CN117063310A - Positive electrode active material and method for preparing same - Google Patents
Positive electrode active material and method for preparing same Download PDFInfo
- Publication number
- CN117063310A CN117063310A CN202280022872.0A CN202280022872A CN117063310A CN 117063310 A CN117063310 A CN 117063310A CN 202280022872 A CN202280022872 A CN 202280022872A CN 117063310 A CN117063310 A CN 117063310A
- Authority
- CN
- China
- Prior art keywords
- active material
- positive electrode
- nickel
- electrode active
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims description 21
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 67
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 66
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 claims abstract description 34
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 31
- 150000003624 transition metals Chemical class 0.000 claims abstract description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 182
- 239000011572 manganese Substances 0.000 claims description 101
- 239000002245 particle Substances 0.000 claims description 95
- 229910052751 metal Inorganic materials 0.000 claims description 93
- 239000002184 metal Substances 0.000 claims description 91
- 238000006243 chemical reaction Methods 0.000 claims description 80
- 229910052759 nickel Inorganic materials 0.000 claims description 78
- 239000002243 precursor Substances 0.000 claims description 52
- 229910052748 manganese Inorganic materials 0.000 claims description 43
- 229910017052 cobalt Inorganic materials 0.000 claims description 42
- 239000010941 cobalt Substances 0.000 claims description 42
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 38
- 239000002994 raw material Substances 0.000 claims description 38
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 36
- 238000001556 precipitation Methods 0.000 claims description 30
- UUCGKVQSSPTLOY-UHFFFAOYSA-J cobalt(2+);nickel(2+);tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Co+2].[Ni+2] UUCGKVQSSPTLOY-UHFFFAOYSA-J 0.000 claims description 26
- 238000000975 co-precipitation Methods 0.000 claims description 23
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 21
- 239000008139 complexing agent Substances 0.000 claims description 21
- 239000000126 substance Substances 0.000 claims description 21
- 150000001875 compounds Chemical class 0.000 claims description 20
- 229910052796 boron Inorganic materials 0.000 claims description 17
- 229910052721 tungsten Inorganic materials 0.000 claims description 15
- IPJKJLXEVHOKSE-UHFFFAOYSA-L manganese dihydroxide Chemical compound [OH-].[OH-].[Mn+2] IPJKJLXEVHOKSE-UHFFFAOYSA-L 0.000 claims description 14
- 229910052720 vanadium Inorganic materials 0.000 claims description 14
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims description 12
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 claims description 11
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 claims description 11
- SEVNKUSLDMZOTL-UHFFFAOYSA-H cobalt(2+);manganese(2+);nickel(2+);hexahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mn+2].[Co+2].[Ni+2] SEVNKUSLDMZOTL-UHFFFAOYSA-H 0.000 claims description 10
- 150000007514 bases Chemical class 0.000 claims description 7
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 7
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 138
- 239000000243 solution Substances 0.000 description 117
- 239000006182 cathode active material Substances 0.000 description 75
- 239000007864 aqueous solution Substances 0.000 description 68
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 42
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 27
- -1 nickel halide Chemical class 0.000 description 23
- 239000002904 solvent Substances 0.000 description 21
- 229910052782 aluminium Inorganic materials 0.000 description 20
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 19
- 239000010410 layer Substances 0.000 description 19
- 229910052760 oxygen Inorganic materials 0.000 description 17
- 229910052719 titanium Inorganic materials 0.000 description 17
- 239000010936 titanium Substances 0.000 description 17
- 239000007773 negative electrode material Substances 0.000 description 16
- 239000004020 conductor Substances 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 15
- 229910052726 zirconium Inorganic materials 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 239000012153 distilled water Substances 0.000 description 14
- 241000080590 Niso Species 0.000 description 13
- 229910052791 calcium Inorganic materials 0.000 description 13
- 229910052804 chromium Inorganic materials 0.000 description 13
- 229910052750 molybdenum Inorganic materials 0.000 description 13
- 229910052758 niobium Inorganic materials 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 229910052725 zinc Inorganic materials 0.000 description 13
- 239000011701 zinc Substances 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 12
- 229910052749 magnesium Inorganic materials 0.000 description 12
- 229910052715 tantalum Inorganic materials 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 229910018626 Al(OH) Inorganic materials 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 230000007774 longterm Effects 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 230000001590 oxidative effect Effects 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 238000010926 purge Methods 0.000 description 7
- 229910000314 transition metal oxide Inorganic materials 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 6
- 229910003002 lithium salt Inorganic materials 0.000 description 6
- 159000000002 lithium salts Chemical class 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- 239000011254 layer-forming composition Substances 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical class C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000006231 channel black Substances 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000006233 lamp black Substances 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011302 mesophase pitch Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000004627 regenerated cellulose Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 229920005608 sulfonated EPDM Polymers 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000006234 thermal black Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical class COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910010090 LiAlO 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- QOSMNYMQXIVWKY-UHFFFAOYSA-N Propyl levulinate Chemical compound CCCOC(=O)CCC(C)=O QOSMNYMQXIVWKY-UHFFFAOYSA-N 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- RLTFLELMPUMVEH-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[V+5] Chemical compound [Li+].[O--].[O--].[O--].[V+5] RLTFLELMPUMVEH-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical class Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003660 carbonate based solvent Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000006257 cathode slurry Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000002461 imidazolidines Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910000686 lithium vanadium oxide Inorganic materials 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- 229940053662 nickel sulfate Drugs 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 150000005181 nitrobenzenes Chemical class 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000001008 quinone-imine dye Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002153 silicon-carbon composite material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000002733 tin-carbon composite material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/80—Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
- C01G53/82—Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
- H01M4/8885—Sintering or firing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
- C01P2004/86—Thin layer coatings, i.e. the coating thickness being less than 0.1 time the particle radius
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域Technical field
相关申请的交叉引用Cross-references to related applications
本申请要求基于2020年5月11日提交的韩国专利申请10-2021-0061016号的优先权,其全部公开内容通过引用并入本文中。This application claims priority based on Korean Patent Application No. 10-2021-0061016 filed on May 11, 2020, the entire disclosure of which is incorporated herein by reference.
技术领域Technical field
本发明涉及正极活性材料及其制备方法,更特别地,涉及能够实现具有优异的初始充放电效率、寿命特性和热稳定性的锂二次电池的正极活性材料及其制备方法。The present invention relates to a positive electrode active material and a preparation method thereof, and more particularly, to a positive electrode active material capable of realizing a lithium secondary battery having excellent initial charge and discharge efficiency, life characteristics and thermal stability and a preparation method thereof.
背景技术Background technique
对作为能源的二次电池的需求随着对移动装置和电动车辆的需求增加而显著增加,并且,在这些二次电池中,能量密度高且自放电率低的锂二次电池已经商业化并且被广泛使用。特别地,对高容量二次电池的需求随着近年来电动车辆市场的迅速扩大而增加。The demand for secondary batteries as energy sources has increased significantly with the increase in demand for mobile devices and electric vehicles, and, among these secondary batteries, lithium secondary batteries with high energy density and low self-discharge rate have been commercialized and being widely used. In particular, demand for high-capacity secondary batteries has increased with the rapid expansion of the electric vehicle market in recent years.
为了改善二次电池的容量特性,已经开发了包含两种以上过渡金属的锂复合过渡金属氧化物例如NCM和NCMA,并且将其用作正极活性材料。特别地,已经开发和使用了包含大量镍的锂复合过渡金属氧化物。然而,镍含量高的锂复合过渡金属氧化物具有在长期寿命和热稳定性方面较差的问题。In order to improve the capacity characteristics of secondary batteries, lithium composite transition metal oxides containing two or more transition metals such as NCM and NCMA have been developed and used as positive electrode active materials. In particular, lithium complex transition metal oxides containing a large amount of nickel have been developed and used. However, lithium composite transition metal oxides with high nickel content have problems with poor long-term life and thermal stability.
通常,在锂复合过渡金属氧化物例如NCM和NCMA的制备期间,在通过将过渡金属原料例如硫酸镍、硫酸钴和硫酸锰溶解在水中来制备过渡金属水溶液之后,在将过渡金属水溶液、阳离子络合剂和碱性化合物以均匀的速度添加至反应器中的同时进行共沉淀反应,以制备在粒子内部和外部具有均匀组成的氢氧化物形式的过渡金属前体,并且通常通过将过渡金属前体和锂原料混合、然后烧结混合物来制备在粒子内部和外部具有均匀组成的锂复合过渡金属氧化物。然而,通过上述方法制备的常规锂复合过渡金属氧化物难以实现足够的锂二次电池的寿命特性和热稳定性。Generally, during the preparation of lithium composite transition metal oxides such as NCM and NCMA, after preparing a transition metal aqueous solution by dissolving transition metal raw materials such as nickel sulfate, cobalt sulfate and manganese sulfate in water, the transition metal aqueous solution, cation complex The co-precipitation reaction is performed while adding the mixture and the alkaline compound to the reactor at a uniform rate to prepare a transition metal precursor in the form of a hydroxide having a uniform composition inside and outside the particles, and usually by adding the transition metal precursor A lithium composite transition metal oxide having a uniform composition inside and outside the particles is prepared by mixing the body and the lithium raw material and then sintering the mixture. However, it is difficult for conventional lithium composite transition metal oxides prepared by the above method to achieve sufficient life characteristics and thermal stability of lithium secondary batteries.
因此,存在开发可以实现具有优异的寿命特性和热稳定性以及优异的初始充放电效率的锂二次电池的正极活性材料的需求。Therefore, there is a need to develop a positive electrode active material that can realize a lithium secondary battery having excellent life characteristics and thermal stability as well as excellent initial charge and discharge efficiency.
发明内容Contents of the invention
技术问题technical problem
本发明的一个方面提供一种正极活性材料和该正极活性材料的制备方法,所述正极活性材料可以实现具有优异的初始充放电效率、寿命特性和热稳定性的锂二次电池。One aspect of the present invention provides a cathode active material that can realize a lithium secondary battery with excellent initial charge and discharge efficiency, life characteristics, and thermal stability, and a preparation method of the cathode active material.
技术方案Technical solutions
为了解决上述问题,本发明提供如下的正极活性材料,其制备方法,包含该正极活性材料的正极,和包含该正极的锂二次电池。In order to solve the above problems, the present invention provides the following positive electrode active material, its preparation method, a positive electrode including the positive electrode active material, and a lithium secondary battery including the positive electrode.
(1)本发明提供一种正极活性材料,其包含:核部,所述核部包含其中Ni在全部过渡金属中的摩尔比为80摩尔%以上的锂过渡金属氧化物;和层状结构的壳部,所述壳部形成在核部上,并且包含其中Mn在全部过渡金属中的摩尔比为30摩尔%以上的锂过渡金属氧化物,其中正极活性材料满足公式1:(1) The present invention provides a cathode active material including: a core part including a lithium transition metal oxide in which the molar ratio of Ni in all transition metals is 80 mol% or more; and a layered structure. A shell portion formed on the core portion and containing a lithium transition metal oxide in which the molar ratio of Mn in all transition metals is 30 mol% or more, wherein the positive electrode active material satisfies Formula 1:
[公式1][Formula 1]
(2)本发明提供根据以上(1)所述的正极活性材料,其中壳部的厚度在100nm至600nm的范围内。(2) The present invention provides the cathode active material according to (1) above, wherein the thickness of the shell portion is in the range of 100 nm to 600 nm.
(3)本发明提供根据以上(1)或(2)所述的正极活性材料,其中正极活性材料的平均粒径(D50)在1μm至100μm的范围内。(3) The present invention provides the positive active material according to (1) or (2) above, wherein the average particle diameter (D 50 ) of the positive active material is in the range of 1 μm to 100 μm.
(4)本发明提供根据以上(1)至(3)中任一项所述的正极活性材料,其中,其中Ni在全部过渡金属中的摩尔比为80摩尔%以上的锂过渡金属氧化物具有由化学式1表示的组成。(4) The present invention provides the cathode active material according to any one of (1) to (3) above, wherein the lithium transition metal oxide in which the molar ratio of Ni in all transition metals is 80 mol% or more has Composition represented by Chemical Formula 1.
[化学式1][Chemical formula 1]
Lix1[NiaCobM1c]O2 Li x1 [Ni a Co b M1 c ]O 2
在化学式1中,In Chemical Formula 1,
M1为选自Mn、Al、B、Mg、Ca、Ti、V、Cr、Fe、Zn、Ga、Y、Zr、Nb、Mo、Ta和W中的至少一种,并且M1 is at least one selected from Mn, Al, B, Mg, Ca, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta and W, and
0.9≤x1≤1.1,0.8≤a≤1,0≤b≤0.2,0≤c≤0.2,和a+b+c=1。0.9≤x1≤1.1, 0.8≤a≤1, 0≤b≤0.2, 0≤c≤0.2, and a+b+c=1.
(5)本发明提供根据以上(1)至(4)中任一项所述的正极活性材料,其中,其中Mn在全部过渡金属中的摩尔比为30摩尔%以上的锂过渡金属氧化物具有由化学式2表示的组成。(5) The present invention provides the cathode active material according to any one of (1) to (4) above, wherein the lithium transition metal oxide in which the molar ratio of Mn in all transition metals is 30 mol% or more has Composition represented by Chemical Formula 2.
[化学式2][Chemical formula 2]
Lix2[MndM2e]O2 Li x2 [Mn d M2 e ]O 2
在化学式2中,In Chemical Formula 2,
M2为选自Ni、Co、Al、B、Mg、Ca、Ti、V、Cr、Fe、Zn、Ga、Y、Zr、Nb、Mo、Ta和W中的至少一种,并且M2 is at least one selected from Ni, Co, Al, B, Mg, Ca, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta and W, and
0.9≤x2≤1.1,0.3≤d≤1,0≤e≤0.7,和d+e=1。0.9≤x2≤1.1, 0.3≤d≤1, 0≤e≤0.7, and d+e=1.
(6)本发明提供一种制备以上(1)至(5)中任一项所述的正极活性材料的方法,其包括如下步骤:制备多层结构的正极活性材料用前体,其中镍、钴和锰中的两种以上元素在不同区域中沉淀;和将正极活性材料用前体与锂原料混合,并烧结混合物。(6) The present invention provides a method for preparing the cathode active material according to any one of (1) to (5) above, which includes the following steps: preparing a precursor for the cathode active material of a multilayer structure, wherein nickel, Two or more elements of cobalt and manganese are precipitated in different areas; and a precursor for a positive electrode active material is mixed with a lithium raw material, and the mixture is sintered.
(7)本发明提供根据以上(6)所述的方法,其中所述制备正极活性材料用前体的步骤包括:在添加含有镍和钴的金属溶液、铵阳离子络合剂和碱性化合物的同时进行共沉淀反应,以形成镍-钴氢氧化物粒子;和在将含有镍、钴和锰的金属溶液、铵阳离子络合剂和碱性化合物添加至含有镍-钴氢氧化物粒子的反应溶液中的同时进行共沉淀反应,以在镍-钴氢氧化物粒子上形成镍-钴-锰氢氧化物。(7) The present invention provides the method according to the above (6), wherein the step of preparing a precursor for a positive electrode active material includes: adding a metal solution containing nickel and cobalt, an ammonium cation complexing agent and an alkaline compound. A co-precipitation reaction is simultaneously performed to form nickel-cobalt hydroxide particles; and a reaction in which a metal solution containing nickel, cobalt and manganese, an ammonium cation complexing agent and an alkaline compound is added to the nickel-cobalt hydroxide particles. A co-precipitation reaction is carried out simultaneously in the solution to form nickel-cobalt-manganese hydroxide on the nickel-cobalt hydroxide particles.
(8)本发明提供根据以上(6)所述的方法,其中所述制备正极活性材料用前体的步骤包括:在添加含有镍的金属溶液、铵阳离子络合剂和碱性化合物的同时进行沉淀反应,以形成镍氢氧化物粒子;在将含有锰的金属溶液、铵阳离子络合剂和碱性化合物添加至含有镍氢氧化物粒子的反应溶液中的同时进行沉淀反应,以形成其中锰氢氧化物沉淀在镍氢氧化物粒子上的镍/锰氢氧化物粒子;和在将含有钴的金属溶液、铵阳离子络合剂和碱性化合物添加至含有镍/锰氢氧化物的反应溶液中的同时进行沉淀反应,以形成其中钴氢氧化物沉淀在镍/锰氢氧化物粒子上的镍/锰/钴氢氧化物粒子。(8) The present invention provides the method according to the above (6), wherein the step of preparing a precursor for a positive electrode active material includes: adding a metal solution containing nickel, an ammonium cation complexing agent, and an alkaline compound while adding Precipitation reaction to form nickel hydroxide particles; performing a precipitation reaction while adding a metal solution containing manganese, an ammonium cation complexing agent and an alkaline compound to the reaction solution containing nickel hydroxide particles to form manganese therein nickel/manganese hydroxide particles in which hydroxide is precipitated on nickel hydroxide particles; and adding a metal solution containing cobalt, an ammonium cation complexing agent and an alkaline compound to a reaction solution containing nickel/manganese hydroxide A precipitation reaction is performed while in the process to form nickel/manganese/cobalt hydroxide particles in which cobalt hydroxide is precipitated on the nickel/manganese hydroxide particles.
(9)本发明提供一种正极,其包含根据(1)至(5)中任一项所述的正极活性材料。(9) The present invention provides a cathode including the cathode active material according to any one of (1) to (5).
(10)本发明提供一种锂二次电池,其包含根据(9)所述的正极。(10) The present invention provides a lithium secondary battery including the positive electrode according to (9).
有益效果beneficial effects
本发明的正极活性材料通过包含锰含量高的壳部并且将壳部的厚度相对于正极活性材料的平均粒径(D50)调节至适当的水平,可以改善使用了该正极活性材料的锂二次电池的初始充放电效率、长期寿命特性和热稳定性。The cathode active material of the present invention can improve lithium dielectric performance using the cathode active material by including a shell portion with a high manganese content and adjusting the thickness of the shell portion to an appropriate level relative to the average particle diameter (D 50 ) of the cathode active material. Initial charge and discharge efficiency, long-term life characteristics and thermal stability of secondary batteries.
附图说明Description of the drawings
图1为实施例1中制备的正极活性材料的截面的透射电子显微镜-能量色散X射线光谱(TEM-EDS)映射图像。FIG. 1 is a transmission electron microscope-energy dispersive X-ray spectroscopy (TEM-EDS) mapping image of a cross section of the cathode active material prepared in Example 1.
图2为比较例1中制备的正极活性材料的截面的TEM-EDS映射图像。2 is a TEM-EDS mapping image of a cross section of the cathode active material prepared in Comparative Example 1.
具体实施方式Detailed ways
在下文中,将详细描述本发明。Hereinafter, the present invention will be described in detail.
应当理解,说明书和权利要求书中使用的词语或术语不应被解释为在常用词典中定义的含义,并且应当进一步理解,词语或术语应当基于发明人可以适当地定义词语或术语的含义从而最好地解释本发明的原则,被解释为具有与它们在相关技术的上下文中的含义和本发明的技术思想相一致的含义。It should be understood that the words or terms used in the specification and claims should not be interpreted as having the meaning defined in commonly used dictionaries, and it should be further understood that the words or terms should be based on the meaning that the inventor can appropriately define the words or terms so as to best The principles that best explain the present invention are to be construed to have meanings consistent with their meanings in the context of the relevant technology and the technical idea of the present invention.
在本说明书中,表述“平均粒径(D50)”可以定义为粒子尺寸分布曲线中累积体积为50%处的粒径。平均粒径(D50)例如可以使用激光衍射法来测量。激光衍射法通常可以测量几纳米至几毫米范围的粒径,并且可以获得高度可重复和高分辨率的结果。In this specification, the expression "average particle diameter (D 50 )" can be defined as the particle diameter at 50% of the cumulative volume in the particle size distribution curve. The average particle diameter (D 50 ) can be measured using a laser diffraction method, for example. Laser diffraction methods can typically measure particle sizes in the range of a few nanometers to several millimeters and can obtain highly reproducible and high-resolution results.
作为对于开发能够改善锂二次电池的长期寿命特性和热稳定性的正极活性材料进行大量研究的结果,本发明人发现,在将壳部的厚度相对于正极活性材料(其中所包含的壳部的锰含量高于核部)的平均粒径(D50)调节至适当水平的情况下,使用以上正极活性材料的锂二次电池的初始充放电效率、长期寿命特性和热稳定性优异,由此完成了本发明。As a result of extensive research on the development of a positive electrode active material capable of improving the long-term life characteristics and thermal stability of a lithium secondary battery, the present inventors found that the thickness of the shell portion relative to the thickness of the positive electrode active material (the shell portion contained therein) When the average particle diameter (D 50 ) of the cathode active material is adjusted to an appropriate level, the lithium secondary battery using the above positive electrode active material has excellent initial charge and discharge efficiency, long-term life characteristics and thermal stability. This completes the present invention.
正极活性材料positive active material
首先,将描述根据本发明的正极活性材料。First, the cathode active material according to the present invention will be described.
根据本发明的正极活性材料包含:核部,所述核部包含其中Ni在全部过渡金属中的摩尔比为80摩尔%以上的锂过渡金属氧化物;和层状结构的壳部,所述壳部形成在核部上,并且包含其中Mn在全部过渡金属中的摩尔比为30摩尔%以上的锂过渡金属氧化物,并且满足以下公式1。The cathode active material according to the present invention includes: a core part including a lithium transition metal oxide in which the molar ratio of Ni in all transition metals is 80 mol% or more; and a shell part of a layered structure, the shell part The portion is formed on the core portion and contains a lithium transition metal oxide in which the molar ratio of Mn in all transition metals is 30 mol% or more, and satisfies the following formula 1.
[公式1][Formula 1]
在本发明中,核部和壳部可以基于锂过渡金属氧化物中所含的Mn的摩尔比来划分。在构成核部的锂过渡金属氧化物中,由于Ni在全部过渡金属中的摩尔比为80摩尔%以上,因此Mn在全部过渡金属中的的摩尔比为20摩尔%以下。因此,在正极活性材料中,可以将其中存在Mn在全部过渡金属中的摩尔比为20摩尔%以下的锂过渡金属氧化物的部分划分为核部,并且可以将其中存在Mn在全部过渡金属中的摩尔比为30摩尔%以上的锂过渡金属氧化物划分为壳部。Mn在全部过渡金属中的摩尔比可以通过正极活性材料的截面的能量色散X射线光谱(EDS)映射或EDS线扫描来确认。In the present invention, the core part and the shell part can be divided based on the molar ratio of Mn contained in the lithium transition metal oxide. In the lithium transition metal oxide constituting the core, the molar ratio of Ni to all transition metals is 80 mol% or more, and therefore the molar ratio of Mn to all transition metals is 20 mol% or less. Therefore, in the positive electrode active material, a portion in which there is a lithium transition metal oxide with a molar ratio of Mn in all transition metals of 20 mol % or less can be divided into a core portion, and a portion in which Mn is present in all transition metals can be divided into a core portion. The lithium transition metal oxide with a molar ratio of 30 mol% or more is divided into a shell part. The molar ratio of Mn in all transition metals can be confirmed by energy-dispersive X-ray spectroscopy (EDS) mapping or EDS line scanning of a cross section of the positive electrode active material.
根据本发明的正极活性材料是在核部和壳部之间具有不同组成的正极活性材料,其中,由于在锂过渡金属氧化物的构成元素中使得寿命稳定性和热稳定性优异的Mn的量集中在对与电解质的反应敏感的粒子的表面上从而起到保护层的作用,因此使用以上正极活性材料的锂二次电池具有优异的长期寿命特性和热稳定性。The cathode active material according to the present invention is a cathode active material having a different composition between the core part and the shell part, in which the amount of Mn in the constituent elements of the lithium transition metal oxide makes life stability and thermal stability excellent. Concentrated on the surface of particles sensitive to reaction with the electrolyte and functioning as a protective layer, lithium secondary batteries using the above positive electrode active materials have excellent long-term life characteristics and thermal stability.
在其中核部中所含的锂过渡金属氧化物的Ni的摩尔比小于80摩尔%的情况下,由于如果壳部中Ni的摩尔比也低则正极活性材料整体中Ni的量低,因此可能无法制备高容量的锂二次电池,并且,如果壳部中Ni的摩尔比高,则存在使得寿命稳定性和热稳定性优异的Mn不会如本发明的目的那样集中在正极活性材料的表面上的问题。In the case where the molar ratio of Ni in the lithium transition metal oxide contained in the core part is less than 80 mol%, since the amount of Ni in the entire positive electrode active material is low if the molar ratio of Ni in the shell part is also low, it may It is impossible to prepare a high-capacity lithium secondary battery, and if the molar ratio of Ni in the shell part is high, Mn which is excellent in life stability and thermal stability will not be concentrated on the surface of the positive electrode active material as the purpose of the present invention. on the problem.
在其中壳部中所含的锂过渡金属氧化物的Mn的摩尔比小于30摩尔%的情况下,由于Mn含量过低,因此Mn可能不会集中在正极活性材料的表面上。In the case where the molar ratio of Mn of the lithium transition metal oxide contained in the shell portion is less than 30 mol%, Mn may not be concentrated on the surface of the positive electrode active material because the Mn content is too low.
本发明通过调节锰含量高的壳部的厚度,使得壳部的厚度相对于正极活性材料的平均粒径(D50)在0.005至0.15的范围内,可以实现具有完全连续的层状结构的壳部。根据公式1的值可以在0.005至0.15,具体地为0.006至0.14的范围内。在其中壳部的厚度相对于正极活性材料的平均粒径(D50)小于0.005的情况下,由于壳部的厚度与正极活性材料的尺寸相比过薄,因此可能形成岛形式的不连续的涂覆结构(可能没有整体覆盖核部),因此,存在正极活性材料的热稳定性没有得到改善或较差的问题。另外,在其中壳部的厚度相对于正极活性材料的平均粒径(D50)大于0.15的情况下,由于壳部的厚度与正极活性材料的尺寸相比过厚,因此可能仅通过锰的生长而形成尖晶石结构,因此,存在正极活性材料的结构稳定性劣化的问题,以及例如当在锂二次电池中使用正极活性材料时可能会发生突然的电压下降或寿命特性劣化的问题。The present invention can realize a shell with a completely continuous layered structure by adjusting the thickness of the shell portion with high manganese content so that the thickness of the shell portion is in the range of 0.005 to 0.15 relative to the average particle size (D 50 ) of the cathode active material. department. The value according to Formula 1 may be in the range of 0.005 to 0.15, specifically 0.006 to 0.14. In the case where the thickness of the shell portion is less than 0.005 relative to the average particle diameter (D 50 ) of the cathode active material, since the thickness of the shell portion is too thin compared to the size of the cathode active material, discontinuous islands in the form of islands may be formed. The coating structure (the core part may not be entirely covered), therefore, there is a problem that the thermal stability of the cathode active material is not improved or is poor. In addition, in the case where the thickness of the shell portion is greater than 0.15 relative to the average particle diameter (D 50 ) of the cathode active material, since the thickness of the shell portion is too thick compared to the size of the cathode active material, it is possible only by the growth of manganese A spinel structure is formed, and therefore, there is a problem that the structural stability of the positive electrode active material is deteriorated, and that, for example, when the positive electrode active material is used in a lithium secondary battery, a sudden voltage drop or a deterioration in life characteristics may occur.
根据本发明,壳部的厚度可以在100nm至600nm的范围内。例如,壳部的厚度可以在200nm至600nm,或100nm至300nm的范围内。在其中壳部的厚度在以上范围内的情况下,可以优化壳部作为粒子保护层的作用。According to the present invention, the thickness of the shell portion may be in the range of 100 nm to 600 nm. For example, the thickness of the shell portion may be in the range of 200 nm to 600 nm, or 100 nm to 300 nm. In the case where the thickness of the shell portion is within the above range, the role of the shell portion as a particle protective layer can be optimized.
根据本发明,正极活性材料的平均粒径(D50)可以在1μm至100μm的范围内。正极活性材料的平均粒径(D50)可以具体地在3μm至50μm、例如4μm至20μm的范围内。在其中正极活性材料的平均粒径(D50)在以上范围内的情况下,容易控制制备正极期间正极活性材料的负载量,并且正极活性材料层可以形成为具有高的能量密度。According to the present invention, the average particle size (D 50 ) of the cathode active material may be in the range of 1 μm to 100 μm. The average particle diameter (D 50 ) of the positive electrode active material may specifically be in the range of 3 μm to 50 μm, for example, 4 μm to 20 μm. In the case where the average particle diameter (D 50 ) of the positive electrode active material is within the above range, the loading amount of the positive electrode active material during preparation of the positive electrode is easily controlled, and the positive electrode active material layer can be formed to have high energy density.
根据本发明,核部中所含的、其中Ni在全部过渡金属中的摩尔比为80摩尔%以上的锂过渡金属氧化物可以具有由如下化学式1表示的组成。在核部中所含的锂过渡金属氧化物中,由于Ni在全部过渡金属中的摩尔比为80摩尔%以上,因此Mn在全部过渡金属中的摩尔比为20摩尔%以下。According to the present invention, the lithium transition metal oxide contained in the core part in which the molar ratio of Ni in all transition metals is 80 mol% or more may have a composition represented by the following Chemical Formula 1. In the lithium transition metal oxide contained in the core portion, the molar ratio of Ni to all transition metals is 80 mol% or more, and therefore the molar ratio of Mn to all transition metals is 20 mol% or less.
[化学式1][Chemical formula 1]
Lix1[NiaCobM1c]O2 Li x1 [Ni a Co b M1 c ]O 2
在化学式1中,M1为选自Mn、Al、B、Mg、Ca、Ti、V、Cr、Fe、Zn、Ga、Y、Zr、Nb、Mo、Ta和W中的至少一种,并且0.9≤x1≤1.1,0.8≤a≤1,0≤b≤0.2,0≤c≤0.2,和a+b+c=1。In Chemical Formula 1, M1 is at least one selected from Mn, Al, B, Mg, Ca, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta, and W, and 0.9 ≤x1≤1.1, 0.8≤a≤1, 0≤b≤0.2, 0≤c≤0.2, and a+b+c=1.
M1可以为选自Mn、Al、B、Mg、Ca、Ti、V、Cr、Fe、Zn、Ga、Y、Zr、Nb、Mo、Ta和W中的至少一种。M1可以优选为Mn、Al、Zr或B。在其中另外包含元素M1的情况下,可以获得例如晶体结构稳定化和表面稳定化的效果。M1 may be at least one selected from Mn, Al, B, Mg, Ca, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta and W. M1 may preferably be Mn, Al, Zr or B. In the case where the element M1 is additionally contained, effects such as crystal structure stabilization and surface stabilization can be obtained.
x1表示锂过渡金属氧化物中锂的摩尔比,其中x1可以满足0.9≤x1≤1.1、0.95≤x1≤1.1或0.95≤x1≤1.05。当锂过渡金属氧化物中锂的摩尔比满足以上范围时,由于可以良好地发展层状晶体结构,因此可以获得具有优异的电化学性能的正极活性材料。x1 represents the molar ratio of lithium in the lithium transition metal oxide, where x1 can satisfy 0.9≤x1≤1.1, 0.95≤x1≤1.1 or 0.95≤x1≤1.05. When the molar ratio of lithium in the lithium transition metal oxide satisfies the above range, since the layered crystal structure can be well developed, a cathode active material with excellent electrochemical performance can be obtained.
a表示锂过渡金属氧化物中除锂以外的金属组分中镍的摩尔比,其中a可以满足0.8≤a≤1、0.8≤a<1或0.85≤a<1。当镍的摩尔比满足以上范围时,可以实现高容量特性。a represents the molar ratio of nickel in the metal components other than lithium in the lithium transition metal oxide, where a can satisfy 0.8≤a≤1, 0.8≤a<1 or 0.85≤a<1. When the molar ratio of nickel satisfies the above range, high capacity characteristics can be achieved.
b表示锂过渡金属氧化物中除锂以外的金属组分中钴的摩尔比,其中b可以满足0≤b≤0.2、0<b≤0.2或0<b≤0.15。b represents the molar ratio of cobalt in the metal components other than lithium in the lithium transition metal oxide, where b can satisfy 0≤b≤0.2, 0<b≤0.2 or 0<b≤0.15.
c表示锂过渡金属氧化物中除锂以外的金属组分中元素M1的摩尔比,其中c可以满足0≤c≤0.2、0<c≤0.2或0<c≤0.15。c represents the molar ratio of element M1 in the metal components other than lithium in the lithium transition metal oxide, where c can satisfy 0≤c≤0.2, 0<c≤0.2 or 0<c≤0.15.
根据本发明,壳部中所含的、其中Mn在全部过渡金属中的摩尔比为30摩尔%以上的锂过渡金属氧化物可以具有由如下化学式2表示的组成。According to the present invention, the lithium transition metal oxide contained in the shell part in which the molar ratio of Mn in all transition metals is 30 mol% or more may have a composition represented by the following Chemical Formula 2.
[化学式2][Chemical formula 2]
Lix2[MndM2e]O2 Li x2 [Mn d M2 e ]O 2
在化学式2中,M2为选自Ni、Co、Al、B、Mg、Ca、Ti、V、Cr、Fe、Zn、Ga、Y、Zr、Nb、Mo、Ta和W中的至少一种,并且0.9≤x2≤1.1,0.3≤d≤1,0≤e≤0.7,和d+e=1。In Chemical Formula 2, M2 is at least one selected from Ni, Co, Al, B, Mg, Ca, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta and W, And 0.9≤x2≤1.1, 0.3≤d≤1, 0≤e≤0.7, and d+e=1.
M2可以为选自Ni、Co、Al、B、Mg、Ca、Ti、V、Cr、Fe、Zn、Ga、Y、Zr、Nb、Mo、Ta和W中的至少一种。M2可以优选为Ni、Co、Al、Zr或B。在其中另外包含元素M2的情况下,可以获得例如晶体结构稳定化和表面稳定化的效果。M2 may be at least one selected from Ni, Co, Al, B, Mg, Ca, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta and W. M2 may preferably be Ni, Co, Al, Zr or B. In the case where the element M2 is additionally contained, effects such as crystal structure stabilization and surface stabilization can be obtained.
x2表示锂过渡金属氧化物中锂的摩尔比,其中x2可以满足0.9≤x2≤1.1、0.95≤x2≤1.1或0.95≤x2≤1.05。当锂过渡金属氧化物中锂的摩尔比满足以上范围时,由于可以良好地发展层状晶体结构,因此可以获得具有优异的电化学性能的正极活性材料。x2 represents the molar ratio of lithium in the lithium transition metal oxide, where x2 can satisfy 0.9≤x2≤1.1, 0.95≤x2≤1.1 or 0.95≤x2≤1.05. When the molar ratio of lithium in the lithium transition metal oxide satisfies the above range, since the layered crystal structure can be well developed, a cathode active material with excellent electrochemical performance can be obtained.
d表示锂过渡金属氧化物中除锂以外的金属组分中锰的摩尔比,其中d可以满足0.3≤d≤1、0.3≤d<1或0.32≤d<1。当锰的摩尔比满足以上范围时,可以改善热稳定性和长期寿命特性。d represents the molar ratio of manganese in the metal components other than lithium in the lithium transition metal oxide, where d can satisfy 0.3≤d≤1, 0.3≤d<1 or 0.32≤d<1. When the molar ratio of manganese satisfies the above range, thermal stability and long-term life characteristics can be improved.
e表示锂过渡金属氧化物中除锂以外的金属组分中元素M2的摩尔比,其中e可以满足0≤e≤0.7、0<e≤0.7或0<e≤0.68。e represents the molar ratio of element M2 in the metal components other than lithium in the lithium transition metal oxide, where e can satisfy 0≤e≤0.7, 0<e≤0.7 or 0<e≤0.68.
在根据本发明的正极活性材料中,Mn浓度在正极活性材料的表面处比中心高。具体地,壳部中的Mn在全部过渡金属中的摩尔比可以在30摩尔%至100摩尔%、例如32摩尔%至100摩尔%的范围内,并且,核部中的Mn在全部过渡金属中的摩尔比可以在0摩尔%至20摩尔%、例如0摩尔%至15摩尔%的范围内。In the positive electrode active material according to the present invention, the Mn concentration is higher at the surface of the positive electrode active material than at the center. Specifically, the molar ratio of Mn in the shell part in all transition metals may be in the range of 30 mol% to 100 mol%, for example, 32 mol% to 100 mol%, and the Mn in the core part is in the range of all transition metals. The molar ratio of may be in the range of 0 mol% to 20 mol%, such as 0 mol% to 15 mol%.
正极活性材料的制备方法Preparation method of positive active material
接下来,将描述本发明的正极活性材料的制备方法。Next, the preparation method of the positive electrode active material of the present invention will be described.
根据本发明的正极活性材料的制备方法包括以下步骤:(1)制备多层结构的正极活性材料用前体,其中镍、钴和锰中的两种以上元素在不同区域中沉淀;和(2)将正极活性材料用前体与锂原料混合,并烧结混合物。The preparation method of a positive active material according to the present invention includes the following steps: (1) preparing a precursor for a multi-layered structure of a positive active material, in which two or more elements of nickel, cobalt and manganese are precipitated in different regions; and (2) ) Mix the precursor for the positive electrode active material and the lithium raw material, and sinter the mixture.
(1)制备正极活性材料用前体(1) Preparation of precursors for cathode active materials
首先,制备多层结构的正极活性材料用前体,其中镍、钴和锰中的两种以上元素在不同区域中沉淀。First, a precursor for positive electrode active materials is prepared with a multilayer structure in which two or more elements of nickel, cobalt, and manganese are precipitated in different regions.
通常,为了制备包含镍、钴和锰的正极活性材料用前体,使用以下方法:将镍原料、钴原料和锰原料溶解在例如水的溶剂中以制备含有镍、钴和锰的金属溶液,将含有镍、钴和锰的溶液,铵阳离子络合剂,和碱性化合物添加至反应器中,并且进行共沉淀反应。如果使用如上所述的常规方法,则制备了镍-钴-锰氢氧化物,其中镍、钴和锰以均匀的组成分布在整个前体粒子中。Generally, in order to prepare a precursor for a positive electrode active material containing nickel, cobalt and manganese, the following method is used: a nickel raw material, a cobalt raw material and a manganese raw material are dissolved in a solvent such as water to prepare a metal solution containing nickel, cobalt and manganese, A solution containing nickel, cobalt, and manganese, an ammonium cation complexing agent, and a basic compound are added to the reactor, and a coprecipitation reaction is performed. If the conventional method as described above is used, a nickel-cobalt-manganese hydroxide is prepared in which nickel, cobalt and manganese are distributed in a uniform composition throughout the precursor particles.
相反地,本发明的特征在于,镍、钴和锰中的两种以上元素包含在不同的单独溶液中,并且通过改变将它们添加在反应器中的时机来制备正极活性材料用前体。如果通过根据本发明的方法来制备正极活性材料,则制备了多层结构的正极活性材料用前体,其中镍、钴和锰中的两种以上元素在不同区域中沉淀,并且如果使用如上所述的多层结构的前体,则可以制备其中核部和壳部的组成不同的正极活性材料。On the contrary, the present invention is characterized in that two or more elements among nickel, cobalt, and manganese are contained in different individual solutions, and the precursor for the positive electrode active material is prepared by changing the timing of adding them in the reactor. If the positive electrode active material is prepared by the method according to the present invention, a precursor for the positive electrode active material of a multilayer structure is prepared, in which two or more elements of nickel, cobalt and manganese are precipitated in different regions, and if using as above By using the precursor of the multilayer structure as described above, it is possible to prepare cathode active materials in which the compositions of the core part and the shell part are different.
具体地,可以通过以下方法(I)或(II)制备多层结构的正极活性材料用前体,其中镍、钴和锰中的两种以上元素在不同区域中沉淀。Specifically, a multilayer structure precursor for positive electrode active materials in which two or more elements of nickel, cobalt, and manganese are precipitated in different regions can be prepared by the following method (I) or (II).
方法(I):Method (I):
首先,在添加含有镍和钴的金属溶液、铵阳离子络合剂和碱性化合物的同时进行共沉淀反应,以形成镍-钴氢氧化物粒子。如上所述,如果镍-钴氢氧化物粒子通过将镍和钴同时共沉淀来制备,则获得在整个粒子中镍和钴的浓度恒定的氢氧化物粒子。First, a coprecipitation reaction is performed while adding a metal solution containing nickel and cobalt, an ammonium cation complexing agent, and an alkaline compound to form nickel-cobalt hydroxide particles. As described above, if nickel-cobalt hydroxide particles are prepared by co-precipitating nickel and cobalt simultaneously, hydroxide particles having constant concentrations of nickel and cobalt throughout the particles are obtained.
在该情况下,共沉淀反应例如可以以如下方式进行:在反应溶液的pH在11.5至12.5、优选11.8至12.3范围内的条件下进行反应一段时间以形成氢氧化物粒子的核之后,将反应溶液的pH调节为低于以上pH,并且另外进行反应以使氢氧化物粒子生长。In this case, the co-precipitation reaction can be performed, for example, in the following manner: after performing the reaction for a period of time to form nuclei of hydroxide particles under conditions such that the pH of the reaction solution is in the range of 11.5 to 12.5, preferably 11.8 to 12.3, the reaction is The pH of the solution is adjusted to be lower than the above pH, and the reaction is additionally performed to grow the hydroxide particles.
含有镍和钴的金属溶液可以通过将镍原料和钴原料溶解在例如水的溶剂中来制备。A metal solution containing nickel and cobalt can be prepared by dissolving a nickel raw material and a cobalt raw material in a solvent such as water.
镍原料可以为镍的乙酸盐、碳酸盐、硝酸盐、硫酸盐、卤化物、硫化物或氧化物,并且具体可以为NiO、NiCO3·2Ni(OH)2·4H2O、NiC2O2·2H2O、Ni(NO3)2·6H2O、NiSO4、NiSO4·6H2O、卤化镍,或其组合,但本发明不限于此。The nickel raw material can be nickel acetate, carbonate, nitrate, sulfate, halide, sulfide or oxide, and specifically can be NiO, NiCO 3 ·2Ni(OH) 2 ·4H 2 O, NiC 2 O 2 ·2H 2 O, Ni(NO 3 ) 2 ·6H 2 O, NiSO 4 , NiSO 4 ·6H 2 O, nickel halide, or combinations thereof, but the invention is not limited thereto.
钴原料可以为钴金属的乙酸盐、碳酸盐、硝酸盐、硫酸盐、卤化物、硫化物或氧化物,并且具体可以为CoSO4、Co(OCOCH3)2·4H2O、Co(NO3)2·6H2O、Co(SO4)2·7H2O,或其组合,但本发明不限于此。The cobalt raw material can be acetate, carbonate, nitrate, sulfate, halide, sulfide or oxide of cobalt metal, and specifically can be CoSO 4 , Co(OCOCH 3 ) 2 ·4H 2 O, Co( NO 3 ) 2 ·6H 2 O, Co(SO 4 ) 2 ·7H 2 O, or combinations thereof, but the invention is not limited thereto.
如果需要,含有镍和钴的金属溶液可以进一步包含含有选自Mn、Al、B、Mg、Ca、Ti、V、Cr、Fe、Zn、Ga、Y、Zr、Nb、Mo、Ta和W中的至少一种金属的原料。If necessary, the metal solution containing nickel and cobalt may further contain a metal solution selected from the group consisting of Mn, Al, B, Mg, Ca, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta and W. of at least one metal.
铵阳离子络合剂可以为选自NH4OH、(NH4)2SO4、NH4NO3、NH4Cl、CH3COONH4和(NH4)2CO3中的至少一种,并且可以以其中以上化合物溶解在溶剂中的溶液形式添加在反应器内。在该情况下,可以将水,或者水和可以与水均匀混合的有机溶剂(具体为醇等)的混合物用作溶剂。The ammonium cation complexing agent may be at least one selected from NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 and (NH 4 ) 2 CO 3 , and may The above compound is added to the reactor in the form of a solution in which the compound is dissolved in the solvent. In this case, water or a mixture of water and an organic solvent (specifically, alcohol, etc.) that can be uniformly mixed with water can be used as the solvent.
碱性化合物可以为选自NaOH、KOH和Ca(OH)2中的至少一种,并且可以以其中以上化合物溶解在溶剂中的溶液形式添加在反应器内。在该情况下,可以将水,或者水和可以与水均匀混合的有机溶剂(具体为醇等)的混合物用作溶剂。The basic compound may be at least one selected from NaOH, KOH, and Ca(OH) 2 , and may be added in the reactor in the form of a solution in which the above compound is dissolved in the solvent. In this case, water or a mixture of water and an organic solvent (specifically, alcohol, etc.) that can be uniformly mixed with water can be used as the solvent.
接下来,停止添加含有镍和钴的金属溶液,并且在将含有镍、钴和锰的金属溶液、铵阳离子络合剂和碱性化合物添加至含有镍-钴氢氧化物粒子的反应溶液中的同时进行共沉淀反应。结果,获得其中在镍-钴氢氧化物粒子上形成镍-钴-锰氢氧化物的粒子。即,制备了两层结构的正极活性材料用前体,其中镍-钴-锰氢氧化物共沉淀在镍-钴氢氧化物粒子的表面上。Next, the addition of the metal solution containing nickel and cobalt is stopped, and the metal solution containing nickel, cobalt, and manganese, the ammonium cation complexing agent, and the alkaline compound are added to the reaction solution containing the nickel-cobalt hydroxide particles. A co-precipitation reaction was carried out simultaneously. As a result, particles in which nickel-cobalt-manganese hydroxide is formed on the nickel-cobalt hydroxide particles are obtained. That is, a precursor for positive electrode active materials of a two-layer structure in which nickel-cobalt-manganese hydroxide coprecipitated on the surface of nickel-cobalt hydroxide particles was prepared.
在该情况下,共沉淀反应可以在反应溶液的pH在11.0至12.0范围内的条件下进行。In this case, the co-precipitation reaction can be performed under conditions where the pH of the reaction solution is in the range of 11.0 to 12.0.
含有镍、钴和锰的金属溶液可以通过将镍原料、钴原料和锰原料溶解在例如水的溶剂中来制备。A metal solution containing nickel, cobalt and manganese can be prepared by dissolving a nickel raw material, a cobalt raw material and a manganese raw material in a solvent such as water.
锰原料可以为锰金属的乙酸盐、碳酸盐、硝酸盐、硫酸盐、卤化物、硫化物或氧化物,并且具体可以为Mn2O3、MnO2、Mn3O4、MnCO3、Mn(NO3)2、MnSO4·H2O、乙酸锰、卤化锰,或其组合,但本发明不限于此。The manganese raw material can be acetate, carbonate, nitrate, sulfate, halide, sulfide or oxide of manganese metal, and specifically can be Mn 2 O 3 , MnO 2 , Mn 3 O 4 , MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 ·H 2 O, manganese acetate, manganese halide, or combinations thereof, but the present invention is not limited thereto.
镍原料、钴原料、铵阳离子络合剂和碱性化合物与上述相同。The nickel raw material, cobalt raw material, ammonium cation complexing agent and basic compound are the same as above.
如果需要,含有镍、钴和锰的金属溶液可以进一步包含含有选自Al、B、Mg、Ca、Ti、V、Cr、Fe、Zn、Ga、Y、Zr、Nb、Mo、Ta和W中的至少一种金属的原料。If necessary, the metal solution containing nickel, cobalt and manganese may further contain a metal solution selected from the group consisting of Al, B, Mg, Ca, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta and W. of at least one metal.
方法(II):Method (II):
首先,在添加含有镍的金属溶液、铵阳离子络合剂和碱性化合物的同时进行沉淀反应,以形成镍氢氧化物粒子。First, a precipitation reaction is performed while adding a metal solution containing nickel, an ammonium cation complexing agent, and an alkaline compound to form nickel hydroxide particles.
在该情况下,镍氢氧化物的沉淀反应可以在反应溶液的pH在11.4至11.8范围内的条件下进行。当反应溶液的pH满足以上范围时,镍的沉淀可以顺利进行。In this case, the precipitation reaction of nickel hydroxide can be performed under conditions where the pH of the reaction solution is in the range of 11.4 to 11.8. When the pH of the reaction solution meets the above range, the precipitation of nickel can proceed smoothly.
含有镍的金属溶液可以通过将镍原料溶解在例如水的溶剂中来制备。The metal solution containing nickel can be prepared by dissolving the nickel raw material in a solvent such as water.
如果需要,含有镍的金属溶液可以进一步包含含有选自Co、Mn、Al、B、Mg、Ca、Ti、V、Cr、Fe、Zn、Ga、Y、Zr、Nb、Mo、Ta和W中的至少一种金属的原料。If necessary, the metal solution containing nickel may further contain a metal solution selected from the group consisting of Co, Mn, Al, B, Mg, Ca, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta and W. of at least one metal.
镍原料、铵阳离子络合剂和碱性化合物与上述相同。The nickel raw material, ammonium cation complexing agent and basic compound are the same as above.
接下来,停止添加含有镍的金属溶液,并且在将含有锰的金属溶液、铵阳离子络合剂和碱性化合物添加至含有镍氢氧化物粒子的反应溶液中的同时进行沉淀反应,以形成其中锰氢氧化物沉淀在镍氢氧化物粒子上的镍/锰氢氧化物粒子。Next, the addition of the nickel-containing metal solution is stopped, and a precipitation reaction is performed while adding the manganese-containing metal solution, the ammonium cation complexing agent, and the alkaline compound to the reaction solution containing the nickel hydroxide particles to form where Nickel/manganese hydroxide particles with manganese hydroxide precipitated on nickel hydroxide particles.
在该情况下,锰氢氧化物的沉淀反应可以在反应溶液的pH在11.0以下、优选10.0至11.0范围内的条件下进行。当反应溶液的pH满足以上范围时,锰的沉淀顺利进行。In this case, the precipitation reaction of manganese hydroxide can be performed under the condition that the pH of the reaction solution is 11.0 or less, preferably in the range of 10.0 to 11.0. When the pH of the reaction solution satisfies the above range, the precipitation of manganese proceeds smoothly.
含有锰的金属溶液可以通过将锰原料溶解在例如水的溶剂中来制备。The metal solution containing manganese can be prepared by dissolving the manganese raw material in a solvent such as water.
如果需要,含有锰的金属溶液可以进一步包含含有选自Ni、Co、Al、B、Mg、Ca、Ti、V、Cr、Fe、Zn、Ga、Y、Zr、Nb、Mo、Ta和W中的至少一种金属的原料。If necessary, the metal solution containing manganese may further contain a metal solution selected from Ni, Co, Al, B, Mg, Ca, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta and W. of at least one metal.
锰原料、铵阳离子络合剂和碱性化合物与上述相同。The manganese raw material, ammonium cation complexing agent and basic compound are the same as above.
接下来,停止添加含有锰的金属溶液,并且在将含有钴的金属溶液、铵阳离子络合剂和碱性化合物添加至含有镍/锰氢氧化物的反应溶液中的同时进行沉淀反应,以形成其中钴氢氧化物沉淀在镍/锰氢氧化物粒子上的镍/锰/钴氢氧化物粒子。通过以上方法可以制备三层结构的镍/锰/钴氢氧化物,其中镍氢氧化物、锰氢氧化物和钴氢氧化物是依次沉淀的。Next, the addition of the metal solution containing manganese is stopped, and a precipitation reaction is performed while adding the metal solution containing cobalt, an ammonium cation complexing agent, and an alkaline compound to the reaction solution containing nickel/manganese hydroxide to form Nickel/manganese/cobalt hydroxide particles in which cobalt hydroxide is precipitated on nickel/manganese hydroxide particles. Through the above method, a three-layer structure of nickel/manganese/cobalt hydroxide can be prepared, in which nickel hydroxide, manganese hydroxide and cobalt hydroxide are precipitated in sequence.
在该情况下,钴氢氧化物的沉淀反应可以在反应溶液的pH在11.0至11.4范围内的条件下进行。当反应溶液的pH满足以上范围时,钴的沉淀可以顺利进行。In this case, the precipitation reaction of cobalt hydroxide can be performed under conditions where the pH of the reaction solution is in the range of 11.0 to 11.4. When the pH of the reaction solution meets the above range, cobalt precipitation can proceed smoothly.
含有钴的金属溶液可以通过将钴原料溶解在例如水的溶剂中来制备。The metal solution containing cobalt can be prepared by dissolving the cobalt raw material in a solvent such as water.
如果需要,含有钴的金属溶液可以进一步包含含有选自Ni、Mn、Al、B、Mg、Ca、Ti、V、Cr、Fe、Zn、Ga、Y、Zr、Nb、Mo、Ta和W中的至少一种金属的原料。If necessary, the cobalt-containing metal solution may further contain a metal solution selected from Ni, Mn, Al, B, Mg, Ca, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta and W. of at least one metal.
钴原料、铵阳离子络合剂和碱性化合物与上述相同。The cobalt raw material, ammonium cation complexing agent and basic compound are the same as above.
可以通过方法(I)或(II)制备多层结构的正极活性材料用前体,其中镍、钴和锰中的两种以上元素在不同区域中沉淀。如果前体粒子生长至期望的粒径,则反应结束,并且将正极活性材料用前体从反应溶液中分离然后干燥,以获得正极活性材料用前体。A precursor for positive electrode active materials of a multilayer structure in which two or more elements of nickel, cobalt, and manganese are precipitated in different regions can be prepared by method (I) or (II). If the precursor particles grow to a desired particle size, the reaction ends, and the precursor for positive electrode active material is separated from the reaction solution and then dried to obtain the precursor for positive electrode active material.
(2)将正极活性材料用前体与锂原料混合,并烧结混合物(2) Mix the precursor for the positive electrode active material and the lithium raw material, and sinter the mixture
接下来,将通过上述方法制备的正极活性材料用前体与锂原料混合,然后烧结,以制备根据本发明的正极活性材料。Next, the precursor for the positive electrode active material prepared by the above method is mixed with the lithium raw material and then sintered to prepare the positive electrode active material according to the present invention.
锂原料,例如可以包含含锂的碳酸盐(例如碳酸锂等)、水合物(例如氢氧化锂水合物(LiOH·H2O)等)、氢氧化物(例如氢氧化锂等)、硝酸盐(例如硝酸锂(LiNO3)等)和氯化物(例如氯化锂(LiCl)等),并且可以使用其任一种或其两种以上的混合物。Lithium raw materials may include, for example, lithium-containing carbonates (such as lithium carbonate, etc.), hydrates (such as lithium hydroxide hydrate (LiOH·H 2 O), etc.), hydroxides (such as lithium hydroxide, etc.), nitric acid Salts (such as lithium nitrate (LiNO 3 ), etc.) and chlorides (such as lithium chloride (LiCl), etc.), and any one thereof or a mixture of two or more thereof may be used.
正极活性材料用前体和锂原料的混合可以通过固相混合来进行,并且正极活性材料用前体与锂原料的混合比可以在满足最终制备的正极活性材料中各组分的原子分数的范围内来确定。例如,正极活性材料用前体和锂原料可以以这样的量混合:过渡金属:Li的摩尔比在1:0.8至1:1.2、优选1:0.85至1:1.15、更优选1:0.9至1:1.1的范围内。在其中前体和锂原料在以上范围内混合的情况下,可以制备表现出优异的容量特性的正极活性材料。The mixing of the precursor for the positive electrode active material and the lithium raw material can be carried out by solid phase mixing, and the mixing ratio of the precursor for the positive electrode active material and the lithium raw material can be in a range that satisfies the atomic fraction of each component in the finally prepared positive electrode active material. To be sure within. For example, the precursor for the positive electrode active material and the lithium raw material may be mixed in such an amount that the transition metal:Li molar ratio is 1:0.8 to 1:1.2, preferably 1:0.85 to 1:1.15, more preferably 1:0.9 to 1 : within the range of 1.1. In the case where the precursor and the lithium raw material are mixed within the above range, a positive electrode active material exhibiting excellent capacity characteristics can be prepared.
作为参照,对于其中镍氢氧化物、锰氢氧化物和钴氢氧化物依次沉淀的三层结构的镍/锰/钴氢氧化物,在与锂原料混合之后,具有高扩散性的钴容易在烧结期间渗入粒子中,以制备其表面上锰含量高的正极材料。For reference, for the nickel/manganese/cobalt hydroxide with a three-layer structure in which nickel hydroxide, manganese hydroxide, and cobalt hydroxide are sequentially precipitated, after being mixed with the lithium raw material, cobalt with high diffusivity is easily infiltrated into the particles during sintering to produce a cathode material with a high manganese content on its surface.
另外,如果需要,在烧结期间,可以进一步混合含掺杂元素的材料。掺杂元素例如可以为选自Al、B、Mg、Ca、Ti、V、Cr、Fe、Zn、Ga、Y、Zr、Nb、Mo、Ta和W中的至少一种,并且含掺杂元素的原料可以为含掺杂元素的乙酸盐、硫酸盐、硫化物、氢氧化物或羟基氧化物。Additionally, if desired, materials containing doping elements can be further mixed during sintering. The doping element may be, for example, at least one selected from the group consisting of Al, B, Mg, Ca, Ti, V, Cr, Fe, Zn, Ga, Y, Zr, Nb, Mo, Ta and W, and contains the doping element The raw materials can be acetate, sulfate, sulfide, hydroxide or oxyhydroxide containing doping elements.
烧结可以在600℃至1,000℃下、例如在700℃至900℃下进行,并且烧结时间可以在5小时至30小时、例如8小时至15小时的范围内,但本发明不限于此。The sintering may be performed at 600°C to 1,000°C, such as 700°C to 900°C, and the sintering time may be in the range of 5 hours to 30 hours, such as 8 hours to 15 hours, but the invention is not limited thereto.
本发明可以在烧结后进一步包括混合含涂覆元素的原料并进行热处理的工序。在该情况下,根据本发明的正极活性材料可以涂覆有涂层。The present invention may further include the process of mixing raw materials containing coating elements and performing heat treatment after sintering. In this case, the positive active material according to the present invention may be coated with a coating layer.
含涂覆元素的原料中所含的金属元素可以为Zr、B、W、Mo、Cr、Nb、Mg、Hf、Ta、La、Ti、Sr、Ba、Ce、F、P、S和Y。含涂覆元素的原料可以为含有金属元素的乙酸盐、硝酸盐、硫酸盐、卤化物、硫化物、氢氧化物、氧化物或羟基氧化物。例如,在其中金属元素为B的情况下,可以使用硼酸(H3BO3)。The metal elements contained in the raw materials containing coating elements may be Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, F, P, S and Y. The raw material containing coating elements may be acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide containing metal elements. For example, in the case where the metal element is B, boric acid (H 3 BO 3 ) can be used.
相对于锂过渡金属氧化物,可以以200ppm至2,000ppm(0.02重量%至0.2重量%)的重量包含含涂覆元素的原料。在其中含涂覆元素的原料的量在以上范围内的情况下,可以改善电池的容量,并且形成的涂层可以抑制电解液和锂过渡金属氧化物之间的直接反应,从而改善电池的长期性能特性。The coating element-containing raw material may be included in a weight of 200 ppm to 2,000 ppm (0.02 to 0.2 wt%) relative to the lithium transition metal oxide. In the case where the amount of the raw material containing the coating element is within the above range, the capacity of the battery can be improved, and the formed coating can suppress the direct reaction between the electrolyte and the lithium transition metal oxide, thereby improving the long-term performance of the battery. Performance characteristics.
热处理可以在200℃至400℃的温度范围内进行。在其中热处理温度在以上范围内的情况下,可以在维持过渡金属氧化物的结构稳定性的同时形成涂层。热处理可以进行1小时至10小时。在其中热处理时间在以上范围内的情况下,可以形成适当的涂层并且可以改善生产效率。Heat treatment can be performed in the temperature range of 200°C to 400°C. In the case where the heat treatment temperature is within the above range, the coating layer can be formed while maintaining the structural stability of the transition metal oxide. Heat treatment can be carried out from 1 hour to 10 hours. In the case where the heat treatment time is within the above range, an appropriate coating layer can be formed and production efficiency can be improved.
正极positive electrode
接下来,将描述根据本发明的正极。Next, the positive electrode according to the present invention will be described.
根据本发明的正极包含上述根据本发明的正极活性材料。具体地,正极包含正极集电器和形成在正极集电器上的正极活性材料层,其中正极活性材料层包含根据本发明的正极活性材料。The positive electrode according to the present invention includes the above-mentioned positive electrode active material according to the present invention. Specifically, the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, wherein the positive electrode active material layer includes the positive electrode active material according to the present invention.
由于以上已经描述了正极活性材料,因此将省略其详细描述,并且以下将仅详细描述其余的构造。Since the positive active material has been described above, its detailed description will be omitted, and only the remaining configuration will be described in detail below.
正极集电器可以包含具有高导电性的金属,并且没有特别限制,只要其在电池的电压范围内不具有反应性,并且正极活性材料层容易粘附至其上即可。作为正极集电器,例如,可以使用不锈钢,铝,镍,钛,烧制碳,或者用碳、镍、钛、银等中的一种表面处理过的铝或不锈钢。另外,正极集电器的厚度通常为3μm至500μm,并且可以在集电器的表面上形成微细凹凸,从而改善正极活性材料的粘附性。正极集电器例如可以以各种形状来使用,例如膜、片、箔、网、多孔体、发泡体、无纺布体等。The positive electrode current collector may contain a metal with high conductivity and is not particularly limited as long as it is not reactive within the voltage range of the battery and the positive electrode active material layer is easily adhered thereto. As the positive electrode current collector, for example, stainless steel, aluminum, nickel, titanium, fired carbon, or aluminum or stainless steel surface-treated with one of carbon, nickel, titanium, silver, or the like can be used. In addition, the thickness of the positive electrode current collector is usually 3 μm to 500 μm, and fine unevenness can be formed on the surface of the current collector, thereby improving the adhesion of the positive electrode active material. The positive electrode current collector can be used in various shapes, such as films, sheets, foils, meshes, porous bodies, foams, non-woven fabrics, and the like.
如果需要,除了正极活性材料以外,正极活性材料层还可以任选地包含导电材料和粘合剂。If necessary, in addition to the positive active material, the positive active material layer may optionally contain a conductive material and a binder.
在该情况下,相对于正极活性材料层的总重量,可以以80重量%至99重量%、例如85重量%至98.5重量%的量包含正极活性材料。当以以上范围内的量包含正极活性材料时,可以获得优异的容量特性。In this case, the positive active material may be included in an amount of 80 to 99% by weight, for example, 85 to 98.5% by weight, relative to the total weight of the positive active material layer. When the cathode active material is contained in an amount within the above range, excellent capacity characteristics can be obtained.
使用导电材料来向电极提供导电性,其中可以不受特别限制地使用任何导电材料,只要其具有适合的电子传导性而不在电池中引起不利的化学变化即可。导电材料的具体实例可以为:石墨,例如天然石墨或人造石墨;碳系材料,例如炭黑、乙炔黑、科琴黑、槽法炭黑、炉黑、灯黑、热裂法炭黑和碳纤维;金属例如铜、镍、铝和银的粉末或纤维;导电管,例如碳纳米管;导电晶须,例如锌氧化物晶须和钛酸钾晶须;导电金属氧化物,例如钛氧化物;或导电聚合物,例如聚亚苯基衍生物,并且可以使用其任一种或其两种以上的混合物。相对于正极活性材料层的总重量,可以以0.1重量%至15重量%的量包含导电材料。A conductive material is used to provide conductivity to the electrode, where any conductive material may be used without particular limitation as long as it has suitable electron conductivity without causing adverse chemical changes in the battery. Specific examples of the conductive material may be: graphite, such as natural graphite or artificial graphite; carbon-based materials, such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black and carbon fiber ;Powders or fibers of metals such as copper, nickel, aluminum and silver; conductive tubes, such as carbon nanotubes; conductive whiskers, such as zinc oxide whiskers and potassium titanate whiskers; conductive metal oxides, such as titanium oxide; or a conductive polymer such as a polyphenylene derivative, and any one thereof or a mixture of two or more thereof may be used. The conductive material may be included in an amount of 0.1% to 15% by weight relative to the total weight of the cathode active material layer.
粘合剂改善正极活性材料粒子之间的粘附性以及正极活性材料和集电器之间的粘附性。粘合剂的具体实例可以为聚偏二氟乙烯(PVDF)、聚偏二氟乙烯-六氟丙烯共聚物(PVDF-共-HFP)、聚乙烯醇、聚丙烯腈、聚甲基丙烯酸甲酯、羧甲基纤维素(CMC)、淀粉、羟丙基纤维素、再生纤维素、聚乙烯基吡咯烷酮、聚四氟乙烯、聚乙烯、聚丙烯、三元乙丙橡胶(EPDM)、磺化EPDM、丁苯橡胶(SBR)、氟橡胶、聚丙烯酸,以及其氢用Li、Na或Ca取代的聚合物,或其各种共聚物,并且可以使用其任一种或其两种以上的混合物。相对于正极活性材料层的总重量,可以以0.1重量%至15重量%的量包含粘合剂。The binder improves the adhesion between the positive active material particles and the adhesion between the positive active material and the current collector. Specific examples of the binder may be polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, polymethylmethacrylate , carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene propylene diene monomer (EPDM), sulfonated EPDM , styrene-butadiene rubber (SBR), fluorine rubber, polyacrylic acid, and polymers whose hydrogen is replaced by Li, Na or Ca, or various copolymers thereof, and any one thereof or a mixture of two or more thereof can be used. The binder may be included in an amount of 0.1% to 15% by weight relative to the total weight of the cathode active material layer.
可以根据正极的常规制备方法来制备正极,不同之处在于,使用上述正极活性材料。具体地,将通过将正极活性材料以及任选的粘合剂和导电材料溶解或分散在溶剂中制备的正极活性材料层形成用组合物(正极浆料)涂覆在正极集电器上,然后可以通过干燥和压延涂覆的正极集电器来制备正极。The positive electrode can be prepared according to the conventional preparation method of the positive electrode, except that the above-mentioned positive electrode active material is used. Specifically, the positive electrode active material layer forming composition (positive electrode slurry) prepared by dissolving or dispersing the positive electrode active material and optional binder and conductive material in a solvent is coated on the positive electrode current collector, and then it can The positive electrode was prepared by drying and calendering the coated positive electrode current collector.
溶剂可以为本领域中常用的溶剂,并且可以包括二甲基亚砜(DMSO)、异丙醇、N-甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)、丙酮或水,并且可以使用其任一种或其两种以上的混合物。考虑浆料的涂覆厚度和制造收率,如果溶剂可以溶解和分散正极活性材料、导电材料、粘合剂和分散剂,并且可以使得具有在用于正极制备的后续涂覆期间可以提供优异的厚度均匀性的粘度,溶剂的使用量就可以是足够的。The solvent may be a solvent commonly used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), dimethylformamide (DMF), acetone or water, and may Use any one thereof or a mixture of two or more thereof. Considering the coating thickness and manufacturing yield of the slurry, if the solvent can dissolve and disperse the cathode active material, conductive material, binder and dispersant, and can provide excellent performance during subsequent coating for cathode preparation For thickness uniformity of viscosity, the amount of solvent used can be sufficient.
另外,作为另一种方法,正极可以通过将正极活性材料层形成用组合物流延在单独的支撑体上,然后将从支撑体分离的膜层叠在正极集电器上来制备。In addition, as another method, the positive electrode can be prepared by casting the positive electrode active material layer-forming composition on a separate support, and then laminating the film separated from the support on the positive electrode current collector.
锂二次电池Lithium secondary battery
接下来,将描述根据本发明的锂二次电池。Next, the lithium secondary battery according to the present invention will be described.
锂二次电池具体地包含正极、设置为面向正极的负极、设置在正极和负极之间的隔膜和电解质,其中,由于正极与上述相同,因此将省略其详细描述,并且以下将仅详细描述其余的构造。The lithium secondary battery specifically includes a positive electrode, a negative electrode arranged to face the positive electrode, a separator arranged between the positive electrode and the negative electrode, and an electrolyte. Since the positive electrode is the same as the above, a detailed description thereof will be omitted, and only the rest will be described in detail below. structure.
另外,锂二次电池可以进一步可选地包含容纳正极、负极和隔膜的电极组件的电池容器,和密封电池容器的密封构件。In addition, the lithium secondary battery may further optionally include a battery container housing an electrode assembly of a positive electrode, a negative electrode, and a separator, and a sealing member sealing the battery container.
在锂二次电池中,负极包含负极集电器和设置在负极集电器上的负极活性材料层。In a lithium secondary battery, the negative electrode includes a negative electrode current collector and a negative electrode active material layer provided on the negative electrode current collector.
对负极集电器没有特别限制,只要其具有高导电性而不在电池中引起不利的化学变化即可,并且例如,可以使用铜,不锈钢,铝,镍,钛,烧制碳,用碳、镍、钛、银等中的一种表面处理过的铜或不锈钢,和铝镉合金。另外,负极集电器的厚度通常可以为3μm至500μm,并且,类似于正极集电器,可以在集电器的表面上形成微细凹凸,从而改善负极活性材料的粘附性。负极集电器,例如,可以以各种形状来使用,例如膜、片、箔、网、多孔体、发泡体、无纺布体等。The negative electrode current collector is not particularly limited as long as it has high conductivity without causing adverse chemical changes in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, carbon, nickel, A surface-treated copper or stainless steel such as titanium, silver, and aluminum-cadmium alloys. In addition, the thickness of the negative electrode current collector can generally be 3 μm to 500 μm, and, similar to the positive electrode current collector, fine unevenness can be formed on the surface of the current collector, thereby improving the adhesion of the negative electrode active material. The negative electrode current collector can be used in various shapes, such as films, sheets, foils, meshes, porous bodies, foams, non-woven fabrics, and the like.
除了负极活性材料以外,负极活性材料层还任选地包含粘合剂和导电材料。In addition to the negative active material, the negative active material layer optionally contains a binder and a conductive material.
可以将能够可逆地嵌入和脱嵌锂的化合物用作负极活性材料。负极活性材料的具体实例可以为:碳质材料,例如人造石墨、天然石墨、石墨化碳纤维和非晶碳;可以与锂合金化的(半)金属类材料,例如Si、Al、Sn、Pb、Zn、Bi、In、Mg、Ga、Cd、Si合金、Sn合金或Al合金;可以掺杂或不掺杂锂的(半)金属氧化物,例如SiOβ(0<β<2)、SnO2、钒氧化物和锂钒氧化物;或者包含(半)金属类材料和碳质材料的复合物,例如Si-C复合物或Sn-C复合物,并且可以使用其任一种或其两种以上的混合物。另外,可以将金属锂薄膜用作负极活性材料。另外,低结晶碳和高结晶碳二者都可以用作碳材料。低结晶碳的典型实例可以为软碳和硬碳,并且高结晶碳结晶碳的典型实例可以为不规则、板状、片状、球形或纤维状的天然石墨或人造石墨,凝析石墨,热解碳,中间相沥青系碳纤维,中间相碳微珠,中间相沥青,和高温烧结碳,例如石油或煤焦油沥青衍生的焦炭。A compound capable of reversibly intercalating and deintercalating lithium can be used as the negative electrode active material. Specific examples of negative active materials can be: carbonaceous materials, such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon; (semi-)metallic materials that can be alloyed with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; (semi)metal oxides that may or may not be doped with lithium, such as SiO β (0<β<2), SnO 2 , vanadium oxide and lithium vanadium oxide; or a composite containing a (semi)metallic material and a carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or both of them can be used mixture of the above. In addition, a metallic lithium film can be used as a negative electrode active material. In addition, both low-crystalline carbon and high-crystalline carbon can be used as the carbon material. Typical examples of low-crystalline carbon may be soft carbon and hard carbon, and typical examples of high-crystalline carbon may be irregular, plate-like, flaky, spherical or fibrous natural graphite or artificial graphite, condensed graphite, thermal Decomposed carbon, mesophase pitch-based carbon fiber, mesophase carbon microbeads, mesophase pitch, and high-temperature sintered carbon, such as petroleum or coal tar pitch-derived coke.
相对于负极活性材料层的总重量,可以以80重量%至99重量%的量包含负极活性材料。The negative active material may be included in an amount of 80% to 99% by weight relative to the total weight of the negative active material layer.
粘合剂是有助于导电材料、活性材料和集电器之间的粘合的组分,其中相对于负极活性材料层的总重量,通常可以以0.1重量%至10重量%的量添加粘合剂。粘合剂的实例可以为聚偏二氟乙烯(PVDF)、聚乙烯醇、羧甲基纤维素(CMC)、淀粉、羟丙基纤维素、再生纤维素、聚乙烯基吡咯烷酮、聚四氟乙烯、聚乙烯、聚丙烯、三元乙丙橡胶(EPDM)、磺化EPDM、丁苯橡胶、丁腈橡胶、氟橡胶,及其各种共聚物。The binder is a component that contributes to the adhesion between the conductive material, the active material and the current collector, wherein the binder can generally be added in an amount of 0.1% to 10% by weight relative to the total weight of the negative active material layer agent. Examples of binders may be polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene , polyethylene, polypropylene, ethylene propylene diene rubber (EPDM), sulfonated EPDM, styrene-butadiene rubber, nitrile rubber, fluorine rubber, and various copolymers.
导电材料是用于进一步改善负极活性材料的导电性的组分,其中相对于负极活性材料层的总重量,可以以10重量%以下、例如5重量%以下的量添加导电材料。对导电材料没有特别限制,只要其具有导电性而不在电池中引起不利的化学变化即可,并且,例如,可以使用导电材料,例如:石墨,例如天然石墨或人造石墨;炭黑,例如乙炔黑、科琴黑、槽法炭黑、炉黑、灯黑和热裂法炭黑;导电纤维,例如碳纤维或金属纤维;氟碳化合物;金属粉末,例如铝粉末和镍粉末;导电晶须,例如锌氧化物晶须和钛酸钾晶须;导电金属氧化物,例如钛氧化物;或聚亚苯基衍生物。The conductive material is a component used to further improve the conductivity of the negative active material, wherein the conductive material may be added in an amount of 10% by weight or less, for example, 5% by weight or less relative to the total weight of the negative electrode active material layer. The conductive material is not particularly limited as long as it has conductivity without causing adverse chemical changes in the battery, and, for example, a conductive material such as: graphite, such as natural graphite or artificial graphite; carbon black, such as acetylene black , Ketjen black, channel black, furnace black, lamp black and thermal black; conductive fibers, such as carbon fibers or metal fibers; fluorocarbons; metal powders, such as aluminum powder and nickel powder; conductive whiskers, such as Zinc oxide whiskers and potassium titanate whiskers; conductive metal oxides, such as titanium oxide; or polyphenylene derivatives.
例如,负极活性材料层可以通过以下来制备:将通过将任选的粘合剂和导电材料以及负极活性材料溶解或分散在溶剂中制备的负极活性材料层形成用组合物涂覆在负极集电器上,并且将涂覆的负极集电器干燥,或者可以通过以下来制备:将负极活性材料层形成用组合物流延在单独的支撑体上,然后将从支撑体分离的膜层叠在负极集电器上。For example, the negative electrode active material layer can be prepared by applying a negative electrode active material layer forming composition prepared by dissolving or dispersing an optional binder and a conductive material and the negative electrode active material in a solvent on the negative electrode current collector. on, and the coated negative electrode current collector is dried, or may be prepared by casting the negative electrode active material layer forming composition on a separate support, and then laminating the film separated from the support on the negative electrode current collector .
在锂二次电池中,隔膜将负极和正极分离,并且提供锂离子的移动路径,其中可以将任何隔膜用作隔膜而没有特别限制,只要其是在锂二次电池中常用的即可,特别地,可以使用对电解质的保湿能力高,并且对电解质离子的转移阻力低的隔膜。具体地,可以使用多孔聚合物膜,例如,从聚烯烃系聚合物如乙烯均聚物、丙烯均聚物、乙烯/丁烯共聚物、乙烯/己烯共聚物、乙烯/甲基丙烯酸共聚物制备的多孔聚合物膜,或者具有两层以上的层叠结构。另外,可以使用一般的多孔无纺布,例如,由熔点高的玻璃纤维或聚对苯二甲酸乙二醇酯纤维形成的无纺布。此外,可以使用包含陶瓷组分或聚合物材料的涂覆隔膜,从而确保耐热性或机械强度,并且可以任选地使用具有单层或多层结构的隔膜。In lithium secondary batteries, a separator separates the negative electrode and the positive electrode and provides a movement path for lithium ions, wherein any separator can be used as the separator without particular limitation as long as it is commonly used in lithium secondary batteries, especially Therefore, it is possible to use a separator that has a high ability to retain electrolytes and a low resistance to transfer of electrolyte ions. Specifically, porous polymer films may be used, for example, from polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene/butene copolymers, ethylene/hexene copolymers, ethylene/methacrylic acid copolymers The prepared porous polymer membrane may have a laminated structure of two or more layers. In addition, a general porous nonwoven fabric may be used, for example, a nonwoven fabric made of glass fiber or polyethylene terephthalate fiber with a high melting point. In addition, a coated separator containing a ceramic component or a polymer material may be used to ensure heat resistance or mechanical strength, and a separator having a single-layer or multi-layer structure may optionally be used.
另外,本发明中使用的电解质可以包含可以在锂二次电池的制备中使用的有机液体电解质、无机液体电解质、固体聚合物电解质、凝胶型聚合物电解质、固体无机电解质或熔融型无机电解质,但本发明不限于此。In addition, the electrolyte used in the present invention may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, or a molten inorganic electrolyte that can be used in the preparation of lithium secondary batteries, However, the present invention is not limited to this.
具体地,电解质可以包含有机溶剂和锂盐。Specifically, the electrolyte may contain an organic solvent and a lithium salt.
可以将任何有机溶剂用作有机溶剂而没有特别限制,只要其可以起参与电池的电化学反应的离子可以通过其移动的介质的作用即可。具体地,可以将以下用作有机溶剂:酯系溶剂,例如乙酸甲酯、乙酸乙酯、γ-丁内酯和ε-己内酯;醚系溶剂,例如二丁醚或四氢呋喃;酮系溶剂,例如环己酮;芳香烃系溶剂,例如苯和氟苯;或碳酸酯系溶剂,例如碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸乙甲酯(EMC)、碳酸亚乙酯(EC)和碳酸亚丙酯(PC);醇系溶剂,例如乙醇和异丙醇;腈,例如R-CN(其中R为直链、支化或环状C2-C20烃基,并且可以包括双键、芳环或醚键);酰胺,例如二甲基甲酰胺;二氧戊环,例如1,3-二氧戊环;或环丁砜。这些溶剂中,可以使用碳酸酯系溶剂,并且,例如,可以使用具有可以增加电池的充放电性能的高离子传导性和高介电常数的环状碳酸酯(例如,碳酸亚乙酯或碳酸亚丙酯),和低粘度直链碳酸酯系化合物(例如,碳酸乙甲酯、碳酸二甲酯或碳酸二乙酯)的混合物。在该情况下,当环状碳酸酯和链状碳酸酯以约1:1至约1:9的体积比混合时,电解液的性能可以是优异的。Any organic solvent can be used as the organic solvent without particular limitation as long as it can function as a medium through which ions participating in the electrochemical reaction of the battery can move. Specifically, the following can be used as the organic solvent: ester-based solvents, such as methyl acetate, ethyl acetate, γ-butyrolactone, and ε-caprolactone; ether-based solvents, such as dibutyl ether or tetrahydrofuran; ketone-based solvents , such as cyclohexanone; aromatic hydrocarbon solvents, such as benzene and fluorobenzene; or carbonate solvents, such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), carbonate Ethyl ester (EC) and propylene carbonate (PC); alcoholic solvents, such as ethanol and isopropyl alcohol; nitriles, such as R-CN (where R is a linear, branched or cyclic C2-C20 hydrocarbon group, and can including double bonds, aromatic rings or ether bonds); amides, such as dimethylformamide; dioxolanes, such as 1,3-dioxolane; or sulfolane. Among these solvents, a carbonate-based solvent can be used, and, for example, a cyclic carbonate having high ion conductivity and high dielectric constant that can increase the charge and discharge performance of the battery (for example, ethylene carbonate or ethylene carbonate) can be used. propyl ester), and a mixture of low-viscosity linear carbonate compounds (for example, ethylmethyl carbonate, dimethyl carbonate or diethyl carbonate). In this case, when the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the performance of the electrolyte solution may be excellent.
锂盐可以不受特别限制地使用,只要其为能够提供锂二次电池中所使用的锂离子的化合物即可。具体地,锂盐的阴离子可以为选自以下中的至少一种:F-、Cl-、Br-、I-、NO3 -、N(CN)2 -、BF4 -、CF3CF2SO3 -、(CF3SO2)2N-、(FSO2)2N-、CF3CF2(CF3)2CO-、(CF3SO2)2CH-、(SF5)3C-、(CF3SO2)3C-、CF3(CF2)7SO3 -、CF3CO2 -、CH3CO2 -、SCN-和(CF3CF2SO2)2N-,并且可以将LiPF6、LiClO4、LiAsF6、LiBF4、LiSbF6、LiAlO4、LiAlCl4、LiCF3SO3、LiC4F9SO3、LiN(C2F5SO3)2、LiN(C2F5SO2)2、LiN(CF3SO2)2、LiCl、LiI或LiB(C2O4)2用作锂盐。锂盐可以在0.1M至2.0M的浓度范围内使用。如果锂盐的浓度包含在以上范围内,则由于电解质可以具有适当的导电性和粘度,因此可以获得优异的电解质性能,并且锂离子可以有效地移动。The lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in lithium secondary batteries. Specifically, the anion of the lithium salt may be at least one selected from the following: F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - , and LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiCl, LiI or LiB(C 2 O 4 ) 2 are used as lithium salts. Lithium salts can be used in concentrations ranging from 0.1M to 2.0M. If the concentration of the lithium salt is included in the above range, since the electrolyte can have appropriate conductivity and viscosity, excellent electrolyte performance can be obtained, and lithium ions can move efficiently.
为了改善电池的寿命特性、抑制电池容量的降低,并且改善电池的放电容量,除了以上电解质组分以外,电解质中还可以进一步包含至少一种添加剂,例如,卤代亚烷基碳酸酯系化合物,例如碳酸二氟亚乙酯、吡啶、亚磷酸三乙酯、三乙醇胺、环醚、乙二胺、(缩)甘醇二甲醚类、六甲基磷酰三胺、硝基苯衍生物、硫、醌亚胺染料、N-取代唑烷酮、N,N-取代咪唑烷、乙二醇二烷基醚、铵盐、吡咯、2-甲氧基乙醇或三氯化铝。在该情况下,相对于电解质的总重量,可以以0.1重量%至5重量%的量包含添加剂。In order to improve the life characteristics of the battery, suppress the decrease in battery capacity, and improve the discharge capacity of the battery, in addition to the above electrolyte components, the electrolyte may further contain at least one additive, such as a halogenated alkylene carbonate compound, For example, difluoroethylene carbonate, pyridine, triethyl phosphite, triethanolamine, cyclic ethers, ethylenediamine, ()glyme, hexamethylphosphoric triamide, nitrobenzene derivatives, Sulfur, quinoneimine dyes, N-substituted Azolidinones, N,N-substituted imidazolidines, glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol or aluminum trichloride. In this case, the additive may be included in an amount of 0.1% to 5% by weight relative to the total weight of the electrolyte.
如上所述,由于包含根据本发明的正极活性材料的锂二次电池稳定地表现出优异的放电容量、输出特性和寿命特性,因此锂二次电池适合用于便携装置,例如移动电话、笔记本电脑和数码相机,以及电动汽车,例如混合动力电动车辆(HEV)。As described above, since the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics and life characteristics, the lithium secondary battery is suitable for use in portable devices such as mobile phones, notebook computers and digital cameras, as well as electric vehicles such as hybrid electric vehicles (HEVs).
因此,根据本发明的另一个实施方案,提供包含锂二次电池作为单元电池(unitcell)的电池模块,和包含电池模块的电池组。Therefore, according to another embodiment of the present invention, there are provided a battery module including a lithium secondary battery as a unit cell, and a battery pack including the battery module.
电池模块或电池组可以用作电动工具;电动汽车,包括电动车辆(EV)、混合动力电动车辆和插电式混合动力电动车辆(PHEV);或蓄电系统中的至少一种中大型装置的电源。The battery module or battery pack can be used as an electric tool; an electric vehicle, including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); or at least one medium and large device in a power storage system power supply.
对本发明的锂二次电池的形状没有特别限制,但可以使用:使用罐的圆筒型、棱柱型、袋型或硬币型。The shape of the lithium secondary battery of the present invention is not particularly limited, but a cylindrical type using a can, a prismatic type, a bag type, or a coin type can be used.
根据本发明的锂二次电池不仅可以用在用作小型装置的电源的电池单体中,并且还可以用作包含多个电池单体的中大型电池模块中的单元电池。The lithium secondary battery according to the present invention can be used not only in battery cells used as power sources for small devices, but also as unit cells in medium and large-sized battery modules containing a plurality of battery cells.
中大型装置的实例可以为电动车辆、混合动力电动车辆、插电式混合动力电动车辆和蓄电系统,但中大型装置不限于此。Examples of medium and large devices may be electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage systems, but medium and large devices are not limited thereto.
优选实施方案Preferred embodiment
在下文中,将根据具体实施例详细描述本发明。Hereinafter, the present invention will be described in detail based on specific embodiments.
实施例和比较例Examples and Comparative Examples
实施例1:Ni、Co共沉淀→Ni、Co、Mn共沉淀Example 1: Co-precipitation of Ni and Co → Co-precipitation of Ni, Co and Mn
将NiSO4和CoSO4以使得Ni:Co的摩尔比为95:5的量添加至蒸馏水中,以制备浓度为2.4M的第一金属溶液。将NiSO4和CoSO4和MnSO4以使得Ni:Co:Mn的摩尔比为61:5:34的量添加至蒸馏水中,以单独制备浓度为2.4M的第二金属溶液。另外,准备浓度为8.0M的NaOH水溶液和浓度为5.1M的NH4OH水溶液。NiSO and CoSO were added to distilled water in an amount such that the molar ratio of Ni:Co was 95 : 5 to prepare a first metal solution with a concentration of 2.4M. NiSO 4 and CoSO 4 and MnSO 4 were added to distilled water in an amount such that the molar ratio of Ni:Co:Mn was 61:5:34 to separately prepare a second metal solution with a concentration of 2.4M. In addition, a NaOH aqueous solution with a concentration of 8.0M and an NH 4 OH aqueous solution with a concentration of 5.1M were prepared.
在将18L去离子水、0.025L NaOH水溶液和0.71L NH4OH水溶液放入反应器中之后,通过用氮气吹扫反应器而除去水中的溶解氧,以在反应器中形成非氧化气氛。After placing 18 L of deionized water, 0.025 L of NaOH aqueous solution, and 0.71 L of NH 4 OH aqueous solution into the reactor, the dissolved oxygen in the water was removed by purging the reactor with nitrogen to form a non-oxidizing atmosphere in the reactor.
然后,在向反应器中分别以5.0L/hr的速度添加第一金属溶液、以3.0L/hr的速度添加NaOH水溶液、并且以0.70L/hr的速度添加NH4OH水溶液的同时,在11.9的pH下进行沉淀反应0.2小时,以形成镍-钴氢氧化物粒子的核。其后,在依次降低搅拌速度,并且添加NaOH并使用pH传感器将反应溶液的pH调节至11.4之后,在分别以5.00L/hr、3.00L/hr和0.70L/hr的速度添加第一金属溶液、NaOH水溶液和NH4OH水溶液的同时,进行共沉淀反应38.2小时,以制备包含镍-钴氢氧化物粒子的核部。Then, while adding the first metal solution at a rate of 5.0 L/hr, the NaOH aqueous solution at a rate of 3.0 L/hr, and the NH 4 OH aqueous solution at a rate of 0.70 L/hr, at 11.9 The precipitation reaction was carried out at a pH of 0.2 h to form the core of the nickel-cobalt hydroxide particles. Thereafter, after sequentially reducing the stirring speed, adding NaOH, and using a pH sensor to adjust the pH of the reaction solution to 11.4, the first metal solution was added at rates of 5.00L/hr, 3.00L/hr, and 0.70L/hr respectively. , NaOH aqueous solution and NH 4 OH aqueous solution, a co-precipitation reaction was carried out for 38.2 hours to prepare a core containing nickel-cobalt hydroxide particles.
其后,在停止添加第一金属溶液并且添加NaOH并使用pH传感器将反应溶液的pH调节至11.4之后,在分别以5.00L/hr、3.00L/hr和0.70L/hr的速度添加第二金属溶液、NaOH水溶液和NH4OH水溶液并搅拌的同时,进行沉淀反应9.6小时,以制备正极活性材料用前体,其中镍-钴-锰氢氧化物沉淀在包含镍-钴氢氧化物粒子的核部上。整个正极活性材料用前体粒子的Ni:Co:Mn摩尔比为88:5:7。Thereafter, after stopping the addition of the first metal solution and adding NaOH and adjusting the pH of the reaction solution to 11.4 using a pH sensor, the second metal was added at rates of 5.00L/hr, 3.00L/hr, and 0.70L/hr respectively. solution, NaOH aqueous solution and NH 4 OH aqueous solution and stirring, a precipitation reaction was performed for 9.6 hours to prepare a precursor for a positive electrode active material, in which nickel-cobalt-manganese hydroxide was precipitated in the core containing nickel-cobalt hydroxide particles. Ministry. The Ni:Co:Mn molar ratio of the entire cathode active material precursor particles is 88:5:7.
将如上所述制备的正极活性材料用前体、LiOH·H2O和Al(OH)3混合,使得Ni+Co+Mn:Li:Al的摩尔比为0.98:1.05:0.02,在765℃下烧结13小时,研磨、洗涤、并干燥,以制备正极活性材料。所制备的整个正极活性材料粒子的Ni:Co:Mn:Al摩尔比为86:5:7:2。Mix the cathode active material precursor prepared as above, LiOH·H 2 O and Al(OH) 3 so that the molar ratio of Ni+Co+Mn:Li:Al is 0.98:1.05:0.02 at 765°C It was sintered for 13 hours, ground, washed, and dried to prepare a positive active material. The Ni:Co:Mn:Al molar ratio of the entire cathode active material particles prepared was 86:5:7:2.
其后,将1,000ppm(0.1重量%)的H3BO3与如上所述制备的正极活性材料混合,并且在空气气氛中在295℃下热处理5小时,以制备B涂覆的正极活性材料。Thereafter, 1,000 ppm (0.1 wt%) of H 3 BO 3 was mixed with the cathode active material prepared as described above, and heat-treated at 295° C. for 5 hours in an air atmosphere to prepare a B-coated cathode active material.
实施例2:Ni沉淀→Mn沉淀→Co沉淀Example 2: Ni precipitation→Mn precipitation→Co precipitation
将NiSO4添加至蒸馏水中,以制备浓度为2.4M的第一金属溶液。将MnSO4添加至蒸馏水中,以制备浓度为2.4M的第二金属溶液。将将CoSO4添加至蒸馏水中,以制备浓度为2.4M的第三金属溶液。另外,准备浓度为8.0M的NaOH水溶液和浓度为5.1M的NH4OH水溶液。 NiSO4 was added to distilled water to prepare a first metal solution with a concentration of 2.4M. Add MnSO 4 to distilled water to prepare a second metal solution with a concentration of 2.4M. CoSO4 will be added to distilled water to prepare a third metal solution with a concentration of 2.4M. In addition, a NaOH aqueous solution with a concentration of 8.0M and an NH 4 OH aqueous solution with a concentration of 5.1M were prepared.
在将18L去离子水、0.025L NaOH水溶液和0.71L NH4OH水溶液放入反应器中之后,通过用氮气吹扫反应器而除去水中的溶解氧,以在反应器中形成非氧化气氛。After placing 18 L of deionized water, 0.025 L of NaOH aqueous solution, and 0.71 L of NH 4 OH aqueous solution into the reactor, the dissolved oxygen in the water was removed by purging the reactor with nitrogen to form a non-oxidizing atmosphere in the reactor.
然后,分别以3.8L/hr、2.3L/hr和0.54L/hr的速度添加第一金属溶液、NaOH水溶液和NH4OH水溶液,以进行沉淀反应42.2小时。在该情况下,将反应溶液的pH维持在11.6。Then, the first metal solution, NaOH aqueous solution and NH 4 OH aqueous solution were added at rates of 3.8L/hr, 2.3L/hr and 0.54L/hr respectively to perform the precipitation reaction for 42.2 hours. In this case, the pH of the reaction solution was maintained at 11.6.
其后,在停止添加第一金属溶液并且通过添加NaOH并使用pH传感器而将反应溶液的pH调节至10.8至11.0的范围内之后,分别以3.8L/hr、2.3L/hr和0.54L/hr的速度添加第二金属溶液、NaOH水溶液和NH4OH水溶液,以进行沉淀反应3.4小时。Thereafter, after stopping the addition of the first metal solution and adjusting the pH of the reaction solution to the range of 10.8 to 11.0 by adding NaOH and using a pH sensor, the reaction solution was adjusted to 3.8L/hr, 2.3L/hr and 0.54L/hr respectively. The second metal solution, NaOH aqueous solution and NH 4 OH aqueous solution were added at a speed of 3.4 to 3.4 ℃ to perform the precipitation reaction for 3.4 hours.
然后,在停止添加第二金属溶液并且通过添加NaOH并使用pH传感器而将反应溶液的pH调节至11.4之后,分别以3.8L/hr、2.3L/hr和0.54L/hr的速度添加第三金属溶液、NaOH水溶液和NH4OH水溶液,并且进行沉淀反应2.4小时,以制备正极活性材料用前体。整个正极活性材料用前体粒子的Ni:Co:Mn摩尔比为88:5:7。Then, after stopping the addition of the second metal solution and adjusting the pH of the reaction solution to 11.4 by adding NaOH and using a pH sensor, the third metal was added at rates of 3.8L/hr, 2.3L/hr, and 0.54L/hr respectively. solution, NaOH aqueous solution and NH 4 OH aqueous solution, and a precipitation reaction was performed for 2.4 hours to prepare a precursor for a positive electrode active material. The Ni:Co:Mn molar ratio of the entire cathode active material precursor particles is 88:5:7.
将如上所述制备的正极活性材料用前体、LiOH·H2O和Al(OH)3混合,使得Ni+Co+Mn:Li:Al的摩尔比为0.98:1.05:0.02,在765℃下烧结13小时,研磨、洗涤、并干燥,以制备正极活性材料。所制备的整个正极活性材料粒子的Ni:Co:Mn:Al摩尔比为86:5:7:2。Mix the cathode active material precursor prepared as above, LiOH·H 2 O and Al(OH) 3 so that the molar ratio of Ni+Co+Mn:Li:Al is 0.98:1.05:0.02 at 765°C It was sintered for 13 hours, ground, washed, and dried to prepare a positive active material. The Ni:Co:Mn:Al molar ratio of the entire cathode active material particles prepared was 86:5:7:2.
其后,将0.1重量%的H3BO3与如上所述制备的正极活性材料混合,并且在空气气氛中在295℃下热处理5小时,以制备B涂覆的正极活性材料。Thereafter, 0.1% by weight of H 3 BO 3 was mixed with the cathode active material prepared as described above, and heat-treated at 295° C. for 5 hours in an air atmosphere to prepare a B-coated cathode active material.
实施例3:Ni、Co共沉淀→Ni、Co、Mn共沉淀Example 3: Co-precipitation of Ni and Co → Co-precipitation of Ni, Co and Mn
将NiSO4和CoSO4以使得Ni:Co的摩尔比为95:5的量添加至蒸馏水中,以制备浓度为2.4M的第一金属溶液。将NiSO4、CoSO4和MnSO4以使得Ni:Co:Mn的摩尔比为5:5:90的量添加至蒸馏水中,以单独制备浓度为2.4M的第二金属溶液。另外,准备浓度为8.0M的NaOH水溶液和浓度为5.1M的NH4OH水溶液。NiSO and CoSO were added to distilled water in an amount such that the molar ratio of Ni:Co was 95 : 5 to prepare a first metal solution with a concentration of 2.4M. NiSO 4 , CoSO 4 and MnSO 4 were added to distilled water in amounts such that the molar ratio of Ni:Co:Mn was 5:5:90 to separately prepare a second metal solution with a concentration of 2.4M. In addition, a NaOH aqueous solution with a concentration of 8.0M and an NH 4 OH aqueous solution with a concentration of 5.1M were prepared.
在将18L去离子水、0.025L NaOH水溶液和0.71L NH4OH水溶液放入反应器中之后,通过用氮气吹扫反应器而除去水中的溶解氧,以在反应器中形成非氧化气氛。After placing 18 L of deionized water, 0.025 L of NaOH aqueous solution, and 0.71 L of NH 4 OH aqueous solution into the reactor, the dissolved oxygen in the water was removed by purging the reactor with nitrogen to form a non-oxidizing atmosphere in the reactor.
然后,在向反应器中分别以5.00L/hr的速度添加第一金属溶液、以3.00L/hr的速度添加NaOH水溶液、并且以0.70L/hr的速度添加NH4OH水溶液的同时,在11.9的pH下进行沉淀反应0.2小时,以形成镍-钴氢氧化物粒子的核。其后,在依次降低搅拌速度,并且添加NaOH并使用pH传感器,以将反应溶液的pH调节至11.4之后,在分别以5.00L/hr、3.00L/hr和0.70L/hr的速度添加第一金属溶液、NaOH水溶液和NH4OH水溶液的同时,进行共沉淀反应64.2小时,以制备包含镍-钴氢氧化物粒子的核部。Then, while adding the first metal solution at a rate of 5.00 L/hr, the NaOH aqueous solution at a rate of 3.00 L/hr, and the NH 4 OH aqueous solution at a rate of 0.70 L/hr, at 11.9 The precipitation reaction was carried out at a pH of 0.2 h to form the core of the nickel-cobalt hydroxide particles. Thereafter, after sequentially reducing the stirring speed, adding NaOH and using a pH sensor to adjust the pH of the reaction solution to 11.4, the first solution was added at a rate of 5.00L/hr, 3.00L/hr and 0.70L/hr respectively. The metal solution, the NaOH aqueous solution and the NH 4 OH aqueous solution were simultaneously subjected to a co-precipitation reaction for 64.2 hours to prepare a core containing nickel-cobalt hydroxide particles.
其后,在停止添加第一金属溶液并且添加NaOH并使用pH传感器,以将反应溶液的pH调节至11.4之后,在分别以5.00L/hr、3.00L/hr和0.70L/hr的速度添加第二金属溶液、NaOH水溶液和NH4OH水溶液并搅拌的同时,进行沉淀反应5.6小时,以制备正极活性材料用前体,其中镍-钴-锰氢氧化物沉淀在包含镍-钴氢氧化物粒子的核部上。整个正极活性材料用前体粒子的Ni:Co:Mn摩尔比为88:5:7。Thereafter, after stopping adding the first metal solution and adding NaOH and using a pH sensor to adjust the pH of the reaction solution to 11.4, the first metal solution was added at a rate of 5.00L/hr, 3.00L/hr and 0.70L/hr respectively. While stirring the dimetal solution, NaOH aqueous solution and NH 4 OH aqueous solution, a precipitation reaction was performed for 5.6 hours to prepare a precursor for the positive electrode active material, in which nickel-cobalt-manganese hydroxide was precipitated in a solution containing nickel-cobalt hydroxide particles. on the core. The Ni:Co:Mn molar ratio of the entire cathode active material precursor particles is 88:5:7.
将如上所述制备的正极活性材料用前体、LiOH·H2O和Al(OH)3混合,使得Ni+Co+Mn:Li:Al的摩尔比为0.98:1.05:0.02,在765℃下烧结13小时,研磨、洗涤、并干燥,以制备正极活性材料。所制备的整个正极活性材料粒子的Ni:Co:Mn:Al摩尔比为86:5:7:2。Mix the cathode active material precursor prepared as above, LiOH·H 2 O and Al(OH) 3 so that the molar ratio of Ni+Co+Mn:Li:Al is 0.98:1.05:0.02 at 765°C It was sintered for 13 hours, ground, washed, and dried to prepare a positive active material. The Ni:Co:Mn:Al molar ratio of the entire cathode active material particles prepared was 86:5:7:2.
其后,将0.1重量%的H3BO3与如上所述制备的正极活性材料混合,并且在空气气氛中在295℃下热处理5小时,以制备B涂覆的正极活性材料。Thereafter, 0.1% by weight of H 3 BO 3 was mixed with the cathode active material prepared as described above, and heat-treated at 295° C. for 5 hours in an air atmosphere to prepare a B-coated cathode active material.
实施例4:Ni、Co共沉淀→Ni、Co、Mn共沉淀Example 4: Co-precipitation of Ni and Co→Co-precipitation of Ni, Co and Mn
将NiSO4和CoSO4以使得Ni:Co的摩尔比为95:5的量添加至蒸馏水中,以制备浓度为2.4M的第一金属溶液。将NiSO4、CoSO4和MnSO4以使得Ni:Co:Mn的摩尔比为61:5:34的量添加至蒸馏水中,以单独制备浓度为2.4M的第二金属溶液。另外,准备浓度为8.0M的NaOH水溶液和浓度为5.1M的NH4OH水溶液。NiSO and CoSO were added to distilled water in an amount such that the molar ratio of Ni:Co was 95 : 5 to prepare a first metal solution with a concentration of 2.4M. NiSO 4 , CoSO 4 and MnSO 4 were added to distilled water in amounts such that the molar ratio of Ni:Co:Mn was 61:5:34 to separately prepare a second metal solution with a concentration of 2.4M. In addition, a NaOH aqueous solution with a concentration of 8.0M and an NH 4 OH aqueous solution with a concentration of 5.1M were prepared.
在将18L去离子水、0.025L NaOH水溶液和0.71L NH4OH水溶液放入反应器中之后,通过用氮气吹扫反应器而除去水中的溶解氧,以在反应器中形成非氧化气氛。After placing 18 L of deionized water, 0.025 L of NaOH aqueous solution, and 0.71 L of NH 4 OH aqueous solution into the reactor, the dissolved oxygen in the water was removed by purging the reactor with nitrogen to form a non-oxidizing atmosphere in the reactor.
然后,在向反应器中分别以5.00L/hr的速度添加第一金属溶液、以3.00L/hr的速度添加NaOH水溶液、并且以0.70L/hr的速度添加NH4OH水溶液的同时,在11.9的pH下进行沉淀反应0.2小时,以形成镍-钴氢氧化物粒子的核。其后,在依次降低搅拌速度,并且添加NaOH并使用pH传感器,以将反应溶液的pH调节至11.4之后,在分别以5.00L/hr、3.00L/hr和0.70L/hr的速度添加第一金属溶液、NaOH水溶液和NH4OH水溶液的同时,进行共沉淀反应15.4小时,以制备包含镍-钴氢氧化物粒子的核部。Then, while adding the first metal solution at a rate of 5.00 L/hr, the NaOH aqueous solution at a rate of 3.00 L/hr, and the NH 4 OH aqueous solution at a rate of 0.70 L/hr, at 11.9 The precipitation reaction was carried out at a pH of 0.2 h to form the core of the nickel-cobalt hydroxide particles. Thereafter, after sequentially reducing the stirring speed, adding NaOH and using a pH sensor to adjust the pH of the reaction solution to 11.4, the first solution was added at a rate of 5.00L/hr, 3.00L/hr and 0.70L/hr respectively. The metal solution, the NaOH aqueous solution and the NH 4 OH aqueous solution were simultaneously subjected to a co-precipitation reaction for 15.4 hours to prepare a core containing nickel-cobalt hydroxide particles.
其后,在停止添加第一金属溶液并且添加NaOH并使用pH传感器,以将反应溶液的pH调节至11.4之后,在分别以5.00L/hr、3.00L/hr和0.70L/hr的速度添加第二金属溶液、NaOH水溶液和NH4OH水溶液并搅拌的同时,进行沉淀反应4.4小时,以制备正极活性材料用前体,其中镍-钴-锰氢氧化物沉淀在包含镍-钴氢氧化物粒子的核部上。整个正极活性材料用前体粒子的Ni:Co:Mn摩尔比为88:5:7。Thereafter, after stopping adding the first metal solution and adding NaOH and using a pH sensor to adjust the pH of the reaction solution to 11.4, the first metal solution was added at a rate of 5.00L/hr, 3.00L/hr and 0.70L/hr respectively. While stirring the dimetal solution, NaOH aqueous solution and NH 4 OH aqueous solution, a precipitation reaction was performed for 4.4 hours to prepare a precursor for the positive electrode active material, in which nickel-cobalt-manganese hydroxide was precipitated in a solution containing nickel-cobalt hydroxide particles. on the core. The Ni:Co:Mn molar ratio of the entire cathode active material precursor particles is 88:5:7.
将如上所述制备的正极活性材料用前体、LiOH·H2O和Al(OH)3混合,使得Ni+Co+Mn:Li:Al的摩尔比为0.98:1.05:0.02,在765℃下烧结13小时,研磨、洗涤、并干燥,以制备正极活性材料。所制备的整个正极活性材料粒子的Ni:Co:Mn:Al摩尔比为86:5:7:2。Mix the cathode active material precursor prepared as above, LiOH·H 2 O and Al(OH) 3 so that the molar ratio of Ni+Co+Mn:Li:Al is 0.98:1.05:0.02 at 765°C It was sintered for 13 hours, ground, washed, and dried to prepare a positive active material. The Ni:Co:Mn:Al molar ratio of the entire cathode active material particles prepared was 86:5:7:2.
其后,将0.1重量%的H3BO3与如上所述制备的正极活性材料混合,并且在空气气氛中在295℃下热处理5小时,以制备B涂覆的正极活性材料。Thereafter, 0.1% by weight of H 3 BO 3 was mixed with the cathode active material prepared as described above, and heat-treated at 295° C. for 5 hours in an air atmosphere to prepare a B-coated cathode active material.
比较例1Comparative example 1
将NiSO4、CoSO4和MnSO4以使得镍:钴:锰的摩尔比为88:5:7的量在蒸馏水中混合,以制备浓度为2.4M的金属溶液。另外,准备浓度为8.0M的NaOH水溶液和浓度为5.1M的NH4OH水溶液。NiSO 4 , CoSO 4 and MnSO 4 were mixed in distilled water in an amount such that the molar ratio of nickel:cobalt:manganese was 88:5:7 to prepare a metal solution with a concentration of 2.4M. In addition, a NaOH aqueous solution with a concentration of 8.0M and an NH 4 OH aqueous solution with a concentration of 5.1M were prepared.
在将18L去离子水、0.025L NaOH水溶液和0.71L NH4OH水溶液放入反应器中之后,通过用氮气吹扫反应器而除去水中的溶解氧,以在反应器中形成非氧化气氛。After placing 18 L of deionized water, 0.025 L of NaOH aqueous solution, and 0.71 L of NH 4 OH aqueous solution into the reactor, the dissolved oxygen in the water was removed by purging the reactor with nitrogen to form a non-oxidizing atmosphere in the reactor.
然后,在通过分别以3.8L/hr、2.3L/hr和0.54L/hr的速度添加金属溶液、NaOH水溶液和NH4OH水溶液而将反应溶液的pH维持在11.2至11.9的同时,进行共沉淀反应48小时,以制备正极活性材料用前体。整个正极活性材料用前体粒子的Ni:Co:Mn摩尔比为88:5:7。Then, coprecipitation was performed while maintaining the pH of the reaction solution at 11.2 to 11.9 by adding the metal solution, the NaOH aqueous solution, and the NH 4 OH aqueous solution at rates of 3.8 L/hr, 2.3 L/hr, and 0.54 L/hr, respectively. The reaction was carried out for 48 hours to prepare a precursor for the positive electrode active material. The Ni:Co:Mn molar ratio of the entire cathode active material precursor particles is 88:5:7.
将如上所述制备的正极活性材料用前体、LiOH·H2O和Al(OH)3混合,使得Ni+Co+Mn:Li:Al的摩尔比为0.98:1.05:0.02,在765℃下烧结13小时,研磨、洗涤、并干燥,以制备正极活性材料。所制备的整个正极活性材料粒子的Ni:Co:Mn:Al摩尔比为86:5:7:2。Mix the cathode active material precursor prepared as above, LiOH·H 2 O and Al(OH) 3 so that the molar ratio of Ni+Co+Mn:Li:Al is 0.98:1.05:0.02 at 765°C It was sintered for 13 hours, ground, washed, and dried to prepare a positive active material. The Ni:Co:Mn:Al molar ratio of the entire cathode active material particles prepared was 86:5:7:2.
其后,将0.1重量%的H3BO3与如上所述制备的正极活性材料混合,并且在空气气氛中在295℃下热处理5小时,以制备B涂覆的正极活性材料。Thereafter, 0.1% by weight of H 3 BO 3 was mixed with the cathode active material prepared as described above, and heat-treated at 295° C. for 5 hours in an air atmosphere to prepare a B-coated cathode active material.
比较例2Comparative example 2
将NiSO4和CoSO4以使得Ni:Co的摩尔比为95:5的量添加至蒸馏水中,以制备浓度为2.4M的第一金属溶液。将NiSO4、CoSO4和MnSO4以使得Ni:Co:Mn的摩尔比为5:5:90的量添加至蒸馏水中,以单独制备浓度为2.4M的第二金属溶液。另外,准备浓度为8.0M的NaOH水溶液和浓度为5.1M的NH4OH水溶液。NiSO and CoSO were added to distilled water in an amount such that the molar ratio of Ni:Co was 95 : 5 to prepare a first metal solution with a concentration of 2.4M. NiSO 4 , CoSO 4 and MnSO 4 were added to distilled water in amounts such that the molar ratio of Ni:Co:Mn was 5:5:90 to separately prepare a second metal solution with a concentration of 2.4M. In addition, a NaOH aqueous solution with a concentration of 8.0M and an NH 4 OH aqueous solution with a concentration of 5.1M were prepared.
在将18L去离子水、0.025L NaOH水溶液和0.71L NH4OH水溶液放入反应器中之后,通过用氮气吹扫反应器而除去水中的溶解氧,以在反应器中形成非氧化气氛。After placing 18 L of deionized water, 0.025 L of NaOH aqueous solution, and 0.71 L of NH 4 OH aqueous solution into the reactor, the dissolved oxygen in the water was removed by purging the reactor with nitrogen to form a non-oxidizing atmosphere in the reactor.
然后,在向反应器中分别以5.00L/hr的速度添加第一金属溶液、以3.00L/hr的速度添加NaOH水溶液、并且以0.70L/hr的速度添加NH4OH水溶液的同时,在11.9的pH下进行沉淀反应0.2小时,以形成镍-钴氢氧化物粒子的核。其后,在依次降低搅拌速度,并且添加NaOH并使用pH传感器,以将反应溶液的pH调节至11.4之后,在分别以5.00L/hr、3.00L/hr和0.70L/hr的速度添加第一金属溶液、NaOH水溶液和NH4OH水溶液的同时,进行共沉淀反应67.5小时,以制备包含镍-钴氢氧化物粒子的核部。Then, while adding the first metal solution at a rate of 5.00 L/hr, the NaOH aqueous solution at a rate of 3.00 L/hr, and the NH 4 OH aqueous solution at a rate of 0.70 L/hr, at 11.9 The precipitation reaction was carried out at a pH of 0.2 h to form the core of the nickel-cobalt hydroxide particles. Thereafter, after sequentially reducing the stirring speed, adding NaOH and using a pH sensor to adjust the pH of the reaction solution to 11.4, the first solution was added at a rate of 5.00L/hr, 3.00L/hr and 0.70L/hr respectively. The metal solution, the NaOH aqueous solution and the NH 4 OH aqueous solution were simultaneously subjected to a co-precipitation reaction for 67.5 hours to prepare a core containing nickel-cobalt hydroxide particles.
其后,在停止添加第一金属溶液并且添加NaOH并使用pH传感器,以将反应溶液的pH调节至11.4之后,在分别以5.00L/hr、3.00L/hr和0.70L/hr的速度添加第二金属溶液、NaOH水溶液和NH4OH水溶液并搅拌的同时,进行沉淀反应5.3小时,以制备正极活性材料用前体,其中镍-钴-锰氢氧化物沉淀在包含镍-钴氢氧化物粒子的核部上。整个正极活性材料用前体粒子的Ni:Co:Mn摩尔比为88:5:7。Thereafter, after stopping adding the first metal solution and adding NaOH and using a pH sensor to adjust the pH of the reaction solution to 11.4, the first metal solution was added at a rate of 5.00L/hr, 3.00L/hr and 0.70L/hr respectively. While stirring the dimetal solution, NaOH aqueous solution and NH 4 OH aqueous solution, a precipitation reaction was carried out for 5.3 hours to prepare a precursor for the positive electrode active material, in which nickel-cobalt-manganese hydroxide was precipitated in a solution containing nickel-cobalt hydroxide particles. on the core. The Ni:Co:Mn molar ratio of the entire cathode active material precursor particles is 88:5:7.
将如上所述制备的正极活性材料用前体、LiOH·H2O和Al(OH)3混合,使得Ni+Co+Mn:Li:Al的摩尔比为0.98:1.05:0.02,在765℃下烧结13小时,研磨、洗涤、并干燥,以制备正极活性材料。所制备的整个正极活性材料粒子的Ni:Co:Mn:Al摩尔比为86:5:7:2。Mix the cathode active material precursor prepared as above, LiOH·H 2 O and Al(OH) 3 so that the molar ratio of Ni+Co+Mn:Li:Al is 0.98:1.05:0.02 at 765°C It was sintered for 13 hours, ground, washed, and dried to prepare a positive active material. The Ni:Co:Mn:Al molar ratio of the entire cathode active material particles prepared was 86:5:7:2.
其后,将0.1重量%的H3BO3与如上所述制备的正极活性材料混合,并且在空气气氛中在295℃下热处理5小时,以制备B涂覆的正极活性材料。Thereafter, 0.1% by weight of H 3 BO 3 was mixed with the cathode active material prepared as described above, and heat-treated at 295° C. for 5 hours in an air atmosphere to prepare a B-coated cathode active material.
比较例3Comparative example 3
将NiSO4和CoSO4以使得Ni:Co的摩尔比为95:5的量添加至蒸馏水中,以制备浓度为2.4M的第一金属溶液。将NiSO4、CoSO4和MnSO4以使得Ni:Co:Mn的摩尔比为68:5:27的量添加至蒸馏水中,以单独制备浓度为2.4M的第二金属溶液。另外,准备浓度为8.0M的NaOH水溶液和浓度为5.1M的NH4OH水溶液。NiSO and CoSO were added to distilled water in an amount such that the molar ratio of Ni:Co was 95 : 5 to prepare a first metal solution with a concentration of 2.4M. NiSO 4 , CoSO 4 and MnSO 4 were added to distilled water in amounts such that the molar ratio of Ni:Co:Mn was 68:5:27 to separately prepare a second metal solution with a concentration of 2.4M. In addition, a NaOH aqueous solution with a concentration of 8.0M and an NH 4 OH aqueous solution with a concentration of 5.1M were prepared.
在将18L去离子水、0.025L NaOH水溶液和0.71L NH4OH水溶液放入反应器中之后,通过用氮气吹扫反应器而除去水中的溶解氧,以在反应器中形成非氧化气氛。After placing 18 L of deionized water, 0.025 L of NaOH aqueous solution, and 0.71 L of NH 4 OH aqueous solution into the reactor, the dissolved oxygen in the water was removed by purging the reactor with nitrogen to form a non-oxidizing atmosphere in the reactor.
然后,在向反应器中分别以5.00L/hr的速度添加第一金属溶液、以3.00L/hr的速度添加NaOH水溶液、并且以0.70L/hr的速度添加NH4OH水溶液的同时,在11.9的pH下进行沉淀反应0.2小时,以形成镍-钴氢氧化物粒子的核。其后,在依次降低搅拌速度,并且添加NaOH并使用pH传感器,以将反应溶液的pH调节至11.4之后,在分别以5.00L/hr、3.00L/hr和0.70L/hr的速度添加第一金属溶液、NaOH水溶液和NH4OH水溶液的同时,进行共沉淀反应13小时,以制备包含镍-钴氢氧化物粒子的核部。Then, while adding the first metal solution at a rate of 5.00 L/hr, the NaOH aqueous solution at a rate of 3.00 L/hr, and the NH 4 OH aqueous solution at a rate of 0.70 L/hr, at 11.9 The precipitation reaction was carried out at a pH of 0.2 h to form the core of the nickel-cobalt hydroxide particles. Thereafter, after sequentially reducing the stirring speed, adding NaOH and using a pH sensor to adjust the pH of the reaction solution to 11.4, the first solution was added at a rate of 5.00L/hr, 3.00L/hr and 0.70L/hr respectively. The metal solution, the NaOH aqueous solution and the NH 4 OH aqueous solution were simultaneously subjected to a co-precipitation reaction for 13 hours to prepare a core containing nickel-cobalt hydroxide particles.
其后,在停止添加第一金属溶液并且添加NaOH并使用pH传感器,以将反应溶液的pH调节至11.4之后,在分别以5.00L/hr、3.00L/hr和0.70L/hr的速度添加第二金属溶液、NaOH水溶液和NH4OH水溶液并搅拌的同时,进行沉淀反应4.8小时,以制备正极活性材料用前体,其中镍-钴-锰氢氧化物沉淀在包含镍-钴氢氧化物粒子的核部上。整个正极活性材料用前体粒子的Ni:Co:Mn摩尔比为88:5:7。Thereafter, after stopping adding the first metal solution and adding NaOH and using a pH sensor to adjust the pH of the reaction solution to 11.4, the first metal solution was added at a rate of 5.00L/hr, 3.00L/hr and 0.70L/hr respectively. While stirring the dimetal solution, NaOH aqueous solution and NH 4 OH aqueous solution, a precipitation reaction was carried out for 4.8 hours to prepare a precursor for the positive electrode active material, in which nickel-cobalt-manganese hydroxide was precipitated in a solution containing nickel-cobalt hydroxide particles. on the core. The Ni:Co:Mn molar ratio of the entire cathode active material precursor particles is 88:5:7.
将如上所述制备的正极活性材料用前体、LiOH·H2O和Al(OH)3混合,使得Ni+Co+Mn:Li:Al的摩尔比为0.98:1.05:0.02,在765℃下烧结13小时,研磨、洗涤、并干燥,以制备正极活性材料。所制备的整个正极活性材料粒子的Ni:Co:Mn:Al摩尔比为86:5:7:2。Mix the cathode active material precursor prepared as above, LiOH·H 2 O and Al(OH) 3 so that the molar ratio of Ni+Co+Mn:Li:Al is 0.98:1.05:0.02 at 765°C It was sintered for 13 hours, ground, washed, and dried to prepare a positive active material. The Ni:Co:Mn:Al molar ratio of the entire cathode active material particles prepared was 86:5:7:2.
其后,将0.1重量%的H3BO3与如上所述制备的正极活性材料混合,并且在空气气氛中在295℃下热处理5小时,以制备B涂覆的正极活性材料。Thereafter, 0.1% by weight of H 3 BO 3 was mixed with the cathode active material prepared as described above, and heat-treated at 295° C. for 5 hours in an air atmosphere to prepare a B-coated cathode active material.
实验例Experimental example
实验例1:检查正极活性材料的组成、平均粒径和壳部的厚度Experimental Example 1: Checking the composition, average particle diameter, and shell thickness of the positive electrode active material
(1)平均粒径(D50)(1)Average particle size (D 50 )
实施例1至4和比较例1至3的各个正极活性材料的平均粒径(D50)使用粒子尺寸分布测量仪器(S-3500,Microtrac公司)来测量,并且其结果示出在下表1中。The average particle diameter (D 50 ) of each cathode active material of Examples 1 to 4 and Comparative Examples 1 to 3 was measured using a particle size distribution measuring instrument (S-3500, Microtrac Corporation), and the results are shown in Table 1 below .
(2)壳部的厚度(2)Thickness of the shell
在用碳涂覆实施例1至4和比较例1至3的各个正极活性材料之后,通过使用FIB(聚焦离子束)仪器(Helios NanoLab 450,FEI公司)用离子束照射样品来制备可以检查粒子截面的薄膜样品(厚度为约100nm)。将薄膜样品放置在透射电子显微镜(TEM)的网格上,使用TEM(Talos F200X,FEI公司)获得粒子的截面的能量色散X射线光谱(EDS)映射图像,并且测量存在其中Mn在全部过渡金属中的摩尔比为30摩尔%以上的锂过渡金属氧化物的部分(壳部)的厚度。测量结果示出在下表1中。图1和图2分别为实施例1和比较例1的正极活性材料粒子的截面的TEM-EDS映射图像。After coating each of the cathode active materials of Examples 1 to 4 and Comparative Examples 1 to 3 with carbon, inspectable particles were prepared by irradiating the sample with an ion beam using a FIB (focused ion beam) instrument (Helios NanoLab 450, FEI Corporation) Cross-section of film sample (thickness approximately 100 nm). The film sample was placed on the grid of a transmission electron microscope (TEM), an energy dispersive X-ray spectroscopy (EDS) mapping image of the cross section of the particle was obtained using TEM (Talos F200X, FEI Corporation), and the presence of Mn in all transition metals was measured. The molar ratio in is 30 mol% or more of the thickness of the portion (shell portion) of the lithium transition metal oxide. The measurement results are shown in Table 1 below. 1 and 2 are respectively TEM-EDS mapping images of the cross-sections of the positive electrode active material particles of Example 1 and Comparative Example 1.
[表1][Table 1]
实验例2:初始充放电效率和高温寿命特性评价Experimental Example 2: Evaluation of Initial Charge and Discharge Efficiency and High Temperature Lifetime Characteristics
将实施例1至4和比较例1至3的各个正极活性材料、导电材料(FX35)和粘合剂(KF9700和BM730H以1.35:0.15的重量比的混合物)以97.5:1:1.5的重量比在N-甲基-2-吡咯烷酮(NMP)溶剂中混合,以制备正极浆料。用正极浆料涂覆铝集电器的一个表面,在130℃下干燥,然后压延使得孔隙率为24%,以制备各个正极。Each cathode active material, conductive material (FX35), and binder (a mixture of KF9700 and BM730H at a weight ratio of 1.35:0.15) of Examples 1 to 4 and Comparative Examples 1 to 3 were mixed in a weight ratio of 97.5:1:1.5 Mix in N-methyl-2-pyrrolidone (NMP) solvent to prepare cathode slurry. One surface of the aluminum current collector was coated with the positive electrode slurry, dried at 130°C, and then rolled so that the porosity was 24% to prepare each positive electrode.
将Li金属盘用作负极。A Li metal disk was used as the negative electrode.
在通过将隔膜设置在正极和负极之间来制备电极组件之后,通过将电池组件设置在电池壳中,然后将电解液注入电池壳内来制备各个锂二次电池。在该情况下,作为电解液,使用其中将1M LiPF6溶解在其中碳酸亚乙酯:碳酸乙甲酯:碳酸二乙酯以3:3:4的体积比混合的有机溶剂中的电解液。After preparing the electrode assembly by disposing the separator between the positive electrode and the negative electrode, each lithium secondary battery was prepared by disposing the battery assembly in the battery case and then injecting the electrolyte into the battery case. In this case, as the electrolyte solution, an electrolyte solution in which 1 M LiPF 6 was dissolved in an organic solvent in which ethylene carbonate:ethylmethyl carbonate:diethyl carbonate was mixed in a volume ratio of 3:3:4 was used.
在将如上所述制备的各个锂二次电池在25℃下以恒流/恒压(CC/CV)模式(终止电流0.05C)以0.1C的恒流充电至4.25V,然后以CC模式放电至3.0V以测量初始充放电效率之后,在45℃下在3.0V至4.25V的范围内以0.33C的恒定电流重复充放电循环30次,以计算第30次循环的放电容量与第一次循环的放电容量的百分比,作为容量保持率(%),容量保持率示出在下表2中。在该情况下,1C=200mA/g。Each lithium secondary battery prepared as described above was charged to 4.25V at a constant current of 0.1C in constant current/constant voltage (CC/CV) mode (terminal current 0.05C) at 25°C, and then discharged in CC mode. to 3.0V to measure the initial charge and discharge efficiency, repeat the charge and discharge cycle 30 times at a constant current of 0.33C in the range of 3.0V to 4.25V at 45°C to calculate the discharge capacity of the 30th cycle compared with the first The percentage of the discharge capacity of the cycle, as the capacity retention rate (%), is shown in Table 2 below. In this case, 1C=200mA/g.
实验例3:热稳定性评价Experimental Example 3: Thermal Stability Evaluation
在将实验例2中的各个锂二次电池在25℃下以CC/CV模式(终止电流0.05C)以0.2C的恒定电流充电至4.25V之后,将电池在充电状态下拆解,用DMC洗涤正极,通过使用差示扫描量热仪(DSC)在以10℃/min升温的同时测量热流,并且将所得的起始点和发热值示出在下表2中。After each lithium secondary battery in Experimental Example 2 was charged to 4.25V at a constant current of 0.2C in CC/CV mode (end current 0.05C) at 25°C, the battery was disassembled in the charged state and used with DMC. The positive electrode was washed, the heat flow was measured while increasing the temperature at 10° C./min by using a differential scanning calorimeter (DSC), and the resulting starting point and calorific value are shown in Table 2 below.
[表2][Table 2]
参照表1和表2可以确认,使用其中各个正极活性材料的核部和壳部满足根据本发明的组成,并且壳部的厚度与正极活性材料的平均粒径(D50)的比在0.005至0.15的范围内的实施例1至4的正极活性材料的锂二次电池与使用比较例1至3的正极活性材料的锂二次电池相比,具有更好的初始充放电效率、高温寿命特性和热稳定性。Referring to Tables 1 and 2, it can be confirmed that the core part and the shell part of each cathode active material satisfy the composition according to the present invention, and the ratio of the thickness of the shell part to the average particle diameter (D 50 ) of the cathode active material is in the range of 0.005 to The lithium secondary batteries using the positive electrode active materials of Examples 1 to 4 within the range of 0.15 have better initial charge and discharge efficiency and high temperature life characteristics than the lithium secondary batteries using the positive electrode active materials of Comparative Examples 1 to 3. and thermal stability.
Claims (10)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0061016 | 2021-05-11 | ||
KR1020210061016A KR20220153430A (en) | 2021-05-11 | 2021-05-11 | Positive electrode active material and manufacturing method thereof |
PCT/KR2022/006638 WO2022240129A1 (en) | 2021-05-11 | 2022-05-10 | Positive electrode active material and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117063310A true CN117063310A (en) | 2023-11-14 |
Family
ID=84029715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280022872.0A Pending CN117063310A (en) | 2021-05-11 | 2022-05-10 | Positive electrode active material and method for preparing same |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240170663A1 (en) |
EP (1) | EP4300632A4 (en) |
JP (1) | JP2024516258A (en) |
KR (1) | KR20220153430A (en) |
CN (1) | CN117063310A (en) |
WO (1) | WO2022240129A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20250030329A (en) * | 2023-08-24 | 2025-03-05 | 삼성에스디아이 주식회사 | Positive active material, preparation method thereof, positive electrode, and rechargeable lithium batteries |
KR20250030330A (en) * | 2023-08-24 | 2025-03-05 | 삼성에스디아이 주식회사 | Positive active material, preparation method thereof, positive electrode, and rechargeable lithium batteries |
CN117374302B (en) * | 2023-12-08 | 2024-02-27 | 华北电力大学 | Nickel/nickel hydroxide electrode catalyst, preparation method and application |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015151606A1 (en) * | 2014-03-31 | 2015-10-08 | 日立金属株式会社 | Positive electrode active material for lithium ion secondary batteries, method for producing same and lithium ion secondary battery |
CN107534140B (en) * | 2015-04-30 | 2020-07-17 | 株式会社Lg化学 | Positive electrode active material for secondary battery, method for preparing same, and secondary battery comprising same |
KR101860625B1 (en) * | 2016-01-04 | 2018-05-24 | 한국교통대학교산학협력단 | The improved stability core-shell structure having a positive electrode active material and a lithium secondary battery comprising the same |
KR102117621B1 (en) * | 2016-12-28 | 2020-06-02 | 주식회사 엘지화학 | Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same |
KR20180104837A (en) * | 2017-03-14 | 2018-09-27 | 주식회사 디알비동일 | Precursor for cathode active materials of core-shell structure, method for preparing the same, and cathode active materials using the same |
HUE068477T2 (en) * | 2017-11-21 | 2024-12-28 | Lg Energy Solution Ltd | Positive electrode active material precursor, preparation method thereof, positive electrode active material prepared using same, positive electrode and secondary battery |
KR102141059B1 (en) * | 2018-09-28 | 2020-08-04 | 주식회사 포스코 | Positive active material for rechareable lithium battery, method of preparing same, and rechargeable lithium battery including same |
-
2021
- 2021-05-11 KR KR1020210061016A patent/KR20220153430A/en active Pending
-
2022
- 2022-05-10 US US18/284,020 patent/US20240170663A1/en active Pending
- 2022-05-10 EP EP22807777.2A patent/EP4300632A4/en active Pending
- 2022-05-10 WO PCT/KR2022/006638 patent/WO2022240129A1/en active Application Filing
- 2022-05-10 JP JP2023566906A patent/JP2024516258A/en active Pending
- 2022-05-10 CN CN202280022872.0A patent/CN117063310A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
KR20220153430A (en) | 2022-11-18 |
EP4300632A4 (en) | 2024-08-28 |
JP2024516258A (en) | 2024-04-12 |
WO2022240129A1 (en) | 2022-11-17 |
EP4300632A1 (en) | 2024-01-03 |
US20240170663A1 (en) | 2024-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111902978B (en) | Positive electrode active material for lithium secondary battery, method for producing same, positive electrode for lithium secondary battery comprising same, and lithium secondary battery | |
CN111095630B (en) | Positive active material for secondary battery, method for producing same, and lithium secondary battery comprising same | |
US12148926B2 (en) | Positive electrolyte active material for secondary battery, preparation method thereof, and lithium secondary battery including same | |
CN113678286B (en) | Lithium secondary battery | |
CN113365950B (en) | Method for preparing positive electrode active material precursor and positive electrode active material precursor | |
CN113711389B (en) | Positive electrode active material for secondary battery, preparation method thereof, and lithium secondary battery comprising the positive electrode active material | |
CN113474299B (en) | Positive electrode active material precursor for secondary battery, positive electrode active material, method for producing same, and lithium secondary battery comprising same | |
US20240170663A1 (en) | Positive Electrode Active Material and Preparation Method Thereof | |
CN115004417A (en) | Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery comprising positive electrode active material | |
CN115004416A (en) | Positive electrode active material precursor for secondary battery, positive electrode active material, and lithium secondary battery comprising positive electrode active material | |
US20240282928A1 (en) | Method of Preparing Positive Electrode Active Material for Lithium Secondary Battery and Positive Electrode Active Material Prepared Thereby | |
CN116711100A (en) | Positive electrode active material for lithium secondary battery, preparation method thereof, positive electrode and lithium secondary battery comprising same | |
CN116438684A (en) | Positive electrode active material precursor, method for producing same, and positive electrode active material | |
CN112106235A (en) | Positive electrode active material for lithium secondary battery, method for producing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same | |
CN117529452B (en) | Method for preparing positive electrode active material for lithium secondary battery and positive electrode active material prepared thereby | |
EP3868715A1 (en) | Method for manufacturing cathode active material precursor for lithium secondary battery | |
US20230307629A1 (en) | Positive Electrode Active Material Precursor and Method of Preparing the Same | |
JP2020521717A (en) | Positive electrode active material precursor for secondary battery, positive electrode active material and lithium secondary battery containing the same | |
US20220045320A1 (en) | Positive electrode active material and method for preparing the same | |
CN116615820A (en) | Positive electrode active material and positive electrode and secondary battery containing same | |
CN116670855A (en) | Positive electrode active material, positive electrode comprising same, and lithium secondary battery | |
EP4167323A1 (en) | Cathode active material precursor and manufacturing method therefor | |
EP4507031A1 (en) | Positive electrode active material and method for preparing same | |
CN117280498A (en) | Positive electrode active material and method for preparing same | |
CN118679602A (en) | Positive electrode material, positive electrode comprising same, and lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |