CN117051133B - SNP molecular marker for detecting brucellosis resistance of sheep, detection primer and application thereof - Google Patents
SNP molecular marker for detecting brucellosis resistance of sheep, detection primer and application thereof Download PDFInfo
- Publication number
- CN117051133B CN117051133B CN202311311460.1A CN202311311460A CN117051133B CN 117051133 B CN117051133 B CN 117051133B CN 202311311460 A CN202311311460 A CN 202311311460A CN 117051133 B CN117051133 B CN 117051133B
- Authority
- CN
- China
- Prior art keywords
- sheep
- brucellosis
- resistance
- snp molecular
- molecular marker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241001494479 Pecora Species 0.000 title claims abstract description 115
- 206010006500 Brucellosis Diseases 0.000 title claims abstract description 86
- 239000003147 molecular marker Substances 0.000 title claims abstract description 47
- 238000001514 detection method Methods 0.000 title claims abstract description 17
- 238000009395 breeding Methods 0.000 claims abstract description 16
- 230000001488 breeding effect Effects 0.000 claims abstract description 16
- 239000002773 nucleotide Substances 0.000 claims abstract description 11
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 12
- 239000003153 chemical reaction reagent Substances 0.000 claims description 8
- 210000000349 chromosome Anatomy 0.000 claims description 8
- 238000012216 screening Methods 0.000 claims description 5
- 230000006872 improvement Effects 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 239000000523 sample Substances 0.000 description 9
- 241000589562 Brucella Species 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000012408 PCR amplification Methods 0.000 description 5
- 238000012098 association analyses Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000007850 fluorescent dye Substances 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 241000282414 Homo sapiens Species 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 238000002875 fluorescence polarization Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 238000003908 quality control method Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 3
- 238000010201 enrichment analysis Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 208000035240 Disease Resistance Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003205 genotyping method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 241001148106 Brucella melitensis Species 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000726221 Gemma Species 0.000 description 1
- 208000032420 Latent Infection Diseases 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 206010000210 abortion Diseases 0.000 description 1
- 231100000176 abortion Toxicity 0.000 description 1
- 238000007844 allele-specific PCR Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229940038698 brucella melitensis Drugs 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- -1 dNTPs Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037771 disease arising from reactivation of latent virus Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 239000003640 drug residue Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000017188 evasion or tolerance of host immune response Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002373 gas-phase electrophoretic mobility molecular analysis Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 201000005737 orchitis Diseases 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/124—Animal traits, i.e. production traits, including athletic performance or the like
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/80—Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
- Y02P60/87—Re-use of by-products of food processing for fodder production
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及分子标记辅助育种技术领域,具体涉及用于检测绵羊布鲁氏菌病抗性的SNP分子标记及其检测引物和应用。本发明提供与绵羊布鲁氏菌病抗性相关的SNP分子标记,其含有如SEQ ID NO.1所示序列第101位的多态性为G/A的核苷酸序列。该SNP分子标记与绵羊布鲁氏菌病抗性显著相关,能够较为准确地检测绵羊对布鲁氏菌病的抗性高低,用于抗布鲁氏菌病绵羊的选育和分子标记辅助育种,有利于提高育种效率。
The invention relates to the technical field of molecular marker-assisted breeding, and specifically to SNP molecular markers for detecting sheep brucellosis resistance and detection primers and applications thereof. The present invention provides a SNP molecular marker related to sheep brucellosis resistance, which contains a nucleotide sequence in which the polymorphism at position 101 of the sequence shown in SEQ ID NO. 1 is G/A. This SNP molecular marker is significantly related to sheep brucellosis resistance, can more accurately detect the level of sheep resistance to brucellosis, and can be used for the selection and molecular marker-assisted breeding of brucellosis-resistant sheep. , which is conducive to improving breeding efficiency.
Description
技术领域Technical field
本发明涉及分子标记辅助育种技术领域,尤其涉及用于检测绵羊布鲁氏菌病抗性的SNP分子标记及其检测引物和应用。The present invention relates to the technical field of molecular marker-assisted breeding, and in particular to SNP molecular markers for detecting sheep brucellosis resistance and detection primers and applications thereof.
背景技术Background technique
布鲁氏杆菌病(brucellosis)简称布病,是由布鲁氏菌引起的人畜共患性全身传染病,其临床症状包括波浪热、关节炎和繁殖障碍(公畜睾丸炎和附睾炎,母畜流产和不孕)等。布鲁氏菌具有免疫逃避和隐性感染的特性,其中羊种布鲁氏菌的毒力和感染性最强,不仅对绵羊养殖业造成巨大经济损失,还成为公共卫生的重大安全隐患。在宿主动物绵羊中挖掘与抗布鲁氏菌病性状相关的分子标记,并应用于辅助绵羊的抗病育种,不仅能从根本上切断布鲁氏菌病的传播途径,还能减轻因抗生素滥用而造成的环境污染和药物残留危害。因此挖掘绵羊的抗布鲁氏菌病相关分子标记具有重要意义。Brucellosis (brucellosis), referred to as brucellosis, is a zoonotic systemic infectious disease caused by Brucella. Its clinical symptoms include wave fever, arthritis and reproductive disorders (orchitis and epididymitis in male animals, abortion and female animals). Infertility) etc. Brucella has the characteristics of immune evasion and latent infection. Among them, Brucella melitensis is the most virulent and infective, which not only causes huge economic losses to the sheep breeding industry, but also becomes a major safety hazard to public health. Excavating molecular markers related to brucellosis resistance traits in the host animal sheep and applying them to assist disease-resistant breeding in sheep will not only fundamentally cut off the transmission route of brucellosis, but also reduce the risk of antibiotic abuse. And cause environmental pollution and drug residue hazards. Therefore, it is of great significance to explore the molecular markers related to resistance to brucellosis in sheep.
发明内容Contents of the invention
本发明提供用于检测绵羊布鲁氏菌病抗性的SNP分子标记及其检测引物和应用。The invention provides SNP molecular markers for detecting sheep brucellosis resistance and detection primers and applications thereof.
本发明通过在不同品种绵羊中进行全基因组关联分析,发现了绵羊基因组中与布鲁氏菌病抗性性状相关的SNP分子标记,通过大样本量的绵羊群体验证,证明该SNP分子标记与绵羊布鲁氏菌病抗性性状存在显著相关性,可用于检测绵羊对布鲁氏菌病的抗性高低。为便于检测,本发明还开发了用于检测该SNP分子标记的引物组合。By conducting whole-genome association analysis in different breeds of sheep, the present invention discovered SNP molecular markers related to brucellosis resistance traits in the sheep genome. Through verification of a large sample size of sheep populations, it was proved that the SNP molecular markers are related to sheep. There is a significant correlation between brucellosis resistance traits and can be used to detect the resistance of sheep to brucellosis. To facilitate detection, the present invention also developed a primer combination for detecting the SNP molecular marker.
基于上述发现,本发明提供以下技术方案:Based on the above findings, the present invention provides the following technical solutions:
第一方面,本发明提供与绵羊布鲁氏菌病抗性相关的SNP分子标记,所述SNP分子标记含有如SEQ ID NO.1所示序列第101位的多态性为G/A的核苷酸序列。In a first aspect, the present invention provides a SNP molecular marker related to sheep brucellosis resistance. The SNP molecular marker contains a polymorphism of G/A at position 101 of the sequence shown in SEQ ID NO.1. nucleotide sequence.
以上所述的SNP分子标记的多态性位点位于版本号为Oar_v1.0,2017年11月的绵羊参考基因组的第3号染色体第35698759位,多态性为G/A。The polymorphic site of the above-mentioned SNP molecular marker is located at position 35698759 on chromosome 3 of the sheep reference genome with version number Oar_v1.0 in November 2017, and the polymorphism is G/A.
上述SNP分子标记与绵羊对布鲁氏菌病的抗性高低存在显著相关性,能够针对不同品种绵羊较为准确地鉴定其对布鲁氏菌病的抗性,用于绵羊抗布鲁氏菌病的分子标记辅助育种和品种改良,提高分子育种效率。The above-mentioned SNP molecular markers are significantly correlated with the resistance of sheep to brucellosis, and can more accurately identify the resistance to brucellosis of different breeds of sheep, and can be used to resist brucellosis in sheep. Molecular marker-assisted breeding and variety improvement to improve molecular breeding efficiency.
基于上述版本号为Oar_v1.0,2017年11月的绵羊参考基因组的第3号染色体第35698759位的多态性位点,为便于检测,本发明针对该多态性位点的上下游序列开发了SNP分子标记序列片段以及用于扩增该SNP分子标记的引物。结合该多态性位点的上下游序列,本发明获得了SEQ ID NO.1所示序列。本领域技术人员可以理解的是,基于上述SNP位点及其上下游序列可开发不同长度的序列片段作为SNP分子标记,因此SEQ ID NO.1所示序列并不构成对本发明的SNP分子标记的限制,只要包含版本号为Oar_v1.0,2017年11月的绵羊参考基因组的第3号染色体第35698759位的多态性位点的序列片段均在本发明的SNP分子标记的保护范围内。Based on the polymorphic site at position 35698759 on chromosome 3 of the sheep reference genome with the version number Oar_v1.0 in November 2017, in order to facilitate detection, the present invention develops the upstream and downstream sequences of this polymorphic site The SNP molecular marker sequence fragment and the primers used to amplify the SNP molecular marker are obtained. Combining the upstream and downstream sequences of the polymorphic site, the present invention obtains the sequence shown in SEQ ID NO.1. Those skilled in the art can understand that sequence fragments of different lengths can be developed as SNP molecular markers based on the above-mentioned SNP sites and their upstream and downstream sequences. Therefore, the sequence shown in SEQ ID NO. 1 does not constitute a reference to the SNP molecular markers of the present invention. Limitation, as long as the sequence fragment containing the polymorphic site at position 35698759 of chromosome 3 of the sheep reference genome with version number Oar_v1.0 in November 2017 is within the protection scope of the SNP molecular marker of the present invention.
在本发明的一些实施方式中,所述SNP分子标记的核苷酸序列如SEQ ID NO.1所示,多态性位点位于如SEQ ID NO.1所示序列的第101位,多态性为G/A。In some embodiments of the present invention, the nucleotide sequence of the SNP molecular marker is as shown in SEQ ID NO.1, and the polymorphic site is located at position 101 of the sequence as shown in SEQ ID NO.1. Sex is G/A.
SEQ ID NO.1:SEQ ID NO.1:
TGTTTTGCTTTCTCTTTCCTTCCATCTTTTCTTGCCCAGGTCACCCAGCTAAGGAATGGCCAAATCAGCTGGGACTCTGCCCTTTCGCTGGAGCTGGGGARAGAAGGTCCCTAGGAGGTAGGGACCAGCCCCTCAGCCTTATCCCTCCCCTTCTCTGCCAGGTCCTGGGGAGTCCGAGAAGATCCAGCAGCTGGAAGAGCA。其中,R为SNP分子标记的多态性位点,R=G或A。TGTTTTGCTTTCTCTTTCCTTCCATCTTTTCTTGCCCAGGTCACCCAGCTAAGGAATGGCCAAATCAGCTGGGACTCTGCCCTTTCGCTGGAGCTGGGGARAGAAGGTCCCTAGGAGGTAGGGACCAGCCCCTCAGCCTTATCCCTCCCCTTCTCTGCCAGGTCCTGGGGAGTCCGAGAAGATCCAGCAGCTGGAAGAGCA. Among them, R is the polymorphic site of SNP molecular marker, R=G or A.
在本发明的一些实施方式中,以上所述的SNP分子标记为以绵羊基因组为模板、由序列如SEQ ID NO.2-4所示的引物扩增得到。In some embodiments of the present invention, the above-mentioned SNP molecular markers are amplified by using the sheep genome as a template and using primers with sequences as shown in SEQ ID NO. 2-4.
以上所述的SNP分子标记的多态性位点的基因型为GG或AA,对应于布鲁氏菌病高抗性,基因型为GA,对应于布鲁氏菌病低抗性。The genotype of the polymorphic site of the above-mentioned SNP molecular marker is GG or AA, which corresponds to high resistance to brucellosis, and the genotype is GA, which corresponds to low resistance to brucellosis.
上述SNP分子标记中,相较“GA”杂合基因型,“GG”纯合基因型和“AA”纯合基因型的绵羊具有更强的布鲁氏菌病抗性。Among the above SNP molecular markers, sheep with the "GG" homozygous genotype and "AA" homozygous genotype have stronger brucellosis resistance than the "GA" heterozygous genotype.
第二方面,本发明提供一种引物组合,所述引物组合用于扩增以上所述的与绵羊布鲁氏菌病抗性相关的SNP分子标记。In a second aspect, the present invention provides a primer combination for amplifying the above-mentioned SNP molecular markers related to sheep brucellosis resistance.
根据以上提供的SNP分子标记的多态性位点所在基因组的位置及其上下游序列,本领域技术人员可以开发用于扩增该SNP分子标记的各种类型的引物。Based on the genomic location of the polymorphic site of the SNP molecular marker provided above and its upstream and downstream sequences, those skilled in the art can develop various types of primers for amplifying the SNP molecular marker.
上述引物可以为任何能够用于检测SNP分子标记基因型的引物。The above primers can be any primers that can be used to detect the genotype of SNP molecular markers.
优选地,所述引物组合包括序列如SEQ ID NO.2-4所示的引物,其中序列如SEQ IDNO.2-3所示的引物为正向引物,序列如SEQ ID NO.4所示的引物为反向通用引物。Preferably, the primer combination includes a primer with a sequence shown in SEQ ID NO.2-4, wherein the primer with a sequence shown in SEQ ID NO.2-3 is a forward primer, and a primer with a sequence shown in SEQ ID NO.4 The primer is a reverse universal primer.
SEQ ID NO.2:5’-CCTACCTCCTAGGGACCTTCTT-3’;SEQ ID NO.2: 5’-CCTACCTCCTAGGGACCTTCTT-3’;
SEQ ID NO.3:5’-CTACCTCCTAGGGACCTTCTC-3’;SEQ ID NO.3: 5’-CTACCTCCTAGGGACCTTCTC-3’;
SEQ ID NO.4:5’- TCACCCAGCTAAGGAATGGCCAAAT -3’。SEQ ID NO. 4: 5'-TCACCCAGCTAAGGAATGCCAAAT-3'.
以上所述的引物组合能够针对上述SNP分子标记实现高效的扩增和基因分型。The primer combinations described above can achieve efficient amplification and genotyping of the above SNP molecular markers.
KASP,即竞争性等位基因特异性PCR,该技术可通过特异性荧光探针进行SNP的高精度双等位基因分型,且分析稳定准确、成本低、效率高,易于实现高通量和自动化。因此,为实现高效检测,本发明基于KASP技术开发了用于检测上述SNP分子标记的KASP引物组合。KASP, competitive allele-specific PCR, is a technology that can perform high-precision biallelic typing of SNPs through specific fluorescent probes. The analysis is stable and accurate, low-cost, high-efficiency, and easy to achieve high-throughput and automation. Therefore, in order to achieve efficient detection, the present invention developed a KASP primer combination for detecting the above-mentioned SNP molecular markers based on KASP technology.
优选地,所述KASP引物组合包括第一正向引物、第二正向引物以及反向通用引物,其中,所述第一正向引物的序列为顺次连接的特异性荧光标签序列以及SEQ ID NO.2所示序列,第二正向引物的序列为顺次连接的特异性荧光标签序列以及SEQ ID NO.3所示序列;反向通用引物的核苷酸序列如SEQ ID NO.4所示。Preferably, the KASP primer combination includes a first forward primer, a second forward primer and a reverse universal primer, wherein the sequence of the first forward primer is a sequentially connected specific fluorescent tag sequence and SEQ ID The sequence shown in NO.2, the sequence of the second forward primer is the sequentially connected specific fluorescent tag sequence and the sequence shown in SEQ ID NO.3; the nucleotide sequence of the reverse universal primer is shown in SEQ ID NO.4 Show.
以上所述的第一正向引物和第二正向引物的荧光标签不同。The first forward primer and the second forward primer described above have different fluorescent labels.
在本发明的一些实施方式中,所述引物组合包含SEQ ID NO.5-6所示的正向引物以及SEQ ID NO.4所示的反向通用引物。In some embodiments of the present invention, the primer combination includes the forward primers shown in SEQ ID NO. 5-6 and the reverse universal primer shown in SEQ ID NO. 4.
第三方面,本发明提供一种试剂盒,所述试剂盒包含以上所述的引物组合。In a third aspect, the present invention provides a kit comprising the primer combination described above.
为便于检测,所述试剂盒还可包含其他用于PCR扩增的试剂,包括但不限于DNA聚合酶、PCR反应缓冲液、探针、dNTP、Mg2+、水等。To facilitate detection, the kit may also contain other reagents for PCR amplification, including but not limited to DNA polymerase, PCR reaction buffer, probes, dNTPs, Mg 2+ , water, etc.
上述试剂可单独包装或经混合后作为预混液提供。The above reagents can be packaged individually or mixed and provided as a premix.
以上所述的试剂盒可具有以下任一种用途:The kits described above can be used for any of the following purposes:
1)检测或辅助检测绵羊对布鲁氏菌病抗性高低;1) Detect or assist in detecting the resistance of sheep to brucellosis;
2)筛选或鉴定高抗布鲁氏菌病的绵羊;2) Screen or identify sheep with high resistance to brucellosis;
3)绵羊抗布鲁氏菌病性状的早期预测;3) Early prediction of sheep’s brucellosis resistance traits;
4)绵羊对布鲁氏菌病抗性的分子标记辅助育种;4) Molecular marker-assisted breeding of sheep for brucellosis resistance;
5)绵羊对布鲁氏菌病抗性的品种改良。5) Improvement of sheep breeds resistant to brucellosis.
第四方面,本发明提供SNP分子标记或所述SNP分子标记的检测引物的以下1)-8)中的任意一种应用:In the fourth aspect, the present invention provides any one of the following 1)-8) applications of SNP molecular markers or detection primers of said SNP molecular markers:
1)在检测或辅助检测绵羊对布鲁氏菌病抗性高低中的应用;1) Application in detecting or assisting in detecting the resistance of sheep to brucellosis;
2)在制备用于检测或辅助检测绵羊对布鲁氏菌病抗性高低的试剂中的应用;2) Application in the preparation of reagents for detecting or assisting in detecting the resistance of sheep to brucellosis;
3)在筛选或鉴定高抗布鲁氏菌病的绵羊中的应用;3) Application in screening or identifying sheep with high resistance to brucellosis;
4)在制备用于筛选或鉴定高抗布鲁氏菌病的绵羊的试剂中的应用;4) Application in the preparation of reagents for screening or identifying sheep with high resistance to brucellosis;
5)在绵羊抗布鲁氏菌病性状的早期预测中的应用;5) Application in early prediction of sheep brucellosis resistance traits;
6)在制备用于绵羊抗布鲁氏菌病性状的早期预测试剂中的应用;6) Application in the preparation of early prediction reagents for sheep resistance to brucellosis traits;
7)在绵羊对布鲁氏菌病抗性的分子标记辅助育种中的应用;7) Application in molecular marker-assisted breeding of sheep resistant to brucellosis;
8)在绵羊对布鲁氏菌病抗性的品种改良中的应用。8) Application in the improvement of sheep breeds resistant to brucellosis.
所述SNP分子标记的多态性位点位于版本号为Oar_v1.0,2017年11月的绵羊参考基因组的第3号染色体第35698759位,多态性为G/A。The polymorphic site of the SNP molecular marker is located at position 35698759 on chromosome 3 of the sheep reference genome with version number Oar_v1.0 in November 2017, and the polymorphism is G/A.
在本发明的一些实施方式中,上述应用中,所述SNP分子标记含有如SEQ ID NO.1所示序列第101位的多态性为G/A的核苷酸序列。In some embodiments of the present invention, in the above application, the SNP molecular marker contains a nucleotide sequence in which the polymorphism at position 101 of the sequence shown in SEQ ID NO. 1 is G/A.
在本发明的一些实施方式中,上述应用中,所述SNP分子标记的核苷酸序列如SEQID NO.1所示,多态性位点位于如SEQ ID NO.1所示序列的第101位,多态性为G/A。In some embodiments of the present invention, in the above application, the nucleotide sequence of the SNP molecular marker is as shown in SEQ ID NO.1, and the polymorphic site is located at position 101 of the sequence as shown in SEQ ID NO.1 , the polymorphism is G/A.
在本发明的一些实施方式中,上述应用中,所述SNP分子标记的检测引物包括序列如SEQ ID NO.2-4所示的引物,其中序列如SEQ ID NO.2-3所示的引物为正向引物,序列如SEQ ID NO.4所示的引物为反向通用引物。In some embodiments of the present invention, in the above applications, the detection primers for SNP molecular markers include primers with sequences as shown in SEQ ID NO.2-4, wherein primers with sequences as shown in SEQ ID NO.2-3 is a forward primer, and the primer whose sequence is shown in SEQ ID NO. 4 is a reverse universal primer.
上述应用中,所述SNP分子标记的多态性位点的基因型为GG或AA,对应于布鲁氏菌病高抗性,基因型为GA,对应于布鲁氏菌病低抗性。In the above application, the genotype of the polymorphic site of the SNP molecular marker is GG or AA, which corresponds to high resistance to brucellosis, and the genotype is GA, which corresponds to low resistance to brucellosis.
上述应用中,选择所述SNP分子标记的基因型为“GG”和“AA”的绵羊作为亲本进行抗布鲁氏菌病性状育种。In the above application, sheep whose genotypes of the SNP molecular markers are "GG" and "AA" are selected as parents for breeding for brucellosis resistance traits.
第五方面,本发明提供一种检测绵羊对布鲁氏菌病抗性的方法,所述方法包括:检测绵羊基因组中与绵羊抗布鲁氏菌病性状相关的SNP分子标记的基因型,所述SNP分子标记的多态性位点位于版本号为Oar_v1.0,2017年11月的绵羊参考基因组的第3号染色体第35698759位,多态性为G/A。In a fifth aspect, the present invention provides a method for detecting the resistance of sheep to brucellosis. The method includes: detecting the genotype of the SNP molecular marker in the sheep genome that is related to the sheep's resistance to brucellosis traits, so The polymorphic site of the above-mentioned SNP molecular marker is located at position 35698759 on chromosome 3 of the sheep reference genome with version number Oar_v1.0 in November 2017, and the polymorphism is G/A.
所述SNP分子标记的多态性位点的基因型为GG或AA,对应于布鲁氏菌病高抗性,基因型为GA,对应于布鲁氏菌病低抗性。The genotype of the polymorphic site of the SNP molecular marker is GG or AA, which corresponds to high resistance to brucellosis, and the genotype is GA, which corresponds to low resistance to brucellosis.
在本发明的一些实施方式中,所述SNP分子标记含有如SEQ ID NO.1所示序列第101位的多态性为G/A的核苷酸序列。In some embodiments of the present invention, the SNP molecular marker contains a nucleotide sequence in which the polymorphism at position 101 of the sequence shown in SEQ ID NO. 1 is G/A.
在本发明的一些实施方式中,所述SNP分子标记的核苷酸序列如SEQ ID NO.1所示,多态性位点位于如SEQ ID NO.1所示序列的第101位,多态性为G/A。In some embodiments of the present invention, the nucleotide sequence of the SNP molecular marker is as shown in SEQ ID NO.1, and the polymorphic site is located at position 101 of the sequence as shown in SEQ ID NO.1. Sex is G/A.
优选地,所述方法包括如下步骤:Preferably, the method includes the following steps:
1)提取待检测绵羊的基因组DNA;1) Extract the genomic DNA of the sheep to be tested;
2)以步骤1)的基因组DNA为模板,利用序列如SEQ ID NO.2-4所示的引物进行PCR扩增;2) Use the genomic DNA in step 1) as a template and use the primers with the sequence shown in SEQ ID NO. 2-4 to perform PCR amplification;
3)分析PCR扩增产物中所述SNP 分子标记的基因型,根据基因型判断待检测绵羊对布鲁氏菌病的抗性高低,若所述SNP分子标记的多态性位点的基因型为GG或AA,则判断为布鲁氏菌病高抗性,若基因型为GA,则判断为布鲁氏菌病低抗性。3) Analyze the genotype of the SNP molecular marker in the PCR amplification product, and determine the resistance of the sheep to be tested to brucellosis based on the genotype. If the genotype of the polymorphic site of the SNP molecular marker is If the genotype is GG or AA, it is judged to be high resistance to brucellosis. If the genotype is GA, it is judged to be low resistance to brucellosis.
本发明的有益效果至少包括:本发明提供与绵羊布鲁氏菌病抗性性状相关的SNP分子标记,该SNP分子标记与绵羊布鲁氏菌病抗性显著相关,能够较为准确地检测绵羊对布鲁氏菌病的抗性高低,可实现绵羊抗布鲁氏菌病性状的早期预测,不受绵羊的年龄、性别等限制,甚至绵羊刚出生即可进行准确筛选,可用于抗布鲁氏菌病绵羊的选育和绵羊抗布鲁氏菌病性状的分子标记辅助育种,能够显著促进抗布鲁氏菌病绵羊选育的育种进程,有效提高育种效率,对开发和利用绵羊优良品种的优良经济特性及保护和合理地利用品种资源具有重要意义。The beneficial effects of the present invention at least include: the present invention provides SNP molecular markers related to sheep brucellosis resistance traits. The SNP molecular markers are significantly related to sheep brucellosis resistance and can more accurately detect sheep's resistance to brucellosis. The level of resistance to brucellosis can be used to predict the resistance to brucellosis in sheep early. It is not restricted by the age, gender, etc. of sheep. Even sheep can be accurately screened just after they are born, and can be used for resistance to brucellosis. The breeding of sheep with fungal disease and the molecular marker-assisted breeding of sheep resistant to brucellosis can significantly promote the breeding process of sheep resistant to brucellosis, effectively improve the breeding efficiency, and contribute to the development and utilization of excellent sheep varieties. Excellent economic characteristics and the protection and rational utilization of variety resources are of great significance.
附图说明Description of the drawings
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the drawings in the following description are of the present invention. For some embodiments of the invention, those of ordinary skill in the art can also obtain other drawings based on these drawings without exerting creative efforts.
图1为本发明实施例2中SNP分子标记的多态性位点的基因分型结果。Figure 1 shows the genotyping results of polymorphic sites of SNP molecular markers in Example 2 of the present invention.
图2为本发明实施例2中SNP分子标记在绵羊群体中的扩群验证结果,其中,**代表p<0.01。Figure 2 is the population expansion verification result of SNP molecular markers in the sheep population in Example 2 of the present invention, where ** represents p<0.01.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the present invention more clear, the technical solutions in the present invention will be clearly and completely described below in conjunction with the accompanying drawings of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention. , not all examples. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without making creative efforts fall within the scope of protection of the present invention.
本发明提供了一种与绵羊布鲁氏菌病抗性相关的SNP分子标记,所述SNP分子标记的多态性位点位于版本号为Oar_v1.0,2017年11月的绵羊参考基因组的第3号染色体第35698759位,该位点存在G/A碱基突变,与绵羊抗布鲁氏菌病性状具有显著的相关性;推测该位点突变后可能会影响绵羊对布鲁氏菌的清除能力;在该多态性位点上,相较 “GA”杂合基因型,“GG”纯合基因型和“AA”纯合基因型的绵羊具有更强的布鲁氏菌病抗性。本发明提供的SNP分子标记对于通过基因型区分和筛选具有抗布鲁氏菌病性状的绵羊具有重要的指导意义,能够提高绵羊抗布鲁氏菌病筛选的准确率和效率。The present invention provides a SNP molecular marker related to sheep brucellosis resistance. The polymorphic site of the SNP molecular marker is located at No. 1 of the sheep reference genome with version number Oar_v1.0 in November 2017. There is a G/A base mutation at position 35698759 of chromosome 3, which is significantly related to the resistance to brucellosis in sheep. It is speculated that mutation of this site may affect the clearance of Brucella in sheep. Ability; at this polymorphic site, sheep with the "GG" homozygous genotype and "AA" homozygous genotype have stronger brucellosis resistance than the "GA" heterozygous genotype. The SNP molecular markers provided by the present invention have important guiding significance for genotype differentiation and screening of sheep with brucellosis resistance traits, and can improve the accuracy and efficiency of sheep resistance to brucellosis screening.
本发明对于检测所述SNP分子标记的基因型的方法没有特别的限制,利用本领域常规的基因型检测方法即可。在本发明的具体实施方式中,利用KASP方法来检测待测绵羊基因组中所述SNP分子标记的基因型。The present invention has no special restrictions on the method for detecting the genotype of the SNP molecular marker, and conventional genotype detection methods in the field can be used. In a specific embodiment of the present invention, the KASP method is used to detect the genotype of the SNP molecular marker in the sheep genome to be tested.
本发明提供的与绵羊布鲁氏菌病抗性相关的SNP分子标记或其检测引物可以联合其他与绵羊布鲁氏菌病抗性相关的SNP分子标记或其检测引物使用,用于绵羊抗布鲁氏菌病性状的鉴定。The SNP molecular markers related to sheep brucellosis resistance or their detection primers provided by the present invention can be used in combination with other SNP molecular markers related to sheep brucellosis resistance or their detection primers for sheep resistance to brucellosis. Identification of leucellosis traits.
实施例1 与绵羊布鲁氏菌病抗性相关的SNP分子标记的开发Example 1 Development of SNP molecular markers related to sheep brucellosis resistance
本实施例以萨福克、东佛里生、白萨福克和特克塞尔这4个品种的绵羊群体为样本,利用全基因组关联分析(GWAS)开发与绵羊抗布鲁氏菌病性状相关的SNP分子标记,具体如下:This example uses sheep populations of four breeds: Suffolk, East Frisian, White Suffolk and Texel as samples, and uses genome-wide association analysis (GWAS) to develop the traits related to sheep brucellosis resistance. Relevant SNP molecular markers are as follows:
将萨福克、东佛里生、白萨福克和特克塞尔品种绵羊在相同条件饲养,自然感染布鲁氏菌病,采集绵羊血样,分别采用竞争酶联免疫吸附实验(cELSA)、间接酶联免疫吸附实验(iELISA)和荧光偏振实验(FPA)检测绵羊是否感染布鲁氏菌病,各方法的阳性判定阈值线为:cELISA:30,iELISA:15,FPA:20,高于上述阈值线判断为阳性。若上述三种方法的检测结果均为阳性则判定为患布鲁氏菌,均为阴性则判定为健康,其余则判定为可疑。最后选择25只判定为患布鲁氏菌病的绵羊作为实验组,25只判定为健康的绵羊作为对照组,对上述50只绵羊进行全基因组关联分析(GWAS),其中,患病绵羊的信息及其血样检测结果如表1所示,健康绵羊的信息及其血样检测结果如表2所示。Suffolk, East Frisian, White Suffolk and Texel breed sheep were raised under the same conditions and naturally infected with brucellosis. Sheep blood samples were collected and competitive enzyme-linked immunosorbent assay (cELSA) was used. Indirect enzyme-linked immunosorbent assay (iELISA) and fluorescence polarization assay (FPA) are used to detect whether sheep are infected with brucellosis. The positive judgment thresholds of each method are: cELISA: 30, iELISA: 15, FPA: 20, which is higher than the above The threshold line is judged as positive. If the test results of the above three methods are all positive, it is judged that the patient is suffering from Brucella, if all are negative, the patient is healthy, and the rest are judged as suspicious. Finally, 25 sheep judged to be suffering from brucellosis were selected as the experimental group, and 25 sheep judged to be healthy were used as the control group. A genome-wide association analysis (GWAS) was performed on the above 50 sheep. Among them, the information of the sick sheep and The blood sample test results are shown in Table 1, and the information of healthy sheep and their blood sample test results are shown in Table 2.
表1Table 1
表2Table 2
将上述50只绵羊的血液DNA样品进行全基因组重测序,测序平台为华大基因T7,测序深度为20×,总测序量为2.6 T。对测序数据进行序列比对与质量控制,其中,数据过滤使用软件fastp,比对和变异检测使用软件GTX,获得大小为71.08 GB的比对后VCF文件。质量控制使用软件PLINK,质控标准如下:--mind 0.1 --geno 0.1 --maf 0.05 --hwe 1e-5,质控后有效SNP数为24,683,444。使用软件PLINK,代码:plink --bfile filename --pca 10--out filename_pca --chr-set 27 --allow-extra-chr进行主成分分析。选择数量性状(iELISA值)、使用GEMMA (Version 0.95 )软件、以为模型基础、Genome assembly Oar_rambouillet_v1.0为参考基因组进行全基因组关联分析。然后进行SNP注释与富集分析,其中,SNP位点注释使用工具为https://asia.ensembl.org/index.html,参考基因组为Genome assembly Oar_rambouillet_v1.0,GO富集分析使用工具为https://biit.cs.ut.ee/gprofiler/gost,参考基因组为Homo sapiens(Human)、Ovis aries(Sheep),KEGG富集分析使用工具为:https://david.ncifcrf.gov,参考基因组为Homosapiens(Human)、Ovis aries(Sheep)。Whole-genome resequencing was performed on the blood DNA samples of the above 50 sheep. The sequencing platform was BGI T7, the sequencing depth was 20×, and the total sequencing volume was 2.6 T. Sequence alignment and quality control were performed on the sequencing data. The software fastp was used for data filtering, and the software GTX was used for alignment and mutation detection. An aligned VCF file with a size of 71.08 GB was obtained. The software PLINK was used for quality control. The quality control standards were as follows: --mind 0.1 --geno 0.1 --maf 0.05 --hwe 1e-5. The number of valid SNPs after quality control was 24,683,444. Use the software PLINK, code: plink --bfile filename --pca 10 --out filename_pca --chr-set 27 --allow-extra-chr to perform principal component analysis. Select quantitative traits (iELISA values), use GEMMA (Version 0.95) software, and As the basis of the model, Genome assembly Oar_rambouillet_v1.0 is used as the reference genome to perform genome-wide association analysis. Then perform SNP annotation and enrichment analysis. The tool for SNP site annotation is https://asia.ensembl.org/index.html, the reference genome is Genome assembly Oar_rambouillet_v1.0, and the tool for GO enrichment analysis is https: //biit.cs.ut.ee/gprofiler/gost, the reference genome is Homo sapiens (Human), Ovis aries (Sheep), the KEGG enrichment analysis tool is: https://david.ncifcrf.gov, the reference genome is Homosapiens (Human), Ovis aries (Sheep).
在全基因组关联分析中,Top 1000 SNP的-log10(P)取值在4.56~7.36之间,注释到100个基因,其中,-log10(P)取值在6以上的SNP共有48个,注释到13个基因。在这48个SNP中筛选与绵羊布鲁氏菌病抗病表型存在明显关联的SNP分子标记。最终,本发明获得了与绵羊布鲁氏菌病抗性相关的SNP分子标记,该SNP分子标记的多态性位点位于版本号为Oar_v1.0,2017年11月的绵羊参考基因组的第3号染色体第35698759位,多态性为G/A,与绵羊抗布鲁氏菌病性状具有显著的相关性,该多态性位点为“GG”纯合基因型和“AA”纯合基因型的绵羊个体的cELISA值、iELISA值、FPA值均显著低于“GA”杂合基因型(p<0.01),即相较“GA”杂合基因型,“GG”纯合基因型和“AA”纯合基因型的绵羊具有更强的布鲁氏菌病抗性,“GG”和“AA”是抗布鲁氏菌绵羊的优势基因型。上述SNP分子标记可对应于如SEQ ID NO.1所示序列,其中,多态性位点位于如SEQ ID NO.1所示序列的第101位,多态性为G/A。In the genome-wide association analysis, the -log 10 (P) value of the Top 1000 SNPs ranged from 4.56 to 7.36, and 100 genes were annotated. Among them, there were 48 SNPs with -log 10 (P) values above 6. , 13 genes were annotated. Among these 48 SNPs, SNP molecular markers that were significantly associated with the disease resistance phenotype of sheep brucellosis were screened. Finally, the present invention obtained a SNP molecular marker related to sheep brucellosis resistance. The polymorphic site of this SNP molecular marker is located at No. 3 of the sheep reference genome with version number Oar_v1.0 in November 2017. Chromosome No. 35698759, the polymorphism is G/A, which has a significant correlation with the resistance to brucellosis in sheep. The polymorphism site is the "GG" homozygous genotype and the "AA" homozygous gene. The cELISA value, iELISA value and FPA value of individual sheep with type 1 were significantly lower than those of the "GA" heterozygous genotype (p<0.01). That is, compared with the "GA" heterozygous genotype, the "GG" homozygous genotype and the "GG" homozygous genotype were significantly lower than those of the "GA" heterozygous genotype. Sheep with the homozygous genotype AA” have greater resistance to brucellosis, and “GG” and “AA” are the dominant genotypes in Brucella-resistant sheep. The above-mentioned SNP molecular marker can correspond to the sequence shown in SEQ ID NO. 1, wherein the polymorphic site is located at position 101 of the sequence shown in SEQ ID NO. 1, and the polymorphism is G/A.
基于上述SNP分子标记,本发明进一步开发了用于检测该SNP分子标记的KASP引物,具体如下:Based on the above SNP molecular markers, the present invention further developed KASP primers for detecting the SNP molecular markers, specifically as follows:
Primer X:Primer X:
5’-gaaggtgaccaagttcatgctCCTACCTCCTAGGGACCTTCTT-3’(SEQ ID NO.5,小写字母部分为特异性荧光标签序列FAM);5’-gaaggtgaccaagttcatgctCCTACCTCCTAGGGACCTTCTT-3’ (SEQ ID NO.5, the lowercase letters are the specific fluorescent tag sequence FAM);
Primer Y:Primer Y:
5’-gaaggtcggagtcaacggattCTACCTCCTAGGGACCTTCTC-3’(SEQ ID NO.6,小写字母部分为特异性荧光标签序列VIC);5’-gaaggtcggagtcaacggattCTACCTCCTAGGGACCTTCTC-3’ (SEQ ID NO.6, the lowercase letters are the specific fluorescent tag sequence VIC);
Primer R: 5’- TCACCCAGCTAAGGAATGGCCAAAT -3’(SEQ ID NO.4)。Primer R: 5’-TCACCCAGCTAAGGAATGGCCAAAT-3’ (SEQ ID NO. 4).
利用上述KASP引物可在本实施例的绵羊群体中将上述获得的SNP分子标记的多态性位点区分出“GA”杂合基因型、“GG”纯合基因型和“AA”纯合基因型这三种基因型。The polymorphic sites of the SNP molecular markers obtained above can be used to distinguish the "GA" heterozygous genotype, the "GG" homozygous genotype and the "AA" homozygous gene in the sheep population of this example. type these three genotypes.
实施例2 与绵羊布鲁氏菌病抗性相关的SNP分子标记的应用Example 2 Application of SNP molecular markers related to sheep brucellosis resistance
对实施例1开发的与绵羊布鲁氏菌病抗性相关的SNP分子标记进行扩大群体验证,具体如下:The SNP molecular markers related to sheep brucellosis resistance developed in Example 1 were subjected to expanded population verification, as follows:
1、采集待测绵羊血液样品并鉴定血清抗体浓度1. Collect sheep blood samples to be tested and identify serum antibody concentrations
从自然感染布鲁氏菌的养殖场中采集未接种疫苗的127只萨福克绵羊、129只东佛里生绵羊、130只白萨福克绵羊和27只特克塞尔绵羊的颈静脉血液。采用间接酶联免疫吸附实验(iELISA)方法检测血清布鲁氏菌抗体浓度。个体iELISA值可作为表征其抗病能力的指标,即iELISA值越低则表明该个体抗布鲁氏菌病能力越强,反之则越弱。在实施例中iELISA结果阴性与阳性的判定阈值设置为15。Jugular blood was collected from unvaccinated 127 Suffolk sheep, 129 East Friesian sheep, 130 White Suffolk sheep and 27 Texel sheep from farms naturally infected with Brucella . The indirect enzyme-linked immunosorbent assay (iELISA) method was used to detect the serum Brucella antibody concentration. The iELISA value of an individual can be used as an indicator of its disease resistance. That is, the lower the iELISA value, the stronger the individual's resistance to brucellosis, and vice versa. In the embodiment, the threshold for determining negative and positive iELISA results is set to 15.
2、提取待测绵羊血液样品中的基因组DNA2. Extract genomic DNA from the sheep blood sample to be tested
采用磁珠法提取待测绵羊血液样品中的基因组DNA。The magnetic bead method was used to extract genomic DNA from the sheep blood samples to be tested.
3、SNP分子标记片段的扩增3. Amplification of SNP molecular marker fragments
以上述2中提取的基因组DNA为模板,采用实施例1开发的KASP引物组合(SEQ IDNO.5-6和SEQ ID NO.4)进行PCR扩增,具体如下:Using the genomic DNA extracted in step 2 above as a template, use the KASP primer combination (SEQ ID NO. 5-6 and SEQ ID NO. 4) developed in Example 1 to perform PCR amplification, as follows:
(1)KASP扩增体系:(1) KASP amplification system:
1.6 μL反应体系包括:50-100 ng/μL的基因组DNA 0.8μL,引物混液 0.022μL(优选引物混液配比:100μmol/L的正向引物Primer X和Primer Y各60μL,100μmol/L的通用反向引物Primer R 150μL,10 mM的Tris·HCl 230μL),2×Master mix 0.4μL,双蒸水补足1.6μL。The 1.6 μL reaction system includes: 0.8 μL of 50-100 ng/μL genomic DNA, 0.022 μL of primer mixture (preferred primer mixture ratio: 60 μL of 100 μmol/L forward primers Primer Add 150 μL of primer Primer R, 230 μL of 10 mM Tris HCl), 0.4 μL of 2× Master mix, and 1.6 μL of double-distilled water.
以上反应体系为Douglas Array Tape平台的优选反应体系,其它合理的反应体系也可以达到相同的检测目的。The above reaction system is the preferred reaction system for the Douglas Array Tape platform. Other reasonable reaction systems can also achieve the same detection purpose.
其中,2×Master mix包括荧光探针A、荧光探针B、淬灭探针A和淬灭探针B,以及高保真Taq酶、dNTP和Mg2+等。荧光探针A序列为5’-GAAGGTGACCAAGTTCATGCT-3’,其5’末端连接1个荧光基团FAM;荧光探针B序列为5’-GAAGGTCGGAGTCAACGGATT -3’,其5’末端连接1个荧光基团VIC;淬灭探针A的核苷酸序列为5’- AGCATGAACTTGGTCACCTTC-3’,其3’末端连接1个荧光基团BHQ;淬灭探针B的核苷酸序列为5’-AATCCGTTGACTCCGACCTTC-3’,其3’末端连接1个荧光基团BHQ。Among them, 2×Master mix includes fluorescent probe A, fluorescent probe B, quenching probe A and quenching probe B, as well as high-fidelity Taq enzyme, dNTP and Mg 2+ , etc. The sequence of fluorescent probe A is 5'-GAAGGTGACCAAGTTCATGCT-3', and its 5' end is connected to a fluorescent group FAM; the sequence of fluorescent probe B is 5'-GAAGGTCGGAGTCAACGGATT-3', and its 5' end is connected to a fluorescent group. VIC; the nucleotide sequence of quenching probe A is 5'-AGCATGAACTTGGTCACCTTC-3', and its 3' end is connected to a fluorescent group BHQ; the nucleotide sequence of quenching probe B is 5'-AATCCGTTGACTCCGACCTTC-3 ', with a fluorescent group BHQ connected to its 3' end.
(2)PCR反应条件:(2) PCR reaction conditions:
DNA片段扩增:94℃预变性15 min,设置一个循环;94℃变性20 s,61-55℃梯度退火延伸60 s,设置10个循环,每个循环降低0.6℃。DNA fragment amplification: pre-denaturation at 94°C for 15 min, set up one cycle; denaturation at 94°C for 20 s, gradient annealing and extension at 61-55°C for 60 s, set up 10 cycles, with each cycle lowered by 0.6°C.
荧光信号增强:94℃变性20 s,55℃退火延伸60 s,设置26个循环。Fluorescence signal enhancement: denaturation at 94°C for 20 s, annealing and extension at 55°C for 60 s, 26 cycles set.
4、采用Douglas Array Tape平台检测PCR扩增产物,获得SNP分子标记的多态性位点的基因型。4. Use the Douglas Array Tape platform to detect the PCR amplification product and obtain the genotype of the polymorphic site of the SNP molecular marker.
对上述413只绵羊的SNP分子标记的多态性位点基因型进行检测,结果如表3和图1所示,在绵羊群体中区分出“GG”、“GA”和“AA”三种基因型。将基因型与布鲁氏菌抗性性状进行关联分析,结果如图2所示,“GG”和“AA”基因型绵羊个体的iELISA值显著低于“GA”基因型(p<0.01),表明“GG”和“AA”基因型绵羊个体的布鲁氏菌病抗性高于“GA”基因型,“GG”和“AA”是抗布鲁氏菌病绵羊的优势基因型,本发明提供的SNP分子标记用于布鲁氏菌病抗性性状鉴定具有较高的准确性。The polymorphic site genotypes of the SNP molecular markers in the above 413 sheep were detected. The results are shown in Table 3 and Figure 1. Three genes, "GG", "GA" and "AA", were distinguished in the sheep population. type. Correlation analysis between genotypes and Brucella resistance traits was performed. The results are shown in Figure 2. The iELISA values of individual sheep with "GG" and "AA" genotypes were significantly lower than those of the "GA" genotype (p<0.01). It shows that the brucellosis resistance of individual sheep with "GG" and "AA" genotypes is higher than that of the "GA" genotype, and "GG" and "AA" are the dominant genotypes of sheep resistant to brucellosis. The present invention The provided SNP molecular markers are highly accurate for identification of brucellosis resistance traits.
表3 绵羊群体中SNP分子标记的多态性位点不同基因型的个体数Table 3 Number of individuals with different genotypes of polymorphic sites of SNP molecular markers in the sheep population
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that it can still be used Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent substitutions are made to some of the technical features; however, these modifications or substitutions do not cause the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (3)
- Use of any one of the following 1) -5) of detection primers for snp molecular markers:1) The application in preparing a reagent for detecting or assisting in detecting the resistance of sheep to brucellosis;2) Use in the preparation of a reagent for screening or identifying sheep with high resistance to brucellosis;3) The application of the method in preparing early prediction reagent for the brucellosis resistance of sheep;4) Application in molecular marker assisted breeding of sheep to brucellosis resistance;5) The application in the improvement of the brucellosis resistance of sheep;the polymorphic site of the SNP molecular marker is positioned at 35698759 of chromosome 3 of sheep reference genome with version number of oar_v1.0 and 2017, 11 months, and the polymorphism is G/A;the genotype of the polymorphic locus of the SNP molecular marker is GG or AA, which corresponds to the high resistance of brucellosis, and the genotype is GA, which corresponds to the low resistance of brucellosis.
- 2. The use according to claim 1, wherein the detection primer of the SNP molecular marker comprises a primer with a sequence shown as SEQ ID NO.2-4, wherein the primer with a sequence shown as SEQ ID NO.2-3 is a forward primer and the primer with a sequence shown as SEQ ID NO.4 is a reverse universal primer.
- 3. The use according to claim 1, wherein the SNP molecular marker has a nucleotide sequence shown as SEQ ID NO.1, the polymorphic site is located at position 101 of the sequence shown as SEQ ID NO.1, and the polymorphism is G/A.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311311460.1A CN117051133B (en) | 2023-10-11 | 2023-10-11 | SNP molecular marker for detecting brucellosis resistance of sheep, detection primer and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311311460.1A CN117051133B (en) | 2023-10-11 | 2023-10-11 | SNP molecular marker for detecting brucellosis resistance of sheep, detection primer and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117051133A CN117051133A (en) | 2023-11-14 |
CN117051133B true CN117051133B (en) | 2024-01-30 |
Family
ID=88657543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311311460.1A Active CN117051133B (en) | 2023-10-11 | 2023-10-11 | SNP molecular marker for detecting brucellosis resistance of sheep, detection primer and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117051133B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002097058A2 (en) * | 2001-05-31 | 2002-12-05 | Iowa State University Research Foundation, Inc. | Genetic markers for improved disease resistance in animals (nramp1) |
CN104928386A (en) * | 2015-06-21 | 2015-09-23 | 甘肃农业大学 | Molecular marker from RPS23 gene for sheep immune traits and its application |
CN106701980A (en) * | 2017-02-04 | 2017-05-24 | 中国疾病预防控制中心传染病预防控制所 | Core SNP (Single Nucleotide Polymorphism) marker for distinguishing brucella melitensis and brucellaa bortus and application of core SNP marker |
WO2022064049A1 (en) * | 2020-09-28 | 2022-03-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for diagnosing brucella infection |
CN116622854A (en) * | 2023-04-04 | 2023-08-22 | 山西农业大学 | Molecular marker related to immunity of special Tibetan cold hybrid sheep and application thereof |
CN116837104A (en) * | 2023-04-04 | 2023-10-03 | 山西农业大学 | Molecular marker related to sheep immune traits and application thereof |
-
2023
- 2023-10-11 CN CN202311311460.1A patent/CN117051133B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002097058A2 (en) * | 2001-05-31 | 2002-12-05 | Iowa State University Research Foundation, Inc. | Genetic markers for improved disease resistance in animals (nramp1) |
CN104928386A (en) * | 2015-06-21 | 2015-09-23 | 甘肃农业大学 | Molecular marker from RPS23 gene for sheep immune traits and its application |
CN106701980A (en) * | 2017-02-04 | 2017-05-24 | 中国疾病预防控制中心传染病预防控制所 | Core SNP (Single Nucleotide Polymorphism) marker for distinguishing brucella melitensis and brucellaa bortus and application of core SNP marker |
WO2022064049A1 (en) * | 2020-09-28 | 2022-03-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method for diagnosing brucella infection |
CN116622854A (en) * | 2023-04-04 | 2023-08-22 | 山西农业大学 | Molecular marker related to immunity of special Tibetan cold hybrid sheep and application thereof |
CN116837104A (en) * | 2023-04-04 | 2023-10-03 | 山西农业大学 | Molecular marker related to sheep immune traits and application thereof |
Non-Patent Citations (3)
Title |
---|
rs41173595.Ensembl genome browser.2023,第1页. * |
Whole-Genome Resequencing to Study Brucellosis Susceptibility in Sheep;Xiaolong Li等;Front Gene;第12卷(第653927期);第1-9页 * |
中国美利奴羊MHC-DRB1基因exon2 SNPs及其与布鲁氏菌病易感性相关性;陈月娥等;中国畜牧杂志;第50卷(第01期);第15-20页 * |
Also Published As
Publication number | Publication date |
---|---|
CN117051133A (en) | 2023-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115029451A (en) | Sheep liquid phase chip and application thereof | |
WO2023001209A1 (en) | Gene chip, molecular probe combination, test kit and application for analyzing sheep fat tails | |
WO2023001212A1 (en) | Gene chip, molecular probe combination and kit for analyzing sheep milk production performance, and use | |
CN116377082B (en) | Application of sheep LCORL gene single nucleotide polymorphism marker in growth trait selection | |
CN113564266B (en) | SNP typing genetic marker combination, detection kit and application | |
CN117051131B (en) | SNP molecular marker related to sheep brucellosis resistance character, detection primer and application thereof | |
WO2023246949A1 (en) | Non-invasive method for determining parentage before birth by using microhaplotypes | |
CN117089635B (en) | Molecular marker combination for analyzing goat reproductive performance and application | |
CN115323048A (en) | A primer combination and method for detecting alpha-thalassemia gene mutation in human embryos | |
CN117051133B (en) | SNP molecular marker for detecting brucellosis resistance of sheep, detection primer and application thereof | |
CN117051135B (en) | A SNP molecular marker for sheep brucellosis resistance and its application | |
CN117051132B (en) | Sheep SNP molecular marker and application thereof in sheep brucellosis resistance character detection | |
CN113278714A (en) | Gene chip for analyzing whether sheep has horns or not, molecular probe combination, kit and application | |
CN117051134B (en) | SNP molecular marker related to sheep brucellosis resistance character, detection primer, kit and application thereof | |
CN117070643B (en) | SNP molecular markers related to sheep brucellosis resistance and their applications | |
CN114085926B (en) | Primer, probe, kit and detection method for SNP locus polymorphism of ABCB1 gene C3435T | |
CN113293220B (en) | Gene chip for analyzing ear size of sheep, molecular probe combination, kit and application | |
CN116640858A (en) | Method for identifying human ABO blood type and special KASP primer combination thereof | |
CN110484627B (en) | Method for monitoring genetic quality of A/J inbred line mice, primer set and application thereof | |
CN119177295B (en) | A SNP site related to the strength of pig immune system, related molecular markers and their application | |
CN117904315B (en) | Primer group and kit for cat STR marker locus amplification | |
CN119287039B (en) | SNP locus related to pig carcass length character, related molecular marker and application thereof | |
CN119391871B (en) | KASP molecular marker for identifying gender of snakehead and application thereof | |
CN116516016A (en) | Single nucleotide polymorphism marker related to sheep tail length and application thereof | |
CN120158515A (en) | SNP molecular marker related to sheep brucellosis resistance character and combination and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |