[go: up one dir, main page]

CN117024146B - 一种各向同性核石墨的制备方法 - Google Patents

一种各向同性核石墨的制备方法 Download PDF

Info

Publication number
CN117024146B
CN117024146B CN202311297930.3A CN202311297930A CN117024146B CN 117024146 B CN117024146 B CN 117024146B CN 202311297930 A CN202311297930 A CN 202311297930A CN 117024146 B CN117024146 B CN 117024146B
Authority
CN
China
Prior art keywords
isotropic
pressure
anthracene oil
asphalt
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311297930.3A
Other languages
English (en)
Other versions
CN117024146A (zh
Inventor
张雅楠
张红亮
马历乔
张保军
夏百元
张金星
罗丽霞
赵彩兴
郭文豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Yasheng Carbon Material Technology Co ltd
Original Assignee
Shanxi Yasheng Carbon Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Yasheng Carbon Material Technology Co ltd filed Critical Shanxi Yasheng Carbon Material Technology Co ltd
Priority to CN202311297930.3A priority Critical patent/CN117024146B/zh
Publication of CN117024146A publication Critical patent/CN117024146A/zh
Application granted granted Critical
Publication of CN117024146B publication Critical patent/CN117024146B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained by impregnation of carbon products with a carbonisable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/50Furnace black ; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B55/00Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种各向同性核石墨的制备方法,步骤为:第一步、制备各向同性焦;第二步、制备精制沥青;第三步、制备蒽油炭黑;第四步、制备专用粘结剂沥青;第五步、以煅后各向同性焦作为骨料进行破碎和磨粉;第六步、干混和湿混;第七步、三次扎片;第八步、凉料、破碎、二次磨粉和等静压成型;第九步、焙烧、浸渍和二次焙烧,第十步、石墨化和提纯处理,即可得到各向同性核石墨材料。作为各向同性石墨的原料和辅料全部不含灰分和硼元素,简化了石墨化提纯工艺,减轻了因释放含氟气体而造成的环保压力,制备的各向同性焦,以及浸渍剂沥青和粘结剂沥青焦化成炭,在石墨化1300‑2400℃热处理过程中不会发生大的体积膨胀,不容易产生裂纹,工序合格率较高。

Description

一种各向同性核石墨的制备方法
技术领域
本发明属于高温气冷堆用核石墨制备技术领域,具体涉及的是一种各向同性核石墨的制备方法。
背景技术
石墨材料砌筑在高温气冷堆(第四代核电站核反应堆主推堆型)中被用作中子反射层,称为核石墨。其作用是:把泄漏出堆芯的中子反射回堆芯,从而使反应堆达到临界所需要的燃料量降低,使燃料利用率提高;反射层展平了径向中子注量率的分布,因而展平了功率密度分布,降低了径向温度梯度,提高了反应堆的功率输出;在正常情况下,核石墨反射层与堆底支承金属一起承受堆芯全部荷重及事故条件下引起的附加动载荷;核石墨反射层大大地降低了快中子注量率,从而降低了外边的热屏蔽层和堆芯容器金属材料的快中子负荷,降低由辐照诱发的脆化作用;在球床高温气冷堆中,石墨反射层作为结构材料,形成容纳球形燃料元件的堆腔,即反应堆堆芯。
核石墨在强中子辐射场中工作,既要慢化裂变产生的快中子,又要尽量地少吸收中子;快中子辐照使石墨的结构发生改变,从而使与组织结构有关的石墨的所有性能都发生变化。随着快中子注量的增加,石墨的结构和性能都是变化(动态)的。非核石墨不存在中子吸收和快中子辐照问题,如果在使用过程中不被氧化(腐蚀)的话,性能是稳定的。
核石墨是在电极石墨的基础上开发出来的,生产工艺与电极石墨没有本质上的不同,但在技术要求方面则有巨大的差别。核石墨与非核石墨的根本区别之一是纯度,它必须是核纯的。核石墨的硼含量直接影响对中子的吸收,降低硼含量可以提高反应堆核燃料的利用率,这是高温气冷堆能够经济有效运行的根本保障。《GB/T 40408-2021高温气冷堆堆内构件用核级等静压石墨》标准中规定,核级等静压石墨的灰分含量≤0.0050%(即≤50ppm),硼当量≤0.00009%(即≤0.9ppm)。
核石墨的各向同性度是高温气冷堆运行寿命的决定性因素之一。石墨在高温辐照下,其尺寸变化先是随快中子注量的增加发生收缩,达到最大收缩值后,开始反转。当石墨的尺寸恢复到原始值后,尺寸迅速膨胀,机械物理性能急剧恶化。一般都把尺寸恢复到原始值时的快中子注量作为高温气冷堆石墨的设计寿命。研究表明越是各向同性的石墨,其耐受快中子辐照时的尺寸变化越小,设计寿命也越高,中国高温气冷堆商用示范堆把石墨设计寿命提高到了60年。《GB/T 40408-2021高温气冷堆堆内构件用核级等静压石墨》标准中规定,各向同性核级等静压石墨的各向同性度1.00≤α≤1.10,热导率(室温)≥120W/(m.K),热膨胀系数(室温-500℃)3.5×10-6/℃-5.5×10-6/℃。
一般情况下,核石墨的生产工艺是:以煅后石油焦或沥青焦为骨料,经过破碎、磨粉、筛分、配料,以煤焦油沥青为粘结剂,经过混捏、成型(挤压、振动、模压或等静压)、焙烧、浸渍、再焙烧、石墨化、提纯等工序制造而成。
以石油焦、沥青焦、煤沥青为原料,原料中含有0.5%左右的灰分,这些灰分一直存在于产品中,直到最后的提纯工序才能除去,而且灰分中含有硼等中子吸收截面较大的元素,给最终的提纯工艺造成很大技术压力;石油焦、沥青焦以及粘结剂煤沥青炭化形成的粘结剂焦,其结构都不是完全各向同性的,因而由此生产的核石墨各向同性度较差,影响高温气冷堆服役寿命;普通的石油焦和沥青焦,在石墨化1300-2400℃热处理过程中会发生较大的体积膨胀,因而容易产生裂纹,造成合格率降低,经济效益受影响。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种各向同性核石墨的制备方法,解决了提纯工艺压力大、高温气冷堆服役寿命低以及合格率低等技术问题。
为了解决上述问题,本发明的技术方案为:一种各向同性核石墨的制备方法,包括以下步骤:
第一步、制备各向同性焦:以蒽油为原料,将蒽油通过真空方式吸入密闭的反应釜中,进行加热升温至蒽油开始汽化,调节反应釜内压力,使压力保持在5MPa的恒压下,当反应釜温度到达550-570℃时,在此温度范围内保持6-7hr,然后降温泄压,打开反应釜,取出各向同性焦;
第二步、制备精制沥青:将蒽油以真空方式吸入密闭的反应釜中,进行加热升温,当温度升高到265-275℃时,保持温度不变,向反应釜中吹入空气,调节反应釜内的压力,使压力保持在常压下,在此条件下保持14-16hr,然后降温,打开反应釜,取出精制沥青;
第三步、制备蒽油炭黑:液态蒽油由输送管道和空气鼓风机通过油气化器、喷燃器喷射到反应炉中的火焰上裂解产生蒽油炭黑,产生的蒽油炭黑再通过急冷和收集系统收集而成;
第四步、制备专用粘结剂沥青:将所述精制沥青与所述蒽油炭黑混捏,在150-160℃的温度下,在高速搅拌机中搅拌均匀,得到专用粘结剂沥青;
第五步、以煅后各向同性焦作为骨料进行破碎和磨粉;
第六步、干混和湿混:将骨料细粉加入混捏锅里干混,干混1-1.5hr,加入经过加热已经熔化的150-160℃的专用粘结剂沥青进行湿混,湿混温度始终保持在150-160℃,湿混时间2.5-3hr,按照重量计,骨料100份、粘结剂42-50份;
第七步、三次轧片:湿混完备后,糊料从混捏锅里面放出来,进入三级对辊式轧片机进行三次轧片;
第八步、凉料、破碎、二次磨粉和等静压成型:轧片后的糊料片经过凉料、破碎和二次磨粉,磨制好的二次粉装入橡胶模套进行抽真空;装好胶套后放入等静压机进行等静压成型,成型压力120-160MPa,泄压后取出成型生坯;
第九步、焙烧、浸渍和二次焙烧:生坯装入车底式炉中进行焙烧,焙烧后的产品要在浸渍罐中进行浸渍,浸渍用所述精制沥青作为浸渍剂进行;浸渍压力4-5MPa,温度200-220℃,持续时间根据产品规格在10-20hr之间;
浸渍完的产品进行二次焙烧,最高焙烧温度750-800℃,二次焙烧需要150-200hr;
第十步、石墨化和提纯处理:二次焙烧后的产品在艾奇逊石墨化炉中进行石墨化和提纯处理;在石墨化过程中,通过预埋在炉底的管子向石墨化炉内通入氯气进行提纯,直到最高温2800-3000℃时保持2-3hr,此时切换通入氮气或氩气,石墨化炉降温;氯气通入量为10-20kg/hr,氮气或氩气通入量为50-60kg/hr;整个石墨化工序持续时间为60-70hr,即可得到所述各向同性核石墨材料。
可选地,在第一步和第二步中的加热速率均为10℃/min。
可选地,在第二步中,向反应釜中吹入空气,空气流速为28-32L/(hr.kg)。
可选地,在第四步中,精制沥青100份,所述蒽油炭黑5份。
可选地,在第六步中,当干混温度达到120℃后,加入经过加热已经熔化的150-160℃的专用粘结剂沥青进行湿混。
可选地,在第八步中,成型时间60min,其中15min升压,15min在最高压力下进行保压,30min泄压。
可选地,在第十步中,在炉内温度达到1000℃时开始通入氯气进行提纯。
可选地,混捏锅由高耐磨钢材料制作而成。
可选地,焙烧填充料和石墨化电阻料采用灰分含量小于0.05%的高纯度煅后沥青焦。
可选地,石墨化保温料采用所述蒽油炭黑。
与现有技术相比,本发明的有益效果:
1、本发明的各向同性核石墨的制备方法中,以蒽油为原料制备各向同性焦、精制沥青、蒽油炭黑以及粘结剂沥青,这些作为各向同性核石墨的原料和辅料也全部不含灰分和硼元素,简化了石墨化提纯工艺,提纯过程中只通入氯气,不用通入氟利昂,减轻了因释放含氟气体而造成的环保压力。
2、本发明的各向同性核石墨的制备方法中,以蒽油为原料通过高温热裂解制备的各向同性焦、通过吹空气氧化制备的作为浸渍剂的精制沥青、通过油炉法制备的蒽油炭黑、以及蒽油炭黑混合精制沥青制备的粘结剂沥青,采用这些热处理工艺得到的各向同性焦、蒽油炭黑、精制沥青浸渍剂炭化成焦、专用粘结剂沥青炭化成焦显微结构全部都是各向同性的,再加上采用等静压成型方法,最终制备的各向同性石墨显微结构是完全各向同性的,在高温气冷堆中的服役寿命能达到60年,优于采用现有技术生产的核石墨。
3、本发明的各向同性核石墨的制备方法,全部采用富含稠环芳烃的蒽油为原料,制备的各向同性焦,以及浸渍剂沥青和粘结剂沥青焦化成炭,在石墨化1300-2400℃热处理过程中不会发生大的体积膨胀,因而不容易产生裂纹,工序合格率较高,能产生较好的经济效益。而且最终得到的各向同性核石墨有较高的机械强度和优异的抗热震性能。
附图说明
图1为实施例中煅后焦的显微结构图片;
图2为普通沥青焦的显微结构图片。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细描述。
实施例:如图1和图2所示,本实施例提供了一种各向同性核石墨的制备方法,以煤焦油中的蒽油馏分为原料,通过热裂解方法制备一种各向同性焦、通过吹空气方法制备一种专用粘结剂沥青,再利用该各向同性焦和专用粘结剂沥青制造一种高温气冷堆用核石墨,具体制备方法如下:
第一步、制备各向同性焦:
将蒽油以真空方式吸入密闭的反应釜中,以10℃/min的速率加热升温,当温度升高到350℃时,蒽油开始汽化,此时反应釜内压力开始升高,用减压阀调节反应釜内的压力,使压力保持在5MPa的恒压下,反应釜温度继续加热升高,直到550-570℃,在此温度范围内保持6-7hr,使得蒽油组分进行充分的热裂解;然后,降温、泄压,打开反应釜,取出各向同性生焦。焦化收率为73-74%;各向同性生焦的理化性能为挥发分4-5%,灰分0,元素组成为氮1.65%、硫0.30%、氧1.27%、氢2.62%、碳94.16%。生焦具有几乎整体的细孔结构和各向同性结构。蒽油馏分在压力下加热至550℃以上,切加热速率(10℃/min)较高导致形成小的中间相颗粒(1-15μm),并立即结合形成半焦,这导致了形成均匀的各向同性结构的生焦。
生焦要进一步在回转窑或罐式炉中进行煅烧,煅烧最高温度1300-1350℃。煅后焦元素组成为氮0.84%、硫0.29%、氧0.82%、氢0.05%、碳98.00%,硼为痕量;煅后焦也显示各向同性的微观结构。如图1为煅后焦的显微结构图片,图2为普通沥青焦的显微结构图片。
第二步、制备精制沥青:
将蒽油以真空方式吸入密闭的反应釜中,以10℃/min的速率加热升温,当温度升高到265-275℃时,保持温度不变,向反应釜中吹入空气,空气流速为28-32L/(hr.kg),用减压阀调节反应釜内的压力,使压力保持在常压下,在此条件下保持14-16hr,使得蒽油组分进行氧化和热缩合;然后,降温,打开反应釜,取出精制沥青,精制沥青收率为82-83%;精制沥青的理化性能为软化点70-72℃、挥发分70-72%,灰分0,结焦值40-45%、甲苯不溶物含量25-26%、喹啉不溶物含量0.3-0.5%,元素组成为氮1.74%、硫0.49%、氧2.96%、氢4.93%、碳89.88%。显然,精制沥青喹啉不溶物含量<5%,适合用作浸渍剂。由于采用了吹空气氧化缩合反应工艺,阻止了中间相的生产,所以,作为浸渍剂的精制沥青焦化成炭后,也具有各向同性的微观结构。
第三步、制备蒽油炭黑:
采用油炉法制备蒽油炭黑。液态蒽油由输送管道和空气鼓风机,通过油气化器、喷燃器喷射到反应炉中的火焰上裂解产生炭黑,产生的炭黑再通过急冷和收集系统收集而成。所述炭黑类似N660牌号的炭黑,粒径49-60nm,比表面积26-42m2/g,灰分0。
第四步、制备专用粘结剂沥青:
将上述精制沥青100份与上述蒽油炭黑5份混捏,在150-160℃的温度下,在高速搅拌机中搅拌均匀,即得到专用粘结剂沥青,其理化性能为软化点80-90℃、挥发分50-55%,灰分0,结焦值52-58%、甲苯不溶物含量30-32%、喹啉不溶物含量5-6%,160℃下的粘度500-600mPa.s。该沥青软化点适中、结焦值高、粘度合适,适合用作炭素制品粘结剂。
第五步、将煅后各向同性焦破碎并磨制成细粉,磨粉设备可以是气流粉碎机、立式磙磨机、雷蒙磨风机等,细粉粒度:D10为8-10μm、D50为18-25μm、D90为40-60μm。
第六步、干混和湿混:将骨料煅后各向同性焦细粉加入混捏锅里干混,干混1-1.5hr温度达到120℃后加入经过加热已经熔化的150-160℃的专用粘结剂沥青进行湿混,湿混温度始终保持在150-160℃,湿混时间2.5-3hr;
第七步、三次轧片:湿混完备后,糊料从混捏锅里面放出来,进入三级对辊式轧片机进行三次轧片。三次轧片的厚度分别大约是:5mm、3mm和2mm。
第八步、凉料、破碎、二次磨粉和等静压成型:轧片后的糊料片经过凉料、破碎和二次磨粉,二次磨粉设备可以使用立式磙磨机、雷蒙磨、万能粉碎机等。二次粉粒度:D10为10-20μm、D50为40-50μm、D90为100-150μm;磨制好的二次粉装入橡胶模套,装二次粉料时要一边装料一边振动,振动频率为1-2Hz,振幅为2-5mm,装完料后要进行抽真空,排出粉末中夹杂的空气。装好胶套后放入等静压机进行等静压成型,成型压力120-160MPa,成型时间60min,其中15min升压,15min在最高压力下进行保压,30min泄压。泄压后取出成型生坯。
第九步、焙烧、浸渍和二次焙烧:生坯装入车底式炉中进行焙烧,焙烧后的产品要在浸渍罐中进行浸渍,浸渍用上述精制沥青浸渍剂进行。浸渍压力4-5MPa,温度200-220℃,持续时间根据产品规格在10-20hr之间。
浸渍完的产品进行二次焙烧处理,二次焙烧在隧道窑中进行,最高焙烧温度750-800℃,二次焙烧需要150-200hr。
第十步、石墨化和提纯处理:二次焙烧后的产品在艾奇逊石墨化炉中进行石墨化和提纯处理。在石墨化过程中,通过预埋在炉底的管子向石墨化炉内通入氯气进行提纯,在炉内温度达到1000℃时开始通入氯气,直到最高温2800-3000℃时保持2-3hr,此时切换通入氮气或氩气,石墨化炉降温。氯气通入量为10-20kg/hr,氮气或氩气通入量为50-60kg/hr。整个石墨化工序持续时间为60-70hr。
经过上述步骤即可得到本实施例的各向同性核石墨材料。
本实施例的各向同性核石墨的制备方法中,首先,以蒽油为原料,在反应釜中通过高温热裂解,选择适当的升温速度、温度、压力和保持时间,得到一种各向同性焦,再将各向同性焦进行煅烧得到煅后各向同性焦;其次,还是以蒽油为原料,在反应器中、适当温度下,对蒽油进行吹空气氧化,选择适当的温度、空气流速和保持时间,得到一种精制沥青,再在精制沥青中均匀搅拌混入适量的由蒽油通过油炉法制备的蒽油炭黑,得到一种专用粘结剂沥青。以上述煅后各向同性焦为骨料经过破碎、磨粉,加入混捏锅干混,然后加入上述专用粘结剂沥青进行湿混,混捏后的糊料经过三次轧片、二次磨粉、等静压成型、焙烧、采用上述精制沥青做浸渍剂进行浸渍、二烧、石墨化、通氯气提纯,得到各向同性核石墨。高温气冷堆采用本方法制造的核石墨作为反射层后,能延长核反应堆寿命,达到示范堆要求的60年服役期限。其中前三步分别涉及单独物料的制备,也可以不按照上述顺序进行。
本实施例中采用的原料蒽油是煤焦油在蒸馏过程中气化,切取280-360℃的馏分得到的,主要成分为蒽,还含有菲、芴、苊、咔唑等其他有机化合物,不含灰分和硼元素。
本实施例中以蒽油为原料通过高温热裂解制备的各向同性焦、通过吹空气氧化制备的作为浸渍剂的精制沥青、通过油炉法制备的蒽油炭黑、以及蒽油炭黑混合精制沥青制备的粘结剂沥青,这些作为各向同性石墨的原料和辅料也全部不含灰分和硼元素。
本实施例的各向同性石墨制备方法中,采取各种措施,避免在产品中混入灰分,比如采用高耐磨钢制作混捏锅、焙烧填充料和石墨化电阻料采用灰分含量小于0.05%的高纯度煅后沥青焦、石墨化保温料采用上述蒽油炭黑,最后得到的各向同性石墨焙烧品在石墨化提纯前灰分只有0.03-0.05%(300-500ppm),硼含量只有0.00004-0.00008%(0.4-0.8ppm)。
本实施例的各向同性石墨制备方法将石墨化和提纯工序合二为一,在石墨化的过程中进行提纯,而且提纯过程中只通入氯气,不用通入氟利昂,就可以达到核纯的目的,最终产品的灰分为0.002-0.004%(20-40ppm),硼含量为0.00004-0.00008%(0.4-0.8ppm)。简化了石墨化提纯工艺,减轻了因释放含氟气体而造成的环保压力。
本实施例以蒽油为原料通过高温热裂解制备的各向同性焦、通过吹空气氧化制备的作为浸渍剂的精制沥青、通过油炉法制备的蒽油炭黑、以及蒽油炭黑混合精制沥青制备的粘结剂沥青,采用这些热处理工艺得到的各向同性焦、蒽油炭黑、精制沥青浸渍剂炭化成焦、专用粘结剂沥青炭化成焦显微结构全部都是各向同性的,再加上采用等静压成型方法,最终制备的各向同性石墨显微结构是完全各向同性的,其各向同性度1.02≤α≤1.04,热导率(室温)120-140W/(m.K),热膨胀系数(室温-500℃)3.5×10-6/℃-4.5×10-6/℃。在高温气冷堆中的服役寿命能达到60年,优于采用现有技术生产的核石墨。
本实施例的各向同性核石墨的制备方法中,制备各向同性核石墨的原料包括骨料、粘结剂和浸渍剂三种,三种原料全部采用蒽油为原料制备,蒽油为煤焦油蒸馏过程中切取280-360℃的馏分,其元素组成为碳89-91%、氢5-6%、硫0.4-0.5%、氮1.5-1.6%、氧2.2-2.3%,不含灰分和硼元素。
本实施例的各向同性核石墨的制备方法中,各向同性核石墨配料由骨料和粘结剂构成,按照重量计,骨料100份、粘结剂42-50份,骨料为煅后各向同性焦,粘结剂为专用粘结剂沥青。
本实施例的各向同性核石墨的制备方法中,在第九步中,生坯装入车底式炉中进行焙烧,焙烧按照下列升温-降温曲线进行:
阶段 温度区间℃ 升温速率℃/hr 持续时间hr 累计时间hr 允许温度偏差℃
1 50-130 2.0 40 40 ±10
2 130-500 0.5 740 780 ±5
3 500-750 1.0 250 1030 ±5
4 750-900 3.0 50 1080 ±10
5 900 保温 48 1128 ±10
6 900-200 -6.5 108 1236 ±20
本实施例的各向同性核石墨的制备方法中,全部采用富含稠环芳烃的蒽油为原料,制备的各向同性焦,以及浸渍剂沥青和粘结剂沥青焦化成炭,在石墨化1300-2400℃热处理过程中不会发生大的体积膨胀,因而不容易产生裂纹,工序合格率较高,能产生较好的经济效益。而且最终得到的各向同性核石墨有较高的机械强度和优异的抗热震性能。其体积密度为1.80-1.85g/cm3,抗拉强度为28-34MPa,耐压强度为95-100MPa,断裂韧性≥1.10MPa.m1/2,弹性模量8-12GPa。

Claims (10)

1.一种各向同性核石墨的制备方法,其特征在于,包括以下步骤:
第一步、制备各向同性焦:以蒽油为原料,将蒽油通过真空方式吸入密闭的反应釜中,进行加热升温至蒽油开始汽化,调节反应釜内压力,使压力保持在5MPa的恒压下,当反应釜温度到达550-570℃时,在此温度范围内保持6-7hr,然后降温泄压,打开反应釜,取出各向同性焦;
第二步、制备精制沥青:将蒽油以真空方式吸入密闭的反应釜中,进行加热升温,当温度升高到265-275℃时,保持温度不变,向反应釜中吹入空气,调节反应釜内的压力,使压力保持在常压下,在此条件下保持14-16hr,然后降温,打开反应釜,取出精制沥青;
第三步、制备蒽油炭黑:液态蒽油由输送管道和空气鼓风机通过油气化器、喷燃器喷射到反应炉中的火焰上裂解产生蒽油炭黑,产生的蒽油炭黑再通过急冷和收集系统收集而成;
第四步、制备专用粘结剂沥青:将所述精制沥青与所述蒽油炭黑混捏,在150-160℃的温度下,在高速搅拌机中搅拌均匀,得到专用粘结剂沥青;
第五步、以煅后各向同性焦作为骨料进行破碎和磨粉;
第六步、干混和湿混:将骨料细粉加入混捏锅里干混,干混1-1.5hr,加入经过加热已经熔化的150-160℃的专用粘结剂沥青进行湿混,湿混温度始终保持在150-160℃,湿混时间2.5-3hr,按照重量计,骨料100份、粘结剂42-50份;
第七步、三次轧片:湿混完备后,糊料从混捏锅里面放出来,进入三级对辊式轧片机进行三次轧片;
第八步、凉料、破碎、二次磨粉和等静压成型:轧片后的糊料片经过凉料、破碎和二次磨粉,磨制好的二次粉装入橡胶模套进行抽真空;装好胶套后放入等静压机进行等静压成型,成型压力120-160MPa,泄压后取出成型生坯;
第九步、焙烧、浸渍和二次焙烧:生坯装入车底式炉中进行焙烧,焙烧后的产品要在浸渍罐中进行浸渍,浸渍用所述精制沥青作为浸渍剂进行;浸渍压力4-5MPa,温度200-220℃,持续时间根据产品规格在10-20hr之间;
浸渍完的产品进行二次焙烧,最高焙烧温度750-800℃,二次焙烧需要150-200hr;
第十步、石墨化和提纯处理:二次焙烧后的产品在艾奇逊石墨化炉中进行石墨化和提纯处理;在石墨化过程中,通过预埋在炉底的管子向石墨化炉内通入氯气进行提纯,直到最高温2800-3000℃时保持2-3hr,此时切换通入氮气或氩气,石墨化炉降温;氯气通入量为10-20kg/hr,氮气或氩气通入量为50-60kg/hr;整个石墨化工序持续时间为60-70hr,即可得到所述各向同性核石墨材料。
2.根据权利要求1所述的一种各向同性核石墨的制备方法,其特征在于,在第一步和第二步中的加热速率均为10℃/min。
3.根据权利要求1所述的一种各向同性核石墨的制备方法,其特征在于,在第二步中,向反应釜中吹入空气,空气流速为28-32L/(hr.kg)。
4.根据权利要求1所述的一种各向同性核石墨的制备方法,其特征在于,在第四步中,精制沥青100份,所述蒽油炭黑5份。
5.根据权利要求1所述的一种各向同性核石墨的制备方法,其特征在于,在第六步中,当干混温度达到120℃后,加入经过加热已经熔化的150-160℃的专用粘结剂沥青进行湿混。
6.根据权利要求1所述的一种各向同性核石墨的制备方法,其特征在于,在第八步中,成型时间60min,其中15min升压,15min在最高压力下进行保压,30min泄压。
7.根据权利要求1所述的一种各向同性核石墨的制备方法,其特征在于,在第十步中,在炉内温度达到1000℃时开始通入氯气进行提纯。
8.根据权利要求1所述的一种各向同性核石墨的制备方法,其特征在于,混捏锅由高耐磨钢材料制作而成。
9.根据权利要求1所述的一种各向同性核石墨的制备方法,其特征在于,焙烧填充料和石墨化电阻料采用灰分含量小于0.05%的高纯度煅后沥青焦。
10.根据权利要求1所述的一种各向同性核石墨的制备方法,其特征在于,石墨化保温料采用所述蒽油炭黑。
CN202311297930.3A 2023-10-09 2023-10-09 一种各向同性核石墨的制备方法 Active CN117024146B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311297930.3A CN117024146B (zh) 2023-10-09 2023-10-09 一种各向同性核石墨的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311297930.3A CN117024146B (zh) 2023-10-09 2023-10-09 一种各向同性核石墨的制备方法

Publications (2)

Publication Number Publication Date
CN117024146A CN117024146A (zh) 2023-11-10
CN117024146B true CN117024146B (zh) 2024-01-02

Family

ID=88632236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311297930.3A Active CN117024146B (zh) 2023-10-09 2023-10-09 一种各向同性核石墨的制备方法

Country Status (1)

Country Link
CN (1) CN117024146B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246056A (en) * 1962-06-25 1966-04-12 Great Lakes Carbon Corp Production of low-permeability, highdensity, carbon and graphite bodies
US3322866A (en) * 1963-07-22 1967-05-30 Atomic Energy Authority Uk Method of extruding carbon articles
JPH01294507A (ja) * 1988-05-20 1989-11-28 Ibiden Co Ltd 炭素・黒鉛材料の製造方法
JPH0269357A (ja) * 1988-09-02 1990-03-08 Kawasaki Steel Corp 高密度,高強度を有する等方性黒鉛材の製造方法
US5705139A (en) * 1992-09-24 1998-01-06 Stiller; Alfred H. Method of producing high quality, high purity, isotropic graphite from coal
WO2004031451A1 (ja) * 2002-10-07 2004-04-15 Nippon Electrode Company, Ltd. アルミニウム精錬用カソードブロック及びその製造方法
DE10353189A1 (de) * 2003-11-13 2005-06-23 Sgl Carbon Ag Verfahren zur Herstellung eines Kohlenstoffwerkstoffes mit niedriger Porosität und hoher Festigkeit
CN102910912A (zh) * 2012-07-25 2013-02-06 天津市贝特瑞新能源科技有限公司 一种高硬度等静压石墨及其制备方法
CN103121671A (zh) * 2013-03-15 2013-05-29 四川广汉士达炭素股份有限公司 一种等静压石墨的制备方法
CN104401982A (zh) * 2014-11-13 2015-03-11 东莞市翔丰华电池材料有限公司 一种核石墨材料制备方法
CN110803693A (zh) * 2019-11-13 2020-02-18 溧阳紫宸新材料科技有限公司 一种蒽油基中间相碳微球及其制备方法和用途
CN112694332A (zh) * 2020-12-30 2021-04-23 鞍山开炭热能新材料有限公司 一种制备核石墨材料的煤沥青分质处理方法
CN115466121A (zh) * 2022-10-28 2022-12-13 万基控股集团石墨制品有限公司 一种石墨电极的制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246056A (en) * 1962-06-25 1966-04-12 Great Lakes Carbon Corp Production of low-permeability, highdensity, carbon and graphite bodies
US3322866A (en) * 1963-07-22 1967-05-30 Atomic Energy Authority Uk Method of extruding carbon articles
JPH01294507A (ja) * 1988-05-20 1989-11-28 Ibiden Co Ltd 炭素・黒鉛材料の製造方法
JPH0269357A (ja) * 1988-09-02 1990-03-08 Kawasaki Steel Corp 高密度,高強度を有する等方性黒鉛材の製造方法
US5705139A (en) * 1992-09-24 1998-01-06 Stiller; Alfred H. Method of producing high quality, high purity, isotropic graphite from coal
WO2004031451A1 (ja) * 2002-10-07 2004-04-15 Nippon Electrode Company, Ltd. アルミニウム精錬用カソードブロック及びその製造方法
DE10353189A1 (de) * 2003-11-13 2005-06-23 Sgl Carbon Ag Verfahren zur Herstellung eines Kohlenstoffwerkstoffes mit niedriger Porosität und hoher Festigkeit
CN102910912A (zh) * 2012-07-25 2013-02-06 天津市贝特瑞新能源科技有限公司 一种高硬度等静压石墨及其制备方法
CN103121671A (zh) * 2013-03-15 2013-05-29 四川广汉士达炭素股份有限公司 一种等静压石墨的制备方法
CN104401982A (zh) * 2014-11-13 2015-03-11 东莞市翔丰华电池材料有限公司 一种核石墨材料制备方法
CN110803693A (zh) * 2019-11-13 2020-02-18 溧阳紫宸新材料科技有限公司 一种蒽油基中间相碳微球及其制备方法和用途
CN112694332A (zh) * 2020-12-30 2021-04-23 鞍山开炭热能新材料有限公司 一种制备核石墨材料的煤沥青分质处理方法
CN115466121A (zh) * 2022-10-28 2022-12-13 万基控股集团石墨制品有限公司 一种石墨电极的制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Fabrication of Binder Pitches Allowing for Low-Temperature Formation and High Coking Values and Examination of Mechanical Properties of Artificial Graphite Blocks Made of Binder Pitches;Jong Hoon Cho 等;ACS Omega;第7卷(第9期);7845-7852 *
Production of a self-adhering mesophase powder from anthracene oil for low pressure forming of graphite artefacts;Matthys R. Delport 等;Journal of Materials Science;第51卷;6309-6318 *
使用各向同性焦生产优质石墨化阴极炭块;夏百元;中国金属学会炭素材料分会第二十九届学术交流会论文集;138-140 *
利用热压工艺试制块状高导热石墨;马历乔 等;炭素技术;第36卷(第2期);48-50 *
浅谈沥青的加工利用;卢金寿;;燃料与化工(05);47-50 *
蒽油基软沥青液相炭化过程中结构变化研究;刘惠美 等;炭素技术;第39卷(第4期);41-45 *
高强高密石墨材料的制备研究现状;夏立博;陈建;李春林;冯勇祥;李培德;张伟;孙佼;田建华;;炭素技术(06);24-27 *

Also Published As

Publication number Publication date
CN117024146A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN108623305B (zh) 一种高密度超细孔径石墨的制备方法
Ragan et al. Science and technology of graphite manufacture
CN109081695B (zh) 熔盐堆用高密度大尺寸超细孔径核石墨材料的制备方法
KR101240365B1 (ko) 고순도 원자로급 흑연
CN107935595A (zh) 一种高温气冷堆用石墨砖的制备方法
CN108341669B (zh) 高温气冷堆堆内构件用大规格尺寸核石墨材料及制备方法
CN109778236B (zh) 一种电解铝用预焙阳极
CN112694332A (zh) 一种制备核石墨材料的煤沥青分质处理方法
CN109400162B (zh) 一种电火花加工用石墨及其制备方法
Fang et al. Improving the self-sintering of mesocarbon-microbeads for the manufacture of high performance graphite-parts
CN115108833B (zh) 一种连铸石墨材料及其制备方法
CN117024146B (zh) 一种各向同性核石墨的制备方法
JP4694288B2 (ja) 電極材料用低温焼成炭素
CN106220178A (zh) 一种热交换器用石墨材料及其制备方法
CN101214944A (zh) 一种高强度煤焦油沥青碳泡沫材料的制备方法
CN116082041B (zh) 一种低热膨胀系数石墨材料及其生产方法
JP5762653B1 (ja) 成型炭及びその製造方法、並びに成型炭の使用方法
JP2005008436A (ja) 黒鉛材料とその製造方法及び燃料電池セパレータ
CN113213936B (zh) 一种陶瓷粉掺杂改性自烧结石墨复合材料的制备方法
CN105289646B (zh) 一种特种碳素材料的电触媒催化剂的生产方法
CN114914433A (zh) 一种煤基石墨复合材料及其制备方法和应用
JPH0132162B2 (zh)
JPH0158125B2 (zh)
RU2441854C1 (ru) Материал для изготовления устройств контактного токосъема и способ его изготовления
CN113061033A (zh) 一种高温气冷堆用石墨球及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant