CN117004635A - A high-throughput screening method for glycosaminoglycan backbone synthases - Google Patents
A high-throughput screening method for glycosaminoglycan backbone synthases Download PDFInfo
- Publication number
- CN117004635A CN117004635A CN202210468072.3A CN202210468072A CN117004635A CN 117004635 A CN117004635 A CN 117004635A CN 202210468072 A CN202210468072 A CN 202210468072A CN 117004635 A CN117004635 A CN 117004635A
- Authority
- CN
- China
- Prior art keywords
- glycosaminoglycan
- gene
- synthase
- backbone
- skeleton
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/75—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
- C12Y204/01212—Hyaluronan synthase (2.4.1.212)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明涉及一种糖胺聚糖骨架合酶的高通量筛选方法。包括步骤:(1)构建糖胺聚糖骨架合酶文库;(2)构建重组载体;(3)构建筛选糖胺聚糖骨架合酶的重组菌;(4)培养重组菌;(5)将重组菌的菌液通过流式分析或流式分选后,测定荧光度,筛选出目标糖胺聚糖骨架合酶。本发明以枯草芽孢杆菌BS168ASS为宿主菌,过表达了尿苷二磷酸‑葡萄糖‑6‑脱氢酶基因和糖胺聚糖骨架合酶基因,构建筛选糖胺聚糖骨架合酶的重组菌。然后通过测定菌株的荧光,实现对糖胺聚糖骨架合酶菌株高通量且准确的筛选,提高了筛选效率,且对于新来源的酶,特别是宏基因组文库中无法培养的微生物群中新糖胺聚糖骨架合酶的发现提供了新的起点。The invention relates to a high-throughput screening method for glycosaminoglycan backbone synthase. The method includes steps: (1) constructing a glycosaminoglycan skeleton synthase library; (2) constructing a recombinant vector; (3) constructing recombinant bacteria for screening glycosaminoglycan skeleton synthases; (4) cultivating the recombinant bacteria; (5) converting After the bacterial fluid of the recombinant bacteria is analyzed by flow cytometry or flow cytometry sorting, the fluorescence is measured to screen out the target glycosaminoglycan skeleton synthase. The present invention uses Bacillus subtilis BS168ASS as the host bacterium, overexpresses the uridine diphosphate-glucose-6-dehydrogenase gene and the glycosaminoglycan skeleton synthase gene, and constructs a recombinant bacterium for screening glycosaminoglycan skeleton synthase. Then by measuring the fluorescence of the strains, high-throughput and accurate screening of glycosaminoglycan backbone synthase strains is achieved, which improves the screening efficiency and is useful for new sources of enzymes, especially new microorganisms that cannot be cultured in metagenomic libraries. The discovery of glycosaminoglycan backbone synthases provides a new starting point.
Description
技术领域Technical field
本发明涉及了一种糖胺聚糖骨架合酶的高通量筛选方法,具体地说涉及枯草芽孢杆菌的叠氮化修饰糖胺聚糖骨架合成途径的改造及基于该菌株的针对糖胺聚糖骨架合酶的荧光激活细胞分选,属于生物技术技术领域。The present invention relates to a high-throughput screening method for glycosaminoglycan backbone synthase, specifically to the transformation of the azide-modified glycosaminoglycan backbone synthesis pathway of Bacillus subtilis and the glycosaminoglycan backbone synthesis pathway based on this strain. Fluorescence-activated cell sorting of glycoskeletal synthase belongs to the technical field of biotechnology.
背景技术Background technique
糖胺聚糖(Glycosaminoglycan,GAGs)是广泛存在于高等动物结缔组织中的一种长线形杂多糖,由己糖醛酸或己糖、己糖胺的重复二糖单元组成,根据单糖残基、残基间连键的类型以及硫酸基的数目和位置,可将糖胺聚糖可分为:透明质酸(Hyaluronic acid,HA)、硫酸软骨素(chondroitin sulfate,CS)、硫酸皮肤素(Dermatan sulfate,DS)、硫酸角质素(Keratin sulfate,KS)、硫酸乙酰肝素(Heparan sulfate,HS)和肝素(heparin,HP)。糖胺聚糖可与生长因子、细胞因子、趋化因子和酶相互作用,对机体生长、炎症反应、凝血、肿瘤转移等过程具有重要的影响。Glycosaminoglycans (GAGs) are long linear heteropolysaccharides widely present in the connective tissues of higher animals. They are composed of repeating disaccharide units of hexuronic acid or hexose and hexosamine. According to the monosaccharide residues, Based on the type of linkage between residues and the number and position of sulfate groups, glycosaminoglycans can be divided into: hyaluronic acid (HA), chondroitin sulfate (CS), dermatan sulfate (Dermatan) sulfate (DS), keratin sulfate (KS), heparan sulfate (HS) and heparin (HP). Glycosaminoglycans can interact with growth factors, cytokines, chemokines and enzymes, and have an important impact on body growth, inflammatory response, coagulation, tumor metastasis and other processes.
尿苷二磷酸-葡萄糖-6-脱氢酶(Uridine diphosphate glucose-6-dehydrogenase,tuaD),该酶存在于枯草芽孢杆菌基因组DNA中,可催化尿苷二磷酸葡萄糖(UDP-Glucose)转化为尿苷二磷酸-葡萄糖醛酸(UDP-GlcA),在已有的研究中已经证明了UDP-GlcA对糖胺聚糖骨架生物合成有限制,因此tuaD是高水平糖胺聚糖骨架生物合成的关键。Uridine diphosphate glucose-6-dehydrogenase (tuaD), which is present in the genomic DNA of Bacillus subtilis, can catalyze the conversion of uridine diphosphate glucose-6-dehydrogenase (UDP-Glucose) into urine. Glycoside diphosphate-glucuronic acid (UDP-GlcA), existing studies have proven that UDP-GlcA limits glycosaminoglycan skeleton biosynthesis, so tuaD is the key to high-level glycosaminoglycan skeleton biosynthesis. .
糖胺聚糖骨架合酶(Glycosyltransferase,GTs)是催化单糖单元以区域和立体定向的方式从糖供体转移到多糖上的一种酶,为合成复杂低聚糖提供了非常高效的方法。然而,可利用的GTs数量有限,加之其不稳定性和严格的底物特异性,严重阻碍了这些酶的广泛应用,因此,获得可以高效合成特定低聚糖和糖缀合物的糖基转移酶具有深刻的意义。Glycosyltransferase (GTs) is an enzyme that catalyzes the transfer of monosaccharide units from sugar donors to polysaccharides in a regio- and stereospecific manner, providing a very efficient method for the synthesis of complex oligosaccharides. However, the limited number of available GTs, coupled with their instability and strict substrate specificity, severely hinders the widespread application of these enzymes and, therefore, the acquisition of glycosyltransferases that can efficiently synthesize specific oligosaccharides and glycoconjugates. Enzymes have profound meaning.
枯草芽孢杆菌(Bacillus subtilis)是芽孢杆菌属的一种,属于革兰氏阳性菌,被认为是GRAS(Generally recognized as safe),对环境具有很好的耐受性,且根据已有的研究,枯草芽孢杆菌关于糖胺聚糖合成途径的相关背景较为干净。Bacillus subtilis is a species of the genus Bacillus and is a Gram-positive bacterium. It is considered GRAS (Generally recognized as safe) and has good tolerance to the environment. According to existing research, Bacillus subtilis has a relatively clean background on the glycosaminoglycan synthesis pathway.
在过去的研究中,通过蛋白质工程定向进化的方法在拓宽底物范围、改变底物特异性和提高GTs活性等方面取得了有限的成功,部分原因是缺乏有效的高通量筛选方法。由于与糖苷键形成相关的荧光或吸光度没有明显变化,因此测定GTs活性极具挑战性。而理想表型的筛选在大多数情况下是一个随机过程。因此,开发可应用于大型GTs文库的高通量、低成本的筛选方法是非常有意义的。In past studies, directed evolution methods through protein engineering have achieved limited success in broadening the substrate scope, changing substrate specificity, and improving the activity of GTs, partly due to the lack of effective high-throughput screening methods. Measuring the activity of GTs is extremely challenging because there are no significant changes in fluorescence or absorbance associated with glycosidic bond formation. The selection of ideal phenotypes is a random process in most cases. Therefore, it is of great significance to develop high-throughput, low-cost screening methods that can be applied to large GTs libraries.
发明内容Contents of the invention
针对现有技术的不足,本发明提供一种糖胺聚糖骨架合酶的高通量筛选方法。具体是构建一株高效合成叠氮化修饰糖胺聚糖骨架的重组枯草芽孢杆菌,再通过该菌株对糖胺聚糖骨架合酶进行高通量筛选。In view of the shortcomings of the existing technology, the present invention provides a high-throughput screening method for glycosaminoglycan backbone synthase. Specifically, a recombinant Bacillus subtilis strain that efficiently synthesizes azide-modified glycosaminoglycan backbone was constructed, and then high-throughput screening of glycosaminoglycan backbone synthase was performed using this strain.
本发明的技术方案如下:The technical solution of the present invention is as follows:
一种糖胺聚糖骨架合酶的高通量筛选方法,包括步骤如下:A high-throughput screening method for glycosaminoglycan backbone synthase, including the following steps:
(1)采用BLASTp方法,随机获取糖胺聚糖骨架合酶基因,构建糖胺聚糖骨架合酶文库;(1) Use the BLASTp method to randomly obtain glycosaminoglycan backbone synthase genes and construct a glycosaminoglycan backbone synthase library;
(2)分别将文库中的糖胺聚糖骨架合酶基因和尿苷二磷酸-葡萄糖-6-脱氢酶基因tuaD表达盒连接到pHCMC04质粒中,得到重组载体pHCMC04-GTs-tuaD;(2) Connect the glycosaminoglycan backbone synthase gene and uridine diphosphate-glucose-6-dehydrogenase gene tuaD expression cassette in the library to the pHCMC04 plasmid respectively to obtain the recombinant vector pHCMC04-GTs-tuaD;
(3)将重组载体pHCMC04-GTs-tuaD转化到枯草芽孢杆菌BS168ASS中,挑选阳性重组子,得到筛选糖胺聚糖骨架合酶的重组菌GD;(3) Transform the recombinant vector pHCMC04-GTs-tuaD into Bacillus subtilis BS168ASS, select positive recombinants, and obtain the recombinant strain GD for screening glycosaminoglycan backbone synthase;
(4)将筛选糖胺聚糖骨架合酶的重组菌GD按照0.05~0.15%的体积比接种于含特殊底物的LB液体培养基中,在35~40℃,200~250rpm下过夜培养,得到重组菌GD的菌液;(4) Inoculate the recombinant strain GD for screening glycosaminoglycan skeleton synthase into LB liquid culture medium containing a special substrate at a volume ratio of 0.05 to 0.15%, and culture overnight at 35 to 40°C and 200 to 250 rpm. Obtain the bacterial liquid of the recombinant strain GD;
(5)将重组菌GD的菌液按照0.5~1.5%的体积比接种于含特殊底物的LB液体培养基中,培养至OD600为0.6~0.8,然后转移至不含葡萄糖的M9低盐培养基中,培养0.5~1.5h,加入终浓度为15~25g/L的木糖诱导剂和终浓度为80~120μg/mL的N-叠氮乙酰葡萄糖胺,诱导培养4~8h,然后将菌体与荧光素避光反应0.5~1.5h,当糖胺聚糖骨架合酶文库中的基因在20个以下时,将荧光反应后的菌体进行流式分析,再测定荧光强度或测定荧光强度与吸光度的比值,筛选出目标糖胺聚糖骨架合酶;当糖胺聚糖骨架合酶文库中的基因超过20个时,将荧光反应后的菌体进行流式分选,再测定荧光强度,收集荧光强度在前0.5~2%的菌体,筛选出目标糖胺聚糖骨架合酶。(5) Inoculate the bacterial liquid of the recombinant strain GD into the LB liquid medium containing a special substrate at a volume ratio of 0.5 to 1.5%, culture it until the OD 600 is 0.6 to 0.8, and then transfer it to M9 low-salt medium without glucose. In the culture medium, culture for 0.5 to 1.5 hours, add xylose inducer with a final concentration of 15 to 25 g/L and N-azidoacetylglucosamine with a final concentration of 80 to 120 μg/mL, induce and culture for 4 to 8 hours, and then The bacterial cells react with luciferin in the dark for 0.5 to 1.5 hours. When the number of genes in the glycosaminoglycan skeleton synthase library is less than 20, the bacterial cells after the fluorescence reaction are analyzed by flow cytometry, and then the fluorescence intensity or fluorescence is measured. The ratio of intensity to absorbance is used to screen out the target glycosaminoglycan skeleton synthase; when the number of genes in the glycosaminoglycan skeleton synthase library exceeds 20, the bacteria after the fluorescence reaction are flow sorted, and then the fluorescence is measured. Intensity, collect the bacteria with the top 0.5-2% fluorescence intensity, and screen out the target glycosaminoglycan skeleton synthase.
根据本发明优选的,步骤(1)中,所述糖胺聚糖骨架合酶为硫酸软骨素骨架合酶、肝素骨架合酶或透明质酸合酶。Preferably according to the present invention, in step (1), the glycosaminoglycan skeleton synthase is chondroitin sulfate skeleton synthase, heparin skeleton synthase or hyaluronic acid synthase.
根据本发明优选的,步骤(2)中,所述尿苷二磷酸-葡萄糖-6-脱氢酶基因tuaD的NCBI数据库的ID为936766。Preferably according to the present invention, in step (2), the ID of the NCBI database of the uridine diphosphate-glucose-6-dehydrogenase gene tuaD is 936766.
根据本发明优选的,步骤(3)中,所述枯草芽孢杆菌BS168ASS为阻断内源尿苷二磷酸-N-乙酰葡萄糖苷(GlcNAc)合成途径,表达异源尿苷二磷酸-N-乙酰葡萄糖苷补救合成途径的枯草芽孢杆菌。According to the preferred embodiment of the present invention, in step (3), the Bacillus subtilis BS168ASS blocks the endogenous uridine diphosphate-N-acetylglucoside (GlcNAc) synthesis pathway and expresses heterologous uridine diphosphate-N-acetylglucoside. Glucoside salvage synthesis pathway in Bacillus subtilis.
根据本发明优选的,所述枯草芽孢杆菌BS168ASS的构建方法如下:According to the preferred method of the present invention, the construction method of the Bacillus subtilis BS168ASS is as follows:
以枯草芽孢杆菌Bacillus subtilis subsp.subtilis str.168为出发菌株,敲除编码合成UDP-GlcNAc途径的关键酶分子的基因glmS,然后插入编码N-乙酰己糖胺-1-激酶的基因NahK和编码N-乙酰葡萄糖胺-1-磷酸-尿嘧啶转移酶的基因AGX1,得到枯草芽孢杆菌BS168ASS。基因glmS编码的酶负责催化果糖-6-磷酸到葡萄糖-6-磷酸,基因NahK编码的酶可以利用ATP和GlcNAc催化得到GlcNAc-1-P,基因AGX1编码的酶可以催化GlcNAc-1-P到UDP-GlcNAc,枯草芽孢杆菌BS168ASS可以利用N-叠氮乙酰化葡萄糖胺GlcNAz为底物生成UDP-GlcNAz。Using Bacillus subtilis subsp.subtilis str.168 as the starting strain, the gene glmS encoding the key enzyme molecule for the synthesis of UDP-GlcNAc pathway was deleted, and then the gene NahK encoding N-acetylhexosamine-1-kinase and the encoding The gene AGX1 of N-acetylglucosamine-1-phosphate-uracil transferase was obtained from Bacillus subtilis BS168ASS. The enzyme encoded by gene glmS is responsible for catalyzing fructose-6-phosphate to glucose-6-phosphate. The enzyme encoded by gene NahK can catalyze GlcNAc-1-P using ATP and GlcNAc. The enzyme encoded by gene AGX1 can catalyze GlcNAc-1-P to UDP-GlcNAc, Bacillus subtilis BS168ASS can use N-azide acetylated glucosamine GlcNAz as a substrate to generate UDP-GlcNAz.
进一步优选的,所述基因glmS的NCBI数据库的ID为938736,所述N-乙酰己糖胺-1-激酶的基因NahK来自于长双歧杆菌,NCBI数据库的ID为69578838,所述N-乙酰葡萄糖胺-1-磷酸-尿嘧啶转移酶的基因AGX1来自于人,NCBI数据库的ID为6675。Further preferably, the NCBI database ID of the gene glmS is 938736, the N-acetylhexosamine-1-kinase gene NahK comes from Bifidobacterium longum, the NCBI database ID is 69578838, and the N-acetylhexosamine-1-kinase gene NahK The gene AGX1 of glucosamine-1-phosphate-uracil transferase comes from human, and the ID of the NCBI database is 6675.
根据本发明优选的,步骤(4)和(5)中,所述含特殊底物的LB液体培养基的组分如下:10g/L酵母提取物、20g/L蛋白胨、20g/L氯化钠、5μg/mL氯霉素和100μg/mL糖胺聚糖骨架合酶天然底物GlcNAc。According to the preferred embodiment of the present invention, in steps (4) and (5), the components of the LB liquid culture medium containing special substrates are as follows: 10g/L yeast extract, 20g/L peptone, 20g/L sodium chloride , 5μg/mL chloramphenicol and 100μg/mL glycosaminoglycan backbone synthase natural substrate GlcNAc.
根据本发明优选的,步骤(5)中,所述荧光素为Cyanine5 DBCO,荧光素的终浓度为0.5mM,避光反应时间为1h。According to the preferred method of the present invention, in step (5), the fluorescein is Cyanine5 DBCO, the final concentration of fluorescein is 0.5mM, and the reaction time in the dark is 1 hour.
根据本发明优选的,步骤(5)中,所述测定荧光强度和吸光度的具体参数为:发射波长为646nm,激发波长为662nm,吸光度为600nm。According to the preferred embodiment of the present invention, in step (5), the specific parameters for measuring fluorescence intensity and absorbance are: the emission wavelength is 646 nm, the excitation wavelength is 662 nm, and the absorbance is 600 nm.
本发明的技术特点:Technical features of the invention:
本发明利用GlcNAz培养含糖胺聚糖骨架合酶的重组菌BS168ASSGD,使菌株表面产生叠氮化修饰的糖胺聚糖骨架,该多糖骨架与荧光染料Cyanine5 DBCO发生点击化学反应后使菌株表面带有荧光,含有糖胺聚糖骨架合酶菌株的荧光强度与吸光度的比值是不含糖胺聚糖骨架合酶的菌株的1倍以上,结合荧光激活细胞分选可以实现对有活性的糖胺聚糖骨架合酶进行高通量筛选。The present invention uses GlcNAz to cultivate the recombinant strain BS168ASSGD containing glycosaminoglycan skeleton synthase, so that an azide-modified glycosaminoglycan skeleton is produced on the surface of the strain, and the polysaccharide skeleton reacts with the fluorescent dye Cyanine5 DBCO to cause a click chemical reaction on the surface of the strain. It is fluorescent. The ratio of fluorescence intensity to absorbance of strains containing glycosaminoglycan backbone synthase is more than 1 times that of strains without glycosaminoglycan backbone synthase. Combined with fluorescence-activated cell sorting, active glycosamines can be detected High-throughput screening of glycan backbone synthases.
荧光染料Cyanine5 DBCO与GlcNAz发生点击化学反应的反应式如下:The reaction formula for the click chemical reaction between the fluorescent dye Cyanine5 DBCO and GlcNAz is as follows:
有益效果:Beneficial effects:
本发明以阻断内源GlcNAc合成途径,表达GlcNAc(GlcNAz)补救合成途径的枯草芽孢杆菌BS168ASS为宿主菌,过表达了尿苷二磷酸-葡萄糖-6-脱氢酶基因tuaD和糖胺聚糖骨架合酶基因,构建了筛选糖胺聚糖骨架合酶的重组菌。然后以该菌株为基准,通过测定荧光强度或测定荧光强度与吸光度的比值,实现对有活性的糖胺聚糖骨架合酶菌株进行高通量且准确的筛选,极大的提高了筛选效率,且对于新来源的酶,特别是宏基因组文库中无法培养的微生物群中新糖胺聚糖骨架合酶的发现提供了新的起点。The present invention uses Bacillus subtilis BS168ASS, which blocks the endogenous GlcNAc synthesis pathway and expresses the GlcNAc (GlcNAz) salvage synthesis pathway, as the host bacterium, and overexpresses the uridine diphosphate-glucose-6-dehydrogenase gene tuaD and glycosaminoglycans. Backbone synthase gene, and a recombinant strain for screening glycosaminoglycan backbone synthase was constructed. Then, based on this strain, high-throughput and accurate screening of active glycosaminoglycan backbone synthase strains can be achieved by measuring the fluorescence intensity or the ratio of fluorescence intensity to absorbance, which greatly improves the screening efficiency. It also provides a new starting point for the discovery of new sources of enzymes, especially new glycosaminoglycan backbone synthases from microbiota that cannot be cultured in metagenomic libraries.
附图说明Description of the drawings
图1:尿苷二磷酸-葡萄糖-6-脱氢酶基因tuaD的PCR扩增产物的聚丙烯酰胺凝胶电泳图;Figure 1: Polyacrylamide gel electrophoresis pattern of the PCR amplification product of uridine diphosphate-glucose-6-dehydrogenase gene tuaD;
图中:M为marker;1为tuaD基因PCR扩增产物;In the figure: M is marker; 1 is tuaD gene PCR amplification product;
图2:硫酸软骨素骨架合酶KfoC基因、透明质酸骨架合酶PmHAS基因、肝素骨架合酶PmHS2基因PCR扩增产物的聚丙烯酰胺凝胶电泳图;Figure 2: Polyacrylamide gel electrophoresis pattern of the PCR amplification products of the chondroitin sulfate skeleton synthase KfoC gene, hyaluronic acid skeleton synthase PmHAS gene, and heparin skeleton synthase PmHS2 gene;
图中:M为marker;1为KfoC基因PCR扩增产物;2为PmHAS基因PCR扩增产物;3为PmHS2基因PCR扩增产物;In the figure: M is marker; 1 is the PCR amplification product of KfoC gene; 2 is the PCR amplification product of PmHAS gene; 3 is the PCR amplification product of PmHS2 gene;
图3:通过BLASTp算法寻找的CcCS基因、CvCS基因、NdCS基因、MsCS基因、RhCS基因、MeCS基因、HfCS基因、LeCS基因、PsCS基因和HfCS基因的PCR扩增产物电泳图;Figure 3: Electropherogram of PCR amplification products of CcCS gene, CvCS gene, NdCS gene, MsCS gene, RhCS gene, MeCS gene, HfCS gene, LeCS gene, PsCS gene and HfCS gene searched by BLASTp algorithm;
图中:M为marker;1为CcCS基因PCR扩增产物;2为CvCS基因PCR扩增产物;3为NdCS基因PCR扩增产物;4为MsCS基因PCR扩增产物;5为RhCS基因PCR扩增产物;6为MeCS基因PCR扩增产物;7为HfCS基因PCR扩增产物;8为LeCS基因PCR扩增产物;9为PsCS基因PCR扩增产物;10为TmCS基因PCR扩增产物;In the figure: M is marker; 1 is the PCR amplification product of CcCS gene; 2 is the PCR amplification product of CvCS gene; 3 is the PCR amplification product of NdCS gene; 4 is the PCR amplification product of MsCS gene; 5 is the PCR amplification product of RhCS gene. Products; 6 is the PCR amplification product of the MeCS gene; 7 is the PCR amplification product of the HfCS gene; 8 is the PCR amplification product of the LeCS gene; 9 is the PCR amplification product of the PsCS gene; 10 is the PCR amplification product of the TmCS gene;
图4:pHCMC04质粒骨架经SpeI和BamHI双酶切后的电泳图;Figure 4: Electrophoresis pattern of the pHCMC04 plasmid backbone after double digestion with SpeI and BamHI;
图中:M为marker;1为质粒pHCMC04双酶切片段;In the figure: M is the marker; 1 is the double-digestion fragment of plasmid pHCMC04;
图5:含硫酸软骨素骨架合酶KfoC基因;透明质酸骨架合酶PmHAS基因;肝素骨架合酶PmHS2基因的重组质粒构建图谱;Figure 5: Recombinant plasmid construction map containing the chondroitin sulfate backbone synthase KfoC gene; the hyaluronic acid backbone synthase PmHAS gene; and the heparin backbone synthase PmHS2 gene;
图中:A为pHCMC04-KfoC-tuaD重组质粒;B为pHCMC04-pmHAS-tuaD重组质粒;C为pHCMC04-PmHS2-tuaD重组质粒;In the figure: A is the pHCMC04-KfoC-tuaD recombinant plasmid; B is the pHCMC04-pmHAS-tuaD recombinant plasmid; C is the pHCMC04-PmHS2-tuaD recombinant plasmid;
图6:含通过BLASTp算法寻找的CcCS基因、CvCS基因、NdCS基因、MsCS基因、RhCS基因、MeCS基因、HfCS基因、LeCS基因、PsCS基因和TmCS基因的重组质粒构建图谱;Figure 6: Recombinant plasmid construction map containing CcCS gene, CvCS gene, NdCS gene, MsCS gene, RhCS gene, MeCS gene, HfCS gene, LeCS gene, PsCS gene and TmCS gene found by BLASTp algorithm;
图中:A为pHCMC04-CcCS-tuaD重组质粒;B为pHCMC04-CvCS-tuaD重组质粒;C为pHCMC04-NdCS-tuaD重组质粒;D为pHCMC04-MsCS-tuaD重组质粒;E为pHCMC04-RhCS-tuaD重组质粒;F为pHCMC04-MeCS-tuaD重组质粒;G为pHCMC04-HfCS-tuaD重组质粒;H为pHCMC04-LeCS-tuaD重组质粒;I为pHCMC04-LeCS-tuaD重组质粒;J为pHCMC04-TmCS-tuaD重组质粒;In the figure: A is the recombinant plasmid pHCMC04-CcCS-tuaD; B is the recombinant plasmid pHCMC04-CvCS-tuaD; C is the recombinant plasmid pHCMC04-NdCS-tuaD; D is the recombinant plasmid pHCMC04-MsCS-tuaD; E is pHCMC04-RhCS-tuaD Recombinant plasmid; F is pHCMC04-MeCS-tuaD recombinant plasmid; G is pHCMC04-HfCS-tuaD recombinant plasmid; H is pHCMC04-LeCS-tuaD recombinant plasmid; I is pHCMC04-LeCS-tuaD recombinant plasmid; J is pHCMC04-TmCS-tuaD Recombinant plasmid;
图7:重组菌BS168SSAED、BS168SSACD、BS168SSAHS2D和BS168SSAHASD发生点击化学反应后由酶标仪测定的荧光情况;Figure 7: Fluorescence measured by a microplate reader after the click chemical reaction of the recombinant bacteria BS168SSAED, BS168SSACD, BS168SSAHS2D and BS168SSAHASD;
图中:横坐标为重组菌株类型,纵坐标为荧光强度与吸光度比值;In the figure: the abscissa represents the recombinant strain type, and the ordinate represents the ratio of fluorescence intensity to absorbance;
图8:重组菌BS168SSAED、BS168SSACD、BS168SSAHS2D和BS168SSAHASD发生点击化学反应后由流式分析测定的荧光情况;Figure 8: Fluorescence measured by flow cytometry after the click chemical reaction of the recombinant bacteria BS168SSAED, BS168SSACD, BS168SSAHS2D and BS168SSAHASD;
图中:A为BS168SSACD与BS168SSAED的荧光强度对比情况;B为BS168SSAHS2D与BS168SSAED的荧光强度对比情况;C为BS168SSAHASD与BS168SSAED的荧光强度对比情况;In the figure: A is the fluorescence intensity comparison between BS168SSACD and BS168SSAED; B is the fluorescence intensity comparison between BS168SSAHS2D and BS168SSAED; C is the fluorescence intensity comparison between BS168SSAHASD and BS168SSAED;
图9:含CcCS基因、CvCS基因、NdCS基因、MsCS基因、RhCS基因、MeCS基因、HfCS基因、LeCS基因、PsCS基因和TmCS基因的重组枯草芽孢杆菌发生点击化学反应后由酶标仪测定的荧光情况;Figure 9: Fluorescence measured by a microplate reader after click chemical reaction of recombinant Bacillus subtilis containing CcCS gene, CvCS gene, NdCS gene, MsCS gene, RhCS gene, MeCS gene, HfCS gene, LeCS gene, PsCS gene and TmCS gene Condition;
图中:横坐标为重组菌株类型;纵坐标为荧光强度与吸光度比值;In the figure: the abscissa is the type of recombinant strain; the ordinate is the ratio of fluorescence intensity to absorbance;
图10:含CvCS基因、HfCS基因、MeCS基因的重组质粒构建图谱;Figure 10: Construction map of recombinant plasmid containing CvCS gene, HfCS gene, and MeCS gene;
图中:A为Pet28a(+)-His-CvCS重组质粒;B为Pet28a(+)-His-HfCS重组质粒;A为Pet28a(+)-His-MeCS重组质粒;In the figure: A is the Pet28a(+)-His-CvCS recombinant plasmid; B is the Pet28a(+)-His-HfCS recombinant plasmid; A is the Pet28a(+)-His-MeCS recombinant plasmid;
图11:CvCs蛋白、HfCS蛋白和MeCS蛋白的聚丙烯酰胺凝胶电泳图;Figure 11: Polyacrylamide gel electrophoresis pattern of CvCs protein, HfCS protein and MeCS protein;
图中:M为marker;1为CvC蛋白;2为HfCS蛋白;3为MeCS蛋白;In the figure: M is marker; 1 is CvC protein; 2 is HfCS protein; 3 is MeCS protein;
图12:CvCs蛋白、HfCS蛋白和MeCS蛋白的UDP-GalNAc/UDP-GalNAc转移酶活性图;Figure 12: UDP-GalNAc/UDP-GalNAc transferase activity diagram of CvCs protein, HfCS protein and MeCS protein;
图中:横坐标为蛋白类型;纵坐标为转化率。In the figure: the abscissa is the protein type; the ordinate is the conversion rate.
具体实施方式Detailed ways
下面通过具体的实施方案叙述本发明。除非特殊说明,本发明中所运用的技术手段均为本领域技术人员所公知的方法。以下实施例旨在进一步说明本发明内容,而非限制本发明的保护范围。The present invention is described below through specific embodiments. Unless otherwise specified, the technical means used in the present invention are all methods known to those skilled in the art. The following examples are intended to further illustrate the present invention but not to limit the scope of the present invention.
以下实施例中所使用的PCR Taq酶、无缝克隆试剂盒、大肠杆菌DH5α感受态细胞、大肠杆菌BL21(de3)感受态细胞,均购于Vazyme;质粒提取试剂盒和胶回收试剂盒,均购于OMEGA bio-tek(USA);限制性核酸内切酶购于Thermo Scientific;荧光素Cyanine5 DBCO购自Lumiprobe。未做特别说明的实验步骤均按照产品说明书进行。The PCR Taq enzyme, seamless cloning kit, E. coli DH5α competent cells, and E. coli BL21(de3) competent cells used in the following examples were all purchased from Vazyme; the plasmid extraction kit and gel recovery kit were all purchased from Vazyme. Purchased from OMEGA bio-tek (USA); restriction endonuclease was purchased from Thermo Scientific; fluorescein Cyanine5 DBCO was purchased from Lumiprobe. Experimental procedures not otherwise specified were performed in accordance with the product instructions.
实施例1:高效合成叠氮修饰糖胺聚糖骨架的枯草芽孢杆菌工程菌株BS168SSAGD的构建Example 1: Construction of Bacillus subtilis engineering strain BS168SSAGD for efficient synthesis of azide-modified glycosaminoglycan skeleton
1、枯草芽孢杆菌BS168ASS的构建1. Construction of Bacillus subtilis BS168ASS
所述枯草芽孢杆菌BS168ASS为阻断内源尿苷二磷酸-N-乙酰葡萄糖苷(GlcNAc)合成途径,表达异源尿苷二磷酸-N-乙酰葡萄糖苷(N-叠氮乙酰葡萄糖胺,GlcNAz)补救合成途径的枯草芽孢杆菌,具体构建方法如下:The Bacillus subtilis BS168ASS blocks the endogenous uridine diphosphate-N-acetylglucoside (GlcNAc) synthesis pathway and expresses heterologous uridine diphosphate-N-acetylglucoside (N-azidoacetylglucosamine, GlcNAz ) rescue synthesis pathway of Bacillus subtilis, the specific construction method is as follows:
(1)UDP-GlcNAc内源合成途径的阻断(1) Blocking of the endogenous synthesis pathway of UDP-GlcNAc
将公司(金斯瑞)合成的带有新霉素抗性基因glmS基因同源臂片段的pUC57-neo质粒用BamHI酶切,得到1800bp片段;The pUC57-neo plasmid containing the neomycin resistance gene glmS gene homology arm fragment synthesized by the company (GenScript) was digested with BamHI to obtain a 1800bp fragment;
酶切体系如下:The enzyme digestion system is as follows:
酶切反应条件:37℃水浴1h。并将酶切后的体系脱盐液体回收。Enzyme digestion reaction conditions: 37°C water bath for 1 hour. And recover the desalting liquid of the enzyme-digested system.
将枯草芽孢杆菌Bacillus subtilis subsp.subtilis str.168以0.1%的体积比例接种于LB液体培养基中,在37℃,225rpm摇床中过夜过化。取2.6mL过夜培养物接于40mL培养基(LB+0.5M山梨醇)中,37℃,200rpm培养至OD600=0.8~0.9。将菌液冰水浴10分钟,然后5000g,4℃离心5分钟收集菌体。用50mL预冷的电转培养基(0.5M山梨醇,0.5M甘露醇,10%甘油),重新吹悬菌体,5000g,4℃离心5分钟去上清,如此漂洗4次。将洗涤后的菌体吹悬于1mL电转培养基中,每个EP管分装60μL,得BS168电转感受态。Bacillus subtilis subsp.subtilis str.168 was inoculated into LB liquid medium at a volume ratio of 0.1%, and incubated overnight at 37°C and a 225rpm shaker. Take 2.6 mL of the overnight culture and inoculate it into 40 mL of culture medium (LB + 0.5 M sorbitol), and culture at 37°C and 200 rpm until OD 600 = 0.8 to 0.9. Bath the bacterial solution in ice water for 10 minutes, then centrifuge at 5000g and 4°C for 5 minutes to collect the bacteria. Use 50 mL of pre-cooled electroporation culture medium (0.5 M sorbitol, 0.5 M mannitol, 10% glycerol), resuspend the cells, centrifuge at 5000g for 5 minutes at 4°C to remove the supernatant, and rinse 4 times. The washed bacterial cells were suspended in 1 mL of electroporation culture medium, and 60 μL was dispensed into each EP tube to obtain BS168 electroporation competent cells.
在60μL电转感受态细胞中加入6μL的pUC57-neo质粒酶切后液体回收产物,冰上孵育2分钟,加入到预冷的电转杯(1mm)中,电击一次。电转仪设置:2kV,1mm,电击1次。电击完毕取出杯子并立即加入1mL RM培养基(LB+0.5M山梨醇+0.38M甘露醇),37℃,200rpm,复苏3小时后,在含有50μg/mL新霉素的LB固体培养基上培养过夜,挑取阳性转化子,记为BS168△glmS菌株。Add 6 μL of pUC57-neo plasmid enzymatic digestion liquid to 60 μL of electroporated competent cells to recover the product, incubate on ice for 2 minutes, add to a pre-cooled electroporation cup (1 mm), and electrocute once. Electrodemeter settings: 2kV, 1mm, 1 electric shock. After electroshock, take out the cup and immediately add 1mL of RM medium (LB+0.5M sorbitol+0.38M mannitol) at 37°C, 200rpm. After recovery for 3 hours, culture on LB solid medium containing 50μg/mL neomycin. Overnight, the positive transformants were picked and recorded as BS168△glmS strain.
(2)可利用GlcNAc(GlcNAz)的UDP-GlcNAc(UDP-GlcNAz)补救合成途径的引入(2) Introduction of UDP-GlcNAc (UDP-GlcNAz) rescue synthesis pathway that can utilize GlcNAc (GlcNAz)
设计带有卡那霉素抗性基因的新霉素抗性基因同源臂片段Pveg-AGX1-Pveg-NahK,以敲除基因组上的新霉素抗性基因,pUC57-Pveg-AGX1-Pveg-NahK质粒在公司合成(生工)。利用Acc65I和SmaI酶切pUC57-Pveg-AGX1-Pveg-NahK质粒;Design the neomycin resistance gene homology arm fragment P veg -AGX1-P veg -NahK with kanamycin resistance gene to knock out the neomycin resistance gene on the genome, pUC57-P veg -AGX1 -P veg -NahK plasmid was synthesized in the company (Sangon). Use Acc65I and SmaI to digest pUC57-P veg -AGX1-P veg -NahK plasmid;
酶切体系如下:The enzyme digestion system is as follows:
酶切反应条件:37℃水浴1h。并将酶切后的体系脱盐液体回收。Enzyme digestion reaction conditions: 37°C water bath for 1 hour. And recover the desalting liquid of the enzyme-digested system.
按照(1)中所述方法制备BS168△glmS电转感受态,并将同源臂片段Pveg-AGX1-Pveg-NahK电转入BS168△glmS电转感受态中,在含有50μg/mL卡那霉素的LB固体培养基上培养过夜,挑取阳性转化子,得到枯草芽孢杆菌BS168ASS。Prepare the BS168△glmS electroporation competence according to the method described in (1), and electroporate the homologous arm fragment P veg -AGX1-P veg -NahK into the BS168△glmS electroporation competence, in the presence of 50 μg/mL kanamycin Cultivation was carried out overnight on LB solid medium containing sterol, and positive transformants were selected to obtain Bacillus subtilis BS168ASS.
所述基因glmS的NCBI数据库的ID为938736,所述N-乙酰己糖胺-1-激酶的基因NahK来自于长双歧杆菌,NCBI数据库的ID为69578838,所述N-乙酰葡萄糖胺-1-磷酸-尿嘧啶转移酶的基因AGX1来自于人NCBI数据库的ID为6675。The ID of the NCBI database of the gene glmS is 938736, the gene NahK of the N-acetylhexosamine-1-kinase comes from Bifidobacterium longum, the ID of the NCBI database is 69578838, and the N-acetylglucosamine-1 -The gene AGX1 of phospho-uracil transferase comes from the human NCBI database with ID 6675.
此具体方法已经在中国专利文献2021100967185中公开。This specific method has been disclosed in Chinese patent document 2021100967185.
2、尿苷二磷酸-葡萄糖-6-脱氢酶基因tuaD的获取2. Acquisition of uridine diphosphate-glucose-6-dehydrogenase gene tuaD
提取枯草芽孢杆菌基因组DNA,以基因组DNA为模板,tuaD F和tuaD R为引物进行PCR,所述引物序列为:Extract the genomic DNA of Bacillus subtilis, use the genomic DNA as the template, tuaD F and tuaDR as the primers to perform PCR, the primer sequence is:
tuaD F:5’-AGGTACCAAGAGAGGAATGTACACATGAAAAAAATAGCTGTCATTGG-3’,tuaD F:5’-AGGTACCAAGAGAGGAATGTACACATGAAAAAAATAGCTGTCATTGG-3’,
tuaD R:5’-GACGTCGACTCTAGAGGATCCTTATAAATTGACGCTTCCCAAGTC-3’;tuaD R:5’-GACGTCGACTCTAGAGGATCCTTATAAATTGACGCTTCCCAAGTC-3’;
PCR反应体系如下:(引物浓度为10μM)The PCR reaction system is as follows: (primer concentration is 10 μM)
PCR反应条件:95℃预变性3min,;95℃变性15s,72℃退火15s,58℃延伸2min,共30个循环;72℃延伸5min,4℃保存。1%琼脂糖凝胶电泳30min,胶回收纯化PCR产物。所得的PCR产物经1%的琼脂糖凝胶电泳分析检测,结果如图1所示,得到大小约为1390bp的电泳条带,即为tuaD片段。PCR reaction conditions: pre-denaturation at 95°C for 3 minutes, denaturation at 95°C for 15 seconds, annealing at 72°C for 15 seconds, extension at 58°C for 2 minutes, a total of 30 cycles, extension at 72°C for 5 minutes, and storage at 4°C. 1% agarose gel electrophoresis for 30 minutes, gel recovery and purification of PCR products. The obtained PCR product was analyzed and detected by 1% agarose gel electrophoresis. The results are shown in Figure 1. An electrophoresis band with a size of approximately 1390 bp was obtained, which is the tuaD fragment.
3、构建糖胺聚糖骨架合酶文库3. Construction of glycosaminoglycan backbone synthase library
获得来源于Escherichia coli的硫酸软骨素骨架合酶KfoC,NCBI数据库的ID为CAD5992240.1;来源于Pasteurella multocida的肝素骨架合酶PmHS2,NCBI数据库的ID为AY292200.1;来源于Pasteurella multocida的透明质酸骨架合酶pmHAS,NCBI数据库的ID为AAC38318.2,这三个酶均为高活性的糖胺聚糖骨架合酶。Obtained the chondroitin sulfate skeleton synthase KfoC derived from Escherichia coli, the ID of the NCBI database is CAD5992240.1; the heparin scaffold synthase PmHS2 derived from Pasteurella multocida, the ID of the NCBI database is AY292200.1; the hyaline derived from Pasteurella multocida Acid backbone synthase pmHAS, the ID of the NCBI database is AAC38318.2. These three enzymes are all highly active glycosaminoglycan backbone synthases.
以这三个酶的氨基酸序列为序列比对模板,通过BLASTp算法进行生物信息学数据库(NCBI数据库)序列比对,寻找了十个可能为糖胺聚糖骨架合酶(GTs)的氨基酸序列,分别简称为CcCS,NCBI数据库的ID为WP_150081707.1;CvCS,NCBI数据库的ID为WP_168227469.1;HfCS,NCBI数据库的ID为NBI12747.1;LeCS,NCBI数据库的ID为WP_1661815;MsCS,NCBI数据库的ID为WP_024460064.1;MeCS,NCBI数据库的ID为WP_167432605.1;NdCS,NCBI数据库的ID为WP_085359788.1;PsCS,NCBI数据库的ID为WP_144187813.1;RhCS,NCBI数据库的ID为WP_077587478.1;TmCS,NCBI数据库的ID为WP_136735112.1Using the amino acid sequences of these three enzymes as sequence comparison templates, we used the BLASTp algorithm to perform sequence comparisons in the bioinformatics database (NCBI database) and found ten amino acid sequences that may be glycosaminoglycan backbone synthases (GTs). They are respectively abbreviated as CcCS, the ID of the NCBI database is WP_150081707.1; CvCS, the ID of the NCBI database is WP_168227469.1; HfCS, the ID of the NCBI database is NBI12747.1; LeCS, the ID of the NCBI database is WP_1661815; MsCS, the ID of the NCBI database is WP_1661815. The ID is WP_024460064.1; MeCS, the ID of the NCBI database is WP_167432605.1; NdCS, the ID of the NCBI database is WP_085359788.1; PsCS, the ID of the NCBI database is WP_144187813.1; RhCS, the ID of the NCBI database is WP_077587478.1; TmCS, the ID of the NCBI database is WP_136735112.1
以上13个基因片段通过大肠杆菌及枯草芽孢杆菌双密码子优化后由公司(金斯瑞)合成相应的质粒pET28a(+)-His-GT,存在于E.coli TOP10中。分别设计引物,对质粒进行PCR得到相应的基因片段,统称为GT片段。其中引物序列分别为:The above 13 gene fragments were double-codon optimized in E. coli and Bacillus subtilis and synthesized by the company (GenScript) into the corresponding plasmid pET28a(+)-His-GT, which is present in E. coli TOP10. Design primers respectively and perform PCR on the plasmid to obtain the corresponding gene fragments, collectively called GT fragments. The primer sequences are:
KfoC F:5’-TGACAAATGGTCCAAACTAGTATGAGTATTCTTAATCAAGCAATA-3’;KfoC F:5’-TGACAAATGGTCCAAACTAGTATGAGTATTCTTAATCAAGCAATA-3’;
KfoC R:5’-GTACATTCCTCTCTTGGTACCTTATAAATCATTCTCTATTTTTT-3’;KfoC R:5’-GTACATTCCTCTCTTGGTACCTTATAAATCATTCTCTATTTTTT-3’;
PmHAS F:5’-TGACAAATGGTCCAAACTAGTATGAACACACTGAGCCAAGCAA-3’;PmHAS F:5’-TGACAAATGGTCCAAACTAGTATGAACACACTGAGCCAAGCAA-3’;
PmHAS R:5’-GTACATTCCTCTCTTGGTACCTTACAGTGTAATTGAATTAATAA-3’;PmHAS R:5’-GTACATTCCTCTCTTGGTACCTTACAGTGTAATTGAATTAATAA-3’;
PmHS2 F:5’-TGACAAATGGTCCAAACTAGTATGAAAGGCAAAAAAGAAATGA-3’;PmHS2 F:5’-TGACAAATGGTCCAAACTAGTATGAAAGGCAAAAAAGAAATGA-3’;
PmHS2 R:5’-GTACATTCCTCTCTTGGTACCTTAAAGAAAATAAAACGGCAGGC-3’;PmHS2 R:5’-GTACATTCCTCTCTTGGTACCTTAAAGAAAATAAAACGGCAGGC-3’;
CcCS F:5’-TGACAAATGGTCCAAACTAGTATGCAACAATCTAGCAAATCATTT-3’;CcCS F:5’-TGACAAATGGTCCAAACTAGTATGCAACAATCTAGCAAATCATTT-3’;
CcCS R:5’-GTACATTCCTCTCTTGGTACCTTATATATTTTTGTGAAAAGAGGT-3’;CcCS R:5’-GTACATTCCTCTCTTGGTACCTTATATATTTTTGTGAAAAGAGGT-3’;
CvCS F:5’-TGACAAATGGTCCAAACTAGTATGACAATTTTGAATCAAGCGATT-3’;CvCS F:5’-TGACAAATGGTCCAAACTAGTATGACAATTTTGAATCAAGCGATT-3’;
CvCS R:5’-GTACATTCCTCTCTTGGTACCTTATATAAACTGCTGAATACACAG-3’;CvCS R:5’-GTACATTCCTCTCTTGGTACCTTATATAAACTGCTGAATACACAG-3’;
HfCS F:5’-TGACAAATGGTCCAAACTAGTATGAATATACTGTCCAAGGCAATT-3’;HfCS F:5’-TGACAAATGGTCCAAACTAGTATGAATATACTGTCCAAGGCAATT-3’;
HfCS R:5’-GTACATTCCTCTCTTGGTACCTTAAGCAAAGTTAAGCCGATGGGT-3’;HfCS R:5’-GTACATTCCTCTCTTGGTACCTTAAGCAAAGTTAAGCCGATGGGT-3’;
LeCS F:5’-TGACAAATGGTCCAAACTAGTATGTCGATTTTTAACGAAGCAATT-3’;LeCS F:5’-TGACAAATGGTCCAAACTAGTATGTCGATTTTTAACGAAGCAATT-3’;
LeCS R:5’-GTACATTCCTCTCTTGGTACCTTATATAAATTTGAAACCGATTTT-3’;LeCS R:5’-GTACATTCCTCTCTTGGTACCTTATATAAATTTGAAACCGATTTT-3’;
MeCS F:5’-TGACAAATGGTCCAAACTAGTATGGCCAGCTTTGTAGAAGCTAAC-3;’MeCS F:5’-TGACAAATGGTCCAAACTAGTATGGCCAGCTTTGTAGAAGCTAAC-3;’
MeCS R:5’-GTACATTCCTCTCTTGGTACCTTATTTTTTGAAAAAAACTACCTG-3’;MeCS R:5’-GTACATTCCTCTCTTGGTACCTTATTTTTTGAAAAAAACTACCTG-3’;
MsCS F:5’-TGACAAATGGTCCAAACTAGTATGGGGGCAGGTCAAAATATACTG-3’;MsCS F:5’-TGACAAATGGTCCAAACTAGTATGGGGGCAGGTCAAAATATACTG-3’;
MsCS R:5’-GTACATTCCTCTCTTGGTACCTTAAAGAAAATAAAACGGCAGGC-3’;MsCS R:5’-GTACATTCCTCTCTTGGTACCTTAAAGAAAATAAAACGGCAGGC-3’;
NdCS F:5’-TGACAAATGGTCCAAACTAGTATGGAAAAGATCCTGAGCCGCGCA-3’;NdCS F:5’-TGACAAATGGTCCAAACTAGTATGGAAAAGATCCTGAGCCGCGCA-3’;
NdCS R:5’-GTACATTCCTCTCTTGGTACCTTATATGTTTTTAAACTGAATCAG-3’;NdCS R:5’-GTACATTCCTCTCTTGGTACCTTATATGTTTTTAAACTGAATCAG-3’;
PsCS F:5’-TGACAAATGGTCCAAACTAGTATGAAGATCCTGAGCAATGCGATT-3’;PsCS F:5’-TGACAAATGGTCCAAACTAGTATGAAGATCCTGAGCAATGCGATT-3’;
PsCS R:5’-GTACATTCCTCTCTTGGTACCTTACGTTATAAAATTACCAATGGC-3’;PsCS R:5’-GTACATTCCTCTCTTGGTACCTTACGTTATAAAATTACCAATGGC-3’;
RhCS F:5’-TGACAAATGGTCCAAACTAGTATGAATATTCTGTCAAAAGCCGTT-3’;RhCS F:5’-TGACAAATGGTCCAAACTAGTATGAATATTCTGTCAAAAGCCGTT-3’;
RhCS R:5’-GTACATTCCTCTCTTGGTACCTTAATAATAGGTAATGTAAAAGTT-3’;RhCS R:5’-GTACATTCCTCTCTTGGTACCTTAATAATAGGTAATGTAAAAGTT-3’;
TmCS F:5’-TGACAAATGGTCCAAACTAGTATGAATAAAAATATATTCGATCAA-3’;TmCS F:5’-TGACAAATGGTCCAAACTAGTATGAATAAAAATATATTCGATCAA-3’;
TmCS R:5’-GTACATTCCTCTCTTGGTACCTTAAAGCAAAGTGCTGAACTGCTC-3’。TmCS R: 5’-GTACATTCCTCTCTTGGTACCTTAAAGCAAAGTGCTGAACTGCTC-3’.
PCR反应体系如下:(引物浓度为10μM)The PCR reaction system is as follows: (primer concentration is 10 μM)
PCR反应条件:95℃预变性3min,;95℃变性15s,72℃退火15s,60℃延伸3min,共30个循环;72℃延伸5min,4℃保存。1%琼脂糖凝胶电泳30min,胶回收纯化PCR产物。所得的PCR产物经1%的琼脂糖凝胶电泳分析检测,结果如图2和图3所示。PCR reaction conditions: pre-denaturation at 95°C for 3 minutes, denaturation at 95°C for 15 seconds, annealing at 72°C for 15 seconds, extension at 60°C for 3 minutes, a total of 30 cycles, extension at 72°C for 5 minutes, and storage at 4°C. 1% agarose gel electrophoresis for 30 minutes, gel recovery and purification of PCR products. The obtained PCR products were analyzed and detected by 1% agarose gel electrophoresis, and the results are shown in Figures 2 and 3.
4、重组表达质粒的构建4. Construction of recombinant expression plasmid
(1)将载体质粒pHCMC04用SpeI和BamHI双酶切,得到的8000bp片段,该片段的电泳图如图4所示;(1) Double digest the vector plasmid pHCMC04 with SpeI and BamHI to obtain an 8000bp fragment. The electrophoresis pattern of this fragment is shown in Figure 4;
酶切体系如下:The enzyme digestion system is as follows:
酶切反应条件:37℃水浴1h。Enzyme digestion reaction conditions: 37°C water bath for 1 hour.
(2)将酶切后的载体质粒与tuaD片段和GT片段通过DNA无缝克隆的方法连接,再通过化学转化至大肠杆菌DH5α感受态细胞,经测序验证后共得到13个重组表达载体,分别为pHCMC04-CcCS-tuaD重组质粒、pHCMC04-CvCS-tuaD重组质粒、pHCMC04-NdCS-tuaD重组质粒、pHCMC04-MsCS-tuaD重组质粒、pHCMC04-RhCS-tuaD重组质粒、pHCMC04-MeCS-tuaD重组质粒、pHCMC04-HfCS-tuaD重组质粒、pHCMC04-LeCS-tuaD重组质粒、pHCMC04-LeCS-tuaD重组质粒、pHCMC04-TmCS-tuaD重组质粒、pHCMC04-KfoC-tuaD重组质粒、pHCMC04-PmHAS-tuaD重组质粒和pHCMC04-PmHS2-tuaD重组质粒,统称为GD表达载体,具体重组质粒构建图谱如图5和图6所示。(2) The digested vector plasmid, tuaD fragment and GT fragment were connected through DNA seamless cloning method, and then chemically transformed into E. coli DH5α competent cells. After sequencing verification, a total of 13 recombinant expression vectors were obtained, respectively. It is pHCMC04-CcCS-tuaD recombinant plasmid, pHCMC04-CvCS-tuaD recombinant plasmid, pHCMC04-NdCS-tuaD recombinant plasmid, pHCMC04-MsCS-tuaD recombinant plasmid, pHCMC04-RhCS-tuaD recombinant plasmid, pHCMC04-MeCS-tuaD recombinant plasmid, pHCMC04 -HfCS-tuaD recombinant plasmid, pHCMC04-LeCS-tuaD recombinant plasmid, pHCMC04-LeCS-tuaD recombinant plasmid, pHCMC04-TmCS-tuaD recombinant plasmid, pHCMC04-KfoC-tuaD recombinant plasmid, pHCMC04-PmHAS-tuaD recombinant plasmid and pHCMC04-PmHS2 -tuaD recombinant plasmids are collectively called GD expression vectors. The specific recombinant plasmid construction maps are shown in Figure 5 and Figure 6.
无缝克隆反应体系如下:The seamless cloning reaction system is as follows:
无缝克隆反应条件:在50℃下水浴反应30~50min。Seamless cloning reaction conditions: react in a water bath at 50°C for 30 to 50 minutes.
5、构建含有GD表达载体的重组枯草芽孢杆菌5. Construction of recombinant Bacillus subtilis containing GD expression vector
按照(1)中所述方法制备BS168ASS电转感受态,将GD表达载体通过电转化的方法转入枯草芽孢杆菌BS168ASS中,在含有5μg/mL氯霉素的LB固体培养基上培养过夜,长出转化子,即为高效合成叠氮修饰糖胺聚糖骨架的重组菌BS168SSAGD。Prepare BS168ASS electroporation competent cells according to the method described in (1), transfer the GD expression vector into Bacillus subtilis BS168ASS through electroporation, and culture it overnight on LB solid medium containing 5 μg/mL chloramphenicol. The transformant is the recombinant bacterium BS168SSAGD that efficiently synthesizes azide-modified glycosaminoglycan skeleton.
实施例2:重组菌BS168SSAGD在高通量筛选糖胺聚糖骨架合酶方面的应用Example 2: Application of recombinant strain BS168SSAGD in high-throughput screening of glycosaminoglycan backbone synthases
1、基于已知活性的糖胺聚糖骨架合酶KfoC、PmHS2和PmHAS对于高通量筛选体系的验证。1. Validation of high-throughput screening system based on glycosaminoglycan backbone synthases KfoC, PmHS2 and PmHAS with known activity.
将实施例1中构建的含有KfoC基因和tuaD基因的重组菌称为BS168SSACD;含有PmHS2基因和tuaD基因的重组菌称为BS168SSAHS2D;含有PmHAS基因和tuaD基因的重组菌称为BS168SSAHASD;含有pHCMC04空质粒的枯草芽孢杆菌称为BS168SSAE,作为对照。The recombinant bacterium containing the KfoC gene and tuaD gene constructed in Example 1 is called BS168SSACD; the recombinant bacterium containing the PmHS2 gene and tuaD gene is called BS168SSAHS2D; the recombinant bacterium containing the PmHAS gene and tuaD gene is called BS168SSAHASD; the recombinant bacterium containing the pHCMC04 empty plasmid is called subtilis, called BS168SSAE, served as a control.
然后以0.1%的体积比例接种于特殊底物LB液体培养基中,在37℃,225rpm摇床中过夜培养。将过夜培养的菌株以1%的体积比例扩大至特殊底物LB液体培养基中,待菌株长至OD600为0.6~0.8时,用1×PBS缓冲液洗涤3遍菌株,将菌株转移至不含葡萄糖的低盐M9培养基中培养,消耗菌体自身含有的GlcNAc,1h后加入终浓度为20g/L的木糖诱导剂和终浓度为100μg/mL的糖基转移酶非天然底物GlcNAz。于在37℃,225rpm摇床中诱导培养6h。Then it was inoculated into the special substrate LB liquid medium at a volume ratio of 0.1%, and cultured overnight in a shaker at 37°C and 225 rpm. Expand the strain cultured overnight into the special substrate LB liquid medium at a volume ratio of 1%. When the strain grows to an OD 600 of 0.6-0.8, wash the strain three times with 1×PBS buffer and transfer the strain to another Cultivate in low-salt M9 medium containing glucose to consume the GlcNAc contained in the bacteria themselves. After 1 hour, add xylose inducer with a final concentration of 20g/L and glycosyltransferase non-natural substrate GlcNAz with a final concentration of 100μg/mL. . Induced and cultured for 6 hours at 37°C, 225rpm shaker.
所述特殊底物LB液体培养基的组分如下:10g/L酵母提取物、20g/L蛋白胨、20g/L氯化钠、5μg/mL氯霉素和100μg/mL糖基转移酶天然底物GlcNac。The components of the special substrate LB liquid culture medium are as follows: 10g/L yeast extract, 20g/L peptone, 20g/L sodium chloride, 5μg/mL chloramphenicol and 100μg/mL glycosyltransferase natural substrate GlcNac.
将诱导培养完成的菌株用1×PBS缓冲液通过重悬离心洗涤3遍后,重悬于200μL 1×PBS缓冲液中,于避光1.5mL离心管中加入终浓度为0.5mM荧光素Cyanine5 DBCO,37℃静置反应1h后用1×PBS缓冲液洗涤3遍,采用酶标仪检测其在发射波长646nm,激发波长662nm下荧光强度与600nm下的吸光度,计算其荧光强度与OD600的比值,结果如图7所示。The induced cultured strain was washed three times with 1×PBS buffer by resuspension and centrifugation, and then resuspended in 200 μL of 1×PBS buffer. Add a final concentration of 0.5mM fluorescein Cyanine5 DBCO into a light-proof 1.5mL centrifuge tube. , let stand for 1 hour at 37°C and then wash 3 times with 1×PBS buffer. Use a microplate reader to detect the fluorescence intensity at the emission wavelength of 646nm, the excitation wavelength of 662nm and the absorbance at 600nm, and calculate the ratio of the fluorescence intensity to OD 600 . , the results are shown in Figure 7.
由图7可知,含糖胺聚糖骨架合酶的重组菌BS168SSACD、BS168SSAHS2D、BS168SSAHASD的荧光强度与吸光度比值明显高于不含糖胺聚糖骨架合酶菌株BS168SSAE,且荧光是不含糖胺聚糖骨架合酶表菌株BS168SSAE的荧光1倍以上。It can be seen from Figure 7 that the fluorescence intensity and absorbance ratio of the recombinant strains BS168SSACD, BS168SSAHS2D, and BS168SSAHASD containing glycosaminoglycan backbone synthase are significantly higher than those of the strain BS168SSAE that does not contain glycosaminoglycan backbone synthase, and the fluorescence is higher than that of the strain BS168SSAE that does not contain glycosaminoglycan backbone synthase. The fluorescence of sugar skeleton synthase strain BS168SSAE is more than doubled.
将参与荧光反应后的菌液用1×PBS缓冲液稀释至OD600在0.3~0.5之间,在发射波长646nm,激发波长662nm下进行单色流式分析,结果如图8所示,。The bacterial solution that participated in the fluorescence reaction was diluted with 1×PBS buffer until the OD 600 was between 0.3 and 0.5, and a single-color flow cytometry analysis was performed at an emission wavelength of 646 nm and an excitation wavelength of 662 nm. The results are shown in Figure 8.
由图8可知,含糖胺聚糖骨架合酶的重组菌BS168SSACD、BS168SSAHS2D、BS168SSAHASD的荧光强度明显高于不含糖胺聚糖骨架合酶菌株BS168SSAE,此结果与酶标仪结果一致。As can be seen from Figure 8, the fluorescence intensity of the recombinant strains BS168SSACD, BS168SSAHS2D, and BS168SSAHASD containing glycosaminoglycan backbone synthase is significantly higher than that of the strain BS168SSAE that does not contain glycosaminoglycan backbone synthase. This result is consistent with the results of the microplate reader.
2、基于未知活性的糖胺聚糖骨架合酶文库的筛选2. Screening of glycosaminoglycan backbone synthase libraries with unknown activity
(1)基于荧光强度与吸光度的比值对于糖胺聚糖骨架合酶文库的筛选(1) Screening of glycosaminoglycan backbone synthase library based on the ratio of fluorescence intensity to absorbance
将实施例1中构建的十个含有tuaD基因和GT片段的重组菌,分别简称为:CcCS、CvCS、HfCS、LeCS、MsCS、MeCS、NdCS、PsCS、RhCS、TmCS。于96孔深孔板中按照1中所述的方法培养及诱导,并与Cyanine5 DBCO发生点击化学反应,采用酶标仪检测其在发射波长646nm,激发波长662nm下荧光强度与600nm下的吸光度,计算其荧光强度与OD600的比值,结果如图9所示。The ten recombinant bacteria containing tuaD gene and GT fragment constructed in Example 1 are respectively abbreviated as: CcCS, CvCS, HfCS, LeCS, MsCS, MeCS, NdCS, PsCS, RhCS, and TmCS. Cultivate and induce in a 96-well deep well plate according to the method described in 1, and perform a click chemical reaction with Cyanine5 DBCO. Use a microplate reader to detect its fluorescence intensity at the emission wavelength of 646nm, excitation wavelength of 662nm and absorbance at 600nm. The ratio of its fluorescence intensity to OD 600 was calculated, and the results are shown in Figure 9.
由图9可知,CvCs基因、HfCS基因和MeCS基因表现出与KfoC基因程度相当甚至更强的荧光。As can be seen from Figure 9, the CvCs gene, HfCS gene and MeCS gene exhibit fluorescence that is comparable to or even stronger than that of the KfoC gene.
(2)体外糖胺聚糖骨架合酶活性的验证(2) Verification of glycosaminoglycan backbone synthase activity in vitro
将(1)中表现出较强荧光的CvCs基因、HfCS基因和MeCS基因,由公司(金斯瑞)合成相应的质粒公司合成的原始质粒pET28a(+)-His-CvCS、pET28a(+)-His-HfCS、pET28a(+)-His-MeCS,具体重组质粒构建图谱如图10所示。分别通过化学转化至大肠杆菌BL21(DE3)中,在50μg/mL卡那霉素的LB固体培养基中长出转化子,挑取单菌落,并提取质粒经酶切验证,得到含有CvCs基因、HfCS基因和MeCS基因的BL21(DE3)表达菌株。The CvCs gene, HfCS gene and MeCS gene that showed strong fluorescence in (1) were synthesized by the company (GenScript) into corresponding plasmids. The company synthesized the original plasmid pET28a(+)-His-CvCS, pET28a(+)- His-HfCS, pET28a(+)-His-MeCS, and the specific recombinant plasmid construction map is shown in Figure 10. They were chemically transformed into E. coli BL21 (DE3), and the transformants were grown in LB solid medium with 50 μg/mL kanamycin. Single colonies were picked, and the plasmid was extracted and verified by enzyme digestion to obtain the CvCs gene containing, BL21(DE3) expression strain of HfCS gene and MeCS gene.
酶切体系如下:The enzyme digestion system is as follows:
酶切反应条件:37℃水浴20min。Enzyme digestion reaction conditions: 37°C water bath for 20 minutes.
将含有CvCs、HfCS、MeCS基因的BL21(DE3)表达菌株分别以1%体积比例扩大至1L的LB液体培养基中,待菌株长至OD600为0.6~0.8时,加入终浓度为0.2mM的IPTG,22℃,225rpm,诱导12~18h。Expand the BL21 (DE3) expression strain containing CvCs, HfCS, and MeCS genes into 1 L of LB liquid culture medium at a volume ratio of 1%. When the strain grows to an OD 600 of 0.6 to 0.8, add a final concentration of 0.2 mM IPTG, 22°C, 225rpm, induction for 12 to 18 hours.
诱导结束后,在4℃,8000g条件下离心菌液20min,弃掉上清液,收集菌体沉淀并用上样缓冲液(20Mm Tris-HCl,PH=7.5,0.5M NaCl,5mM咪唑)重悬;使用超声破碎仪破碎菌体30min,工作条件为:工作15s,间歇45s,振幅35%,能量1500KJ,4℃;使用超低温离心机将破碎菌体在4℃,12000g条件下离心30min,收集上清液并用0.22μm滤膜过滤。使用Ni-charged MagBeads纯化过滤后的上清液,先用ddH2O将试管中完全重悬磁珠,将试管放在磁珠分离架上收集磁珠,弃去上清洗涤掉原本20%乙醇的磁珠保存液;用上样缓冲液(20MmTris-HCl,pH=7.5,0.5M NaCl,35mM咪唑)重悬磁珠两次,平衡体系;将过滤后的上清液重悬磁珠,于4℃,225rpm摇床中孵育30min;用平衡缓冲液(20Mm Tris-HCl,pH=7.5,0.5MNaCl,35mM咪唑)洗去杂蛋白;用洗脱缓冲液(20Mm Tris-HCl,pH=7.5,0.5M NaCl,200mM咪唑)洗脱目的蛋白并收集。After induction, centrifuge the bacterial solution at 4°C and 8000g for 20 minutes, discard the supernatant, collect the bacterial pellet and resuspend it in loading buffer (20Mm Tris-HCl, pH=7.5, 0.5M NaCl, 5mM imidazole) ;Use an ultrasonic crusher to crush the bacterial cells for 30 minutes. The working conditions are: working for 15 seconds, interval of 45 seconds, amplitude 35%, energy 1500KJ, 4℃; use ultra-low temperature centrifuge to centrifuge the broken bacterial cells for 30min at 4℃, 12000g, and collect the The clear liquid was filtered with a 0.22 μm filter membrane. Use Ni-charged MagBeads to purify the filtered supernatant. First use ddH 2 O to completely resuspend the magnetic beads in the test tube. Place the test tube on the magnetic bead separation rack to collect the magnetic beads. Discard the supernatant and wash away the original 20% ethanol. Magnetic bead storage solution; resuspend the magnetic beads twice in loading buffer (20MmTris-HCl, pH=7.5, 0.5M NaCl, 35mM imidazole) to balance the system; resuspend the filtered supernatant and add Incubate for 30 minutes in a shaker at 225 rpm at 4°C; wash away impurity proteins with equilibrium buffer (20Mm Tris-HCl, pH=7.5, 0.5M NaCl, 35mM imidazole); use elution buffer (20Mm Tris-HCl, pH=7.5, 0.5M NaCl, 200mM imidazole) to elute the target protein and collect.
通过聚丙烯酰胺凝胶电泳(SDS-PAGE)对诱导后蛋白的表达和纯化情况进行鉴定,结果如图11所示,说明成功分离得到CvCs蛋白、HfCS蛋白和MeCS蛋白。The expression and purification of the protein after induction were identified by polyacrylamide gel electrophoresis (SDS-PAGE). The results are shown in Figure 11, indicating that CvCs protein, HfCS protein and MeCS protein were successfully separated.
以GlcA-pNP作为受体底物,UDP-GalNAc/UDP-GlcNAc分别作为供体底物分别测CvCs蛋白、HfCS蛋白和MeCS蛋白的糖胺聚糖骨架合酶活性。GlcA-pNP was used as the acceptor substrate, and UDP-GalNAc/UDP-GlcNAc was used as the donor substrate respectively to measure the glycosaminoglycan backbone synthase activities of CvCs protein, HfCS protein and MeCS protein.
反应体系如下:The reaction system is as follows:
反应条件:37℃过夜反应。Reaction conditions: overnight reaction at 37°C.
将反应后的体系用0.22μm的滤膜过滤后进行PAMN-HPLC分析。在310nm检测pNP基团的特定吸收峰。HPLC分析时用到的色谱柱为YMC-Pack Polyamine II色谱柱,流动相为水和1mol/L KH2PO4溶液,流速为0.5mL/min,检测每一种蛋白催化产物通过色谱柱分离后各组分在310/254nm的紫外吸收,结果如图12所示。The reaction system was filtered with a 0.22 μm filter membrane and analyzed by PAMN-HPLC. The specific absorption peak of the pNP group was detected at 310 nm. The chromatographic column used in HPLC analysis is a YMC-Pack Polyamine II column. The mobile phase is water and 1mol/L KH 2 PO 4 solution. The flow rate is 0.5mL/min. Each protein catalytic product is detected after separation by the chromatographic column. The UV absorption of each component at 310/254nm is shown in Figure 12.
HPLC分析程序如下:The HPLC analysis procedure is as follows:
由图12可知,CvCs蛋白、HfCS蛋白和MeCS蛋白均表现出强UDP-GalNAc转移酶活性,即CvCs蛋白、HfCS蛋白和MeCS蛋白均为具有高活性的糖胺聚糖骨架合酶。与本实施例2中基于荧光强度与吸光度的比值对于糖胺聚糖骨架合酶文库的筛选结果一致。It can be seen from Figure 12 that CvCs protein, HfCS protein and MeCS protein all exhibit strong UDP-GalNAc transferase activity, that is, CvCs protein, HfCS protein and MeCS protein are all highly active glycosaminoglycan skeleton synthases. It is consistent with the screening results of the glycosaminoglycan backbone synthase library based on the ratio of fluorescence intensity to absorbance in Example 2.
3、基于荧光激活细胞分选技术(FACS)对于糖胺聚糖骨架合酶的高通量筛选3. High-throughput screening of glycosaminoglycan backbone synthases based on fluorescence-activated cell sorting (FACS)
基于酶标仪测定荧光的方法仅能对少量的糖胺聚糖骨架合酶进行筛选,高通量的筛选需要依赖于荧光激活细胞分选技术,通过将含KfoC基因和tuaD基因表达盒的菌株BS168SSACD称为KfoC+;仅含有pHCMC04空质粒菌株BS168SSAE,称为KfoC-。The method based on measuring fluorescence using a microplate reader can only screen a small number of glycosaminoglycan backbone synthases. High-throughput screening requires fluorescence-activated cell sorting technology, by dividing strains containing KfoC gene and tuaD gene expression cassettes. BS168SSACD is called KfoC+; strain BS168SSAE, which only contains the pHCMC04 empty plasmid, is called KfoC-.
将KfoC+与KfoC-混合培养,按照KfoC+/总细菌分别为10:1、1:1、1:10、1:100的体积比,进一步分析FACS对阳性组的富集效率。KfoC+ and KfoC- were mixed and cultured, and the FACS enrichment efficiency of the positive group was further analyzed according to the volume ratio of KfoC+/total bacteria of 10:1, 1:1, 1:10, and 1:100 respectively.
将混合培养的菌株按照本实施例1中所述方法诱导培养及荧光反应,洗涤后通过流式细胞仪分析。收集荧光强度在前2%的菌体,以尽量减少可能的假阳性。将分选后的细菌于含5μg/mL氯霉素的LB固体培养基中过夜培养,挑取单菌落后,鉴定出富集后的阳性比例,与分选前进行比较,结果如表1所示。The mixed cultured strains were cultured and fluorescently reacted according to the method described in Example 1, and analyzed by flow cytometry after washing. Collect bacterial cells with fluorescence intensity in the top 2% to minimize possible false positives. The sorted bacteria were cultured overnight in LB solid medium containing 5 μg/mL chloramphenicol. After picking single colonies, the positive ratio after enrichment was identified and compared with before sorting. The results are shown in Table 1 Show.
表1高效合成叠氮化修饰糖胺聚糖骨架的重组枯草芽孢杆菌应用于FACS体系中,从大量背景细菌中富集含高活性糖胺聚糖骨架合酶重组菌株的效果。Table 1 The effect of efficiently synthesizing recombinant Bacillus subtilis with azide-modified glycosaminoglycan backbone and applying it in the FACS system to enrich recombinant strains containing highly active glycosaminoglycan backbone synthase from a large number of background bacteria.
由表1可知,在单轮高严格的流式分选条件下,1:100的混合培养条件下依旧有高达97%概率富集含高活性糖胺聚糖骨架合酶重组菌株KfoC+。As can be seen from Table 1, under a single round of highly stringent flow sorting conditions, there is still a 97% probability of enriching the recombinant strain KfoC+ containing highly active glycosaminoglycan backbone synthase under 1:100 mixed culture conditions.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210468072.3A CN117004635A (en) | 2022-04-29 | 2022-04-29 | A high-throughput screening method for glycosaminoglycan backbone synthases |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210468072.3A CN117004635A (en) | 2022-04-29 | 2022-04-29 | A high-throughput screening method for glycosaminoglycan backbone synthases |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117004635A true CN117004635A (en) | 2023-11-07 |
Family
ID=88573258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210468072.3A Pending CN117004635A (en) | 2022-04-29 | 2022-04-29 | A high-throughput screening method for glycosaminoglycan backbone synthases |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117004635A (en) |
-
2022
- 2022-04-29 CN CN202210468072.3A patent/CN117004635A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104974973B (en) | Chondroitin-producing bacterium and method for producing chondroitin | |
CN118460645A (en) | Sialyltransferase and its use in the production of sialylated oligosaccharides | |
CN111534493B (en) | Purine nucleoside phosphorylase mutant, gene and application | |
KR101718681B1 (en) | -13 -13 helicobacter pylori -13 fucosyltransferase gene and protein with improved soluble protein expression and activity and thereof application for synthesis of -13 fucosyloligosaccharide | |
CN111051515B (en) | Use of type III polyketide synthase from bacteria as phloroglucinol synthase | |
CN113122490B (en) | Double-gene defective engineering bacterium and application thereof in improving yield of N-acetylglucosamine | |
CN107278232A (en) | The fermentation process of the monose of free form is produced by nucleotide activating sugar | |
CN104830880B (en) | A kind of alginate lyase SHA I genes and its expression vector | |
Tajima et al. | Cloning and sequencing of the levansucrase gene from Acetobacter xylinum NCI 1005 | |
CN117004635A (en) | A high-throughput screening method for glycosaminoglycan backbone synthases | |
CN109402080B (en) | Protein UGT142 and its encoding gene and application | |
CN104293758B (en) | A kind of Panax Japonicus Var. Major β armomadendrins synthase gene and its application | |
CN115404226B (en) | Sucrose synthase and application thereof in catalyzing glycosylation reaction | |
CN104371964B (en) | Strain capable of improving recombinant protein expression under aerobic condition | |
CN117004670B (en) | Sulfotransferase and application thereof | |
CN116042561B (en) | S-adenosylmethionine synthetase mutant and application thereof | |
CN119351240B (en) | A Saccharomyces cerevisiae engineered bacterium for producing glycosyl donor UDP-arabinose and its construction method and application | |
CN113817700B (en) | C4 methyl sterol synthase gene and its encoded protein, application | |
US20220267746A1 (en) | Heparin skeleton synthase and its mutants and application | |
CN110643586B (en) | Heparin skeleton synthase and coding gene and application thereof | |
CN111607548B (en) | Recombinant escherichia coli for producing mannan and application thereof | |
CN116004496A (en) | A kind of genetically engineered bacteria producing hyaluronic acid and its application | |
CN117586892A (en) | Genetically engineered bacterium for producing neotame B0 and preparation method and application thereof | |
Noel | Characterization of Novel Chlorovirus Glycosyltransferases that Synthesize Atypical Glycans | |
ES2359545B1 (en) | GENETICALLY IMPROVED FRUCTUFURANOSIDASA FOR THE OBTAINING OF THE 6-KESTOSA PREBIOTICS. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |