[go: up one dir, main page]

CN117014928A - Method and device for extracting wireless network measurement points, electronic equipment and storage medium - Google Patents

Method and device for extracting wireless network measurement points, electronic equipment and storage medium Download PDF

Info

Publication number
CN117014928A
CN117014928A CN202210474439.2A CN202210474439A CN117014928A CN 117014928 A CN117014928 A CN 117014928A CN 202210474439 A CN202210474439 A CN 202210474439A CN 117014928 A CN117014928 A CN 117014928A
Authority
CN
China
Prior art keywords
measurement
area
parameter value
points
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210474439.2A
Other languages
Chinese (zh)
Inventor
张海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZTE Corp
Original Assignee
ZTE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZTE Corp filed Critical ZTE Corp
Priority to CN202210474439.2A priority Critical patent/CN117014928A/en
Priority to PCT/CN2022/135030 priority patent/WO2023207070A1/en
Publication of CN117014928A publication Critical patent/CN117014928A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本申请涉及一种无线网络测量点的提取方法、装置、电子设备及存储介质,该方法包括:获取测量区域内的各测量点的特征数据;将测量区域内的各测量点划分至不同环境类型对应的测量子区域;根据特征数据,确定测量子区域内的测量点的特征评分,测量子区域内的测量点不包括边界点;从测量区域内的各测量点中提取目标测量点,目标测量点包括特征评分排序靠前的第一预设数量的测量点和测量子区域的边界点。这样可以确定出各测量子区域内的测量点的特征评分,并对特征评分较高的测量点和测量子区域的边界点进行提取,即将特征较为明显的测量点提取出来进行后续分析,从而提高了测量点提取的准确率,使得测量区域的无线网络性能分析精度提高。

This application relates to a method, device, electronic equipment and storage medium for extracting wireless network measurement points. The method includes: obtaining characteristic data of each measurement point in the measurement area; dividing each measurement point in the measurement area into different environmental types. Corresponding measurement sub-area; determine the feature scores of the measurement points in the measurement sub-area based on the feature data. The measurement points in the measurement sub-area do not include boundary points; extract the target measurement points from each measurement point in the measurement area, and target measurement The points include a first preset number of measurement points ranked high in feature scores and boundary points of the measurement sub-area. In this way, the feature scores of the measurement points in each measurement sub-area can be determined, and the measurement points with higher feature scores and the boundary points of the measurement sub-area can be extracted, that is, the measurement points with more obvious characteristics can be extracted for subsequent analysis, thereby improving This improves the accuracy of measurement point extraction and improves the accuracy of wireless network performance analysis in the measurement area.

Description

无线网络测量点的提取方法、装置、电子设备及存储介质Extraction method, device, electronic equipment and storage medium for wireless network measurement points

技术领域Technical field

本申请涉及无线网络优化领域,尤其涉及一种无线网络测量点的提取方法、装置、电子设备及存储介质。The present application relates to the field of wireless network optimization, and in particular, to a method, device, electronic equipment and storage medium for extracting wireless network measurement points.

背景技术Background technique

在对某一测量区域进行无线网络测量时,随着测量点的增多,数据量也在快速增长,庞大的数据量为数据的存储、查询、分析及传送造成极大的困难,因此,通常需要对无线网络测量点进行抽样,以减小数据量。When conducting wireless network measurements in a certain measurement area, as the number of measurement points increases, the amount of data also increases rapidly. The huge amount of data causes great difficulties in data storage, query, analysis and transmission. Therefore, it is usually necessary to Sampling wireless network measurement points to reduce the amount of data.

目前,传统的无线网络测量点的提取方式是按照时间周期抽样,采用一种均匀抽稀的方式提取测量点;或者是根据测量轨迹的曲线波动特征,提取与基准投影距离最大的测量点。但不管采用上述哪种方式进行提取,均未充分考虑测量点的无线网络性能的特征数据,将最有分析价值的测量点提取出来,因此,传统的无线网络测量点的提取方式提取准确率较低,导致测量区域的无线网络性能分析精度较低。At present, the traditional way to extract wireless network measurement points is to sample according to time periods and use a uniform thinning method to extract measurement points; or based on the curve fluctuation characteristics of the measurement trajectory, extract the measurement points with the largest projection distance from the reference. However, no matter which of the above methods is used for extraction, the characteristic data of the wireless network performance of the measurement points is not fully considered to extract the most valuable measurement points. Therefore, the traditional extraction method of wireless network measurement points has a lower extraction accuracy. Low, resulting in low accuracy of wireless network performance analysis in the measurement area.

发明内容Contents of the invention

本申请提供了一种无线网络测量点的提取方法、装置、电子设备及存储介质,以解决传统的无线网络测量点的提取方式提取准确率较低,导致测量区域的无线网络性能分析精度较低的问题。This application provides a method, device, electronic equipment and storage medium for extracting wireless network measurement points to solve the problem that the traditional extraction method of wireless network measurement points has low extraction accuracy, resulting in low accuracy of wireless network performance analysis in the measurement area. The problem.

第一方面,本申请提供了一种无线网络测量点的提取方法,所述方法包括:In a first aspect, this application provides a method for extracting wireless network measurement points. The method includes:

获取测量区域内的各测量点的特征数据,其中,所述特征数据为用于表征测量点的无线网络性能的数据;Obtain characteristic data of each measurement point within the measurement area, where the characteristic data is data used to characterize the wireless network performance of the measurement point;

将所述测量区域内的各测量点划分至不同环境类型对应的测量子区域,所述环境类型用于表征测量子区域内的用户设备对无线网络性能的要求;Divide each measurement point in the measurement area into measurement sub-areas corresponding to different environment types, where the environment types are used to characterize the wireless network performance requirements of the user equipment in the measurement sub-area;

根据所述特征数据,确定所述测量子区域内的测量点的特征评分,所述特征评分是在参数值大于或等于预设阈值的情况下,基于与所述参数值对应的预设评分确定得到,所述参数值是指当前测量点的特征数据与前一测量点的特征数据之间的变化率和/或绝对值差值,所述测量子区域内的测量点不包括边界点;According to the characteristic data, the characteristic score of the measurement point in the measurement sub-area is determined, and the characteristic score is determined based on the preset score corresponding to the parameter value when the parameter value is greater than or equal to the preset threshold. It is obtained that the parameter value refers to the change rate and/or absolute value difference between the characteristic data of the current measurement point and the characteristic data of the previous measurement point, and the measurement points in the measurement sub-region do not include boundary points;

从所述测量区域内的各测量点中提取目标测量点,所述目标测量点包括所述特征评分排序靠前的第一预设数量的测量点和所述测量子区域的边界点。A target measurement point is extracted from each measurement point in the measurement area, where the target measurement point includes a first preset number of measurement points ranked higher in the feature score and boundary points of the measurement sub-region.

可选地,所述将所述测量区域内的各测量点划分至不同环境类型对应的测量子区域,包括:Optionally, dividing each measurement point in the measurement area into measurement sub-areas corresponding to different environment types includes:

获取所述测量区域内的站点分布信息;Obtain site distribution information within the measurement area;

基于所述站点分布信息,构建每个站点对应的泰森多边形;Based on the site distribution information, construct a Thiessen polygon corresponding to each site;

根据所述测量子区域内的相邻站点之间的站间距,对所述泰森多边形进行划分,形成不同环境类型对应的测量子区域,其中,每个所述测量子区域内的相邻站点之间的站间距属于同一距离范围,不同的所述环境类型的站间距对应不同的距离范围,所述测量子区域包括至少一个所述泰森多边形;The Thiessen polygon is divided according to the distance between adjacent stations in the measurement sub-area to form measurement sub-areas corresponding to different environment types, wherein the adjacent stations in each measurement sub-area The distance between stations belongs to the same distance range, the distance between stations of different environmental types corresponds to different distance ranges, and the measurement sub-area includes at least one of the Thiessen polygons;

根据所述测量区域内的各测量点在所述泰森多边形中的位置分布,确定各测量点所对应的测量子区域。According to the position distribution of each measurement point in the measurement area in the Thiessen polygon, the measurement sub-region corresponding to each measurement point is determined.

可选地,所述根据所述特征数据,确定所述测量子区域内的测量点的特征评分,包括:Optionally, determining the characteristic score of the measurement point within the measurement sub-area based on the characteristic data includes:

根据所述特征数据,分别计算所述测量子区域内的各测量点对应的参数值;According to the characteristic data, calculate the parameter values corresponding to each measurement point in the measurement sub-area;

将所述参数值和所述测量子区域对应的预设阈值进行比较,其中,不同的所述测量子区域对应的预设阈值不同;Compare the parameter value with a preset threshold corresponding to the measurement sub-region, wherein the preset thresholds corresponding to different measurement sub-regions are different;

在所述参数值大于或等于所述测量子区域对应的预设阈值的情况下,将与所述参数值对应的预设评分确定为所述特征评分。If the parameter value is greater than or equal to the preset threshold corresponding to the measurement sub-region, the preset score corresponding to the parameter value is determined as the feature score.

可选地,所述测量子区域对应的预设阈值包括与所述参数值对应设置的变化率阈值和/或绝对值差值阈值;Optionally, the preset threshold corresponding to the measurement sub-region includes a change rate threshold and/or an absolute value difference threshold set corresponding to the parameter value;

所述将所述参数值和所述测量子区域对应的预设阈值进行比较,包括:Comparing the parameter value with a preset threshold corresponding to the measurement sub-area includes:

在所述参数值为变化率的情况下,将所述参数值与所述变化率阈值进行比较;和/或In the case where the parameter value is a rate of change, comparing the parameter value with the rate of change threshold; and/or

在所述参数值为绝对值差值的情况下,将所述参数值与所述绝对值差值阈值进行比较。In the case where the parameter value is an absolute value difference, the parameter value is compared with the absolute value difference threshold.

可选地,所述参数值是基于信号质量、业务质量、关键事件、行驶速度、测量轨迹的曲线斜率、测量轨迹的曲线抖动中的至少一种特征数据计算得到;同一所述测量子区域内的不同参数值对应的变化率阈值和绝对值差值阈值均不相同;Optionally, the parameter value is calculated based on at least one characteristic data among signal quality, service quality, key events, driving speed, curve slope of the measurement trajectory, and curve jitter of the measurement trajectory; within the same measurement sub-area The change rate thresholds and absolute value difference thresholds corresponding to different parameter values are different;

所述在所述参数值大于或等于所述测量子区域对应的预设阈值的情况下,将与所述参数值对应的预设评分确定为所述特征评分,包括:Determining the preset score corresponding to the parameter value as the feature score when the parameter value is greater than or equal to the preset threshold corresponding to the measurement sub-area includes:

在目标参数值大于或等于所述目标参数值对应的变化率阈值和/或绝对值差值阈值的情况下,获取与所述目标参数值对应的预设评分,其中,所述目标参数值为基于任意一种或多种特征数据计算得到的参数值;When the target parameter value is greater than or equal to the change rate threshold and/or the absolute difference threshold corresponding to the target parameter value, a preset score corresponding to the target parameter value is obtained, wherein the target parameter value is Parameter values calculated based on any one or more characteristic data;

计算所述预设评分的求和结果,并将所述求和结果确定为所述特征评分。Calculate the summation result of the preset score, and determine the summation result as the feature score.

可选地,采用如下公式确定所述特征评分:Optionally, the following formula is used to determine the feature score:

其中,xi表示第i种特征数据对应的参数值,R表示所述变化率阈值,sgrad(xi,R)表示当xi大于或等于R时,对第i种特征数据的参数值对应的特征评分进行求和计算,当xi小于R时,对第i种特征数据的参数值对应的特征评分不打分,i∈(1,m);xj表示第j种特征数据对应的参数值,R′表示所述绝对值差值阈值,sabs(xj,R′)表示当xj大于或等于R′时,对第j种特征数据的参数值对应的特征评分进行求和计算,当xj小于R′时,对第j种特征数据的参数值对应的特征评分不打分,j∈(m+1,n),m表示参数值为变化率的特征数据的种类数量,n表示所有特征数据的种类数量。Among them, xi represents the parameter value corresponding to the i-th feature data, R represents the change rate threshold, and s grad ( xi , R) represents the parameter value for the i-th feature data when x i is greater than or equal to R. The corresponding feature scores are summed and calculated. When x i is less than R, the feature score corresponding to the parameter value of the i-th feature data is not scored, i∈(1,m); x j represents the j-th feature data corresponding to Parameter value, R′ represents the absolute value difference threshold, s abs (x j ,R′) indicates that when x j is greater than or equal to R′, the feature scores corresponding to the parameter values of the jth feature data are summed Calculate, when x j is less than R′, the feature score corresponding to the parameter value of the jth feature data will not be scored, j∈(m+1,n), m represents the number of feature data types whose parameter value is the change rate, n represents the number of types of all feature data.

可选地,所述从所述测量区域内的各测量点中提取目标测量点,包括:Optionally, extracting target measurement points from each measurement point within the measurement area includes:

将所述特征评分按照从高到低的顺序进行排序,得到排序结果;Sort the feature scores from high to low to obtain the sorting results;

从所述排序结果中确定出评分靠前的第一预设数量的测量点,所述第一预设数量等于待提取测量点数量减去所有所述测量子区域的边界点的数量,所述待提取测量点数量是根据所述测量区域内的测量点总量和预设提取比例确定得到;Determine a first preset number of measurement points with top scores from the sorting results. The first preset number is equal to the number of measurement points to be extracted minus the number of boundary points of all the measurement sub-areas. The number of measurement points to be extracted is determined based on the total number of measurement points in the measurement area and the preset extraction ratio;

将确定出的所述第一预设数量的测量点和所述测量子区域的边界点作为所述目标测量点进行提取。The determined first preset number of measurement points and the boundary points of the measurement sub-area are extracted as the target measurement points.

第二方面,本申请还提供了一种无线网络测量点的提取装置,所述装置包括:In a second aspect, this application also provides a device for extracting wireless network measurement points. The device includes:

获取模块,用于获取测量区域内的各测量点的特征数据,其中,所述特征数据为用于表征测量点的无线网络性能的数据;An acquisition module, configured to acquire characteristic data of each measurement point within the measurement area, where the characteristic data is data used to characterize the wireless network performance of the measurement point;

划分模块,用于将所述测量区域内的各测量点划分至不同环境类型对应的测量子区域,所述环境类型用于表征测量子区域内的用户设备对无线网络性能的要求;A division module, configured to divide each measurement point in the measurement area into measurement sub-areas corresponding to different environment types, where the environment types are used to characterize the wireless network performance requirements of user equipment in the measurement sub-area;

确定模块,用于根据所述特征数据,确定所述测量子区域内的测量点的特征评分,所述特征评分是在参数值大于或等于预设阈值的情况下,基于与所述参数值对应的预设评分确定得到,所述参数值是指当前测量点的特征数据与前一测量点的特征数据之间的变化率和/或绝对值差值,所述测量子区域内的测量点不包括边界点;Determining module, configured to determine the characteristic score of the measurement point in the measurement sub-area according to the characteristic data. The characteristic score is based on the parameter value corresponding to the parameter value when the parameter value is greater than or equal to the preset threshold. The preset score of including boundary points;

提取模块,用于从所述测量区域内的各测量点中提取目标测量点,所述目标测量点包括所述特征评分排序靠前的第一预设数量的测量点和所述测量子区域的边界点。An extraction module, configured to extract target measurement points from each measurement point in the measurement area, where the target measurement points include a first preset number of measurement points ranked first in the feature score and the measurement sub-area. Boundary point.

第三方面,本申请还提供了一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;In a third aspect, this application also provides an electronic device, including a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory complete communication with each other through the communication bus;

存储器,用于存放计算机程序;Memory, used to store computer programs;

处理器,用于执行存储器上所存放的程序时,实现第一方面任一项实施例所述的无线网络测量点的提取方法的步骤。The processor is configured to implement the steps of the wireless network measurement point extraction method described in any embodiment of the first aspect when executing a program stored in the memory.

第四方面,本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面任一项实施例所述的无线网络测量点的提取方法的步骤。In a fourth aspect, the present application also provides a computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the wireless network measurement point as described in any embodiment of the first aspect is implemented. The steps of the extraction method.

本申请实施例提供的上述技术方案与现有技术相比具有如下优点:Compared with the existing technology, the above technical solutions provided by the embodiments of the present application have the following advantages:

本申请实施例提供的该方法,通过获取测量区域内的各测量点的特征数据,其中,所述特征数据为用于表征测量点的无线网络性能的数据;将所述测量区域内的各测量点划分至不同环境类型对应的测量子区域,所述环境类型用于表征测量子区域内的用户设备对无线网络性能的要求;根据所述特征数据,确定所述测量子区域内的测量点的特征评分,所述特征评分是在参数值大于或等于预设阈值的情况下,基于与所述参数值对应的预设评分确定得到,所述参数值是指当前测量点的特征数据与前一测量点的特征数据之间的变化率和/或绝对值差值,所述测量子区域内的测量点不包括边界点;从所述测量区域内的各测量点中提取目标测量点,所述目标测量点包括所述特征评分排序靠前的第一预设数量的测量点和所述测量子区域的边界点。通过这种方式,可以确定出各测量子区域内的测量点的特征评分,并对特征评分较高的测量点和测量子区域的边界点进行提取,即将特征较为明显的测量点提取出来进行后续分析,从而提高了测量点提取的准确率,使得测量区域的无线网络性能分析精度提高;同时,由于提取的目标测量点中还包含有测量子区域的分界点,因而可以较好地保留原始测量轨迹,避免压缩测量点后的轨迹无法客观反映原始测量轨迹。The method provided by the embodiment of the present application obtains the characteristic data of each measurement point in the measurement area, where the characteristic data is data used to characterize the wireless network performance of the measurement point; The points are divided into measurement sub-areas corresponding to different environment types. The environment types are used to characterize the wireless network performance requirements of user equipment in the measurement sub-area; according to the characteristic data, determine the measurement points of the measurement sub-areas. Feature score, which is determined based on the preset score corresponding to the parameter value when the parameter value is greater than or equal to the preset threshold. The parameter value refers to the difference between the feature data of the current measurement point and the previous one. The change rate and/or absolute value difference between the characteristic data of the measurement points, the measurement points in the measurement sub-area do not include boundary points; the target measurement point is extracted from each measurement point in the measurement area, the The target measurement points include a first preset number of measurement points with the highest feature score ranking and boundary points of the measurement sub-area. In this way, the feature scores of the measurement points in each measurement sub-area can be determined, and the measurement points with higher feature scores and the boundary points of the measurement sub-areas can be extracted, that is, the measurement points with more obvious characteristics can be extracted for subsequent analysis, thus improving the accuracy of measurement point extraction and improving the accuracy of wireless network performance analysis in the measurement area; at the same time, because the extracted target measurement points also include the demarcation points of the measurement sub-areas, the original measurements can be better retained trajectory to avoid that the trajectory after compressing the measurement points cannot objectively reflect the original measurement trajectory.

附图说明Description of the drawings

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the invention and together with the description serve to explain the principles of the invention.

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings needed to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, for those of ordinary skill in the art, It is said that other drawings can be obtained based on these drawings without exerting creative labor.

图1为本申请实施例提供的一种无线网络测量点的提取方法的流程示意图;Figure 1 is a schematic flow chart of a method for extracting wireless network measurement points provided by an embodiment of the present application;

图2为本申请实施例提供的一种泰森多边形的示意图;Figure 2 is a schematic diagram of a Thiessen polygon provided by an embodiment of the present application;

图3为本申请实施例提供的又一种无线网络测量点的提取方法的流程示意图;Figure 3 is a schematic flow chart of another method for extracting wireless network measurement points provided by an embodiment of the present application;

图4为本申请实施例提供的一种无线网络测量点的提取装置的结构示意图;Figure 4 is a schematic structural diagram of a device for extracting wireless network measurement points provided by an embodiment of the present application;

图5为本申请实施例提供的一种电子设备的结构示意图。FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.

具体实施方式Detailed ways

为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments These are part of the embodiments of this application, but not all of them. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of this application.

参见图1,图1为本申请实施例提供的一种无线网络测量点的提取方法的流程示意图。如图1所示,该无线网络测量点的提取方法可以包括如下步骤:Referring to Figure 1, Figure 1 is a schematic flow chart of a method for extracting wireless network measurement points provided by an embodiment of the present application. As shown in Figure 1, the wireless network measurement point extraction method may include the following steps:

步骤101、获取测量区域内的各测量点的特征数据,其中,特征数据为用于表征测量点的无线网络性能的数据。Step 101: Obtain characteristic data of each measurement point in the measurement area, where the characteristic data is data used to characterize the wireless network performance of the measurement point.

具体地,上述测量区域可以是指真实的地理区域,比如某个地市、某个省份的地理区域等等,也可以是仿真出来的测量区域。上述测量区域内的测量点可以是路测设备等设备在某一地理区域内的测量轨迹上的测量点;也可以是仿真出来的测量区域内的测量点。上述特征数据可以包括但不限于:信号质量、业务质量、关键事件、行驶速度、测量轨迹的曲线斜率、测量轨迹的曲线抖动等,其中,信号质量可以用于表示网络信号强度和覆盖质量(如重叠覆盖、弱覆盖)等;业务质量可以用于表示业务速率、时延等;关键事件可以用于表示事件失败/成功次数等;行驶速度可以用于表示路测设备行进速度;测量轨迹的曲线斜率可以用于表示测量轨迹的斜率变化情况;测量轨迹的曲线抖动用于表示测量轨迹的抖动情况。Specifically, the above-mentioned measurement area may refer to a real geographical area, such as a geographical area of a certain city, a certain province, etc., or it may be a simulated measurement area. The measurement points in the above-mentioned measurement area can be measurement points on the measurement trajectory of equipment such as drive test equipment in a certain geographical area; they can also be measurement points in a simulated measurement area. The above characteristic data can include but is not limited to: signal quality, service quality, key events, driving speed, curve slope of the measurement trajectory, curve jitter of the measurement trajectory, etc., where the signal quality can be used to represent network signal strength and coverage quality (such as Overlapping coverage, weak coverage), etc.; service quality can be used to represent service rate, delay, etc.; key events can be used to represent the number of event failures/successes, etc.; driving speed can be used to represent the traveling speed of road test equipment; the curve of the measurement trajectory The slope can be used to represent the slope change of the measurement trajectory; the curve jitter of the measurement trajectory is used to represent the jitter of the measurement trajectory.

获取特征数据的方式可以通过路测设备来获取,也可以从基站中获取,本申请不做具体限定。上述无线网络测量点的提取方法可以由路测设置来执行,也可以由与测量区域内的基站连接的电子设备(如服务器等)来执行,本申请不做具体限定。The method of obtaining characteristic data can be obtained through drive test equipment or from a base station, which is not specifically limited in this application. The above method for extracting wireless network measurement points can be performed by a drive test setting or by an electronic device (such as a server) connected to a base station in the measurement area, which is not specifically limited in this application.

步骤102、将测量区域内的各测量点划分至不同环境类型对应的测量子区域,环境类型用于表征测量子区域内的用户设备对无线网络性能的要求。Step 102: Divide each measurement point in the measurement area into measurement sub-areas corresponding to different environment types. The environment type is used to characterize the wireless network performance requirements of the user equipment in the measurement sub-area.

具体地,上述环境类型用于表征测量子区域内的用户设备对无线网络的性能要求,不同的环境类型对应的性能要求不同。该环境类型可以通过基站之间的站间距来确定的。该环境类型可以包括密集城区、一般城区、郊区、农村等类型。其中,密集城区、一般城区、郊区、农村对应的站间距依次增大,其中,密集城区对应的站间距最小,农村对应的站间距最大。由于不同环境类型对无线网络的性能要求不同,例如,密集城区用户接入量变化较大,信号起伏较大,可以在密集城区保留较多的测量点;而农村用户接入量变化较小,信号起伏较小,可以在农村保留较少的测量点,因而可以将测量区域按照环境类型划分成多个测量子区域,再确定测量子区域与测量点的位置关系,确定各测量点所对应的测量子区域。这样,方便后续针对不同环境类型下的测量子区域内的网络特征进行分析,确定并提取具有网络特征明显的采样点,从而提升无线网络性能分析的精度。Specifically, the above environment type is used to characterize the performance requirements of the user equipment in the measurement sub-area for the wireless network. Different environment types have different performance requirements. The type of environment can be determined by the distance between base stations. The environment type can include dense urban areas, general urban areas, suburbs, rural areas, etc. Among them, the distance between stations corresponding to dense urban areas, general urban areas, suburbs, and rural areas increases in order. Among them, the distance between stations corresponding to dense urban areas is the smallest, and the distance between stations corresponding to rural areas is the largest. Since different environmental types have different performance requirements for wireless networks, for example, in dense urban areas, user access volume changes greatly and signal fluctuations are large, so more measurement points can be reserved in dense urban areas; while in rural areas, user access volume changes less, The signal fluctuation is small, and fewer measurement points can be reserved in rural areas. Therefore, the measurement area can be divided into multiple measurement sub-areas according to environmental types, and then the positional relationship between the measurement sub-areas and the measurement points can be determined, and the corresponding measurement points of each measurement point can be determined. Measure sub-areas. In this way, it is convenient to conduct subsequent analysis of network characteristics in measurement sub-areas under different environmental types, and determine and extract sampling points with obvious network characteristics, thereby improving the accuracy of wireless network performance analysis.

步骤103、根据特征数据,确定测量子区域内的测量点的特征评分,特征评分是在参数值大于或等于预设阈值的情况下,基于与参数值对应的预设评分确定得到,参数值是指当前测量点的特征数据与前一测量点的特征数据之间的变化率和/或绝对值差值,测量子区域内的测量点不包括边界点。Step 103: Determine the characteristic score of the measurement point in the measurement sub-area based on the characteristic data. The characteristic score is determined based on the preset score corresponding to the parameter value when the parameter value is greater than or equal to the preset threshold. The parameter value is Refers to the change rate and/or absolute value difference between the characteristic data of the current measurement point and the characteristic data of the previous measurement point. The measurement points within the measurement sub-area do not include boundary points.

具体地,上述参数值用于表征测量点的特征数据的变化情况,该参数值可以是同一测量子区域内的当前测量点的特征数据与前一测量点的特征数据之间的变化率和/或绝对值差值。Specifically, the above parameter value is used to characterize the change of the characteristic data of the measurement point. The parameter value can be the change rate and/or the change rate between the characteristic data of the current measurement point and the characteristic data of the previous measurement point in the same measurement sub-area. or absolute value difference.

在该步骤中,可以针对每个测量子区域,预先设置与该参数值对应的预设阈值和预设评分,这样,就可以将该参数值与预设阈值进行比较,当该参数值大于或等于参数值对应的预设阈值时,可以将该参数值对应的预设评分,作为当前测量点的特征评分;当该参数值小于参数值对应的预设阈值时,则不对当前测量点进行打分。采用上述相同的方式,可以得到每个测量子区域内的各测量点的特征评分。其中,特征评分越高,表示该测量点的特征越明显,越需要进行提取;特征评分越低,表示该测量点特征越不明显,越可以进行舍弃。In this step, a preset threshold and a preset score corresponding to the parameter value can be preset for each measurement sub-area. In this way, the parameter value can be compared with the preset threshold. When the parameter value is greater than or When it is equal to the preset threshold corresponding to the parameter value, the preset score corresponding to the parameter value can be used as the feature score of the current measurement point; when the parameter value is less than the preset threshold corresponding to the parameter value, the current measurement point will not be scored. . Using the same method as above, the feature scores of each measurement point in each measurement sub-area can be obtained. Among them, the higher the feature score is, the more obvious the features of the measurement point are and the more they need to be extracted; the lower the feature score is, the less obvious the features of the measurement point are and the more they can be discarded.

需要说明的是,每个参数值对应的预设评分可以是一个数值,也可以是一个数值范围。当预设评分为一个数值(比如5分)时,当参数值大于或等于预设阈值时,则给该当前测量点打分为5分;当预设评分为一个数值范围时,比如5-10分,那么当参数值大于或等于预设阈值时,可以根据参数值超出预设阈值的程度,从该数值范围中选择一个合适的评分进行打分,如参数值刚好超过预设阈值,则给该当前测量点打分为5分,如参数值是预设阈值的两倍,则给该当前测量点打分为10分等。并且,在确定测量子区域的测量点的特征评分时,可以确定测量子区域上的每个测量点的特征评分,也可以仅确定除测量子区域的边界点以外的内部测量点的特征评分,这样有利于提高处理效率。此处的测量子区域的边界点是指处于两个不同的测量子区域之间的临界点,由于测量子区域是基于环境类型划分的,因而处于两个不同的测量子区域之间的临界点的特征通常较为明显,默认需要提取这些边界点。It should be noted that the preset score corresponding to each parameter value can be a numerical value or a numerical range. When the preset score is a numerical value (such as 5 points), when the parameter value is greater than or equal to the preset threshold, the current measurement point is scored as 5 points; when the preset score is a numerical range, such as 5-10 points, then when the parameter value is greater than or equal to the preset threshold, an appropriate score can be selected from the value range according to the degree to which the parameter value exceeds the preset threshold. If the parameter value just exceeds the preset threshold, then the The current measurement point is scored as 5 points. If the parameter value is twice the preset threshold, the current measurement point is scored as 10 points, etc. Moreover, when determining the feature scores of the measurement points of the measurement sub-region, the feature scores of each measurement point on the measurement sub-region may be determined, or only the feature scores of internal measurement points other than the boundary points of the measurement sub-region may be determined, This will help improve processing efficiency. The boundary point of the measurement sub-area here refers to the critical point between two different measurement sub-areas. Since the measurement sub-area is divided based on the environment type, it is at the critical point between two different measurement sub-areas. The features are usually obvious, and these boundary points need to be extracted by default.

步骤104、从测量区域内的各测量点中提取目标测量点,目标测量点包括特征评分排序靠前的第一预设数量的测量点和测量子区域的边界点。Step 104: Extract target measurement points from each measurement point in the measurement area. The target measurement points include a first preset number of measurement points ranked first in feature scores and boundary points of the measurement sub-region.

在该步骤中,可以将特征评分排序靠前的第一预设数量的测量点和测量子区域的边界点,作为目标测量点进行提取,进而针对这些目标测量点对测量区域的无线网络的性能进行分析。In this step, the first preset number of measurement points and the boundary points of the measurement sub-area with the highest feature scores can be extracted as target measurement points, and then the performance of the wireless network in the measurement area can be evaluated based on these target measurement points. Perform analysis.

在本实施例中,可以确定出各测量子区域内的测量点的特征评分,并对特征评分较高的测量点和测量子区域的边界点进行提取,即将特征较为明显的测量点提取出来进行后续分析,从而提高了测量点提取的准确率,使得测量区域的无线网络性能分析精度提高;同时,由于提取的目标测量点中还包含有测量子区域的分界点,因而可以较好地保留原始测量轨迹,避免压缩测量点后的轨迹无法客观反映原始测量轨迹。In this embodiment, the characteristic scores of the measurement points in each measurement sub-region can be determined, and the measurement points with higher characteristic scores and the boundary points of the measurement sub-regions can be extracted, that is, the measurement points with more obvious characteristics can be extracted for further processing. Subsequent analysis improves the accuracy of measurement point extraction and improves the accuracy of wireless network performance analysis in the measurement area. At the same time, because the extracted target measurement points also include the demarcation points of the measurement sub-areas, the original data can be better retained. Measure the trajectory to avoid that the trajectory after compressing the measurement points cannot objectively reflect the original measurement trajectory.

进一步地,上述步骤、将测量区域内的各测量点划分至不同环境类型对应的测量子区域,包括:Further, the above steps divide each measurement point in the measurement area into measurement sub-areas corresponding to different environment types, including:

获取测量区域内的站点分布信息;Obtain site distribution information within the measurement area;

基于站点分布信息,构建每个站点对应的泰森多边形;Based on the site distribution information, the Thiessen polygon corresponding to each site is constructed;

根据测量子区域内的相邻站点之间的站间距,对泰森多边形进行划分,形成不同环境类型对应的测量子区域,其中,每个测量子区域内的相邻站点之间的站间距属于同一距离范围,不同的环境类型的站间距对应不同的距离范围,测量子区域包括至少一个泰森多边形;According to the station spacing between adjacent stations in the measurement sub-area, the Thiessen polygon is divided to form measurement sub-areas corresponding to different environmental types. Among them, the station spacing between adjacent stations in each measurement sub-area belongs to In the same distance range, the station spacing of different environment types corresponds to different distance ranges, and the measurement sub-area includes at least one Thiessen polygon;

根据测量区域内的各测量点在泰森多边形中的位置分布,确定各测量点所对应的测量子区域。According to the position distribution of each measurement point in the Thiessen polygon within the measurement area, the measurement sub-region corresponding to each measurement point is determined.

在一实施例中,可以将测量区域按照环境类型划分为不同的多个测量子区域。具体地,可以根据获取到的测量区域内的站点(即基站)分布信息,构建每个站点对应的泰森多边形(又称为冯洛诺伊图,英文为Voronoi diagram),泰森多边形的示意图如图2所示。其中,每个泰森多边形内均有一个站点,泰森多边形内的测量点到相应站点的距离最近,且位于泰森多边形边上的测量点到其两边的站点的距离相等。在构建完每个站点对应的泰森多边形后,可以根据测量子区域内的相邻站点之间的站间距,将站间距属于同于距离范围的泰森多边形进行聚类合并,从而划分成不同环境类型对应的测量子区域,进而根据测量区域内的各测量点在泰森多边形中的位置分布,确定各测量点所对应的测量子区域,从而方便后续针对不同测量子区域,按照不同的无线网络性能要求分别对其内的测量点的特征评分进行打分。In an embodiment, the measurement area can be divided into multiple different measurement sub-areas according to environment types. Specifically, the Thiessen polygon (also known as Voronoi diagram in English) corresponding to each site can be constructed based on the obtained distribution information of sites (i.e., base stations) in the measurement area. The schematic diagram of the Thiessen polygon as shown in picture 2. Among them, there is a station in each Thiessen polygon. The distance between the measurement point within the Thiessen polygon and the corresponding station is the shortest, and the distance between the measurement point located on the edge of the Thiessen polygon and the stations on both sides is equal. After constructing the Thiessen polygons corresponding to each site, the Thiessen polygons with the same distance range can be clustered and merged according to the spacing between adjacent sites in the measured sub-area, thereby dividing them into different The measurement sub-area corresponding to the environment type, and then according to the position distribution of each measurement point in the measurement area in the Thiessen polygon, the measurement sub-area corresponding to each measurement point is determined, so as to facilitate subsequent measurement of different measurement sub-areas according to different wireless Network performance requires that the characteristic scores of the measurement points within it be scored separately.

进一步地,上述步骤、根据特征数据,确定测量子区域内的测量点的特征评分,包括:Further, the above steps determine the characteristic scores of the measurement points within the measurement sub-area based on the characteristic data, including:

根据特征数据,分别计算测量子区域内的各测量点对应的参数值;According to the characteristic data, calculate the parameter values corresponding to each measurement point in the measurement sub-area;

将参数值和测量子区域对应的预设阈值进行比较,其中,不同的测量子区域对应的预设阈值不同;Compare the parameter value with a preset threshold corresponding to the measurement sub-region, where the preset thresholds corresponding to different measurement sub-regions are different;

在参数值大于或等于测量子区域对应的预设阈值的情况下,将与参数值对应的预设评分确定为特征评分。When the parameter value is greater than or equal to the preset threshold corresponding to the measurement sub-region, the preset score corresponding to the parameter value is determined as the feature score.

在一实施例中,不同的测量子区域对应的预设阈值不同,也就是说,不同的测量子区域对应的特征评分的评分要求不同。例如,在将测量区域按照环境类型划分成密集城区、一般城区、郊区、农村对应的多个测量子区域后,可以对密集城区、一般城区、郊区、农村对应的测量子区域分别设置不同的预设阈值,如密集城区对应的测量子区域的预设阈值较高,农村对应的测量子区域的预设阈值较低,这样,就可以基于不同测量子区域的预设阈值,对不同测量子区域内的测量点的特征评分进行确定,从而提取出每个测量子区域内具有无线网络特征的测量点。In one embodiment, the preset thresholds corresponding to different measurement sub-regions are different, that is to say, the scoring requirements for feature scores corresponding to different measurement sub-regions are different. For example, after dividing the measurement area into multiple measurement sub-areas corresponding to dense urban areas, general urban areas, suburbs, and rural areas according to environmental types, different presets can be set for the measurement sub-areas corresponding to dense urban areas, general urban areas, suburbs, and rural areas. Set thresholds. For example, the preset thresholds for measurement sub-areas corresponding to dense urban areas are higher, and the preset thresholds for measurement sub-areas corresponding to rural areas are lower. In this way, different measurement sub-areas can be measured based on the preset thresholds of different measurement sub-areas. The characteristic scores of the measurement points within each measurement sub-area are determined, thereby extracting the measurement points with wireless network characteristics in each measurement sub-area.

在本实施例中,在无线网络测量过程中涉及到不同环境类型的测量子区域时,由于每个测量子区域对无线网路性能要求有所不同,因而可以基于不同环境类型对无线网络性能的要求,将测量区域按照环境类型划分成多个测量子区域。例如,密集城区用户接入量变化较大,信号起伏较大,需要在密集城区保留较多的测量点,而农村用户接入量变化较小,信号起伏较小,需要在农村保留较少的测量点。再根据各测量点和各测量子区域的位置关系,确定各测量点所对应的测量子区域。这样方便后续针对不同环境类型下的测量子区域内的网络特征明显的采样点进行提取,以此来提升无线网络性能分析精度。In this embodiment, when the wireless network measurement process involves measurement sub-areas of different environmental types, since each measurement sub-area has different requirements for wireless network performance, the wireless network performance can be measured based on different environmental types. According to the requirements, the measurement area is divided into multiple measurement sub-areas according to the environment type. For example, if the access volume of users in dense urban areas changes greatly and the signal fluctuations are large, more measurement points need to be reserved in dense urban areas. However, in rural areas, the access volume of users changes less and the signal fluctuations are smaller, so fewer measurement points need to be reserved in rural areas. Measuring point. Then, based on the positional relationship between each measurement point and each measurement sub-region, the measurement sub-region corresponding to each measurement point is determined. This facilitates subsequent extraction of sampling points with obvious network characteristics in measurement sub-areas under different environmental types, thereby improving the accuracy of wireless network performance analysis.

进一步地,测量子区域对应的预设阈值包括与参数值对应设置的变化率阈值和/或绝对值差值阈值;Further, the preset threshold corresponding to the measurement sub-region includes a change rate threshold and/or an absolute value difference threshold set corresponding to the parameter value;

上述步骤、将参数值和测量子区域对应的预设阈值进行比较,包括:The above steps compare the parameter value with the preset threshold corresponding to the measurement sub-area, including:

在参数值为变化率的情况下,将参数值与变化率阈值进行比较;和/或where the parameter value is a rate of change, compare the parameter value to a rate of change threshold; and/or

在参数值为绝对值差值的情况下,将参数值与绝对值差值阈值进行比较。In the case where the parameter value is an absolute difference, the parameter value is compared to an absolute difference threshold.

在一实施例中,可以根据参数值对应的类型,分别设置对应类型的预设阈值。具体地,当参数值为变化率时,可以将该参数值与变化率阈值进行比较;当参数值为绝对值差值时,可以将该参数值与绝对值差值阈值进行比较;当参数值为变化率和绝对值差值时,可以将该参数值分别与变化率阈值和绝对值差值阈值进行比较。这样,可以增加参数值的灵活性,不管参数值是变化率,还是绝对值差值,均可以有对应的预设阈值进行比较。In an embodiment, the preset thresholds of corresponding types can be set respectively according to the types corresponding to the parameter values. Specifically, when the parameter value is a change rate, the parameter value can be compared with the change rate threshold; when the parameter value is an absolute value difference, the parameter value can be compared with the absolute value difference threshold; when the parameter value For rate of change and absolute difference, the parameter value can be compared with the rate of change threshold and the absolute difference threshold respectively. In this way, the flexibility of parameter values can be increased. Regardless of whether the parameter value is a change rate or an absolute value difference, there can be a corresponding preset threshold for comparison.

进一步地,参数值是基于信号质量、业务质量、关键事件、行驶速度、测量轨迹的曲线斜率、测量轨迹的曲线抖动中的至少一种特征数据计算得到;同一测量子区域内的不同参数值对应的变化率阈值和绝对值差值阈值均不相同;Further, the parameter value is calculated based on at least one characteristic data among signal quality, service quality, key events, driving speed, curve slope of the measurement trajectory, and curve jitter of the measurement trajectory; different parameter values in the same measurement sub-area correspond to The change rate threshold and absolute value difference threshold of are different;

上述步骤、在参数值大于或等于测量子区域对应的预设阈值的情况下,将与参数值对应的预设评分确定为特征评分,包括:In the above steps, when the parameter value is greater than or equal to the preset threshold corresponding to the measurement sub-area, the preset score corresponding to the parameter value is determined as the feature score, including:

在目标参数值大于或等于目标参数值对应的变化率阈值和/或绝对值差值阈值的情况下,获取与目标参数值对应的预设评分,其中,目标参数值为基于任意一种或多种特征数据计算得到的参数值;When the target parameter value is greater than or equal to the change rate threshold and/or the absolute difference threshold corresponding to the target parameter value, a preset score corresponding to the target parameter value is obtained, wherein the target parameter value is based on any one or more Parameter values calculated from characteristic data;

计算预设评分的求和结果,并将求和结果确定为特征评分。Calculate the summation result of the preset scores and determine the summation result as the feature score.

在一实施例中,上述特征数据可以包括但不限于:信号质量、业务质量、关键事件、行驶速度、测量轨迹的曲线斜率、测量轨迹的曲线抖动等,其中,信号质量可以用于表示网络信号强度和覆盖质量(如重叠覆盖、弱覆盖)等;业务质量可以用于表示业务速率、时延等;关键事件可以用于表示事件失败/成功次数等;行驶速度可以用于表示路测设备的行进速度;测量轨迹的曲线斜率可以用于表示测量轨迹的斜率变化情况;测量轨迹的曲线抖动用于表示测量轨迹的抖动情况。上述参数值可以是基于上述特征数据中的一种或者多种特征数据计算得到,并且对于每种特征数据对应的参数值,均存在与之对应的变化率阈值和/或绝对值差值阈值,这样,测量子区域内的每个测量点可以根据每种特征数据对应的参数值和对应的变化率阈值和/或绝对值差值阈值的大小,确定每种特征数据对应的参数值的特征评分,进而将所有种类的特征数据对应的参数值对应的预设评分进行累加,就可以得到每个测量点最终的特征评分。In an embodiment, the above characteristic data may include but is not limited to: signal quality, service quality, key events, driving speed, curve slope of the measurement trajectory, curve jitter of the measurement trajectory, etc., where the signal quality may be used to represent the network signal Strength and coverage quality (such as overlapping coverage, weak coverage), etc.; service quality can be used to represent service rate, delay, etc.; key events can be used to represent the number of event failures/successes, etc.; driving speed can be used to represent the speed of road test equipment Travel speed; the curve slope of the measurement trajectory can be used to represent the slope change of the measurement trajectory; the curve jitter of the measurement trajectory is used to represent the jitter of the measurement trajectory. The above parameter values may be calculated based on one or more characteristic data among the above characteristic data, and for the parameter value corresponding to each characteristic data, there is a corresponding change rate threshold and/or absolute value difference threshold, In this way, each measurement point in the measurement sub-area can determine the feature score of the parameter value corresponding to each feature data based on the parameter value corresponding to each feature data and the corresponding change rate threshold and/or the size of the absolute value difference threshold. , and then by accumulating the preset scores corresponding to the parameter values corresponding to all types of feature data, the final feature score of each measurement point can be obtained.

进一步地,采用如下公式确定特征评分:Further, the following formula is used to determine the feature score:

其中,xi表示第i种特征数据对应的参数值,R表示所述变化率阈值,sgrad(xi,R)表示当xi大于或等于R时,对第i种特征数据的参数值对应的特征评分进行求和计算,当xi小于R时,对第i种特征数据的参数值对应的特征评分不打分,i∈(1,m);xj表示第j种特征数据对应的参数值,R′表示所述绝对值差值阈值,sabs(xj,R′)表示当xj大于或等于R′时,对第j种特征数据的参数值对应的特征评分进行求和计算,当xj小于R′时,对第j种特征数据的参数值对应的特征评分不打分,j∈(m+1,n),m表示参数值为变化率的特征数据的种类数量,n表示所有特征数据的种类数量。Among them, xi represents the parameter value corresponding to the i-th feature data, R represents the change rate threshold, and s grad ( xi , R) represents the parameter value for the i-th feature data when x i is greater than or equal to R. The corresponding feature scores are summed and calculated. When x i is less than R, the feature score corresponding to the parameter value of the i-th feature data is not scored, i∈(1,m); x j represents the j-th feature data corresponding to Parameter value, R′ represents the absolute value difference threshold, s abs (x j ,R′) indicates that when x j is greater than or equal to R′, the feature scores corresponding to the parameter values of the jth feature data are summed Calculate, when x j is less than R′, the feature score corresponding to the parameter value of the jth feature data will not be scored, j∈(m+1,n), m represents the number of feature data types whose parameter value is the change rate, n represents the number of types of all feature data.

在一可选实施例中,可以将上述特征数据按照两种方式来确定特征评分,一种方式是根据前后测量点的特征数据的变化率,以及变化率阀值比较确定,该部分的特征数据可以包括信号质量、业务质量等,因为该部分的特征数据一般在相邻栅格测量点的变化趋势较为平滑,基于变化率指标反映网络抖动状态较为清晰,我们将该部分特征数据划分至i,i∈(1,m);另一种方式是基于前后测量点的特征数据的绝对值差值(或者当前测量点),以及绝对值差值阈值比较确定,该部分的特征数据可以包括关键事件、行驶速度、测量轨迹的曲线斜率、测量轨迹的曲线抖动等,因为该部分的特征数据只要超过对应的预设阀值,即能够较好的体现网络状态变化,我们将该部分特征数据划分至j,j∈(m+1,n)。无论基于上述任意一种方式,均是通过衡量测量区域内测量点的多因素的综合变化情况,尽量提取反映网络状态起伏变化较大的测量点,从而通过上述测量点评估网络潜在问题。In an optional embodiment, the above characteristic data can be used to determine the characteristic score in two ways. One way is to determine based on the change rate of the characteristic data of the previous and later measurement points and the change rate threshold. The characteristic data of this part It can include signal quality, service quality, etc., because this part of the characteristic data generally has a smooth changing trend at adjacent grid measurement points, and the network jitter status is clearly reflected based on the change rate indicator. We divide this part of the characteristic data into i, i∈(1,m); Another way is to determine based on the absolute value difference of the characteristic data of the previous and later measurement points (or the current measurement point) and the absolute value difference threshold. This part of the characteristic data can include key events. , driving speed, curve slope of the measurement trajectory, curve jitter of the measurement trajectory, etc. Because this part of the characteristic data can better reflect the network status changes as long as it exceeds the corresponding preset threshold, we divide this part of the characteristic data into j,j∈(m+1,n). No matter based on any of the above methods, by measuring the comprehensive changes of multiple factors at the measurement points in the measurement area, we try to extract measurement points that reflect large fluctuations in network status, so as to evaluate potential network problems through the above measurement points.

具体地,对于第一部分的特征数据,由于其对应的参数值xi为变化率,该xi的计算公式可以为:Specifically, for the first part of the characteristic data, since its corresponding parameter value xi is the change rate, the calculation formula of xi can be:

其中,表示当前测量点的第i种特征数据,/>表示前一测量点的第i种特征数据。in, Represents the i-th characteristic data of the current measurement point,/> Represents the i-th characteristic data of the previous measurement point.

对于第二部分的特征数据,由于其对应的参数值xj为绝对值差值,该xj的计算公式可以为:For the second part of the feature data, since its corresponding parameter value x j is an absolute value difference, the calculation formula of x j can be:

其中,表示当前测量点的第j种特征数据,/>表示前一测量点的第j种特征数据。in, Represents the jth characteristic data of the current measurement point,/> Represents the jth characteristic data of the previous measurement point.

由此可以采用如下公式,计算出当前测量点的所有特征数据的参数值对应的预设评分之和,作为当前测量点的特征评分:From this, the following formula can be used to calculate the sum of the preset scores corresponding to the parameter values of all feature data of the current measurement point, as the feature score of the current measurement point:

其中,xi表示第i种特征数据对应的参数值,R表示所述变化率阈值,sgrad(xi,R)表示当xi大于或等于R时,对第i种特征数据的参数值对应的特征评分进行求和计算,当xi小于R时,对第i种特征数据的参数值对应的特征评分不打分,i∈(1,m);xj表示第j种特征数据对应的参数值,R′表示所述绝对值差值阈值,sabs(xj,R′)表示当xj大于或等于R′时,对第j种特征数据的参数值对应的特征评分进行求和计算,当xj小于R′时,对第j种特征数据的参数值对应的特征评分不打分,j∈(m+1,n),m表示参数值为变化率的特征数据的种类数量,n表示所有特征数据的种类数量。Among them, xi represents the parameter value corresponding to the i-th feature data, R represents the change rate threshold, and s grad ( xi , R) represents the parameter value for the i-th feature data when x i is greater than or equal to R. The corresponding feature scores are summed and calculated. When x i is less than R, the feature score corresponding to the parameter value of the i-th feature data is not scored, i∈(1,m); x j represents the j-th feature data corresponding to Parameter value, R′ represents the absolute value difference threshold, s abs (x j ,R′) indicates that when x j is greater than or equal to R′, the feature scores corresponding to the parameter values of the jth feature data are summed Calculate, when x j is less than R′, the feature score corresponding to the parameter value of the jth feature data will not be scored, j∈(m+1,n), m represents the number of feature data types whose parameter value is the change rate, n represents the number of types of all feature data.

假设对于测量区域内的任意一条包含k个测量分段的测试线路轨迹点由组成,其中,k表示位于第k个测量子区域对应的测量分段,N表示该测量分段上的测量点的总量。将测量分段上相邻的两个测量点一一进行分组,如将/>和/>划为第一组,/>和/>划为第二组,依次类推,共计n-1组,其中/>和/>分别是测量分段两端的边界点,在提取测量点时需予以保留。同时,对于测量分段内的测量点/>可以根据上述公式确定的到k个测量分段内的每个测量点的特征评分。具体地,对于比较xi和R的大小,若xi大于或等于R,则取得相应地预设积分si。例如,在评价P2点的信号质量时,计算P2点信号质量相对与P1点的信号质量的变化率,若该变化率大于或等于变化率阈值,则P2点获得对应预设积分si,否则不得分。在评价P2点的测量轨迹的曲线斜率时,计算P2点曲线斜率相对与P1点的曲线斜率的绝对值差值,若该绝对值差值大于或等于绝对值差值阈值,则P2点在曲线斜率考量上获取对应的预设积分sj,否则不得分。又例如在评价P2点的关键事件时,若P2点发生切换失败次数xj大于切换门限R′,则P2点在关键事件考量上获取对应的分值,否则不得分。同理,可以根据上述公式确定的到每个测量分段内的每个测量点的特征评分。Assume that for any test line trajectory point containing k measurement segments in the measurement area, Composition, where k represents the measurement segment corresponding to the kth measurement sub-area, and N represents the total number of measurement points on the measurement segment. Group the two adjacent measurement points one by one on the measurement segment, such as //> and/> Classified as Group 1,/> and/> Divided into the second group, and so on, a total of n-1 groups, among which/> and/> They are the boundary points at both ends of the measurement segment, which need to be retained when extracting measurement points. At the same time, for the measurement points within the measurement segment/> The feature score to each measurement point within k measurement segments can be determined according to the above formula. Specifically, for comparing the magnitudes of xi and R, if xi is greater than or equal to R, the corresponding preset integral s i is obtained. For example, when evaluating the signal quality of point P2 , calculate the change rate of the signal quality of point P2 relative to the signal quality of point P1 . If the change rate is greater than or equal to the change rate threshold, then point P2 will obtain the corresponding preset points s i , otherwise no score. When evaluating the curve slope of the measurement trajectory of point P2 , calculate the absolute value difference between the slope of the curve of point P2 and the slope of the curve of point P1 . If the absolute value difference is greater than or equal to the absolute value difference threshold, then P Point 2 obtains the corresponding preset integral s j based on the slope of the curve, otherwise no points are scored. For another example, when evaluating the key event of point P2 , if the number of handover failures x j at point P2 is greater than the handover threshold R′, then point P2 will obtain the corresponding score in the consideration of key events, otherwise no score will be obtained. In the same way, the characteristic score to each measurement point in each measurement segment can be determined according to the above formula.

进一步地,上述步骤104、从测量区域内的各测量点中提取目标测量点,包括:Further, the above step 104, extracting target measurement points from each measurement point in the measurement area, includes:

将特征评分按照从高到低的顺序进行排序,得到排序结果;Sort the feature scores from high to low to get the sorting results;

从排序结果中确定出评分靠前的第一预设数量的测量点,第一预设数量等于待提取测量点数量减去所有测量子区域的边界点的数量,待提取测量点数量是根据测量区域内的测量点总量和预设提取比例确定得到;Determine a first preset number of measurement points with top scores from the sorting results. The first preset number is equal to the number of measurement points to be extracted minus the number of boundary points in all measurement sub-areas. The number of measurement points to be extracted is based on the measurement The total number of measurement points in the area and the preset extraction ratio are determined;

将确定出的第一预设数量的测量点和测量子区域的边界点作为目标测量点进行提取。The determined first preset number of measurement points and the boundary points of the measurement sub-area are extracted as target measurement points.

在一实施例中,可以对各测量子区域的测量点的特征评分按照分值从高到低进行排序,分值越该表征该测量点反映网络状态特征越显著,其重要性越大,而对于分值较低的测量点,说明在通过不同特征数据反映网络状态特征的前提下,其效果并未完全充分体现当前网络状态。然后按照一定抽稀率(即预设提取比例)选择分值较大的内点,以及测量子区域的边界点进行提取。例如,假设测量区域内的原始测量点有1000个,抽稀率为10%,测量子区域的边界点有10个,那么可以选取出测量子区域内的测量点中特征评分较大的90个测量点,将这90个测量点和10个边界点作为该测量区域最终反映当前网络状态的特征点进行提取,从而提升后续处理分析的数据量,提高处理分析的效率。In one embodiment, the characteristic scores of the measurement points in each measurement sub-area can be sorted from high to low. The higher the score, the more significant the characteristic of the measurement point reflecting the network status, and the greater its importance. For measurement points with low scores, it means that on the premise of reflecting network status characteristics through different characteristic data, the effect does not fully reflect the current network status. Then according to a certain thinning rate (that is, the preset extraction ratio), the inner points with larger scores and the boundary points of the measurement sub-area are selected for extraction. For example, assuming that there are 1,000 original measurement points in the measurement area, the thinning rate is 10%, and there are 10 boundary points in the measurement sub-area, then 90 measurement points with larger feature scores in the measurement sub-area can be selected. Measurement points, these 90 measurement points and 10 boundary points are extracted as the characteristic points of the measurement area that ultimately reflect the current network status, thereby increasing the amount of data for subsequent processing and analysis and improving the efficiency of processing and analysis.

在一可选实施例中,该无线网络测量点的提取方法可以包括如下步骤,如图3所示:In an optional embodiment, the method for extracting wireless network measurement points may include the following steps, as shown in Figure 3:

步骤301、将测量区域内的各测量点划分至不同环境类型对应的测量子区域;Step 301: Divide each measurement point in the measurement area into measurement sub-areas corresponding to different environment types;

步骤302、确定每个测量子区域内的测量点参与网络状态特征评价的特征数据;Step 302: Determine the characteristic data of the measurement points in each measurement sub-area that participate in the network status characteristic evaluation;

步骤303、为每个参与网络状态特征评价的特征数据适配对应的预设阈值和预设评分;Step 303: Adapt the corresponding preset threshold and preset score for each feature data participating in the network status feature evaluation;

步骤304、将每个测量子区域内的任意相邻的两个测量点两两分组;Step 304: Group any two adjacent measurement points in each measurement sub-area into two groups;

步骤305、计算每组特征数据的变化率和/或绝对值差值,并将变化率和/或绝对值差值与预设阈值比较;Step 305: Calculate the change rate and/or absolute value difference of each set of feature data, and compare the change rate and/or absolute value difference with the preset threshold;

步骤306、依次计算每个测量子区域内的测量点的各个特征数据对应的预设评分之和,得到特征评分;Step 306: Calculate the sum of the preset scores corresponding to each feature data of the measurement points in each measurement sub-area in turn to obtain the feature score;

步骤307、将特征评分按照从高到低的顺序排序;Step 307: Sort the feature scores from high to low;

步骤308、通过预设的抽稀率,提取特征评分排序靠前的第一预设数量的测量点和测量子区域的边界点,并将其作为当前网络环境的输出。Step 308: Extract the first preset number of measurement points and the boundary points of the measurement sub-area with the highest feature score ranking through the preset thinning rate, and use them as the output of the current network environment.

在本实施例中,可以通过设置抽稀率,综合利用测量点的特征数据进行打分评价,再根据打分结果确定测量点的取舍,在最大可能保留无线网络特征的情况下,从而对测量轨迹曲线进行压缩,提升网络分析效率。与现有技术相比,传统的网络特征评估基于单一指标,或者采用多维指标的联合分析。但这种方式需要获取所有测量点的指标数据,对于一些需要快速处理场景,如小屏场景等应用时,需要耗费较多的处理和传输资源;而本申请中的无线网络测量点的提取方法,可以通过特征提取和评价,有效区分测量点的重要性,从而指导重要性较高的测量点的提取。In this embodiment, the thinning rate can be set, the characteristic data of the measurement points can be comprehensively used for scoring and evaluation, and then the selection of measurement points can be determined based on the scoring results, so as to preserve the characteristics of the wireless network to the greatest extent possible, thereby improving the measurement trajectory curve. Perform compression to improve network analysis efficiency. Compared with existing technologies, traditional network feature evaluation is based on a single indicator or uses joint analysis of multi-dimensional indicators. However, this method needs to obtain the indicator data of all measurement points. For some scenarios that require fast processing, such as small screen scenarios, it requires more processing and transmission resources; and the extraction method of wireless network measurement points in this application , the importance of measurement points can be effectively distinguished through feature extraction and evaluation, thereby guiding the extraction of measurement points with higher importance.

本申请中的无线网络测量点的提取方法可以应用于无线网络测试后的处理分析场景中,通过评估无线网络测量点的特征重要性,从而有针对性的对区域问题进行后续优化处理,例如,通过提取重要性高的测量点,表征当前测试或优化区域的网络状态。对于测量点的提取、状态评估,都具有较大的意义。The extraction method of wireless network measurement points in this application can be applied to the processing and analysis scenario after wireless network testing. By evaluating the characteristic importance of wireless network measurement points, subsequent optimization processing of regional problems can be carried out in a targeted manner, for example, Characterize the network status of the current test or optimization area by extracting measurement points of high importance. It is of great significance for the extraction of measurement points and status assessment.

除此之外,本申请实施例还提供一种无线网络测量点的提取装置。参见图4,图4为本申请实施例提供的一种无线网络测量点的提取装置的结构示意图。如图4所示,该无线网络测量点的提取装置400,包括:In addition, embodiments of the present application also provide a device for extracting wireless network measurement points. Referring to Figure 4, Figure 4 is a schematic structural diagram of a device for extracting wireless network measurement points provided by an embodiment of the present application. As shown in Figure 4, the wireless network measurement point extraction device 400 includes:

获取模块401,用于获取测量区域内的各测量点的特征数据,其中,特征数据为用于表征测量点的无线网络性能的数据;The acquisition module 401 is used to acquire the characteristic data of each measurement point in the measurement area, where the characteristic data is data used to characterize the wireless network performance of the measurement point;

划分模块402,用于将测量区域内的各测量点划分至不同环境类型对应的测量子区域,环境类型用于表征测量子区域内的用户设备对无线网络性能的要求;The division module 402 is used to divide each measurement point in the measurement area into measurement sub-areas corresponding to different environment types. The environment type is used to characterize the wireless network performance requirements of the user equipment in the measurement sub-area;

确定模块403,用于根据特征数据,确定测量子区域内的测量点的特征评分,特征评分是在参数值大于或等于预设阈值的情况下,基于与参数值对应的预设评分确定得到,参数值是指当前测量点的特征数据与前一测量点的特征数据之间的变化率和/或绝对值差值,测量子区域内的测量点不包括边界点;The determination module 403 is used to determine the characteristic score of the measurement point in the measurement sub-area based on the characteristic data. The characteristic score is determined based on the preset score corresponding to the parameter value when the parameter value is greater than or equal to the preset threshold. Parameter value refers to the change rate and/or absolute value difference between the characteristic data of the current measurement point and the characteristic data of the previous measurement point. The measurement points within the measurement sub-area do not include boundary points;

提取模块404,用于从测量区域内的各测量点中提取目标测量点,目标测量点包括特征评分排序靠前的第一预设数量的测量点和测量子区域的边界点。The extraction module 404 is configured to extract target measurement points from each measurement point in the measurement area, where the target measurement points include a first preset number of measurement points ranked first in feature scores and boundary points of the measurement sub-region.

进一步地,划分模块402包括:Further, the partitioning module 402 includes:

获取子模块,用于获取测量区域内的站点分布信息;Obtain submodule, used to obtain site distribution information within the measurement area;

构建子模块,用于基于站点分布信息,构建每个站点对应的泰森多边形;The construction submodule is used to construct the Thiessen polygon corresponding to each site based on the site distribution information;

划分子模块,用于根据测量子区域内的相邻站点之间的站间距,对泰森多边形进行划分,形成不同环境类型对应的测量子区域,其中,每个测量子区域内的相邻站点之间的站间距属于同一距离范围,不同的环境类型的站间距对应不同的距离范围,测量子区域包括至少一个泰森多边形;The division sub-module is used to divide the Thiessen polygon according to the station distance between adjacent stations in the measurement sub-area to form measurement sub-areas corresponding to different environment types. Among them, the adjacent stations in each measurement sub-area The distance between stations belongs to the same distance range. The distance between stations of different environmental types corresponds to different distance ranges. The measurement sub-area includes at least one Thiessen polygon;

确定子模块,用于根据测量区域内的各测量点在泰森多边形中的位置分布,确定各测量点所对应的测量子区域。The determination sub-module is used to determine the measurement sub-area corresponding to each measurement point according to the position distribution of each measurement point in the Thiessen polygon in the measurement area.

进一步地,确定子模块包括:Further, the determination sub-module includes:

计算单元,用于根据特征数据,分别计算测量子区域内的各测量点对应的参数值;The calculation unit is used to calculate the parameter values corresponding to each measurement point in the measurement sub-area based on the characteristic data;

比较单元,用于将参数值和测量子区域对应的预设阈值进行比较,其中,不同的测量子区域对应的预设阈值不同;A comparison unit used to compare the parameter value with a preset threshold corresponding to the measurement sub-region, where the preset thresholds corresponding to different measurement sub-regions are different;

确定单元,用于在参数值大于或等于测量子区域对应的预设阈值的情况下,将与参数值对应的预设评分确定为特征评分。A determination unit configured to determine a preset score corresponding to the parameter value as a feature score when the parameter value is greater than or equal to a preset threshold corresponding to the measurement sub-region.

进一步地,测量子区域对应的预设阈值包括与参数值对应设置的变化率阈值和/或绝对值差值阈值;Further, the preset threshold corresponding to the measurement sub-region includes a change rate threshold and/or an absolute value difference threshold set corresponding to the parameter value;

比较单元具体用于:The comparison unit is specifically used for:

在参数值为变化率的情况下,将参数值与变化率阈值进行比较;和/或where the parameter value is a rate of change, compare the parameter value to a rate of change threshold; and/or

在参数值为绝对值差值的情况下,将参数值与绝对值差值阈值进行比较。In the case where the parameter value is an absolute difference, the parameter value is compared to an absolute difference threshold.

进一步地,参数值是基于信号质量、业务质量、关键事件、行驶速度、测量轨迹的曲线斜率、测量轨迹的曲线抖动中的至少一种特征数据计算得到;同一测量子区域内的不同参数值对应的变化率阈值和绝对值差值阈值均不相同;Further, the parameter value is calculated based on at least one characteristic data among signal quality, service quality, key events, driving speed, curve slope of the measurement trajectory, and curve jitter of the measurement trajectory; different parameter values in the same measurement sub-area correspond to The change rate threshold and absolute value difference threshold of are different;

确定单元具体用于:Determine the unit specifically for:

在目标参数值大于或等于目标参数值对应的变化率阈值和/或绝对值差值阈值的情况下,获取与目标参数值对应的预设评分,其中,目标参数值为基于任意一种或多种特征数据计算得到的参数值;When the target parameter value is greater than or equal to the change rate threshold and/or the absolute difference threshold corresponding to the target parameter value, a preset score corresponding to the target parameter value is obtained, wherein the target parameter value is based on any one or more Parameter values calculated from characteristic data;

计算预设评分的求和结果,并将求和结果确定为特征评分。Calculate the summation result of the preset scores and determine the summation result as the feature score.

进一步地,采用如下公式确定特征评分:Further, the following formula is used to determine the feature score:

其中,xi表示第i种特征数据对应的参数值,R表示所述变化率阈值,sgrad(xi,R)表示当xi大于或等于R时,对第i种特征数据的参数值对应的特征评分进行求和计算,当xi小于R时,对第i种特征数据的参数值对应的特征评分不打分,i∈(1,m);xj表示第j种特征数据对应的参数值,R′表示所述绝对值差值阈值,sabs(xj,R′)表示当xj大于或等于R′时,对第j种特征数据的参数值对应的特征评分进行求和计算,当xj小于R′时,对第j种特征数据的参数值对应的特征评分不打分,j∈(m+1,n),m表示参数值为变化率的特征数据的种类数量,n表示所有特征数据的种类数量。Among them, xi represents the parameter value corresponding to the i-th feature data, R represents the change rate threshold, and s grad ( xi , R) represents the parameter value for the i-th feature data when x i is greater than or equal to R. The corresponding feature scores are summed and calculated. When x i is less than R, the feature score corresponding to the parameter value of the i-th feature data is not scored, i∈(1,m); x j represents the j-th feature data corresponding to Parameter value, R′ represents the absolute value difference threshold, s abs (x j ,R′) indicates that when x j is greater than or equal to R′, the feature scores corresponding to the parameter values of the jth feature data are summed Calculate, when x j is less than R′, the feature score corresponding to the parameter value of the jth feature data will not be scored, j∈(m+1,n), m represents the number of feature data types whose parameter value is the change rate, n represents the number of types of all feature data.

进一步地,提取模块404包括:Further, the extraction module 404 includes:

排序子模块,用于将特征评分按照从高到低的顺序进行排序,得到排序结果;The sorting submodule is used to sort the feature scores from high to low to obtain the sorting results;

确定子单元,用于从排序结果中确定出评分靠前的第一预设数量的测量点,第一预设数量等于待提取测量点数量减去所有测量子区域的边界点的数量,待提取测量点数量是根据测量区域内的测量点总量和预设提取比例确定得到;Determination subunit, used to determine a first preset number of measurement points with top scores from the sorting results. The first preset number is equal to the number of measurement points to be extracted minus the number of boundary points of all measurement sub-areas to be extracted. The number of measurement points is determined based on the total number of measurement points in the measurement area and the preset extraction ratio;

提取子单元,用于将确定出的第一预设数量的测量点和测量子区域的边界点作为目标测量点进行提取。The extraction subunit is configured to extract the determined first preset number of measurement points and boundary points of the measurement sub-region as target measurement points.

需要说明的是,该无线网络测量点的提取装置400可以实现如前述任意一个方法实施例提供的无线网络测量点的提取方法的步骤,且能达到相同的技术效果,在此不再一一赘述。It should be noted that the wireless network measurement point extraction device 400 can implement the steps of the wireless network measurement point extraction method provided in any of the foregoing method embodiments, and can achieve the same technical effect, which will not be described again here. .

如图5所示,本申请实施例还提供了一种电子设备,包括处理器511、通信接口512、存储器513和通信总线514,其中,处理器511,通信接口512,存储器513通过通信总线514完成相互间的通信,As shown in Figure 5, the embodiment of the present application also provides an electronic device, including a processor 511, a communication interface 512, a memory 513, and a communication bus 514. The processor 511, the communication interface 512, and the memory 513 communicate through the communication bus 514. complete mutual communication,

存储器513,用于存放计算机程序;Memory 513, used to store computer programs;

在本申请一个实施例中,处理器511,用于执行存储器513上所存放的程序时,实现前述任意一个方法实施例提供的无线网络测量点的提取方法,包括:In one embodiment of the present application, the processor 511 is used to implement the wireless network measurement point extraction method provided in any of the foregoing method embodiments when executing the program stored on the memory 513, including:

获取测量区域内的各测量点的特征数据,其中,特征数据为用于表征测量点的无线网络性能的数据;Obtain characteristic data of each measurement point within the measurement area, where the characteristic data is data used to characterize the wireless network performance of the measurement point;

将测量区域内的各测量点划分至不同环境类型对应的测量子区域,环境类型用于表征测量子区域内的用户设备对无线网络性能的要求;Divide each measurement point in the measurement area into measurement sub-areas corresponding to different environment types. The environment type is used to characterize the wireless network performance requirements of user equipment in the measurement sub-area;

根据特征数据,确定测量子区域内的测量点的特征评分,特征评分是在参数值大于或等于预设阈值的情况下,基于与参数值对应的预设评分确定得到,参数值是指当前测量点的特征数据与前一测量点的特征数据之间的变化率和/或绝对值差值,测量子区域内的测量点不包括边界点;According to the characteristic data, the characteristic score of the measurement point in the measurement sub-area is determined. The characteristic score is determined based on the preset score corresponding to the parameter value when the parameter value is greater than or equal to the preset threshold. The parameter value refers to the current measurement The change rate and/or absolute value difference between the characteristic data of a point and the characteristic data of the previous measurement point, the measurement points within the measurement sub-area do not include boundary points;

从测量区域内的各测量点中提取目标测量点,目标测量点包括特征评分排序靠前的第一预设数量的测量点和测量子区域的边界点。A target measurement point is extracted from each measurement point in the measurement area, and the target measurement point includes a first preset number of measurement points ranked first in feature scores and boundary points of the measurement sub-region.

除此之外,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如前述任意一个方法实施例提供的无线网络测量点的提取方法的步骤。In addition, embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the extraction of wireless network measurement points as provided in any of the foregoing method embodiments is implemented. Method steps.

需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as “first” and “second” are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply these There is no such actual relationship or sequence between entities or operations. Furthermore, the terms "comprises," "comprises," or any other variations thereof are intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also those not expressly listed other elements, or elements inherent to the process, method, article or equipment. Without further limitation, an element defined by the statement "comprises a..." does not exclude the presence of additional identical elements in a process, method, article, or apparatus that includes the stated element.

以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。The above descriptions are only specific embodiments of the present invention, enabling those skilled in the art to understand or implement the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be practiced in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features claimed herein.

Claims (10)

1.一种无线网络测量点的提取方法,其特征在于,所述方法包括:1. A method for extracting wireless network measurement points, characterized in that the method includes: 获取测量区域内的各测量点的特征数据,其中,所述特征数据为用于表征测量点的无线网络性能的数据;Obtain characteristic data of each measurement point within the measurement area, where the characteristic data is data used to characterize the wireless network performance of the measurement point; 将所述测量区域内的各测量点划分至不同环境类型对应的测量子区域,所述环境类型用于表征测量子区域内的用户设备对无线网络性能的要求;Divide each measurement point in the measurement area into measurement sub-areas corresponding to different environment types, where the environment types are used to characterize the wireless network performance requirements of the user equipment in the measurement sub-area; 根据所述特征数据,确定所述测量子区域内的测量点的特征评分,所述特征评分是在参数值大于或等于预设阈值的情况下,基于与所述参数值对应的预设评分确定得到,所述参数值是指当前测量点的特征数据与前一测量点的特征数据之间的变化率和/或绝对值差值,所述测量子区域内的测量点不包括边界点;According to the characteristic data, the characteristic score of the measurement point in the measurement sub-area is determined, and the characteristic score is determined based on the preset score corresponding to the parameter value when the parameter value is greater than or equal to the preset threshold. It is obtained that the parameter value refers to the change rate and/or absolute value difference between the characteristic data of the current measurement point and the characteristic data of the previous measurement point, and the measurement points in the measurement sub-region do not include boundary points; 从所述测量区域内的各测量点中提取目标测量点,所述目标测量点包括所述特征评分排序靠前的第一预设数量的测量点和所述测量子区域的边界点。A target measurement point is extracted from each measurement point in the measurement area, where the target measurement point includes a first preset number of measurement points ranked higher in the feature score and boundary points of the measurement sub-region. 2.根据权利要求1所述的方法,其特征在于,所述将所述测量区域内的各测量点划分至不同环境类型对应的测量子区域,包括:2. The method according to claim 1, characterized in that dividing each measurement point in the measurement area into measurement sub-areas corresponding to different environmental types includes: 获取所述测量区域内的站点分布信息;Obtain site distribution information within the measurement area; 基于所述站点分布信息,构建每个站点对应的泰森多边形;Based on the site distribution information, construct a Thiessen polygon corresponding to each site; 根据所述测量子区域内的相邻站点之间的站间距,对所述泰森多边形进行划分,形成不同环境类型对应的测量子区域,其中,每个所述测量子区域内的相邻站点之间的站间距属于同一距离范围,不同的所述环境类型的站间距对应不同的距离范围,所述测量子区域包括至少一个所述泰森多边形;The Thiessen polygon is divided according to the distance between adjacent stations in the measurement sub-area to form measurement sub-areas corresponding to different environment types, wherein the adjacent stations in each measurement sub-area The distance between stations belongs to the same distance range, the distance between stations of different environmental types corresponds to different distance ranges, and the measurement sub-area includes at least one of the Thiessen polygons; 根据所述测量区域内的各测量点在所述泰森多边形中的位置分布,确定各测量点所对应的测量子区域。According to the position distribution of each measurement point in the measurement area in the Thiessen polygon, the measurement sub-region corresponding to each measurement point is determined. 3.根据权利要求2所述的方法,其特征在于,所述根据所述特征数据,确定所述测量子区域内的测量点的特征评分,包括:3. The method according to claim 2, wherein determining the characteristic score of the measurement point in the measurement sub-area based on the characteristic data includes: 根据所述特征数据,分别计算所述测量子区域内的各测量点对应的参数值;According to the characteristic data, calculate the parameter values corresponding to each measurement point in the measurement sub-area; 将所述参数值和所述测量子区域对应的预设阈值进行比较,其中,不同的所述测量子区域对应的预设阈值不同;Compare the parameter value with a preset threshold corresponding to the measurement sub-region, wherein the preset thresholds corresponding to different measurement sub-regions are different; 在所述参数值大于或等于所述测量子区域对应的预设阈值的情况下,将与所述参数值对应的预设评分确定为所述特征评分。If the parameter value is greater than or equal to the preset threshold corresponding to the measurement sub-region, the preset score corresponding to the parameter value is determined as the feature score. 4.根据权利要求3所述的方法,其特征在于,所述测量子区域对应的预设阈值包括与所述参数值对应设置的变化率阈值和/或绝对值差值阈值;4. The method according to claim 3, wherein the preset threshold corresponding to the measurement sub-region includes a change rate threshold and/or an absolute value difference threshold set corresponding to the parameter value; 所述将所述参数值和所述测量子区域对应的预设阈值进行比较,包括:Comparing the parameter value with a preset threshold corresponding to the measurement sub-area includes: 在所述参数值为变化率的情况下,将所述参数值与所述变化率阈值进行比较;和/或In the case where the parameter value is a rate of change, comparing the parameter value with the rate of change threshold; and/or 在所述参数值为绝对值差值的情况下,将所述参数值与所述绝对值差值阈值进行比较。In the case where the parameter value is an absolute value difference, the parameter value is compared with the absolute value difference threshold. 5.根据权利要求4所述的方法,其特征在于,所述参数值是基于信号质量、业务质量、关键事件、行驶速度、测量轨迹的曲线斜率、测量轨迹的曲线抖动中的至少一种特征数据计算得到;同一所述测量子区域内的不同参数值对应的变化率阈值和绝对值差值阈值均不相同;5. The method according to claim 4, characterized in that the parameter value is based on at least one characteristic of signal quality, service quality, key events, driving speed, curve slope of the measurement trajectory, and curve jitter of the measurement trajectory. The data is calculated; the change rate thresholds and absolute value difference thresholds corresponding to different parameter values in the same measurement sub-area are different; 所述在所述参数值大于或等于所述测量子区域对应的预设阈值的情况下,将与所述参数值对应的预设评分确定为所述特征评分,包括:Determining the preset score corresponding to the parameter value as the feature score when the parameter value is greater than or equal to the preset threshold corresponding to the measurement sub-area includes: 在目标参数值大于或等于所述目标参数值对应的变化率阈值和/或绝对值差值阈值的情况下,获取与所述目标参数值对应的预设评分,其中,所述目标参数值为基于任意一种或多种特征数据计算得到的参数值;When the target parameter value is greater than or equal to the change rate threshold and/or the absolute difference threshold corresponding to the target parameter value, a preset score corresponding to the target parameter value is obtained, wherein the target parameter value is Parameter values calculated based on any one or more characteristic data; 计算所述预设评分的求和结果,并将所述求和结果确定为所述特征评分。Calculate the summation result of the preset score, and determine the summation result as the feature score. 6.根据权利要求5所述的方法,其特征在于,采用如下公式确定所述特征评分:6. The method according to claim 5, characterized in that the following formula is used to determine the feature score: 其中,xi表示第i种特征数据对应的参数值,R表示所述变化率阈值,sgrad(xi,R)表示当xi大于或等于R时,对第i种特征数据的参数值对应的特征评分进行求和计算,当xi小于R时,对第i种特征数据的参数值对应的特征评分不打分,i∈(1,m);xj表示第j种特征数据对应的参数值,R′表示所述绝对值差值阈值,sabs(xj,R′)表示当xj大于或等于R′时,对第j种特征数据的参数值对应的特征评分进行求和计算,当xj小于R′时,对第j种特征数据的参数值对应的特征评分不打分,j∈(m+1,n),m表示参数值为变化率的特征数据的种类数量,n表示所有特征数据的种类数量。Among them, xi represents the parameter value corresponding to the i-th feature data, R represents the change rate threshold, and s grad ( xi , R) represents the parameter value for the i-th feature data when x i is greater than or equal to R. The corresponding feature scores are summed and calculated. When x i is less than R, the feature score corresponding to the parameter value of the i-th feature data is not scored, i∈(1, m); x j represents the j-th feature data corresponding to Parameter value, R′ represents the absolute value difference threshold, s abs (x j , R′) indicates that when x j is greater than or equal to R′, the feature scores corresponding to the parameter values of the jth feature data are summed Calculate, when x j is less than R′, the feature score corresponding to the parameter value of the jth feature data will not be scored, j∈(m+1, n), m represents the number of types of feature data whose parameter value is the change rate, n represents the number of types of all feature data. 7.根据权利要求1所述的方法,其特征在于,所述从所述测量区域内的各测量点中提取目标测量点,包括:7. The method of claim 1, wherein extracting target measurement points from each measurement point in the measurement area includes: 将所述特征评分按照从高到低的顺序进行排序,得到排序结果;Sort the feature scores from high to low to obtain the sorting results; 从所述排序结果中确定出评分靠前的第一预设数量的测量点,所述第一预设数量等于待提取测量点数量减去所有所述测量子区域的边界点的数量,所述待提取测量点数量是根据所述测量区域内的测量点总量和预设提取比例确定得到;Determine a first preset number of measurement points with top scores from the sorting results. The first preset number is equal to the number of measurement points to be extracted minus the number of boundary points of all the measurement sub-areas. The number of measurement points to be extracted is determined based on the total number of measurement points in the measurement area and the preset extraction ratio; 将确定出的所述第一预设数量的测量点和所述测量子区域的边界点作为所述目标测量点进行提取。The determined first preset number of measurement points and the boundary points of the measurement sub-area are extracted as the target measurement points. 8.一种无线网络测量点的提取装置,其特征在于,所述装置包括:8. A device for extracting wireless network measurement points, characterized in that the device includes: 获取模块,用于获取测量区域内的各测量点的特征数据,其中,所述特征数据为用于表征测量点的无线网络性能的数据;An acquisition module, configured to acquire characteristic data of each measurement point within the measurement area, where the characteristic data is data used to characterize the wireless network performance of the measurement point; 划分模块,用于将所述测量区域内的各测量点划分至不同环境类型对应的测量子区域,所述环境类型用于表征测量子区域内的用户设备对无线网络性能的要求;A division module, configured to divide each measurement point in the measurement area into measurement sub-areas corresponding to different environment types, where the environment types are used to characterize the wireless network performance requirements of user equipment in the measurement sub-area; 确定模块,用于根据所述特征数据,确定所述测量子区域内的测量点的特征评分,所述特征评分是在参数值大于或等于预设阈值的情况下,基于与所述参数值对应的预设评分确定得到,所述参数值是指当前测量点的特征数据与前一测量点的特征数据之间的变化率和/或绝对值差值,所述测量子区域内的测量点不包括边界点;Determining module, configured to determine the characteristic score of the measurement point in the measurement sub-area according to the characteristic data. The characteristic score is based on the parameter value corresponding to the parameter value when the parameter value is greater than or equal to the preset threshold. The preset score of including boundary points; 提取模块,用于从所述测量区域内的各测量点中提取目标测量点,所述目标测量点包括所述特征评分排序靠前的第一预设数量的测量点和所述测量子区域的边界点。An extraction module, configured to extract target measurement points from each measurement point in the measurement area, where the target measurement points include a first preset number of measurement points ranked first in the feature score and the measurement sub-area. Boundary point. 9.一种电子设备,其特征在于,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;9. An electronic device, characterized in that it includes a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory complete communication with each other through the communication bus; 存储器,用于存放计算机程序;Memory, used to store computer programs; 处理器,用于执行存储器上所存放的程序时,实现权利要求1-7任一项所述的无线网络测量点的提取方法的步骤。The processor is configured to implement the steps of the wireless network measurement point extraction method described in any one of claims 1 to 7 when executing a program stored in the memory. 10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-7任一项所述的无线网络测量点的提取方法的步骤。10. A computer-readable storage medium with a computer program stored thereon, characterized in that when the computer program is executed by a processor, the method for extracting wireless network measurement points according to any one of claims 1-7 is implemented. A step of.
CN202210474439.2A 2022-04-29 2022-04-29 Method and device for extracting wireless network measurement points, electronic equipment and storage medium Pending CN117014928A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210474439.2A CN117014928A (en) 2022-04-29 2022-04-29 Method and device for extracting wireless network measurement points, electronic equipment and storage medium
PCT/CN2022/135030 WO2023207070A1 (en) 2022-04-29 2022-11-29 Method and apparatus for extracting wireless network measurement point, and electronic device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210474439.2A CN117014928A (en) 2022-04-29 2022-04-29 Method and device for extracting wireless network measurement points, electronic equipment and storage medium

Publications (1)

Publication Number Publication Date
CN117014928A true CN117014928A (en) 2023-11-07

Family

ID=88517191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210474439.2A Pending CN117014928A (en) 2022-04-29 2022-04-29 Method and device for extracting wireless network measurement points, electronic equipment and storage medium

Country Status (2)

Country Link
CN (1) CN117014928A (en)
WO (1) WO2023207070A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119675797B (en) * 2025-02-19 2025-06-13 国网河南省电力公司经济技术研究院 A method for evaluating signal transmission quality of communication equipment in a strong electric field environment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8175607B2 (en) * 2006-12-18 2012-05-08 Telefonaktiebolaget Lm Ericsson (Publ) Network configuration audit
CN101784058B (en) * 2009-12-30 2011-05-11 北京市天元网络技术股份有限公司 Method and device for selecting network performance measuring points
CN106332231B (en) * 2015-06-29 2019-12-03 展讯通信(上海)有限公司 Mobile terminal small region search method and device
CN107548108A (en) * 2016-06-28 2018-01-05 中兴通讯股份有限公司 A kind of frequency based on redirection determines method and device

Also Published As

Publication number Publication date
WO2023207070A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2022089018A1 (en) Method and apparatus for slicing three-dimensional vector data of three-dimensional vector map, and electronic device
CN109996245B (en) Communication resource delivery evaluation method and device, electronic equipment and storage medium
CN103092853A (en) Spatial index establishing method, spatial index use method and spatial index use device
CN114374626B (en) Router performance detection method under 5G network condition
CN104302000A (en) Indoor Positioning Method Based on Correlation of Signal Received Strength Indication
CN104349364B (en) A kind of method and apparatus of dividing cell clusters
CN103559330A (en) Method and system for detecting data consistency
CN107368480A (en) A kind of interest point data type of error positioning, repeat recognition methods and device
CN114885369A (en) Network coverage quality detection processing method and device, electronic equipment and storage medium
CN113987002A (en) Data exchange method based on mass data analysis platform
CN106817712A (en) A kind of localization method and device and a kind of server
WO2023207070A1 (en) Method and apparatus for extracting wireless network measurement point, and electronic device and storage medium
CN117060440A (en) Power system partition frequency stability judging method
CN103186604A (en) Method, device and equipment for determining satisfaction degree of user on search result
CN104112003B (en) The method and system that the performance of game terminal is detected
CN108898244A (en) A kind of digital signage position recommended method coupling multi-source element
CN110348717B (en) Base station value scoring method and device based on grid granularity
CN106412835A (en) Method for identifying user travel mode and apparatus thereof
CN115278761B (en) Network evaluation method, device, equipment and storage medium
US11983204B1 (en) Mobile terminal-oriented complex condition geographic information query method, device and medium
CN108777866A (en) A kind of network analysis method, server and network system
CN115087023A (en) Road network analysis method and device
CN110418350B (en) Shared station address evaluation method and system
CN109495900B (en) Capacity expansion method and device and computer readable storage medium
CN110233684A (en) Signal-to-noise ratio appraisal procedure, device, equipment and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination