[go: up one dir, main page]

CN117024150A - 一种选择性激光烧结多孔导电陶瓷3d打印耗材及制备方法 - Google Patents

一种选择性激光烧结多孔导电陶瓷3d打印耗材及制备方法 Download PDF

Info

Publication number
CN117024150A
CN117024150A CN202311096666.7A CN202311096666A CN117024150A CN 117024150 A CN117024150 A CN 117024150A CN 202311096666 A CN202311096666 A CN 202311096666A CN 117024150 A CN117024150 A CN 117024150A
Authority
CN
China
Prior art keywords
conductive ceramic
porous conductive
stage
selective laser
laser sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311096666.7A
Other languages
English (en)
Inventor
肖小朋
沐杨昌
聂革
周小华
赵贯云
赵波洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Woody Vapes Technology Co Ltd
Original Assignee
Shenzhen Woody Vapes Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Woody Vapes Technology Co Ltd filed Critical Shenzhen Woody Vapes Technology Co Ltd
Priority to CN202311096666.7A priority Critical patent/CN117024150A/zh
Publication of CN117024150A publication Critical patent/CN117024150A/zh
Priority to PCT/CN2024/108519 priority patent/WO2025044655A1/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种选择性激光烧结多孔导电陶瓷3D打印耗材及制备方法,涉及多孔导电陶瓷技术领域。所述选择性激光烧结多孔导电陶瓷3D打印耗材包括以下质量百分比的组分:改性碳化硅粉体30‑60wt%、导电相粉体10‑40wt%、高分子粘结剂10‑30wt%、脂质物0.1‑5wt%,通过直接混合球磨法或二甲苯溶液混合水洗法,得到选择性激光烧结多孔导电陶瓷3D打印耗材,利用激光3D打印机打印出多孔导电陶瓷生坯,经过热脱脂和烧结后,得到陶瓷烧结件。本发明的选择性激光烧结多孔导电陶瓷3D打印耗材,无需使用造孔剂,制备工艺简单、成本低廉,具备量产的条件,能够在多孔导电陶瓷体无需做成薄片的前提下,解决多孔导电陶瓷雾化芯热熔大和导油储油的技术问题。

Description

一种选择性激光烧结多孔导电陶瓷3D打印耗材及制备方法
技术领域
本发明涉及多孔导电陶瓷技术领域,尤其涉及一种选择性激光烧结多孔导电陶瓷3D打印耗材及制备方法。
背景技术
现有的HNB周向加热管分为绝缘陶瓷管和金属管。绝缘陶瓷管不导电,需要在外表面镀膜或覆膜形成发热体,但是外表面的膜使用久易脱落,而且也不耐氧化,导致阻值越来越大。另外,陶瓷管属于外壁加热,陶瓷管吸收一部分热量,另一部分热量散失管外,能量使用不集中,导致升温速率慢,烟雾量小。金属管在高温下容易氧化,且不耐腐蚀,导致烟雾中有股金属味,影响口感。
现有技术的多孔陶瓷需要添加造孔剂烧结而成的,一方面,强度差,烧久容易掉粉,掉粉不仅影响雾化液口感还易造成安全隐患;另一方面,多孔陶瓷的成型工艺复杂,孔径的大小和孔隙率不能精准调控,即使使用造孔剂,也难以精准控制尺寸,同时在局部位置有死孔、盲孔,影响雾化液的输送,造成供液不足,影响发热体干烧寿命。此外,现有多孔陶瓷雾化芯需要模具才能制作,复杂形状的陶瓷模型难以制成,即难以制成复杂形状的多孔陶瓷雾化芯。现有的多孔陶瓷发热体多是金属发热丝或厚膜发热浆料,由于发热体与多孔陶瓷的热膨胀系数差异大,发热体用焊膏或者高温胶键合在基底上,雾化过程中容易产生应力导致发热体脱膜或厚膜发热体断裂,多孔陶瓷和发热体脱落分离,影响产品使用寿命和体验。
发明内容
为解决上述技术问题,本发明的目的是通过以下技术方案实现。
提供一种选择性激光烧结多孔导电陶瓷3D打印耗材,原料包括以下质量百分比组分:改性碳化硅粉体30-60wt%、导电相粉体10-40wt%、高分子粘结剂10-30wt%、脂质物0.1-5wt%。
所述改性碳化硅粉体由以下步骤制备:配置硅烷偶联剂KH570乙醇溶液,所述硅烷偶联剂KH570乙醇溶液中,硅烷偶联剂KH570与乙醇的质量比为(3-5):1,超声混合后加入碳化硅粉体搅拌混合,得到溶液A;用乙酸溶液调节溶液A的pH至2-6后继续搅拌混合,得到溶液B;用氨水调节溶液B的pH至9-12,热烘干后、研磨得到改性碳化硅粉体。
优选的,改性碳化硅粉体由以下步骤制备:
(1)配置硅烷偶联剂KH570乙醇溶液,所述硅烷偶联剂KH570乙醇溶液中,硅烷偶联剂KH570与乙醇的质量比为4:1,超声15-20min后加入碳化硅粉体搅拌1h,得到溶液A;
(2)用乙酸溶液调节溶液A的pH至2-6后继续搅拌4-5h,得到溶液B;
(3)用氨水调节溶液B的pH至9-12,水浴加热至烘干得到改性碳化硅块体,研磨过筛得到改性碳化硅粉体。
优选的,碳化硅粉体呈球形,其纯度不低于99%,粒径为50-800μm。改性碳化硅粉体中硅烷偶联剂KH570的质量分数为2-12wt%。
所述导体相粉体选自氮化钛、氮化锆、碳氮化钛、碳化钛、碳化锆、碳化铊、碳化铪、硼化钛、硼化锆、硼化铊、硼化铪、硅化钼、碳化钨中的至少一种。优选的,所述导体相粉体的粒径不超过500μm,纯度不低于99%。
所述脂质物选自邻苯二甲酸二辛脂、硬脂酸、氯化石蜡、聚二甲基硅氧烷的至少一种。
所述高分子粘结剂选自聚丙烯、聚酰胺、聚乙烯醇、环氧树脂12的至少一种。
选择性激光烧结多孔导电陶瓷3D打印耗材的制备方法可以采用直接混合球磨法和二甲苯溶液混合水洗法中的一种。
具体的,直接混合球磨法包括以下步骤:按质量比例,在改性碳化硅粉体中加入导电相粉体、高分子粘结剂、脂质物,通过机械混合球磨或覆膜,得到选择性激光烧结多孔导电陶瓷3D打印耗材。通过机械混合球磨或覆膜,使高分子均匀包覆碳化硅粉体,使高分子在激光作用下能充分与碳化硅粉体表面润湿粘接,提高其成型可能性。
优选的,直接混合球磨法包括以下步骤:
(1)按上述质量比例,将高分子粘结剂、改性碳化硅粉体、导电相粉体与脂质物装入球磨罐,球料比为(3-4):1,转数为400-600r/min,球磨3-5h,得到碳化硅复合粉体;
(2)将碳化硅复合粉体经过干燥、研磨和过筛后得到选择性激光烧结多孔导电陶瓷3D打印耗材。
具体的,二甲苯溶液混合水洗法包括以下步骤:按质量比例,将改性碳化硅粉体、导电相粉体加入对二甲苯溶液中混合后升温至110±5℃,再加入高分子粘结剂和脂质物后恒温110±5℃搅拌混合,自然冷却后依次用无水乙醇、去离子水清洗,再真空烘干,得到选择性激光烧结多孔导电陶瓷3D打印耗材。
优选的,二甲苯溶液混合水洗法包括以下步骤:
(1)按质量比例,在对二甲苯溶液中加入改性碳化硅粉体、导电相粉体,室温搅拌2-2.5h后加热至110℃;
(2)加入高分子粘结剂和脂质物后继续恒温搅拌1-1.5h,自然冷却后依次用无水乙醇、去离子水清洗,真空条件下烘干,再研磨后过筛得到选择性激光烧结多孔导电陶瓷3D打印耗材。
本发明还提供一种陶瓷化方法,包括以下步骤:
(1)采用激光3D打印机打印上述选择性激光烧结多孔导电陶瓷3D打印耗材,得到多孔导电陶瓷生坯;
(2)将多孔导电陶瓷生坯进行热脱脂工艺处理后进行烧结,得到陶瓷烧结件。
优选的,多孔导电陶瓷生胚的结构件可以为圆柱、长方体、立方体。所述圆柱的直径为2-10mm、厚度为0.1-8mm。所述长方体的长为2-10mm、宽为2-10mm、厚度为0.1-8mm。所述立方体的长为2-10-mm、厚度为0.1-8mm。进一步的,多孔导电陶瓷生坯纵向(从上到下)上分布有多个直通孔,孔径10-500μm,孔间距在20-1000μm,孔形状可以为圆形、方形、棱形、星形和心形。
更优选的,多孔导电陶瓷生胚在厚度方向上的中下部设有横向的多个直通孔,横向的直通孔孔径为10-500μm,孔间距为20-1000μm
多孔导电陶瓷生胚的底部设有一个分隔槽,使多孔导电陶瓷生胚在厚度方向上的中下部分隔为两部分,分隔槽的深度为0.07-5.00mm或多孔导电陶瓷生胚的厚度的(0.25-0.5)倍。
进一步的,所述热脱脂工艺分为6个阶段:第1阶段从室温加热至200℃,升温速率为1-3℃/min,保温1-1.5h;第2阶段从200℃加热至350℃,升温速率为1-3℃/min,保温1-1.5h;第3阶段从350℃加热至450℃,升温速率为0.5-1.5℃/min,保温1-1.5h;第4阶段从450℃加热至500℃,升温速率为0.3-1℃/min,保温4-4.5h;第5阶段从500℃加热至1000℃,升温速率为1-3℃/min,保温5-5.5h;第6阶段从1000℃降至室温。
优选的,热脱脂工艺分为6个阶段:第1阶段从室温加热至200℃,升温速率为2℃/min,保温1-1.5h;第2阶段从200℃加热至350℃,升温速率为2℃/min,保温1-1.5h;第3阶段从350℃加热至450℃,升温速率为1℃/min,保温1-1.5h;第4阶段从450℃加热至500℃,升温速率为0.5℃/min,保温4-4.5h;第5阶段从500℃加热至1000℃,升温速率为2℃/min,保温5-5.5h;第6阶段从1000℃降至室温。
更优选的,热脱脂工艺在马弗炉中进行,可分为6个阶段:第1阶段从室温加热至200℃,升温速率为2℃/min,保温1h;第2阶段从200℃加热至350℃,升温速率为2℃/min,保温1h;第3阶段从350℃加热至450℃,升温速率为1℃/min,保温1h;第4阶段从450℃加热至500℃,升温速率为0.5℃/min,保温4h;第5阶段从500℃加热至1000℃,升温速率为2℃/min,保温5h;第6阶段从1000℃降至室温。
进一步的,所述烧结分为3个阶段,第1阶段从室温加热至500℃,升温速率为2-5℃/min,保温2-2.5h;第2阶段从500℃加热至1900℃,升温速率为5-15℃/min,保温4-4.5h;第3阶段从1900℃自然冷却。
优选的,烧结分为3个阶段:第1阶段从室温加热至500℃,升温速率为3℃/min,保温2-2.5h;第2阶段从500℃加热至1900℃,升温速率为10℃/min,保温4-4.5h;第3阶段从1900℃自然冷却。
更优选的,烧结在真空无压烧结炉中进行,可分为3个阶段:第1阶段从室温加热至500℃,升温速率为3℃/min,保温2h;第2阶段从500℃加热至1900℃,升温速率为10℃/min,保温4h;第3阶段从1900℃自然冷却。
进一步的,激光3D打印机包括激光器,激光器可采用YAG激光器、连续式CO2激光器、光纤激光器中的一种;YAG激光器的波长为1.06μm,连续式CO2激光器的波长为10.60μm,光纤激光器的波长为1064μm。
具体的,光纤激光器的激光功率为175-215W,扫描速度为350-550mm/s,激光能量密度为0.010-0.021J/mm2
本发明提供一种选择性激光烧结多孔导电陶瓷3D打印耗材及制备方法,包括改性碳化硅粉体30-60wt%、导电相粉体10-40wt%、高分子粘结剂10-30wt%、脂质物0.1-5wt%,通过直接混合球磨法或二甲苯溶液混合水洗法,得到选择性激光烧结多孔导电陶瓷3D打印耗材,利用激光3D打印机打印出多孔导电陶瓷生坯,多孔导电陶瓷生坯结构多样,经过热脱脂和烧结后,得到陶瓷烧结件。本发明的选择性激光烧结多孔导电陶瓷3D打印耗材及制备方法,制备工艺简单、成本低廉;通过激光3D打印机打印出多孔导电陶瓷生坯,打印的精度高,无需使用造孔剂,便可精准调控多孔导电陶瓷生坯的孔径大小和孔隙率,无需模具,便可制得复杂形状的陶瓷模型,且可以同时打印多个陶瓷模型,具备量产的条件;能够在多孔导电陶瓷体无需做成薄片的前提下,解决多孔导电陶瓷雾化芯热熔大和导油储油的技术问题。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例2提供的多孔长方体导电陶瓷的结构图。
图2为本发明实施例2提供的多孔长方体导电陶瓷的正视图。
图3为本发明实施例2提供的多孔长方体导电陶瓷的侧视图。
图4为本发明实施例2提供的多孔长方体导电陶瓷的俯视图。
图中标识说明:
1-多孔导电陶瓷;2-分隔槽;3-纵向直通孔;4-横向直通孔。
具体实施方式
下面通过具体的实施例进一步描述本发明,应当理解,实施例仅用以解释本发明,并非对本发明技术方案的限定。
实施例1
本实施例的选择性激光烧结碳化硅导电陶瓷3D打印耗材的制备方法如下:
(1)改性碳化硅的制备
①配置硅烷偶联剂KH570乙醇溶液,硅烷偶联剂KH570与乙醇的质量比为4:1,超声15min后加入粒径60nm的球状碳化硅粉体搅拌1h,得到溶液A;
②用乙酸溶液调节溶液A的pH至5后继续搅拌4h,得到溶液B;
③用氨水调节溶液B的pH至10,水浴加热至烘干得到改性碳化硅块体,研磨过筛得到改性碳化硅粉体。
本实施例中所得改性碳化硅粉体中硅烷偶联剂KH570的质量分数为8wt%。
(2)组分选择
按质量百分比,改性碳化硅粉体40wt%、导电相粉体40wt%、高分子粘结剂18wt%、脂质物2wt%。
导电相粉体选自氮化钛和碳化钛,氮化钛和碳化钛的质量比为1:2,粒径分别为40nm和60nm;高分子粘结剂选自聚丙烯PP;脂质物选自硬脂酸。
(3)直接混合球磨法制备选择性激光烧结多孔导电陶瓷3D打印耗材
①按步骤(2)中的质量比例,将高分子粘结剂、改性碳化硅粉体、导电相粉体与脂质物装入球磨罐,球料比为3:1,转数为500r/min,球磨5h,得到碳化硅复合粉体;
②将碳化硅复合粉体经过干燥、研磨和过筛后得到选择性激光烧结多孔导电陶瓷3D打印耗材。
(4)陶瓷化
①采用激光3D打印机打印选择性激光烧结多孔导电陶瓷3D打印耗材,得到多孔导电陶瓷生坯
激光器选择光纤激光器,波长为1064nm,激光功率为210W,扫描速度为550mm/s,激光能量密度为0.015J/mm2
打印的多孔圆柱体导电陶瓷生坯直径为8mm,厚度为0.2mm,孔径为80μm。
②将多孔圆柱体导电陶瓷生坯进行热脱脂工艺处理后进行烧结,得到陶瓷烧结件
多孔圆柱体导电陶瓷生坯直接放置于脱脂烧结盘中,随后将摆放好的脱脂盘直接放置于脱脂烧结炉中,热脱脂在马弗炉中进行,可分为6个阶段:第1阶段从室温加热至200℃,升温速率为2℃/min,保温1h;第2阶段从200℃加热至350℃,升温速率为2℃/min,保温1h;第3阶段从350℃加热至450℃,升温速率为1℃/min,保温1h;第4阶段从450℃加热至500℃,升温速率为0.5℃/min,保温4h;第5阶段从500℃加热至1000℃,升温速率为2℃/min,保温5h;第6阶段从1000℃降至室温。
热脱脂后再置于真空无压烧结炉中进行烧结,可分为3个阶段:第1阶段从室温加热至500℃,升温速率为3℃/min,保温2h;第2阶段从500℃加热至1900℃,升温速率为10℃/min,保温4h;第3阶段从1900℃自然冷却。
最终得到多孔圆柱体导电陶瓷。
实施例2
本实施例的选择性激光烧结碳化硅导电陶瓷3D打印耗材的制备方法如下:
(1)改性碳化硅的制备
①配置硅烷偶联剂KH570乙醇溶液,硅烷偶联剂KH570与乙醇的质量比为4:1,超声15min后加入粒径80nm的球状碳化硅粉体搅拌1h,得到溶液A;
②用乙酸溶液调节溶液A的pH至6后继续搅拌4h,得到溶液B;
③用氨水调节溶液B的pH至9,水浴加热至烘干得到改性碳化硅块体,研磨过筛得到改性碳化硅粉体。
本实施例中所得改性碳化硅粉体中硅烷偶联剂KH570的质量分数为9wt%。
(2)组分选择
按质量百分比,改性碳化硅粉体50wt%、导电相粉体23wt%、高分子粘结剂24wt%、脂质物3wt%。
导电相粉体选自硼化钛和碳化钛,硼化钛和碳化钛的质量比为1:1,粒径分别为60nm和60nm;高分子粘结剂选自环氧树脂12;脂质物选自硬脂酸。
(3)二甲苯溶液混合水洗法制备选择性激光烧结多孔导电陶瓷3D打印耗材
按质量比例,在对二甲苯溶液中加入改性碳化硅粉体、导电相粉体,室温搅拌2h后加热至110℃;
加入高分子粘结剂和脂质物后继续恒温搅拌1h,自然冷却后依次用无水乙醇、去离子水清洗,真空条件下烘干,再研磨后过筛得到选择性激光烧结多孔导电陶瓷3D打印耗材。
(4)陶瓷化
①采用激光3D打印机打印选择性激光烧结多孔导电陶瓷3D打印耗材,得到多孔导电陶瓷生坯
激光器选择光纤激光器,波长为1064nm,激光功率为200W,扫描速度为500mm/s,激光能量密度为0.021J/mm2
打印的多孔长方体导电陶瓷生坯长为8mm,宽为2.5mm,厚度为0.1mm,孔径为80μm。
②将多孔长方体导电陶瓷生坯进行热脱脂工艺处理后进行烧结,得到陶瓷烧结件。
多孔长方体导电陶瓷生坯直接放置于脱脂烧结盘中,随后将摆放好的脱脂盘直接放置于脱脂烧结炉中,热脱脂在马弗炉中进行,可分为6个阶段:第1阶段从室温加热至200℃,升温速率为2℃/min,保温1h;第2阶段从200℃加热至350℃,升温速率为2℃/min,保温1h;第3阶段从350℃加热至450℃,升温速率为1℃/min,保温1h;第4阶段从450℃加热至500℃,升温速率为0.5℃/min,保温4h;第5阶段从500℃加热至1000℃,升温速率为2℃/min,保温5h;第6阶段从1000℃降至室温。
热脱脂后再置于真空无压烧结炉中进行烧结,可分为3个阶段:第1阶段从室温加热至500℃,升温速率为3℃/min,保温2h;第2阶段从500℃加热至1900℃,升温速率为10℃/min,保温4h;第3阶段从1900℃自然冷却。
最终得到如图1所示的多孔长方体导电陶瓷。
实施例3
本实施例的选择性激光烧结碳化硅导电陶瓷3D打印耗材的制备方法如下:
(1)改性碳化硅的制备
①配置硅烷偶联剂KH570乙醇溶液,硅烷偶联剂KH570与乙醇的质量比为4:1,超声15min后加入粒径60nm的球状碳化硅粉体搅拌1h,得到溶液A;
②用乙酸溶液调节溶液A的pH至6后继续搅拌4h,得到溶液B;
③用氨水调节溶液B的pH至10,水浴加热至烘干得到改性碳化硅块体,研磨过筛得到改性碳化硅粉体。
本实施例中所得改性碳化硅粉体中硅烷偶联剂KH570的质量分数为10wt%。
(2)组分选择
按质量百分比,改性碳化硅粉体40wt%、导电相粉体29wt%、高分子粘结剂27wt%、脂质物4wt%。
导电相粉体选自氮化钛、碳化钛和硼化钛,氮化钛、碳化钛和硼化钛质量比为1:1:1,粒径分别为40nm、60nm和60nm;高分子粘结剂选自聚丙烯PP;脂质物选自硬脂酸。
(3)直接混合球磨法制备选择性激光烧结多孔导电陶瓷3D打印耗材
①按步骤(2)中的质量比例,将高分子粘结剂、改性碳化硅粉体、导电相粉体与脂质物装入球磨罐,球料比为3:1,转数为500r/min,球磨5h,得到碳化硅复合粉体;
②将碳化硅复合粉体经过干燥、研磨和过筛后得到选择性激光烧结多孔导电陶瓷3D打印耗材。
(4)陶瓷化
①采用激光3D打印机打印选择性激光烧结多孔导电陶瓷3D打印耗材,得到多孔导电陶瓷生坯
激光器选择光纤激光器,波长为1064nm,光纤激光器的激光功率为180W,扫描速度为500mm/s,激光能量密度为0.021J/mm2
打印的多孔长方体导电陶瓷生坯长为8mm,宽为2.5mm,厚度为0.2mm,孔径为100μm。
②将多孔长方体导电陶瓷生坯进行热脱脂工艺处理后进行烧结,得到陶瓷烧结件。
多孔长方体导电陶瓷生坯直接放置于脱脂烧结盘中,随后将摆放好的脱脂盘直接放置于脱脂烧结炉中,热脱脂在马弗炉中进行,可分为6个阶段:第1阶段从室温加热至200℃,升温速率为2℃/min,保温1h;第2阶段从200℃加热至350℃,升温速率为2℃/min,保温1h;第3阶段从350℃加热至450℃,升温速率为1℃/min,保温1h;第4阶段从450℃加热至500℃,升温速率为0.5℃/min,保温4h;第5阶段从500℃加热至1000℃,升温速率为2℃/min,保温5h;第6阶段从1000℃降至室温。
热脱脂后再置于真空无压烧结炉中进行烧结,可分为3个阶段:第1阶段从室温加热至500℃,升温速率为3℃/min,保温2h;第2阶段从500℃加热至1900℃,升温速率为10℃/min,保温4h;第3阶段从1900℃自然冷却。
最终得到多孔长方体导电陶瓷。
实施例4
本实施例的选择性激光烧结碳化硅导电陶瓷3D打印耗材的制备方法如下:
(1)改性碳化硅的制备
①配置硅烷偶联剂KH570乙醇溶液,硅烷偶联剂KH570与乙醇的质量比为4:1,超声15min后加入粒径60nm的球状碳化硅粉体搅拌1h,得到溶液A;
②用乙酸溶液调节溶液A的pH至5后继续搅拌4h,得到溶液B;
③用氨水调节溶液B的pH至10,水浴加热至烘干得到改性碳化硅块体,研磨过筛得到改性碳化硅粉体。
本实施例中所得改性碳化硅粉体中硅烷偶联剂KH570的质量分数为6wt%。
(2)组分选择
按质量百分比,改性碳化硅粉体50wt%、导电相粉体16wt%、高分子粘结剂30wt%、脂质物4wt%。
导电相粉体选自氮化钛和碳化钛,氮化钛和碳化钛的质量比为1:1,粒径分别为60nm和60nm;高分子粘结剂选自聚酰胺PA12;脂质物选自邻苯二甲酸二辛脂。
(3)二甲苯溶液混合水洗法制备选择性激光烧结多孔导电陶瓷3D打印耗材
按质量比例,在对二甲苯溶液中加入改性碳化硅粉体、导电相粉体,室温搅拌2h后加热至110℃;
加入高分子粘结剂和脂质物后继续恒温搅拌1h,自然冷却后依次用无水乙醇、去离子水清洗,真空条件下烘干,再研磨后过筛得到选择性激光烧结多孔导电陶瓷3D打印耗材。
(4)陶瓷化
①采用激光3D打印机打印选择性激光烧结多孔导电陶瓷3D打印耗材,得到多孔导电陶瓷生坯
激光器选择光纤激光器,波长为1064nm,光纤激光器的激光功率为180W,扫描速度为500mm/s,激光能量密度为0.017J/mm2
打印的多孔长方体导电陶瓷生坯长为8mm,宽为2.5mm,厚度为0.1mm,孔径为80μm。
②将多孔长方体导电陶瓷生坯进行热脱脂工艺处理后进行烧结,得到陶瓷烧结件。
多孔长方体导电陶瓷生坯直接放置于脱脂烧结盘中,随后将摆放好的脱脂盘直接放置于脱脂烧结炉中,热脱脂在马弗炉中进行,可分为6个阶段:第1阶段从室温加热至200℃,升温速率为2℃/min,保温1h;第2阶段从200℃加热至350℃,升温速率为2℃/min,保温1h;第3阶段从350℃加热至450℃,升温速率为1℃/min,保温1h;第4阶段从450℃加热至500℃,升温速率为0.5℃/min,保温4h;第5阶段从500℃加热至1000℃,升温速率为2℃/min,保温5h;第6阶段从1000℃降至室温。
热脱脂后再置于真空无压烧结炉中进行烧结,可分为3个阶段:第1阶段从室温加热至500℃,升温速率为3℃/min,保温2h;第2阶段从500℃加热至1900℃,升温速率为10℃/min,保温4h;第3阶段从1900℃自然冷却。
最终得到多孔长方体导电陶瓷。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

1.一种选择性激光烧结多孔导电陶瓷3D打印耗材,其特征在于,原料包括以下质量百分比组分:改性碳化硅粉体30-60wt%、导电相粉体10-40wt%、高分子粘结剂10-30wt%、脂质物0.1-5wt%。
2.如权利要求1所述的选择性激光烧结多孔导电陶瓷3D打印耗材,其特征在于,所述改性碳化硅粉体由以下步骤制备:配置硅烷偶联剂KH570乙醇溶液,所述硅烷偶联剂KH570乙醇溶液中,硅烷偶联剂KH570与乙醇的质量比为(3-5):1,超声混合后加入碳化硅粉体搅拌混合,得到溶液A;用乙酸溶液调节溶液A的pH至2-6后继续搅拌混合,得到溶液B;用氨水调节溶液B的pH至9-12,热烘干后、研磨得到改性碳化硅粉体。
3.如权利要求1所述的选择性激光烧结多孔导电陶瓷3D打印耗材,其特征在于,所述导体相粉体选自氮化钛、氮化锆、碳氮化钛、碳化钛、碳化锆、碳化铊、碳化铪、硼化钛、硼化锆、硼化铊、硼化铪、硅化钼、碳化钨中的至少一种。
4.如权利要求1所述的选择性激光烧结多孔导电陶瓷3D打印耗材,其特征在于,所述脂质物选自邻苯二甲酸二辛脂、硬脂酸、氯化石蜡、聚二甲基硅氧烷的至少一种。
5.如权利要求1所述的选择性激光烧结多孔导电陶瓷3D打印耗材,其特征在于,所述高分子粘结剂选自聚丙烯、聚酰胺、聚乙烯醇、环氧树脂12的至少一种。
6.一种如权利要求1-5任意一项所述选择性激光烧结多孔导电陶瓷3D打印耗材的制备方法,其特征在于,包括以下步骤:按质量比例,在改性碳化硅粉体中加入导电相粉体、高分子粘结剂、脂质物,通过机械混合球磨或覆膜,得到选择性激光烧结多孔导电陶瓷3D打印耗材。
7.一种如权利要求1-5任意一项所述选择性激光烧结多孔导电陶瓷3D打印耗材的制备方法,其特征在于,包括以下步骤:
按质量比例,将改性碳化硅粉体、导电相粉体加入对二甲苯溶液中混合后升温至110±5℃,再加入高分子粘结剂和脂质物后恒温110±5℃搅拌混合,自然冷却后依次用无水乙醇、去离子水清洗,再真空烘干,得到选择性激光烧结多孔导电陶瓷3D打印耗材。
8.一种陶瓷化方法,其特征在于,包括以下步骤:
(1)采用激光3D打印机打印如权利要求1-5任意一项所述选择性激光烧结多孔导电陶瓷3D打印耗材,得到多孔导电陶瓷生坯;
(2)将多孔导电陶瓷生坯热脱脂工艺处理后进行烧结,得到陶瓷烧结件。
9.如权利要求8所述的陶瓷化方法,其特征在于,所述热脱脂工艺分为6个阶段:第1阶段从室温加热至200℃,升温速率为1-3℃/min,保温1-1.5h;第2阶段从200℃加热至350℃,升温速率为1-3℃/min,保温1-1.5h;第3阶段从350℃加热至450℃,升温速率为0.5-1.5℃/min,保温1-1.5h;第4阶段从450℃加热至500℃,升温速率为0.3-1℃/min,保温4-4.5h;第5阶段从500℃加热至1000℃,升温速率为1-3℃/min,保温5-5.5h;第6阶段从1000℃降至室温。
10.如权利要求8所述的陶瓷化方法,其特征在于,所述烧结分为3个阶段,第1阶段从室温加热至500℃,升温速率为2-5℃/min,保温2-2.5h;第2阶段从500℃加热至1900℃,升温速率为5-15℃/min,保温4-4.5h;第3阶段从1900℃自然冷却。
CN202311096666.7A 2023-08-28 2023-08-28 一种选择性激光烧结多孔导电陶瓷3d打印耗材及制备方法 Pending CN117024150A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202311096666.7A CN117024150A (zh) 2023-08-28 2023-08-28 一种选择性激光烧结多孔导电陶瓷3d打印耗材及制备方法
PCT/CN2024/108519 WO2025044655A1 (zh) 2023-08-28 2024-07-30 一种选择性激光烧结多孔导电陶瓷3d打印耗材及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311096666.7A CN117024150A (zh) 2023-08-28 2023-08-28 一种选择性激光烧结多孔导电陶瓷3d打印耗材及制备方法

Publications (1)

Publication Number Publication Date
CN117024150A true CN117024150A (zh) 2023-11-10

Family

ID=88624528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311096666.7A Pending CN117024150A (zh) 2023-08-28 2023-08-28 一种选择性激光烧结多孔导电陶瓷3d打印耗材及制备方法

Country Status (2)

Country Link
CN (1) CN117024150A (zh)
WO (1) WO2025044655A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108503355A (zh) * 2018-04-18 2018-09-07 昆山卡德姆新材料科技有限公司 一种3d打印用料、其制备方法和用途
CN109692967A (zh) * 2019-02-15 2019-04-30 中圣德投资(深圳)有限公司 一种3d打印用团状粉料及其制备方法和打印方法
WO2020200424A1 (en) * 2019-04-02 2020-10-08 Emery Oleochemicals Gmbh Sinterable feedstock for use in 3d printing devices
CN111848162A (zh) * 2020-07-30 2020-10-30 山东东大新材料研究院有限公司 一种电阻率、气孔率可调多孔氧化锆陶瓷的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108503355A (zh) * 2018-04-18 2018-09-07 昆山卡德姆新材料科技有限公司 一种3d打印用料、其制备方法和用途
CN109692967A (zh) * 2019-02-15 2019-04-30 中圣德投资(深圳)有限公司 一种3d打印用团状粉料及其制备方法和打印方法
WO2020200424A1 (en) * 2019-04-02 2020-10-08 Emery Oleochemicals Gmbh Sinterable feedstock for use in 3d printing devices
CN111848162A (zh) * 2020-07-30 2020-10-30 山东东大新材料研究院有限公司 一种电阻率、气孔率可调多孔氧化锆陶瓷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
秦煌: "《碳化硅陶瓷激光3D打印研究》", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, 15 January 2021 (2021-01-15), pages 20 - 24 *
秦煌: "碳化硅陶瓷激光3D打印研究", 中国优秀硕士学位论文全文数据库 工程科技I辑, 15 January 2021 (2021-01-15), pages 20 - 24 *

Also Published As

Publication number Publication date
WO2025044655A1 (zh) 2025-03-06

Similar Documents

Publication Publication Date Title
CN107182139B (zh) 一种金属膜多孔陶瓷发热体及其应用
WO2019119611A1 (zh) 一种具有多孔发热膜结构的陶瓷加热体的制备工艺
CN104446670B (zh) C/SiC复合材料表面涂层体系及其制备方法
CN112778020B (zh) 一种高温多孔陶瓷及其制备方法
CN104496507B (zh) 一种面向燃气轮机热端部件的复杂结构陶瓷零件制造方法
JP5689325B2 (ja) セラミックス成形体の脱脂方法及び脱脂装置
CN104529507A (zh) 一种多孔氮化硅/碳化硅复合陶瓷材料及其制备方法
CN102632200A (zh) 一种燃机叶片用陶瓷型芯防开裂工艺方法
CN103071764A (zh) 一种用于钛及钛合金精密铸造的CaZrO3型壳及其制备方法
CN108358646B (zh) 一种硼化锆基陶瓷及其制备方法
CN105780126A (zh) 一种由原位生成的晶须搭接而成的多孔莫来石的制备方法
CN115724663A (zh) 一种全3d打印碳化硅陶瓷光学部件及其制备方法
CN110903074A (zh) 一种碳化硅基体表面高温抗氧化涂层及其制备方法
CN103102155A (zh) 一种埋入式远红外加热器电热陶瓷及其制备方法
CN102266906A (zh) 一种易脱除陶瓷型芯的制备方法
CN117024150A (zh) 一种选择性激光烧结多孔导电陶瓷3d打印耗材及制备方法
JP2021532539A (ja) セラミック発熱体およびその製造方法ならびに用途
CN113999046B (zh) 一种低温反应烧结碳化硅陶瓷膜的制备方法
CN108911752A (zh) 一种在外加电场条件下合成陶瓷材料的方法
CN104844250B (zh) 一种耐高温多孔夹层透波材料及其制备方法
CN104829227B (zh) 一种氧化锆‑硼化锆双层复合陶瓷发热体及其制备方法
CN104387118B (zh) 一种钎焊用氧化锆陶瓷金属化浆料配方、制备方法及应用
TW201425267A (zh) 多孔陶瓷散熱片及製備方法
JP2009266396A (ja) 二珪化モリブデン系セラミック発熱体
CN106478153A (zh) 一种碳/碳复合材料β‑Y2Si2O7纳米线增韧莫来石/硅酸盐玻璃涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination