data and the historical reference scene classification strategy determine the current scene classification strategy. If there is no historical reference scene classification strategy, the operation of determining the current scene classification strategy based on the historical reference data is performed.
在一个实施方式中,所述操作进一步包括:显示与暖通空调系统相关的信息;所述与暖通空调系统相关的信息来自所述当前场景数据、和/或所述暖通空调系统的控制信息和/或状态信息。In one embodiment, the operations further include: displaying information related to the HVAC system; the information related to the HVAC system comes from the current scene data and/or the control of the HVAC system information and/or status information.
本发明实施例中提出的又一种暖通空调系统的管理系统,包括:数据收集模块,用于收集与暖通空调系统运行相关的当前场景数据;场景决策模块,用于根据所述当前场景数 据以及预先确定的基准场景分类策略,确定出建筑的当前场景类别;模型确定模块,用于从预先确定的对应各场景类别的基准建筑能耗仿真BES模型中激活对应所述当前场景类别的基准BES模型,得到当前基准BES模型;控制策略确定模块,用于基于设定的优化控制算法以及所述当前场景数据调用所述当前基准BES模型,根据所述当前基准BES模型的输出确定暖通空调系统的最优控制策略;系统控制模块,用于根据所述最优控制策略控制所述暖通空调系统中的对应设备。Another management system for the HVAC system proposed in the embodiment of the present invention includes: a data collection module for collecting current scene data related to the operation of the HVAC system; a scene decision-making module for based on the current scene The data and the predetermined benchmark scenario classification strategy are used to determine the current scenario category of the building; the model determination module is used to activate the benchmark corresponding to the current scenario category from the predetermined benchmark building energy consumption simulation BES model corresponding to each scenario category. BES model to obtain the current baseline BES model; the control strategy determination module is used to call the current baseline BES model based on the set optimization control algorithm and the current scene data, and determine HVAC based on the output of the current baseline BES model. The optimal control strategy of the system; the system control module is used to control the corresponding equipment in the HVAC system according to the optimal control strategy.
在一个实施方式中,进一步包括:数据记录模块,用于记录所述数据收集模块和/或其他外部模块历史收集的设定数量组的与暖通空调系统相关的历史参考数据;所述设定数量大于一设定数量阈值;第一校准模块,用于利用所述历史参考数据对一初始BES模型中与场景无关的参数进行校准;分类策略确定模块,用于根据所述历史参考数据确定当前的场景分类策略;数据划分模块,用于根据所述当前的场景分类策略,将所述历史参考数据划分为不同的场景类别;第二校准模块,用于利用每个场景类别的参考数据对所述初始BES模型中与场景相关的参数进行校准,得到对应所述场景类别的候选BES模型;评估模块,用于根据场景类别的数量、场景类别之间的区分度以及对应每个场景类别的候选BES模型的仿真准确性中的任意一种或任意组合,对所述场景分类策略进行综合评估;结果判定模块,用于在综合评估结果满足设定要求时,将所述场景分类策略确定为基准场景分类策略并提供给所述场景决策模块,将所述候选BES模型确定为基准BES模型,并提供给所述BES模型确定模块;在综合评估结果不满足设定要求时,指示策略优化模块进行策略优化;策略优化模块,用于利用设定的策略优化算法对所述场景分类策略进行优化,将优化后的场景分类策略作为当前的场景分类策略,并指示数据划分模块执行所述根据所述当前的场景分类策略,将所述历史参考数据划分为不同的场景类别的操作。In one embodiment, the method further includes: a data recording module, configured to record a set number of historical reference data related to the HVAC system collected by the data collection module and/or other external modules; the setting The number is greater than a set quantity threshold; the first calibration module is used to use the historical reference data to calibrate the scene-independent parameters of an initial BES model; the classification strategy determination module is used to determine the current scene classification strategy; a data division module, used to divide the historical reference data into different scene categories according to the current scene classification strategy; a second calibration module, used to use the reference data of each scene category to Calibrate the scene-related parameters in the initial BES model to obtain a candidate BES model corresponding to the scene category; an evaluation module is used to calculate the number of scene categories, the distinction between scene categories, and the candidates corresponding to each scene category. Any one or any combination of the simulation accuracy of the BES model is used to comprehensively evaluate the scene classification strategy; the result determination module is used to determine the scene classification strategy as a benchmark when the comprehensive evaluation results meet the set requirements. The scene classification strategy is provided to the scene decision-making module, the candidate BES model is determined as the benchmark BES model, and provided to the BES model determination module; when the comprehensive evaluation result does not meet the set requirements, the strategy optimization module is instructed to perform Strategy optimization; the strategy optimization module is used to optimize the scene classification strategy using the set strategy optimization algorithm, use the optimized scene classification strategy as the current scene classification strategy, and instruct the data partition module to execute the scene classification strategy according to the The current scene classification strategy is an operation of dividing the historical reference data into different scene categories.
本发明实施例中提出的一种计算机可读存储介质,其上存储有计算机程序;所述计算机程序能够被一处理器执行并实现如上任一实施方式所述的暖通空调系统的管理方法。A computer-readable storage medium proposed in the embodiment of the present invention has a computer program stored thereon; the computer program can be executed by a processor and implement the management method of the HVAC system as described in any of the above embodiments.
从上述方案中可以看出,由于本发明实施例中,根据大量历史采集的历史参考数据确定建筑的多个场景类别,并对应每个场景类别设置对应的BES模型。之后,可根据当前采集的场景数据确定出当前的场景类别,并调用对应当前场景类别的BES模型来确定暖通空调系统的最优控制策略,然后基于所述最优控制策略控制暖通空调系统中的对应设备,如暖风设备、通风设备和空调设备等,从而提高了BES模型在能源性能预测中的准确性,有利于建筑节能优化。It can be seen from the above solution that in the embodiment of the present invention, multiple scene categories of the building are determined based on a large amount of historical reference data collected historically, and corresponding BES models are set corresponding to each scene category. After that, the current scene category can be determined based on the currently collected scene data, and the BES model corresponding to the current scene category can be called to determine the optimal control strategy of the HVAC system, and then the HVAC system can be controlled based on the optimal control strategy. The corresponding equipment in the system, such as heating equipment, ventilation equipment and air conditioning equipment, etc., thereby improving the accuracy of the BES model in energy performance prediction and conducive to building energy saving optimization.
下面将通过参照附图详细描述本发明的优选实施例,使本领域的普通技术人员更清楚本发明的上述及其它特征和优点,附图中:Preferred embodiments of the present invention will be described in detail below to make the above and other features and advantages of the present invention more apparent to those skilled in the art with reference to the accompanying drawings, in which:
图1为本发明实施例中一种暖通空调系统的管理方法的示例性流程图。Figure 1 is an exemplary flow chart of a management method for an HVAC system in an embodiment of the present invention.
图2为本发明一个例子中建立及更新基准场景分类策略和对应各场景类别的基准BES模型的方法的示例性流程图。Figure 2 is an exemplary flow chart of a method of establishing and updating a benchmark scene classification strategy and a benchmark BES model corresponding to each scene category in an example of the present invention.
图3为本发明一个例子中分类历史参考数据、校准初始BES模型并得到对应各场景类别的候选BES模型的过程示意图。Figure 3 is a schematic diagram of the process of classifying historical reference data, calibrating the initial BES model and obtaining candidate BES models corresponding to each scene category in an example of the present invention.
图4为本申请实施例中一种暖通空调系统的管理系统的结构示意图。Figure 4 is a schematic structural diagram of a management system of an HVAC system in an embodiment of the present application.
图5为本申请实施例中建立及更新基准场景分类策略和对应各场景类别的基准BES模型的系统的结构示意图。Figure 5 is a schematic structural diagram of a system for establishing and updating a benchmark scene classification strategy and a benchmark BES model corresponding to each scene category in an embodiment of the present application.
图6为本申请实施例中又一种暖通空调系统的管理系统的结构示意图。FIG. 6 is a schematic structural diagram of another HVAC system management system in an embodiment of the present application.
其中,附图标记如下:Among them, the reference signs are as follows:
本发明实施例中,考虑到目前为优化暖通空调系统的能耗,同时保持规定的建筑性能标准,通常在建筑运行阶段应用建筑能耗模拟(Building Energy Simulation,BES)对某外部环境影响下暖通空调运行参数的影响进行预测。In the embodiment of the present invention, considering that in order to optimize the energy consumption of the HVAC system while maintaining the prescribed building performance standards, building energy simulation (Building Energy Simulation, BES) is usually applied during the building operation stage to influence the external environment. Predict the impact of HVAC operating parameters.
BES模型通常可以分为规则驱动模型和数据驱动模型。数据驱动的BES模型利用建筑物中的监控数据生成能够预测系统行为的模型,模型的准确性很大程度上取决于可用训练数据的质量和数量。基于热平衡方程和数据驱动模型的规则驱动模型可以提供建筑物性能的最详细预测和控制策略的准确评估。由于在规则驱动的BES模型中使用了成百上千个输入参数,其中一些参数通常无法测量,因此可以发现BES模型预测的建筑能耗与实际计量建筑能耗之间存在显著差异。因此,需要利用建筑运行过程中的监测数据对BES模型进行标定和测试。考虑到外部环境对暖通空调系统性能的影响,操作人员通常根据经验规则,以固定频率更新 BES模型,例如每隔三个月更新一次BES模型。BES models can generally be divided into rule-driven models and data-driven models. Data-driven BES models utilize monitoring data from a building to generate a model capable of predicting system behavior. The accuracy of the model largely depends on the quality and quantity of available training data. Rule-driven models based on heat balance equations and data-driven models can provide the most detailed predictions of building performance and accurate assessment of control strategies. Since hundreds or thousands of input parameters are used in rule-driven BES models, some of which are often unmeasurable, significant differences can be found between building energy consumption predicted by BES models and actual measured building energy consumption. Therefore, it is necessary to use monitoring data during building operation to calibrate and test the BES model. Considering the impact of the external environment on HVAC system performance, operators usually update the BES model at a fixed frequency based on rules of thumb, such as every three months.
然而,目前的BES模型标定过程中,由于外部环境的影响,模型参数的变化不能完全反映出来,例如建筑物的通风率与空气污染指数和室外温度有很大的关系。因此,本实施例中考虑根据大量历史采集的外部信息(如天气信息、节假日信息、以及当地事件等信息)和建筑状态信息(如传感器采集的信息、建筑物内的手动输入信息等)确定所述建筑的多个场景类别,并对应每个场景类别设置对应的BES模型。之后,可根据当前采集的外部信息和建筑状态信息确定出当前的场景类别,并调用对应当前场景类别的BES模型来确定暖通空调系统的最优控制策略,然后基于所述最优控制策略控制暖通空调系统中的对应设备,如暖风设备、通风设备和空调设备等。However, in the current BES model calibration process, changes in model parameters cannot be fully reflected due to the influence of the external environment. For example, the ventilation rate of a building has a great relationship with the air pollution index and outdoor temperature. Therefore, in this embodiment, it is considered to determine the location based on a large amount of historically collected external information (such as weather information, holiday information, local events, etc.) and building status information (such as information collected by sensors, manual input information in the building, etc.) Describe multiple scene categories of the building, and set the corresponding BES model corresponding to each scene category. After that, the current scene category can be determined based on the currently collected external information and building status information, and the BES model corresponding to the current scene category can be called to determine the optimal control strategy of the HVAC system, and then control based on the optimal control strategy Corresponding equipment in HVAC systems, such as heating equipment, ventilation equipment, and air conditioning equipment.
为使本发明的目的、技术方案和优点更加清楚,以下举实施例对本发明进一步详细说明。In order to make the purpose, technical solutions and advantages of the present invention clearer, the following examples are given to further describe the present invention in detail.
图1为本发明实施例中一种暖通空调系统的管理方法的示例性流程图。如图1所示,本实施例中的方法可包括如下步骤:Figure 1 is an exemplary flow chart of a management method for an HVAC system in an embodiment of the present invention. As shown in Figure 1, the method in this embodiment may include the following steps:
步骤101,根据获取的与暖通空调系统运行相关的当前场景数据以及预先确定的基准场景分类策略,确定出当前场景类别。Step 101: Determine the current scene category based on the acquired current scene data related to the operation of the HVAC system and the predetermined baseline scene classification strategy.
本实施例中,与暖通空调系统运行相关的场景数据可包括:来自建筑内的建筑状态数据和/或来自建筑外的外部数据等。其中,来自建筑内的建筑状态数据可包括:建筑内与暖通空调系统和/或建筑物热性能相关的传感器采集的信息;以及建筑物内与暖通空调系统相关的手动输入的信息等。其中,传感器采集的信息可包括:冷冻水/热水的温度、冷冻机/加热器的用电、风机盘管(Fan Control Unit,FCU)终端的流量以及室内的温度和湿度等。手动输入的信息可包括:房间舒适度要求等。来自建筑外的外部数据可包括:天气信息、节假日信息、当地事件信息等。实际应用中,具体场景数据可根据实际需要确定,此处不对其进行限定。In this embodiment, the scene data related to the operation of the HVAC system may include: building status data from within the building and/or external data from outside the building, etc. Among them, the building status data from the building may include: information collected by sensors in the building related to the HVAC system and/or the building's thermal performance; and manually input information related to the HVAC system in the building. Among them, the information collected by the sensor may include: chilled water/hot water temperature, refrigerator/heater power consumption, fan coil unit (Fan Control Unit, FCU) terminal flow rate, indoor temperature and humidity, etc. Manually entered information can include: room comfort requirements, etc. External data from outside the building can include: weather information, holiday information, local event information, etc. In actual applications, specific scene data can be determined according to actual needs and are not limited here.
本实施例中,具体实现时,可基于预先确定的基准场景分类策略,利用大量组的历史场景数据作为输入样本,将每组历史场景数据对应的场景类别作为输出样本,对人工智能网络进行训练,并得到一个场景分类模型,之后可将当前场景数据作为所述场景分类模型的输入,所述场景分类模型便可直接输出对应的场景类别。In this embodiment, during specific implementation, the artificial intelligence network can be trained based on a predetermined benchmark scene classification strategy, using a large number of groups of historical scene data as input samples, and using the scene categories corresponding to each group of historical scene data as output samples. , and obtain a scene classification model, and then the current scene data can be used as the input of the scene classification model, and the scene classification model can directly output the corresponding scene category.
此外,也可以基于预先确定的基准场景分类策略,设置一场景数据库,该场景数据库中可存储针对每一场景类别的场景数据,在接收到当前场景数据后,可采用各种人工智能算法,如K均值聚类(K-means Clustering,KMeans)或基于密度的噪声空间聚类 (Density-Based Spatial Clustering Algorithm with Noise,DBSCAN)等算法从场景数据库中确定出当前场景数据对应的场景类别。In addition, a scene database can also be set up based on a predetermined baseline scene classification strategy. The scene database can store scene data for each scene category. After receiving the current scene data, various artificial intelligence algorithms can be used, such as Algorithms such as K-means Clustering (KMeans) or Density-Based Spatial Clustering Algorithm with Noise (DBSCAN) determine the scene category corresponding to the current scene data from the scene database.
步骤102,从预先确定的对应各场景类别的基准BES模型中激活对应所述当前场景类别的基准BES模型,得到当前基准BES模型。Step 102: Activate the benchmark BES model corresponding to the current scene category from the predetermined benchmark BES models corresponding to each scene category to obtain the current benchmark BES model.
本实施例中,针对一建筑并非仅设置一个单一的BES模型,而是对应不同的场景类别分别设置一个基准BES模型。这样在步骤101中确定出当前场景类别后,便可激活对应该场景类别的基准BES模型作为建筑性能和能耗的仿真模型,从而可使得基准BES模型的仿真结果更加准确。In this embodiment, instead of just setting a single BES model for a building, a baseline BES model is set corresponding to different scene categories. In this way, after the current scene category is determined in step 101, the benchmark BES model corresponding to the scene category can be activated as a simulation model of building performance and energy consumption, thereby making the simulation results of the benchmark BES model more accurate.
步骤103,利用所述当前场景数据和所述当前基准BES模型确定出暖通空调系统的最优控制策略。Step 103: Use the current scenario data and the current baseline BES model to determine the optimal control strategy of the HVAC system.
本步骤中,可基于一优化控制算法,如遗传算法(GA)或粒子群算法(PSO)或GA和PSO的组合算法等来确定暖通空调系统的最优控制策略,以保证当前场景下建筑的性能指标,并具有最优的节能性能。具体地,可基于设定的优化控制算法以及所述当前场景数据调用所述当前BES模型,例如可将所述当前场景数据以及基于所述优化控制算法得到的其他不同输入参数作为所述当前基准BES模型的输入,并获取所述当前基准BES模型的不同输出,根据所述当前基准BES模型的输出确定暖通空调系统的最优控制策略。In this step, the optimal control strategy of the HVAC system can be determined based on an optimization control algorithm, such as genetic algorithm (GA) or particle swarm algorithm (PSO) or a combination algorithm of GA and PSO, to ensure that the building under the current scenario performance indicators and has optimal energy-saving performance. Specifically, the current BES model can be called based on the set optimization control algorithm and the current scene data. For example, the current scene data and other different input parameters obtained based on the optimization control algorithm can be used as the current benchmark. BES model input, and obtain different outputs of the current baseline BES model, and determine the optimal control strategy of the HVAC system based on the output of the current baseline BES model.
在一个例子中,最优控制策略中需要优化的操作参数可以是冷冻水/热水的温度、每个FCU的空气流量等。In one example, the operating parameters that need to be optimized in the optimal control strategy may be the temperature of chilled/hot water, the air flow rate of each FCU, etc.
步骤104,根据所述最优控制策略控制所述暖通空调系统中的对应设备。Step 104: Control corresponding equipment in the HVAC system according to the optimal control strategy.
本步骤中,可根据所述最优控制策略将相应的控制信号发送到建筑物内的暖风、通风与空调系统设备。In this step, corresponding control signals can be sent to the heating, ventilation and air conditioning system equipment in the building according to the optimal control strategy.
此外,本实施例中可进一步显示与暖通空调系统相关的信息。所述与暖通空调系统相关的信息来自所述当前场景数据、和/或所述暖通空调系统的控制信息和/或状态信息。例如,可显示与建筑热工和暖通空调系统相关的信息如室内温度、能耗、暖通空调设备状态等。In addition, in this embodiment, information related to the HVAC system may be further displayed. The information related to the HVAC system comes from the current scene data and/or the control information and/or status information of the HVAC system. For example, information related to the building's thermal and HVAC systems such as indoor temperature, energy consumption, HVAC equipment status, etc. can be displayed.
上述方法可根据预先设定的时间间隔周期性执行。或者,在某些应用中,也可实时执行。The above method can be executed periodically according to a preset time interval. Alternatively, in some applications, it can be performed in real time.
针对上述步骤101和步骤102中的基准场景分类策略和对应各场景类别的基准BES模型的建立及更新过程可有多种具体实现方法。下面列举其中一种。There are many specific implementation methods for the establishment and update process of the benchmark scene classification strategy and the benchmark BES model corresponding to each scene category in the above steps 101 and 102. One of them is listed below.
图2为本发明一个例子中基准场景分类策略和对应各场景类别的基准BES模型的建立及更新方法的示例性流程图。本例子中,更新过程可根据预先设定的时间间隔周期性进行。如图2所示,该方法可包括如下步骤:FIG. 2 is an exemplary flow chart of a method for establishing and updating a benchmark scene classification strategy and a benchmark BES model corresponding to each scene category in an example of the present invention. In this example, the update process can be performed periodically according to a preset time interval. As shown in Figure 2, the method may include the following steps:
步骤201,收集设定数量组的历史采集的与暖通空调系统相关的历史参考数据;所述设定数量大于一设定数量阈值。其中,设定数量阈值是指满足要求的一个足够大的数值。Step 201: Collect a set number of historically collected historical reference data related to the HVAC system; the set number is greater than a set number threshold. Among them, the set quantity threshold refers to a large enough value to meet the requirements.
本步骤中,历史参考数据可包括历史的场景数据以及其他相关的数据,如控制策略、能耗等。具体可根据实际需要确定,此处不对其进行限定。In this step, historical reference data may include historical scene data and other related data, such as control strategies, energy consumption, etc. The specifics can be determined according to actual needs and are not limited here.
实际应用中,随着历史参考数据的积累,后续对基准场景分类策略和对应各场景类别的基准BES模型进行更新时,历史参考数据的量也会越来越多。相应地,更新后的基准场景分类策略和对应各场景类别的基准BES模型也会越来越优化。In practical applications, with the accumulation of historical reference data, when the benchmark scene classification strategy and the benchmark BES model corresponding to each scene category are subsequently updated, the amount of historical reference data will also increase. Correspondingly, the updated baseline scene classification strategy and the baseline BES model corresponding to each scene category will be increasingly optimized.
步骤202,利用所述历史参考数据对一初始BES模型20中与场景无关的参数进行校准。Step 202: Calibrate the scene-independent parameters of an initial BES model 20 using the historical reference data.
本步骤中,初始BES模型可以为利用与暖通空调系统运行相关的已知固定信息如几何信息、结构信息、暖通空调系统信息等和对不确定信息如暖通空调设备性能、占有率等的初始估值建立的BES模型。或者如果没有对建筑物和暖通空调系统进行重大翻修,初始BES模型也可以为已经存在的当前可用的BES模型。In this step, the initial BES model can be based on the use of known fixed information related to the operation of the HVAC system, such as geometric information, structural information, HVAC system information, etc., and uncertain information such as HVAC equipment performance, occupancy rate, etc. The BES model established based on the initial valuation. Alternatively, if there are no major renovations to the building and HVAC system, the initial BES model could be a currently available BES model that already exists.
本步骤中,与场景无关的参数可以是一些结构特征数据等。In this step, parameters unrelated to the scene can be some structural feature data, etc.
步骤203,在初始建立基准场景分类策略和对应各场景类别的基准BES模型时,本步骤中可根据所述历史参考数据确定当前的场景分类策略。在后续对基准场景分类策略和对应各场景类别的基准BES模型进行更新时,既可以直接根据所述历史参考数据确定当前的场景分类策略,也可以参考之前的基准场景分类策略,即在存在历史的基准场景分类策略时,可根据所述历史参考数据以及所述历史的基准场景分类策略确定当前的场景分类策略。Step 203: When initially establishing a benchmark scene classification strategy and a benchmark BES model corresponding to each scene category, in this step, the current scene classification strategy can be determined based on the historical reference data. When the baseline scene classification strategy and the baseline BES model corresponding to each scene category are subsequently updated, the current scene classification strategy can be determined directly based on the historical reference data, or the previous baseline scene classification strategy can be referred to, that is, when there is history When the baseline scene classification strategy is determined, the current scene classification strategy may be determined based on the historical reference data and the historical baseline scene classification strategy.
本步骤中,场景分类策略可根据实际情况确定,此处不对其进行限定。例如,分类标准可以是最高温度、最低温度、平均温度、降水量、空气污染指数、风速、工作日/周末、与天气和/或建筑物运行有关的其他参数和/或这些参数的组合。In this step, the scene classification strategy can be determined based on the actual situation and is not limited here. For example, the classification criteria may be maximum temperature, minimum temperature, average temperature, precipitation, air pollution index, wind speed, weekdays/weekends, other parameters related to weather and/or building operation and/or a combination of these parameters.
步骤204,根据所述当前的场景分类策略,将所述历史参考数据划分为不同的场景类别,利用每个场景类别的参考数据对所述初始BES模型中与场景相关的参数进行校准,得到对应所述场景类别的候选BES模型。Step 204: Divide the historical reference data into different scene categories according to the current scene classification strategy, use the reference data of each scene category to calibrate the scene-related parameters in the initial BES model, and obtain the corresponding Candidate BES models for the scene category.
本步骤中的过程可参见图3,图3示出了将历史参考数据进行分类、校准初始BES 模型并得到对应各场景类别的候选BES模型的过程示意图。如图3所示,该过程可包括:The process in this step can be seen in Figure 3. Figure 3 shows a schematic diagram of the process of classifying historical reference data, calibrating the initial BES model, and obtaining candidate BES models corresponding to each scene category. As shown in Figure 3, this process may include:
参考数据31基于场景分类策略32划分至不同的场景类别,得到场景类别1下的数据子集331、场景类别2下的数据子集332、……、场景类别n下的数据子集33n。利用每个场景类别下的数据子集对初始BES模型进行模型校准34,得到场景类别1下的候选BES模型351、场景类别2下的候选BES模型352、……、场景类别n下的候选BES模型35n。The reference data 31 is divided into different scene categories based on the scene classification strategy 32, and a data subset 331 under scene category 1, a data subset 332 under scene category 2, ..., and a data subset 33n under scene category n are obtained. The initial BES model is calibrated 34 using the data subset under each scene category, and a candidate BES model 351 under scene category 1, a candidate BES model 352 under scene category 2, ..., and a candidate BES model under scene category n are obtained. Model 35n.
若可以确定当前的场景分类策略和候选BES模型能够满足要求,例如当前的场景分类策略和候选BES模型为经多次更新后得到的场景分类策略和候选BES模型,则可直接将所述场景分类策略确定为所述基准场景分类策略,将所述候选BES模型确定为所述基准BES模型。If it can be determined that the current scene classification strategy and candidate BES model can meet the requirements, for example, the current scene classification strategy and candidate BES model are the scene classification strategy and candidate BES model obtained after multiple updates, then the scene can be classified directly The strategy is determined as the benchmark scene classification strategy, and the candidate BES model is determined as the benchmark BES model.
当然,若不能确定当前的场景分类策略和候选BES模型是否满足要求,则可如图2所示,继续执行如下步骤:Of course, if you are not sure whether the current scene classification strategy and candidate BES model meet the requirements, you can continue to perform the following steps as shown in Figure 2:
步骤205,根据场景类别的数量、场景类别之间的区分度以及对应每个场景类别的候选BES模型的仿真准确性中的任意一种或任意组合,对所述场景分类策略进行综合评估。Step 205: Conduct a comprehensive evaluation of the scene classification strategy based on any one or any combination of the number of scene categories, the distinction between scene categories, and the simulation accuracy of the candidate BES models corresponding to each scene category.
本步骤中,在计算对应每个场景类别的候选BES模型的仿真准确性时,可针对每个候选BES模型,计算所述候选BES模型的仿真结果与历史样本的结果之间的误差,例如平均误差或均方根误差等,从而得到一个评估分,之后对对应每个场景类别的候选BES模型的评估分进行例如加权求和等的综合处理,从而得到一个综合评分,进而可将该综合评分与一阈值进行比较,以确定对应每个场景类别的候选BES模型的仿真准确性是否满足要求。In this step, when calculating the simulation accuracy of the candidate BES models corresponding to each scene category, the error between the simulation results of the candidate BES models and the results of historical samples can be calculated for each candidate BES model, such as the average Error or root mean square error, etc., to obtain an evaluation score. Then, the evaluation scores of the candidate BES models corresponding to each scene category are comprehensively processed, such as weighted summation, to obtain a comprehensive score, and then the comprehensive score can be Compare with a threshold to determine whether the simulation accuracy of the candidate BES model corresponding to each scene category meets the requirements.
步骤206,判断评估结果是否满足要求,在综合评估结果满足设定要求时,执行步骤207;否则,执行步骤208。Step 206: Determine whether the evaluation result meets the requirements. When the comprehensive evaluation result meets the set requirements, execute step 207; otherwise, execute step 208.
步骤207,将所述场景分类策略确定为所述基准场景分类策略,将所述候选BES模型确定为所述基准BES模型。Step 207: Determine the scene classification strategy as the base scene classification strategy, and determine the candidate BES model as the base BES model.
步骤208,利用设定的策略优化算法对所述场景分类策略进行优化,将优化后的场景分类策略作为当前的场景分类策略,并返回执行步骤204。Step 208: Use the set strategy optimization algorithm to optimize the scene classification strategy, use the optimized scene classification strategy as the current scene classification strategy, and return to step 204.
本步骤中,可利用人工智能算法如遗传算法(GA)或粒子群算法(PSO)或GA和PSO的组合算法等来对场景分类策略进行优化。此外,也可采用仿真加速算法如代理模型来生成优化的场景分类策略。In this step, artificial intelligence algorithms such as genetic algorithm (GA) or particle swarm algorithm (PSO) or a combination algorithm of GA and PSO can be used to optimize the scene classification strategy. In addition, simulation acceleration algorithms such as surrogate models can also be used to generate optimized scene classification strategies.
以上对本发明实施例中暖通空调系统的管理方法进行了详细描述,下面再对本发明实施例中暖通空调系统的管理系统进行详细描述。本发明实施例中的暖通空调系统的管理系统可用于实施本发明实施例中的暖通空调系统的管理方法,对于本发明系统实施例中未详细披露的细节可参见本发明方法实施例中的相应描述,此处不再一一赘述。The management method of the HVAC system in the embodiment of the present invention has been described in detail above. The management system of the HVAC system in the embodiment of the present invention will be described in detail below. The management system of the HVAC system in the embodiment of the present invention can be used to implement the management method of the HVAC system in the embodiment of the present invention. For details not disclosed in the system embodiment of the present invention, please refer to the method embodiment of the present invention. The corresponding descriptions will not be repeated here.
图4为本发明实施例中一种暖通空调系统的管理系统的示例性结构图。如图4所示,该暖通空调系统的管理系统41可包括:数据收集模块411、场景决策模块412、模型确定模块413、控制策略确定模块414和系统控制模块415。Figure 4 is an exemplary structural diagram of a management system of an HVAC system in an embodiment of the present invention. As shown in FIG. 4 , the management system 41 of the HVAC system may include: a data collection module 411 , a scenario decision module 412 , a model determination module 413 , a control strategy determination module 414 and a system control module 415 .
其中,数据收集模块411用于收集与暖通空调系统运行相关的当前场景数据,并对所收集的数据进行处理,将处理后的数据发送给场景决策模块412的数字接口。如图4所示,数据收集模块411可收集建筑42内与暖通空调系统和/或建筑物热性能相关的传感器421采集的信息;也可收集建筑42内通过控制面板422等手动输入的信息;还可收集来自外部数据源43的信息,如天气信息、节假日信息、当地事件信息等。Among them, the data collection module 411 is used to collect current scene data related to the operation of the HVAC system, process the collected data, and send the processed data to the digital interface of the scene decision-making module 412. As shown in Figure 4, the data collection module 411 can collect information collected by sensors 421 in the building 42 related to the HVAC system and/or the thermal performance of the building; it can also collect information manually input through the control panel 422 in the building 42. ; Information from external data sources 43 may also be collected, such as weather information, holiday information, local event information, etc.
场景决策模块412用于根据所述当前场景数据以及预先确定的基准场景分类策略,确定出建筑的当前场景类别。The scene decision module 412 is used to determine the current scene category of the building based on the current scene data and the predetermined benchmark scene classification strategy.
模型确定模块413用于从预先确定的对应各场景类别的基准BES模型4131、4132、……、413n中激活对应所述当前场景类别的基准BES模型,得到当前基准BES模型。The model determination module 413 is used to activate the benchmark BES model corresponding to the current scene category from the predetermined benchmark BES models 4131, 4132, ..., 413n corresponding to each scene category, to obtain the current benchmark BES model.
其中,场景决策模块412、模型确定模块413以及其中对应各场景类别的BES模型可以为暖通空调系统的数字孪生系统DT中的组成部分。Among them, the scene decision module 412, the model determination module 413, and the BES models corresponding to each scene category can be components of the digital twin system DT of the HVAC system.
控制策略确定模块414用于基于设定的优化控制算法以及所述当前场景数据调用所述当前BES模型,根据所述当前基准BES模型的输出确定暖通空调系统的最优控制策略。The control strategy determination module 414 is configured to call the current BES model based on the set optimal control algorithm and the current scene data, and determine the optimal control strategy of the HVAC system based on the output of the current baseline BES model.
系统控制模块415用于根据所述最优控制策略控制建筑42内的暖通空调系统423中的对应设备,如暖风设备、通风设备和空调设备等。The system control module 415 is used to control corresponding equipment in the HVAC system 423 in the building 42 according to the optimal control strategy, such as heating equipment, ventilation equipment, air conditioning equipment, etc.
此外,本发明实施例中的暖通空调系统的管理系统,还可以如图4中的虚线部分,进一步包括一显示模块416,该显示模块416用于读取来自数据收集模块411、当前基准BES模型、以及系统控制模块415中至少一个的与建筑热工和暖通空调系统相关的信息,并显示所述信息。In addition, the management system of the HVAC system in the embodiment of the present invention may further include a display module 416 as shown in the dotted line in Figure 4. The display module 416 is used to read the current baseline BES from the data collection module 411. Information related to the building thermal and HVAC system of at least one of the model, and system control module 415, and display the information.
图5为本申请实施例中建立及更新基准场景分类策略和对应各场景类别的基准BES模型的系统的结构示意图。如图5所示,该系统可包括:数据记录模块501、第一校准模块502、分类策略确定模块503、数据划分模块504、第二校准模块505、评估模块506、结 果判定模块507和策略优化模块508。Figure 5 is a schematic structural diagram of a system for establishing and updating a benchmark scene classification strategy and a benchmark BES model corresponding to each scene category in an embodiment of the present application. As shown in Figure 5, the system may include: data recording module 501, first calibration module 502, classification strategy determination module 503, data partition module 504, second calibration module 505, evaluation module 506, result determination module 507 and strategy optimization Module 508.
数据记录模块501用于记录所述数据收集模块和/或其他外部模块历史收集的设定数量组的与暖通空调系统相关的历史参考数据;所述设定数量大于一设定数量阈值。The data recording module 501 is configured to record a set number of historical reference data related to the HVAC system collected by the data collection module and/or other external modules; the set number is greater than a set number threshold.
第一校准模块502用于利用所述历史参考数据对一初始BES模型中与场景无关的参数进行校准。The first calibration module 502 is used to calibrate scene-independent parameters in an initial BES model using the historical reference data.
分类策略确定模块503用于根据所述历史参考数据确定当前的场景分类策略。在存在历史基准场景分类策略时,该分类策略确定模块503还可以进一步参考该历史基准场景分类策略,例如,可根据所述历史参考数据以及所述历史基准场景分类策略确定当前的场景分类策略。The classification strategy determination module 503 is used to determine the current scene classification strategy based on the historical reference data. When a historical reference scene classification strategy exists, the classification strategy determination module 503 may further refer to the historical reference scene classification strategy. For example, the current scene classification strategy may be determined based on the historical reference data and the historical reference scene classification strategy.
数据划分模块504用于根据所述当前的场景分类策略,将所述历史参考数据划分为不同的场景类别。The data dividing module 504 is configured to divide the historical reference data into different scene categories according to the current scene classification strategy.
第二校准模块505用于利用每个场景类别的参考数据对所述初始BES模型中与场景相关的参数进行校准,得到对应所述场景类别的候选BES模型。The second calibration module 505 is configured to use the reference data of each scene category to calibrate scene-related parameters in the initial BES model to obtain a candidate BES model corresponding to the scene category.
评估模块506用于根据场景类别的数量、场景类别之间的区分度以及对应每个场景类别的候选BES模型的仿真准确性中的任意一种或任意组合,对所述场景分类策略进行综合评估。The evaluation module 506 is used to conduct a comprehensive evaluation of the scene classification strategy based on any one or any combination of the number of scene categories, the distinction between scene categories, and the simulation accuracy of the candidate BES models corresponding to each scene category. .
结果判定模块507用于在综合评估结果满足设定要求时,将所述场景分类策略确定为基准场景分类策略并提供给所述场景决策模块412,将所述候选BES模型确定为基准BES模型,并提供给所述BES模型确定模块413;在综合评估结果不满足设定要求时,指示策略优化模块508进行策略优化。The result determination module 507 is configured to determine the scene classification strategy as the benchmark scene classification strategy and provide it to the scene decision module 412 when the comprehensive evaluation result meets the setting requirements, and determine the candidate BES model as the benchmark BES model, And provided to the BES model determination module 413; when the comprehensive evaluation result does not meet the set requirements, the strategy optimization module 508 is instructed to perform strategy optimization.
策略优化模块508用于利用设定的策略优化算法对所述场景分类策略进行优化,将优化后的场景分类策略作为当前的场景分类策略,并指示数据划分模块504执行所述根据所述当前的场景分类策略,将所述历史参考数据划分为不同的场景类别的操作。The strategy optimization module 508 is used to optimize the scene classification strategy using the set strategy optimization algorithm, use the optimized scene classification strategy as the current scene classification strategy, and instruct the data partitioning module 504 to execute the scene classification strategy according to the current scene classification strategy. The scene classification strategy is an operation of dividing the historical reference data into different scene categories.
与图2所示方法相对应,在某些应用中,也可以不包括所述评估模块506和策略优化模块508,由结果判断模块507直接将所述场景分类策略确定为基准场景分类策略并提供给所述场景决策模块412,将所述候选BES模型确定为基准BES模型,并提供给所述BES模型确定模块413。Corresponding to the method shown in Figure 2, in some applications, the evaluation module 506 and the strategy optimization module 508 may not be included, and the result judgment module 507 directly determines the scene classification strategy as a benchmark scene classification strategy and provides To the scene decision-making module 412, the candidate BES model is determined as the baseline BES model and provided to the BES model determination module 413.
具体实现时,图5所示系统也可以合并至图4所示系统中。During specific implementation, the system shown in Figure 5 can also be merged into the system shown in Figure 4.
图6为本申请实施例中又一种暖通空调系统的管理系统的结构示意图,该系统可用于 实施图1-图3中所示的方法,或实现图4-图5中所示的系统。如图6所示,该系统可包括:至少一个存储器61和至少一个处理器62。此外,还可以包括一些其它组件,例如通信端口等。这些组件通过总线63进行通信。Figure 6 is a schematic structural diagram of another HVAC system management system in an embodiment of the present application. This system can be used to implement the method shown in Figures 1-3, or to implement the system shown in Figures 4-5 . As shown in FIG. 6 , the system may include: at least one memory 61 and at least one processor 62 . In addition, some other components may also be included, such as communication ports, etc. These components communicate via bus 63.
其中,至少一个存储器61用于存储计算机程序。在一个实施方式中,该计算机程序可以理解为包括图4-图5所示的暖通空调系统的管理系统的各个模块。此外,至少一个存储器61还可存储操作系统等。操作系统包括但不限于:Android操作系统、Symbian操作系统、Windows操作系统、Linux操作系统等等。Among them, at least one memory 61 is used to store computer programs. In one embodiment, the computer program can be understood as including various modules of the management system of the HVAC system shown in Figures 4-5. In addition, at least one memory 61 may also store an operating system and the like. Operating systems include but are not limited to: Android operating system, Symbian operating system, Windows operating system, Linux operating system, etc.
至少一个处理器62用于调用至少一个存储器61中存储的计算机程序,执行本申请实施例中所述的暖通空调系统的管理方法。处理器62可以为CPU,处理单元/模块,ASIC,逻辑模块或可编程门阵列等。其可通过所述通信端口进行数据的接收和发送。At least one processor 62 is configured to call a computer program stored in at least one memory 61 to execute the management method of the HVAC system described in the embodiment of the present application. The processor 62 may be a CPU, a processing unit/module, an ASIC, a logic module or a programmable gate array, etc. It can receive and send data through the communication port.
具体地,至少一个处理器62用于调用至少一个存储器61中存储的计算机程序使所述系统执行对应的操作。所述操作可包括:根据获取的与暖通空调系统运行相关的当前场景数据以及预先确定的基准场景分类策略,确定出当前场景类别;从预先确定的对应各场景类别的基准BES模型中激活对应所述当前场景类别的基准BES模型,得到当前基准BES模型;利用所述当前场景数据和所述当前基准BES模型确定出暖通空调系统的最优控制策略;根据所述最优控制策略控制所述暖通空调系统中的对应设备。Specifically, at least one processor 62 is used to call a computer program stored in at least one memory 61 to cause the system to perform corresponding operations. The operation may include: determining the current scene category based on the acquired current scene data related to the operation of the HVAC system and the predetermined benchmark scene classification strategy; activating the corresponding scene category from the predetermined benchmark BES model corresponding to each scene category. The baseline BES model of the current scene category is used to obtain the current baseline BES model; the optimal control strategy of the HVAC system is determined using the current scene data and the current baseline BES model; and the optimal control strategy is controlled according to the optimal control strategy. Describe the corresponding equipment in the HVAC system.
在一个实施方式中,所述操作可进一步包括:收集设定数量组的历史采集的与暖通空调系统相关的历史参考数据;所述设定数量大于一设定数量阈值;利用所述历史参考数据对一初始BES模型中与场景无关的参数进行校准;根据所述历史参考数据确定当前的场景分类策略;根据所述当前的场景分类策略,将所述历史参考数据划分为不同的场景类别,利用每个场景类别的参考数据对所述初始BES模型中与场景相关的参数进行校准,得到对应所述场景类别的候选BES模型;将所述场景分类策略确定为所述基准场景分类策略,将所述候选BES模型确定为所述基准BES模型。In one embodiment, the operations may further include: collecting a set number of historically collected historical reference data related to the HVAC system; the set number being greater than a set number threshold; utilizing the historical reference The data calibrates scene-independent parameters in an initial BES model; determines a current scene classification strategy based on the historical reference data; divides the historical reference data into different scene categories according to the current scene classification strategy, Use the reference data of each scene category to calibrate the scene-related parameters in the initial BES model to obtain a candidate BES model corresponding to the scene category; determine the scene classification strategy as the baseline scene classification strategy, and The candidate BES model is determined as the baseline BES model.
在一个实施方式中,将所述场景分类策略确定为所述基准场景分类策略,将所述候选BES模型确定为所述基准BES模型之前,进一步包括:根据场景类别的数量、场景类别之间的区分度以及对应每个场景类别的候选BES模型的仿真准确性中的任意一种或任意组合,对所述场景分类策略进行综合评估;在综合评估结果满足设定要求时,执行将所述场景分类策略确定为所述基准场景分类策略,将所述候选BES模型确定为所述基准BES模型的操作;否则,在综合评估结果不满足设定要求时,利用设定的策略优化算法对所述场景分类策略进行优化,将优化后的场景分类策略作为当前的场景分类策略,并 返回执行所述根据所述当前的场景分类策略,将所述历史参考数据划分为不同的场景类别的操作。In one embodiment, before determining the scene classification strategy as the baseline scene classification strategy and determining the candidate BES model as the baseline BES model, the method further includes: according to the number of scene categories, the distance between scene categories Any one or any combination of the discrimination and the simulation accuracy of the candidate BES model corresponding to each scene category, conduct a comprehensive evaluation of the scene classification strategy; when the comprehensive evaluation results meet the set requirements, execute the scene classification strategy The classification strategy is determined as the benchmark scene classification strategy, and the candidate BES model is determined as the operation of the benchmark BES model; otherwise, when the comprehensive evaluation result does not meet the set requirements, the set strategy optimization algorithm is used to The scene classification strategy is optimized, the optimized scene classification strategy is used as the current scene classification strategy, and the operation of dividing the historical reference data into different scene categories according to the current scene classification strategy is performed.
在一个实施方式中,所述根据所述历史参考数据确定当前的场景分类策略之前,所述操作进一步包括:确定当前是否存在历史的基准场景分类策略,若存在历史的基准场景分类策略,则根据所述历史参考数据以及所述历史的基准场景分类策略确定当前的场景分类策略,若不存在历史的基准场景分类策略,则执行所述根据所述历史参考数据确定当前的场景分类策略的操作。In one embodiment, before determining the current scene classification strategy based on the historical reference data, the operation further includes: determining whether there is currently a historical baseline scene classification strategy, and if there is a historical baseline scene classification strategy, then determining according to The historical reference data and the historical reference scene classification strategy determine the current scene classification strategy. If there is no historical reference scene classification strategy, the operation of determining the current scene classification strategy based on the historical reference data is performed.
在一个实施方式中,所述操作进一步包括:显示与暖通空调系统相关的信息;所述与暖通空调系统相关的信息来自所述当前场景数据、和/或所述暖通空调系统的控制信息和/或状态信息。In one embodiment, the operations further include: displaying information related to the HVAC system; the information related to the HVAC system comes from the current scene data and/or the control of the HVAC system information and/or status information.
在一个实施方式中,所述场景数据包括下列信息中的至少一种或任意组合:天气信息、节假日信息、当地事件信息、建筑内与暖通空调系统和/或建筑物热性能相关的传感器采集的信息、建筑物内手动输入的与暖通空调系统相关的信息。所述历史参考数据包括历史的场景数据。In one embodiment, the scene data includes at least one or any combination of the following information: weather information, holiday information, local event information, sensor collections in the building related to HVAC systems and/or building thermal performance information, manually entered information related to HVAC systems within the building. The historical reference data includes historical scene data.
需要说明的是,上述各流程和各结构图中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。各模块的划分仅仅是为了便于描述采用的功能上的划分,实际实现时,一个模块可以分由多个模块实现,多个模块的功能也可以由同一个模块实现,这些模块可以位于同一个设备中,也可以位于不同的设备中。It should be noted that not all steps and modules in the above-mentioned processes and structure diagrams are necessary, and some steps or modules can be ignored according to actual needs. The execution order of each step is not fixed and can be adjusted as needed. The division of each module is only for the convenience of describing the functional division. In actual implementation, one module can be implemented by multiple modules, and the functions of multiple modules can also be implemented by the same module. These modules can be located on the same device. , or it can be on a different device.
可以理解,上述各实施方式中的硬件模块可以以机械方式或电子方式实现。例如,一个硬件模块可以包括专门设计的永久性电路或逻辑器件(如专用处理器,如FPGA或ASIC)用于完成特定的操作。硬件模块也可以包括由软件临时配置的可编程逻辑器件或电路(如包括通用处理器或其它可编程处理器)用于执行特定操作。至于具体采用机械方式,或是采用专用的永久性电路,或是采用临时配置的电路(如由软件进行配置)来实现硬件模块,可以根据成本和时间上的考虑来决定。It can be understood that the hardware modules in the above embodiments can be implemented mechanically or electronically. For example, a hardware module may include specially designed permanent circuits or logic devices (such as a dedicated processor such as an FPGA or ASIC) to perform specific operations. Hardware modules may also include programmable logic devices or circuits (eg, including general-purpose processors or other programmable processors) temporarily configured by software to perform specific operations. As for the specific use of mechanical means, or the use of dedicated permanent circuits, or the use of temporarily configured circuits (such as configured by software) to implement the hardware modules, it can be decided based on cost and time considerations.
此外,本申请实施例中还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序能够被一处理器执行并实现本申请实施例中所述的暖通空调系统的管理方法。具体地,可以提供配有存储介质的系统或者装置,在该存储介质上存储着实现上述实施例中任一实施方式的功能的软件程序代码,且使该系统或者装置的计算机(或CPU或MPU)读出并执行存储在存储介质中的程序代码。此外,还可以通过基于程序代码的指令使计算机上操 作的操作系统等来完成部分或者全部的实际操作。还可以将从存储介质读出的程序代码写到插入计算机内的扩展板中所设置的存储器中或者写到与计算机相连接的扩展单元中设置的存储器中,随后基于程序代码的指令使安装在扩展板或者扩展单元上的CPU等来执行部分和全部实际操作,从而实现上述实施方式中任一实施方式的功能。用于提供程序代码的存储介质实施方式包括软盘、硬盘、磁光盘、光盘(如CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD+RW)、磁带、非易失性存储卡和ROM。可选择地,可以由通信网络从服务器计算机上下载程序代码。In addition, embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored. The computer program can be executed by a processor and implement the management of the HVAC system described in the embodiments of the present application. method. Specifically, a system or device equipped with a storage medium may be provided, on which the software program code that implements the functions of any of the above embodiments is stored, and the computer (or CPU or MPU) of the system or device ) reads and executes the program code stored in the storage medium. In addition, the operating system operating on the computer can also complete some or all of the actual operations through instructions based on the program code. The program code read from the storage medium can also be written into a memory provided in an expansion board inserted into the computer or into a memory provided in an expansion unit connected to the computer, and then based on the instructions of the program code, the program code is installed in the computer. The CPU on the expansion board or expansion unit performs some and all actual operations, thereby realizing the functions of any of the above embodiments. Storage media implementations for providing program codes include floppy disks, hard disks, magneto-optical disks, optical disks (such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW), Tapes, non-volatile memory cards and ROM. Alternatively, the program code can be downloaded from the server computer via the communications network.
从上述方案中可以看出,由于本发明实施例中,根据大量历史采集的历史参考数据确定建筑的多个场景类别,并对应每个场景类别设置对应的BES模型。之后,可根据当前采集的场景数据确定出当前的场景类别,并调用对应当前场景类别的BES模型来确定暖通空调系统的最优控制策略,然后基于所述最优控制策略控制暖通空调系统中的对应设备,如暖风设备、通风设备和空调设备等,从而提高了BES模型在能源性能预测中的准确性,有利于建筑节能优化。It can be seen from the above solution that in the embodiment of the present invention, multiple scene categories of the building are determined based on a large amount of historical reference data collected historically, and corresponding BES models are set corresponding to each scene category. After that, the current scene category can be determined based on the currently collected scene data, and the BES model corresponding to the current scene category can be called to determine the optimal control strategy of the HVAC system, and then the HVAC system can be controlled based on the optimal control strategy. The corresponding equipment in the system, such as heating equipment, ventilation equipment and air conditioning equipment, etc., thereby improving the accuracy of the BES model in energy performance prediction and conducive to building energy saving optimization.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the present invention. within the scope of protection.
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/101031 WO2022261965A1 (en) | 2021-06-18 | 2021-06-18 | Method and system for managing heating, ventilation and air conditioning system, and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117121025A true CN117121025A (en) | 2023-11-24 |
Family
ID=84525911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180096951.1A Pending CN117121025A (en) | 2021-06-18 | 2021-06-18 | Management method, system and storage medium of heating ventilation air conditioning system |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117121025A (en) |
WO (1) | WO2022261965A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118066596A (en) * | 2024-04-18 | 2024-05-24 | 江苏中安建设集团有限公司 | Intelligent control method and system for heating equipment based on building electricity |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116165911B (en) * | 2023-04-19 | 2023-07-11 | 深圳市吉方工控有限公司 | Smart home control method and device, embedded industrial control equipment and medium |
CN117035697B (en) * | 2023-10-09 | 2023-12-15 | 天津云起技术有限公司 | ITSM (integrated traffic simulation) platform optimization method and system based on historical dynamic analysis |
CN118656530B (en) * | 2024-08-21 | 2025-01-07 | 河北省电子信息技术研究院 | Intelligent matching method, device, equipment and storage medium for multi-scenario emergency measures |
CN119437623A (en) * | 2024-09-06 | 2025-02-14 | 重庆交通大学 | Thermal Pressure Flow Monitoring System Based on Structured Grid |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130124436A1 (en) * | 2011-11-15 | 2013-05-16 | Fujitsu Limited | Profiling Energy Consumption |
CN112116140B (en) * | 2020-09-10 | 2022-09-20 | 同济大学 | Building energy consumption prediction method based on twin model |
CN112361544A (en) * | 2020-10-12 | 2021-02-12 | 珠海格力电器股份有限公司 | Hotel air conditioner control method and device and hotel air conditioner |
CN112182720B (en) * | 2020-10-13 | 2023-07-28 | 北京建筑技术发展有限责任公司 | Building energy consumption model evaluation method based on building energy management application scene |
CN112560160B (en) * | 2020-12-24 | 2024-04-23 | 国网上海市电力公司 | Model and data driven heating ventilation air conditioner optimal set temperature acquisition method and equipment |
-
2021
- 2021-06-18 CN CN202180096951.1A patent/CN117121025A/en active Pending
- 2021-06-18 WO PCT/CN2021/101031 patent/WO2022261965A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118066596A (en) * | 2024-04-18 | 2024-05-24 | 江苏中安建设集团有限公司 | Intelligent control method and system for heating equipment based on building electricity |
Also Published As
Publication number | Publication date |
---|---|
WO2022261965A1 (en) | 2022-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022261965A1 (en) | Method and system for managing heating, ventilation and air conditioning system, and storage medium | |
KR102170522B1 (en) | Energy management system for exhibition hall considering environment and occupancy changes | |
EP3025099B1 (en) | Control device and method for buildings | |
CN107923645B (en) | Air-conditioning operation analysis device and non-transitory computer-readable recording medium on which program is recorded | |
US10417565B1 (en) | System, method, and computer program for modeling and predicting energy consumption in a building | |
CN114556027B (en) | Air conditioner control device, air conditioner system, air conditioner control method, and recording medium | |
US10544951B2 (en) | Optimized precooling of structures | |
JP2019019988A (en) | Air conditioning operation condition creation device, air conditioning operation condition creation method, program and air conditioning system | |
JP2020154785A (en) | Prediction method, prediction program and model learning method | |
WO2020199682A1 (en) | Air conditioner control method, air conditioner control apparatus, storage medium, memory and air conditioner | |
David et al. | Optimizing control strategy using statistical model checking | |
CN113028610B (en) | Method and device for global optimization and energy-saving control of dynamic load of central air conditioner | |
CN116085937B (en) | Intelligent central air conditioner energy-saving control method and system | |
CN118014184A (en) | Pig farm early warning method, system and storage medium based on digital twinning | |
CN119005008B (en) | Building environment automatic control method and device based on distributed architecture | |
CN107990487A (en) | The Forecasting Methodology of air conditioner and air conditioner power consumption, device | |
AU2022458292B2 (en) | Air conditioning control device, air conditioning control method, and air conditioning control program | |
JP7134915B2 (en) | Program, Complaint Occurrence Prediction Device, and Complaint Occurrence Prediction Method | |
EP4557022A1 (en) | Parameter search device and parameter search method | |
CN114811858B (en) | Online learning method for air conditioner load | |
WO2022110213A1 (en) | Method and device for generating prediction model of analysis object, and storage medium | |
US20230332793A1 (en) | Air conditioning control device | |
CN115200154A (en) | Weather prediction method, device and equipment based on air conditioner cluster and storage medium | |
WO2021038775A1 (en) | Control method, control program, and air conditioning control device | |
CN115930376B (en) | Air conditioner control algorithm evaluation method, device, equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |