CN116988078A - Metal catalyzed asymmetric coupling method promoted by electrochemical reduction - Google Patents
Metal catalyzed asymmetric coupling method promoted by electrochemical reduction Download PDFInfo
- Publication number
- CN116988078A CN116988078A CN202210444271.0A CN202210444271A CN116988078A CN 116988078 A CN116988078 A CN 116988078A CN 202210444271 A CN202210444271 A CN 202210444271A CN 116988078 A CN116988078 A CN 116988078A
- Authority
- CN
- China
- Prior art keywords
- compound
- formula
- alkyl
- group
- independently
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/29—Coupling reactions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/01—Products
- C25B3/07—Oxygen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/01—Products
- C25B3/09—Nitrogen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/01—Products
- C25B3/11—Halogen containing compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
技术领域Technical Field
本发明属于有机合成技术领域,具体涉及一种电化学还原促进的金属催化的不对称偶联方法。The invention belongs to the technical field of organic synthesis, and in particular relates to an asymmetric coupling method of metal catalysis promoted by electrochemical reduction.
背景技术Background Art
轴手性联芳基化合物的构建很重要,因为它们是在配体、有机催化剂和天然产物中发现的基本结构单元。在过去的十年中,已经开发出各种方法来合成阻转异构联芳基化合物,包括通过芳基卤化物和芳基金属物质之间的交叉偶联过渡金属催化的对映选择性合成,后者由有机镁、有机锌、有机硼或有机铟试剂组成。由于芳基金属试剂通常由相应的芳基卤化物制备,两个芳基卤化物的对映选择性还原偶联获得轴手性联芳基化合物将提供有吸引力的步骤经济替代方案。尽管已经广泛研究了使用Mn、Zn或Mg粉末作为还原剂的两种芳基卤化物的Ni催化还原偶联,但对映选择性地构筑轴手性联芳基化合物很少见。因此,开发一种高度对映选择性的Ni催化芳基卤化物还原偶联形成具有广泛底物范围的联芳基化合物,将为联芳基合成的传统交叉偶联和氧化偶联提供一种补充和替代方法。由于需要更多原子经济反应平台来解决日益增长的全球可持续性问题和意识,过去十年见证了电化学有机合成的复兴。作为我们对将阴极还原与过渡金属催化相结合的持续兴趣的一部分,我们发展第一个镍催化电化学对映选择性构筑轴手性联芳基化合物的例子。The construction of axially chiral biaryls is important because they are fundamental building blocks found in ligands, organocatalysts, and natural products. In the past decade, various methods have been developed to synthesize atropisomeric biaryls, including transition metal-catalyzed enantioselective syntheses via cross-coupling between aryl halides and aryl metal species, the latter consisting of organomagnesium, organozinc, organoboron, or organoindium reagents. Since aryl metal reagents are usually prepared from the corresponding aryl halides, the enantioselective reductive coupling of two aryl halides to obtain axially chiral biaryls would provide an attractive step-economic alternative. Although Ni-catalyzed reductive coupling of two aryl halides using Mn, Zn, or Mg powders as reducing agents has been extensively studied, the enantioselective construction of axially chiral biaryls is rare. Therefore, the development of a highly enantioselective Ni-catalyzed reductive coupling of aryl halides to form biaryls with a broad substrate scope would provide a complementary and alternative approach to the traditional cross-coupling and oxidative coupling methods for biaryl synthesis. The past decade has witnessed a renaissance in electrochemical organic synthesis driven by the need for more atom-economic reaction platforms to address growing global sustainability issues and awareness. As part of our ongoing interest in combining cathodic reduction with transition metal catalysis, we developed the first example of nickel-catalyzed electrochemical enantioselective construction of axially chiral biaryls.
发明内容Summary of the invention
本发明的目的在于克服现有制备技术的缺陷,提供一种高选择性、反应条件温和、环境友好、收率高、纯度好的特点,适合于工业化生产的一种电化学还原促进的金属催化的不对称偶联方法。The purpose of the present invention is to overcome the defects of the existing preparation technology and provide an electrochemical reduction-promoted metal-catalyzed asymmetric coupling method which has the characteristics of high selectivity, mild reaction conditions, environmental friendliness, high yield and good purity and is suitable for industrial production.
一种不对称偶联的制备方法,其包括如下步骤:在溶剂中,在Co盐、手性氮配体和电解质存在下,将如式I所示的化合物与如式II所示的化合物进行如下所示的电化学不对称偶联反应,得到如式III所示的化合物或如式IV所示化合物;A preparation method for asymmetric coupling, comprising the following steps: in a solvent, in the presence of a Co salt, a chiral nitrogen ligand and an electrolyte, subjecting a compound as shown in formula I and a compound as shown in formula II to an electrochemical asymmetric coupling reaction as shown below, to obtain a compound as shown in formula III or a compound as shown in formula IV;
其中:in:
环A和环A’独立地为C6-C10的芳基、被一个或多个Ra取代的C6-C10的芳基、5-10元杂芳基或被一个或多个Rb取代的5-10元杂芳基;当存在多个取代基时,相同或不同;所述的5-10元杂芳基或被一个或多个Rb取代的5-10元杂芳基的杂芳基中,杂原子选自N、O或S,杂原子个数为1-3个;Ring A and Ring A' are independently C6 - C10 aryl, C6 - C10 aryl substituted by one or more Ra, 5-10 membered heteroaryl or 5-10 membered heteroaryl substituted by one or more Rb ; when there are multiple substituents, they are the same or different; in the 5-10 membered heteroaryl or the 5-10 membered heteroaryl substituted by one or more Rb , the heteroatom is selected from N, O or S, and the number of heteroatoms is 1-3;
Ra和Rb独立地为卤素、C1-C30的烷基、C3-C30的环烷基、C2-C30的烯基、-O-(C2-C30的烯基)、C6-C30的芳基、C1-C30的烷氧基、 Ra and Rb are independently halogen, C1 - C30 alkyl, C3 - C30 cycloalkyl, C2 - C30 alkenyl, -O-( C2 - C30 alkenyl), C6 - C30 aryl, C1 - C30 alkoxy,
Ra-1和Ra-2独立地为C1-C30的烷基;Ra -1 and Ra -2 are independently C1 - C30 alkyl groups;
R1和R1’独立地为R1-1和R1-2独立地为C1-C30的烷基、C6-C30的芳基或被苯基取代的C1-C30的烷基;R 1 and R 1 'are independently R 1-1 and R 1-2 are independently C 1 -C 30 alkyl, C 6 -C 30 aryl, or C 1 -C 30 alkyl substituted with phenyl;
R2和R2’独立地为H、C1-C30的烷基、C4-C30的环烯基、C6-C30的芳基、被一个或多个R2-1取代的C6-C30的芳基;R 2 and R 2 'are independently H, C 1 -C 30 alkyl, C 4 -C 30 cycloalkenyl, C 6 -C 30 aryl, or C 6 -C 30 aryl substituted by one or more R 2-1 ;
R2-1独立地为C1-C30的烷基、C1-C30的烷氧基、C6-C30的芳基、卤素、被一个或多个卤素取代的C1-C30的烷基、 R 2-1 is independently C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 6 -C 30 aryl, halogen, C 1 -C 30 alkyl substituted by one or more halogens,
R2-1-1或R2-1-2独立地为C1-C30的烷基;R 2-1-1 or R 2-1-2 is independently a C 1 -C 30 alkyl group;
X和X’独立地为卤素;X and X' are independently halogen;
式I所示的化合物与式II所示的化合物相同或不相同;当其不相同时,式I所示的化合物里的X的原子序数值不小于如式II所示的化合物里的X’的原子序数值。The compound of formula I is the same as or different from the compound of formula II; when they are different, the atomic number of X in the compound of formula I is not less than the atomic number of X' in the compound of formula II.
在本发明某些优选实施方案中,所述如式I、II、III和IV所示的化合物中的某些基团如下定义,未提及的基团同本发明任一方案所述(简称“在一些实施方式中”)。In certain preferred embodiments of the present invention, certain groups in the compounds shown in Formulae I, II, III and IV are defined as follows, and the unmentioned groups are the same as those described in any embodiment of the present invention (referred to as "in some embodiments").
在一些实施方式中,当环A和环A’独立地为C6-C10的芳基和被一个或多个Ra取代的C6-C10的芳基时,所述的C6-C10的芳基和被一个或多个Ra取代的C6-C10的芳基里的C6-C10的芳基独立地为苯基或萘基,例如苯基。In some embodiments, when Ring A and Ring A' are independently C 6 -C 10 aryl and C 6 -C 10 aryl substituted by one or more Ra , the C 6 -C 10 aryl and the C 6 -C 10 aryl substituted by one or more Ra are independently phenyl or naphthyl , for example phenyl.
在一些实施方式中,当环A和环A’独立地为5-10元杂芳基或被一个或多个Rb取代的5-10元杂芳基时,所述的5-10元杂芳基为吡啶基或噻吩基,例如吡啶基。In some embodiments, when Ring A and Ring A' are independently 5-10 membered heteroaryl or 5-10 membered heteroaryl substituted by one or more R b , the 5-10 membered heteroaryl is pyridyl or thienyl, such as pyridyl.
在一些实施方式中,当Ra和Rb独立地为卤素时,所述的卤素为F、Cl、Br或I。In some embodiments, when Ra and Rb are independently halogen, the halogen is F, Cl, Br or I.
在一些实施方式中,当Ra和Rb独立地为C1-C30的烷基时,所述的C1-C30的烷基可为C1-C10的烷基;例如C1-C6的烷基,又例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、正戊基或正己基;还例如为甲基、乙基或正戊基。In some embodiments, when Ra and Rb are independently C1- C30 alkyl, the C1 - C30 alkyl may be C1 - C10 alkyl; for example, C1 - C6 alkyl, for example, methyl, ethyl, n- propyl , isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl or n-hexyl; for example, methyl, ethyl or n-pentyl.
在一些实施方式中,当Ra和Rb独立地为C3-C30的环烷基时,所述的C3-C30的环烷基可为C3-C10的环烷基,例如环丙基、环丁基、环戊基、环己基;又例如为环丙基、环己基。In some embodiments, when Ra and Rb are independently C3- C30 cycloalkyl groups, the C3- C30 cycloalkyl groups may be C3- C10 cycloalkyl groups, such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl; and another example is cyclopropyl and cyclohexyl.
在一些实施方式中,当Ra和Rb独立地为C2-C30的烯基时,所述的C2-C30的烯基可为C2-C10的烯基;例如为C2-C6的烯基,又例如乙烯基、丙烯基、烯丙基或-CH2-(CH2)2CH=CH2;还例如为乙烯基。In some embodiments, when Ra and Rb are independently C2- C30 alkenyl, the C2 -C30 alkenyl may be C2 - C10 alkenyl; for example, C2 - C6 alkenyl, for example, vinyl, propenyl, allyl or -CH2- ( CH2 ) 2CH = CH2 ; for example, vinyl.
在一些实施方式中,当Ra和Rb独立地为-O-(C2-C30的烯基)时,所述的C2-C30的烯基可为C2-C10的烯基;例如为C2-C6的烯基,又例如乙烯基、丙烯基、烯丙基或-CH2-(CH2)2CH=CH2;还例如为-CH2-(CH2)2CH=CH2。In some embodiments, when Ra and Rb are independently -O-( C2 - C30 alkenyl), the C2 - C30 alkenyl may be C2 - C10 alkenyl; for example, C2- C6 alkenyl, for example, ethenyl, propenyl, allyl or -CH2- ( CH2 ) 2CH = CH2 ; for example , -CH2- ( CH2 ) 2CH = CH2 .
在一些实施方式中,当Ra和Rb独立地为C6-C30的芳基时,所述的C6-C30的芳基可为C6-C10的芳基,例如苯基或萘基。In some embodiments, when Ra and Rb are independently C6 - C30 aryl groups, the C6 - C30 aryl groups may be C6- C10 aryl groups, such as phenyl or naphthyl.
在一些实施方式中,当Ra和Rb独立地为C1-C30的烷氧基时,所述的C1-C30的烷氧基可为C1-C10的烷氧基;例如为C1-C6的烷氧基,又例如甲氧基、乙氧基、异丙氧基、叔丁氧基;还例如为甲氧基。In some embodiments, when Ra and Rb are independently C1 - C30 alkoxy groups, the C1 -C30 alkoxy groups may be C1- C10 alkoxy groups, such as C1 - C6 alkoxy groups, methoxy groups, ethoxy groups, isopropoxy groups, tert - butoxy groups, and methoxy groups.
在一些实施方式中,当Ra-1和Ra-2独立地为C1-C30的烷基时,所述的C1-C30的烷基可为C1-C10的烷基;例如为C1-C6的烷基,又例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、正戊基或正己基,还例如为甲基。In some embodiments, when Ra -1 and Ra -2 are independently C1 - C30 alkyl groups, the C1 - C30 alkyl group may be a C1 - C10 alkyl group; for example, a C1 - C6 alkyl group, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl or n-hexyl, and for example, methyl.
在一些实施方式中,当R1-1和R1-2独立地为C1-C30的烷基时,所述的C1-C30的烷基可为C1-C10的烷基;例如为C1-C6的烷基,又例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、正戊基或正己基;还例如为甲基。In some embodiments, when R 1-1 and R 1-2 are independently C 1 -C 30 alkyl groups, the C 1 -C 30 alkyl group may be a C 1 -C 10 alkyl group; for example, a C 1 -C 6 alkyl group, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl or n-hexyl; for example, methyl.
在一些实施方式中,当R1-1和R1-2独立地为C6-C30的芳基时,所述的C6-C30的芳基可为C6-C10的芳基,例如苯基或萘基。In some embodiments, when R 1-1 and R 1-2 are independently C 6 -C 30 aryl groups, the C 6 -C 30 aryl groups may be C 6 -C 10 aryl groups, such as phenyl or naphthyl.
在一些实施方式中,当R1-1和R1-2独立地为被苯基取代的C1-C30的烷基时;所述的被苯基取代的C1-C30的烷基里的C1-C30的烷基可为C1-C10的烷基;例如为C1-C6的烷基,又例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、正戊基或正己基;还例如为甲基。In some embodiments, when R 1-1 and R 1-2 are independently C 1 -C 30 alkyl substituted by phenyl; the C 1 -C 30 alkyl in the C 1 -C 30 alkyl substituted by phenyl may be C 1 -C 10 alkyl; for example, C 1 -C 6 alkyl, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl or n-hexyl; for example, methyl.
在一些实施方式中,当R2和R2’独立地为C1-C30的烷基时,所述的C1-C30的烷基可为C1-C10的烷基;例如为C1-C6的烷基,又例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、正戊基或正己基;还例如为甲基。In some embodiments, when R 2 and R 2 'are independently C 1 -C 30 alkyl groups, the C 1 -C 30 alkyl group may be C 1 -C 10 alkyl group; for example, C 1 -C 6 alkyl group, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl or n-hexyl; for example, methyl.
在一些实施方式中,当R2和R2’独立地为C3-C30的环烯基时,所述的C1-C30的环烯基可为C3-C10的环烯基;例如为C3-C6的环烯基,又例如还例如为 In some embodiments, when R 2 and R 2 'are independently C 3 -C 30 cycloalkenyl, the C 1 -C 30 cycloalkenyl may be C 3 -C 10 cycloalkenyl; for example, C 3 -C 6 cycloalkenyl, for example For example,
在一些实施方式中,当R2和R2’独立地为C6-C30的芳基或被一个或多个R2-1取代的C6-C30的芳基,所述的C6-C30的芳基或被一个或多个R2-1取代的C6-C30的芳基里的C6-C30芳基可为C6-C10芳基,例如苯基或萘基。In some embodiments, when R 2 and R 2 ' are independently C 6 -C 30 aryl or C 6 -C 30 aryl substituted by one or more R 2-1, the C 6 -C 30 aryl or the C 6 -C 30 aryl substituted by one or more R 2-1 may be a C 6 -C 10 aryl, such as phenyl or naphthyl .
在一些实施方式中,当R2-1独立地为C1-C30的烷基或被一个或多个卤素取代的C1-C30的烷基时,所述的C1-C30的烷基或被一个或多个卤素取代的C1-C30的烷基里的C1-C30的烷基可为C1-C10的烷基;例如为C1-C6的烷基,又例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、正戊基或正己基;还例如为乙基、正丙基、异丙基或叔丁基。In some embodiments, when R 2-1 is independently a C 1 -C 30 alkyl group or a C 1 -C 30 alkyl group substituted by one or more halogens, the C 1 -C 30 alkyl group or the C 1 -C 30 alkyl group substituted by one or more halogens may be a C 1 -C 10 alkyl group; for example , a C 1 -C 6 alkyl group, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl or n - hexyl; for example, ethyl, n-propyl, isopropyl or tert-butyl.
在一些实施方式中,当R2-1为C1-C30的烷氧基时,所述的C1-C30的烷氧基可为C1-C10的烷氧基;例如为C1-C6的烷氧基,又例如甲氧基、乙氧基、异丙氧基、叔丁氧基;还例如为甲氧基。In some embodiments, when R 2-1 is a C 1- C 30 alkoxy group, the C 1 -C 30 alkoxy group may be a C 1 -C 10 alkoxy group; for example, a C 1 -C 6 alkoxy group, for example, a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group; for example, a methoxy group.
在一些实施方式中,当R2-1为C6-C30的芳基时,所述的C6-C30的芳基可为C6-C10的芳基,例如苯基或萘基。In some embodiments, when R 2-1 is a C 6 -C 30 aryl group, the C 6 -C 30 aryl group may be a C 6 -C 10 aryl group, such as a phenyl group or a naphthyl group.
在一些实施方式中,当R2-1为卤素或被一个或多个卤素取代的C1-C30的烷基时,所述的卤素或被一个或多个卤素取代的C1-C30的烷基里的卤素为F、Cl、Br或I。In some embodiments, when R 2-1 is halogen or C 1 -C 30 alkyl substituted by one or more halogens, the halogen or the halogen in the C 1 -C 30 alkyl substituted by one or more halogens is F, Cl, Br or I.
在一些实施方式中,当R2-1为被一个或多个卤素取代的C1-C30的烷基时,所述的C1-C30的烷基可为C1-C6的烷基,又例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、正戊基或正己基;还例如为乙基、正丙基、异丙基或叔丁基。In some embodiments, when R 2-1 is a C 1 -C 30 alkyl group substituted by one or more halogens, the C 1 -C 30 alkyl group may be a C 1 -C 6 alkyl group, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl or n-hexyl; and also such as ethyl, n-propyl, isopropyl or tert-butyl.
在一些实施方式中,当R2-1为被一个或多个卤素取代的C1-C30的烷基时,所述的卤素的个数可为1、2或3个;例如三氟甲基。In some embodiments, when R 2-1 is a C 1 -C 30 alkyl group substituted by one or more halogens, the number of the halogens may be 1, 2 or 3; for example, trifluoromethyl.
在一些实施方式中,当R2-1-1或R2-1-2独立地为C1-C30的烷基时,所述的C1-C30的烷基可为C1-C10的烷基;例如为C1-C6烷基,又例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、正戊基或正己基;还例如为甲基。In some embodiments, when R 2-1-1 or R 2-1-2 is independently a C 1 -C 30 alkyl group, the C 1 -C 30 alkyl group may be a C 1 -C 10 alkyl group; for example, a C 1 -C 6 alkyl group, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl or n-hexyl; for example, methyl.
在一些实施方式中,当X和X’独立地为卤素时,所述的卤素为F、Cl、Br或I,例如Br或I。In some embodiments, when X and X' are independently halogen, the halogen is F, Cl, Br or I, such as Br or I.
在一些实施方式中,所述的被一个或多个R2-1取代的C6-C30的芳基选自 In some embodiments, the C 6 -C 30 aryl group substituted by one or more R 2-1 is selected from
在一些实施方式中,当所述的如式I所示的化合物与所述的如式II所示的化合物不同时,如式I所示的化合物中的X为I,R1为-OBn;如式II所示的化合物中X’为Br,R1’为-CO2Ph。In some embodiments, when the compound of formula I is different from the compound of formula II, X in the compound of formula I is I, and R 1 is -OBn; X' in the compound of formula II is Br, and R 1' is -CO 2 Ph.
在一些实施方式中,Ra和Rb独立地为H、F、甲基、乙基、正戊基、环丙基、环己基、甲氧基、乙烯基、苯基、-COOCH3、-OCH2(CH2)2CH=CH2、 In some embodiments, Ra and Rb are independently H, F, methyl, ethyl, n-pentyl, cyclopropyl, cyclohexyl, methoxy, vinyl, phenyl, -COOCH3, -OCH2 ( CH2 ) 2CH = CH2 ,
在一些实施方式中,环A和环A’独立地为 In some embodiments, Ring A and Ring A' are independently
在一些实施方式中,R1和R1’独立地为-OBn或-CO2Ph。In some embodiments, R 1 and R 1 ′ are independently —OBn or —CO 2 Ph.
在一些实施方式中,R2和R2’独立地为H、甲基、苯基、萘基、 In some embodiments, R 2 and R 2 'are independently H, methyl, phenyl, naphthyl,
在一些实施方式中,所述的如式I所示的化合物中,R2位于X的对位或者间位;所述的如式II所示的化学物中,R2’位于X’的对位或者间位。In some embodiments, in the compound of Formula I, R 2 is located at the para or meta position relative to X; in the compound of Formula II, R 2 ' is located at the para or meta position relative to X'.
在一些实施方式中,如式I所示的化合物和如式II所示的化合物独立地为 In some embodiments, the compound as shown in Formula I and the compound as shown in Formula II are independently
在一些实施方式中,如式III所示的化合物为 In some embodiments, the compound shown in Formula III is
或者其对映异构体。 or an enantiomer thereof.
在一些实施方式中,当所述的式I所示的化合物与式II所示的化合物不相同时,如式I所示的化合物和如式II所示的化合物及相应的式III所示的化合物为如下任意一组,或者其对映异构体、或者其对映异构体、或者其对映异构体、或者其对映异构体、或者其对映异构体、或者其对映异构体、或者其对映异构体、或者其对映异构体、或者其对映异构体、或者其对映异构体、或者其对映异构体、或者其对映异构体、或者其对映异构体、或者其对映异构体、或者其对映异构体。In some embodiments, when the compound of formula I is different from the compound of formula II, the compound of formula I, the compound of formula II and the corresponding compound of formula III are any of the following groups: or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof, or an enantiomer thereof.
在一些实施方式中,所述的手性氮配体为如式IV所示化合物或者其对映异构体,In some embodiments, the chiral nitrogen ligand is a compound as shown in Formula IV or an enantiomer thereof,
其中,R4和R5独立地为H、C1-C10烷基、C3-C15环烷基、C6-C10芳基或被苯基取代的C1-C10烷基;wherein R 4 and R 5 are independently H, C 1 -C 10 alkyl, C 3 -C 15 cycloalkyl, C 6 -C 10 aryl, or C 1 -C 10 alkyl substituted with phenyl;
或者,R4和R5与相连的碳一起形成:其中n为0-6,例如1或2;Alternatively, R4 and R5 together with the attached carbon form: Where n is 0-6, such as 1 or 2;
R6和R7独立地为H、苯基或萘基,且R6和R7不同时为H;R 6 and R 7 are independently H, phenyl or naphthyl, and R 6 and R 7 are not H at the same time;
或者,R6和R7与相连的碳一起形成: Alternatively, R6 and R7 together with the attached carbon form:
在一些实施方式中,当R4和R5为C1-C10烷基时,所述的C1-C10烷基可为C1-C6烷基,例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、正己基或-CH(CH2CH3)2;又例如为选甲基、乙基、正丙基、异丙基、正丁基或-CH(CH2CH3)2。In some embodiments, when R 4 and R 5 are C 1 -C 10 alkyl, the C 1 -C 10 alkyl may be C 1 -C 6 alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl or -CH(CH 2 CH 3 ) 2 ; another example is methyl, ethyl, n-propyl, isopropyl, n-butyl or -CH(CH 2 CH 3 ) 2 .
在一些实施方式中,当R4或R5为C3-C15环烷基时,所述的C3-C15环烷基可为C3-C12的环烷基,例如环丙基、环戊基、环己基、环辛基。In some embodiments, when R 4 or R 5 is a C 3 -C 15 cycloalkyl group, the C 3 -C 15 cycloalkyl group may be a C 3 -C 12 cycloalkyl group, such as cyclopropyl, cyclopentyl, cyclohexyl, and cyclooctyl.
在一些实施方式中,当R4或R5为C6-C10芳基时,所述的C6-C10芳基为苯基或萘基。In some embodiments, when R 4 or R 5 is a C 6 -C 10 aryl group, the C 6 -C 10 aryl group is a phenyl group or a naphthyl group.
在一些实施方式中,当R4或R5为被苯基取代的C1-C10烷基时;所述的C1-C10烷基可为C1-C6烷基,例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、正己基或-CH(CH2CH3)2;又例如为选甲基、乙基、正丙基、异丙基、正丁基或-CH(CH2CH3)2。In some embodiments, when R4 or R5 is a C1 - C10 alkyl substituted by a phenyl group; the C1 - C10 alkyl group may be a C1 - C6 alkyl group, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert- butyl , n-pentyl, n-hexyl or -CH( CH2CH3 ) 2 ; another example is methyl, ethyl, n-propyl, isopropyl, n-butyl or -CH ( CH2CH3 ) 2 .
在一些实施方式中,R4和R5独立地为H、甲基、乙基、正丙基、异丙基、正丁基、-CH(CH2CH3)2、环丙基、环戊基、环己基、环辛基、苯基或苄基;例如R5独立地为H,R4独立地为甲基、乙基、正丙基、异丙基、正丁基、-CH(CH2CH3)2、环丙基、环戊基、环己基、环辛基、苯基或苄基。In some embodiments, R 4 and R 5 are independently H, methyl, ethyl, n-propyl, isopropyl, n-butyl, -CH(CH 2 CH 3 ) 2 , cyclopropyl, cyclopentyl, cyclohexyl, cyclooctyl, phenyl or benzyl; for example, R 5 is independently H, and R 4 is independently methyl, ethyl, n-propyl, isopropyl, n-butyl, -CH(CH 2 CH 3 ) 2 , cyclopropyl, cyclopentyl, cyclohexyl, cyclooctyl, phenyl or benzyl.
在一些实施方式中,R6和R7独立地为H、苯基;例如R6独立地为H,R7独立地为苯基。In some embodiments, R 6 and R 7 are independently H or phenyl; for example, R 6 is independently H, and R 7 is independently phenyl.
在一些实施方式中,所述的手性氮配体可以选自如下所示的L1、L2、L3、L4、L5、L6、L7、L8、L9、L10、L11、L12、L13、L14、L15、L16、L17、L8、L19和L20中的一种或多种,或其对映异构体;优选L16或L12,或其对映异构体。In some embodiments, the chiral nitrogen ligand can be selected from one or more of L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L8, L19 and L20 as shown below, or an enantiomer thereof; preferably L16 or L12, or an enantiomer thereof.
在一些实施方式中,当所述的如式I所示的化合物与所述的如式II所示的化合物不同时,所述的手性氮配体优选为L16或其对映异构体。当所述的如式I所示的化合物与所述的如式II所示的化合物相同时,所述的手性氮配体优选为L12或其对映异构体。In some embodiments, when the compound as shown in Formula I is different from the compound as shown in Formula II, the chiral nitrogen ligand is preferably L16 or its enantiomer. When the compound as shown in Formula I is the same as the compound as shown in Formula II, the chiral nitrogen ligand is preferably L12 or its enantiomer.
在一些实施方式中,所述的电化学不对称偶联反应中的电极包括阴极电极和阳极电极,阳极电极为铁、锌、铝、铂、铜、镍和镁的一种或多种,优选地为铁或铝,最优选地为铁;阴极电极为铂、金、银、铜、铁、钯、镁、泡沫镍、钛、碳和不锈钢的一种或多种,优选地为镍、铂、碳、金、钛和不锈钢地一种或多种;最优选地为不锈钢和镍。In some embodiments, the electrodes in the electrochemical asymmetric coupling reaction include a cathode electrode and an anode electrode, the anode electrode is one or more of iron, zinc, aluminum, platinum, copper, nickel and magnesium, preferably iron or aluminum, most preferably iron; the cathode electrode is one or more of platinum, gold, silver, copper, iron, palladium, magnesium, nickel foam, titanium, carbon and stainless steel, preferably one or more of nickel, platinum, carbon, gold, titanium and stainless steel; most preferably stainless steel and nickel.
在一些实施方式中,当所述的如式I所示的化合物与所述的如式II所示的化合物相同时,所述的阳极电极为铁,所述的阴极电极为不锈钢。In some embodiments, when the compound represented by Formula I is the same as the compound represented by Formula II, the anode electrode is iron, and the cathode electrode is stainless steel.
在一些实施方式中,当所述的如式I所示的化合物与所述的如式II所示的化合物不相同时,所述的阳极电极为铁,所述的阴极电极为镍。In some embodiments, when the compound of Formula I is different from the compound of Formula II, the anode electrode is iron and the cathode electrode is nickel.
在一些实施方式中,所述的电解质为本领域该类反应中常规的电解质,优选地为季铵盐(例如Et4NBF4、n-Bu4NBF4、Et4NPF6、n-Bu4NPF6、Et4NClO4、n-Bu4NClO4、Et4NOAc、n-Bu4NOAc、Et4NOTs、n-Bu4NOTs、n-Bu4NI和H4NCl中的一种或多种)、钠盐(例如NaCl、NaBr、NaI和NaOAc中的一种或多种)和锂盐(例如LiBr和/或LiCl)中的一种或多种;更优选地为n-Bu4NBF4、n-Bu4NPF6、Et4NOTs、n-Bu4NI、LiBr和NaI中的一种或多种,最优选地为NaI。In some embodiments, the electrolyte is a conventional electrolyte in this type of reaction in the art, preferably one or more of a quaternary ammonium salt (for example, one or more of Et4NBF4 , n - Bu4NBF4 , Et4NPF6 , n - Bu4NPF6 , Et4NClO4 , n-Bu4NClO4, Et4NOAc, n- Bu4NOAc , Et4NOTS , n- Bu4NOTS , n - Bu4NI and H4NCl ), a sodium salt (for example, one or more of NaCl, NaBr, NaI and NaOAc) and a lithium salt (for example, LiBr and/or LiCl); more preferably one or more of n- Bu4NBF4 , n- Bu4NPF6 , Et4NOTS , n- Bu4NI , LiBr and NaI, and most preferably NaI.
在一些实施方式中,所述的溶剂为本领域该类型反应中常规的溶剂,优选地为酰胺类溶剂(例如DMF和/或DMAc)、卤代烃类溶剂(例如二氯甲烷和/或三氯甲烷)、腈类溶剂(例如乙腈)和醇类溶剂(例如甲醇、乙醇和异丙醇中的一种或多种)的一种或多种;更优选地为DMF、DMAc和乙腈中的一种或多种;最优选地为DMF或DMAc。In some embodiments, the solvent is a conventional solvent in this type of reaction in the art, preferably one or more of an amide solvent (e.g., DMF and/or DMAc), a halogenated hydrocarbon solvent (e.g., dichloromethane and/or chloroform), a nitrile solvent (e.g., acetonitrile) and an alcohol solvent (e.g., one or more of methanol, ethanol and isopropanol); more preferably one or more of DMF, DMAc and acetonitrile; most preferably DMF or DMAc.
在一些实施方式中,所述的Co盐为Co(I)化合物(例如CoCl(PPh3)2)、Co(II)化合物(例如CoI2、CoCl2、CoBr2·glyme、Co(OAc)2、Co(C2O4)2中的一种或多种)和Co(III)化合物(例如Co(acac)3)中的一种或多种;优选地为CoI2、CoCl2、CoBr2·glyme、Co(OAc)2、CoCl(PPh3)2、Co2(acac)3、Co(C2O4)2中的一种或多种;最优选地为CoI2。In some embodiments, the Co salt is one or more of a Co(I) compound (e.g., CoCl(PPh 3 ) 2 ), a Co(II) compound (e.g., one or more of CoI 2 , CoCl 2 , CoBr 2 ·glyme, Co(OAc) 2 , Co(C 2 O 4 ) 2 ), and a Co(III) compound (e.g., Co(acac) 3 ); preferably one or more of CoI 2 , CoCl 2 , CoBr 2 ·glyme, Co(OAc) 2 , CoCl(PPh 3 ) 2 , Co 2 (acac) 3 , Co(C 2 O 4 ) 2 ; most preferably CoI 2 .
在一些实施方式中,还添加干燥剂,所述的干燥剂可为本领域常规的干燥剂,例如Na2SO4、MgSO4和分子筛中的一种或多种,最优选地为分子筛。In some embodiments, a desiccant is further added. The desiccant may be a conventional desiccant in the art, such as one or more of Na 2 SO 4 , MgSO 4 and molecular sieves, and molecular sieves are most preferred.
在一些实施方式中,所述的如式I所示化合物在所述的溶剂中的摩尔浓度可为本领域常规的摩尔浓度,优选地为0.01-1mol/L,更优选地为0.02-0.5mol/L(例如0.06-0.25mol/L)。In some embodiments, the molar concentration of the compound of Formula I in the solvent may be a conventional molar concentration in the art, preferably 0.01-1 mol/L, more preferably 0.02-0.5 mol/L (eg 0.06-0.25 mol/L).
在一些实施方式中,所述的如式II所示化合物在所述的溶剂中的摩尔浓度可为本领域常规的摩尔浓度,优选地为0.01-1mol/L,更优选地为0.02-0.8mol/L(例如0.06-0.5mol/L)。In some embodiments, the molar concentration of the compound of Formula II in the solvent may be a conventional molar concentration in the art, preferably 0.01-1 mol/L, more preferably 0.02-0.8 mol/L (eg 0.06-0.5 mol/L).
在一些实施方式中,所述的电解质在所述的溶剂中的摩尔浓度可为本领域常规的摩尔浓度,优选地为0.01-1mol/L,更优选地为0.02-0.6mol/L(例如0.06-0.25mol/L)。In some embodiments, the molar concentration of the electrolyte in the solvent may be a conventional molar concentration in the art, preferably 0.01-1 mol/L, more preferably 0.02-0.6 mol/L (eg, 0.06-0.25 mol/L).
在一些实施方式中,所述的电解质与所述的如式I所示化合物摩尔比可为本领域的常规摩尔比,优选地为1:1-1:10(例如1:1-2:5)。In some embodiments, the molar ratio of the electrolyte to the compound represented by Formula I may be a conventional molar ratio in the art, preferably 1:1-1:10 (eg, 1:1-2:5).
在一些实施方式中,当所述的如式I所示化合物与如式II所示化合物不相同时,所述的如式I所示化合物与如式II所示化合物的摩尔比为1:1-5:1(例如1:1-2:1)。In some embodiments, when the compound of Formula I is different from the compound of Formula II, the molar ratio of the compound of Formula I to the compound of Formula II is 1:1-5:1 (eg, 1:1-2:1).
在一些实施方式中,当所述的如式I所示化合物与如式II所示化合物相同时,所述的如式I所示化合物与如式II所示化合物的总量与所述的手性氮配体的摩尔比可为本领域的常规摩尔比,优选地为1:1-10:1(例如5:1-7:1)。In some embodiments, when the compound as shown in Formula I is the same as the compound as shown in Formula II, the molar ratio of the total amount of the compound as shown in Formula I and the compound as shown in Formula II to the chiral nitrogen ligand can be a conventional molar ratio in the art, preferably 1:1-10:1 (e.g. 5:1-7:1).
在一些实施方式中,当所述的如式I所示化合物与如式II所示化合物不相同时,所述的如式I所示化合物与所述的手性氮配体的摩尔比可为本领域的常规摩尔比,优选地为1:1-10:1(例如5:1-7:1)。In some embodiments, when the compound as shown in Formula I is different from the compound as shown in Formula II, the molar ratio of the compound as shown in Formula I to the chiral nitrogen ligand can be a conventional molar ratio in the art, preferably 1:1-10:1 (e.g. 5:1-7:1).
在一些实施方式中,所述的Co盐与所述的手性氮配体的摩尔比可为本领域常规比,优选地1:1-1:5(例如1:2)。In some embodiments, the molar ratio of the Co salt to the chiral nitrogen ligand may be a conventional ratio in the art, preferably 1:1-1:5 (eg, 1:2).
在一些实施方式中,所述的电化学不对称偶联反应的电流值为0.1-20mA(例如1-6mA)。In some embodiments, the current value of the electrochemical asymmetric coupling reaction is 0.1-20 mA (eg, 1-6 mA).
本发明的某一方案中,所述的电化学不对称偶联反应优选地在0-150℃下进行,更优选地在0-80℃下进行(例如10-30℃)。In a certain embodiment of the present invention, the electrochemical asymmetric coupling reaction is preferably carried out at 0-150°C, more preferably at 0-80°C (eg 10-30°C).
在一些实施方式中,当所述的手性氮配体为如式IV所示化合物时,所述的如式III所示的化合物为R构型;当所述的手性氮配体为如式IV所示化合物的对映异构体(例如L12)时,所述的如式III所示的化合物为S构型。In some embodiments, when the chiral nitrogen ligand is a compound as shown in Formula IV, the compound as shown in Formula III is in R configuration; when the chiral nitrogen ligand is an enantiomer of the compound as shown in Formula IV (for example, L12), the compound as shown in Formula III is in S configuration.
本发明的某一方案中,当手性氮配体的绝对构型与如上所述的L12的对映异构体的绝对构型相同时,所述的式III的化合物的绝对构型为R构型。In a certain embodiment of the present invention, when the absolute configuration of the chiral nitrogen ligand is the same as the absolute configuration of the enantiomer of L12 as described above, the absolute configuration of the compound of formula III is R configuration.
本发明还涉及一种催化剂组合物,该组合物由如上所述的手性氮配体和如上所述的Co盐组成。The present invention also relates to a catalyst composition, which consists of the chiral nitrogen ligand and the Co salt.
本发明的某一方案中,如上所述的催化剂组合物中的手性氮配体选自L1、L2、L3、L4、L5、L6、L7、L8、L9、L10、L11、L12、L13、L14、L15、L16、L17、L8、L19和L20中的一种或多种,或其对映异构体;优选L8或L12;In one embodiment of the present invention, the chiral nitrogen ligand in the catalyst composition as described above is selected from one or more of L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L8, L19 and L20, or an enantiomer thereof; preferably L8 or L12;
本发明的某一方案中,所述的催化剂组合物中的Co盐选自CoI2、CoCl2、CoBr2·glyme、Co(OAc)2、CoCl(PPh3)2、Co2(acac)3和Co(C2O4)2中的一种或多种。In one embodiment of the present invention, the Co salt in the catalyst composition is selected from one or more of CoI 2 , CoCl 2 , CoBr 2 ·glyme, Co(OAc) 2 , CoCl(PPh 3 ) 2 , Co 2 (acac) 3 and Co(C 2 O 4 ) 2 .
本发明的某一方案中,所述的一种具有电化学不对称催化的组合物中Co盐和所述的手性氮配体的摩尔比为1:1-1:5(例如1:2)。In a certain embodiment of the present invention, the molar ratio of the Co salt to the chiral nitrogen ligand in the composition having electrochemical asymmetric catalysis is 1:1-1:5 (eg 1:2).
本发明的某一方案中,所述的催化剂组合物中,所述的手性氮配体与如式IV所示化合物部分或全部络合,即以络合物形式存在。In a certain embodiment of the present invention, in the catalyst composition, the chiral nitrogen ligand is partially or completely complexed with the compound shown in formula IV, that is, exists in the form of a complex.
本发明的某一方案中,所述的催化剂组合物可为电化学不对称催化的催化剂组合物。In a certain embodiment of the present invention, the catalyst composition may be a catalyst composition for electrochemical asymmetric catalysis.
本发明还涉及一种如式V所示的化合物或者其对映异构体,The present invention also relates to a compound as shown in formula V or an enantiomer thereof,
其中,in,
R8为H、C1-C10烷基、C3-C15环烷基、C6-C10芳基或被苯基取代的C1-C10烷基; R8 is H, C1 - C10 alkyl, C3 - C15 cycloalkyl, C6 - C10 aryl, or C1 - C10 alkyl substituted by phenyl;
X为卤素。X is halogen.
在一些实施方式中,如上所述的如式V所示的化合物或者其对映异构体,当X为卤素时,优选Br或I,最优选为I。In some embodiments, in the compound of formula V or its enantiomer as described above, when X is halogen, Br or I is preferred, and I is most preferred.
在一些实施方式中,如上所述的如式V所示的化合物或者其对映异构体,当R8为C1-C10烷基或苯基取代的C1-C10烷基时,所述的C1-C10烷基或苯基取代的C1-C10烷基里的C1-C10烷基可为C1-C6烷基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、异丁基、叔丁基、正戊基、正己基或-CH(CH2CH3)2;又例如为选甲基。In some embodiments, in the compound of formula V or its enantiomer as described above, when R8 is C1 - C10 alkyl or C1 - C10 alkyl substituted with phenyl, the C1- C10 alkyl in the C1 - C10 alkyl or C1 - C10 alkyl substituted with phenyl may be C1 - C6 alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, n- hexyl or -CH( CH2CH3 ) 2 ; another example is methyl.
在一些实施方式中,当R8为C3-C15环烷基时,所述的C3-C15环烷基可为C3-C12的环烷基,例如环丙基、环戊基、环己基、环辛基。In some embodiments, when R 8 is a C 3 -C 15 cycloalkyl group, the C 3 -C 15 cycloalkyl group may be a C 3 -C 12 cycloalkyl group, such as cyclopropyl, cyclopentyl, cyclohexyl, and cyclooctyl.
在一些实施方式中,当R8为C6-C10芳基时,所述的C6-C10芳基为苯基或萘基。In some embodiments, when R 8 is C 6 -C 10 aryl, the C 6 -C 10 aryl is phenyl or naphthyl.
在一些实施方式中,当R8为被苯基取代的C1-C10烷基时;所述的被苯基取代的C1-C10烷基为苄基。In some embodiments, when R 8 is a C 1 -C 10 alkyl substituted by a phenyl group, the C 1 -C 10 alkyl substituted by a phenyl group is a benzyl group.
在一些实施方式中,所述的如式V所示的化合物或者其对映异构体可为如式VI所示的化合物或者其对映异构体,In some embodiments, the compound of formula V or its enantiomer may be a compound of formula VI or its enantiomer,
其中,X为F、Cl、Br、I,优选I。Among them, X is F, Cl, Br, I, preferably I.
在一些实施方式中,如上所述的钴配合物可通过如下所述方法制备:将如上所述手性氮配体与如上所述钴化合物于溶剂中通过自组装反应即可。In some embodiments, the cobalt complex described above can be prepared by the following method: the chiral nitrogen ligand described above and the cobalt compound described above are reacted in a solvent by self-assembly.
在本发明还提供了一种如上所述的催化剂组合物或如上所述的如式V所示的化合物或者其对映异构体在不对称合成中的应用,较佳地其在如上所述的电化学不对称偶联反应中作为催化剂。The present invention also provides a use of the catalyst composition as described above or the compound as described above as shown in formula V or its enantiomer in asymmetric synthesis, preferably as a catalyst in the electrochemical asymmetric coupling reaction as described above.
在一些实施方式中,所述的不对称合成的条件和操作方法可为如上所述的不对称偶联方法的条件和操作方法所示。In some embodiments, the conditions and operation methods of the asymmetric synthesis may be as shown in the conditions and operation methods of the asymmetric coupling method described above.
如无特别说明,本发明所用术语具有如下含义:Unless otherwise specified, the terms used in the present invention have the following meanings:
在本说明书中,可由本领域技术人员选择基团及其取代基以提供稳定的结构部分和化合物。当通过从左向右书写的常规化学式描述取代基时,该取代基也同样包括从右向左书写结构式时所得到的在化学上等同的取代基。In this specification, groups and substituents thereof can be selected by those skilled in the art to provide stable structural moieties and compounds. When substituents are described by conventional chemical formulas written from left to right, the substituents also include chemically equivalent substituents obtained when the structural formula is written from right to left.
在本文中定义的某些化学基团前面通过简化符号来表示该基团中存在的碳原子总数。例如,C1-C6烷基是指具有总共1、2、3、4、5或6个碳原子的如下文所定义的烷基。简化符号中的碳原子总数不包括可能存在于所述基团的取代基中的碳。Certain chemical groups defined herein are preceded by a shorthand notation to indicate the total number of carbon atoms present in the group. For example, C1 - C6 alkyl refers to an alkyl group as defined below having a total of 1, 2, 3, 4, 5 or 6 carbon atoms. The total number of carbon atoms in the shorthand notation does not include carbons that may be present in substituents of the group.
在本文中,取代基中定义的数值范围如0至4、1-4、1至3等表明该范围内的整数,如1-6为1、2、3、4、5、6。As used herein, numerical ranges defined in substituents such as 0 to 4, 1-4, 1 to 3, etc. indicate integers within the range, such as 1-6 is 1, 2, 3, 4, 5, 6.
除前述以外,当用于本申请的说明书及权利要求书中时,除非另外特别指明,否则以下术语具有如下所示的含义。In addition to the foregoing, when used in the specification and claims of the present application, the following terms have the meanings indicated below unless otherwise specifically stated.
术语“一种(个)或多种(个)”或“一种(个)或两种(个)以上”是指即1、2、3、4、5、6、7、8、9或更多。The term "one or more" or "one or more than two" means 1, 2, 3, 4, 5, 6, 7, 8, 9 or more.
术语“包括”为开放式表达,即包括本发明所指明的内容,但并不排除其他方面的内容。The term "comprising" is an open expression, that is, including the contents specified in the present invention but not excluding other contents.
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。The term "substituted" means that any one or more hydrogen atoms on a particular atom are replaced by a substituent, including deuterium and hydrogen variants, as long as the valence state of the particular atom is normal and the substituted compound is stable.
一般而言,术语“取代的”表示所给结构中的一个或多个氢原子被具体取代基所取代。进一步地,当该基团被1个以上所述取代基取代时,所述取代基之间是相互独立,即,所述的1个以上的取代基可以是互不相同的,也可以是相同的。除非其他方面表明,一个取代基团可以在被取代基团的各个可取代的位置进行取代。当所给出的结构式中不只一个位置能被选自具体基团的一个或多个取代基所取代,那么取代基可以相同或不同地在各个位置取代。In general, the term "substituted" means that one or more hydrogen atoms in a given structure are replaced by a specific substituent. Further, when the group is substituted by more than one of the substituents, the substituents are independent of each other, that is, the more than one substituents may be different or the same. Unless otherwise indicated, a substituent group may be substituted at each substitutable position of the substituted group. When more than one position in the given structural formula can be substituted by one or more substituents selected from a specific group, the substituents may be substituted at each position in the same or different manner.
在本说明书的各部分,本发明公开化合物的取代基按照基团种类或范围公开。特别指出,本发明包括这些基团种类和范围的各个成员的每一个独立的次级组合。术语“Cx-Cy烷基"是指含有x至y个碳原子的直链或支链饱和烃。例如,术语“C1~C6烷基”或“C1-6烷基”特别指独立公开的甲基、乙基、C3烷基、C4烷基、C5烷基和C6烷基;“C1-4烷基”特指独立公开的甲基、乙基、C3烷基(即丙基,包括正丙基和异丙基)、C4烷基(即丁基,包括正丁基、异丁基、仲丁基和叔丁基)。In various parts of this specification, the substituents of the compounds disclosed in the present invention are disclosed according to the group type or range. It is particularly pointed out that the present invention includes each independent secondary combination of the members of these group types and ranges. The term " Cx - Cy alkyl" refers to a straight or branched saturated hydrocarbon containing x to y carbon atoms. For example, the term " C1 - C6 alkyl" or " C1-6 alkyl" specifically refers to the independently disclosed methyl, ethyl, C3 alkyl, C4 alkyl, C5 alkyl and C6 alkyl; " C1-4 alkyl" specifically refers to the independently disclosed methyl, ethyl, C3 alkyl (i.e., propyl, including n-propyl and isopropyl), C4 alkyl (i.e., butyl, including n-butyl, isobutyl, sec-butyl and tert-butyl).
术语“卤素”选自于F,Cl,Br或I。The term "halogen" is selected from F, Cl, Br or I.
术语“烷氧基”是指基团-O-RX,其中,RX为如上文所定义的烷基。The term "alkoxy" refers to a group -ORX , wherein RX is alkyl as defined above.
当所列举的取代基中没有指明其通过哪一个原子连接到化学结构通式中包括但未具体提及的化合物时,这种取代基可以通过其任何原子相键合。取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。When a substituent is listed without indicating the atom through which it is attached to a compound included in the chemical formula but not specifically mentioned, such substituent may be bonded via any atom thereof. Combinations of substituents and/or variations thereof are permissible only if such combinations result in stable compounds.
当所列举的基团中没有明确指明其具有取代基时,这种基团仅指未被取代。例如当“C1~C4烷基”前没有“取代或未取代的”的限定时,仅指“C1~C4烷基”本身或“未取代的C1~C4烷基”。When there is no explicit indication of substitution in the listed groups, such groups are only unsubstituted. For example, when "C 1 -C 4 alkyl" is not preceded by "substituted or unsubstituted", it only refers to "C 1 -C 4 alkyl" itself or "unsubstituted C 1 -C 4 alkyl".
在本发明的各部分,描述了连接取代基。当该结构清楚地需要连接基团时,针对该基团所列举的马库什变量应理解为连接基团。例如,如果该结构需要连接基团并且针对该变量的马库什基团定义列举了“烷基”,则应该理解,该“烷基”代表连接的亚烷基基团。In various parts of the present invention, linking substituents are described. When the structure clearly requires a linking group, the Markush variable listed for that group should be understood as a linking group. For example, if the structure requires a linking group and the Markush group definition for that variable lists "alkyl", it should be understood that the "alkyl" represents a linked alkylene group.
在一些具体的结构中,当烷基基团清楚地表示为连接基团时,则该烷基基团代表连接的亚烷基基团,例如,基团“卤代-C1~C6烷基”中的C1-C6烷基应当理解为C1~C6亚烷基。In some specific structures, when an alkyl group is clearly indicated as a linking group, the alkyl group represents a linked alkylene group, for example, the C 1 -C 6 alkyl in the group "halo-C 1 ~C 6 alkyl" should be understood as C 1 ~C 6 alkylene.
术语“亚烷基”表示从饱和的直链或支链烃基中去掉两个氢原子所得到的饱和的二价烃基基团。亚烷基基团的实例包括亚甲基(-CH2-),亚乙基{包括-CH2CH2-或-CH(CH3)-},亚异丙基{包括-CH(CH3)CH2-或-C(CH3)2-}等等。The term "alkylene" refers to a saturated divalent hydrocarbon group derived from a saturated straight or branched hydrocarbon group by removing two hydrogen atoms. Examples of alkylene groups include methylene ( -CH2- ), ethylene {including -CH2CH2- or -CH( CH3 )-}, isopropylene {including -CH( CH3 ) CH2- or -C( CH3 ) 2- } and the like.
在本申请中,作为基团或是其它基团的一部分(例如用在卤素取代的烷基等基团中),术语“烷基”意指包括具有指定碳原子数目的支链和直链的饱和脂族烃基;比如含有1至30个碳原子的直链或支链饱和烃链;又例如,C1-C6的烷基。如在“C1~C6烷基”中定义为包括在直链或者支链结构中具有1、2、3、4、5、或者6个碳原子的基团。其中,丙基为C3烷基(包括同分异构体,例如正丙基或异丙基);丁基为C4烷基(包括同分异构体,例如正丁基、仲丁基、异丁基或叔丁基);戊基为C5烷基(包括同分异构体,例如正戊基、1-甲基-丁基、1-乙基-丙基、2-甲基-1-丁基、3-甲基-1-丁基、异戊基、叔戊基或新戊基);己基为C6烷基(包括同分异构体,例如正己基、1-乙基-2-甲基丙基、1,1,2-三甲基丙基、1,1-二甲基丁基、1,2-二甲基丁基、2,2-二甲基丁基、1,3-二甲基丁基、2-乙基丁基、2-甲基戊基、3-甲基戊基、4-甲基戊基、2,3-二甲基丁基)。In this application, as a group or part of other groups (for example, in groups such as halogen-substituted alkyl), the term "alkyl" means a saturated aliphatic hydrocarbon group including branched and straight chains with a specified number of carbon atoms; for example, a straight or branched saturated hydrocarbon chain containing 1 to 30 carbon atoms; for example, a C1 - C6 alkyl group. As defined in " C1 - C6 alkyl", it includes groups having 1, 2, 3, 4, 5, or 6 carbon atoms in a straight or branched structure. Among them, propyl is a C3 alkyl group (including isomers, such as n-propyl or isopropyl); butyl is a C4 alkyl group (including isomers, such as n-butyl, sec-butyl, isobutyl or tert-butyl); pentyl is a C5 alkyl group (including isomers, such as n-pentyl, 1-methyl-butyl, 1-ethyl-propyl, 2-methyl-1-butyl, 3-methyl-1-butyl, isopentyl, tert-pentyl or neopentyl); hexyl is a C6 alkyl group (including isomers, such as n-hexyl, 1-ethyl-2-methylpropyl, 1,1,2-trimethylpropyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 2,2-dimethylbutyl, 1,3-dimethylbutyl, 2-ethylbutyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2,3-dimethylbutyl).
术语“卤代烷基”是指被一个或多个卤素取代的烷基,例如三氟甲基,其中,“多个”、“卤素”和“烷基”均如上文所定义。The term "haloalkyl" refers to an alkyl group substituted with one or more halogens, such as trifluoromethyl, wherein "plurality", "halogen" and "alkyl" are as defined above.
术语“环烷基”,指仅由碳原子和氢原子组成的饱和的单环或者多环碳环取代基,且其可经由任何适宜的碳原子通过单键与分子的其余部分连接;当为多环时,可为并环连接、桥环连接或螺环连接(即,碳原子上的两个偕氢被亚烷基取代)的并环体系、桥环体系或螺环体系。在某一方案中,优选具有3-30个环碳原子、更优选3-7个碳原子的单价饱和的环状烷基。在某一方案中,典型的单环环烷基,如环丙基、环丁基、环戊基、环己基或环庚基。The term "cycloalkyl" refers to a saturated monocyclic or polycyclic carbocyclic substituent consisting only of carbon atoms and hydrogen atoms, and it can be connected to the rest of the molecule by a single bond via any suitable carbon atom; when it is polycyclic, it can be a cyclic system, a bridged ring system or a spirocyclic system that is connected in parallel, connected in bridged rings or connected in spiro (i.e., two geminal hydrogen atoms on the carbon atom are replaced by alkylene). In a certain embodiment, a monovalent saturated cyclic alkyl having 3-30 ring carbon atoms, more preferably 3-7 carbon atoms, is preferred. In a certain embodiment, a typical monocyclic cycloalkyl, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.
在本申请中,本身或者作为另一取代基的一部分,术语“环烯基”是指含有双键的不饱和的非芳香基团。其含有部分不饱和双键的单环、多环或者桥接碳环取代基,且其可经由任何适宜的碳原子通过单键与分子的其余部分连接;当为多环时,可为并环连接或螺环连接(即,碳原子上的两个偕氢被亚烷基取代)的桥环体系或螺环体系。在一些实施例中,“C2-C30的环烯基”优选具有3-7个环碳原子、更优选3-6个碳原子的含有一个双键的非芳香基团,例如环丙烯基、环丁烯基、环戊烯基或环己烯基。在一些实施例中,“环烯基”是具有5至6个环原子的单环的,不饱和的碳环烯基基团(“5-6元环烯基”)。In the present application, the term "cycloalkenyl" refers to an unsaturated non-aromatic group containing a double bond, either by itself or as part of another substituent. It contains a monocyclic, polycyclic or bridged carbocyclic substituent with a partially unsaturated double bond, and it can be connected to the rest of the molecule through a single bond via any suitable carbon atom; when it is polycyclic, it can be a bridged ring system or a spirocyclic system that is connected in parallel or spirocyclic (i.e., two geminal hydrogens on the carbon atom are replaced by alkylene). In some embodiments, "C2-C30 cycloalkenyl" preferably has a non-aromatic group containing a double bond of 3-7 ring carbon atoms, more preferably 3-6 carbon atoms, such as cyclopropenyl, cyclobutenyl, cyclopentenyl or cyclohexenyl. In some embodiments, "cycloalkenyl" is a monocyclic, unsaturated carbocyclic alkenyl group ("5-6-membered cycloalkenyl") having 5 to 6 ring atoms.
术语“杂环烷基”是指具有杂原子的饱和的单环基团,优选含有1个、2个或3个独立选自N、O和S的环杂原子的3-7元饱和的单环。杂环烷基的示例为:吡咯烷基、四氢呋喃基、四氢吡喃基、四氢噻吩基、四氢吡啶基、四氢吡咯基、氮杂环丁烷基、噻唑烷基、唑烷基、哌啶基、吗啉基、硫代吗啉基、哌嗪基、氮杂环庚烷基、二氮杂环庚烷基、氧氮杂环庚烷基、二氧戊环基、二氧六环基等。优选的杂环基为1,3-二氧戊环基、1,4-二氧六环基。The term "heterocycloalkyl" refers to a saturated monocyclic group having heteroatoms, preferably a 3-7 membered saturated monocyclic ring containing 1, 2 or 3 ring heteroatoms independently selected from N, O and S. Examples of heterocycloalkyl are: pyrrolidinyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothienyl, tetrahydropyridinyl, tetrahydropyrrolyl, azetidinyl, thiazolidinyl, oxazolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, azepanyl, diazepanyl, oxazepanyl, dioxolanyl, dioxanyl, etc. Preferred heterocyclyls are 1,3-dioxolanyl and 1,4-dioxanyl.
术语“芳基”,指具有指定的碳原子数的、完全共轭的π电子体系的全碳芳香基团(例如当为双环或者三环时,每个环均满足休克尔规则),可为单环或稠合环,通常具有6-20个碳原子,优选具有6-14个碳原子,最优选具有6个碳原子。芳基的实例包括但不限于:单环的芳基例如C6芳基(苯基)、双环的芳基例如C10芳基(萘基)、三环的芳基例如C14芳基(菲基和蒽基)。The term "aryl" refers to an all-carbon aromatic group with a specified number of carbon atoms and a completely conjugated π electron system (for example, when it is a bicyclic or tricyclic ring, each ring satisfies the Huckel rule), which can be a single ring or a condensed ring, usually having 6-20 carbon atoms, preferably 6-14 carbon atoms, and most preferably 6 carbon atoms. Examples of aryl include, but are not limited to, monocyclic aryl such as C 6 aryl (phenyl), bicyclic aryl such as C 10 aryl (naphthyl), tricyclic aryl such as C 14 aryl (phenanthrenyl and anthracenyl).
术语“杂芳基”是指含有杂原子的芳香基团,可为单环或稠合环,优选含有1-4个独立选自N、O和S的5-10元杂芳基,包括但不限于吡咯基、呋喃基、噻吩基、吲哚基、咪唑基、噁唑基、异噁唑基、吡唑基、吡啶基、嘧啶基、吡嗪基、哒嗪基、喹啉基、异喹啉基、(苯并)噁唑基、(苯并)呋喃基、(苯并)噻吩基、(苯并)噻唑基、三唑基。在某一方案中,典型地含1个或多个独立选自N、O和S的杂原子的5-6元单环杂芳基。在某一方案中,“杂芳基”为5-6元杂芳基,其中杂原子选自N、O和S中的一种或多种,杂原子数为1、2或3个。The term "heteroaryl" refers to an aromatic group containing heteroatoms, which may be a monocyclic or condensed ring, preferably a 5-10 membered heteroaryl group containing 1-4 independently selected from N, O and S, including but not limited to pyrrolyl, furanyl, thienyl, indolyl, imidazolyl, oxazolyl, isoxazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, quinolyl, isoquinolyl, (benzo)oxazolyl, (benzo)furanyl, (benzo)thienyl, (benzo)thiazolyl, triazolyl. In a certain embodiment, it is typically a 5-6 membered monocyclic heteroaryl group containing one or more heteroatoms independently selected from N, O and S. In a certain embodiment, "heteroaryl" is a 5-6 membered heteroaryl group, wherein the heteroatom is selected from one or more of N, O and S, and the number of heteroatoms is 1, 2 or 3.
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。Without violating the common sense in the art, the above-mentioned preferred conditions can be arbitrarily combined to obtain the preferred embodiments of the present invention.
本发明所用试剂和原料均市售可得。The reagents and raw materials used in the present invention are commercially available.
与现有技术相比,本发明提供技术方案将手性团配体与过渡金属催化结合,在电化学还原条件下,得到光学活性的轴手性联芳基化合物。该合成方法具有高选择性、反应条件温和、环境友好、收率高、纯度好的特点。因此本发明有良好的实用价值。Compared with the prior art, the present invention provides a technical solution to combine a chiral group ligand with a transition metal catalyst to obtain an optically active axial chiral biaryl compound under electrochemical reduction conditions. The synthesis method has the characteristics of high selectivity, mild reaction conditions, environmental friendliness, high yield and good purity. Therefore, the present invention has good practical value.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1:Co配合物晶体的热椭球图Figure 1: Thermal ellipsoid diagram of Co complex crystal
具体实施方式DETAILED DESCRIPTION
以下通过具体实施例对本发明做进一步的说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。The present invention is further described below through specific embodiments, but this should not be understood as the scope of the above subject matter of the present invention being limited to the following embodiments, and all technologies implemented based on the above content of the present invention belong to the scope of the present invention.
文中所有试剂都是直接买到后未经再纯化后使用,柱层析硅胶使用100-200目或者300-400目,薄板层析通过紫外或者碘显色,所有的试剂买自TCI,sigma-Aldrich,Adamas-beta,J&K,毕得医药,九鼎医药,安耐吉化学,皆为商业可得最高纯度。碘化钠买自TCI未经纯化(99%),碘化钴买自Alfa Aesar(≥99%)未经再纯化。超干溶剂够买自J&K,未经再纯化。H NMR和13C{1H}NMR在Agilent AV 400,Varian Inova 400,Bruker 400(400MHz和100MHz,respectively).测试获得。19F NMR在n Agilent AV400,Varian Inova 400(376MHz)测试获得。核磁标准用TMS或者氘代溶剂定标。All reagents in this article were purchased directly without further purification. Column chromatography silica gel used 100-200 mesh or 300-400 mesh. Thin plate chromatography was visualized by ultraviolet or iodine. All reagents were purchased from TCI, sigma-Aldrich, Adamas-beta, J&K, Bid Pharmaceuticals, Jiuding Pharmaceuticals, and Anaiji Chemicals, all of which were commercially available with the highest purity. Sodium iodide was purchased from TCI without purification (99%), and cobalt iodide was purchased from Alfa Aesar (≥99%) without further purification. Ultra-dry solvents were purchased from J&K without further purification. H NMR and 13 C{ 1 H} NMR were obtained on Agilent AV 400, Varian Inova 400, Bruker 400 (400 MHz and 100 MHz, respectively). 19 F NMR was obtained on Agilent AV400, Varian Inova 400 (376 MHz). NMR standards were calibrated with TMS or deuterated solvents.
通用步骤General steps
方法A:自偶联(0.3mmol)Method A: Self-coupling (0.3 mmol)
反应操作步骤(0.3mmol scale):在手套箱里,向IKA 2.0电化学合成仪的反应管中加入搅拌子,加入2a(0.3mmol,1.0equiv.),碘化钴(0.03mmol,10mol%),L18(0.06mmol,20mol%),碘化钠(0.3mmol,1.0equiv.),分子筛(70mg),N,N-二甲基甲酰胺(5mL),在IKA反应器中装上铁电极作为阳极,不锈钢电极作为阴极。反应装置置于常温搅拌30分钟,搅拌完成后通电1mA反应24小时。反应结束后,反应液过硅藻土并用二氯甲烷冲洗,溶剂用旋蒸除去并通过快速柱层析纯化得到相应产物。Reaction procedure (0.3 mmol scale): In a glove box, add a stirrer to the reaction tube of an IKA 2.0 electrochemical synthesizer, add 2a (0.3 mmol, 1.0 equiv.), cobalt iodide (0.03 mmol, 10 mol%), L18 (0.06 mmol, 20 mol%), and sodium iodide (0.3 mmol, 1.0 equiv.), Molecular sieve (70 mg), N,N-dimethylformamide (5 mL), an iron electrode as an anode and a stainless steel electrode as a cathode were installed in an IKA reactor. The reaction device was placed at room temperature and stirred for 30 minutes. After stirring, 1 mA was turned on to react for 24 hours. After the reaction, the reaction solution was passed through diatomaceous earth and rinsed with dichloromethane. The solvent was removed by rotary evaporation and purified by rapid column chromatography to obtain the corresponding product.
方法B:交叉偶联(0.3mmol)Method B: Cross coupling (0.3 mmol)
反应操作步骤:在手套箱里,向IKA 2.0电化学合成仪的反应管中加入搅拌子,加入1a(0.3mmol,1.0equiv.),6a(0.6mmol,2.0equiv.),碘化钴(0.45mmol,15mol%),L12(0.09mmol,30mol%),碘化钠(0.3mmol,1.0equiv.),分子筛(70mg),N,N-二甲基乙酰胺(5mL),在IKA 2.0反应器中装上铁电极作为阳极,不锈钢电极作为阴极。反应装置置于常温搅拌30分钟,搅拌完成后通电1mA反应24小时。反应结束后,反应液加入乙酸乙酯(80mL)稀释反应液,用稀盐酸中和反应液,分液,有机相用饱和氯化铵(20mL×3)水洗,有机相用无水硫酸镁干燥,过滤,旋蒸除去溶剂并用快速柱层析纯化得到相应产物。Reaction operation steps: In a glove box, add a stirrer to the reaction tube of an IKA 2.0 electrochemical synthesizer, add 1a (0.3 mmol, 1.0 equiv.), 6a (0.6 mmol, 2.0 equiv.), cobalt iodide (0.45 mmol, 15 mol%), L12 (0.09 mmol, 30 mol%), sodium iodide (0.3 mmol, 1.0 equiv.), Molecular sieves (70 mg), N,N-dimethylacetamide (5 mL), iron electrode as anode and stainless steel electrode as cathode were installed in IKA 2.0 reactor. The reaction device was placed at room temperature and stirred for 30 minutes. After stirring, 1 mA was energized and reacted for 24 hours. After the reaction, ethyl acetate (80 mL) was added to the reaction solution to dilute the reaction solution, and the reaction solution was neutralized with dilute hydrochloric acid. The organic phase was washed with saturated ammonium chloride (20 mL × 3), and the organic phase was dried with anhydrous magnesium sulfate, filtered, the solvent was removed by rotary evaporation, and the corresponding product was purified by flash column chromatography.
方法C:自偶联(5mmol)Method C: Self-coupling (5 mmol)
反应操作步骤(5mmol scale):在手套箱里,向电化学反应管中加入搅拌子,加入2a(5mmol,1.0equiv.),碘化钴(0.5mmol,10mol%),L18(1mmol,20mol%),碘化钠(2mmol,40mol%.),分子筛(250mg),N,N-二甲基甲酰胺(20mL),在反应管中装上铁电极作为阳极,泡沫镍电极作为阴极(4×4cm2)。反应装置置于常温搅拌30分钟,搅拌完成后通电6mA反应72小时。反应结束后,反应液过硅藻土并用二氯甲烷冲洗,溶剂用旋蒸除去并通过快速柱层析纯化得到相应产物。Reaction procedure (5 mmol scale): In a glove box, add a stirrer to an electrochemical reaction tube, add 2a (5 mmol, 1.0 equiv.), cobalt iodide (0.5 mmol, 10 mol%), L18 (1 mmol, 20 mol%), sodium iodide (2 mmol, 40 mol%), Molecular sieve (250 mg), N,N-dimethylformamide (20 mL), iron electrode as anode, nickel foam electrode as cathode (4×4 cm 2 ) were installed in the reaction tube. The reaction device was placed at room temperature and stirred for 30 minutes. After stirring, 6 mA was turned on and the reaction was carried out for 72 hours. After the reaction was completed, the reaction solution was passed through diatomaceous earth and washed with dichloromethane. The solvent was removed by rotary evaporation and purified by rapid column chromatography to obtain the corresponding product.
方法D:交叉偶联(5mmol)Method D: Cross coupling (5 mmol)
反应操作步骤(5mmol scale):在手套箱里,向电化学反应管中加入搅拌子,加入1a(5mmol,1.0equiv.),6a(10mmol,2.0equiv),碘化钴(0.75mmol,15mol%),L18(1.5mmol,30mol%),碘化钠(2mmol,40mol%.),分子筛(250mg),N,N-二甲基乙酰胺(20mL),在反应管中装上铁电极作为阳极,泡沫镍电极作为阴极(4×4cm2)。反应装置置于常温搅拌30分钟,搅拌完成后通电6mA反应72小时。反应结束后,反应液过硅藻土并用二氯甲烷冲洗,溶剂用旋蒸除去并通过快速柱层析纯化得到相应产物。Reaction procedure (5 mmol scale): In a glove box, add a stirrer to an electrochemical reaction tube, add 1a (5 mmol, 1.0 equiv.), 6a (10 mmol, 2.0 equiv.), cobalt iodide (0.75 mmol, 15 mol%), L18 (1.5 mmol, 30 mol%), sodium iodide (2 mmol, 40 mol%), Molecular sieve (250 mg), N,N-dimethylacetamide (20 mL), iron electrode as anode, nickel foam electrode as cathode (4×4 cm 2 ) were installed in the reaction tube. The reaction device was placed at room temperature and stirred for 30 minutes. After stirring, 6 mA was turned on and the reaction was carried out for 72 hours. After the reaction, the reaction solution was passed through diatomaceous earth and washed with dichloromethane. The solvent was removed by rotary evaporation and purified by rapid column chromatography to obtain the corresponding product.
实施例1Example 1
通过方法A获得(4a)(57.6mg,78%),1H NMR(400MHz,CDCl3)δ8.32(d,J=8.8Hz,2H),8.04(d,J=8.8Hz,2H),7.96(d,J=8.4Hz,2H),7.60–7.50(m,2H),7.36–7.14(m,8H),7.13–7.03(m,2H),6.67(d,J=8.0Hz,4H).13C{1H}NMR(101MHz,CDCl3)δ165.5,150.6,140.5,135.3,133.0,129.3,128.4,128.2,127.4,127.1,127.0,126.3,125.6,121.3.[α]D 27.2=38.26(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=9.199min(小),tR=13.320min(大).(4a) (57.6 mg, 78%) was obtained by method A, 1 H NMR (400 MHz, CDCl 3 ) δ 8.32 (d, J = 8.8 Hz, 2H), 8.04 (d, J = 8.8 Hz, 2H), 7.96(d,J=8.4Hz,2H),7.60–7.50(m,2H),7.36–7.14(m,8H),7.13–7.03(m,2H),6.67(d,J=8.0Hz,4H) . 13 C{ 1 H}NMR (101MHz, CDCl 3 )δ165.5,150.6,140.5,135.3,133.0,129.3,128.4,128.2,127.4,127.1,127.0,126.3,125.6,121.3.[α] D 27.2 =38.26(c=1.0,CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral HPLC (Chiralpak IA column, n-hexane: isopropanol = 90:10, flow rate 1 mL/min, T = 25 ° C, λ = 254 nm): tR = 9.199 min ( Small), tR=13.320min(Large).
通过方法C获得(4a)(1.11g,90%)对映异构体比例=95:5,通过手性高效液相色谱鉴定。(4a) (1.11 g, 90%) was obtained by method C with an enantiomeric ratio of 95:5 and was identified by chiral HPLC.
实施例2Example 2
通过方法A获得4b(1.11g,90%).1H NMR(400MHz,CDCl3)δ8.27(d,J=8.8Hz,2H),7.96(d,J=8.8Hz,2H),7.72(s,2H),7.28–7.05(m,10H),6.66(d,J=7.6Hz,4H),2.79(q,J=7.6Hz,4H),1.30(t,J=7.6Hz,6H).13C{1H}NMR(101MHz,CDCl3)δ165.6,150.7,144.3,140.7,135.6,131.5,129.2,128.3,127.7,127.4,126.3,126.0,125.8,125.48,121.37,28.95,15.12.IR(neat):1731,1623,1591,1487,1379,1330,1278,1229,1186.1160,1100,1049,956,922,895,827,793,741,714,687,496cm-1.HRMS(DART)理论值C38H34O4N[M+NH4]+:568.2482,实验值:568.2486.[α]29.3=32.78(c=1.0,CHCl3).对映异构体比例=94:6,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=95:5,流速1mL/min,T=25℃,λ=254nm):tR=9.035min(小),tR=11.565min(大).Obtained 4b (1.11 g, 90%) by method A. 1 H NMR (400MHz, CDCl 3 ) δ 8.27 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 8.8 Hz, 2H), 7.72 ( s,2H),7.28–7.05(m,10H),6.66(d,J=7.6Hz,4H),2.79(q,J=7.6Hz,4H),1.30(t,J=7.6Hz,6H). 13 C{ 1 H}NMR (101MHz, CDCl 3 )δ165.6,150.7,144.3,140.7,135.6,131.5,129.2,128.3,127.7,127.4,126.3,126.0,125.8,125.48,121.37,28.95,15.12.IR(neat):1731,1623,1591,1487,1379, 1330,1278,1229,1186.1160,1100,1049,956,922,895,827,793,741,714,687,496 cm -1 .HRMS (DART) calculated for C 38 H 34 O 4 N[M+NH 4 ] + :568.2482, experimental value:568.2486.[α] 29.3 =32.78 (c=1.0, CHCl 3 ). Enantiomer ratio = 94:6, identified by chiral high performance liquid chromatography (Chiralpak IA column, n-hexane: Isopropanol = 95:5, flow rate 1 mL/min, T = 25 °C, λ = 254 nm): tR = 9.035 min (small), tR = 11.565 min (large).
实施例3Example 3
通过方法A获得4c(85.5mg,89%)原料为2c,m.p=187.7-189.1℃.1H NMR(400MHz,CDCl3)δ8.04(d,J=8.4Hz,2H),7.86–7.72(m,4H),7.35(d,J=7.2Hz,4H),7.25(d,J=8.4Hz,2H),7.17–6.98(m,4H),6.86(d,J=7.6Hz,4H),6.92–6.81(m,4H),6.80–6.70(m,2H)6.40(d,J=7.6Hz,4H).13C{1H}NMR(101MHz,CDCl3)δ165.4,150.6,140.7,140.6,140.2,135.6,132.1,129.3,129.0,128.6,128.0,127.9,127.5,126.8,126.8,126.7,125.9,125.6,121.4.IR(neat):1725,1619,1591,1489,1466,1327,1283,1231,1187,1160,1097,1064,893,832,760,687,499cm-1.HRMS(DART)理论值C46H34O4N[M+NH4]+:664.2482实验值:664.2487.[α]27.3=-23.26(c=1.0,CHCl3).对映异构体比例=95:5,通过手性高效液相色谱鉴定(Daicel IG柱,正己烷:异丙醇=90:10,流速0.7mL/min,T=25℃,λ=214nm):tR=35.81min(小),tR=39.01min(大).4c (85.5 mg, 89%) was obtained by method A. The starting material was 2c, mp = 187.7-189.1 °C. 1 H NMR (400 MHz, CDCl 3 ) δ 8.04 (d, J = 8.4 Hz, 2H), 7.86-7.72 (m, 4H), 7.35 (d, J = 7.2 Hz, 4H), 7.25 (d, J = 8.4 Hz, 2H), 7.17-6.98 (m, 4H), 6.86 (d, J = 7.6 Hz, 4H), 6.92-6.81 (m, 4H), 6.80-6.70 (m, 2H) 6.40 (d, J = 7.6 Hz, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ165.4,150.6,140.7,140.6,140.2,135.6,132.1,129.3,129.0,128.6,128.0,127.9,127.5,126.8,126.8,126.7,125.9,125.6,121.4. IR(neat):1725,1619,1591,1489,1466,1327,1283,1231,1187,1160,1097,1064,893,832,760,687,499cm -1 . HRMS(DART)theoretical value C 46 H 34 O 4 N[M+NH 4 ] + :664.2482 Exp. value:664.2487.[α] 27.3 =-23.26 (c = 1.0, CHCl 3 ). Enantiomer ratio = 95:5, identified by chiral HPLC (Daicel IG column, n-hexane: isopropanol = 90:10, flow rate 0.7 mL/min, T = 25°C, λ = 214 nm): tR = 35.81 min (small), tR = 39.01 min (large).
实施例4Example 4
通过方法A获得4d(62.9mg,76%)原料为2d.1H NMR(400MHz,CDCl3)δ8.30(d,J=8.4Hz,2H),7.91(d,J=8.4Hz,2H),7.30–7.05(m,10H),6.96(d,J=9.2Hz,2H),6.72(d,J=7.6Hz,4H),3.93(s,6H).13C{1H}NMR(101MHz,CDCl3)δ165.3,159.2,150.6,141.0,137.0,129.2,129.0,128.2,127.1,126.9,125.4,124.4,121.4,119.8,105.9,55.4.IR(neat):2970,1727,1618,1474,1407,1377,1275,1233,1187,1096,1058,1026,926,854,783,745,723,688,557,501cm-1.HRMS(DART)理论值C36H27O6[M+H]+:555.1802实验值:555.1805.[α]29.8=44.96(c=0.8,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=80:20,流速1mL/min,T=25℃,λ=254nm):tR=9.461min(小),tR=16.322min(大).4d (62.9 mg, 76%) was obtained by method A. The starting material was 2d. 1 H NMR (400 MHz, CDCl 3 ) δ 8.30 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.4 Hz, 2H), 7.30-7.05 (m, 10H), 6.96 (d, J = 9.2 Hz, 2H), 6.72 (d, J = 7.6 Hz, 4H), 3.93 (s, 6H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ165.3,159.2,150.6,141.0,137.0,129.2,129.0,128.2,127.1,126.9,125.4,124.4,121.4,119.8,105.9,55.4.IR(neat):2970,1727,1618,1474,1407,1377,1275,1233,1187,1096,1058,1026,926,854,783,745,723,688,557,501cm -1 .HRMS(DART)theoretical value C 36 H 27 O 6 [M+H] + :555.1802 Experimental value:555.1805.[α] 29.8 =44.96 (c=0.8, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral HPLC (Chiralpak IA column, n-hexane: isopropanol = 80:20, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 9.461min (small), tR = 16.322min (large).
实施例5Example 5
通过方法A获得4e(60.5mg,61%)原料为2e.1H NMR(400MHz,CDCl3)δ8.29(d,J=8.4Hz,2H),7.89(d,J=8.8Hz,2H),7.27–7.18(m,6H),7.15–7.05(m,4H),6.95(d,J=9.6Hz,2H),6.72(d,J=8.0Hz,4H),5.93–5.80(m,2H),5.13–4.99(m,4H),4.11(t,J=6.4Hz,4H),2.28(dd,J=14.8,7.2Hz,4H),2.01–1.77(m,4H).13C{1H}NMR(101MHz,CDCl3)δ165.5,158.8,150.8,141.1,137.8,137.1,129.3,129.1,128.3,127.2,126.9,125.6,124.4,121.5,120.1,115.5,106.7,67.4,30.2,28.4.IR(neat):2934,1735,1616,1465,1429,1378,1328,1274,1233,1178,1095,1054,1022,918,854,745,688,563,499cm-1.HRMS(DART)理论值C44H38O6[M+H]+:685.2561实验值:685.2555.[α]28.6=26.59(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=7.716min(小),tR=8.982min(大).4e (60.5 mg, 61%) was obtained by method A. The starting material was 2e. 1 H NMR (400 MHz, CDCl 3 ) δ 8.29 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 8.8 Hz, 2H), 7.27-7.18 (m, 6H), 7.15-7.05 (m, 4H), 6.95 (d, J = 9.6 Hz, 2H), 6.72 (d, J = 8.0 Hz, 4H), 5.93-5.80 (m, 2H), 5.13-4.99 (m, 4H), 4.11 (t, J = 6.4 Hz, 4H), 2.28 (dd, J = 14.8, 7.2 Hz, 4H), 2.01-1.77 (m, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ165.5,158.8,150.8,141.1,137.8,137.1,129.3,129.1,128.3,127.2,126.9,125.6,124.4,121.5,120.1,115.5,106.7,67.4,30.2,28.4.IR(neat):2934,1735,1616,1465,1429,1378,1328,1274,1233,1178,1095,1054,1022,918,854,745,688,563,499cm -1 .HRMS(DART)theoretical value C 44 H 38 O 6 [M+H] + :685.2561 Exp. value:685.2555.[α] 28.6 =26.59 (c=1.0, CHCl 3 ). Enantiomer ratio =96:4, identified by chiral HPLC (Chiralpak IA column, n-hexane:isopropanol=90:10, flow rate 1mL/min, T=25°C, λ=254nm): tR=7.716min (small), tR=8.982min (large).
实施例6Example 6
通过方法A获得4f(66.7mg,86%)原料为2f.1H NMR(400MHz,CDCl3)δ8.24(d,J=8.4Hz,2H),7.99(d,J=8.8Hz,2H),7.86(d,J=8.4Hz,2H),7.39(d,J=8.4Hz,2H),7.23–7.14(m,4H),7.11–7.04(m,2H),6.98(s,2H),6.63(d,J=7.6Hz,4H),2.26(s,6H).13C{1H}NMR(101MHz,CDCl3)δ165.8,150.7,134.0,137.0,133.6,133.3,130.6,129.3,128.1,128.0,127.1,126.3,125.6,125.5,121.4,22.1.IR(neat):2919,1739,1593,1489,1452,1313,1234,1184,1160,1096,1053,942,842,743,719,687,502,427cm-1.HRMS(DART)理论值C36H27O4[M+H]+:523.1904实验值:523.1906.[α]26.4=46.09(c=1.0,CHCl3).对映异构体比例=93:7,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=98:2,流速1mL/min,T=25℃,λ=254nm):tR=21.870min(小),tR=26.988min(大).4f (66.7 mg, 86%) was obtained by method A. The starting material was 2f. 1 H NMR (400 MHz, CDCl 3 ) δ 8.24 (d, J = 8.4 Hz, 2H), 7.99 (d, J = 8.8 Hz, 2H), 7.86 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.23-7.14 (m, 4H), 7.11-7.04 (m, 2H), 6.98 (s, 2H), 6.63 (d, J = 7.6 Hz, 4H), 2.26 (s, 6H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ165.8,150.7,134.0,137.0,133.6,133.3,130.6,129.3,128.1,128.0,127.1,126.3,125.6,125.5,121.4,22.1.IR(neat):2919,1739,1593,1489,1452,1313,1234,1184,1160,1096,1053,942,842,743,719,687,502,427cm -1 .HRMS(DART)理论值C 36 H 27 O 4 [M+H] + :523.1904实验值:523.1906.[α] 26.4 =46.09 (c=1.0, CHCl 3 ). Enantiomer ratio = 93:7, identified by chiral high performance liquid chromatography (Chiralpak IA column, n-hexane: isopropanol = 98:2, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 21.870 min (small), tR = 26.988 min (large).
实施例7Example 7
通过方法A获得4g(49.1mg,62%)原料为2g.1H NMR(400MHz,CDCl3)δ8.29(d,J=8.4Hz,2H),8.05(d,J=8.4Hz,2H),7.97(dd,J=9.2,5.6Hz,2H),7.40–7.31(m,2H),7.26–7.19(m,4H),7.14–7.08(m,2H),6.81–6.70(m,6H).13C{1H}NMR(101MHz,CDCl3)δ165.1,161.3(d,J=249.5Hz),150.5,139.2(d,J=6.1Hz),133.8(d,J=9.1Hz),132.3,130.7(d,J=9.1Hz),129.3,128.5,127.8,125.77,125.68(d,J=2.0Hz),121.3,118.7(d,J=25.3Hz),110.7(d,J=22.2Hz).19F NMR(376MHz,CDCl3)δ-111.57.IR(neat):2972,1738,1628,1593,1510,1489,1442,1313,1231,1181,1121,1092,952,843,741,720,687,531,484,433cm-1.HRMS(DART)理论值C34H21O4 F2[M+H]+:531.1402实验值:531.1400.[α]29.0=23.40(c=0.9,CHCl3).对映异构体比例=95:5,通过手性高效液相色谱鉴定(ChiralpakOJ(4.6*250mm),CO2:IPA=85:15,流速1.3mL/min,T=26℃,λ=214nm):tR=13.859min(大),tR=17.425min(小).4 g (49.1 mg, 62%) of starting material was obtained by method A, which was 2 g. 1 H NMR (400 MHz, CDCl 3 ) δ 8.29 (d, J = 8.4 Hz, 2H), 8.05 (d, J = 8.4 Hz, 2H), 7.97 (dd, J = 9.2, 5.6 Hz, 2H), 7.40-7.31 (m, 2H), 7.26-7.19 (m, 4H), 7.14-7.08 (m, 2H), 6.81-6.70 (m, 6H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ165.1,161.3(d,J=249.5Hz),150.5,139.2(d,J=6.1Hz),133.8(d,J=9.1Hz),132.3,130.7(d,J=9.1Hz),129.3,128.5,127.8,125.77,125.68(d,J= 2.0Hz), 121.3, 118.7 (d, J = 25.3Hz), 110.7 (d, J = 22.2Hz). 19 F NMR (376MHz, CDCl 3 )δ-111.57. IR (neat): 2972, 1738, 1628, 1593, 1510 , 1489, 1442, 1313, 1231, 1181, 1121, 1092, 952, 843, 741, 720, 687, 531, 484, 433 cm -1 . HRMS (DART) theoretical value C 34 H 21 O 4 F 2 [M+H] + : 531.1402 experimental value: 531.1400. [α] 29.0 =23.40 (c=0.9, CHCl 3 ). Enantiomeric ratio=95:5, identified by chiral HPLC (Chiralpak OJ (4.6*250mm), CO 2 :IPA=85:15, flow rate 1.3mL/min, T=26℃, λ=214nm):tR=13.859min(large), tR=17.425min(small).
实施例8Example 8
通过方法A获得4h(55.1mg,58%)原料为2h.1H NMR(400MHz,CDCl3)δ8.36–8.21(m,4H),7.40(d,J=6.8Hz,2H),7.25–7.04(m,10H),6.62(d,J=8.0Hz,4H),3.27–3.04(m,4H),1.88–1.75(m,8H),1.54–1.38(m,4H),0.96(t,J=6.8Hz,6H).13C{1H}NMR(101MHz,CDCl3)δ165.6,150.6,141.4,139.2,133.8,133.5,129.1,128.1,126.6,126.6,125.9(2C),125.5,124.2,121.3,33.3,32.1,30.7,22.7,14.1.IR(neat):2925,1715,1592,1488,1456,1366,1316,1257,1188,1159,1115,1091,828,777,742,688,543,502cm-1.HRMS(DART)理论值C44H43O4[M+H]+:635.3156实验值:635.3156.[α]29.8=28.03(c=1.0,CHCl3).对映异构体比例=95:5,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=95:5,流速1mL/min,T=25℃,λ=254nm):tR=7.759min(小),tR=9.244min(大).4h (55.1 mg, 58%) was obtained by method A. The starting material was 2h. 1 H NMR (400 MHz, CDCl 3 ) δ 8.36–8.21 (m, 4H), 7.40 (d, J=6.8 Hz, 2H), 7.25–7.04 (m, 10H), 6.62 (d, J=8.0 Hz, 4H), 3.27–3.04 (m, 4H), 1.88–1.75 (m, 8H), 1.54–1.38 (m, 4H), 0.96 (t, J=6.8 Hz, 6H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ165.6,150.6,141.4,139.2,133.8,133.5,129.1,128.1,126.6,126.6,125.9(2C),125.5,124.2,121.3,33.3,32.1,30.7,22.7,14.1.IR(neat):2925,1715,1592,1488,1456,1366,1316,1257,1188,1159,1115,1091,828,777,742,688,543,502cm -1 .HRMS(DART)theoretical value C 44 H 43 O 4 [M+H] + :635.3156 Experimental value:635.3156.[α] 29.8 =28.03 (c=1.0, CHCl 3 ). Enantiomer ratio = 95:5, identified by chiral HPLC (Chiralpak IA column, n-hexane:isopropanol = 95:5, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 7.759min (small), tR = 9.244min (large).
实施例9Example 9
通过方法A获得4i(59.0mg,71%)原料为2i,m.p=125.4-127.6℃.1H NMR(400MHz,CD2Cl2)δ8.41(d,J=9.2Hz,2H),8.17(d,J=9.2Hz,2H),7.20–7.00(m,8H),6.85(d,J=7.6Hz,2H),6.66(d,J=8.4Hz,2H),6.59(d,J=7.6Hz,4H),3.97(s,6H).13C{1H}NMR(101MHz,CD2Cl2)δ165.6,155.4,150.7,139.9,133.9,129.1,127.6,127.4,127.1,125.6,125.2,122.2,121.3,119.2,105.9,55.8.IR(neat):1722,1591,1489,1461,1408,1379,1320,1259,1187,1160,1104,931,834,766,739,687cm-1.HRMS(DART)理论值C36H30O6N[M+H]+:572.2068实验值:572.2066.[α]28.9=49.13(c=0.6,CHCl3).对映异构体比例=98:2,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=18.271min(大),tR=24.085min(小).4i (59.0 mg, 71%) was obtained by method A. The starting material was 2i, mp = 125.4-127.6 °C. 1 H NMR (400 MHz, CD 2 Cl 2 ) δ 8.41 (d, J = 9.2 Hz, 2H), 8.17 (d, J = 9.2 Hz, 2H), 7.20-7.00 (m, 8H), 6.85 (d, J = 7.6 Hz, 2H), 6.66 (d, J = 8.4 Hz, 2H), 6.59 (d, J = 7.6 Hz, 4H), 3.97 (s, 6H). 13 C{ 1 H} NMR (101 MHz, CD 2 Cl 2 )δ165.6,155.4,150.7,139.9,133.9,129.1,127.6,127.4,127.1,125.6,125.2,122.2,121.3,119.2,105.9,55.8.IR(neat):1722,1591,1489,1461,1408,1379,1320,1259,1187,1160,1104,931,834,766,739,687cm -1 .HRMS(DART)theoretical value for C 36 H 30 O 6 N[M+H] + :572.2068 Observation value:572.2066.[α] 28.9 =49.13 (c=0.6, CHCl 3 ). Enantiomer ratio = 98:2, identified by chiral HPLC (Chiralpak IA column, n-hexane: isopropanol = 90:10, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 18.271 min (large), tR = 24.085 min (small).
实施例10Example 10
通过方法A获得4j(56.0mg,72%)原料为2j.1H NMR(400MHz,CDCl3)δ8.17(s,2H),8.12(d,J=8.4Hz,2H),7.60(t,J=7.6Hz,2H),7.30–7.17(m,8H),7.14–7.07(m,2H),6.70(d,J=8.0Hz,4H),2.85(s,6H).13C{1H}NMR(101MHz,CDCl3)δ165.6,150.6,139.0,134.6,134.5,133.2,129.2,128.1,127.9,126.6(2C),126.5,125.5,124.3,121.4,19.7.IR(neat):1722,1593,1489,1374,1346,1218,1186,1161,1141,1112,1056,939,893,835,760,724,686,497,422cm-1.HRMS(DART)理论值C36H27O4[M+H]+:523.1904实验值:523.1903.[α]30.4=34.82(c=0.9,CHCl3).对映异构体比例=92:8,通过手性高效液相色谱鉴定(Daicel Chiralpak OD-H柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=6.342min(大),tR=8.264min(小).4j (56.0 mg, 72%) was obtained by method A. The starting material was 2j. 1 H NMR (400 MHz, CDCl 3 ) δ 8.17 (s, 2H), 8.12 (d, J = 8.4 Hz, 2H), 7.60 (t, J = 7.6 Hz, 2H), 7.30-7.17 (m, 8H), 7.14-7.07 (m, 2H), 6.70 (d, J = 8.0 Hz, 4H), 2.85 (s, 6H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ165.6,150.6,139.0,134.6,134.5,133.2,129.2,128.1,127.9,126.6(2C),126.5,125.5,124.3,121.4,19.7.IR(neat):1722,1593,1489,1374,1346,1218,1186,1161,1141,1112,1056,939,893,835,760,724,686,497,422cm -1 .HRMS(DART)理论值C 36 H 27 O 4 [M+H] + :523.1904实验值:523.1903.[α] 30.4 =34.82 (c=0.9, CHCl 3 ). Enantiomer ratio = 92:8, identified by chiral high performance liquid chromatography (Daicel Chiralpak OD-H column, n-hexane: isopropanol = 90:10, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 6.342 min (large), tR = 8.264 min (small).
实施例11Embodiment 11
通过方法A获得4k(69.6mg,72%)原料为2k,m.p=193.5-195.5℃.1H NMR(400MHz,CDCl3)δ8.12(s,2H),8.03(d,J=8.4Hz,2H),7.72(d,J=7.6Hz,4H),7.65–7.07(m,12H),7.13–6.96(m,6H),6.16(d,J=8.4Hz,4H).13C{1H}NMR(101MHz,CDCl3)δ166.6,150.2,140.9,137.3,135.0,133.6,132.0,131.8,129.7,129.0,129.0,128.6,128.2,127.8,127.7,127.5,127.2,121.1.IR(neat):2986,1744,1590,1490,1451,1415,1258,1221,1185,1159,1087,1065,975,897,846,745,688,601,574,504,482cm-1.HRMS(DART)理论值C46H31O4[M+H]+:647.2217实验值:647.2219.[α]29.2=15.98(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=4.724min(小),tR=8.120min(大).4k (69.6 mg, 72%) was obtained by method A. The starting material was 2k, mp = 193.5-195.5°C. 1 H NMR (400 MHz, CDCl 3 ) δ 8.12 (s, 2H), 8.03 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 7.6 Hz, 4H), 7.65-7.07 (m, 12H), 7.13-6.96 (m, 6H), 6.16 (d, J = 8.4 Hz, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.6,150.2,140.9,137.3,135.0,133.6,132.0,131.8,129.7,129.0,129.0,128.6,128.2,127.8,127.7,127.5,127.2,121.1. IR(neat):2986,1744,1590,1490,1451,1415,1258,1221,1185,1159,1087,1065,975,897,846,745,688,601,574,504,482cm -1 . HRMS(DART)theoretical value C 46 H 31 O 4 [M+H] + :647.2217 Experimental value:647.2219.[α] 29.2 =15.98 (c=1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral HPLC (Chiralpak IA column, n-hexane:isopropanol = 90:10, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 4.724min (small), tR = 8.120min (large).
通过方法C获得4k(1.17g,73%)原料为2k.对映异构体比例=95:5,通过手性高效液相色谱鉴定.4k (1.17 g, 73%) was obtained by method C. The starting material was 2k. The enantiomeric ratio = 95:5, identified by chiral HPLC.
实施例12Example 12
通过方法A获得4l(67.9mg,65%)原料为2l.1H NMR(400MHz,CDCl3)δ8.07(s,2H),7.98(d,J=8.0Hz,2H),7.65–7.45(m,8H),7.45–7.28(m,6H),7.10–6.90(m,6H),6.12(d,J=7.6Hz,4H),2.74(q,7.2Hz,4H),1.31(t,J=7.2Hz,6H).13C{1H}NMR(101MHz,CDCl3)δ167.6,151.1,144.7,139.2,138.2,135.7,134.4,132.8,130.4,129.9,129.8,129.0,128.6,128.4,127.9,126.3,126.1,122.0,29.6,16.8.IR(neat):2965,1739,1591,1489,1256,1225,1185,1159,1089,1065,1023,899,831,743,688,600,505cm-1.HRMS(DART)理论值C50H42O4N[M+H]+:720.3108实验值:720.3106.[α]26.2=58.37(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=95:5,流速1mL/min,T=25℃,λ=254nm):tR=11.817min(小),tR=14.752min(大).41 (67.9 mg, 65%) was obtained by method A. The starting material was 21. 1 H NMR (400 MHz, CDCl 3 ) δ 8.07 (s, 2H), 7.98 (d, J = 8.0 Hz, 2H), 7.65-7.45 (m, 8H), 7.45-7.28 (m, 6H), 7.10-6.90 (m, 6H), 6.12 (d, J = 7.6 Hz, 4H), 2.74 (q, 7.2 Hz, 4H), 1.31 (t, J = 7.2 Hz, 6H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.6,151.1,144.7,139.2,138.2,135.7,134.4,132.8,130.4,129.9,129.8,129.0,128.6,128.4,127.9,126.3,126.1,122.0,29.6,16.8.IR(neat):2965,1739,1591,1489,1256,1225,1185,1159,1089,1065,1023,899,831,743,688,600,505cm -1 .HRMS(DART)theoretical value C 50 H 42 O 4 N[M+H] + :720.3108 Experimental value:720.3106.[α] 26.2 =58.37 (c=1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral HPLC (Chiralpak IA column, n-hexane:isopropanol = 95:5, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 11.817min (small), tR = 14.752min (large).
实施例13Example 13
通过方法A获得4m(69.2mg,63%)原料为2m.1H NMR(400MHz,CDCl3)δ8.05(s,2H),7.96(d,J=8.0Hz,2H),7.64–7.43(m,8H),7.45–7.25(m,6H),7.05–6.90(m,6H),6.10(d,J=7.6Hz,4H),2.66(t,J=7.6Hz,4H),1.84–1.50(m,4H),0.98(t,J=7.2Hz,6H).13C{1H}NMR(101MHz,CDCl3)δ166.7,150.3,142.3,138.3,137.4,134.9,133.6,132.0(2C),129.6,128.9,128.7,128.1,127.7,127.6,127.1,125.5,121.2,37.8,24.7,13.9.IR(neat):2925,1745,1590,1489,1256,1222,1185,1159,1086,900,832,741,687,601,505cm-1.HRMS(DART)理论值C52H46O4N[M+H]+:748.3421实验值:748.3420.[α]30.3=-1.84(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=95:5,流速1mL/min,T=25℃,λ=254nm):tR=7.690min(小),tR=9.609min(大).4m (69.2 mg, 63%) was obtained by method A. The starting material was 2m. 1 H NMR (400 MHz, CDCl 3 ) δ 8.05 (s, 2H), 7.96 (d, J = 8.0 Hz, 2H), 7.64-7.43 (m, 8H), 7.45-7.25 (m, 6H), 7.05-6.90 (m, 6H), 6.10 (d, J = 7.6 Hz, 4H), 2.66 (t, J = 7.6 Hz, 4H), 1.84-1.50 (m, 4H), 0.98 (t, J = 7.2 Hz, 6H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.7,150.3,142.3,138.3,137.4,134.9,133.6,132.0(2C),129.6,128.9,128.7,128.1,127.7,127.6,127.1,125.5,121.2,37.8,24.7,13.9. IR(neat):2925,1745,1590,1489,1256,1222,1185,1159,1086,900,832,741,687,601,505cm -1 . HRMS(DART)theoretical value C 52 H 46 O 4 N[M+H] + :748.3421 Experimental value:748.3420.[α] 30.3 =-1.84 (c = 1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral HPLC (Chiralpak IA column, n-hexane: isopropanol = 95:5, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 7.690min (small), tR = 9.609min (large).
实施例14Embodiment 14
通过方法A获得4n(72.1mg,66%)原料为2n.1H NMR(400MHz,CDCl3)δ8.05(s,2H),7.96(d,J=8.4Hz,2H),7.68–7.44(m,8H),7.41–7.30(m,6H),7.07–6.90(m,6H),6.05(d,J=8.0Hz,4H),3.03–2.93(m,2H),1.31(d,J=6.8Hz,12H).13C{1H}NMR(101MHz,CDCl3)δ166.7,150.3,148.4,138.5,137.4,134.9,133.6,132.0(2C),129.5,129.0,128.9,128.1,127.7,127.6,127.1,126.7,125.4,121.2,34.0,24.2,24.1.IR(neat):2963,1743,1590,1490,1253,1185,1159,1088,1023,900,831,739,686,600,578,507cm-1.HRMS(DART)理论值C52H43O4[M+H]+:731.3156实验值:731.3155.[α]26.8=3.85(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=95:5,流速1mL/min,T=25℃,λ=254nm):tR=6.738min(小),tR=10.526min(大).4n (72.1 mg, 66%) was obtained by method A. The starting material was 2n. 1 H NMR (400 MHz, CDCl 3 ) δ 8.05 (s, 2H), 7.96 (d, J = 8.4 Hz, 2H), 7.68-7.44 (m, 8H), 7.41-7.30 (m, 6H), 7.07-6.90 (m, 6H), 6.05 (d, J = 8.0 Hz, 4H), 3.03-2.93 (m, 2H), 1.31 (d, J = 6.8 Hz, 12H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.7,150.3,148.4,138.5,137.4,134.9,133.6,132.0(2C),129.5,129.0,128.9,128.1,127.7,127.6,127.1,126.7,125.4,121.2,34.0,24.2,24.1.IR(neat):2963,1743,1590,1490,1253,1185,1159,1088,1023,900,831,739,686,600,578,507cm -1 .HRMS(DART)theoretical value C 52 H 43 O 4 [M+H] + :731.3156 Experimental value:731.3155.[α] 26.8 =3.85 (c=1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral HPLC (Chiralpak IA column, n-hexane:isopropanol = 95:5, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 6.738min (small), tR = 10.526min (large).
实施例15Embodiment 15
通过方法A获得4o(72.9mg,65%)原料为2o.1H NMR(400MHz,CDCl3)δ8.10(s,2H),8.00(d,J=8.0Hz,2H),7.71–7.34(m,14H),7.10–7.34(m,6H),6.08(d,J=6.8Hz,4H),1.42(s,18H).13C{1H}NMR(101MHz,CDCl3)δ166.7,150.7,150.3,138.2,137.3,134.9,133.6,132.0(2C),129.5,128.9,128.8,128.2,127.7,127.6,127.1,125.5(2C),121.2,34.7,31.5.IR(neat):2958,1747,1590,1490,1257,1222,1186,1159,1114,1084,1064,1022,975,899,833,746,687,607,564,508cm-1.HRMS(DART)理论值C54H50O4N[M+NH4]+:776.3734实验值:776.3733.[α]28.9=4.19(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=95:5,流速1mL/min,T=25℃,λ=254nm):tR=5.461min(小),tR=8.355min(大).4o (72.9 mg, 65%) was obtained by method A. The starting material was 2o. 1 H NMR (400 MHz, CDCl 3 ) δ 8.10 (s, 2H), 8.00 (d, J = 8.0 Hz, 2H), 7.71-7.34 (m, 14H), 7.10-7.34 (m, 6H), 6.08 (d, J = 6.8 Hz, 4H), 1.42 (s, 18H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.7,150.7,150.3,138.2,137.3,134.9,133.6,132.0(2C),129.5,128.9,128.8,128.2,127.7,127.6,127.1,125.5(2C),121.2,34.7,31.5.IR(neat):2958,1747,1590,1490,1257,1222,1186,1159,1114,1084,1064,1022,975,899,833,746,687,607,564,508cm -1 .HRMS(DART)理论值C 54 H 50 O 4 N[M+NH 4 ] + :776.3734 Experimental value:776.3733.[α] 28.9 =4.19 (c=1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral HPLC (Chiralpak IA column, n-hexane:isopropanol = 95:5, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 5.461min (small), tR = 8.355min (large).
实施例16Example 16
通过方法A获得4p(63.6mg,60%)原料为2p.1H NMR(400MHz,CDCl3)δ8.06(s,2H),7.98(d,J=8.4Hz,2H),7.67–7.46(m,8H),7.46–7.35(m,2H),7.12–6.94(m,10H),6.19(d,J=8.0Hz,4H),3.88(s,6H).13C{1H}NMR(101MHz,CDCl3)δ166.8,159.4,150.3,136.9,134.8,133.6,133.3,132.1,131.8,130.2,129.6,129.0,128.1,127.7,127.6,127.0,125.5,121.1,114.1,55.5.IR(neat):2931,1743,1608,1512,1489,1288,1247,1222,1182,1158,1085,1064,1027,899,831,743,687,599,506cm-1.HRMS(DART)理论值C48H38O6N[M+NH4]+:724.2694实验值:724.2694.[α]27.3=-1.05(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Daicel Chiralpak ADH柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=11.948min(小),tR=16.206min(大).4p (63.6 mg, 60%) was obtained by method A. The starting material was 2p. 1 H NMR (400 MHz, CDCl 3 ) δ 8.06 (s, 2H), 7.98 (d, J = 8.4 Hz, 2H), 7.67-7.46 (m, 8H), 7.46-7.35 (m, 2H), 7.12-6.94 (m, 10H), 6.19 (d, J = 8.0 Hz, 4H), 3.88 (s, 6H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.8,159.4,150.3,136.9,134.8,133.6,133.3,132.1,131.8,130.2,129.6,129.0,128.1,127.7,127.6,127.0,125.5,121.1,114.1,55.5. IR(neat):2931,1743,1608,1512,1489,1288,1247,1222,1182,1158,1085,1064,1027,899,831,743,687,599,506cm -1 . HRMS(DART)theoretical value C 48 H 38 O 6 N[M+NH 4 ] + :724.2694 Experimental value:724.2694.[α] 27.3 =-1.05 (c = 1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral HPLC (Daicel Chiralpak ADH column, n-hexane: isopropanol = 90:10, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 11.948 min (small), tR = 16.206 min (large).
通过方法A获得4q(79.8mg,67%)原料为2q.1H NMR(400MHz,CDCl3)δ8.16(s,2H),8.04(d,J=8.4Hz,2H),7.83–7.33(m,24H),7.10–6.94(m,6H),6.19(d,J=8.0Hz,4H).13C{1H}NMR(101MHz,CDCl3)δ166.7,150.2,140.7,140.6,139.9,136.9,135.0,133.6,132.0,131.7,129.7,129.4,129.0,128.9,128.2,127.9,127.5,127.5,127.3,127.3,127.2,125.5,121.0.IR(neat):3027,1744,1589,1486,1257,1221,1185,1158,1088,1006,974,901,838,733,688,601,579,503cm-1.HRMS(DART)理论值C58H38O4Na[M+Na]+:821.2662实验值:821.2661.[α]29.5=-45.66(c=1.0,CHCl3).对映异构体比例=99:1,通过手性高效液相色谱鉴定(Daicel IG柱,正己烷:异丙醇=90:10,流速0.7mL/min,T=25℃,λ=214nm):tR=24.95min(小),tR=35.90min(大).4q (79.8 mg, 67%) was obtained by method A. The starting material was 2q. 1 H NMR (400 MHz, CDCl 3 ) δ 8.16 (s, 2H), 8.04 (d, J = 8.4 Hz, 2H), 7.83-7.33 (m, 24H), 7.10-6.94 (m, 6H), 6.19 (d, J = 8.0 Hz, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.7,150.2,140.7,140.6,139.9,136.9,135.0,133.6,132.0,131.7,129.7,129.4,129.0,128.9,128.2,127.9,127.5,127.5,127.3,127.3,127.2,125.5,121.0. IR(neat):3027,1744,1589,1486,1257,1221,1185,1158,1088,1006,974,901,838,733,688,601,579,503cm -1 . HRMS(DART)theoretical value C 58 H 38 O 4 Na[M+Na] + :821.2662 Exp. value:821.2661.[α] 29.5 =-45.66 (c=1.0, CHCl 3 ). Enantiomer ratio = 99:1, identified by chiral HPLC (Daicel IG column, n-hexane:isopropanol = 90:10, flow rate 0.7 mL/min, T = 25°C, λ = 214 nm): tR = 24.95 min (small), tR = 35.90 min (large).
实施例17Embodiment 17
通过方法A获得4r(61.1mg,60%)原料为2r.1H NMR(400MHz,CDCl3)δ7.94(s,2H),7.89(d,J=8.0Hz,2H),7.57–7.28(m,6H),7.40(d,J=8.4Hz,2H),7.34–7.28(m,2H),7.15–7.06(m,4H),7.01–6.85(m,6H),6.03(d,J=7.6Hz,4H).13C{1H}NMR(101MHz,CDCl3)δ165.4,161.6(d,J=247.5Hz),149.07,135.8(d,J=3.0Hz),135.1,133.9,132.5,130.9,130.7,129.6(d,J=8.1Hz),128.7,128.0,127.0(2C),126.4,126.3,124.6,119.8,114.5(d,J=21.2Hz).19F NMR(376MHz,CDCl3)δ-111.54.IR(neat):2972,1743,1591,1510,1489,1258,1221,1185,1158,1086,976,901,836,743,687,598,548,511cm-1HRMS(DART)理论值C46H32O4NF2[M+NH4]+:700.2294实验值:70.2296.[α]28.5=20.87(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=95:5,流速1mL/min,T=25℃,λ=254nm):tR=10.123min(小),tR=17.499min(大).4r (61.1 mg, 60%) was obtained by method A. The starting material was 2r. 1 H NMR (400 MHz, CDCl 3 ) δ 7.94 (s, 2H), 7.89 (d, J = 8.0 Hz, 2H), 7.57-7.28 (m, 6H), 7.40 (d, J = 8.4 Hz, 2H), 7.34-7.28 (m, 2H), 7.15-7.06 (m, 4H), 7.01-6.85 (m, 6H), 6.03 (d, J = 7.6 Hz, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ165.4,161.6(d,J=247.5Hz),149.07,135.8(d,J=3.0Hz),135.1,133.9,132.5,130.9,130.7,129.6(d,J=8.1Hz),128.7,128.0,127.0(2C),126.4 ,126.3,124.6,119.8,114.5 (d, J=21.2Hz). 19 F NMR (376MHz, CDCl 3 )δ-111.54. IR (neat): 2972, 1743, 1591, 1510, 1489, 1258, 1221, 1185, 1158, 1086, 976, 901, 836, 743, 687, 598, 548, 511 cm -1 HRMS (DART) theoretical value C 46 H 32 O 4 NF 2 [M+NH 4 ] + : 700.2294 experimental value: 70.2296. [α] 28.5 =20.87 (c=1.0, CHCl 3 ). Enantiomer ratio=96:4, identified by chiral HPLC (Chiralpak IA column, hexane: isopropanol = 95:5, flow rate 1 mL/min, T = 25 ° C, λ = 254 nm): tR = 10.123 min (small), tR = 17.499 min (large).
实施例18Embodiment 18
通过方法A获得4s(55.3mg,52%)原料为2s.1H NMR(400MHz,CDCl3)δ8.02(s,2H),7.98(d,J=8.0Hz,2H),7.64–7.52(m,6H),7.51–7.36(m,8H),7.09–6.94(m,6H),6.11(d,J=8.0Hz,4H).13C{1H}NMR(101MHz,CDCl3)δ166.4,150.1,139.3,136.1,135.1,134.0,133.5,132.0,131.5,130.3,129.8,129.1,128.8,128.2,128.1,127.5,127.5,125.7,120.8.IR(neat):2970,1742,1592,1476,1229,1186,1159.1094,1062,901,827,746,687,601,504,448cm-1.HRMS(DART)理论值C46H29O4Cl2[M+H]+:715.1437实验值:715.1440.[α]30.4=-6.43(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(ChiralpakIA柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=6.762min(小),tR=8.297min(大).4s (55.3 mg, 52%) was obtained by method A. The starting material was 2s. 1 H NMR (400 MHz, CDCl 3 ) δ 8.02 (s, 2H), 7.98 (d, J = 8.0 Hz, 2H), 7.64-7.52 (m, 6H), 7.51-7.36 (m, 8H), 7.09-6.94 (m, 6H), 6.11 (d, J = 8.0 Hz, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.4,150.1,139.3,136.1,135.1,134.0,133.5,132.0,131.5,130.3,129.8,129.1,128.8,128.2,128.1,127.5,127.5,125.7,120.8. IR(neat):2970,1742,1592,1476,1229,1186,1159.1094,1062,901,827,746,687,601,504,448cm -1 . HRMS(DART)theoretical value C 46 H 29 O 4 Cl 2 [M+H] + :715.1437 Experimental value:715.1440.[α] 30.4 =-6.43 (c = 1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral HPLC (ChiralpakIA column, n-hexane: isopropanol = 90:10, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 6.762min (small), tR = 8.297min (large).
实施例19Embodiment 19
通过方法A获得4t(63.8mg,58%)原料为2t.1H NMR(400MHz,CDCl3)δ8.15–7.96(m,8H),7.77(d,J=8.0Hz,4H),7.65–7.58(m,2H),7.56–7.40(m,4H),7.10–6.94(m,6H),6.13(d,J=8.0Hz,4H),2.66(s,6H).13C{1H}NMR(101MHz,CDCl3)δ197.8,166.3,150.1,145.7,136.3,136.2,135.4,133.5,132.2,131.1,130.0,129.2,129.1,128.7,128.4,128.2,127.8,127.5,125.7,120.7,26.8.IR(neat):2971,1740,1680,1590,1489,1256,1184,1159,1089,1066,957,901,832,739,687,602,504cm-1.HRMS(DART)理论值C50H38O6N[M+NH4]+:748.2694实验值:748.2697.[α]25.3=-33.76(c=1.0,CHCl3).对映异构体比例=98:2,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=80:20,流速1mL/min,T=25℃,λ=254nm):tR=14.571min(小),tR=24.868min(大).4t (63.8 mg, 58%) was obtained by method A. The starting material was 2t. 1 H NMR (400 MHz, CDCl 3 ) δ 8.15–7.96 (m, 8H), 7.77 (d, J=8.0 Hz, 4H), 7.65–7.58 (m, 2H), 7.56–7.40 (m, 4H), 7.10–6.94 (m, 6H), 6.13 (d, J=8.0 Hz, 4H), 2.66 (s, 6H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ197.8,166.3,150.1,145.7,136.3,136.2,135.4,133.5,132.2,131.1,130.0,129.2,129.1,128.7,128.4,128.2,127.8,127.5,125.7,120.7,26.8. IR(neat):2971,1740,1680,1590,1489,1256,1184,1159,1089,1066,957,901,832,739,687,602,504cm -1 . HRMS(DART)theoretical value C 50 H 38 O 6 N[M+NH 4 ] + :748.2694 Experimental value:748.2697.[α] 25.3 =-33.76 (c = 1.0, CHCl 3 ). Enantiomer ratio = 98:2, identified by chiral HPLC (Chiralpak IA column, n-hexane: isopropanol = 80:20, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 14.571min (small), tR = 24.868min (large).
实施例20Embodiment 20
通过方法A获得4u(73.7mg,65%)原料为2u.1H NMR(400MHz,CDCl3)δ8.19(d,J=8.0Hz,4H),8.10(s,2H),8.03(d,J=8.0Hz,2H),7.76(d,J=8.0Hz,4H),7.65–7.58(m,2H),7.55–7.40(m,4H),7.10–6.96(m,6H),6.14(d,J=7.6Hz,4H),3.97(s,6H).13C{1H}NMR(101MHz,CDCl3)δ166.9,166.3,150.1,145.5,136.3,135.4,133.5,132.2,131.2,130.0,129.9,129.4,129.1,129.0,128.3,128.2,127.7,127.5,125.7,120.8,52.3.IR(neat):1718,1590,1488,1433,1275,1223,1183,1159,1105,1019,975,902,859,775,746,710,687,602,486cm-1HRMS(DART)理论值C50H38O8N[M+NH4]+:780.2592实验值:780.2595.[α]28.1=-28.99(c=1.0,CHCl3).对映异构体比例=98:2,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=18.151min(小),tR=23.833min(大).4u (73.7 mg, 65%) was obtained by method A. The starting material was 2u. 1 H NMR (400 MHz, CDCl 3 ) δ 8.19 (d, J = 8.0 Hz, 4H), 8.10 (s, 2H), 8.03 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.0 Hz, 4H), 7.65-7.58 (m, 2H), 7.55-7.40 (m, 4H), 7.10-6.96 (m, 6H), 6.14 (d, J = 7.6 Hz, 4H), 3.97 (s, 6H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.9,166.3,150.1,145.5,136.3,135.4,133.5,132.2,131.2,130.0,129.9,129.4,129.1,129.0,128.3,128.2,127.7,127.5,125.7,120.8,52.3.IR(neat):1718,1590,1488,1433,1275,1223,1183,1159,1105,1019,975,902,859,775,746,710,687,602,486cm -1 HRMS(DART)theoretical value C 50 H 38 O 8 N[M+NH 4 ] + :780.2592 Exp. value:780.2595.[α] 28.1 =-28.99 (c = 1.0, CHCl 3 ). Enantiomer ratio = 98:2, identified by chiral HPLC (Chiralpak IA column, n-hexane:isopropanol = 90:10, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 18.151 min (small), tR = 23.833 min (large).
实施例21Embodiment 21
通过方法A获得4v(64.4mg,55%)原料为2v.1H NMR(400MHz,CDCl3)δ8.10(s,2H),8.04(d,J=8.4Hz,2H),7.83–7.74(s,8H),7.64(t,J=7.2Hz,2H),7.58–7.42(m,4H),7.12–6.90(m,6H),6.09(d,J=7.6Hz,4H).13C{1H}NMR(101MHz,CDCl3)δ166.2,150.0,144.6,136.0,135.4,133.5,132.2,131.3,130.1(q,J=32.3Hz),130.0,129.4,129.1,128.4,128.3,127.8,127.5,125.8,125.6(q,J=4.0Hz),124.2(q,J=275.7Hz),120.7.19F NMR(376MHz,CDCl3)δ-62.42.IR(neat):2986,1744,1591,1490,1404,1322,1258,1223,1160,1107,1063,1018,901,850,744,687,612,504cm-1.HRMS(DART)理论值C48H29O4F4[M+H]+:783.1965实验值:783.1955.[α]29.9=4.51(c=1.0,CHCl3).对映异构体比例=98:2,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=95:5,流速1mL/min,T=25℃,λ=254nm):tR=6.253min(小),tR=8.122min(大).4v (64.4 mg, 55%) was obtained by method A. The starting material was 2v. 1 H NMR (400 MHz, CDCl 3 ) δ 8.10 (s, 2H), 8.04 (d, J = 8.4 Hz, 2H), 7.83-7.74 (s, 8H), 7.64 (t, J = 7.2 Hz, 2H), 7.58-7.42 (m, 4H), 7.12-6.90 (m, 6H), 6.09 (d, J = 7.6 Hz, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.2,150.0,144.6,136.0,135.4,133.5,132.2,131.3,130.1(q,J=32.3Hz),130.0,129.4,129.1,128.4,128.3,127.8,127.5,125.8,125.6(q , J=4.0Hz), 124.2 (q, J=275.7Hz), 120.7. 19 F NMR (376MHz, CDCl 3 )δ-62.42. IR (neat): 2986, 1744, 1591, 1490, 1404, 1322, 1258, 1223, 1160, 1107, 1063, 1018, 901, 850, 744, 687, 612, 504 cm -1 . HRMS (DART) theoretical value C 48 H 29 O 4 F 4 [M+H] + : 783.1965 experimental value: 783.1955. [α] 29.9 = 4.51 (c = 1.0, CHCl 3 ). Enantiomer ratio = 98:2, identified by chiral high performance liquid chromatography (Chiralpak IA column, hexane: isopropanol = 95:5, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 6.253min (small), tR = 8.122min (large).
实施例22Example 22
通过方法A获得4w(81.5mg,68%)原料为2w.1H NMR(400MHz,CDCl3)δ8.18(s,2H),8.04(d,J=8.0Hz,2H),7.93(s,2H),7.75–7.55(m,14H),7.50–7.31(m,8H),7.10–6.77(m,4H),6.16(d,J=7.6Hz,4H).13C{1H}NMR(101MHz,CDCl3)δ166.8,150.2,141.6,141.3,140.8,137.2,135.5,135.1,133.6,132.1,131.9,129.7,129.1,129.0,128.8,128.2,127.9(2C),127.6,127.5,127.3,126.5,125.5,121.0.IR(neat):1743,1589,1482,1249,1185,1158,1090,894,804,756,688,509cm-1HRMS(DART)理论值C58H39O4[M+H]+:799.2843实验值:799.2843.[α]25.81=-9.66(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=5.893min(小),tR=7.831min(大).4w (81.5 mg, 68%) was obtained by method A. The starting material was 2w. 1 H NMR (400 MHz, CDCl 3 ) δ 8.18 (s, 2H), 8.04 (d, J = 8.0 Hz, 2H), 7.93 (s, 2H), 7.75-7.55 (m, 14H), 7.50-7.31 (m, 8H), 7.10-6.77 (m, 4H), 6.16 (d, J = 7.6 Hz, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.8,150.2,141.6,141.3,140.8,137.2,135.5,135.1,133.6,132.1,131.9,129.7,129.1,129.0,128.8,128.2,127.9(2C),127.6,127.5,127.3,126.5,125.5,121.0.IR(neat):1743,1589,1482,1249,1185,1158,1090,894,804,756,688,509cm -1 HRMS(DART)theoretical value C 58 H 39 O 4 [M+H] + :799.2843 Experimental value:799.2843.[α] 25.81 =-9.66 (c = 1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral HPLC (Chiralpak IA column, n-hexane: isopropanol = 90:10, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 5.893 min (small), tR = 7.831 min (large).
实施例23Embodiment 23
通过方法A获得4x(65.9mg,62%)原料为2x.1H NMR(400MHz,CDCl3)δ8.12(s,2H),8.02(d,J=8.0Hz,2H),7.66–7.48(m,4H),7.48–7.37(m,4H),7.33–7.21(m,4H),7.11–6.90(m,8H),6.20(d,J=8.0Hz,4H),3.85(s,6H).13C{1H}NMR(101MHz,CDCl3)δ166.7,159.8,150.4,142.3,137.2,135.1,133.6,132.1,131.9,129.7,129.1,128.3,127.9,127.6,126.3,125.6,121.6,121.1,114.4,113.7,55.4.IR(neat):1742,1588,1487,1455,1262,1233,1184,1158,1094,1044,992,956,879,785,743,688,556,492,468cm-1.HRMS(DART)理论值C48H38O6N[M+NH4]+:724.2694实验值:724.2691.[α]27.7=17.83(c=1.0,CHCl3).对映异构体比例=97:3,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=6.955min(小),tR=10.594min(大).4x (65.9 mg, 62%) of starting material was obtained by method A as 2x. 1 H NMR (400 MHz, CDCl 3 ) δ 8.12 (s, 2H), 8.02 (d, J = 8.0 Hz, 2H), 7.66-7.48 (m, 4H), 7.48-7.37 (m, 4H), 7.33-7.21 (m, 4H), 7.11-6.90 (m, 8H), 6.20 (d, J = 8.0 Hz, 4H), 3.85 (s, 6H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.7,159.8,150.4,142.3,137.2,135.1,133.6,132.1,131.9,129.7,129.1,128.3,127.9,127.6,126.3,125.6,121.6,121.1,114.4,113.7,55.4.IR(neat):1742,1588,1487,1455,1262,1233,1184,1158,1094,1044,992,956,879,785,743,688,556,492,468cm -1 .HRMS(DART)theoretical value C 48 H 38 O 6 N[M+NH 4 ] + :724.2694 Experimental value:724.2691.[α] 27.7 =17.83 (c=1.0, CHCl 3 ). Enantiomer ratio =97:3, identified by chiral HPLC (Chiralpak IA column, n-hexane:isopropanol=90:10, flow rate 1mL/min, T=25°C, λ=254nm): tR=6.955min (small), tR=10.594min (large).
实施例24Embodiment 24
通过方法A获得4y(84.1mg,78%)原料为2y.1H NMR(400MHz,CDCl3)δ8.07(s,2H),8.02(d,J=8.4Hz,2H),7.70–7.56(m,2H),7.51–7.41(m,4H),7.24–6.83(m,12H),6.23(d,J=7.6Hz,4H).13C{1H}NMR(101MHz,CDCl3)δ166.1,164.2(d,J=13.1Hz),161.7(d,J=13.1Hz),150.1,143.9(t,J=10.1Hz),135.4,135.1,133.4,132.3,131.0,129.9,129.2,128.3,128.0,127.4,125.8,120.7,112.1(dd,J=19.2Hz,8.1Hz),103.2(t,J=25.3Hz)19FNMR(376MHz,CDCl3)δ-109.26.IR(neat):2963,1743,1590,1490,1253,1185,1159,1088,1023,900,831,739,686,600,578,507cm-1.HRMS(DART)理论值C46H30O4NF4[M+NH4]+:736.2105实验值:736.2106.[α]30.1=17.01(c=1.0,CHCl3).对映异构体比例=97:3,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=95:5,流速1mL/min,T=25℃,λ=254nm):tR=6.003min(小),tR=10.431min(大).4y (84.1 mg, 78%) was obtained by method A. The starting material was 2y. 1 H NMR (400 MHz, CDCl 3 ) δ 8.07 (s, 2H), 8.02 (d, J = 8.4 Hz, 2H), 7.70-7.56 (m, 2H), 7.51-7.41 (m, 4H), 7.24-6.83 (m, 12H), 6.23 (d, J = 7.6 Hz, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.1,164.2(d,J=13.1Hz),161.7(d,J=13.1Hz),150.1,143.9(t,J=10.1Hz),135.4,135.1,133.4,132.3,131.0,129.9,129.2,128.3,128.0,127 .4,125.8,120.7,112.1(dd,J=19.2Hz,8.1Hz),103.2(t,J=25.3Hz) 19 FNMR(376MHz, CDCl 3 )δ-109.26. IR (neat): 2963, 1743, 1590, 1490, 1253, 1185, 1159, 1088, 1023, 900, 831, 739, 686, 600, 578, 507 cm -1 . HRMS (DART) theoretical value C 46 H 30 O 4 NF 4 [M+NH 4 ] + : 736.2105 experimental value: 736.2106. [α] 30.1 =17.01 (c=1.0, CHCl 3 ). Enantiomer ratio=97:3, identified by chiral high performance liquid chromatography (Chiralpak IA column, hexane: isopropanol = 95:5, flow rate 1 mL/min, T = 25 ° C, λ = 254 nm): tR = 6.003 min (small), tR = 10.431 min (large).
实施例25Embodiment 25
通过方法A获得4z(70.4mg,63%)原料为2z.1H NMR(400MHz,CDCl3)δ8.30–8.10(m,4H),8.12–7.80(m,10H),7.69–7.41(m,10H),7.10–6.83(m,6H),6.11(d,J=7.2Hz,4H).13C{1H}NMR(101MHz,CDCl3)δ166.7,150.2,138.3,137.2,135.2,133.6,133.4,132.7,132.0,131.9,130.1,129.0,128.2,128.2(2C),127.9,127.8(2C),127.6,127.4,127.2,126.6,126.2,125.5,121.0.IR(neat):1751,1587,1488,1258,1238,1183,1159,1129,1083,993,897,858,820,742,688,506,476cm-1.HRMS(DART)理论值C54H38O4N[M+NH4]+:764.2795实验值:764.2798.[α]26.7=-55.87(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=9.465min(小),tR=10.551min(大).4z (70.4 mg, 63%) was obtained by method A. The starting material was 2z. 1 H NMR (400 MHz, CDCl 3 ) δ 8.30–8.10 (m, 4H), 8.12–7.80 (m, 10H), 7.69–7.41 (m, 10H), 7.10–6.83 (m, 6H), 6.11 (d, J=7.2 Hz, 4H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ166.7,150.2,138.3,137.2,135.2,133.6,133.4,132.7,132.0,131.9,130.1,129.0,128.2,128.2(2C),127.9,127.8(2C),127.6,127.4,127.2,126.6,126.2,125.5,121.0.IR(neat):1751,1587,1488,1258,1238,1183,1159,1129,1083,993,897,858,820,742,688,506,476cm -1 .HRMS(DART)理论值C 54 H 38 O 4 N[M+NH 4 ] + :764.2795 Exp. value:764.2798.[α] 26.7 =-55.87 (c=1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral HPLC (Chiralpak IA column, n-hexane:isopropanol = 90:10, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 9.465 min (small), tR = 10.551 min (large).
实施例26Embodiment 26
通过方法A获得4aa(64.0mg,65%)原料为2aa.1H NMR(400MHz,CDCl3)δ7.95–7.85(m,4H),7.51(t,J=7.2Hz,2H),7.43–7.28(m,4H),7.22–7.12(m,4H),7.10–7.02(m,2H),6.53(d,J=8.0Hz,4H),5.97(s,2H),7.63–7.53(m,4H),7.31–7.20(s,4H),1.96–1.62(m,8H).13C{1H}NMR(101MHz,CDCl3)δ166.9,150.6,139.8,138.1,134.6,133.5,131.8,131.7,129.1,127.8,127.6,127.5,127.5,127.4,126.6,125.5,121.2,30.5,25.7,23.1,22.0.IR(neat):2924,1745,1588,1489,1431,1250,1185,1158,1132,1076,894,840,744,687,604,503cm-1.HRMS(DART)理论值C46H39O4[M+H]+:655.2843实验值:655.2846.[α]25.5=48.59(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Chiralpak IA柱,正己烷:异丙醇=95:5,流速1mL/min,T=25℃,λ=254nm):tR=4.730min(小),tR=5.270min(大).4aa (64.0 mg, 65%) was obtained by method A. The starting material was 2aa. 1 H NMR (400 MHz, CDCl 3 ) δ 7.95–7.85 (m, 4H), 7.51 (t, J=7.2 Hz, 2H), 7.43–7.28 (m, 4H), 7.22–7.12 (m, 4H), 7.10–7.02 (m, 2H), 6.53 (d, J=8.0 Hz, 4H), 5.97 (s, 2H), 7.63–7.53 (m, 4H), 7.31–7.20 (s, 4H), 1.96–1.62 (m, 8H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.9,150.6,139.8,138.1,134.6,133.5,131.8,131.7,129.1,127.8,127.6,127.5,127.5,127.4,126.6,125.5,121.2,30.5,25.7,23.1,22.0.IR(neat):2924,1745,1588,1489,1431,1250,1185,1158,1132,1076,894,840,744,687,604,503cm -1 .HRMS(DART)theoretical value C 46 H 39 O 4 [M+H] + :655.2843 Experimental value:655.2846.[α] 25.5 =48.59 (c=1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral HPLC (Chiralpak IA column, n-hexane:isopropanol = 95:5, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 4.730min (small), tR = 5.270min (large).
实施例27Embodiment 27
通过方法A获得4ab(56.1mg,75%)原料为2ab,m.p=163.5-164.8℃.1H NMR(400MHz,CDCl3)δ9.00(d,J=3.2Hz,2H),8.58(d,J=9.2Hz,2H),8.36(d,J=9.2Hz,2H),7.51(d,J=8.4Hz,2H),7.36–7.20(m,6H),7.16–7.09(m,2H),6.73(d,J=8.0Hz,4H).13C{1H}NMR(101MHz,CDCl3)δ164.6,152.5,150.3,149.4,139.6,135.2,130.2,129.9,129.4,128.1,127.6,126.0,122.3,121.1.IR(neat):2922,1717,1588,1564,1489,1454,1404,1383,1323,1260,1239,128,1186,1100,1064,1024,927,899,844,786,738,685,554,496,462cm-1.HRMS(DART)理论值C32H21O4N2[M+NH4]+:497.1496实验值:497.1491.[α]25.9=45.97(c=1.0,CHCl3).对映异构体比例=93:7,通过手性高效液相色谱鉴定(Daicel ChiralpakODH柱,正己烷:异丙醇=80:20,流速1mL/min,T=25℃,λ=254nm):tR=13.933min(大),tR=16.187min(小).4ab (56.1 mg, 75%) was obtained by method A. The starting material was 2ab, mp = 163.5-164.8 °C. 1 H NMR (400 MHz, CDCl 3 ) δ 9.00 (d, J = 3.2 Hz, 2H), 8.58 (d, J = 9.2 Hz, 2H), 8.36 (d, J = 9.2 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.36-7.20 (m, 6H), 7.16-7.09 (m, 2H), 6.73 (d, J = 8.0 Hz, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ164.6,152.5,150.3,149.4,139.6,135.2,130.2,129.9,129.4,128.1,127.6,126.0,122.3,121.1. IR(neat):2922,1717,1588,1564,1489,1454,1404,1383,1323,1260,1239,128,1186,1100,1064,1024,927,899,844,786,738,685,554,496,462cm -1 . HRMS(DART)theoretical value C 32 H 21 O 4 N 2 [M+NH 4 ] + :497.1496 Experimental value:497.1491.[α] 25.9 =45.97 (c=1.0, CHCl 3 ). Enantiomer ratio = 93:7, identified by chiral HPLC (Daicel Chiralpak ODH column, n-hexane: isopropanol = 80:20, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 13.933 min (large), tR = 16.187 min (small).
实施例28Embodiment 28
通过方法B获得7a(106.6mg,72%)原料为1a和6a.1H NMR(400MHz,CDCl3)δ8.18(d,J=8.4Hz,1H),7.98(d,J=8.8Hz,1H),7.91(d,J=8.4Hz,1H),7.84–7.75(m,2H),7.53–7.44(m,1H),7.33–7.06(m,11H),7.01(d,J=8.4Hz,1H),6.95–6.83(m,2H),6.78(d,J=7.6Hz,2H),4.90(s,2H),4.86(s,2H).13C{1H}NMR(101MHz,CDCl3)δ167.6,153.2,137.5,137.1,135.5,135.2,134.0,133.1,129.4,129.1,129.0,128.2(2C),128.0(2C),127.8(2C),127.7,127.4,126.7(2C),126.5,126.4,125.1,123.7,122.9,115.2,70.9,66.7.IR(neat):2926,1716,1620,1591,1504,1453,1377,1327,1272,1232,1122,1081,1046,1018,961,915,868,805,766,735,696,590,563,486,464,433cm-1.HRMS(DART)理论值C35H30O3N2[M+NH4]+:512.2220实验值:512.2216.[α]27.5=7.56(c=1.0,CHCl3).对映异构体比例=95:5,通过手性高效液相色谱鉴定(Daicel Chiralpak ODH柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=7.105min(小),tR=7.813min(大).7a (106.6 mg, 72%) was obtained by method B. The starting materials were 1a and 6a. 1 H NMR (400 MHz, CDCl 3 ) δ 8.18 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.84-7.75 (m, 2H), 7.53-7.44 (m, 1H), 7.33-7.06 (m, 11H), 7.01 (d, J = 8.4 Hz, 1H), 6.95-6.83 (m, 2H), 6.78 (d, J = 7.6 Hz, 2H), 4.90 (s, 2H), 4.86 (s, 2H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.6,153.2,137.5,137.1,135.5,135.2,134.0,133.1,129.4,129.1,129.0,128.2(2C),128.0(2C),127.8(2C),127.7,127.4,126.7(2C),126 .5,126.4,125.1,123.7,122 .9,115.2,70.9,66.7.IR(neat):2926,1716,1620,1591,1504,1453,1377,1327,1272,1232,1122,1081,1046,1018,961,915,868,805,766,735,69 6,590,563,486,464,433cm -1. HRMS (DART) theoretical value C 35 H 30 O 3 N 2 [M+NH 4 ] + :512.2220 experimental value:512.2216. [α] 27.5 =7.56 (c=1.0, CHCl 3 ). Enantiomer ratio = 95:5, identified by chiral high performance liquid chromatography (Daicel Chiralpak ODH column, n-hexane: isopropanol = 90:10, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 7.105 min (small), tR = 7.813 min (large).
通过方法D获得7a(1.89g,76%)原料为1a和6a,对映异构体比例=95:5,通过手性高效液相色谱鉴定.7a (1.89 g, 76%) was obtained by method D. The starting materials were 1a and 6a, the enantiomeric ratio was 95:5, and it was identified by chiral HPLC.
实施例29Embodiment 29
通过方法B获得7b(126.7mg,79%)原料为1a和6b.1H NMR(400MHz,CDCl3)δ8.16(d,J=8.8Hz,1H),7.97(d,J=8.8Hz,1H),7.91(d,J=8.0Hz,1H),7.72(d,J=8.8Hz,1H),7.55–7.43(m,2H),7.35–6.97(m,9H),6.93–6.84(m,4H),6.77(d,J=7.6Hz,2H),5.00–4.76(m,4H),2.04–1.92(m,1H),1.02–0.91(m,2H),0.80–0.65(m,2H).13C{1H}NMR(101MHz,CDCl3)δ167.7,152.6,139.0,137.6,137.2,135.5,135.2,133.1,132.4,129.3,129.0,128.6,128.2(2C),128.0,127.9,127.8(2C),127.7,127.4,126.7,126.6,126.3,125.4,125.2,123.9,122.9,115.5,71.0,66.7,15.4,9.0.IR(neat):3030,1703,1594,1498,1454,1377,1322,1271,1232,1121,1083,1045,1024,967,904,865,822,765,732,694,627,462cm-1.HRMS(DART)理论值C38H30O3Na[M+Na]+:557.2087实验值:557.2094.[α]23.4=-1.11(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Daicel ChiralpakODH柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=6.523min(小),tR=7.796min(大).7b (126.7 mg, 79%) was obtained by method B. The starting materials were 1a and 6b. 1 H NMR (400 MHz, CDCl 3 ) δ 8.16 (d, J = 8.8 Hz, 1H), 7.97 (d, J = 8.8 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.55–7.43 (m, 2H), 7.35–6.97 (m, 9H), 6.93–6.84 (m, 4H), 6.77 (d, J = 7.6 Hz, 2H), 5.00–4.76 (m, 4H), 2.04–1.92 (m, 1H), 1.02–0.91 (m, 2H), 0.80–0.65 (m, 2H). 13 C{ 1 H}NMR (101MHz, CDCl 3 ) δ167.7,152.6,139.0,137.6,137.2,135.5,135.2,133.1,132.4,129.3,129.0,128.6,128.2(2C),128.0,127.9,127.8(2C),1 27.7,127.4,126.7,126.6,126.3,125.4,125.2, 123.9,122.9,115.5,71.0,66.7,15.4,9.0.IR(neat):3030,1703,1594,1498,1454,1377,1322,1271,1232,1121,1083,1045,1024,967,904,865,8 22,765,732,694,627,462cm -1. HRMS (DART) theoretical value C 38 H 30 O 3 Na [M + Na] + : 557.2087 experimental value: 557.2094. [α] 23.4 = -1.11 (c = 1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral high performance liquid chromatography (Daicel Chiralpak ODH column, n-hexane: isopropanol = 90:10, flow rate 1 mL/min, T = 25 ° C, λ = 254 nm): tR = 6.523 min (small), tR = 7.796 min (large).
实施例30Embodiment 30
通过方法B获得7c(134.0mg,77%)原料为1a和6c.1H NMR(400MHz,CDCl3)δ8.17(d,J=8.8Hz,1H),7.96(d,J=8.8Hz,1H),7.90(d,J=8.4Hz,1H),7.74(d,J=9.2Hz,1H),7.58(s,1H),7.52–7.45(m,1H),7.33–7.02(m,10H),6.96–6.85(m,3H),6.82–6.74(m,2H),4.94–4.79(m,4H),2.64–2.52(m,1H),1.99–1.66(m,5H),1.53–1.21(m,5H).13C{1H}NMR(101MHz,CDCl3)δ167.7,152.7,143.2,137.6,137.4,135.5,135.2,133.1,132.7,129.4,129.0,128.2(3C),128.0,127.9(2C),127.8,127.7,127.4,127.0,126.7,126.6,126.4,125.0,124.5,122.9,115.3,71.0,66.7,44.4,34.5,34.4,27.0,26.3.IR(neat):3062,2922,2850,2117,1705,1595,1498,1451,1377,1326,1272,1233,1121,1075,1027,907,873,822,797,766,732,695cm-1.HRMS(DART)理论值C41H36O3Na[M+Na]+:599.2557实验值:599.2559.[α]26.9=-1.84(c=1.0,CHCl3).对映异构体比例=97:3,通过手性高效液相色谱鉴定(DaicelChiralpak ODH柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=5.664min(小),tR=6.185min(大).7c (134.0 mg, 77%) was obtained by method B. The starting materials were 1a and 6c. 1 H NMR (400 MHz, CDCl 3 ) δ 8.17 (d, J = 8.8 Hz, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 9.2 Hz, 1H), 7.58 (s, 1H), 7.52–7.45 (m, 1H), 7.33–7.02 (m, 10H), 6.96–6.85 (m, 3H), 6.82–6.74 (m, 2H), 4.94–4.79 (m, 4H), 2.64–2.52 (m, 1H), 1.99–1.66 (m, 5H), 1.53–1.21 (m, 5H). 13 C{ 1 H}NMR (101MHz, CDCl 3 ) δ167.7,152.7,143.2,137.6,137.4,135.5,135.2,133.1,132.7,129.4,129.0,128.2(3C),128.0,127.9(2C),127.8,127 .7,127.4,127.0,126.7,126.6,126.4,125.0,124.5,122.9, 115.3,71.0,66.7,44.4,34.5,34.4,27.0,26.3.IR(neat):3062,2922,2850,2117,1705,1595,1498,1451,1377,1326,1272,1233,1121,1075,1027 ,907,873,822,797,766,732,695cm -1. HRMS (DART) theoretical value C 41 H 36 O 3 Na [M + Na] + : 599.2557 experimental value: 599.2559. [α] 26.9 = -1.84 (c = 1.0, CHCl 3 ). Enantiomer ratio = 97:3, identified by chiral high performance liquid chromatography (Daicel Chiralpak ODH column, n-hexane: isopropanol = 90:10, flow rate 1 mL/min, T = 25 ° C, λ = 254 nm): tR = 5.664 min (small), tR = 6.185 min (large).
实施例31Embodiment 31
通过方法B获得7d(112.2mg,66%)原料为1a和6d.1H NMR(400MHz,CDCl3)δ8.10(d,J=8.4Hz,1H),7.90(d,J=8.8Hz,1H),7.83(d,J=8.4Hz,1H),7.74–7.66(m,2H),7.44–7.38(m,1H),7.22–6.99(m,10H),6.92(d,J=8.8Hz,1H),6.85–6.79(m,2H),6.71(d,J=7.2Hz,2H),5.10(s,2H),4.82–4.72(m,4H),2.00(s,3H).13C{1H}NMR(101MHz,CDCl3)δ171.0,167.5,153.6,137.3,136.9,135.4,135.2,133.8,133.0,131.0,129.4,129.0,128.7,128.2(3C),128.1,128.0,127.8(2C),127.7,127.5,126.7(2C),126.4,125.6,122.9,115.5,70.8,66.7,66.6,21.1.IR(neat):2946,1722,1618,1593,1499,1454,1374,1319,1268,1237,1131,1074,1023,984,906,857,805,734,695,628,460cm-1.HRMS(DART)理论值C38H34O5N[M+NH4]+:584.2431实验值:584.2424.[α]28.0=-0.98(c=1.0,CHCl3).对映异构体比例=95:5,通过手性高效液相色谱鉴定(Daicel Chiralpak ODH柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=13.323min(小),tR=15.302min(大).7d (112.2 mg, 66%) was obtained by method B. The starting materials were 1a and 6d. 1 H NMR (400 MHz, CDCl 3 ) δ 8.10 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.74-7.66 (m, 2H), 7.44-7.38 (m, 1H), 7.22-6.99 (m, 10H), 6.92 (d, J = 8.8 Hz, 1H), 6.85-6.79 (m, 2H), 6.71 (d, J = 7.2 Hz, 2H), 5.10 (s, 2H), 4.82-4.72 (m, 4H), 2.00 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ171.0,167.5,153.6,137.3,136.9,135.4,135.2,133.8,133.0,131.0,129.4,129.0,128.7,128.2(3C),128.1,128.0,127.8(2C),127.7,127. 5,126.7(2C),126.4,12 5.6,122.9,115.5,70.8,66.7,66.6,21.1.IR(neat):2946,1722,1618,1593,1499,1454,1374,1319,1268,1237,1131,1074,1023,984,906,857,80 5,734,695,628,460cm -1. HRMS (DART) theoretical value C 38 H 34 O 5 N [M + NH 4 ] + : 584.2431 experimental value: 584.2424. [α] 28.0 = -0.98 (c = 1.0, CHCl 3 ). Enantiomer ratio = 95:5, identified by chiral high performance liquid chromatography (Daicel Chiralpak ODH column, n-hexane: isopropanol = 90:10, flow rate 1 mL/min, T = 25 ° C, λ = 254 nm): tR = 13.323 min (small), tR = 15.302 min (large).
实施例32Embodiment 32
通过方法B获得7e(102.0mg,65%)原料为1a和6e.1H NMR(400MHz,CDCl3)δ8.18(d,J=8.8Hz,1H),7.99(d,J=8.8Hz,1H),7.93(d,J=8.4Hz,1H),7.77(d,J=8.8Hz,1H),7.70(s,1H),7.56–7.43(m,1H),7.36–7.05(m,10H),7.03–6.72(m,6H),5.74(d,J=17.6Hz,1H),5.25(d,J=10.8Hz,1H),5.02–4.67(m,4H).13C{1H}NMR(101MHz,CDCl3)δ167.6,153.4,137.4,136.9,135.4,135.2,133.7,133.0(2C),129.5,129.1,129.0,128.2(2C),128.0,127.8,127.7,127.4,126.7(2C),126.5,126.4,125.4,123.9,123.0,115.4,113.4,70.8,66.7.IR(neat):2867,2122,1704,1620,1591,1498,1454,1377,1327,1271,1233,1121,1077,1044,988,905,829,797,766,735,696,463cm-1.HRMS(DART)理论值C37H29O3[M+H]+:521.2108实验值:521.2111.[α]26.2=-10.69(c=1.0,CHCl3).对映异构体比例=95:5,通过手性高效液相色谱鉴定(Daicel Chiralpak ADH柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=6.932min(小),tR=7.750min(大).7e (102.0 mg, 65%) was obtained by method B. The starting materials were 1a and 6e. 1 H NMR (400 MHz, CDCl 3 ) δ 8.18 (d, J = 8.8 Hz, 1H), 7.99 (d, J = 8.8 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.70 (s, 1H), 7.56-7.43 (m, 1H), 7.36-7.05 (m, 10H), 7.03-6.72 (m, 6H), 5.74 (d, J = 17.6 Hz, 1H), 5.25 (d, J = 10.8 Hz, 1H), 5.02-4.67 (m, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.6,153.4,137.4,136.9,135.4,135.2,133.7,133.0(2C),129.5,129.1,129.0,128.2(2C),128.0,127.8,127.7,127.4,126.7(2C),126.5, 126.4,125.4,123.9, 123.0,115.4,113.4,70.8,66.7.IR(neat):2867,2122,1704,1620,1591,1498,1454,1377,1327,1271,1233,1121,1077,1044,988,905,829,797,7 66,735,696,463cm -1. HRMS (DART) theoretical value C 37 H 29 O 3 [M+H] + :521.2108 experimental value:521.2111. [α] 26.2 =-10.69 (c = 1.0, CHCl 3 ). Enantiomer ratio = 95:5, identified by chiral HPLC (Daicel Chiralpak ADH column, n-hexane: isopropanol = 90:10, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 6.932 min (small), tR = 7.750 min (large).
实施例33Embodiment 33
通过方法B获得7f(121.5mg,77%)原料为1a和6f,m.p=135.2–137.5℃.1H NMR(400MHz,CDCl3)δ8.16(d,J=8.8Hz,1H),7.98(d,J=8.4Hz,1H),7.92(d,J=8.0Hz,1H),7.71(d,J=9.2Hz,1H),7.52–7.42(m,1H),7.34–7.03(m,10H),6.97–6.78(m,6H),4.93–4.83(m,4H),3.88(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.6,156.1,151.8,137.6,137.1,135.5,135.2,133.1,130.1,129.5,129.0,128.2(2C),128.0(2C),127.8(2C),127.1,127.4,126.8,126.7(2C),126.3,123.5,119.3,116.1,106.0,71.2,66.7,55.3.IR(neat):2857,2320,1703,1624,1591,1503,1453,1378,1324,1272,1241,1168,1115,1077,1053,1024,965,908,849,822,796,766,736,696,633,608,569,522,494,458,424cm-1.HRMS(DART)理论值C36H28O4[M+H]+:524.1982实验值:524.1976.[α]26.5=8.40(c=1.0,CHCl3).对映异构体比例=93:7,通过手性高效液相色谱鉴定(Daicel Chiralpak ODH柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=8.053min(小),tR=9.451min(大).7f (121.5 mg, 77%) was obtained by method B. The starting materials were 1a and 6f, mp = 135.2-137.5 °C. 1 H NMR (400 MHz, CDCl 3 ) δ 8.16 (d, J = 8.8 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 9.2 Hz, 1H), 7.52-7.42 (m, 1H), 7.34-7.03 (m, 10H), 6.97-6.78 (m, 6H), 4.93-4.83 (m, 4H), 3.88 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.6,156.1,151.8,137.6,137.1,135.5,135.2,133.1,130.1,129.5,129.0,128.2(2C),128.0(2C),127.8(2C),127.1,127.4,126.8,126.7( 2C),126.3,123.5,119.3,116.1,106.0,71.2 ,66.7,55.3.IR(neat):2857,2320,1703,1624,1591,1503,1453,1378,1324,1272,1241,1168,1115,1077,1053,1024,965,908,849,822,796,766, 736,696,633,608,569,522,494,458,424cm -1. HRMS (DART) theoretical value C 36 H 28 O 4 [M+H] + :524.1982 experimental value:524.1976. [α] 26.5 =8.40 (c=1.0, CHCl 3 ). Enantiomer ratio =93:7, identified by chiral HPLC (Daicel Chiralpak ODH column, n-hexane:isopropanol=90:10, flow rate 1mL/min, T=25°C, λ=254nm): tR=8.053min (small), tR=9.451min (large).
实施例34Embodiment 34
通过方法B获得7g(90.3mg,54%).1H NMR(400MHz,CDCl3)δ8.17(d,J=8.8Hz,1H),7.86(d,J=8.4Hz,1H),7.69(d,J=8.4Hz,1H),7.27–7.07(m,10H),6.99–6.75(m,7H),4.97–4.80(m,4H),3.91(s,3H),3.89(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.5,159.1,156.1,151.7,137.7,137.4,136.9,135.6,130.1,129.5,129.4,128.4,128.2,127.8(2C),127.4,127.2,126.8,126.7(2C),126.6,123.8,119.4,119.2,116.2,106.0,105.9,71.2,66.5,55.4,55.3.IR(neat):2934,2119,1701,1620,1596,1502,1475,1454,1375,1335,1274,1232,1195,1168,1121,1074,1027,853,822,788,734,696cm-1.HRMS(DART)理论值C37H31O5[M+H]+:555.2166实验值:555.2169.[α]27.7=4.23(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Daicel Chiralpak ODH柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=10.972min(小),tR=13.190min(大).7 g (90.3 mg, 54%) was obtained by method B. 1 H NMR (400 MHz, CDCl 3 ) δ 8.17 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.27-7.07 (m, 10H), 6.99-6.75 (m, 7H), 4.97-4.80 (m, 4H), 3.91 (s, 3H), 3.89 (s, 3H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ167.5,159.1,156.1,151.7,137.7,137.4,136.9,135.6,130.1,129.5,129.4,128.4,128.2,127.8(2C),127.4,127.2,126.8,126.7(2C),126. 6,123.8,119.4,119.2,116.2 ,106.0,105.9,71.2,66.5,55.4,55.3.IR(neat):2934,2119,1701,1620,1596,1502,1475,1454,1375,1335,1274,1232,1195,1168,1121,1074,10 27,853,822,788,734,696cm -1. HRMS (DART) theoretical value C 37 H 31 O 5 [M+H] + :555.2166 experimental value:555.2169. [α] 27.7 =4.23 (c=1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral high performance liquid chromatography (Daicel Chiralpak ODH column, n-hexane: isopropanol = 90:10, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 10.972min (small), tR = 13.190min (large).
实施例35Embodiment 35
通过方法B获得7h(88.5mg,53%)原料为1a和6g,m.p=148.5–151.3℃.1H NMR(400MHz,CDCl3)δ8.54(d,J=1.2Hz,1H),8.21(d,J=8.8Hz,1H),8.01(d,J=8.8Hz,1H),7.94(d,J=8.0Hz,1H),7.89(d,J=9.2Hz,1H),7.72(dd,J=8.8,1.6Hz,1H),7.58–7.48(m,1H),7.33–7.08(m,9H),7.02(d,J=8.8Hz,1H),6.92–6.90(m,2H),6.78(d,J=7.6Hz,2H),4.95(s,2H),4.85(s,2H),3.93(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.4,155.0,137.0,136.4,136.2,135.3,135.2,132.8,131.4,130.9,128.9,128.3(2C),128.2,128.1,127.9,127.8(2C),127.6,127.4,126.8,126.6,126.4,125.8,125.2,125.1,122.9,115.4,70.6,66.8,52.1.IR(neat):2947,2119,1701,1620,1596,1502,1475,1454,1375,1274,1232,1195,1168,1121,1074,1027,853,822,788,734,696cm-1.HRMS(DART)理论值C37H29O5[M+H]+:553.2010实验值:553.2007.[α]24.0=-7.59(c=1.0,CHCl3).对映异构体比例=95:5,通过手性高效液相色谱鉴定(Daicel Chiralpak ADH柱,正己烷:异丙醇=80:10,流速1mL/min,T=25℃,λ=254nm):tR=13.560min(小),tR=20.140min(大).7h (88.5 mg, 53%) was obtained by method B. The starting materials were 1a and 6g, mp = 148.5-151.3 °C. 1 H NMR (400 MHz, CDCl 3 )δ8.54(d,J=1.2Hz,1H),8.21(d,J=8.8Hz,1H),8.01(d,J=8.8Hz,1H),7.94(d,J=8.0Hz,1H),7.89(d,J=9.2Hz,1H),7.72(dd,J=8.8,1.6Hz,1H),7.58–7.4 8(m,1H),7.33–7.08(m,9H),7.02(d,J=8.8Hz,1H),6.92–6.90(m,2H),6.78(d,J=7.6Hz,2H),4.95(s,2H),4.85(s,2H),3.93(s,3H). 13 C{ 1 H}NMR(101 MHz, CDCl 3 )δ167.4,155.0,137.0,136.4,136.2,135.3,135.2,132.8,131.4,130.9,128.9,128.3(2C),128.2,128.1,127.9,127.8(2C),127.6,127.4,126. 8,126.6,126.4,125.8,125 .2,125.1,122.9,115.4,70.6,66.8,52.1.IR(neat):2947,2119,1701,1620,1596,1502,1475,1454,1375,1274,1232,1195,1168,1121,1074,1027 ,853,822,788,734,696cm -1. HRMS (DART) theoretical value C 37 H 29 O 5 [M+H] + :553.2010 experimental value:553.2007. [α] 24.0 =-7.59 (c = 1.0, CHCl 3 ). Enantiomer ratio = 95:5, identified by chiral HPLC (Daicel Chiralpak ADH column, n-hexane: isopropanol = 80:10, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 13.560 min (small), tR = 20.140 min (large).
实施例36Embodiment 36
通过方法B获得7i(110.2mg,72%)原料为1c和6a.1H NMR(400MHz,CDCl3)δ8.16–8.15(m,2H),7.84(d,J=8.8Hz,2H),7.63–7.56(m,1H),7.40–7.12(m,11H),7.08–7.03(m,1H),7.02–6.94(m,2H),6.81(d,J=7.2Hz,2H),4.96(s,2H),4.90(s,2H),2.87(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.8,153.3,137.6,135.5,135.2,134.5,134.4,134.2,133.1,129.2,129.1,128.6,128.4,128.2(2C),127.9,127.8,127.5,127.4,126.7(2C),126.4,126.3,125.2,124.2,123.6,123.1,115.3,70.8,66.6,19.6.IR(neat):2857,2320,1703,1624,1591,1503,1453,1378,1324,1272,1241,1168,1116,1077,1053,1024,965,908,849,822,796,766,736,696,633,608,569,522,494,458,424cm-1.HRMS(DART)理论值C36H29O3[M+H]+:509.2111实验值:509.2108.[α]24.5=8.78(c=1.0,CHCl3).对映异构体比例=95:5,通过手性高效液相色谱鉴定(Daicel Chiralpak ADH柱,正己烷:异丙醇=95:5,流速1mL/min,T=25℃,λ=254nm):tR=8.426min(小),tR=9.027min(大).7i (110.2 mg, 72%) was obtained by method B. The starting materials were 1c and 6a. 1 H NMR (400 MHz, CDCl 3 ) δ 8.16–8.15 (m, 2H), 7.84 (d, J=8.8 Hz, 2H), 7.63–7.56 (m, 1H), 7.40–7.12 (m, 11H), 7.08–7.03 (m, 1H), 7.02–6.94 (m, 2H), 6.81 (d, J=7.2 Hz, 2H), 4.96 (s, 2H), 4.90 (s, 2H), 2.87 (s, 3H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ167.8,153.3,137.6,135.5,135.2,134.5,134.4,134.2,133.1,129.2,129.1,128.6,128.4,128.2(2C),127.9,127.8,127.5,127.4,126.7(2C) ),126.4,126.3,125.2,124.2,123.6,123.1,115.3 ,70.8,66.6,19.6.IR(neat):2857,2320,1703,1624,1591,1503,1453,1378,1324,1272,1241,1168,1116,1077,1053,1024,965,908,849,822,796 ,766,736,696,633,608,569,522,494,458,424cm -1. HRMS (DART) theoretical value C 36 H 29 O 3 [M+H] + :509.2111 experimental value:509.2108. [α] 24.5 =8.78 (c=1.0, CHCl 3 ). Enantiomer ratio = 95:5, identified by chiral HPLC (Daicel Chiralpak ADH column, n-hexane: isopropanol = 95:5, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 8.426 min (small), tR = 9.027 min (large).
实施例37Embodiment 37
通过方法B获得7j(114.3mg,75%)原料为1b和6a.1H NMR(400MHz,CDCl3)δ8.10(d,J=8.8Hz,1H),7.92(d,J=8.8Hz,1H),7.84–7.60(m,3H),7.38–6.98(m,12H),6.96–6.88(m,2H),6.78(d,J=7.2Hz,2H),4.92(s,2H),4.84(s,2H),2.19(s,3H).13C NMR(101MHz,CDCl3)δ167.8,153.2,137.6,136.4(2C),135.5,134.1,133.5,133.3,130.1,129.3,129.1(2C),128.2(2C),128.0,127.9,127.8(2C),127.4,126.7,126.6,126.5,125.5,125.2,123.7,123.1,115.3,70.8,66.7,22.0.IR(neat):3031,2119,1705,1622,1593,1507,1453,1376,1316,1267,1235,1121,1072,1047,1017,968,907,844,806,733,695cm-1.HRMS(DART)理论值C36H29O3[M+H]+:509.2111实验值:509.2116.[α]26.8=11.65(c=1.0,CHCl3).对映异构体比例=94:6,通过手性高效液相色谱鉴定(Daicel IG柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=7.647min(小),tR=8.424min(大).7j (114.3 mg, 75%) was obtained by method B. The starting materials were 1b and 6a. 1 H NMR (400 MHz, CDCl 3 ) δ 8.10 (d, J = 8.8 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.84-7.60 (m, 3H), 7.38-6.98 (m, 12H), 6.96-6.88 (m, 2H), 6.78 (d, J = 7.2 Hz, 2H), 4.92 (s, 2H), 4.84 (s, 2H), 2.19 (s, 3H). 13 C NMR (101 MHz, CDCl 3 )δ167.8,153.2,137.6,136.4(2C),135.5,134.1,133.5,133.3,130.1,129.3,129.1(2C),128.2(2C),128.0,127.9,127.8(2C),127.4,126.7,126 .6,126.5,125.5,125.2 ,123.7,123.1,115.3,70.8,66.7,22.0.IR(neat):3031,2119,1705,1622,1593,1507,1453,1376,1316,1267,1235,1121,1072,1047,1017,968,90 7,844,806,733,695cm -1. HRMS (DART) theoretical value C 36 H 29 O 3 [M+H] + :509.2111 experimental value:509.2116. [α] 26.8 =11.65 (c=1.0, CHCl 3 ). Enantiomer ratio = 94:6, identified by chiral high performance liquid chromatography (Daicel IG column, n-hexane:isopropanol = 90:10, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 7.647min (small), tR = 8.424min (large).
实施例38Embodiment 38
通过方法B获得7k(111.3mg,71%)原料为1d和6a.1H NMR(400MHz,CDCl3)δ8.05(dd,J=15.6Hz,8.8Hz,2H),7.72(d,J=8.8Hz,2H),7.25–7.01(m,10H),6.97–6.78(m,4H),6.71(d,J=7.2Hz,2H),4.85(s,2H),4.76(s,2H),2.66(s,3H),2.10(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.8,153.1,137.6,136.6,135.8,135.5,134.1(2C),133.5,132.7,130.9,129.1,129.0,128.8,128.2,128.1,127.9,127.7,127.4,126.7,126.4,125.3,125.2,124.9,123.9,123.6,123.4,115.2,70.8,66.6,21.8,19.6.IR(neat):2926,1704,1621,1593,1507,1454,1371,1316,1268,1243,1131,1081,1056,1019,906,859,804,731,694,576,495,428cm-1.HRMS(DART)理论值C37H31O3[M+H]+:523.2268实验值:523.2263.[α]28.0=3.50(c=1.0,CHCl3).对映异构体比例=94:6,通过手性高效液相色谱鉴定(DaicelIG柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=7.383min(小),tR=8.310min(大).7k (111.3 mg, 71%) was obtained by method B. The starting materials were 1d and 6a. 1 H NMR (400 MHz, CDCl 3 ) δ 8.05 (dd, J = 15.6 Hz, 8.8 Hz, 2H), 7.72 (d, J = 8.8 Hz, 2H), 7.25-7.01 (m, 10H), 6.97-6.78 (m, 4H), 6.71 (d, J = 7.2 Hz, 2H), 4.85 (s, 2H), 4.76 (s, 2H), 2.66 (s, 3H), 2.10 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.8,153.1,137.6,136.6,135.8,135.5,134.1(2C),133.5,132.7,130.9,129.1,129.0,128.8,128.2,128.1,127.9,127.7,127.4,126.7,12 6.4,125.3,125.2,124.9,123.9, 123.6,123.4,115.2,70.8,66.6,21.8,19.6.IR(neat):2926,1704,1621,1593,1507,1454,1371,1316,1268,1243,1131,1081,1056,1019,906,859 ,804,731,694,576,495,428cm -1. HRMS (DART) theoretical value C 37 H 31 O 3 [M+H] + :523.2268 experimental value:523.2263. [α] 28.0 =3.50 (c=1.0, CHCl 3 ). Enantiomer ratio = 94:6, identified by chiral high performance liquid chromatography (DaicelIG column, n-hexane:isopropanol = 90:10, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 7.383min (small), tR = 8.310min (large).
实施例39Embodiment 39
通过方法B获得7i(100.4mg,64%)原料为1g和6a.1H NMR(400MHz,CDCl3)δ8.45(d,J=8.8Hz,1H),8.16(d,J=8.8Hz,1H),7.79(d,J=8.8Hz,2H),7.34–7.07(m,10H),7.03–6.89(m,3H),6.84(d,J=7.6Hz,2H),6.78(d,J=7.6Hz,2H),4.91(s,2H),4.86(s,2H),4.02(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.7,155.4,153.2,137.5,136.4,135.5,134.1,134.0,129.6,129.2,129.1,128.2,128.1,127.9,127.8,127.5,127.4,126.7,126.6,126.4,125.7,125.2,123.6,123.3,122.1,119.9,115.3,105.5,70.9,66.6,55.7.IR(neat):3032,2947,1722,1619,1592,1500,1455,1374,1319,1268,1238,1131,1073,1023,984,907,857,806,733,695,628cm-1.HRMS(DART)理论值C36H29O4[M+H]+:525.2060实验值:525.2059.[α]25.4=2.36(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Daicel IG柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=12.106min(大),tR=14.020min(小).7i (100.4 mg, 64%) was obtained by method B. The starting materials were 1 g and 6a. 1 H NMR (400 MHz, CDCl 3 ) δ 8.45 (d, J = 8.8 Hz, 1H), 8.16 (d, J = 8.8 Hz, 1H), 7.79 (d, J = 8.8 Hz, 2H), 7.34-7.07 (m, 10H), 7.03-6.89 (m, 3H), 6.84 (d, J = 7.6 Hz, 2H), 6.78 (d, J = 7.6 Hz, 2H), 4.91 (s, 2H), 4.86 (s, 2H), 4.02 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.7,155.4,153.2,137.5,136.4,135.5,134.1,134.0,129.6,129.2,129.1,128.2,128.1,127.9,127.8,127.5,127.4,126.7,126.6,126.4, 125.7,125.2,123.6,123.3, 122.1,119.9,115.3,105.5,70.9,66.6,55.7.IR(neat):3032,2947,1722,1619,1592,1500,1455,1374,1319,1268,1238,1131,1073,1023,984,90 7,857,806,733,695,628cm -1. HRMS (DART) theoretical value C 36 H 29 O 4 [M+H] + :525.2060 experimental value:525.2059. [α] 25.4 =2.36 (c=1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral high performance liquid chromatography (Daicel IG column, n-hexane: isopropanol = 90:10, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 12.106min (large), tR = 14.020min (small).
实施例40Embodiment 40
通过方法B获得7m(96.5mg,61%)原料为1f和6a.1H NMR(400MHz,CDCl3)δ8.19(d,J=8.8Hz,1H),7.86(d,J=8.8Hz,1H),7.78(d,J=8.8Hz,2H),7.33–7.09(m,11H),7.01(d,J=8.4Hz,1H),6.95–6.84(m,3H),6.78(d,J=7.2Hz,2H),4.91(s,2H),4.85(s,2H),3.88(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.5,159.1,153.1,137.5,137.4,137.0,135.6,134.0,129.5,129.3,129.1,128.4,128.2(2C),128.1,128.0,127.8,127.4,127.3,126.7,126.6,126.5,125.1,123.7,123.3,119.4,115.3,105.9,70.9,66.6,55.4.IR(neat):2946,1722,1618,1593,1499,1455,1373,1317,1268,1238,1131,1073,1022,984,906,857,805,733,695,628,459cm-1.HRMS(DART)理论值C36H28O4Na[M+Na]+:547.1880实验值:547.1887.[α]25.1=6.09(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Daicel(Chiralpak ODH柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=9.530min(小),tR=10.549min(大).7m (96.5 mg, 61%) was obtained by method B. The starting materials were 1f and 6a. 1 H NMR (400 MHz, CDCl 3 ) δ 8.19 (d, J = 8.8 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.78 (d, J = 8.8 Hz, 2H), 7.33-7.09 (m, 11H), 7.01 (d, J = 8.4 Hz, 1H), 6.95-6.84 (m, 3H), 6.78 (d, J = 7.2 Hz, 2H), 4.91 (s, 2H), 4.85 (s, 2H), 3.88 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.5,159.1,153.1,137.5,137.4,137.0,135.6,134.0,129.5,129.3,129.1,128.4,128.2(2C),128.1,128.0,127.8,127.4,127.3,126.7,12 6.6,126.5,125.1,123.7,1 23.3,119.4,115.3,105.9,70.9,66.6,55.4.IR(neat):2946,1722,1618,1593,1499,1455,1373,1317,1268,1238,1131,1073,1022,984,906,857, 805,733,695,628,459cm -1. HRMS (DART) theoretical value C 36 H 28 O 4 Na [M + Na] + : 547.1880 experimental value: 547.1887. [α] 25.1 = 6.09 (c = 1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral high performance liquid chromatography (Daicel (Chiralpak ODH column, n-hexane: isopropanol = 90:10, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 9.530min (small), tR = 10.549min (large).
实施例41Embodiment 41
通过方法B获得7n(97.7mg,62%)原料为1e和6a.1H NMR(400MHz,CDCl3)δ8.04(d,J=8.4Hz,1H),7.91(d,J=8.4Hz,1H),7.84–7.75(m,3H),7.34–6.99(m,11H),6.93(d,J=4.8Hz,2H),6.79(d,J=7.2Hz,2H),6.51(s,1H),4.92(s,2H),4.86(s,2H),3.36(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.8,158.1,153.1,137.5,135.5,135.5,134.3,133.8,130.8,129.6,129.5,129.3,129.1,128.2,128.1,128.0,127.8,127.7,127.4,126.7,126.5,125.1,124.2,123.7,123.1,120.1,115.2,106.1,70.9,66.67,55.0.IR(neat):2935,2117,1723,1621,1593,1507,1454,1377,1316,1267,1220,1179,1124,1071,1030,908,845,807,734,695cm-1.HRMS(DART)理论值C36H29O4[M+H]+:525.2060实验值:525.2065.[α]27.1=-2.38(c=1.0,CHCl3).对映异构体比例=86:14,通过手性高效液相色谱鉴定(DaicelChiralpak ADH柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=8.876min(大),tR=10.466min(小).7n (97.7 mg, 62%) was obtained by method B. The starting materials were 1e and 6a. 1 H NMR (400 MHz, CDCl 3 ) δ 8.04 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.84-7.75 (m, 3H), 7.34-6.99 (m, 11H), 6.93 (d, J = 4.8 Hz, 2H), 6.79 (d, J = 7.2 Hz, 2H), 6.51 (s, 1H), 4.92 (s, 2H), 4.86 (s, 2H), 3.36 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.8,158.1,153.1,137.5,135.5,135.5,134.3,133.8,130.8,129.6,129.5,129.3,129.1,128.2,128.1,128.0,127.8,127.7,127.4,126.7, 126.5,125.1,124.2,123.7 ,123.1,120.1,115.2,106.1,70.9,66.67,55.0.IR(neat):2935,2117,1723,1621,1593,1507,1454,1377,1316,1267,1220,1179,1124,1071,1030 ,908,845,807,734,695cm -1. HRMS (DART) theoretical value C 36 H 29 O 4 [M+H] + :525.2060 experimental value:525.2065. [α] 27.1 =-2.38 (c = 1.0, CHCl 3 ). Enantiomer ratio = 86:14, identified by chiral HPLC (Daicel Chiralpak ADH column, n-hexane: isopropanol = 90:10, flow rate 1 mL/min, T = 25°C, λ = 254 nm): tR = 8.876 min (large), tR = 10.466 min (small).
实施例42Embodiment 42
通过方法B获得7o(101.6mg,59%)原料为1i和6a.1H NMR(400MHz,CDCl3)δ8.18(d,J=8.4Hz,1H),7.85(d,J=8.4Hz,1H),7.79(d,J=8.8Hz,2H),7.33–7.07(m,11H),7.01(d,J=8.8Hz,1H),6.97–6.86(m,3H),6.78(d,J=7.2Hz,2H),5.91–5.79(m,1H),5.11–4.97(m,2H),4.91(s,2H),4.85(s,2H),4.09(t,J=6.4Hz,2H),2.32–2.20(m,2H),1.99–1.81(m,2H).13C{1H}NMR(101MHz,CDCl3)δ167.5,158.5,153.0,137.7,137.5,137.3,137.0,135.6,134.0,129.5,129.2,129.1,128.3,128.2(2C),128.1,127.9,127.7,127.4,127.2,126.7(2C),126.5,126.4,125.1,123.6,123.3,119.6,115.4,115.3,106.6,70.9,67.3,66.5,30.2,28.4.IR(neat):2940,2117,1701,1619,1502,1463,1377,1332,1272,1233,1177,1122,1073,1049,1017,909,855,805,733,695cm-1.HRMS(DART)理论值C40H35O4[M+H]+:579.2530实验值:579.2521.[α]27.4=2.94(c=1.0,CHCl3).对映异构体比例=95:5,通过手性高效液相色谱鉴定(Daicel Chiralpak ODH柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=6.960min(大),tR=7.739min(小).7o (101.6 mg, 59%) was obtained by method B. The starting materials were 1i and 6a. 1 H NMR (400 MHz, CDCl 3 )δ8.18(d,J=8.4Hz,1H),7.85(d,J=8.4Hz,1H),7.79(d,J=8.8Hz,2H),7.33–7.07(m,11H),7.01(d,J=8.8Hz,1H),6.97–6.86(m,3H),6.78(d,J=7.2Hz,2 H),5.91–5.79(m,1H),5.11–4.97(m,2H),4.91(s,2H),4.85(s,2H),4.09(t,J=6.4Hz,2H),2.32–2.20(m,2H),1.99–1.81(m,2H). 13 C{ 1 H}NMR(101MHz, CDCl 3 )δ167.5,158.5,153.0,137.7,137.5,137.3,137.0,135.6,134.0,129.5,129.2,129.1,128.3,128.2(2C),128.1,127.9,127.7,127.4,127.2,12 6.7(2C),126.5,126.4,125.1,123.6,123 .3,119.6,115.4,115.3,106.6,70.9,67.3,66.5,30.2,28.4.IR(neat):2940,2117,1701,1619,1502,1463,1377,1332,1272,1233,1177,1122,107 3,1049,1017,909,855,805,733,695cm -1. HRMS (DART) theoretical value C 40 H 35 O 4 [M+H] + :579.2530 experimental value:579.2521. [α] 27.4 =2.94 (c=1.0, CHCl 3 ). Enantiomer ratio = 95:5, identified by chiral HPLC (Daicel Chiralpak ODH column, n-hexane: isopropanol = 90:10, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 6.960min (large), tR = 7.739min (small).
实施例43Embodiment 43
通过方法B获得7o(122.7mg,72%)原料为1h和6a,m.p=133.7-135.4℃.1H NMR(400MHz,CDCl3)δ8.12(d,J=8.8Hz,1H),8.00(s,1H),7.92(d,J=8.8Hz,1H),7.70(d,J=7.2Hz,2H),7.55(d,J=7.6Hz,2H),7.46–6.92(m,15H),6.83(d,J=3.2Hz,2H),6.68(d,J=7.6Hz,2H),4.82(s,2H),4.77(s,2H).13C{1H}NMR(101MHz,CDCl3)δ167.6,153.2,140.6,140.3,137.5,137.1,135.6,135.5,134.1,132.3,129.5,129.2,129.0(2C),128.5,128.3,128.2,128.1,127.9,127.8,127.5,127.0,126.8,126.6,126.4,125.8,125.2,123.8,123.0,115.3,71.0,66.8.IR(neat):1720,1620,1592,1495,1451,1374,1332,1283,1246,1228,1148,1085,1056,1021,914,890,837,801,760,725,691,609,588,570,500,459,432cm-1.HRMS(DART)理论值C40H35O4[M+H]+:571.2268实验值:571.2265.[α]27.9=5.86(c=1.0,CHCl3).对映异构体比例=96:4,通过手性高效液相色谱鉴定(Daicel Chiralpak ODH柱,正己烷:异丙醇=90:10,流速1mL/min,T=25℃,λ=254nm):tR=10.511min(小),tR=11.709min(大).7o (122.7 mg, 72%) was obtained by method B. Starting materials were 1h and 6a, mp = 133.7-135.4 °C. 1 H NMR (400 MHz, CDCl 3 ) δ 8.12 (d, J = 8.8 Hz, 1H), 8.00 (s, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.70 (d, J = 7.2 Hz, 2H), 7.55 (d, J = 7.6 Hz, 2H), 7.46-6.92 (m, 15H), 6.83 (d, J = 3.2 Hz, 2H), 6.68 (d, J = 7.6 Hz, 2H), 4.82 (s, 2H), 4.77 (s, 2H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.6,153.2,140.6,140.3,137.5,137.1,135.6,135.5,134.1,132.3,129.5,129.2,129.0(2C),128.5,128.3,128.2,128.1,127.9,127.8,12 7.5,127.0,126.8,126.6,126.4,125.8,125.2 ,123.8,123.0,115.3,71.0,66.8.IR(neat):1720,1620,1592,1495,1451,1374,1332,1283,1246,1228,1148,1085,1056,1021,914,890,837,801, 760,725,691,609,588,570,500,459,432cm -1. HRMS (DART) theoretical value C 40 H 35 O 4 [M+H] + :571.2268 experimental value:571.2265. [α] 27.9 =5.86 (c=1.0, CHCl 3 ). Enantiomer ratio = 96:4, identified by chiral high performance liquid chromatography (Daicel Chiralpak ODH column, n-hexane: isopropanol = 90:10, flow rate 1mL/min, T = 25°C, λ = 254nm): tR = 10.511min (small), tR = 11.709min (large).
实施例44:配体筛选Example 44: Ligand Screening
α反应条件:1a或2a(0.3mmol,1.0equiv),碘化钴(10mol%),配体(20mol%),四丁基四氟硼酸铵(0.3mmol,1.0equiv),分子筛(70mg),N,N-二甲基甲酰胺(5mL)作为反应溶剂,在室温下在以铁为阳极,泡沫镍为阴极的IKA2.0电化学反应器中以1mA的电流恒电流电解24小时。转化率和收率通过核磁共振氢谱确定,以均三甲苯作为内标。产物的ee值由手性HPLC确定。 α Reaction conditions: 1a or 2a (0.3 mmol, 1.0 equiv), cobalt iodide (10 mol%), ligand (20 mol%), tetrabutylammonium tetrafluoroborate (0.3 mmol, 1.0 equiv), Molecular sieves (70 mg) and N,N-dimethylformamide (5 mL) were used as the reaction solvent. The reaction was carried out at room temperature in an IKA2.0 electrochemical reactor with iron as the anode and nickel foam as the cathode at a constant current of 1 mA for 24 hours. The conversion rate and yield were determined by hydrogen nuclear magnetic resonance spectroscopy with mesitylene as the internal standard. The ee value of the product was determined by chiral HPLC.
实施例45:阴极筛选a Example 45: Cathode Screening a
a反应条件:2a(0.3mmol,1.0equiv),碘化钴(10mol%),配体L15(20mol%),四丁基四氟硼酸铵(0.3mmol,1.0equiv),分子筛(70mg),N,N-二甲基甲酰胺(5mL)作为反应溶剂,在室温下在以铁为阳极的IKA2.0电化学反应器中以1mA的电流恒电流电解24小时。转化率和收率通过核磁共振氢谱确定,以均三甲苯作为内标。产物的ee值由手性HPLC确定。 a Reaction conditions: 2a (0.3 mmol, 1.0 equiv), cobalt iodide (10 mol%), ligand L15 (20 mol%), tetrabutylammonium tetrafluoroborate (0.3 mmol, 1.0 equiv), Molecular sieves (70 mg) and N,N-dimethylformamide (5 mL) were used as the reaction solvent. The reaction was carried out at room temperature in an IKA2.0 electrochemical reactor with iron as the anode and a constant current of 1 mA for 24 hours. The conversion rate and yield were determined by hydrogen nuclear magnetic resonance spectroscopy with mesitylene as the internal standard. The ee value of the product was determined by chiral HPLC.
实施例46:电解质筛选a Example 46: Electrolyte Screening a
a反应条件:2a(0.3mmol,1.0equiv),碘化钴(10mol%),配体L15(20mol%),四丁基四氟硼酸铵(0.3mmol,1.0equiv),分子筛(70mg),N,N-二甲基甲酰胺(5mL)作为反应溶剂,在室温下在以铁为阳极,不锈钢为阴极的IKA2.0电化学反应器中以1mA的电流恒电流电解24小时。转化率和收率通过核磁共振氢谱确定,以均三甲苯作为内标。产物的ee值由手性HPLC确定。 a Reaction conditions: 2a (0.3 mmol, 1.0 equiv), cobalt iodide (10 mol%), ligand L15 (20 mol%), tetrabutylammonium tetrafluoroborate (0.3 mmol, 1.0 equiv), Molecular sieves (70 mg) and N,N-dimethylformamide (5 mL) were used as the reaction solvent. The reaction was carried out at room temperature in an IKA2.0 electrochemical reactor with iron as the anode and stainless steel as the cathode at a constant current of 1 mA for 24 hours. The conversion rate and yield were determined by hydrogen nuclear magnetic resonance spectroscopy with mesitylene as the internal standard. The ee value of the product was determined by chiral HPLC.
Table S4 Screening of Solventa Table S4 Screening of Solvent a
a反应条件:2a(0.3mmol,1.0equiv),碘化钴(10mol%),配体L15(20mol%),碘化钠(0.3mmol,1.0equiv),分子筛(70mg),溶剂(5mL)作为反应溶剂,在室温下在以铁为阳极,不锈钢为阴极的IKA2.0电化学反应器中以1mA的电流恒电流电解24小时。转化率和收率通过核磁共振氢谱确定,以均三甲苯作为内标。产物的ee值由手性HPLC确定 a Reaction conditions: 2a (0.3 mmol, 1.0 equiv), cobalt iodide (10 mol%), ligand L15 (20 mol%), sodium iodide (0.3 mmol, 1.0 equiv), Molecular sieves (70 mg) and solvent (5 mL) were used as reaction solvents. Electrolysis was carried out at room temperature in an IKA2.0 electrochemical reactor with iron as anode and stainless steel as cathode at a constant current of 1 mA for 24 hours. The conversion rate and yield were determined by H NMR with mesitylene as internal standard. The ee value of the product was determined by chiral HPLC.
实施例47:Co催化剂筛选a Example 47: Co catalyst screening a
a反应条件:2a(0.3mmol,1.0equiv),钴催化剂(10mol%),配体L15(20mol%),碘化钠(0.3mmol,1.0equiv),分子筛(70mg),N,N-二甲基甲酰胺(5mL)作为反应溶剂,在室温下在以铁为阳极,不锈钢为阴极的IKA2.0电化学反应器中以1mA的电流恒电流电解24小时。转化率和收率通过核磁共振氢谱确定,以均三甲苯作为内标。产物的ee值由手性HPLC确定。 aReaction conditions: 2a (0.3 mmol, 1.0 equiv), cobalt catalyst (10 mol%), ligand L15 (20 mol%), sodium iodide (0.3 mmol, 1.0 equiv), Molecular sieves (70 mg) and N,N-dimethylformamide (5 mL) were used as the reaction solvent. The reaction was carried out at room temperature in an IKA2.0 electrochemical reactor with iron as the anode and stainless steel as the cathode at a constant current of 1 mA for 24 hours. The conversion rate and yield were determined by hydrogen nuclear magnetic resonance spectroscopy with mesitylene as the internal standard. The ee value of the product was determined by chiral HPLC.
实施例48:阳极筛选a Example 48: Anode Screening a
a反应条件:2a(0.3mmol,1.0equiv),碘化钴(10mol%),配体L15(20mol%),碘化钠(0.3mmol,1.0equiv),分子筛(70mg),N,N-二甲基甲酰胺(5mL)作为反应溶剂,在室温下在以不锈钢为阴极的IKA2.0电化学反应器中以1mA的电流恒电流电解24小时。转化率和收率通过核磁共振氢谱确定,以均三甲苯作为内标。产物的ee值由手性HPLC确定。 a Reaction conditions: 2a (0.3 mmol, 1.0 equiv), cobalt iodide (10 mol%), ligand L15 (20 mol%), sodium iodide (0.3 mmol, 1.0 equiv), Molecular sieves (70 mg) and N,N-dimethylformamide (5 mL) were used as the reaction solvent. The reaction was carried out at room temperature in an IKA2.0 electrochemical reactor with stainless steel as the cathode at a constant current of 1 mA for 24 hours. The conversion rate and yield were determined by hydrogen nuclear magnetic resonance spectroscopy with mesitylene as the internal standard. The ee value of the product was determined by chiral HPLC.
实施例49:交叉偶联手性氮配体筛选Example 49: Cross-coupling chiral nitrogen ligand screening
a反应条件:1a(0.3mmol,1.0equiv),6a(0.6mmol,2.0equiv),碘化钴(10mol%),配体L15(20mol%),碘化钠(0.3mmol,1.0equiv),分子筛(70mg),N,N-二甲基乙酰胺(5mL)作为反应溶剂,在室温下在以铁为阳极,不锈钢为阴极的IKA2.0电化学反应器中以1mA的电流恒电流电解24小时。转化率和收率通过核磁共振氢谱确定,以均三甲苯作为内标。产物的ee值由手性HPLC确定。 a Reaction conditions: 1a (0.3 mmol, 1.0 equiv), 6a (0.6 mmol, 2.0 equiv), cobalt iodide (10 mol%), ligand L15 (20 mol%), sodium iodide (0.3 mmol, 1.0 equiv), Molecular sieves (70 mg) and N,N-dimethylacetamide (5 mL) were used as the reaction solvent. The reaction was carried out at room temperature in an IKA2.0 electrochemical reactor with iron as the anode and stainless steel as the cathode at a constant current of 1 mA for 24 hours. The conversion rate and yield were determined by hydrogen nuclear magnetic resonance spectroscopy with mesitylene as the internal standard. The ee value of the product was determined by chiral HPLC.
实施例50:使用1a和6a优化反应条件a Example 50: Optimization of reaction conditions using 1a and 6a
a反应条件:1a(0.3mmol,1.0equiv),6a(0.6mmol,2.0equiv),碘化钴(15mol%),配体L15(30mol%),碘化钠(0.3mmol,1.0equiv),分子筛(70mg),N,N-二甲基乙酰胺(5mL)作为反应溶剂,在室温下在以铁为阳极,不锈钢为阴极的IKA2.0电化学反应器中以1mA的电流恒电流电解24小时。转化率和收率通过核磁共振氢谱确定,以均三甲苯作为内标。产物的ee值由手性HPLC确定。 a Reaction conditions: 1a (0.3 mmol, 1.0 equiv), 6a (0.6 mmol, 2.0 equiv), cobalt iodide (15 mol%), ligand L15 (30 mol%), sodium iodide (0.3 mmol, 1.0 equiv), Molecular sieves (70 mg) and N,N-dimethylacetamide (5 mL) were used as the reaction solvent. The reaction was carried out at room temperature in an IKA2.0 electrochemical reactor with iron as the anode and stainless steel as the cathode at a constant current of 1 mA for 24 hours. The conversion rate and yield were determined by hydrogen nuclear magnetic resonance spectroscopy with mesitylene as the internal standard. The ee value of the product was determined by chiral HPLC.
实施例51:底物合成Example 51: Substrate synthesis
方法I:1-溴-2萘甲酸苯酯类底物的合成Method I: Synthesis of 1-bromo-2-naphthoic acid phenyl ester substrates
在0℃下,向溶有三溴化磷(5.0equiv)的氯仿(0.2M)溶液中滴加N,N-二甲基甲酰胺(3.0equiv),滴加完成后,反应混合物在室温下搅拌2h.搅拌完成后,向反应混合物中加入反应底物S1(1.0equiv)并且升温至回流,反应2h。反应结束后,冷却反应液,用饱和的氢氧化钠溶液淬灭反应。将反应混合物分液,水相用二氯甲烷萃取,合并有机相,无水硫酸镁干燥,浓缩,将浓缩液用快速柱层析纯化得到反应中间体S2。At 0°C, N,N-dimethylformamide (3.0 equiv) was added dropwise to a chloroform (0.2 M) solution containing phosphorus tribromide (5.0 equiv). After the addition was completed, the reaction mixture was stirred at room temperature for 2 h. After the stirring was completed, the reaction substrate S1 (1.0 equiv) was added to the reaction mixture and the temperature was raised to reflux for 2 h. After the reaction was completed, the reaction solution was cooled and quenched with a saturated sodium hydroxide solution. The reaction mixture was separated, the aqueous phase was extracted with dichloromethane, the organic phases were combined, dried over anhydrous magnesium sulfate, and concentrated. The concentrate was purified by flash column chromatography to obtain the reaction intermediate S2.
将S2溶解在甲苯(0.2M)中,向甲苯中加入2,3-二氯-5,6-二氰对苯醌(3.0equiv),将反应液升温至回流并且取样监测反应进度。反应结束后,将反应液冷却,硅藻土过滤,旋转蒸发浓缩滤液。将浓缩液用快速柱层析分离纯化得到中间体S3.S2 was dissolved in toluene (0.2 M), 2,3-dichloro-5,6-dicyano-p-benzoquinone (3.0 equiv) was added to toluene, the reaction solution was heated to reflux and samples were taken to monitor the progress of the reaction. After the reaction was completed, the reaction solution was cooled, filtered through diatomaceous earth, and the filtrate was concentrated by rotary evaporation. The concentrate was separated and purified by flash column chromatography to obtain intermediate S3.
将中间体S3(S3<10mmol)溶解在70mL异丙醇中,向反应混合物中缓慢加入4mL 2-甲基-2丁烯,然后向反应体系中缓慢加入100mL亚氯酸钠(3.35g,39mmol),磷酸二氢钠(4.03g,33.6mmol)的水溶液。滴加完成后,反应液在室温下搅拌24h。反应完成后,旋转蒸发除去叔丁醇,向旋蒸除去叔丁醇的混合加入25mL水并且用20mL正己烷洗涤。将洗涤后的浓缩液调PH至1,出现大量固体,用乙酸乙酯溶解固体,分液,水相用乙酸乙酯萃取,合并有机相,无水硫酸镁干燥,过滤,旋蒸除去滤液的溶剂,得到中间体S4.The intermediate S3 (S3 <10mmol) was dissolved in 70mL of isopropanol, 4mL of 2-methyl-2-butene was slowly added to the reaction mixture, and then 100mL of sodium chlorite (3.35g, 39mmol) and sodium dihydrogen phosphate (4.03g, 33.6mmol) were slowly added to the reaction system. After the addition was completed, the reaction solution was stirred at room temperature for 24h. After the reaction was completed, the tert-butyl alcohol was removed by rotary evaporation, 25mL of water was added to the mixture after the tert-butyl alcohol was removed by rotary evaporation, and 20mL of n-hexane was used for washing. The concentrated solution after washing was adjusted to pH 1, and a large amount of solid appeared. The solid was dissolved with ethyl acetate, the liquid was separated, the aqueous phase was extracted with ethyl acetate, the organic phase was combined, dried over anhydrous magnesium sulfate, filtered, and the solvent of the filtrate was removed by rotary evaporation to obtain the intermediate S4.
向一个干燥的配有搅拌子的圆底烧瓶中加入S4(1.0equiv),用二氯甲烷溶解,搅拌条件下向其中加入二环己基碳二亚胺(1.0equiv),4-二甲氨基吡啶(1.0equiv),苯酚(1.0equiv),薄层色谱法监测反应进度。反应结束后,硅藻土过滤反应液,收集滤液,旋转蒸发浓缩。浓缩液用快速柱层析纯化得到最终产物S5。S4 (1.0 equiv) was added to a dry round-bottom flask equipped with a stirrer, dissolved in dichloromethane, and dicyclohexylcarbodiimide (1.0 equiv), 4-dimethylaminopyridine (1.0 equiv), and phenol (1.0 equiv) were added thereto under stirring, and the reaction progress was monitored by thin layer chromatography. After the reaction was completed, the reaction solution was filtered through diatomaceous earth, and the filtrate was collected and concentrated by rotary evaporation. The concentrate was purified by flash column chromatography to obtain the final product S5.
方法II:3-芳基(烯基)-1-溴-2萘甲酸苯酯类底物的合成Method II: Synthesis of 3-aryl(alkenyl)-1-bromo-2-naphthoic acid phenyl ester substrates
向一个干燥的配有搅拌子的250mL圆底瓶中加入1-溴-2萘甲酸(15.6mmol,1.0equiv),N,N-二甲基甲酰胺(25mL),N-碘代丁二酰亚胺(18.7mmol,1.2equiv),醋酸钯(1.56mmol,0.1equiv)。将反应液升温至100℃,搅拌反应12h.反应结束后,冷却反应液至室温并且用乙酸乙酯稀释。溶液中加入饱和碳酸钠溶液,分液,有机相用饱和碳酸钠萃取,合并水相。调节水相的PH值到1,出现大量固体,向其中加入乙酸乙酯,固体溶解。将混合液分液,水相用乙酸乙酯萃取,合并有机相,无水硫酸镁干燥,过滤,旋转蒸发除去滤液中的溶剂得到粗品S6直接用于下一步。Add 1-bromo-2-naphthoic acid (15.6mmol, 1.0equiv), N,N-dimethylformamide (25mL), N-iodosuccinimide (18.7mmol, 1.2equiv), palladium acetate (1.56mmol, 0.1equiv) to a dry 250mL round-bottom flask equipped with a stirrer. Heat the reaction solution to 100℃ and stir for 12h. After the reaction, cool the reaction solution to room temperature and dilute with ethyl acetate. Add saturated sodium carbonate solution to the solution, separate the liquids, extract the organic phase with saturated sodium carbonate, and combine the aqueous phases. Adjust the pH value of the aqueous phase to 1, a large amount of solids appear, add ethyl acetate to it, and the solids dissolve. Separate the mixed solution, extract the aqueous phase with ethyl acetate, combine the organic phases, dry over anhydrous magnesium sulfate, filter, and rotary evaporate to remove the solvent in the filtrate to obtain crude product S6, which is directly used in the next step.
向一个干燥的配有搅拌子的250mL圆底瓶中加入S6,HATU(31.2mmol,2.0equiv),苯酚钠(31.2mmol,2.0euqiv),N,N-二异丙基乙胺(31.2mmol,2.0equiv),碳酸钾(31.2mmol,2.0equiv),DMF(25mL),将反应混合物升温至100℃反应并且通过薄板层析色谱监测。反应结束后,将反应混合物用硅藻土过滤,滤液通过旋蒸蒸发浓缩除去溶剂,快速柱层析分离纯化得到产物S7。S6, HATU (31.2 mmol, 2.0 equiv), sodium phenolate (31.2 mmol, 2.0 equiv), N,N-diisopropylethylamine (31.2 mmol, 2.0 equiv), potassium carbonate (31.2 mmol, 2.0 equiv), DMF (25 mL) were added to a dry 250 mL round-bottom bottle equipped with a stirrer, and the reaction mixture was heated to 100 ° C and monitored by thin-layer chromatography. After the reaction was completed, the reaction mixture was filtered through celite, the filtrate was concentrated by rotary evaporation to remove the solvent, and the product S7 was separated and purified by flash column chromatography.
向一个干燥的配有搅拌子的50mL的封管中加入S7(3mmol,1.0equiv),碳酸钾(2.0equiv),四三苯基膦钯(0.15mmol,0.05equiv),芳基硼酸(3mmol,1.0equiv),四氢呋喃(3mL),水(3mL),然后抽换氮气三次。将反应混合物升温至100℃后反应12h。反应结束后,将反应混合物用乙酸乙酯稀释,分液,水相用乙酸乙酯萃取,合并有机相,无水硫酸镁干燥,过滤,旋蒸浓缩,浓缩液用快速柱层析分离纯化得到产物S8。S7 (3 mmol, 1.0 equiv), potassium carbonate (2.0 equiv), tetrakistriphenylphosphine palladium (0.15 mmol, 0.05 equiv), arylboronic acid (3 mmol, 1.0 equiv), tetrahydrofuran (3 mL), water (3 mL) were added to a dry 50 mL sealed tube equipped with a stirrer, and then nitrogen was replaced three times. The reaction mixture was heated to 100 ° C and reacted for 12 h. After the reaction was completed, the reaction mixture was diluted with ethyl acetate, separated, the aqueous phase was extracted with ethyl acetate, the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and concentrated by rotary evaporation. The concentrate was separated and purified by flash column chromatography to obtain the product S8.
方法III:1-溴-2萘甲酸苄酯的合成Method III: Synthesis of 1-bromo-2-naphthoic acid benzyl ester
向一个配有搅拌子的250mL的圆底瓶中加入S4(1.0equiv),碳酸钾(2.0equiv),溴化苄(1.5euqiv)。将反应混合物在搅拌下升温70℃,并且用薄板层析色谱法监测反应。反应结束后,冷却反应液至室温,加入水和乙酸乙酯稀释反应液,分液,水相用乙酸乙萃取,合并有机相,有机相用饱和氯化铵水相,分液。有机相用无水硫酸镁干燥,过滤,旋蒸浓缩滤液,浓缩液用快速柱层析分离得到产物S9。S4 (1.0 equiv), potassium carbonate (2.0 equiv), and benzyl bromide (1.5 euqiv) were added to a 250 mL round-bottom flask equipped with a stirrer. The reaction mixture was heated to 70°C while stirring, and the reaction was monitored by thin-layer chromatography. After the reaction was completed, the reaction solution was cooled to room temperature, water and ethyl acetate were added to dilute the reaction solution, the liquid was separated, the aqueous phase was extracted with ethyl acetate, the organic phases were combined, the organic phase was separated with saturated ammonium chloride aqueous phase. The organic phase was dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated by rotary evaporation. The concentrate was separated by flash column chromatography to obtain the product S9.
通过方法III获得(1a),1H NMR(400MHz,CDCl3)δ8.43(d,J=8.4Hz,1H),7.85–7.73(m,2H),7.70–7.52(m,3H),7.49(d,J=7.2Hz,2H),7.43–7.30(m,3H),5.44(s,2H).13C{1H}NMR(101MHz,CDCl3)δ167.2,135.5,135.2,132.3,131.2,128.7,128.6,128.5,128.5,128.2,128.2,128.2,127.9,125.9,122.8,67.6.IR(neat):2359,1732,1595,1495,1453,1381,1321,1263,1232,1171,1151,1121,978,952,866,819,783,762,734,694,662,614,581,532,471,443cm-1.HRMS(ESI)理论值C18H13O2BrNa[M+Na]+:362.9991,实验值:362.9990.(1a) was obtained by method III, 1 H NMR (400 MHz, CDCl 3 ) δ 8.43 (d, J = 8.4 Hz, 1H), 7.85-7.73 (m, 2H), 7.70-7.52 (m, 3H), 7.49 (d, J = 7.2 Hz, 2H), 7.43-7.30 (m, 3H), 5.44 (s, 2H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.2,135.5,135.2,132.3,131.2,128.7,128.6,128.5,128.5,128.2,128.2,128.2,127.9,125.9,122.8,67.6.IR(neat):2359,1732,1595,1495,1453,1381,1321,1263,1232,1171,1151,1121,978,952,866,819,783,762,734,694,662,614,581,532,471,443cm -1 .HRMS(ESI)theoretical value for C 18 H 13 O 2 BrNa[M+Na] + :362.9991, experimental value:362.9990.
通过方法III获得(1b),1H NMR(400MHz,CDCl3)δ8.10(s,1H),7.66–7.56(m.2H),7.50(d,J=8.4Hz,1H),7.39(d,J=7.2Hz,2H),7.33–7.18(m,4H),5.34(s,2H),2.45(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.4,138.3,135.6,133.5,132.4,131.2,130.5,128.7,128.5,128.4,128.1,127.6,127.5,125.0,122.0,67.6,22.1.IR(neat):2960,2306,1720,1598,1548,1496,1452,1372,1299,1261,1230,1192,1147,1121,962,898,838,800,745,696,663,638,615,589,531,499,481,416cm-1.HRMS(ESI)理论值C19H16O2Br[M+H]+:355.0328,实验值:355.0324.(1b) was obtained by method III, 1 H NMR (400 MHz, CDCl 3 ) δ 8.10 (s, 1H), 7.66-7.56 (m. 2H), 7.50 (d, J = 8.4 Hz, 1H), 7.39 (d, J = 7.2 Hz, 2H), 7.33-7.18 (m, 4H), 5.34 (s, 2H), 2.45 (s, 3H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ167.4,138.3,135.6,133.5,132.4,131.2,130.5,128.7,128.5,128.4,128.1,127.6,127.5,125.0,122.0,67.6,22.1.IR(neat):2960,2306,1720 ,1598,1548,1496,1452,1372,1299,1261,1230,1192,1147,1121,962,898,838,800,745,696,663,638,615,589,531,499,481,416cm -1 .HRMS (ESI) theoretical value for C 19 H 16 O 2 Br [M+H] + : 355.0328, found value: 355.0324.
通过方法III获得(1c),1H NMR(400MHz,CDCl3)δ8.48(d,J=9.2Hz,1H),7.98(d,J=8.8Hz,1H),7.69–7.58(m,2H),7.58–7.48(m,3H),7.46–7.32(m,3H),5.45(s,2H),2.65(s,3H).13C{1H}NMR(101MHz,CDCl3)δ169.1,137.2,136.3,136.2,133.8,132.5,130.9,130.3,130.2,130.1,129.70 129.4,128.0,126.2,122.2,69.3,21.0.IR(neat):2950,1726,1600,1501,1445,1381,1338,1274,1221,1154,1129,1032,971,912,878,752,696,625,599,578,486,417cm-1.HRMS(DART)理论值C19H16O2Br[M+H]+:355.0334,实验值:355.0325.(1c) was obtained by method III, 1 H NMR (400 MHz, CDCl 3 ) δ 8.48 (d, J = 9.2 Hz, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.69-7.58 (m, 2H), 7.58-7.48 (m, 3H), 7.46-7.32 (m, 3H), 5.45 (s, 2H), 2.65 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 ) δ 169.1, 137.2, 136.3, 136.2, 133.8, 132.5, 130.9, 130.3, 130.2, 130.1, 129.70 129.4,128.0,126.2,122.2,69.3,21.0. IR(neat):2950,1726,1600,1501,1445,1381,1338,1274,1221,1154,1129,1032,971,912,878,752,696,625,599,578,486,417cm -1 . HRMS(DART)theoretical value for C 19 H 16 O 2 Br[M+H] + :355.0334, Observation value:355.0325.
通过方法III获得(1d),1H NMR(400MHz,CDCl3)δ8.05(s,1H),7.86(d,J=8.4Hz,1H),7.58(d,J=8.8Hz,1H),7.45(d,J=6.4Hz,2H),7.41–7.27(m,3H),7.21(s,1H),5.40(s,3H),2.59(s,3H),2.47(s,3H).13C{1H}NMR(101MHz,CDCl3)δ169.1,139.4,137.3,136.2,134.5,134.3,133.0,132.7,130.3,130.1,130.1,127.5,126.3,125.4,124.2,69.2,23.7,21.1.IR(neat):3645,2338,1711,1601,1499,1458,1366,1314,1268,1188,1134,1070,1003,945,904,845,818,783,749,694,611,572,554,504,478cm-1.HRMS(DART)理论值C20H18O2Br[M+H]+:369.0485,实验值:369.0480.Obtained by method III (1d), 1 H NMR (400 MHz, CDCl 3 ) δ 8.05 (s, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 8.8 Hz, 1H), 7.45 (d, J = 6.4 Hz, 2H), 7.41-7.27 (m, 3H), 7.21 (s, 1H), 5.40 (s, 3H), 2.59 (s, 3H), 2.47 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ169.1,139.4,137.3,136.2,134.5,134.3,133.0,132.7,130.3,130.1,130.1,127.5,126.3,125.4,124.2,69.2,23.7,21.1.IR(neat):3645,2338,1711,1601,1499,1458,1366,1314,1268,1188,1134,1070,1003,945,904,845,818,783,749,694,611,572,554,504,478cm -1 .HRMS(DART)theoretical value C 20 H 18 O 2 Br[M+H] + :369.0485, Observational value:369.0480.
通过方法III获得(1e),1H NMR(400MHz,CDCl3)δ7.79–7.72(m,3H),7.61–7.50(m,3H),7.47–7.35(m,3H),7.30–7.24(m,1H),5.47(s,2H),4.01(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.4,159.5,135.6,133.7,131.6,130.7,129.8,128.7,128.5,128.4,127.5,123.6,121.1(2C),106.6,67.6,55.5.IR(neat):3663,2974,1727,1625,1597,1503,1453,1369,1298,1261,1219,1200,1121,1028,975,930,903,837,801,767,738,712,696,664,593,572,531,511,479,440,418cm-1.HRMS(DART)理论值C19H16O3Br[M+H]+:371.0277,实验值:371.0274.Obtained by method III (1e), 1 H NMR (400 MHz, CDCl 3 ) δ 7.79–7.72 (m, 3H), 7.61–7.50 (m, 3H), 7.47–7.35 (m, 3H), 7.30–7.24 (m, 1H), 5.47 (s, 2H), 4.01 (s, 3H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ167.4,159.5,135.6,133.7,131.6,130.7,129.8,128.7,128.5,128.4,127.5,123.6,121.1(2C),106.6,67.6,55.5.IR(neat):3663,2974,1727,1 625,1597,1503,1453,1369,1298,1261,1219,1200,1121,1028,975,930,903,837,801,767,738,712,696,664,593,572,531,511,479,440,418cm -1 .HRMS (DART) theoretical value C 19 H 16 O 3 Br [M+H] + : 371.0277, observed value: 371.0274.
通过方法III获得(1f),1H NMR(400MHz,CDCl3)δ8.28(d,J=9.2Hz,1H),7.64–7.56(m,2H),7.41(d,J=6.8Hz,2H),7.37–7.25(m,3H),7.21–7.16(m,1H),7.01(d,J=2.4Hz,1H),5.34(s,2H),3.85(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.1,159.4,137.0,135.7,130.5,128.6,128.5,128.4(2C),127.8,126.8,126.5,123.2,120.8,105.9,67.5,55.5.IR(neat):3032,2338,1723,1619,1559,1495,1476,1454,1402,1370,1319,1272,1229,1194,1170,1120,1029,981,852,820,790,772,742,696,677,602,533,497cm-1.HRMS(DART)理论值C19H16O3Br[M+H]+:371.0277,实验值:371.0274.Obtained by method III (1f), 1 H NMR (400 MHz, CDCl 3 ) δ 8.28 (d, J = 9.2 Hz, 1H), 7.64-7.56 (m, 2H), 7.41 (d, J = 6.8 Hz, 2H), 7.37-7.25 (m, 3H), 7.21-7.16 (m, 1H), 7.01 (d, J = 2.4 Hz, 1H), 5.34 (s, 2H), 3.85 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.1,159.4,137.0,135.7,130.5,128.6,128.5,128.4(2C),127.8,126.8,126.5,123.2,120.8,105.9,67.5,55.5.IR(neat):3032,2338,1723,1 619,1559,1495,1476,1454,1402,1370,1319,1272,1229,1194,1170,1120,1029,981,852,820,790,772,742,696,677,602,533,497cm -1 .HRMS (DART) theoretical value C 19 H 16 O 3 Br [M+H] + : 371.0277, observed value: 371.0274.
通过方法III获得(1g)(1.29g,87%),1H NMR(400MHz,CDCl3)δ8.20(d,J=8.8Hz,1H),7.93(d,J=8.8Hz,1H),7.57(d,J=8.8Hz,1H),7.50–7.39(m,3H),7.37–7.23(m,3H),6.84(d,J=7.6Hz,1H),5.36(s,2H),3.92(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.4,155.2,135.5,133.3,131.9,128.6,128.5,128.4,128.1,127.5,124.9,122.0,120.5,105.9,67.6,55.9.IR(neat):2960,1721,1591,1561,1494,1454,1409,1373,1308,1262,1232,1166,1128,1077,1000,955,885,827,799,752,698,653,607,570,550,489cm-1.HRMS(DART)理论值C19H16O3Br[M+H]+:371.0277,实验值:371.0274.Obtained by method III (1 g) (1.29 g, 87%), 1 H NMR (400 MHz, CDCl 3 ) δ 8.20 (d, J = 8.8 Hz, 1H), 7.93 (d, J = 8.8 Hz, 1H), 7.57 (d, J = 8.8 Hz, 1H), 7.50-7.39 (m, 3H), 7.37-7.23 (m, 3H), 6.84 (d, J = 7.6 Hz, 1H), 5.36 (s, 2H), 3.92 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.4,155.2,135.5,133.3,131.9,128.6,128.5,128.4,128.1,127.5,124.9,122.0,120.5,105.9,67.6,55.9.IR(neat):2960,1721,1591,1561,1494,1454,1409,1373,1308,1262,1232,1166,1128,1077,1000,955,885,827,799,752,698,653,607,570,550,489cm -1 .HRMS(DART)theoretical value for C 19 H 16 O 3 Br[M+H] + :371.0277, Observed value:371.0274.
通过方法III获得(1h)(513mg,82%),1H NMR(400MHz,CDCl3)δ8.49(d,J=9.2Hz,1H),7.99(d,J=1.6Hz,1H),7.92–7.79(m,2H),7.79–7.64(m,3H),7.55–7.46(m,4H),7.43–7.33(m,4H),5.44(s,2H).13C{1H}NMR(101MHz,CDCl3)δ167.1,140.8,139.8,135.6,135.6,131.6,130.8,129.3,129.1,128.7,128.5(2C),128.1,128.0,127.8,127.5,126.4,125.8,122.9,67.6.IR(neat):3655,2973,2319,1723,1592,1484,1459,1378,1323,1272,1226,1150,1125,1079,974,945,889,822,791,761,737,693,610,545,476cm-1.HRMS(DART)理论值C24H18O2Br[M+H]+:417.0485,实验值:417.0480.Obtained by method III (1h) (513 mg, 82%), 1 H NMR (400 MHz, CDCl 3 ) δ 8.49 (d, J = 9.2 Hz, 1H), 7.99 (d, J = 1.6 Hz, 1H), 7.92-7.79 (m, 2H), 7.79-7.64 (m, 3H), 7.55-7.46 (m, 4H), 7.43-7.33 (m, 4H), 5.44 (s, 2H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ167.1,140.8,139.8,135.6,135.6,131.6,130.8,129.3,129.1,128.7,128.5(2C),128.1,128.0,127.8,127.5,126.4,125.8,122.9,67.6.IR(neat ):3655,2973,2319,1723,1592,1484,1459,1378,1323,1272,1226,1150,1125,1079,974,945,889,822,791,761,737,693,610,545,476cm -1 .HRMS (DART) theoretical value C 24 H 18 O 2 Br [M+H] + : 417.0485, observed value: 417.0480.
通过方法III获得(1i)(478mg,75%),1H NMR(400MHz,CDCl3)δ8.34(d,J=9.6Hz,1H),7.66(dd,J=21.2,8.4Hz,2H),7.48(d,J=6.8Hz,2H),7.42–7.30(m,3H),7.25(dd,J=9.2,2.4Hz,1H),7.06(d,J=2.4Hz,1H),5.93–5.80(m,1H),5.41(s,2H),5.15–4.96(m,2H),4.12–4.08(m,2H),2.32–2.21(m,2H),2.00–1.86(m,2H).13C{1H}NMR(101MHz,CDCl3)δ167.1,158.8,137.6,137.0,135.7,130.4,128.6,128.5,128.4,128.2,127.7,126.8,126.4,123.3,121.1,115.5,106.6,67.5,67.4,30.1,28.3.IR(neat):3060,2939,2853,1726,1619,1495,1464,1426,1394,1369,1345,1326,1261,1233,1177,1121,1080,1050,1019,961,903,852,820,797,746,728,695,643,604,546,514,485,413cm-1.HRMS(DART)理论值C23H22O3I[M+H]+:425.0747,实验值:425.0743.Obtained by method III (1i) (478 mg, 75%), 1 H NMR (400 MHz, CDCl 3 ) δ 8.34 (d, J = 9.6 Hz, 1H), 7.66 (dd, J = 21.2, 8.4 Hz, 2H) ,7.48(d,J=6.8Hz,2H),7.42–7.30(m,3H),7.25(dd,J=9.2,2.4Hz,1H),7.06(d,J=2.4Hz,1H),5.93– 5.80(m,1H),5.41(s,2H),5.15–4.96(m,2H),4.12–4.08(m,2H),2.32–2.21(m,2H),2.00–1.86(m,2H). 13 C{ 1 H}NMR (101MHz, CDCl 3 )δ167.1,158.8,137.6,137.0,135.7,130.4,128.6,128.5,128.4,128.2,127.7,126.8,126.4,123.3,121.1,115.5,106.6,67.5, 67.4,30.1,28.3 .IR(neat):3060,2939 ,2853,1726,1619,1495,1464,1426,1394,1369,1345,1326,1261,1233,1177,1121,1080,1050,1019,961,903,852,820,797,746,728,695,643,604,546,514,485,413cm -1 .HRMS (DART) theoretical value C 23 H 22 O 3 I[M+H] + :425.0747, Exp. value:425.0743.
通过方法I获得(2a)(1.2g,37%),1H NMR(400MHz,CDCl3)δ8.49(d,J=8.4Hz,1H),7.95–7.82(m,3H),7.72–7.58(m,2H),7.52–7.42(m,2H),7.36–7.26(m,3H).13C NMR(101MHz,CDCl3)δ165.9,150.9,135.4,132.4,130.5,129.6,128.7,128.5,128.3(2C),128.1,126.2,126.0,123.5,121.6.(2a) (1.2 g, 37%) was obtained by method I. 1 H NMR (400 MHz, CDCl 3 ) δ 8.49 (d, J=8.4 Hz, 1H), 7.95-7.82 (m, 3H), 7.72-7.58 (m, 2H), 7.52-7.42 (m, 2H), 7.36-7.26 (m, 3H). 13 C NMR (101 MHz, CDCl 3 ) δ 165.9, 150.9, 135.4, 132.4, 130.5, 129.6, 128.7, 128.5, 128.3 (2C), 128.1, 126.2, 126.0, 123.5, 121.6.
通过方法I获得(2b)(683mg,52.2%),1H NMR(400MHz,CDCl3)δ8.42(d,J=8.8Hz,1H),7.86(dd,J=20.4,8.4Hz,2H),7.66(s,1H),7.59–7.42(m,3H),7.38–7.27(m,3H),2.87(q,J=7.6Hz,2H),1.36(t,J=7.6Hz,3H).13C{1H}NMR(101MHz,CDCl3)δ165.8,150.9,144.9,135.9,131.0,129.6,129.4,128.7,127.5,126.1,125.9,123.6,121.7,28.8,15.2.IR(neat):1748,1727,1622,1588,1483,1320,1272,1227,1183,1160,1099,970,892,827,747,712,690,497,416cm-1.HRMS(ESI)理论值C19H16O2Br[M+H]+:355.0328,实验值:355.0326.(2b) (683 mg, 52.2%) was obtained by method I, 1 H NMR (400 MHz, CDCl 3 ) δ 8.42 (d, J = 8.8 Hz, 1H), 7.86 (dd, J = 20.4, 8.4 Hz, 2H), 7.66 (s, 1H), 7.59-7.42 (m, 3H), 7.38-7.27 (m, 3H), 2.87 (q, J = 7.6 Hz, 2H), 1.36 (t, J = 7.6 Hz, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ165.8,150.9,144.9,135.9,131.0,129.6,129.4,128.7,127.5,126.1,125.9,123.6,121.7,28.8,15.2.IR(neat):1748,1727,1622,1588,1483,1320,1272,1227,1183,1160,1099,970,892,827,747,712,690,497,416cm -1 .HRMS(ESI)theoretical value for C 19 H 16 O 2 Br[M+H] + :355.0328,observation value:355.0326.
通过方法I获得(2c)(1.6g,80%),1H NMR(400MHz,CDCl3)δ8.57(d,J=8.8Hz,1H),8.08(s,1H),7.99–7.90(m,3H),7.76(d,J=8.0Hz,2H),7.58–7.40(m,5H),7.38–7.28(m,3H).13C{1H}NMR(101MHz,CDCl3)δ165.7,150.9,141.2,139.8,135.8,131.6,130.1,129.6,129.4,129.1,128.2,127.9,127.5,126.5,126.2,125.9,123.6,121.6.IR(neat):3066,1744,1721,1590,1486,1246,1188,1160,1094,982,925,899,827,751,710,687,587,517cm-1.HRMS(ESI)理论值C23H16O2Br[M+H]+:403.0328,实验值:403.0327.(2c) (1.6 g, 80%) was obtained by method I. 1 H NMR (400 MHz, CDCl 3 ) δ 8.57 (d, J = 8.8 Hz, 1H), 8.08 (s, 1H), 7.99-7.90 (m, 3H), 7.76 (d, J = 8.0 Hz, 2H), 7.58-7.40 (m, 5H), 7.38-7.28 (m, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ165.7,150.9,141.2,139.8,135.8,131.6,130.1,129.6,129.4,129.1,128.2,127.9,127.5,126.5,126.2,125.9,123.6,121.6.IR(neat):3066,1744,1721,1590,1486,1246,1188,1160,1094,982,925,899,827,751,710,687,587,517cm -1 .HRMS(ESI)theoretical value C 23 H 16 O 2 Br[M+H] + :403.0328,Experimental value:403.0327.
通过方法I获得(2d)(1.03g,72%),1H NMR(400MHz,CDCl3)δ8.41(d,J=8.4Hz,1H),7.89(d,J=8.4Hz,1H),7.76(d,J=8.4Hz,1H),7.50–7.42(m,2H),7.35–7.27(m,4H),7.14(s,1H),3.96(s,3H).13C{1H}NMR(101MHz,CDCl3)δ165.7,159.6,150.9,137.2,130.6,129.6,127.9,127.6,127.0,126.6,126.1,123.9,121.7,121.0,106.0,55.6.IR(neat):3054,1742,1591,1469,1372,1320,1266,1224,1185,1098,1025,967,929,854,766,741,716,687,612,515,494,418cm-1.HRMS(ESI)理论值C18H14O3Br[M+H]+:357.0121,实验值:357.0120.(2d) (1.03 g, 72%) was obtained by method I. 1 H NMR (400 MHz, CDCl 3 ) δ 8.41 (d, J = 8.4 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.50-7.42 (m, 2H), 7.35-7.27 (m, 4H), 7.14 (s, 1H), 3.96 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ165.7,159.6,150.9,137.2,130.6,129.6,127.9,127.6,127.0,126.6,126.1,123.9,121.7,121.0,106.0,55.6.IR(neat):3054,1742,1591,1469,1372,1320,1266,1224,1185,1098,1025,967,929,854,766,741,716,687,612,515,494,418cm -1 .HRMS(ESI)theoretical value C 18 H 14 O 3 Br[M+H] + :357.0121, experimental value:357.0120.
向一个配有搅拌子的250mL的圆底瓶中加入6-羟基-4氢萘酮(30mmol,1.0equiv),碳酸钾(60mmol,2.0equiv),5-溴-1-戊烯(45mmol,1.5euqiv),DMF(50mL)。将反应混合物升温至60℃反应,薄板层析色谱法监测反应。反应结束后,冷却反应液,用乙酸乙酯和水稀释反应液,分液,有机相用饱和氯化铵水洗,分液,有机相用无水硫酸镁干燥,过滤,旋蒸浓缩,得到粗产品S10,以粗产物S10为原料,通过方法1得到2e.1H NMR(400MHz,CDCl3)δ8.40(d,J=9.2Hz,1H),7.87(d,J=8.4Hz,1H),7.72(d,J=8.8Hz,1H),7.49–7.40(m,2H),7.34–7.26(m 4H),7.11(d,J=2.4Hz,1H),5.95–5.80(m,1H),5.14–4.98(m,2H),4.11(t,J=6.4Hz,2H),2.34–2.23(m,2H),2.01–1.90(m,2H)13C{1H}NMR(101MHz,CDCl3)δ165.7,159.1,150.9,137.6,137.3,130.6,129.5,127.6,127.5,126.9,126.6,126.1,124.0,121.7,121.24115.5,106.7,67.5,30.1,28.3.IR(neat):3072,1741,1616,1591,1490,1461,1370,1313,1267,1221,1191,1102,1011,946,909,853,823,752,734,690,572,513,499,415cm-1.HRMS(DART)理论值C22H20O3Br[M+H]+:411.0590,实验值:411.0588.6-Hydroxy-4-hydronaphthalenone (30 mmol, 1.0 equiv), potassium carbonate (60 mmol, 2.0 equiv), 5-bromo-1-pentene (45 mmol, 1.5 euqiv), and DMF (50 mL) were added to a 250 mL round-bottom flask equipped with a stirrer. The reaction mixture was heated to 60°C and monitored by thin-layer chromatography. After the reaction, the reaction solution was cooled, diluted with ethyl acetate and water, separated, the organic phase was washed with saturated ammonium chloride, separated, the organic phase was dried over anhydrous magnesium sulfate, filtered, and concentrated by rotary evaporation to obtain a crude product S10. The crude product S10 was used as a raw material to obtain 2e by method 1. 1 H NMR (400MHz, CDCl 3 )δ8.40(d,J=9.2Hz,1H),7.87(d,J=8.4Hz,1H),7.72(d,J=8.8Hz,1H),7.49–7.40(m,2H),7.34–7.26(m 4H),7.11(d,J=2.4Hz,1H),5.95–5.80(m,1H),5.14–4.98(m,2H),4.11(t,J=6.4Hz,2H),2.34–2.23(m,2H),2.01–1.90(m,2H) 13 C{ 1 H}NMR(101MHz,CDCl 3 )δ165.7,159.1,150.9,137.6,137.3,130.6,129.5,127.6,127.5,126.9,126.6,126.1,124.0,121.7,121.24115.5,106.7,67.5,30.1,28.3.IR(ne at):3072,1741,1616,1591,1490,1461,1370,1313,1267,1221,1191,1102,1011,946,909,853,823,752,734,690,572,513,499,415cm -1 .HRMS (DART) theoretical value C 22 H 20 O 3 Br [M+H] + : 411.0590, found value: 411.0588.
通过方法I获得(2f)(1.2g,83%),1H NMR(400MHz,CDCl3)δ8.25(s,1H),7.87–7.72(m,3H),7.50–7.40(m,3H),7.37–7.26(m,3H),2.58(s,3H).13C{1H}NMR(101MHz,CDCl3)δ166.0,150.9,138.5,133.7,132.5,130.7,130.5,129.6,128.2,127.7,127.6,126.2,125.1,122.6,121.6,22.1.IR(neat):1739,1591,1486,1455,1369,1302,1264,1232,1185,1159,1109,1003,970,942,908,842,741,689,661,575,534,516,500,482,422cm-1.HRMS(ESI)理论值C18H14O2Br[M+H]:341.0172,实验值:341.0170.(2f) (1.2 g, 83%) was obtained by method I. 1 H NMR (400 MHz, CDCl 3 ) δ 8.25 (s, 1H), 7.87-7.72 (m, 3H), 7.50-7.40 (m, 3H), 7.37-7.26 (m, 3H), 2.58 (s, 3H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ166.0,150.9,138.5,133.7,132.5,130.7,130.5,129.6,128.2,127.7,127.6,126.2,125.1,122.6,121.6,22.1.IR(neat):1739,1591,1486,1455,1369,1302,1264,1232,1185,1159,1109,1003,970,942,908,842,741,689,661,575,534,516,500,482,422cm -1 .HRMS(ESI)theoretical value for C 18 H 14 O 2 Br[M+H]:341.0172, Found:341.0170.
通过方法I获得(2g)(1.8g,70%),1H NMR(400MHz,CDCl3)δ8.12(d,J=11.2Hz,1H),7.92–7.77(m,3H),7.55–7.26(m,6H).13C{1H}NMR(101MHz,CDCl3)δ165.6,163.4,161.0,150.8,133.7(d,J=9.1Hz),132.3,131.5 131.0(d,J=9.1Hz),129.7,127.9,126.3,125.3(d,J=2.5Hz),121.6,119.0(d,J=25.7Hz),112.6(d,J=24.4Hz)19F NMR(376MHz,CDCl3)δ-110.06.IR(neat):1748,1626,1592,1503,1450,1298,1253,1225,1179,1152,1103,980,954,862,845,738,717,686,527,491,427cm-1.HRMS(ESI)理论值C17H10O2BrFNa[M+Na]+:366.9740,实验值:366.9740.Obtained by method I (2g) (1.8g, 70%), 1H NMR (400MHz, CDCl 3 ) δ8.12 (d, J=11.2Hz, 1H), 7.92-7.77 (m, 3H), 7.55-7.26 (m, 6H). 13C { 1 H} NMR (101MHz, CDCl 3 ) δ165.6, 163.4, 161.0, 150.8, 133.7 (d, J=9.1Hz), 132.3, 131.5 131.0 (d, J=9.1Hz), 129.7, 127.9, 126.3, 125.3 (d, J=2.5Hz), 121.6, 119.0 (d, J=25.7Hz), 112.6 (d, J=24.4Hz) 19 F NMR (376 MHz, CDCl 3 ) δ-110.06. IR (neat): 1748, 1626, 1592, 1503, 1450, 1298, 1253, 1225, 1179, 1152, 1103, 980, 954, 862, 845, 738, 717, 686, 527, 491, 427 cm -1 . HRMS (ESI) theoretical value for C 17 H 10 O 2 BrFNa[M+Na] + : 366.9740, found value: 366.9740.
通过方法I获得(2h)(412mg,80%),1H NMR(400MHz,CDCl3)δ8.39(d,J=8.4Hz,1H),8.11(d,J=8.8Hz,1H),7.87(d,J=8.8Hz,1H),7.60–7.53(m,1H),7.50–7.40(m,3H),7.37–7.26(m,3H),3.13–3.01(m,2H),1.78–1.67(m,2H),1.46–1.29(m,4H),0.91(t,J=6.8Hz,3H).13C{1H}NMR(101MHz,CDCl3)δ166.0,150.9,139.6,134.1,132.8,130.2,129.6,128.6,127.9,127.1,126.2,125.5,124.1,124.0,121.6,33.2,31.9,30.7,22.6,14.1.IR(neat):2955,2930,2852,1743,1591,1489,1458,1359,1327,1270,1253,1191,1159,1115,1090,1023,939,909,839,822,805,791,753,733,686,638,584,558,527,508,480,425cm- 1.HRMS(ESI)理论值C22H22O2Br[M+H]+:397.0789,实验值:397.0787.Obtained by method I (2h) (412 mg, 80%), 1 H NMR (400 MHz, CDCl 3 ) δ 8.39 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 8.8 Hz, 1H), 7.60-7.53 (m, 1H), 7.50-7.40 (m, 3H), 7.37-7.26 (m, 3H), 3.13-3.01 (m, 2H), 1.78-1.67 (m, 2H), 1.46-1.29 (m, 4H), 0.91 (t, J = 6.8 Hz, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.0,150.9,139.6,134.1,132.8,130.2,129.6,128.6,127.9,127.1,126.2,125.5,124.1,124.0,121.6,33.2,31.9,30.7,22.6,14.1.IR(neat) :2955,2930 ,2852,1743,1591,1489,1458,1359,1327,1270,1253,1191,1159,1115,1090,1023,939,909,839,822,805,791,753,733,686,638,584,558,527,508,480,425cm - 1 .HRMS (ESI) theoretical value C 22 H 22 O 2 Br[M+H] + :397.0789, experimental value:397.0787.
通过方法I获得(532mg,35%).1H NMR(400MHz,CDCl3)δ8.36(d,J=8.8Hz,1H),8.05(d,J=8.8Hz,1H),7.82(d,J=8.8Hz,1H),7.60–7.52(m,1H),7.50–7.40(m,2H),7.36–7.26(m,3H),6.95(d,J=7.6Hz,1H),4.02(s,3H).13C{1H}NMR(101MHz,CDCl3)δ166.0,155.3,150.9,133.4,131.2,129.6,128.3,127.7,126.2,125.0,122.6,122.2,121.6,120.6,106.1,55.9.IR(neat):1737,1591,1486,1457,1410,1365,1309,1260,1225,1187,1110,1000,928,905,836,798,758,690,601,495cm-1.HRMS(ESI)理论值C18H14O3Br[M+H]+:357.0121,实验值:357.0120.Obtained by method I (532 mg, 35%). 1 H NMR (400 MHz, CDCl 3 ) δ 8.36 (d, J = 8.8 Hz, 1H), 8.05 (d, J = 8.8 Hz, 1H), 7.82 (d, J = 8.8 Hz, 1H), 7.60-7.52 (m, 1H), 7.50-7.40 (m, 2H), 7.36-7.26 (m, 3H), 6.95 (d, J = 7.6 Hz, 1H), 4.02 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.0,155.3,150.9,133.4,131.2,129.6,128.3,127.7,126.2,125.0,122.6,122.2,121.6,120.6,106.1,55.9.IR(neat):1737,1591,1486,1457,1410,1365,1309,1260,1225,1187,1110,1000,928,905,836,798,758,690,601,495cm -1 .HRMS(ESI)theoretical value C 18 H 14 O 3 Br[M+H] + :357.0121, experimental value:357.0120.
通过方法I获得(1.72g,68%).1H NMR(400MHz,CDCl3)δ8.49(d,J=8.4Hz,1H),7.96(d,J=8.4Hz,1H),7.73–7.55(m,3H),7.50–7.37(m,2H),7.36–7.23(m,3H),2.66(s,3H).13C{1H}NMR(101MHz,CDCl3)δ166.0,150.9,134.8,134.8,132.2,130.1,129.6,129.3,128.3,127.91,126.5,126.2,124.6,121.7,121.2,19.4.IR(neat):2963,1727,1594,1491,1444,1377,1344,1276,1231,1196,1159,1124,1071,955,917,872,834,742,719,686,627,560,505,485,419cm-1.HRMS(ESI)理论值C18H14O2Br[M+H]+:341.0172,实验值:341.0172.Obtained by method I (1.72 g, 68%). 1 H NMR (400 MHz, CDCl 3 ) δ 8.49 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.73-7.55 (m, 3H), 7.50-7.37 (m, 2H), 7.36-7.23 (m, 3H), 2.66 (s, 3H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ166.0,150.9,134.8,134.8,132.2,130.1,129.6,129.3,128.3,127.91,126.5,126.2,124.6,121.7,121.2,19.4.IR(neat):2963,1727,1594,1491,1444,1377,1344,1276,1231,1196,1159,1124,1071,955,917,872,834,742,719,686,627,560,505,485,419cm -1 .HRMS(ESI)theoretical value for C 18 H 14 O 2 Br[M+H] + :341.0172, Observed value:341.0172.
通过方法II获得2k(840mg,69%).1H NMR(400MHz,CDCl3)δ8.38(d,J=8.4Hz,1H),7.91–7.83(m,2H),7.71–7.41(m,7H),7.37–7.14(m,3H),6.81(d,J=8.0Hz,2H).13C{1H}NMR(101MHz,CDCl3)δ166.4,150.4,139.5,137.8,134.2,133.8,130.8,129.5,129.1,128.8,128.6,128.5,128.3(2C),128.2,127.7,126.2,121.4,120.7.IR(neat):3054,1744,1589,1484,1325,1251,1218,1188,1159,1096,1024,978,923,900,846,770,742,720,701,687,647,608,581,546,504,481cm-1.HRMS(ESI)理论值C23H19O2NBr[M+NH4]+:420.0594,实验值:420.0594.2k (840 mg, 69%) was obtained by method II. 1 H NMR (400 MHz, CDCl 3 ) δ 8.38 (d, J = 8.4 Hz, 1H), 7.91-7.83 (m, 2H), 7.71-7.41 (m, 7H), 7.37-7.14 (m, 3H), 6.81 (d, J = 8.0 Hz, 2H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.4,150.4,139.5,137.8,134.2,133.8,130.8,129.5,129.1,128.8,128.6,128.5,128.3(2C),128.2,127.7,126.2,121.4,120.7.IR(neat):305 4,1744,1589,1484,1325,1251,1218,1188,1159,1096,1024,978,923,900,846,770,742,720,701,687,647,608,581,546,504,481cm -1 .HRMS (ESI) theoretical value C 23 H 19 O 2 NBr [M + NH 4 ] + : 420.0594, found value: 420.0594.
通过方法II获得2l(834mg,65%).1H NMR(400MHz,CDCl3)δ8.37(d,J=8.0Hz,1H),7.92–7.82(m,2H),7.72–7.56(m,2H),7.49(d,J=8.0Hz,2H),7.34–7.29(m,4H),7.23–7.16(m,1H),6.79(d,J=8.0Hz,2H),2.74(q,J=7.6Hz,2H),1.31(t,J=7.6Hz,3H).13C{1H}NMR(101MHz,CDCl3)δ166.5,150.4,144.5,137.9,136.8,134.2,134.0,130.7,129.4,129.1,128.6,128.4,128.2,128.1,127.7,126.2,121.5,120.6,28.7,15.9.IR(neat):3065,1745,1589,1483,1442,1255,1217,1185,1158,1136,1116,1093,1020,980,924,896,844,745,689,620,583,496cm-1.HRMS(ESI)理论值C25H19O2BrNa[M+Na]+:453.0461,实验值:453.0462.Obtained 2l (834 mg, 65%) by method II. 1 H NMR (400MHz, CDCl 3 ) δ 8.37 (d, J = 8.0 Hz, 1H), 7.92–7.82 (m, 2H), 7.72–7.56 (m, 2H),7.49(d,J=8.0Hz,2H),7.34–7.29(m,4H),7.23–7.16(m,1H),6.79(d,J=8.0Hz,2H),2.74(q,J =7.6Hz, 2H), 1.31 (t, J = 7.6Hz, 3H). 13 C{ 1 H} NMR (101MHz, CDCl 3 )δ166.5,150.4,144.5,137.9,136.8,134.2,134.0,130.7,129.4,129.1,128.6,128.4,128.2,128.1,127.7,126.2,121.5,120.6,28.7,15.9.IR(neat):3065,1745, 1589,1483,1442,1255,1217,1185,1158,1136,1116,1093,1020,980,924,896,844,745,689,620,583,496 cm -1 .HRMS (ESI) theoretical value C 25 H 19 O 2 BrNa[M+Na] + :453.0461, experimental value:453.0462.
通过方法I获得2m(792mg,59%).1H NMR(400MHz,CDCl3)δ8.39(d,J=8.0Hz,1H),8.00–7.80(m,2H),7.75–7.58(m,2H),7.50(d,J=8.0Hz,2H),7.40–7.15(m,5H),6.80(d,J=7.6Hz,2H),2.70(t,J=7.6Hz,2H),1.81–1.67(m,2H),1.02(t,J=7.2Hz,3H).13C{1H}NMR(101MHz,CDCl3)δ166.5,150.4,142.8,137.9,136.8,134.2,133.9,130.7,129.4,129.0,128.7(2C),128.4,128.2,128.1,127.7,126.2,121.5,120.6,37.8,24.7,13.8.IR(neat):2952,2864,1753,1590,1484,1326,1253,1216,1184,1159,1134,1091,1022,980,923,896,824,771,743,690,610,581,540,500,460cm-1.HRMS(ESI)理论值C26H22O2Br[M+H]+:445.0798,实验值:445.0796.Obtained 2m (792mg, 59%) by method I. 1 H NMR (400MHz, CDCl 3 ) δ 8.39 (d, J = 8.0Hz, 1H), 8.00–7.80 (m, 2H), 7.75–7.58 (m, 2H),7.50(d,J=8.0Hz,2H),7.40–7.15(m,5H),6.80(d,J=7.6Hz,2H),2.70(t,J=7.6Hz,2H),1.81– 1.67 (m, 2H), 1.02 (t, J = 7.2Hz, 3H). 13 C{ 1 H} NMR (101MHz, CDCl 3 )δ166.5,150.4,142.8,137.9,136.8,134.2,133.9,130.7,129.4,129.0,128.7(2C),128.4,128.2,128.1,127.7,126.2,121.5,120.6,37.8,24. 7,13 .8.IR(neat):2952,2864,1753,1590,1484,1326,1253,1216,1184,1159,1134,1091,1022,980,923,896,824,771,743,690,610,581,540,500,460cm -1 .HRMS(ESI)theoretical value C 26 H 22 O 2 Br[M+H] + :445.0798, Observational value:445.0796.
通过方法II获得2n(757mg,57%).1H NMR(400MHz,CDCl3)δ8.37(d,J=8.0Hz,1H),7.90–7.86(m,2H),7.71–7.58(m,2H),7.49(d,J=8.0Hz,2H),7.38–7.15(m,5H),6.72(d,J=7.6Hz,2H),3.08–2.94(m,1H),1.33(d,J=6.9Hz,6H).13C{1H}NMR(101MHz,CDCl3)δ166.5,150.4,149.0,137.9,137.0,134.2,134.0,130.7,129.4,129.1,128.6,128.4,128.2,128.2,127.7,126.7,126.2,121.5,120.5,34.0,24.1.IR(neat):3066,2956,1744,1589,1482,1251,1217,1186,1160,1136,1095,1018,982,927,896,847,826,770,741,709,691,618,586,545,518,462cm-1.HRMS(ESI)理论值C26H22O2Br[M+H]+:445.0798,实验值:445.0798.Obtained 2n (757mg, 57%) by method II. 1 H NMR (400MHz, CDCl 3 ) δ8.37 (d, J = 8.0Hz, 1H), 7.90–7.86 (m, 2H), 7.71–7.58 (m, 2H),7.49(d,J=8.0Hz,2H),7.38–7.15(m,5H),6.72(d,J=7.6Hz,2H),3.08–2.94(m,1H),1.33(d,J =6.9Hz, 6H). 13 C{ 1 H}NMR (101MHz, CDCl 3 )δ166.5,150.4,149.0,137.9,137.0,134.2,134.0,130.7,129.4,129.1,128.6,128.4,128.2,128.2,127.7,126.7,126.2,121.5,120.5,34.0,2 4.1. IR(neat):3066,2956,1744,1589,1482,1251,1217,1186,1160,1136,1095,1018,982,927,896,847,826,770,741,709,691,618,586,545,518,462cm -1 .HRMS(ESI)theoretical value C 26 H 22 O 2 Br[M+ H] + :445.0798, experimental value:445.0798.
通过方法II获得2o(1.12g,82%).1H NMR(400MHz,CDCl3)δ8.38(d,J=8.4Hz,1H),7.88(s,2H),7.70–7.58(m,2H),7.52–7.47(m,4H),7.32–7.26(m,2H),7.22–7.15(m,1H),6.68(d,J=8.0Hz,2H),1.40(s,9H).13C{1H}NMR(101MHz,CDCl3)δ166.5,151.3,150.4,137.9,136.6,134.2,134.0,130.7,129.3,128.8,128.5,128.4,128.2,128.2,127.7,126.2,125.5,121.5,120.5,34.7,31.4.IR(neat):3064,1740,1590,1484,1363,1253,1220,1187,1159,1111,1002,927,897,842,747,690,612,586,518,465cm-1.HRMS(ESI)理论值C27H24O2Br[M+H]+:459.0954,实验值:459.0956.2o (1.12 g, 82%) was obtained by method II. 1 H NMR (400 MHz, CDCl 3 ) δ 8.38 (d, J = 8.4 Hz, 1H), 7.88 (s, 2H), 7.70-7.58 (m, 2H), 7.52-7.47 (m, 4H), 7.32-7.26 (m, 2H), 7.22-7.15 (m, 1H), 6.68 (d, J = 8.0 Hz, 2H), 1.40 (s, 9H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.5,151.3,150.4,137.9,136.6,134.2,134.0,130.7,129.3,128.8,128.5,128.4,128.2,128.2,127.7,126.2,125.5,121.5,120.5,34.7,31.4. IR(neat):3064,1740,1590,1484,1363,1253,1220,1187,1159,1111,1002,927,897,842,747,690,612,586,518,465cm -1 . HRMS(ESI)theoretical value for C 27 H 24 O 2 Br[M+H] + :459.0954, Observed value:459.0956.
通过方法II获得2p(879mg,68%)(The yield of the last step).1H NMR(400MHz,CDCl3)δ8.37(d,J=8.4Hz,1H),7.94–7.80(m,2H),7.72–7.57(m,2H),7.51(d,J=8.8Hz,2H),7.43–7.30(m,2H),7.25–7.19(m,1H),7.02(d,J=8.8Hz,2H),6.90(d,J=7.6Hz,2H).13C{1H}NMR(101MHz,CDCl3)δ166.6,159.7,150.4,137.5,134.2,134.0,131.8,130.6,130.3,129.5,128.7,128.4,128.2,128.1,127.6,126.2,121.5,120.6,114.1,55.5.IR(neat):3057,1742,1591,1514,1485,1459,1290,1257,1224,1177,1159,1088,1025,923,891,848,826,743,687,619,541,517,497cm-1.HRMS(ESI)理论值C24H17O3BrNa[M+Na]+:455.0253,实验值:455.0255.2p (879 mg, 68%) was obtained by method II (The yield of the last step). 1 H NMR (400MHz, CDCl 3 ) δ 8.37 (d, J = 8.4 Hz, 1H), 7.94–7.80 (m, 2H ),7.72–7.57(m,2H),7.51(d,J=8.8Hz,2H),7.43–7.30(m,2H),7.25–7.19(m,1H),7.02(d,J=8.8Hz, 2H), 6.90 (d, J=7.6Hz, 2H). 13 C{ 1 H} NMR (101MHz, CDCl 3 )δ166.6,159.7,150.4,137.5,134.2,134.0,131.8,130.6,130.3,129.5,128.7,128.4,128.2,128.1,127.6,126.2,121.5,120.6,114.1,55.5.IR(neat):3057,1742, 1591,1514,1485,1459,1290,1257,1224,1177,1159,1088,1025,923,891,848,826,743,687,619,541,517,497cm -1 .HRMS (ESI) theoretical value C 24 H 17 O 3 BrNa[M+Na] + :455.0253, experimental value:455.0255.
通过方法II获得2q(723mg,51%).1H NMR(400MHz,CDCl3)δ8.40(d,J=8.4Hz,1H),8.02–7.84(m,2H),7.79–7.61(m,8H),7.55–7.45(m,2H),7.44–7.36(m,1H),7.35–7.26(m,2H),7.24–7.15(m,1H),6.86(d,J=8.4Hz,2H).13C{1H}NMR(101MHz,CDCl3)δ166.5,150.4,141.1,140.6,138.4,137.4,134.2,133.8,130.8,129.5,129.5,129.0,128.7,128.5,128.3(2C),127.7(2C),127.4,127.2,126.3,121.4,120.8.IR(neat):2920,1737,1590,1554,1483,1438,1438,1322,1261,1229,1181,1155,1123,1090,980,920,899,852,824,762,737,691,610,580,553,515,498,475cm-1.HRMS(DART)理论值C29H20O2Br[M+H]+:479.0641,实验值:479.0642.2q (723 mg, 51%) was obtained by method II. 1 H NMR (400 MHz, CDCl 3 ) δ 8.40 (d, J = 8.4 Hz, 1H), 8.02-7.84 (m, 2H), 7.79-7.61 (m, 8H), 7.55-7.45 (m, 2H), 7.44-7.36 (m, 1H), 7.35-7.26 (m, 2H), 7.24-7.15 (m, 1H), 6.86 (d, J = 8.4 Hz, 2H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.5,150.4,141.1,140.6,138.4,137.4,134.2,133.8,130.8,129.5,129.5,129.0,128.7,128.5,128.3(2C),127.7(2C),127.4,127.2,126. 3,121.4,120.8. IR (neat): 2920, 1737, 1590, 1554, 1483, 1438, 1438, 1322, 1261, 1229, 1181 , 1155, 1123, 1090, 980, 920, 899, 852, 824, 762, 737, 691, 610, 580, 553, 515, 498, 475 cm -1 . HRMS (DART) theoretical value for C 29 H 20 O 2 Br [M+H] + : 479.0641, found value: 479.0642.
通过方法II获得2r(957mg,76%).1H NMR(400MHz,CDCl3)δ8.38(d,J=8.4Hz,1H),7.93–7.81(m,2H),7.76–7.50(m,4H),7.42–7.12(m,5H),6.87(d,J=7.6Hz,2H).13C{1H}NMR(101MHz,CDCl3)δ166.3,162.9(d,J=248.5Hz),150.3,136.6,135.4(d,J=4.0Hz),134.1,133.8,130.9,130.8,129.6,128.8,128.4(2C),127.7,126.3,121.3,120.8,115.6(d,J=21.2Hz).19F NMR(376MHz,CDCl3)δ-113.69.IR(neat):3064,1742,1590,1485,1324,1253,1218,1188,1159,1096,982,923,890,823,740,710,687,619,578,519,493cm-1.HRMS(ESI)理论值C23H15O2BrF[M+H]+:421.0234,实验值:421.0227.2r (957 mg, 76%) was obtained by method II. 1 H NMR (400 MHz, CDCl 3 ) δ 8.38 (d, J = 8.4 Hz, 1H), 7.93-7.81 (m, 2H), 7.76-7.50 (m, 4H), 7.42-7.12 (m, 5H), 6.87 (d, J = 7.6 Hz, 2H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.3,162.9(d,J=248.5Hz),150.3,136.6,135.4(d,J=4.0Hz),134.1,133.8,130.9,130.8,129.6,128.8,128.4(2C),127.7,126.3,121.3,120. 8,115.6 (d, J=21.2Hz). 19 F NMR (376MHz, CDCl 3 )δ-113.69. IR(neat):3064,1742,1590,1485,1324,1253,1218,1188,1159,1096,982,923,890,823,740,710,687,619,578,519,493cm -1 . HRMS(ESI)theoretical value for C 23 H 15 O 2 BrF[M+H] + :421.0234, Observed value:421.0227.
通过方法II获得2s(851mg,65%).1H NMR(400MHz,CDCl3)δ8.37(d,J=8.4Hz,1H),7.93–7.80(m,2H),7.75–7.60(m,2H),7.56–7.44(m,4H),7.40–7.31(m,2H),7.27–7.19(m,1H),6.88(d,J=7.6Hz,2H).13C{1H}NMR(101MHz,CDCl3)δ166.2,150.3,137.9,136.4,134.5,134.1,133.5,130.9,130.4,129.6,128.8,128.8,128.5,128.5,128.4,127.7,126.4,121.3,120.9.IR(neat):1746,1591,1488,1441,1259,1222,1188,1159,1132,1079,1013,976,920,900,846,818,771,731,688,610,578,542,515,481,446cm-1.HRMS(DART)理论值C23H15O2BrCl[M+H]+:436.9938,实验值:436.9939.2s (851 mg, 65%) was obtained by method II. 1 H NMR (400 MHz, CDCl 3 ) δ 8.37 (d, J = 8.4 Hz, 1H), 7.93-7.80 (m, 2H), 7.75-7.60 (m, 2H), 7.56-7.44 (m, 4H), 7.40-7.31 (m, 2H), 7.27-7.19 (m, 1H), 6.88 (d, J = 7.6 Hz, 2H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.2,150.3,137.9,136.4,134.5,134.1,133.5,130.9,130.4,129.6,128.8,128.8,128.5,128.5,128.4,127.7,126.4,121.3,120.9.IR(neat):1746,1591,1488,1441,1259,1222,1188,1159,1132,1079,1013,976,920,900,846,818,771,731,688,610,578,542,515,481,446cm -1 .HRMS(DART)theoretical valueC 23 H 15 O 2 BrCl[M+H] + :436.9938, Observational value:436.9939.
通过方法II获得2t(742mg,56%).1H NMR(400MHz,CDCl3)δ8.40(d,J=8.4Hz,1H),8.14–8.02(m,2H),7.97–7.84(m,2H),7.78–7.61(m,4H),7.39–7.29(m,2H),7.25–7.19(m,1H)6.92–6.83(m,2H),2.67(s,3H).13C{1H}NMR(101MHz,CDCl3)δ197.6,166.1,150.3,144.1,136.6,136.5,134.0,133.3,131.1,129.6,129.3,128.9,128.7,128.6(2C),128.5,127.7,126.4,121.2(2C),26.8.IR(neat):2987,1745,1683,1590,1484,1435,1403,1356,1256,1222,1182,1158,1092,1070,1015,957,920,892,852,825,735,685,599,579,541,516,500,483cm-1.HRMS(ESI)理论值C25H18O3Br[M+H]+:445.0439,实验值:445.0430.2t (742 mg, 56%) was obtained by method II. 1 H NMR (400 MHz, CDCl 3 ) δ 8.40 (d, J = 8.4 Hz, 1H), 8.14-8.02 (m, 2H), 7.97-7.84 (m, 2H), 7.78-7.61 (m, 4H), 7.39-7.29 (m, 2H), 7.25-7.19 (m, 1H) 6.92-6.83 (m, 2H), 2.67 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ197.6,166.1,150.3,144.1,136.6,136.5,134.0,133.3,131.1,129.6,129.3,128.9,128.7,128.6(2C),128.5,127.7,126.4,121.2(2C),26.8 .IR(neat ):2987,1745,1683,1590,1484,1435,1403,1356,1256,1222,1182,1158,1092,1070,1015,957,920,892,852,825,735,685,599,579,541,516,500,483cm -1 .HRMS (ESI) theoretical value for C 25 H 18 O 3 Br [M+H] + :445.0439, found value:445.0430.
通过方法II获得2u(952mg,73%).1H NMR(400MHz,CDCl3)δ8.40(d,J=8.4Hz,1H),8.17(d,J=8.4Hz,2H),7.95–7.85(m,2H),7.75–7.60(m,4H),7.38–7.30(m,2H),7.25–7.19(m,1H),6.92–6.84(m,2H),3.97(s,3H).13C{1H}NMR(101MHz,CDCl3)δ166.8,166.1,150.3,144.0,136.6,134.1,133.3,131.0,129.9,129.6,129.1,128.9,128.7,128.6,128.5,127.7,126.3,121.2,121.1,52.3.IR(neat):3059,2916,2853,1739,1591,1487,1431,1374,1263,1224,1188,1159,1105,1021,974,921,896,828,742,688,503cm-1.HRMS(ESI)理论值C25H18O4Br[M+H]+:461.0383,实验值:461.0384.2u (952 mg, 73%) was obtained by method II. 1 H NMR (400 MHz, CDCl 3 ) δ 8.40 (d, J = 8.4 Hz, 1H), 8.17 (d, J = 8.4 Hz, 2H), 7.95-7.85 (m, 2H), 7.75-7.60 (m, 4H), 7.38-7.30 (m, 2H), 7.25-7.19 (m, 1H), 6.92-6.84 (m, 2H), 3.97 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.8,166.1,150.3,144.0,136.6,134.1,133.3,131.0,129.9,129.6,129.1,128.9,128.7,128.6,128.5,127.7,126.3,121.2,121.1,52.3.IR(neat):3059,2916,2853,1739,1591,1487,1431,1374,1263,1224,1188,1159,1105,1021,974,921,896,828,742,688,503cm -1 .HRMS(ESI)theoretical value for C 25 H 18 O 4 Br[M+H] + :461.0383, Observational value:461.0384.
通过方法II获得2v(812mg,58%).1H NMR(400MHz,CDCl3)δ8.39(d,J=8.4Hz,1H),7.94–7.83(m,2H),7.81–7.61(m,6H),7.33(t,J=7.8Hz,2H),7.28–7.18(m,1H),6.79(d,J=8.4Hz,2H).13C{1H}NMR(101MHz,CDCl3)δ166.1,150.2,143.0,136.2,134.0,133.3,131.1,130.4(q,J=33.3Hz),129.5(2C),128.8,128.7,128.6,128.5,127.7,126.4,125.5(q,J=4.0Hz),124.1(q,J=272.7Hz),121.1(2C).19F NMR(376MHz,CDCl3)δ-62.56.IR(neat):3066,1740,1590,1484,1444,1321,1252,1219,1182,1161,1124,1098,1065,1017,984,926,897,851,828,768,746,720,689,613,587,518cm-1.HRMS(DART)理论值C24H15O2BrF3[M+H]+:471.0202,实验值:471.0199.2v (812 mg, 58%) was obtained by method II. 1 H NMR (400 MHz, CDCl 3 ) δ 8.39 (d, J = 8.4 Hz, 1H), 7.94-7.83 (m, 2H), 7.81-7.61 (m, 6H), 7.33 (t, J = 7.8 Hz, 2H), 7.28-7.18 (m, 1H), 6.79 (d, J = 8.4 Hz, 2H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ166.1,150.2,143.0,136.2,134.0,133.3,131.1,130.4(q,J=33.3Hz),129.5(2C),128.8,128.7,128.6,128.5,127.7,126.4,125.5(q,J=4.0Hz) ,124.1(q,J=272.7Hz),121.1(2C). 19 F NMR(376MHz, CDCl 3 )δ-62.56. IR(neat):3066,1740,1590,1484,1444,1321,1252,1219,1182,1161,1124,1098,1065,1017,984,926,897,851,828,768,746,720,689,613,587,518cm -1 . HRMS(DART)theoretical value for C 24 H 15 O 2 BrF 3 [M+H] + :471.0202, Observed value:471.0199.
通过方法II获得2w(723mg,51%).1H NMR(400MHz,CDCl3)δ8.41(d,J=8.4Hz,1H),8.02–7.86(m,2H),7.83(s,1H),7.77–7.51(m,7H),7.50–7.13(m,6H),6.81(d,J=8.4Hz,2H).13C{1H}NMR(101MHz,CDCl3)δ166.5,150.4,141.6,140.6,139.9,137.7,134.2,133.8,130.9,129.5,129.1,128.9,128.8,128.5,128.4,128.3,128.0,127.9,127.7,127.6,127.3,126.9,126.2,121.4,120.8.IR(neat):3052,1744,1590,1484,1260,1219,1182,1157,1130,1096,984,901,855,835,765,737,703,685,579,560,520,495,468cm-1.HRMS(DART)理论值C29H20O2Br[M+H]+:479.0641,实验值:479.0645.2w (723 mg, 51%) was obtained by method II. 1 H NMR (400 MHz, CDCl 3 ) δ 8.41 (d, J = 8.4 Hz, 1H), 8.02-7.86 (m, 2H), 7.83 (s, 1H), 7.77-7.51 (m, 7H), 7.50-7.13 (m, 6H), 6.81 (d, J = 8.4 Hz, 2H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ166.5,150.4,141.6,140.6,139.9,137.7,134.2,133.8,130.9,129.5,129.1,128.9,128.8,128.5,128.4,128.3,128.0,127.9,127.7,127.6, 127.3,126. 9,126.2,121.4,120.8. IR(neat):3052,1744,1590,1484,1260,1219,1182,1157,1130,1096,984,901,855,835,765,737,703,685,579,560,520,495,468cm -1 . HRMS(DART)theoretical value for C 29 H 20 O 2 Br[M+H] + :479.0641, Observation value:479.0645.
通过方法II获得2x(852mg,66%).1H NMR(400MHz,CDCl3)δ8.37(d,J=8.4Hz,1H),7.92–7.83(m,2H),7.73–7.57(m,2H),7.45–7.30(m,3H),7.25–7.10(m,3H),7.05–6.97(m,1H),6.88(d,J=7.6Hz,2H),3.82(s,3H).13C{1H}NMR(101MHz,CDCl3)δ166.4,159.7,150.5,140.8,137.7,134.2,133.7,130.8,129.7,129.5,128.7,128.5,128.3(2C),127.7,126.2,121.5,121.5,120.8,114.5,114.1,55.4.IR(neat):1744,1578,1488,1452,1325,1284,1258,1233,1177,1157,1132,1082,1047,987,923,905,873,825,801,772,735,719,686,625,567,516,498,472cm-1.HRMS(DART)理论值C24H18O3Br[M+H]+:433.0434,实验值:433.0433.2x (852 mg, 66%) was obtained by method II. 1 H NMR (400 MHz, CDCl 3 ) δ 8.37 (d, J = 8.4 Hz, 1H), 7.92-7.83 (m, 2H), 7.73-7.57 (m, 2H), 7.45-7.30 (m, 3H), 7.25-7.10 (m, 3H), 7.05-6.97 (m, 1H), 6.88 (d, J = 7.6 Hz, 2H), 3.82 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.4,159.7,150.5,140.8,137.7,134.2,133.7,130.8,129.7,129.5,128.7,128.5,128.3(2C),127.7,126.2,121.5,121.5,120.8,114.5,11 4.1,55.4.IR (neat):1744,1578,1488,1452,1325,1284,1258,1233,1177,1157,1132,1082,1047,987,923,905,873,825,801,772,735,719,686,625,567,516,498,472cm -1 .HRMS (DART) theoretical value for C 24 H 18 O 3 Br [M+H] + :433.0434, found value:433.0433.
通过方法II获得2y(945mg,72%).1H NMR(400MHz,CDCl3)δ8.39(d,J=8.0Hz,1H),7.92–7.82(m,2H),7.76–7.60(m,2H),7.39(t,J=8.0Hz,2H),7.28–7.22(m,1H),7.15(d,J=6.0Hz,2H),7.01(d,J=8.0Hz,2H),6.92(t,J=8.8Hz,1H).13C{1H}NMR(101MHz,CDCl3)166.0,164.1(d,J=13.1Hz),161.7(d,J=13.1Hz),150.3,142.5(t,J=10.1Hz),135.3(t,J=2.5Hz),134.0,133.1,131.2,130.0,128.9,128.8,128.6(2C),127.7,126.5,121.2,112.3(dd,J=26.3Hz,11.Hz),103.7(t,J=25.3Hz).19F NMR(376MHz,CDCl3)δ-108.81.IR(neat):3067,1744,1620,1589,1486,1451,1340,1258,1216,1186,1092,1020,983,884,867,844,771,739,684,619,574,506,470cm-1.HRMS(DART)理论值C23H14O2BrF2[M+H]+:439.0140,实验值:439.0139.Obtained 2y (945mg, 72%) by method II. 1 H NMR (400MHz, CDCl 3 ) δ 8.39 (d, J = 8.0Hz, 1H), 7.92–7.82 (m, 2H), 7.76–7.60 (m, 2H),7.39(t,J=8.0Hz,2H),7.28–7.22(m,1H),7.15(d,J=6.0Hz,2H),7.01(d,J=8.0Hz,2H),6.92( t, J=8.8Hz, 1H). 13 C{ 1 H} NMR (101MHz, CDCl 3 )166.0,164.1(d,J=13.1Hz),161.7(d,J=13.1Hz),150.3,142.5(t,J=10.1Hz),135.3(t,J=2.5Hz),134.0,133.1,131.2 ,130.0,128.9,128.8,128.6(2C),127.7,126.5,121.2,112.3(dd,J=26.3Hz,11.Hz),103.7(t,J=25.3Hz). 19 F NMR (376MHz, CDCl 3 )δ-108.81. IR(neat):3067,1744,1620,1589,1486,1451,1340,1258,1216,1186,1092,1020,983,884,867,844,771,739,684,619,574,506,470cm -1 . HRMS(DART)theoretical value C 23 H 14 O 2 BrF 2 [M+H] + :439.0140, Observation:439.0139.
通过方法II获得2z(948mg,70%).1H NMR(400MHz,CDCl3)δ8.40(d,J=8.4Hz,1H),8.06(s,1H),7.98–7.85(m,5H),7.74–7.60(m,3H),7.57–7.49(m,2H),7.27–7.19(m,2H),7.17–7.10(m,1H),6.84–6.77(m,2H).13C{1H}NMR(101MHz,CDCl3)δ166.5,150.4,137.7,136.8,134.2,133.9,133.2,132.9,130.8,129.4,129.1,128.5,128.4(2C),128.3(2C),128.2,127.8,127.7,126.9,126.7,126.6,126.2,121.4,120.9.IR(neat):3050,2389,1744,1588,1483,1444,1254,1215,1182,1157,1088,991,927,908,890,820,743,692,582,516,477cm-1.HRMS(DART)理论值C27H18O2Br[M+H]+:453.0485,实验值:453.0476.2z (948 mg, 70%) was obtained by method II. 1 H NMR (400 MHz, CDCl 3 ) δ 8.40 (d, J=8.4 Hz, 1H), 8.06 (s, 1H), 7.98-7.85 (m, 5H), 7.74-7.60 (m, 3H), 7.57-7.49 (m, 2H), 7.27-7.19 (m, 2H), 7.17-7.10 (m, 1H), 6.84-6.77 (m, 2H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ166.5,150.4,137.7,136.8,134.2,133.9,133.2,132.9,130.8,129.4,129.1,128.5,128.4(2C),128.3(2C),128.2,127.8,127.7,126.9,126. 7,12 6.6, 126.2, 121.4, 120.9. IR (neat): 3050, 2389, 1744, 1588, 1483, 1444, 1254 , 1215, 1182, 1157, 1088, 991, 927, 908, 890, 820, 743, 692, 582, 516, 477 cm -1 . HRMS (DART) theoretical value for C 27 H 18 O 2 Br [M+H] + : 453.0485, found value: 453.0476.
通过方法II获得2ab(892mg,73%).1H NMR(400MHz,CDCl3)δ8.31(d,J=8.4Hz,1H),7.81(d,J=7.6Hz,1H),7.71(s,1H),7.65–7.54(m,2H),7.50–7.40(m,2H),7.30–7.25(m,3H),6.09–5.69(m,1H),2.53–2.34(m,2H),2.30–2.18(m,2H),1.87–1.66(m,4H).13C{1H}NMR(101MHz,CDCl3)δ166.6,150.8,140.2,136.8,134.2,133.7,130.5,129.6,128.7,128.2,127.9,127.8,127.5,126.8,126.2,121.5,120.2,30.4,25.6,23.1,21.8.IR(neat):2919,1733,1590,1554,1485,1437,1321,1259,1235,1211,1175,1153,1122,1075,1045,979,953,922,884,820,739,691,612,579,548,498,472cm-1.HRMS(ESI)理论值C23H20O2Br[M+H]+:407.9641,实验值:407.0641.2ab (892 mg, 73%) was obtained by method II. 1 H NMR (400 MHz, CDCl 3 ) δ 8.31 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.71 (s, 1H), 7.65-7.54 (m, 2H), 7.50-7.40 (m, 2H), 7.30-7.25 (m, 3H), 6.09-5.69 (m, 1H), 2.53-2.34 (m, 2H), 2.30-2.18 (m, 2H), 1.87-1.66 (m, 4H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ166.6,150.8,140.2,136.8,134.2,133.7,130.5,129.6,128.7,128.2,127.9,127.8,127.5,126.8,126.2,121.5,120.2,30.4,25.6,23.1,21. 8.IR(n eat):2919,1733,1590,1554,1485,1437,1321,1259,1235,1211,1175,1153,1122,1075,1045,979,953,922,884,820,739,691,612,579,548,498,472cm -1 .HRMS (ESI) theoretical value for C 23 H 20 O 2 Br [M+H] + :407.9641, found value:407.0641.
通过方法I获得2ab(1.42g,73%).1H NMR(400MHz,CDCl3)δ9.03(d,J=4.0Hz,1H),8.82(d,J=8.4Hz,1H),8.18(q,J=8.8Hz,2H),7.64–7.58(m,1H),7.52–7.41(m,2H),7.37–7.28(m,3H).13C{1H}NMR(101MHz,CDCl3)δ165.1,152.6,150.7,149.5,137.1,130.9,129.7,129.5,128.3,126.4,123.1,123.1,121.6,121.5.IR(neat):2987,1747,1586,1552,1484,1452,1409,1325,1258,1223,1177,1163,1112,1036,1018,968,927,900,845,810,793,752,691,667,616,569,537,511,488,461cm-1.HRMS(DART)理论值C23H20O2Br[M+H]+:327.9968,实验值:327.99642ab (1.42 g, 73%) was obtained by Method I. 1 H NMR (400 MHz, CDCl 3 ) δ 9.03 (d, J = 4.0 Hz, 1H), 8.82 (d, J = 8.4 Hz, 1H), 8.18 (q, J = 8.8 Hz, 2H), 7.64-7.58 (m, 1H), 7.52-7.41 (m, 2H), 7.37-7.28 (m, 3H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ165.1,152.6,150.7,149.5,137.1,130.9,129.7,129.5,128.3,126.4,123.1,123.1,121.6,121.5. IR(neat):2987,1747,1586,1552,1484,1452,1409,1325,1258,1223,1177,1163,1112,1036,1018,968,927,900,845,810,793,752,691,667,616,569,537,511,488,461cm -1 . HRMS(DART)theoretical value for C 23 H 20 O 2 Br[M+H] + :327.9968, experimental value:327.9964
向一个配有搅拌子的250mL的圆底瓶中加入2-萘酚(50mmol,1.0equiv),乙腈(100mL),N-碘代丁二酰亚胺(60mmol,1.2equiv),对甲苯磺酸(50mmol,1.0equiv)。反应混合物在室温搅拌4h。反应结束后,用饱和亚硫酸氢钠溶液淬灭反应,分液,水相用二氯甲烷萃取。合并有机相,有机相用无水硫酸镁干燥,过滤,滤液用旋蒸除去溶剂得到粗产品1-碘-2萘酚。向一个干燥的配有搅拌子的250mL圆底瓶中加入粗的1-碘-2萘酚,碳酸钾(100mmol,2.0equiv),溴化苄(62.5mmol,1.25equiv),DMF(100mL)。反应混合物升温至70℃反应,薄板层析色谱法监测。反应结束后,反应混合物用水和乙酸乙酯稀释,分液,有机相用无水硫酸镁干燥,过滤,滤液通过旋蒸除去溶剂。浓缩液用快速柱层析分离纯化得到底物6a(15.2g,84%).1H NMR(400MHz,CDCl3)δ8.17(d,J=8.4Hz,1H),7.85–7.67(m,2H),7.65–7.50(m,3H),7.46–7.31(m,4H),7.20(d,J=8.8Hz,1H),5.30(s,2H).Add 2-naphthol (50 mmol, 1.0 equiv), acetonitrile (100 mL), N-iodosuccinimide (60 mmol, 1.2 equiv), and p-toluenesulfonic acid (50 mmol, 1.0 equiv) to a 250 mL round-bottom flask equipped with a stirrer. The reaction mixture was stirred at room temperature for 4 h. After the reaction was completed, the reaction was quenched with a saturated sodium bisulfite solution, the liquid was separated, and the aqueous phase was extracted with dichloromethane. The organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the filtrate was evaporated to remove the solvent to obtain the crude product 1-iodo-2-naphthol. Add crude 1-iodo-2-naphthol, potassium carbonate (100 mmol, 2.0 equiv), benzyl bromide (62.5 mmol, 1.25 equiv), and DMF (100 mL) to a dry 250 mL round-bottom flask equipped with a stirrer. The reaction mixture was heated to 70°C for reaction and monitored by thin plate chromatography. After the reaction, the reaction mixture was diluted with water and ethyl acetate, separated, the organic phase was dried over anhydrous magnesium sulfate, filtered, and the filtrate was evaporated to remove the solvent. The concentrate was separated and purified by flash column chromatography to obtain substrate 6a (15.2 g, 84%). 1 H NMR (400 MHz, CDCl 3 ) δ8.17 (d, J=8.4 Hz, 1H), 7.85–7.67 (m, 2H), 7.65–7.50 (m, 3H), 7.46–7.31 (m, 4H), 7.20 (d, J=8.8 Hz, 1H), 5.30 (s, 2H).
向一个配有搅拌子的100mL的三口瓶中加入6-环丙基-1-溴-2-苄氧基萘(3.9mmol,1.0quiv),THF(20mL),抽换氮气后在-78℃下低温搅拌,随后加入正丁基锂(4.7mmol,1.2equiv)。反应混合物在-78℃下搅拌1h,随后向其中加入碘(7.8mmol,2.0equiv)。反应混合物在室温下反应3h。反应结束后,加入饱和硫代硫酸钠溶液淬灭反应,分液,水相用(3×100mL)的乙酸乙酯萃取。合并有机相,有机相用无水硫酸镁干燥,过滤,滤液用旋蒸浓缩,浓缩液通过快速柱层析纯化分离得到产物6b(921mg,59%).1H NMR(400MHz,CDCl3)δ8.03(d,J=8.8Hz,1H),7.64(d,J=8.8Hz,1H),7.53(d,J=7.2Hz,2H),7.45–7.27(m,4H),7.26–7.20(m,1H),7.13(d,J=8.8Hz,1H),5.24(s,2H),2.09–1.94(m,1H),1.04–0.94(m,2H),0.81–0.73(m,2H).13C{1H}NMR(101MHz,CDCl3)δ155.2,140.2,136.8,134.1,131.4,130.2,129.5,128.6,128.0,127.3,126.9,124.1,115.0,89.0,72.0,15.2,9.2.IR(neat):3029,2106,1808,1594,1495,1450,1380,1350,1319,1233,1164,1138,1079,1044,1015,967,942,897,855,810,759,733,693,663,638,533,508,467,414cm-1.HRMS(DART)理论值C20H17OI[M+H]+:400.0319,实验值:400.0316.6-cyclopropyl-1-bromo-2-benzyloxynaphthalene (3.9 mmol, 1.0 equiv) and THF (20 mL) were added to a 100 mL three-necked flask equipped with a stirrer. After nitrogen was purged, the mixture was stirred at -78 °C at low temperature, and then n-butyl lithium (4.7 mmol, 1.2 equiv) was added. The reaction mixture was stirred at -78 °C for 1 h, and then iodine (7.8 mmol, 2.0 equiv) was added thereto. The reaction mixture was reacted at room temperature for 3 h. After the reaction was completed, a saturated sodium thiosulfate solution was added to quench the reaction, and the liquid was separated, and the aqueous phase was extracted with ethyl acetate (3×100 mL). The organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated by rotary evaporation. The concentrate was purified by flash column chromatography to obtain product 6b (921 mg, 59%). 1 H NMR (400 MHz, CDCl 3 ) δ8.03 (d, J = 8.8 Hz, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.53 (d, J = 7.2 Hz, 2H), 7.45–7.27 (m, 4H), 7.26–7.20 (m, 1H), 7.13 (d, J = 8.8 Hz, 1H), 5.24 (s, 2H), 2.09–1.94 (m, 1H), 1.04–0.94 (m, 2H), 0.81–0.73 (m, 2H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ155.2,140.2,136.8,134.1,131.4,130.2,129.5,128.6,128.0,127.3,126.9,124.1,115.0,89.0,72.0,15.2,9.2.IR(neat):3029,2106,1808,15 -1 .HRMS (DART) theoretical value C 20 H 17 OI [M+H] + : 400.0319, found value: 400.0316.
向一个配有搅拌子的100mL的三口瓶中加入6-环己基-1-溴-2-苄氧基萘(4.0mmol,1.0quiv),THF(20mL),抽换氮气后在-78℃下低温搅拌,随后加入正丁基锂(4.8mmol,1.2equiv)。反应混合物在-78℃下搅拌1h,随后向其中加入碘(8.0mmol,2.0equiv)。反应混合物在室温下反应3h。反应结束后,加入饱和硫代硫酸钠溶液淬灭反应,分液,水相用(3×100mL)的乙酸乙酯萃取。合并有机相,有机相用无水硫酸镁干燥,过滤,滤液用旋蒸浓缩,浓缩液通过快速柱层析纯化分离得到产物6c(922mg,52%).1H NMR(400MHz,CDCl3)δ8.07(d,J=8.8Hz,1H),7.69(d,J=8.8Hz,1H),7.56–7.47(m,3H),7.45–7.27(m,4H),7.15(d,J=9.2Hz,1H),5.27(s,2H),2.64(t,J=11.2Hz,1H),2.05–1.68(m,5H),1.62–1.21(m,5H).13C{1H}NMR(101MHz,CDCl3)δ155.3,144.3,136.8,134.3,131.2,130.3,129.9,128.6,128.4,128.0,127.3,124.8,114.9,89.0,72.0,44.2,34.4,26.9,26.2.IR(neat):3668,3023,2927,2851,2319,2123,1806,1593,1492,1448,1376,1335,1305,1262,1240,1204,1175,1139,1084,1062,1026,971,938,897,867,846,819,791,772,758,725,692,667,651,609,547,515,465,413cm-1.HRMS(DART)理论值C23H23OI[M+H]+:443.0872,实验值:443.0863.6-cyclohexyl-1-bromo-2-benzyloxynaphthalene (4.0 mmol, 1.0 equiv) and THF (20 mL) were added to a 100 mL three-necked flask equipped with a stirrer. After nitrogen was purged, the mixture was stirred at -78 °C at low temperature, and then n-butyl lithium (4.8 mmol, 1.2 equiv) was added. The reaction mixture was stirred at -78 °C for 1 h, and then iodine (8.0 mmol, 2.0 equiv) was added thereto. The reaction mixture was reacted at room temperature for 3 h. After the reaction was completed, a saturated sodium thiosulfate solution was added to quench the reaction, the liquid was separated, and the aqueous phase was extracted with ethyl acetate (3×100 mL). The organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated by rotary evaporation. The concentrate was purified by flash column chromatography to obtain product 6c (922 mg, 52%). 1 H NMR (400 MHz, CDCl 3 ) δ8.07 (d, J = 8.8 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.56–7.47 (m, 3H), 7.45–7.27 (m, 4H), 7.15 (d, J = 9.2 Hz, 1H), 5.27 (s, 2H), 2.64 (t, J = 11.2 Hz, 1H), 2.05–1.68 (m, 5H), 1.62–1.21 (m, 5H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ155.3,144.3,136.8,134.3,131.2,130.3,129.9,128.6,128.4,128.0,127.3,124.8,114.9,89.0,72.0,44.2,34.4,26.9,26.2.IR(neat):3668,3 023,2927,2851,2319,2123 ,1806,1593,1492,1448,1376,1335,1305,1262,1240,1204,1175,1139,1084,1062,1026,971,938,897,867,846,819,791,772,758,725,692,667,651,609,547,515,465,413cm -1 .HRMS (DART) theoretical value for C 23 H 23 OI [M+H] + : 443.0872, observed value: 443.0863.
一个干燥的配有搅拌子的500mL的圆底瓶中加入搅拌子,加入6-醛基-2-苄氧基萘(76mmol,1.0equiv),DMF(100mL),MeCN(100mL),对甲苯磺酸(76mmol,1.0equiv)。在0℃下向反应中加入N-碘代丁二酰亚胺(83.7mmol,1.1equiv),加料完成后室温下反应过夜。反应结束后反应液用饱和硫代硫酸钠溶液淬灭,加入二氯甲烷稀释反应液,分液,有机相用饱和氯化铵溶液水洗。合并有机相,有机相用无水硫酸镁干燥,过滤,旋蒸浓缩得到S11(13.5g,34%)。A dry 500 mL round-bottom flask equipped with a stirrer was added with a stirrer, and 6-formyl-2-benzyloxynaphthalene (76 mmol, 1.0 equiv), DMF (100 mL), MeCN (100 mL), and p-toluenesulfonic acid (76 mmol, 1.0 equiv) were added. N-iodosuccinimide (83.7 mmol, 1.1 equiv) was added to the reaction at 0°C, and the reaction was allowed to react overnight at room temperature after the addition was completed. After the reaction was completed, the reaction solution was quenched with a saturated sodium thiosulfate solution, and the reaction solution was diluted with dichloromethane, separated, and the organic phase was washed with a saturated ammonium chloride solution. The organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and concentrated by rotary evaporation to obtain S11 (13.5 g, 34%).
向一个干燥的配有搅拌子的圆底瓶中加入S11(15mmol,1.0equiv),乙醇(100mL)并且置于冰浴搅拌。在0℃下向反应混合物中加入硼氢化钠(30mmol,2.4equiv),投料完成后将其置于室温反应过夜。反应结束后,用饱和氯化铵溶液淬灭反应,旋蒸除去乙醇,除去乙醇的混合物用二氯甲烷萃取,分液,合并有机相,有机相用无水硫酸镁干燥,滤液通过旋蒸除去溶剂,得到产物粗品S12。S11 (15 mmol, 1.0 equiv) and ethanol (100 mL) were added to a dry round-bottomed bottle equipped with a stirrer and stirred in an ice bath. Sodium borohydride (30 mmol, 2.4 equiv) was added to the reaction mixture at 0°C. After the addition was completed, the mixture was left to react overnight at room temperature. After the reaction was completed, the reaction was quenched with saturated ammonium chloride solution, and the ethanol was removed by rotary evaporation. The mixture after the ethanol was removed was extracted with dichloromethane, separated, and the organic phases were combined. The organic phases were dried over anhydrous magnesium sulfate, and the filtrate was evaporated to remove the solvent to obtain the crude product S12.
向一个干燥的配有搅拌子的250mL圆底瓶中加入S12,二氯甲烷(100mL),吡啶(30mmol,2.0equiv),在0℃下向其中加入醋酸酐(22.5mmol,1.5equiv)。反应混合物在室温下搅拌过夜。反应结束后,旋蒸除去混合物中的溶剂,浓缩液用快速柱层析分离纯化得到产物6d(3.9g,60%).White solid,m.p=79.5–80.7℃.1H NMR(400MHz,CDCl3)δ8.17(d,J=8.4Hz,1H),7.82–7.67(m,2H),7.61–7.47(m,3H),7.46–7.30(m,3H),7.22(d,J=8.8Hz,1H),5.31(s,2H),5.26(s,2H),2.13(s,3H).13C{1H}NMR(101MHz,CDCl3)δ170.9,156.2,136.5,135.5,132.1,131.9,130.3,129.7,128.6,128.2,128.0,127.7,127.23,115.0,88.8,71.9,66.0,21.1.IR(neat):2960,1729,1630,1593,1494,1458,1377,1330,1259,1216,1167,1081,1035,959,928,892,867,843,814,799,779,753,720,699,645,611,541,517,493,468,441cm-1.HRMS(DART)理论值C20H17O3I[M+H]+:432.0217,实验值:432.0212.In a dry 250 mL round-bottom bottle equipped with a stirrer, S12, dichloromethane (100 mL), pyridine (30 mmol, 2.0 equiv) were added, and acetic anhydride (22.5 mmol, 1.5 equiv) was added thereto at 0° C. The reaction mixture was stirred at room temperature overnight. After the reaction, the solvent in the mixture was removed by rotary evaporation, and the concentrate was separated and purified by flash column chromatography to obtain product 6d (3.9 g, 60%). White solid, mp = 79.5-80.7 °C. 1 H NMR (400 MHz, CDCl 3 ) δ 8.17 (d, J = 8.4 Hz, 1H), 7.82-7.67 (m, 2H), 7.61-7.47 (m, 3H), 7.46-7.30 (m, 3H), 7.22 (d, J = 8.8 Hz, 1H), 5.31 (s, 2H), 5.26 (s, 2H), 2.13 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ170.9,156.2,136.5,135.5,132.1,131.9,130.3,129.7,128.6,128.2,128.0,127.7,127.23,115.0,88.8,71.9,66.0,21.1.IR(neat):2960,1729 ,1 630,1593,1494,1458,1377,1330,1259,1216,1167,1081,1035,959,928,892,867,843,814,799,779,753,720,699,645,611,541,517,493,468,441 cm -1 . HRMS (DART) theoretical value for C 20 H 17 O 3 I [M+H] + : 432.0217, found value: 432.0212.
一个干燥的配有搅拌子的250mL的圆底瓶中加入甲基三苯基溴化磷(20mmol,2.0equiv),四氢呋喃(100mL),在0℃搅拌下向其中加入叔丁醇钾(15mmol,1.5equiv),并且继续搅拌15min,15min后向其中加入S11(10mmol,1.0equiv)。投料完成后,将反应混合物在室温下反应4h。反应结束后,用水淬灭反应,分液,水相用(3×50mL)的乙酸乙萃取,合并有机相,有机相用无水硫酸镁干燥,过滤。将滤液旋蒸除去溶剂,浓缩液通过快速柱层析分离得到产物6e(1.73g,45%).White solid,m.p=118.4–119.7℃.1H NMR(400MHz,CDCl3)δ8.08(d,J=8.8Hz,1H),7.74–7.47(m,5H),7.43–7.28(m,3H),7.12(d,J=8.8Hz,1H),6.83(dd,J=17.6,10.8Hz,1H),5.83(d,J=17.6Hz,1H),5.31(d,J=10.8Hz,1H),5.24(s,2H).13C{1H}NMR(101MHz,CDCl3)δ155.9,136.6,136.3,135.5,133.8,131.6,130.4,130.1,128.6,128.0,127.2,126.5,125.5,114.9,114.3,88.9,71.9.IR(neat):3660,2985,2319,1816,1587,1493,1448,1384,1334,1264,1227,1171,1133,1078,1051,983,904,884,819,791,760,734,692,642,532,505,467,413cm-1.HRMS(DART)理论值C19H16OI[M+H]+:387.0240,实验值:387.0237.Methyltriphenylphosphonium bromide (20 mmol, 2.0 equiv) and tetrahydrofuran (100 mL) were added to a dry 250 mL round-bottom flask equipped with a stirrer. Potassium tert-butoxide (15 mmol, 1.5 equiv) was added thereto under stirring at 0°C, and stirring was continued for 15 min. After 15 min, S11 (10 mmol, 1.0 equiv) was added thereto. After the addition of the materials, the reaction mixture was reacted at room temperature for 4 h. After the reaction was completed, the reaction was quenched with water, the liquid was separated, the aqueous phase was extracted with ethyl acetate (3×50 mL), the organic phases were combined, the organic phases were dried over anhydrous magnesium sulfate, and filtered. The filtrate was evaporated to remove the solvent, and the concentrate was separated by flash column chromatography to obtain product 6e (1.73 g, 45%). White solid, mp = 118.4-119.7 °C. 1 H NMR (400 MHz, CDCl 3 ) δ 8.08 (d, J = 8.8 Hz, 1H), 7.74-7.47 (m, 5H), 7.43-7.28 (m, 3H), 7.12 (d, J = 8.8 Hz, 1H), 6.83 (dd, J = 17.6, 10.8 Hz, 1H), 5.83 (d, J = 17.6 Hz, 1H), 5.31 (d, J = 10.8 Hz, 1H), 5.24 (s, 2H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ155.9,136.6,136.3,135.5,133.8,131.6,130.4,130.1,128.6,128.0,127.2,126.5,125.5,114.9,114.3,88.9,71.9.IR(neat):3660,2985,2319 ,1816,1587,1493,1448,1384,1334,1264,1227,1171,1133,1078,1051,983,904,884,819,791,760,734,692,642,532,505,467,413cm -1 .HRMS (DART) theoretical value C 19 H 16 OI [M+H] + : 387.0240, observed value: 387.0237.
向一个配有搅拌子的100mL的三口瓶中加入6-甲氧基-1-溴-2-苄氧基萘(5mmol,1.0equiv),THF(20mL),抽换氮气后在-78℃下低温搅拌,随后加入正丁基锂(6mmol,1.2equiv)。反应混合物在-78℃下搅拌1h,随后向其中加入碘(10mmol,2.0equiv)。反应混合物在室温下反应3h。反应结束后,加入饱和硫代硫酸钠溶液淬灭反应,分液,水相用(3×100mL)的乙酸乙酯萃取。合并有机相,有机相用无水硫酸镁干燥,过滤,滤液用旋蒸浓缩,浓缩液通过快速柱层析纯化分离得到产物6f(903mg,47%).Yellow solid,m.p=123.6–125.5℃.1H NMR(400MHz,CDCl3)δ8.07(d,J=9.2Hz,1H),7.64(d,J=8.9Hz,1H),7.55(d,J=7.5Hz,2H),7.44–7.28(m,3H),7.26–7.10(m,3H),7.04(d,J=2.2Hz,1H),5.24(s,2H),3.90(s,3H).13C{1H}NMR(101MHz,CDCl3)δ156.7,154.4,136.8,133.0,131.1,130.9,128.8,128.6,128.0,127.3,120.7,115.5,106.0,89.3,72.2,55.5.IR(neat):3654,2319,1812,1626,1595,1496,1452,1370,1344,1248,1228,1195,1167,1124,1080,1059,1025,970,937,877,845,813,792,732,693,646,575,548,506,464,415cm-1.HRMS(DART)理论值C18H16O2I[M+H]+:391.0189,实验值:391.0185.6-methoxy-1-bromo-2-benzyloxynaphthalene (5mmol, 1.0equiv) and THF (20mL) were added to a 100mL three-necked flask equipped with a stirrer. After nitrogen was purged, the mixture was stirred at -78°C, and then n-butyl lithium (6mmol, 1.2equiv) was added. The reaction mixture was stirred at -78°C for 1h, and then iodine (10mmol, 2.0equiv) was added thereto. The reaction mixture was reacted at room temperature for 3h. After the reaction was completed, a saturated sodium thiosulfate solution was added to quench the reaction, the liquid was separated, and the aqueous phase was extracted with ethyl acetate (3×100mL). The organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated by rotary evaporation. The concentrate was purified by flash column chromatography to obtain product 6f (903 mg, 47%). Yellow solid, mp = 123.6-125.5 °C. 1 H NMR (400 MHz, CDCl 3 ) δ 8.07 (d, J = 9.2 Hz, 1H), 7.64 (d, J = 8.9 Hz, 1H), 7.55 (d, J = 7.5 Hz, 2H), 7.44-7.28 (m, 3H), 7.26-7.10 (m, 3H), 7.04 (d, J = 2.2 Hz, 1H), 5.24 (s, 2H), 3.90 (s, 3H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ156.7,154.4,136.8,133.0,131.1,130.9,128.8,128.6,128.0,127.3,120.7,115.5,106.0,89.3,72.2,55.5.IR(neat):3654,2319,1812,1626,1595,1496,1452,1370,1344,1248,1228,1195,1167,1124,1080,1059,1025,970,937,877,845,813,792,732,693,646,575,548,506,464,415cm -1 .HRMS (DART) theoretical value for C 18 H 16 O 2 I [M+H] + : 391.0189, observed value: 391.0185.
向一个干燥的配有搅拌子的加入500mL的单口瓶中加入6-氧苄基-2-萘甲腈(20mmol,1.0equiv),DMF(50mL),乙腈(50mL),对甲苯磺酸(20mmol,1.0equiv)。在0℃的条件下向其中加入N-碘代丁二酰亚胺(22mmol,1.1equiv)。投料完成后,反应混合物在室温反应过夜。反应结束后,用饱和硫代硫酸钠溶液淬灭反应,用二氯甲烷稀释反应液,分液,有机相用饱和氯化铵水洗。有机相用无水硫酸镁干燥,过滤,滤液通过旋蒸浓缩得到粗产品S11。To a dry 500 mL single-mouth bottle equipped with a stirrer, add 6-oxybenzyl-2-naphthocarbonitrile (20 mmol, 1.0 equiv), DMF (50 mL), acetonitrile (50 mL), p-toluenesulfonic acid (20 mmol, 1.0 equiv). Add N-iodosuccinimide (22 mmol, 1.1 equiv) at 0°C. After the addition, the reaction mixture was reacted at room temperature overnight. After the reaction was completed, the reaction was quenched with a saturated sodium thiosulfate solution, the reaction solution was diluted with dichloromethane, the liquid was separated, and the organic phase was washed with saturated ammonium chloride water. The organic phase was dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated by rotary evaporation to obtain the crude product S11.
向一个干燥的配有搅拌子的250mL的圆底瓶中加入粗产品S11,氢氧化钠(80mmol,4.0equiv),水(50mL),甲醇(50mL),四氢呋喃(50mL)。反应混合物升温至回流反应48h。停止反应后,冷却反应至室温,用旋蒸除去甲醇和四氢呋喃。用稀盐酸将剩余混合物PH调至1,用乙酸乙酯萃取,合并有机相,有机相用无水硫酸镁干燥,滤液用旋蒸除去溶剂得到粗产品S12用于下一步。Add crude product S11, sodium hydroxide (80mmol, 4.0equiv), water (50mL), methanol (50mL), and tetrahydrofuran (50mL) to a dry 250mL round-bottom flask equipped with a stirrer. Heat the reaction mixture to reflux for 48h. After stopping the reaction, cool the reaction to room temperature and remove methanol and tetrahydrofuran by rotary evaporation. Adjust the pH of the remaining mixture to 1 with dilute hydrochloric acid, extract with ethyl acetate, combine the organic phases, dry the organic phases with anhydrous magnesium sulfate, and remove the solvent from the filtrate by rotary evaporation to obtain crude product S12 for the next step.
向一个干燥的配有搅拌子的250mL的圆底烧瓶中加入粗产品S11,碳酸钾(40mmol,2.0equiv),DMF(50mL),碘甲烷(30mmol,1.5equiv)。混合物升温至50℃反应3h。反应结束后,向混合物中加入乙酸乙酯(500mL),水(200mL),分液,水相用乙酸乙酯(3×100mL)。合并有机相,有机相用饱和氯化铵水洗,有机相用无水硫酸镁干燥,过滤,滤液用旋蒸浓缩,浓缩液通过快速柱层析分离纯化得到产物6g(3.72g,44%).1H NMR(400MHz,CDCl3)δ8.47(s,1H),8.18(d,J=9.2Hz,1H),8.08(d,J=9.2Hz,1H),7.87(d,J=8.8Hz,1H),7.54(d,J=7.6Hz,2H),7.45–7.30(m,3H),7.24(d,J=8.8Hz,1H),5.33(s,2H),3.97(s,3H).13C{1H}NMR(101MHz,CDCl3)δ167.0,157.6,138.1,136.3,131.8,131.6,131.3,128.9,128.7,128.1,127.4,127.1,126.0,114.9,88.4,71.7,52.3.IR(neat):2943,1693,1620,1594,1495,1472,1428,1397,1343,1327,1284,1266,1237,1197,1135,1104,1043,981,912,865,844,794,766,733,696,630,552,497,415cm-1.HRMS(DART)理论值C19H16O3I[M+H]+:419.0139,实验值:419.0134.Add crude product S11, potassium carbonate (40 mmol, 2.0 equiv), DMF (50 mL), and iodomethane (30 mmol, 1.5 equiv) to a dry 250 mL round-bottom flask equipped with a stirrer. Heat the mixture to 50 °C and react for 3 h. After the reaction, add ethyl acetate (500 mL) and water (200 mL) to the mixture, separate the liquids, and use ethyl acetate (3×100 mL) for the aqueous phase. The organic phases were combined, washed with saturated ammonium chloride, dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated by rotary evaporation. The concentrate was separated and purified by flash column chromatography to obtain 6 g (3.72 g, 44%) of the product. 1 H NMR (400 MHz, CDCl 3 ) δ8.47 (s, 1H), 8.18 (d, J = 9.2 Hz, 1H), 8.08 (d, J = 9.2 Hz, 1H), 7.87 (d, J = 8.8 Hz, 1H), 7.54 (d, J = 7.6 Hz, 2H), 7.45–7.30 (m, 3H), 7.24 (d, J = 8.8 Hz, 1H), 5.33 (s, 2H), 3.97 (s, 3H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ167.0,157.6,138.1,136.3,131.8,131.6,131.3,128.9,128.7,128.1,127.4,127.1,126.0,114.9,88.4,71.7,52.3.IR(neat):2943,1693,1620, 1594,1495,1472,1428,1397,1343,1327,1284,1266,1237,1197,1135,1104,1043,981,912,865,844,794,766,733,696,630,552,497,415cm -1 .HRMS (DART) theoretical value for C 19 H 16 O 3 I [M+H] + : 419.0139, found value: 419.0134.
实施例52配体合成的通用步骤Example 52 General Procedure for Ligand Synthesis
250mL单口瓶中加入搅拌子,加入5-2af(50mmol,1.0equiv.),二氯甲烷(200mL),在0℃下加入间氯过氧苯甲酸(60mmol,1.2equiv.),加料完成后置于室温反应12小时。反应结束后,用饱和亚硫酸钠溶液淬灭反应,加入饱和碳酸钾溶液至碱性,分液,水相用二氯甲烷萃取三次,合并有机相,无水硫酸镁干燥,过滤,旋蒸除去溶剂得到粗品5-2ag。A stirring bar was added to a 250 mL single-mouth bottle, and 5-2af (50 mmol, 1.0 equiv.) and dichloromethane (200 mL) were added. Meta-chloroperbenzoic acid (60 mmol, 1.2 equiv.) was added at 0°C, and the mixture was allowed to react at room temperature for 12 hours. After the reaction was completed, the reaction was quenched with a saturated sodium sulfite solution, and a saturated potassium carbonate solution was added to make the reaction alkaline. The liquids were separated, and the aqueous phase was extracted three times with dichloromethane. The organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed by rotary evaporation to obtain a crude product 5-2ag.
500mL单口瓶中加入搅拌子,加入5-2ag粗品,二氯甲烷(200mL),三甲基氰硅烷(62.5mmol,1.25equiv.),二甲氨基甲酰氯(62.5mmol,1.25equiv),投料完成后在室温下反应24小时。反应结束后,用饱和碳酸钾溶液淬灭反应(缓慢加入)。分液,水相用二氯甲烷萃取三次,合并有机相,无水硫酸镁干燥,过滤,旋蒸除去溶剂并用快速柱层析纯化得到产物5-2ah。A stirring bar was added to a 500 mL single-mouth bottle, and crude 5-2ag, dichloromethane (200 mL), trimethylsilyl cyanide (62.5 mmol, 1.25 equiv.), and dimethylcarbamoyl chloride (62.5 mmol, 1.25 equiv) were added. The reaction was allowed to react at room temperature for 24 hours after the addition was completed. After the reaction was completed, the reaction was quenched with a saturated potassium carbonate solution (slowly added). The liquid was separated, the aqueous phase was extracted three times with dichloromethane, the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, the solvent was removed by rotary evaporation, and the product 5-2ah was purified by flash column chromatography.
250mL单口瓶中加入搅拌子,加入5-2ah(20mmol,1.0equiv.),甲醇(50mL),甲醇钠(4mmol,20mol%),室温下搅拌反应并用TLC监测反应。反应结束后,旋蒸除去甲醇,加入乙酸乙酯溶解产物,砂芯漏斗垫上硅胶过滤除去甲醇钠,滤液用旋蒸除去溶剂得到5-2ai粗品待用。A stirring bar was added to a 250 mL single-mouth bottle, and 5-2ah (20 mmol, 1.0 equiv.), methanol (50 mL), and sodium methoxide (4 mmol, 20 mol%) were added. The reaction was stirred at room temperature and monitored by TLC. After the reaction was completed, methanol was removed by rotary evaporation, ethyl acetate was added to dissolve the product, and sodium methoxide was removed by filtration on a sand core funnel pad with silica gel. The filtrate was evaporated to remove the solvent to obtain a crude product of 5-2ai for use.
100mL单口瓶中加入搅拌子,加入5-2ai粗品,对甲苯磺酸(4mmol,20mol%),甲苯(50mL),对应氨基醇(30mmol,1.5euqiv.)投料完成后回流反应,TLC监测反应至底物完全反应。反应结束后,恢复反应液至室温,反应液直接用快速柱层析纯化,得到产物吡啶噁唑啉配体。A stirring bar was added to a 100 mL single-mouth bottle, and 5-2ai crude product, p-toluenesulfonic acid (4mmol, 20mol%), toluene (50mL), and the corresponding amino alcohol (30mmol, 1.5euqiv.) were added. After the addition of the materials, the reaction was refluxed and monitored by TLC until the substrate was completely reacted. After the reaction was completed, the reaction solution was restored to room temperature and the reaction solution was directly purified by flash column chromatography to obtain the product pyridine oxazoline ligand.
配体L8由2-丁基吡啶和(1S,2R)-氨基茚醇经通用步骤合成得到。白色固体,4.6g,最后两步收率为44%,1H NMR(400MHz,CDCl3)δ7.84(d,J=7.6Hz,1H),7.66–7.55(m,2H),7.29–7.23(m,3H),7.20(d,J=8.0Hz,1H),5.78(d,J=8.0Hz,1H),5.63–5.50(m,1H),3.55–3.41(m,2H),2.92–2.71(m,2H),1.72–1.58(m,2H),1.41–1.30(m,2H),0.92(t,J=8.0Hz,3H).13C{1H}NMR(101MHz,CDCl3)δ163.5,162.9,146.4,141.7,139.9,136.6,128.5,127.4,125.8,125.3,124.5,121.6,83.9,77.0,39.9,38.3,32.3,22.6,14.0.IR(neat):2927,1626,1572,1459,1365,1292,1236,1161,1121,1088,1062,1021,996,851,810,743,672,648,621,543,452,430cm-1.HRMS(ESI)理论值C19H21N2O[M+H]+:293.1648,实验值:293.1654.[α]29.8=-192.86(c=1.0,CHCl3).Ligand L8 was synthesized from 2-butylpyridine and (1S,2R)-aminoindanol by a general procedure. White solid, 4.6 g, the yield of the last two steps is 44%, 1 H NMR (400 MHz, CDCl 3 ) δ7.84 (d, J=7.6 Hz, 1H), 7.66-7.55 (m, 2H), 7.29-7.23 (m, 3H), 7.20 (d, J=8.0 Hz, 1H), 5.78 (d, J=8.0 Hz, 1H), 5.63-5.50 (m, 1H), 3.55-3.41 (m, 2H), 2.92-2.71 (m, 2H), 1.72-1.58 (m, 2H), 1.41-1.30 (m, 2H), 0.92 (t, J=8.0 Hz, 3H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ163.5,162.9,146.4,141.7,139.9,136.6,128.5,127.4,125.8,125.3,124.5,121.6,83.9,77.0,39.9,38.3,32.3,22.6,14.0.IR(neat):2927,1626,1572,1459,1365,1292,1236,1161,1121,1088,1062,1021,996,851,810,743,672,648,621,543,452,430cm -1 .HRMS(ESI)theoretical value C 19 H 21 N 2 O[M+H] + :293.1648, experimental value:293.1654.[α] 29.8 =-192.86(c=1.0,CHCl 3 ).
配体L9由2-戊基吡啶和(1S,2R)-氨基茚醇经通用步骤合成得到。白色固体,2.5g,最后两步收率为40%,1H NMR(400MHz,CDCl3)δ7.85(d,J=7.6Hz,1H),7.65–7.55(m,2H),7.30–7.23(m,3H),7.21(d,J=7.6Hz,1H),5.78(d,J=8.0Hz,1H),5.62–5.53(m,1H),3.57–3.39(m,2H),2.90–2.75(m,2H),1.77–1.58(m,2H),1.9–1.22(m,4H),0.88(t,J=8.0Hz,3H).13C{1H}NMR(101MHz,CDCl3)δ163.5,163.0,146.4,141.7,139.9,136.6,128.5,127.4,125.8,125.3,124.5,121.6,83.9,77.0,39.9,38.5,31.6,29.9,22.6,14.0.IR(neat):2949,2926,2854,1627,1573,1460,1364,1291,1233,1160,1121,1088,1065,1022,996,856,810,744,672,648,623,454cm-1.HRMS(ESI)理论值C20H23N2O[M+H]+:307.1805,实验值:307.1808.[α]28.8=-197.69(c=1.0,CHCl3).Ligand L9 was synthesized from 2-pentylpyridine and (1S,2R)-aminoindanol by a general procedure. White solid, 2.5 g, the yield of the last two steps is 40%, 1 H NMR (400 MHz, CDCl 3 ) δ7.85 (d, J=7.6 Hz, 1H), 7.65–7.55 (m, 2H), 7.30–7.23 (m, 3H), 7.21 (d, J=7.6 Hz, 1H), 5.78 (d, J=8.0 Hz, 1H), 5.62–5.53 (m, 1H), 3.57–3.39 (m, 2H), 2.90–2.75 (m, 2H), 1.77–1.58 (m, 2H), 1.9–1.22 (m, 4H), 0.88 (t, J=8.0 Hz, 3H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ163.5,163.0,146.4,141.7,139.9,136.6,128.5,127.4,125.8,125.3,124.5,121.6,83.9,77.0,39.9,38.5,31.6,29.9,22.6,14.0.IR(neat):2949,2926,2854,1627,1573,1460,1364,1291,1233,1160,1121,1088,1065,1022,996,856,810,744,672,648,623,454cm -1 .HRMS(ESI)theoretical value C 20 H 23 N 2 O[M+H] + :307.1805, Observed value:307.1808.[α] 28.8 =-197.69 (c=1.0, CHCl 3 ).
配体L17由2-己基吡啶和(1S,2R)-氨基茚醇经通用步骤合成得到。白色固体,7.4g,最后两步收率为38%,1H NMR(400MHz,CDCl3)δ7.84(d,J=7.8Hz,1H),7.67–7.54(m,2H),7.32–7.16(m,4H),5.78(d,J=8.0Hz,1H),5.62–5.52(m,1H),3.58–3.38(m,2H),2.94–2.75(m,2H),1.75–1.60(m,2H),1.41–1.17(m,6H),0.92–0.87(t,J=5.2Hz,3H).13C{1H}NMR(101MHz,CDCl3)δ163.5,163.0,146.4,141.7,139.9,136.6,128.5,127.4,125.8,125.3,124.5,121.6,83.9,77.0,39.9,38.6,31.7,30.2,29.1,22.6,14.1.IR(neat):2925,2852,1628,1574,1460,1429,1365,1295,1232,1162,1122 1089,1022,996,858,811,745,673,648,623,595,543,452,430cm-1.HRMS(ESI)理论值C21H25N2O[M+H]+:321.1961,实验值:321.1964.[α]26.5=-192.88(c=1.0,CHCl3).Ligand L17 was synthesized from 2-hexylpyridine and (1S,2R)-aminoindanol by a general procedure. White solid, 7.4 g, the yield of the last two steps is 38%, 1 H NMR (400 MHz, CDCl 3 ) δ7.84 (d, J=7.8 Hz, 1H), 7.67–7.54 (m, 2H), 7.32–7.16 (m, 4H), 5.78 (d, J=8.0 Hz, 1H), 5.62–5.52 (m, 1H), 3.58–3.38 (m, 2H), 2.94–2.75 (m, 2H), 1.75–1.60 (m, 2H), 1.41–1.17 (m, 6H), 0.92–0.87 (t, J=5.2 Hz, 3H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ163.5,163.0,146.4,141.7,139.9,136.6,128.5,127.4,125.8,125.3,124.5,121.6,83.9,77.0,39.9,38.6,31.7,30.2,29.1,22.6,14.1.IR(ne at):2925,2852,1628,1574,1460,1429,1365,1295,1232,1162,1122 1089,1022,996,858,811,745,673,648,623,595,543,452,430cm -1 .HRMS (ESI) theoretical value for C 21 H 25 N 2 O [M+H] + : 321.1961, found value: 321.1964. [α] 26.5 = -192.88 (c = 1.0, CHCl 3 ).
配体L14由2-异丙基吡啶和(1S,2R)-氨基茚醇经通用步骤合成得到。4.8g,最后两步收率为51%,1H NMR(400MHz,CDCl3)δ7.84(d,J=7.6Hz,1H),7.71–7.55(m,2H),7.34–7.16(m,4H),5.78(d,J=8.0Hz,1H),5.63–5.51(m,1H),3.58–3.38(m,2H),3.29–3.12(m,1H),1.29(d,J=6.8,1.2Hz,6H).13C{1H}NMR(101MHz,CDCl3)δ167.9,163.6,146.1,141.7,139.9,136.9,128.5,127.4,125.8,125.3,121.9,121.8,83.9,77.0,39.9,36.6,22.9,22.8.IR(neat):2967,1628,1570,1462,1414,1364,1295,1241,1217,1163,1087,1048,1001,892,824,741,708,666,619,433cm-1.HRMS(ESI)理论值C18H19N2O[M+H]+:279.1492,实验值:279.1501.[α]29.7=-223.34(c=1.0,CHCl3).Ligand L14 was synthesized from 2-isopropylpyridine and (1S,2R)-aminoindanol by a general procedure. 4.8 g, 51% yield in the last two steps, 1 H NMR (400 MHz, CDCl 3 ) δ7.84 (d, J=7.6 Hz, 1H), 7.71–7.55 (m, 2H), 7.34–7.16 (m, 4H), 5.78 (d, J=8.0 Hz, 1H), 5.63–5.51 (m, 1H), 3.58–3.38 (m, 2H), 3.29–3.12 (m, 1H), 1.29 (d, J=6.8, 1.2 Hz, 6H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ167.9,163.6,146.1,141.7,139.9,136.9,128.5,127.4,125.8,125.3,121.9,121.8,83.9,77.0,39.9,36.6,22.9,22.8.IR(neat):2967,1628,1570,1462,1414,1364,1295,1241,1217,1163,1087,1048,1001,892,824,741,708,666,619,433cm -1 .HRMS(ESI)theoretical value C 18 H 19 N 2 O[M+H] + :279.1492, experimental value:279.1501.[α] 29 .7=-223.34(c=1.0,CHCl 3 ).
配体L15由2-苯基吡啶和(1S,2R)-氨基茚醇经通用步骤合成得到。重结晶后无色晶体,5.1g,最后两步收率为65%,White solid,m.p=117.9–119.6℃.1H NMR(400MHz,CDCl3)δ8.06–7.91(m,3H),7.84–7.72(m,2H),7.65–7.55(m,1H),7.51–7.35(m,3H),7.32–7.22(m,3H),5.82(d,J=8.0Hz,1H),5.66–5.52(m,1H),3.61–3.39(m,2H).13C{1H}NMR(101MHz,CDCl3)δ163.6,157.6,147.0,141.7,139.9,138.8,137.2,129.2,128.8,128.6,127.5,127.3,125.7,125.4,122.6,122.4,84.0,77.1,39.9.IR(neat):2975,1630,1564,1455,1363,1245,1164,1109,1066,1023,1000,984,916,827,791,768,742,713,691,619,507,432cm-1.HRMS(ESI)理论值C21H17N2O[M+H]+:313.1335,实验值:313.1341.[α]24.7=-269.91(c=1.0,CHCl3).Ligand L15 was synthesized from 2-phenylpyridine and (1S,2R)-aminoindanol by a general procedure. Colorless crystals were obtained after recrystallization, 5.1 g, and the yield of the last two steps was 65%. White solid, mp = 117.9-119.6 °C. 1 H NMR (400 MHz, CDCl 3 ) δ 8.06-7.91 (m, 3H), 7.84-7.72 (m, 2H), 7.65-7.55 (m, 1H), 7.51-7.35 (m, 3H), 7.32-7.22 (m, 3H), 5.82 (d, J = 8.0 Hz, 1H), 5.66-5.52 (m, 1H), 3.61-3.39 (m, 2H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ163.6,157.6,147.0,141.7,139.9,138.8,137.2,129.2,128.8,128.6,127.5,127.3,125.7,125.4,122.6,122.4,84.0,77.1,39.9.IR(neat):2975,1630,1564,1455,1363,1245,1164,1109,1066,1023,1000,984,916,827,791,768,742,713,691,619,507,432cm -1 .HRMS(ESI)theoretical value C 21 H 17 N 2 O[M+H] + :313.1335, Found:313.1341.[α] 24.7 =-269.91(c=1.0,CHCl 3 ).
配体L16由2-苄基吡啶和(1S,2R)-氨基茚醇经通用步骤合成得到。白色固体,3.9g,最后两步收率为67%,1H NMR(400MHz,CDCl3)δ7.86(d,J=7.6Hz,1H),7.70–7.50(m,2H),7.41–7.15(m,8H),7.06(d,J=8.0Hz,1H),5.80(d,J=8.0Hz,1H),5.65–5.44(m,1H),4.26(s,2H),3.61–3.41(m,2H).13C{1H}NMR(101MHz,CDCl3)δ163.4,161.5,146.3,141.7,139.9,139.1,136.9,129.4,128.7,128.6,127.5,126.5,125.8,125.3,125.1,121.9,84.0,77.1,44.6,39.9.IR(neat):2929,1649,1628,1567,1492,1452,1364,1296,1214,1165,1120,1103,1080,1025,994,941,853,797,743,717,694,671,630,594,569,521,482,450cm-1.HRMS(ESI)理论值C22H19N2O[M+H]+:327.1492,实验值:327.1493.[α]29.6=-148.56(c=1.0,CHCl3).Ligand L16 was synthesized from 2-benzylpyridine and (1S,2R)-aminoindanol by a general procedure. White solid, 3.9 g, 67% yield in the last two steps, 1 H NMR (400 MHz, CDCl 3 ) δ7.86 (d, J=7.6 Hz, 1H), 7.70–7.50 (m, 2H), 7.41–7.15 (m, 8H), 7.06 (d, J=8.0 Hz, 1H), 5.80 (d, J=8.0 Hz, 1H), 5.65–5.44 (m, 1H), 4.26 (s, 2H), 3.61–3.41 (m, 2H). 13 C{ 1 H}NMR (101 MHz, CDCl 3 )δ163.4,161.5,146.3,141.7,139.9,139.1,136.9,129.4,128.7,128.6,127.5,126.5,125.8,125.3,125.1,121.9,84.0,77.1,44.6,39.9.IR(neat ): 2929,1649,1628,1567,1492,1452,1364,1296,1214,1165,1120,1103,1080,1025,994,941,853,797,743,717,694,671,630,594,569,521,482,450 cm -1 . HRMS (ESI) theoretical value for C 22 H 19 N 2 O [M+H] + : 327.1492, found value: 327.1493. [α] 29.6 = -148.56 (c = 1.0, CHCl 3 ).
配体L19由2-(1-乙丙基)吡啶和(1S,2R)-氨基茚醇经通用步骤合成得到。黄色油状物,3.5g,最后两步收率为40%。1H NMR(400MHz,CDCl3)δ7.85(d,J=7.6Hz,1H),7.70–7.52(m,2H),7.34–7.22(m,3H),7.17(d,J=7.8Hz,1H),5.78(d,J=8.0Hz,1H),5.62–5.51(m,1H),3.57–3.33(m,2H),2.84–2.62(m,1H),1.84–1.56(m,4H),0.77(t,J=7.2Hz,6H).13C{1H}NMR(101MHz,CDCl3)δ165.9,163.7,146.4,141.8,140.0,136.3,128.5,127.4,125.8,125.3,123.5,121.9,83.8,77.0,51.1,39.9,28.0,27.9,11.9(2C).IR(neat):2959,2871,1739,1633,1571,1458,1367,1299,1162,1111,1086,990,831,819,744,624cm-1.HRMS(ESI)理论值C20H23N2O[M+H]+:307.1805,实验值:3071809.[α]23.9=-183.60(c=1.0,CHCl3).Ligand L19 was synthesized from 2-(1-ethylpropyl)pyridine and (1S,2R)-aminoindanol by a general procedure. Yellow oil, 3.5 g, 40% yield in the last two steps. 1 H NMR (400MHz, CDCl 3 ) δ7.85(d,J=7.6Hz,1H),7.70–7.52(m,2H),7.34–7.22(m,3H),7.17(d,J=7.8Hz,1H),5.78(d,J=8.0Hz,1H),5.62–5.51(m,1H),3. 57–3.33(m,2H),2.84–2.62(m,1H),1.84–1.56(m,4H),0.77(t,J=7.2Hz,6H). 13 C{ 1 H} NMR (101MHz, CDCl 3 )δ165.9,163.7,146.4,141.8,140.0,136.3,128.5,127.4,125.8,125.3,123.5,121.9,83.8,77.0,51.1,39.9,28.0,27.9,11.9(2C).IR(neat):2959,2871,1739,1633,1571,1458,1367,1299,1162,1111,1086,990,831,819,744,624cm -1 .HRMS(ESI)theoretical value C 20 H 23 N 2 O[M+H] + :307.1805, experimental value:3071809.[α] 23.9 =-183.60(c=1.0,CHCl 3 ).
配体L20由2-异丁基吡啶和(1S,2R)-氨基茚醇经通用步骤合成得到。白色固体,最后两步收率为54%,1H NMR(400MHz,CDCl3)δ7.85(d,J=7.6Hz,1H),7.66–7.54(m,2H),7.32–7.22(m,3H),7.17(d,J=8.0Hz,1H),5.79(d,J=8.0Hz,1H),5.64–5.49(m,1H),3.59–3.39(m,2H),2.82–2.63(m,2H),2.20–1.98(m,1H),0.90(d,J=6.4Hz,6H).13C{1H}NMR(101MHz,CDCl3)δ163.5,161.9,146.6,141.8,140.0,136.3,128.5,127.4,125.8,125.4,125.3,121.7,83.9,77.0,47.4,39.9,29.1,22.4,22.3.IR(neat):3347,2957,1655,1588,1518,1448,1412,1335,1258,1176,1150,1083,1056,994,878,843,816,767,739,706,664,632,613,582,531,507,466,423cm-1.HRMS(ESI)理论值C19H21N2O[M+H]+:293.1648,实验值:293.1641.[α]26.6=-214.93(c=1.0,CHCl3).Ligand L20 was synthesized from 2-isobutylpyridine and (1S,2R)-aminoindanol by a general procedure. White solid, the yield of the last two steps was 54%, 1 H NMR (400 MHz, CDCl 3 ) δ7.85 (d, J = 7.6 Hz, 1H), 7.66-7.54 (m, 2H), 7.32-7.22 (m, 3H), 7.17 (d, J = 8.0 Hz, 1H), 5.79 (d, J = 8.0 Hz, 1H), 5.64-5.49 (m, 1H), 3.59-3.39 (m, 2H), 2.82-2.63 (m, 2H), 2.20-1.98 (m, 1H), 0.90 (d, J = 6.4 Hz, 6H). 13 C{ 1 H} NMR (101 MHz, CDCl 3 )δ163.5,161.9,146.6,141.8,140.0,136.3,128.5,127.4,125.8,125.4,125.3,121.7,83.9,77.0,47.4,39.9,29.1,22.4,22.3.IR(neat):3347,29 57,1655,1588,1518,1448,1412,1335,1258,1176,1150,1083,1056,994,878,843,816,767,739,706,664,632,613,582,531,507,466,423cm -1 .HRMS (ESI) theoretical value for C 19 H 21 N 2 O [M+H] + : 293.1648, found value: 293.1641. [α] 26.6 = -214.93 (c = 1.0, CHCl 3 ).
实施例53配合物9的制备Example 53 Preparation of Complex 9
20mL封管中加入搅拌子,加入L5(1mmol,2.0equiv.),碘化钴(0.5mmol,1.0equiv.),乙腈(5mL),投料完成后室温下搅拌反应30分钟。反应结束后,砂芯漏斗过滤反应液,收集滤液,向滤液中加入乙醚(20mL),大量绿色固体析出。漏斗滤出固体,用甲醇和乙酸乙酯重结晶得到适合X-ray单晶衍射的墨绿色晶体,250mg,收率为62%。Add a stirrer to a 20mL sealed tube, add L5 (1mmol, 2.0equiv.), cobalt iodide (0.5mmol, 1.0equiv.), acetonitrile (5mL), and stir the reaction at room temperature for 30 minutes after the addition is completed. After the reaction is completed, filter the reaction solution with a sand core funnel, collect the filtrate, add ether (20mL) to the filtrate, and a large amount of green solid precipitates. Filter the solid with a funnel, recrystallize with methanol and ethyl acetate to obtain dark green crystals suitable for X-ray single crystal diffraction, 250mg, and the yield is 62%.
配合物9的晶体参数Crystal parameters of complex 9
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210444271.0A CN116988078A (en) | 2022-04-25 | 2022-04-25 | Metal catalyzed asymmetric coupling method promoted by electrochemical reduction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210444271.0A CN116988078A (en) | 2022-04-25 | 2022-04-25 | Metal catalyzed asymmetric coupling method promoted by electrochemical reduction |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116988078A true CN116988078A (en) | 2023-11-03 |
Family
ID=88521953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210444271.0A Pending CN116988078A (en) | 2022-04-25 | 2022-04-25 | Metal catalyzed asymmetric coupling method promoted by electrochemical reduction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116988078A (en) |
-
2022
- 2022-04-25 CN CN202210444271.0A patent/CN116988078A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109776422B (en) | Chiral 1, 3-diaryl imidazole salt carbene precursor, synthesis method thereof, metal salt compound and application | |
CN114560802B (en) | Method for constructing carbon-nitrogen axis chiral indole-naphthol biaryl compound | |
CN108659041A (en) | Phosphine ligands compound and its intermediate and preparation method based on tetramethyl spiro indan skeleton and purposes | |
CN107973778B (en) | A kind of ruthenium catalysis aromatic ketone replaces the methods and application of naphthalene derivatives with the more virtues of tolans cyclization preparation | |
CN113185404B (en) | 1, 2-biaxial chiral biaryl compound and preparation method and application thereof | |
CN106866670A (en) | A kind of spiral shell [3,5` pyrroles [2,1 a] isoquinolin Oxoindole] class compound and preparation method thereof | |
CN101318887A (en) | The preparation method of indenoid compound | |
CN111646990B (en) | A kind of preparation method of 3,4-bridged ring indole compound and the synthetic method of Rucaparib | |
CN109608471B (en) | Synthetic method of chiral spiro-epoxy indole compounds | |
CN111718372A (en) | Axial chiral phosphine-ene ligand and preparation method and application thereof | |
CN107602452B (en) | A kind of synthetic method of 3-acyl pyridine compounds | |
CN112300214B (en) | Palladium complex, preparation method thereof and preparation method of axial chiral biaromatic compound | |
CN116988078A (en) | Metal catalyzed asymmetric coupling method promoted by electrochemical reduction | |
CN104030974A (en) | Aryl-substituted terpyridyl compound and preparation method and application thereof | |
CN112079856A (en) | 4-Iodophenyl substituted carborane derivatives and preparation method thereof | |
CN104447824A (en) | Fluoro-boron diisoindole compounds and preparation method thereof | |
CN114957103B (en) | Axially chiral halogenated biaryl compound and preparation method thereof | |
CN113200812B (en) | 1,3,5-trisubstituted aryl compound synthesis method | |
CN106543081B (en) | A kind of preparation method of 1-difluoroalkyl isoquinoline | |
CN115197228A (en) | Synthesis method of pyrazolone [ spiro ] dihydrophthalazine and 1,3-indenedione [ spiro ] dihydrophthalazine compounds | |
CN102766095B (en) | Preparation method of electron-deficient group-containing multi-substituted pyrazole derivative | |
CN117486747B (en) | Synthesis method of N- (4-amino-2, 5-diethoxyphenyl) benzamide | |
CN107936034B (en) | Benzyloxy dibenzo [b, f] dislikes English in heptan cyclopropylene acid compounds and intermediate and its application | |
CN113387823B (en) | Anthranilic acid and derivatives thereof, synthesis method and application thereof | |
CN105237337A (en) | Novel synthesis method for 5-[10-(9-carbosyl anthryl)]-isophthalic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |