CN116943871B - Efficient collector, preparation method thereof and application of efficient collector in fluorite flotation in high-calcium fluorite ore - Google Patents
Efficient collector, preparation method thereof and application of efficient collector in fluorite flotation in high-calcium fluorite ore Download PDFInfo
- Publication number
- CN116943871B CN116943871B CN202310688345.XA CN202310688345A CN116943871B CN 116943871 B CN116943871 B CN 116943871B CN 202310688345 A CN202310688345 A CN 202310688345A CN 116943871 B CN116943871 B CN 116943871B
- Authority
- CN
- China
- Prior art keywords
- fluorite
- bha
- collector
- flotation
- benzohydroxamic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 title claims abstract description 83
- 239000010436 fluorite Substances 0.000 title claims abstract description 63
- 238000005188 flotation Methods 0.000 title claims abstract description 52
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 48
- VDEUYMSGMPQMIK-UHFFFAOYSA-N benzhydroxamic acid Chemical compound ONC(=O)C1=CC=CC=C1 VDEUYMSGMPQMIK-UHFFFAOYSA-N 0.000 claims abstract description 47
- 150000004696 coordination complex Chemical class 0.000 claims abstract description 25
- 229910004664 Cerium(III) chloride Inorganic materials 0.000 claims abstract description 17
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 24
- 238000003756 stirring Methods 0.000 claims description 19
- 239000000047 product Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000000706 filtrate Substances 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 238000000746 purification Methods 0.000 claims description 2
- 238000000926 separation method Methods 0.000 abstract description 17
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 9
- 239000011707 mineral Substances 0.000 abstract description 9
- 239000011575 calcium Substances 0.000 abstract description 7
- 238000001179 sorption measurement Methods 0.000 abstract description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052791 calcium Inorganic materials 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000012141 concentrate Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 17
- 238000011084 recovery Methods 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 229910001634 calcium fluoride Inorganic materials 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 14
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 13
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 13
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 13
- 239000005642 Oleic acid Substances 0.000 description 13
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 13
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 13
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical group [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 12
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 11
- 229910021532 Calcite Inorganic materials 0.000 description 9
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 9
- 235000019353 potassium silicate Nutrition 0.000 description 9
- -1 fatty acid salts Chemical class 0.000 description 8
- 235000010755 mineral Nutrition 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 239000010459 dolomite Substances 0.000 description 7
- 229910000514 dolomite Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000010665 pine oil Substances 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000004088 foaming agent Substances 0.000 description 4
- 239000003002 pH adjusting agent Substances 0.000 description 4
- 238000012797 qualification Methods 0.000 description 4
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 3
- 239000001263 FEMA 3042 Substances 0.000 description 3
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 3
- 229940033123 tannic acid Drugs 0.000 description 3
- 235000015523 tannic acid Nutrition 0.000 description 3
- 229920002258 tannic acid Polymers 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000010428 baryte Substances 0.000 description 2
- 229910052601 baryte Inorganic materials 0.000 description 2
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012764 semi-quantitative analysis Methods 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N EtOH Substances CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- ZCZLQYAECBEUBH-UHFFFAOYSA-L calcium;octadec-9-enoate Chemical compound [Ca+2].CCCCCCCCC=CCCCCCCCC([O-])=O.CCCCCCCCC=CCCCCCCCC([O-])=O ZCZLQYAECBEUBH-UHFFFAOYSA-L 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000009282 microflotation Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/02—Froth-flotation processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/018—Mixtures of inorganic and organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2201/00—Specified effects produced by the flotation agents
- B03D2201/02—Collectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2203/00—Specified materials treated by the flotation agents; Specified applications
- B03D2203/02—Ores
- B03D2203/04—Non-sulfide ores
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种高效捕收剂及其制备方法和在高钙萤石矿中浮选萤石的应用,属于矿物分离技术领域。本发明针对现有技术中高钙型萤石浮选捕收剂选择性低,选别工艺指标不高等问题,提出了一种有效的解决手段:本发明以苯甲羟肟酸与三氯化铈为原料合成出的BHA‑Ce金属配合物和BHA‑Ce混合物,二者对萤石都有着优秀的选择性,有效避免了传统萤石捕收剂通过钙质点作为吸附位点所导致的选择性差、浮选指标不高等问题。本发明提供的BHA‑Ce金属配合物捕收剂和BHA‑Ce混合物捕收剂合成制备途径均简单可行,性能好,对使用环境无特殊要求。
The present invention discloses a highly efficient collector, a preparation method thereof, and an application in the flotation of fluorite in high-calcium fluorite ore, belonging to the technical field of mineral separation. Aiming at the problems of low selectivity and low separation process index of high-calcium fluorite flotation collector in the prior art, the present invention proposes an effective solution: the BHA-Ce metal complex and BHA-Ce mixture synthesized by the present invention using benzohydroxamic acid and cerium trichloride as raw materials have excellent selectivity for fluorite, effectively avoiding the problems of poor selectivity and low flotation index caused by the traditional fluorite collector using calcium points as adsorption sites. The synthetic preparation routes of the BHA-Ce metal complex collector and the BHA-Ce mixture collector provided by the present invention are simple and feasible, with good performance and no special requirements for the use environment.
Description
技术领域Technical Field
本发明属于矿物分离技术领域,具体涉及一种捕收剂,更具体地说,本发明涉及一种高效捕收剂及其制备方法和在高钙萤石矿中浮选萤石的应用。The invention belongs to the technical field of mineral separation, and specifically relates to a collector, and more specifically, the invention relates to a high-efficiency collector and a preparation method thereof and application in flotation of fluorite in high-calcium fluorite ore.
背景技术Background technique
目前我国萤石的选矿工艺以浮选为主,根据萤石脉石矿物的不同,可将萤石矿分为硅酸盐型萤石矿、重晶石型萤石矿、碳酸盐型萤石矿等。碳酸盐型萤石中脉石矿物主要是方解石和白云石,主要成分为碳酸钙CaCO3。当该类型萤石矿中碳酸盐的含量在10-20%左右时,其余脉石以石英为主时,还能够勉强通过采用组合抑制剂配合选择性较好的捕收剂在碱性条件下经过多次精选得到萤石精矿,一旦碳酸钙的含量高达20-50%,石英含量降到10%左右,常规的药剂制度几乎无法达到令人满意的浮选指标,必须使用大量的酸调节至酸性条件【杨开陆.萤石/白云石浮选分离及机理研究[D].武汉科技大学,2018.】或加入大量的抑制剂【例如,中国专利,一种高碳酸钙型萤石的选矿方法,公开专利号CN107377198B;中国专利,一种高碳酸钙型萤石矿的选矿方法,公开专利号CN103706485B】才可选别,选别成本大大增加且效果不理想。At present, the fluorite beneficiation technology in China is mainly flotation. According to the different fluorite gangue minerals, fluorite can be divided into silicate fluorite, barite fluorite, carbonate fluorite, etc. The gangue minerals in carbonate fluorite are mainly calcite and dolomite, and the main component is calcium carbonate CaCO 3 . When the carbonate content in this type of fluorite ore is about 10-20% and the remaining gangue is mainly quartz, fluorite concentrate can be obtained by using a combination of inhibitors and a collector with good selectivity under alkaline conditions after multiple concentrations. Once the calcium carbonate content is as high as 20-50% and the quartz content drops to about 10%, the conventional reagent system can hardly achieve satisfactory flotation indicators. A large amount of acid must be used to adjust to acidic conditions [Yang Kailu. Fluorite/dolomite flotation separation and mechanism research [D]. Wuhan University of Science and Technology, 2018.] or a large amount of inhibitors must be added [for example, Chinese patent, a high calcium carbonate type fluorite beneficiation method, public patent number CN107377198B; Chinese patent, a high calcium carbonate type fluorite beneficiation method, public patent number CN103706485B] before it can be separated, which greatly increases the separation cost and the effect is not ideal.
现有的萤石浮选研究资料中,对浮选萤石及其脉石矿物(石英、方解石、白云石、重晶石等)的捕收剂报道最多的是油酸及脂肪酸类阴离子捕收剂。普遍认为,油酸及脂肪酸类捕收剂分子能够与萤石表面的Ca2+质点发生化学吸附生成油酸钙或脂肪酸盐,使得萤石表面疏水上浮。由于石英表面不存在Ca2+质点,与油酸、脂肪酸类捕收剂分子的作用程度较弱,因此这些捕收剂选别石英型萤石矿时具有较好效果;而方解石和白云石由于表面同样存在Ca2+质点,与萤石表面具有极为相似的化学性质,能够与油酸或脂肪酸类捕收剂分子吸附,从而难以通过浮选与萤石分离。科研人员对萤石捕收剂的选择性做过较多研究,结果表明一些高级脂肪酸或者深度氧化脂肪酸对萤石的选择性要高于油酸,但仍然不足以实现与碳酸盐脉石的良好分离。Among the existing fluorite flotation research data, the most reported collectors for flotation of fluorite and its gangue minerals (quartz, calcite, dolomite, barite, etc.) are oleic acid and fatty acid anionic collectors. It is generally believed that oleic acid and fatty acid collector molecules can chemically adsorb with Ca 2+ particles on the surface of fluorite to generate calcium oleate or fatty acid salts, making the fluorite surface hydrophobic and floating. Since there are no Ca 2+ particles on the surface of quartz, the degree of interaction with oleic acid and fatty acid collector molecules is weak, so these collectors have a good effect in selecting quartz-type fluorite ore; while calcite and dolomite also have Ca 2+ particles on their surfaces, which have very similar chemical properties to the surface of fluorite and can adsorb with oleic acid or fatty acid collector molecules, making it difficult to separate from fluorite by flotation. Researchers have done a lot of research on the selectivity of fluorite collectors. The results show that some higher fatty acids or deeply oxidized fatty acids have higher selectivity for fluorite than oleic acid, but it is still not enough to achieve a good separation from carbonate gangue.
除上述的阴离子捕收剂之外,阳离子捕收剂可通过静电吸附作用对萤石起到一定的捕收作用,有报道称脂肪胺类阳离子捕收剂对萤石有较强的捕收能力,但无法实现与含钙脉石的分离。在以往的研究中仅有【镧系金属-苯甲羟肟酸有机配合物对萤石和方解石的捕收性能研究】使用Ce离子与BHA以1:2摩尔比的混合物作为萤石与方解石纯矿物微型浮选分离的报道,但是该项研究没有在实际矿石中浮选的实例。此外,将上述现有技术中Ce与BHA摩尔比1:2换算成三氯化铈与苯甲羟肟酸两者质量比约为1:1,该配比条件下制备的BHA-Ce混合物在实际矿石的浮选过程中将严重恶化分离效果。由此可以看出,目前缺少针对碳酸盐型萤石选择性特别强的有效捕收剂。In addition to the above-mentioned anionic collectors, cationic collectors can play a certain role in collecting fluorite through electrostatic adsorption. It has been reported that fatty amine cationic collectors have a strong collection ability for fluorite, but cannot achieve separation from calcium-containing gangue. In previous studies, only [Study on the collection performance of lanthanide metal-benzohydroxamic acid organic complexes on fluorite and calcite] used a mixture of Ce ions and BHA in a molar ratio of 1:2 as a report on the micro-flotation separation of pure fluorite and calcite minerals, but this study did not have an example of flotation in actual ores. In addition, the molar ratio of Ce to BHA in the above-mentioned prior art of 1:2 is converted into a mass ratio of cerium trichloride and benzohydroxamic acid of about 1:1. The BHA-Ce mixture prepared under this ratio will seriously deteriorate the separation effect during the flotation process of actual ores. It can be seen from this that there is currently a lack of effective collectors with particularly strong selectivity for carbonate fluorite.
基于上述理由,特提出本申请。Based on the above reasons, this application is hereby filed.
发明内容Summary of the invention
基于上述理由,针对现有技术中存在的问题或缺陷,本发明的目的在于提供一种高效捕收剂及其制备方法和在高钙萤石矿中浮选萤石的应用,解决或至少部分解决现有技术中存在的上述技术缺陷。Based on the above reasons, in view of the problems or defects existing in the prior art, the purpose of the present invention is to provide a high-efficiency collector and a preparation method thereof and its application in the flotation of fluorite in high-calcium fluorite ore, so as to solve or at least partially solve the above-mentioned technical defects existing in the prior art.
为了实现本发明的上述第一个目的,本发明采用的技术方案如下:In order to achieve the above first object of the present invention, the technical solution adopted by the present invention is as follows:
一种高效捕收剂,所述捕收剂为苯甲羟肟酸(BHA)-Ce金属配合物或BHA-Ce混合物。A highly efficient collector, which is a benzohydroxamic acid (BHA)-Ce metal complex or a BHA-Ce mixture.
本发明的第二个目的在于提供上述所述捕收剂的制备方法。The second object of the present invention is to provide a method for preparing the above-mentioned collector.
一方面,上述所述BHA-Ce金属配合物采用下述方法制备而成,具体包括如下步骤:On the one hand, the BHA-Ce metal complex is prepared by the following method, which specifically comprises the following steps:
按配比将苯甲羟肟酸(BHA)和三氯化铈(CeCl3)依次溶于有机溶剂中,将所得混合液置于45~55℃条件下搅拌混匀,再将所得均匀混合液在10~55℃条件下搅拌反应4~6h;反应结束后,将所得产物过滤,所得滤液中溶剂挥发或蒸发完全后,得到白色晶体粉末,纯化后得到所述的BHA-Ce金属配合物。Benzohydroxamic acid (BHA) and cerium trichloride (CeCl 3 ) are dissolved in an organic solvent in sequence according to a ratio, the obtained mixed solution is stirred at 45-55° C., and then the obtained uniform mixed solution is stirred at 10-55° C. for reaction for 4-6 hours; after the reaction is completed, the obtained product is filtered, and after the solvent in the obtained filtrate is completely volatilized or evaporated, a white crystalline powder is obtained, and the BHA-Ce metal complex is obtained after purification.
进一步地,上述技术方案,所述三氯化铈与苯甲羟肟酸两者质量比为(1~3):1,该用量条件下,Ce离子在反应过程中是完全过量的。如果三氯化铈与苯甲羟肟酸两者质量比低于(1~3):1,合成的BHA-Ce金属配合物产率会降低,只有在上述配比范围内才能获得较高产率的目标产物。Furthermore, in the above technical solution, the mass ratio of cerium trichloride to benzohydroxamic acid is (1-3):1. Under this dosage condition, Ce ions are completely excessive during the reaction. If the mass ratio of cerium trichloride to benzohydroxamic acid is lower than (1-3):1, the yield of the synthesized BHA-Ce metal complex will be reduced. Only within the above ratio range can a target product with a higher yield be obtained.
进一步地,上述技术方案,上述所述有机溶剂可以为无水甲醇、无水乙醇、丙酮等中的任意一种。Furthermore, in the above technical solution, the above-mentioned organic solvent can be any one of anhydrous methanol, anhydrous ethanol, acetone, etc.
具体地,上述技术方案,上述所述的有机溶剂的用量可不作具体限定,只要不影响反应进行即可。例如,所述苯甲羟肟酸与有机溶剂的用量可以为1mmol:(20~50)mL。Specifically, in the above technical solution, the amount of the organic solvent used may not be specifically limited, as long as it does not affect the reaction. For example, the amount of benzohydroxamic acid and the organic solvent used may be 1 mmol: (20-50) mL.
进一步地,上述技术方案,所述搅拌的时间可不作具体限定,只要能实现苯甲羟肟酸和三氯化铈在有机溶剂中的均匀混合即可。Furthermore, in the above technical solution, the stirring time is not specifically limited, as long as the benzohydroxamic acid and cerium trichloride can be uniformly mixed in the organic solvent.
进一步地,上述技术方案,所述搅拌反应优选在常温条件下进行,所述常温是指四季中自然室温条件,不进行额外的冷却或加热处理,一般常温控制在10~30℃,最好是15~25℃。Furthermore, in the above technical solution, the stirring reaction is preferably carried out at room temperature, which refers to the natural room temperature conditions in all seasons without additional cooling or heating treatment. Generally, the room temperature is controlled at 10-30°C, preferably 15-25°C.
进一步地,上述技术方案,所述滤液中溶剂挥发可以是在常温环境下自然挥发,挥发时间较优选为26-35天。Furthermore, in the above technical solution, the volatilization of the solvent in the filtrate can be natural volatilization under normal temperature environment, and the volatilization time is preferably 26-35 days.
具体地,上述技术方案,所得滤液中溶剂蒸发可以使用旋转蒸发仪蒸发结晶,蒸发温度不超过55℃。Specifically, in the above technical solution, the solvent in the obtained filtrate can be evaporated and crystallized using a rotary evaporator, and the evaporation temperature does not exceed 55°C.
具体地,上述技术方案,所述的BHA-Ce金属配合物为固态配合物,该固态配合物可根据浮选药剂制度或工艺需求按各种比例溶于水中作为浮选捕收剂使用。Specifically, in the above technical solution, the BHA-Ce metal complex is a solid complex, which can be dissolved in water in various proportions according to the flotation reagent system or process requirements and used as a flotation collector.
另一方面,本发明上述所述BHA-Ce混合物采用下述方法制备而成,具体包括如下步骤:On the other hand, the BHA-Ce mixture of the present invention is prepared by the following method, which specifically comprises the following steps:
按配比将苯甲羟肟酸(BHA)和三氯化铈(CeCl3)依次加入到去离子水中,混匀,得到所述的BHA-Ce混合物。Benzohydroxamic acid (BHA) and cerium trichloride (CeCl 3 ) are sequentially added into deionized water according to a ratio, and mixed to obtain the BHA-Ce mixture.
进一步地,上述技术方案,所述三氯化铈与苯甲羟肟酸的质量比为1:30~1:20。如Ce离子浓度过高,将直接与BHA形成沉淀物,相当于消耗了BHA,起不到捕收的作用。Furthermore, in the above technical solution, the mass ratio of cerium trichloride to benzohydroxamic acid is 1:30 to 1:20. If the Ce ion concentration is too high, it will directly form a precipitate with BHA, which is equivalent to consuming BHA and has no collection effect.
进一步地,上述技术方案,所述搅拌的时间可不作具体限定,只要能实现苯甲羟肟酸和三氯化铈在水中的均匀混合和溶解即可。例如,所述搅拌的时间可以为30min。Further, in the above technical solution, the stirring time may not be specifically limited, as long as the benzohydroxamic acid and cerium trichloride can be uniformly mixed and dissolved in water. For example, the stirring time may be 30 minutes.
具体地,上述技术方案,所述的BHA-Ce混合物可根据浮选药剂制度或工艺需求适当改变浓度作为浮选捕收剂使用。Specifically, in the above technical solution, the BHA-Ce mixture can be used as a flotation collector by appropriately changing the concentration according to the flotation reagent system or process requirements.
本发明的第三个目的在于提供上述所述BHA-Ce配合物和/或BHA-Ce混合物在高钙萤石矿中浮选萤石的应用。The third object of the present invention is to provide the use of the above-mentioned BHA-Ce complex and/or BHA-Ce mixture in the flotation of fluorite in high-calcium fluorite ore.
本发明上述提供的捕收剂固态配合物或液态混合物均与常规浮选捕收剂使用方法一致,固态配合物捕收剂可溶于水,按用量需求与水混合,机械搅拌充分溶解后加入浮选作业即可,液态混合物按浮选用量需求直接加入浮选作业即可。本发明制备的BHA-Ce金属配合物捕收剂和BHA-Ce混合物捕收剂的使用均不受季节室温条件制约,但需要注意固态配合物溶解配制时不宜超过55℃,以免降低捕收剂性能。The solid complex or liquid mixture of the collector provided by the present invention is consistent with the use method of conventional flotation collectors. The solid complex collector is soluble in water, mixed with water according to the dosage requirements, and added to the flotation operation after mechanical stirring to fully dissolve. The liquid mixture can be directly added to the flotation operation according to the flotation dosage requirements. The use of the BHA-Ce metal complex collector and the BHA-Ce mixture collector prepared by the present invention is not restricted by seasonal room temperature conditions, but it should be noted that the solid complex should not be dissolved at more than 55°C to avoid reducing the performance of the collector.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明提供了一种有机物与金属离子合成的配合物型萤石高效捕收剂BHA-Ce的制备工艺以及使用方法,该捕收剂主要通过苯甲羟肟酸(BHA)与金属铈离子(Ce3+)的可溶性金属盐反应生成。另外,本发明还提供了一种BHA-Ce混合物的制备工艺以及使用方法。由于萤石的主要成分是氟化钙(CaF2),萤石晶体破碎的解离面将会有较多的F原子暴露。铈离子与氟离子亲和性较高,能够发生强烈的化学吸附作用。但铈离子不会与萤石矿常见的脉石矿物如方解石、白云石、石英作用,主要是因为这些脉石矿物的表面没有能够作为铈离子吸附的有效位点。当BHA-Ce配合物和/或BHA-Ce混合物在浮选溶液环境中与萤石表面接触时会通过Ce选择性的与萤石表面氟离子吸附而不与其他脉石矿物吸附。另一端的BHA离子则起到疏水作用从而使萤石表面疏水上浮,起到高选择性的捕收作用。(1) The present invention provides a preparation process and a method for using a complex-type fluorite efficient collector BHA-Ce synthesized from organic matter and metal ions. The collector is mainly generated by the reaction of benzohydroxamic acid (BHA) and a soluble metal salt of metal cerium ion (Ce 3+ ). In addition, the present invention also provides a preparation process and a method for using a BHA-Ce mixture. Since the main component of fluorite is calcium fluoride (CaF 2 ), more F atoms will be exposed on the dissociation surface of the broken fluorite crystal. Cerium ions have a high affinity for fluoride ions and can undergo strong chemical adsorption. However, cerium ions will not react with common gangue minerals such as calcite, dolomite, and quartz in fluorite ore, mainly because the surfaces of these gangue minerals do not have effective sites that can serve as cerium ion adsorption sites. When the BHA-Ce complex and/or the BHA-Ce mixture contacts the fluorite surface in the flotation solution environment, Ce selectively adsorbs fluoride ions on the fluorite surface but not on other gangue minerals. The BHA ions at the other end act as a hydrophobic force, making the fluorite surface hydrophobic and floating, thus achieving a highly selective capture effect.
(2)本发明针对现有技术中高钙型萤石浮选捕收剂选择性低,选别工艺指标不高等问题,提出了一种有效的解决手段。本发明以苯甲羟肟酸与三氯化铈为原料合成出的BHA-Ce金属配合物和BHA-Ce混合物,二者对萤石都有着优秀的选择性,有效避免了传统萤石捕收剂通过钙质点作为吸附位点所导致的选择性差、浮选指标不高等问题。本发明提供的BHA-Ce金属配合物捕收剂和BHA-Ce混合物捕收剂合成制备途径均简单可行,性能好,对使用环境无特殊要求。(2) The present invention proposes an effective solution to the problems of low selectivity and low separation process index of high-calcium fluorite flotation collectors in the prior art. The present invention uses benzohydroxamic acid and cerium trichloride as raw materials to synthesize BHA-Ce metal complex and BHA-Ce mixture, both of which have excellent selectivity for fluorite, effectively avoiding the problems of poor selectivity and low flotation index caused by the traditional fluorite collector using calcium points as adsorption sites. The synthetic preparation routes of the BHA-Ce metal complex collector and the BHA-Ce mixture collector provided by the present invention are simple and feasible, have good performance, and have no special requirements for the use environment.
(3)本发明旨在提供一种高选择性的捕收剂,能够在含钙量高的萤石矿中有效的浮选出萤石,并且选别工艺中无需添加酸也无需添加大量的抑制剂,对环境友好。(3) The present invention aims to provide a highly selective collector that can effectively float fluorite from fluorite ore with a high calcium content, and does not require the addition of acid or a large amount of inhibitors during the separation process, which is environmentally friendly.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为本发明实施例1制备的BHA-Ce配合物与BHA的红外光谱对比图;FIG1 is a comparison diagram of infrared spectra of the BHA-Ce complex prepared in Example 1 of the present invention and BHA;
图2为应用实施例1中原矿选别工艺流程图;FIG2 is a flow chart of the raw ore separation process in Application Example 1;
图3为应用实施例2中原矿选别工艺流程图。FIG3 is a flow chart of the raw ore separation process in Application Example 2.
具体实施方式Detailed ways
下面通过实施案例对本发明作进一步详细说明。本实施案例在以本发明技术为前提下进行实施,现给出详细的实施方式和具体的操作过程来说明本发明具有创造性,但本发明的保护范围不限于以下的实施案例。The present invention is further described in detail below through implementation cases. This implementation case is implemented based on the technology of the present invention, and a detailed implementation method and specific operation process are now given to illustrate that the present invention is creative, but the protection scope of the present invention is not limited to the following implementation cases.
根据本申请包含的信息,对于本领域技术人员来说可以轻而易举地对本发明的精确描述进行各种改变。应该理解,本发明的范围不局限于所限定的过程、性质或组分,因为这些实施方案以及其他的描述仅仅是为了示意性说明本发明的特定方面。According to the information contained in this application, various changes can be easily made to the precise description of the present invention for those skilled in the art.It should be understood that the scope of the present invention is not limited to defined processes, properties or components, because these embodiments and other descriptions are only for illustrating specific aspects of the present invention.
为了更好地理解本发明而不是限制本发明的范围,在本申请中所用的表示用量、百分比的所有数字、以及其他数值,在所有情况下都应理解为以词语“大约”所修饰。因此,除非特别说明,否则在说明书中所列出的数字参数都是近似值,其可能会根据试图获得的理想性质的不同而加以改变。各个数字参数至少应被看作是根据所报告的有效数字和通过常规的四舍五入方法而获得的。In order to better understand the present invention but not to limit the scope of the present invention, all the numbers used in this application to express the amount, percentage, and other numerical values should be understood as modified by the word "about" in all cases. Therefore, unless otherwise specified, the numerical parameters listed in the specification are approximate values, which may be changed according to the different ideal properties attempted to be obtained. Each numerical parameter should at least be regarded as obtained based on the reported significant figures and by conventional rounding methods.
本发明中所采用的设备和原料等均可从市场购得,或是本领域常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。The equipment and raw materials used in the present invention can be purchased from the market or are commonly used in the art. The methods in the following embodiments are all conventional methods in the art unless otherwise specified.
实施例1Example 1
本实施例的一种BHA-Ce金属配合物采用下述方法制备而成,具体包括如下步骤:A BHA-Ce metal complex of this embodiment is prepared by the following method, which specifically comprises the following steps:
首先分别称取50mmol(6.857g)的苯甲羟肟酸(BHA)和18.6235g三氯化铈(CeCl3),依次溶于1000mL甲醇中。所得混合液经水浴55℃搅拌30min,再经常温下(24℃)搅拌反应5.0h后过滤。所得滤液在经旋转蒸发仪蒸发结晶24小时,蒸发温度不超过55℃。得到白色晶体粉末。First, 50 mmol (6.857 g) of benzohydroxamic acid (BHA) and 18.6235 g of cerium trichloride (CeCl 3 ) were weighed and dissolved in 1000 mL of methanol. The resulting mixture was stirred in a water bath at 55°C for 30 min, and then stirred at room temperature (24°C) for 5.0 h before filtering. The resulting filtrate was evaporated and crystallized on a rotary evaporator for 24 hours, with the evaporation temperature not exceeding 55°C. A white crystalline powder was obtained.
将白色晶体粉末置于500mL超纯水中水浴55℃加热搅拌1小时至沉淀不再进一步溶解,将热溶液过滤除掉固体颗粒,滤液静置冷却至室温得到析出的白色晶体,过滤后得到的白色晶体自然风干即为纯苯甲羟肟酸(BHA)-Ce金属配合物。最终得到产物14.4877g,产率约为56.86%。The white crystalline powder was placed in 500 mL of ultrapure water and heated at 55° C. in a water bath with stirring for 1 hour until the precipitate no longer dissolved further, the hot solution was filtered to remove solid particles, and the filtrate was allowed to stand and cool to room temperature to obtain precipitated white crystals, which were naturally air-dried to obtain pure benzohydroxamic acid (BHA)-Ce metal complex. Finally, 14.4877 g of the product was obtained with a yield of about 56.86%.
本实施例合成的BHA-Ce配合物与BHA的红外光谱对比图见图1。由图1可知,对比BHA的红外光谱,BHA-Ce在600nm波长附近出现了Ce-Cl键的新特征峰,说明了BHA-Ce配合物的存在。The infrared spectrum comparison of the BHA-Ce complex synthesized in this example and BHA is shown in Figure 1. As shown in Figure 1, compared with the infrared spectrum of BHA, BHA-Ce has a new characteristic peak of Ce-Cl bond near 600nm wavelength, indicating the existence of the BHA-Ce complex.
实施例2Example 2
本实施例的一种BHA-Ce混合物采用下述方法制备而成,具体包括如下步骤:A BHA-Ce mixture of this embodiment is prepared by the following method, which specifically includes the following steps:
将三氯化铈(CeCl3)和苯甲羟肟酸(BHA)按质量比例1:30的比例依次在去离子水中直接混合搅拌30min,得BHA-Ce混合物。Cerium trichloride (CeCl 3 ) and benzohydroxamic acid (BHA) were directly mixed and stirred in deionized water in a mass ratio of 1:30 for 30 minutes to obtain a BHA-Ce mixture.
对比例1Comparative Example 1
本对比例的一种BHA-Ce(BHA与Ce摩尔比2:1)混合物采用下述方法制备而成,具体包括如下步骤:A BHA-Ce (BHA to Ce molar ratio 2:1) mixture of this comparative example was prepared by the following method, which specifically includes the following steps:
将三氯化铈(CeCl3)和苯甲羟肟酸(BHA)按摩尔比例1:2的比例依次在去离子水中直接混合搅拌30min,得BHA-Ce(BHA与Ce摩尔比2:1)混合物。Cerium trichloride (CeCl 3 ) and benzohydroxamic acid (BHA) were directly mixed and stirred in deionized water in a molar ratio of 1:2 for 30 minutes to obtain a BHA-Ce (BHA to Ce molar ratio 2:1) mixture.
应用实施例1Application Example 1
将实施例1制备的BHA-Ce金属配合物、对比例1制备的BHA-Ce混合物以及油酸分别作为捕收剂分别应用于高钙萤石矿中浮选萤石,具体应用方法如下:The BHA-Ce metal complex prepared in Example 1, the BHA-Ce mixture prepared in Comparative Example 1, and oleic acid were respectively used as collectors to flotation fluorite in high-calcium fluorite ore. The specific application method is as follows:
高钙萤石矿石样品为四川某方解石型高钙萤石原矿样,其中方解石(碳酸钙CaCO3)比例高达32.8%,萤石品位仅为8%左右,原矿样主要成分分析见表1。原矿的选别工艺流程见图2。The high calcium fluorite ore sample is a calcite type high calcium fluorite ore sample from Sichuan, in which the proportion of calcite (calcium carbonate CaCO 3 ) is as high as 32.8%, and the fluorite grade is only about 8%. The main component analysis of the ore sample is shown in Table 1. The separation process of the ore is shown in Figure 2.
原矿经磨矿至-0.074mm粒级占88%后,将其加入浮选槽中,并加入适量的水,在浮选机进行搅拌。首先加入pH调整剂碳酸氢钠搅拌3分钟,调节矿浆pH至7.5左右,然后依次加入脉石抑制剂酸化水玻璃和腐殖酸钠,搅拌5分钟,接着加入捕收剂搅拌3分钟。本应用实施例分别采用油酸、对比例1制备的BHA-Ce混合物和实施例1制备的BHA-Ce金属配合物分别作为萤石粗选捕收剂。当使用油酸作为捕收剂时,加入捕收剂搅拌3分钟后充气开始浮选,浮选时间为10分钟。当使用对比例1制备的BHA-Ce混合物或实施例1制备的BHA-Ce金属配合物分别作为萤石粗选捕收剂时,加入捕收剂搅拌3分钟后需继续加入起泡剂松醇油,最后充气,开始浮选,浮选时间均为10分钟。浮选完毕后得到泡沫产品即萤石粗精矿产品,以及矿浆沉砂即尾矿产品。After the raw ore is ground to a particle size of -0.074 mm accounting for 88%, it is added to the flotation tank, and an appropriate amount of water is added and stirred in the flotation machine. First, add the pH adjuster sodium bicarbonate and stir for 3 minutes to adjust the pH of the slurry to about 7.5, then add the gangue inhibitor acidified water glass and sodium humate in turn, stir for 5 minutes, and then add the collector and stir for 3 minutes. This application example uses oleic acid, the BHA-Ce mixture prepared in Comparative Example 1, and the BHA-Ce metal complex prepared in Example 1 as fluorite roughing collectors. When oleic acid is used as a collector, add the collector and stir for 3 minutes before aerating and starting flotation, and the flotation time is 10 minutes. When the BHA-Ce mixture prepared in Comparative Example 1 or the BHA-Ce metal complex prepared in Example 1 is used as a fluorite roughing collector, after adding the collector and stirring for 3 minutes, it is necessary to continue to add the foaming agent pine oil, and finally aerate and start flotation, and the flotation time is 10 minutes. After flotation, the foam product, i.e., the fluorite coarse concentrate product, and the slurry sediment, i.e., the tailings product, are obtained.
本应用实施例中酸化水玻璃是将1500g硫酸与2200g水玻璃(硅酸钠)混合,搅拌均匀后制备而成。并且,本应用实施例利用三种不同捕收剂进行浮选采用的酸化水玻璃的用量均是3700克/吨(即处理1吨高钙萤石原矿所需的酸化水玻璃用量为3700克);本应用实施例利用三种不同捕收剂进行浮选采用的腐殖酸钠的用量均为450克/吨(即处理1吨高钙萤石原矿所需的腐殖酸钠用量为450克)。另外,本应用实施例中油酸用量为50克/吨(即处理1吨高钙萤石原矿所需的油酸用量为50克);对比例1制备的BHA-Ce混合物用量为320克/吨(即处理1吨高钙萤石原矿所需的对比例1制备的BHA-Ce混合物用量为320克);实施例1制备的BHA-Ce金属配合物用量为320克/吨(即处理1吨高钙萤石原矿所需的实施例1制备的BHA-Ce金属配合物用量为320克);当使用对比例1制备的BHA-Ce混合物或实施例1制备的BHA-Ce金属配合物分别作为萤石粗选捕收剂时采用的起泡剂松醇油用量均是50克/吨(即处理1吨高钙萤石原矿所需的松醇油用量为50克)。其他浮选条件(例如pH调整剂,抑制剂用量等)完全相同,分别进行浮选试验,结果对比见表2。In this application example, the acidified water glass is prepared by mixing 1500g of sulfuric acid and 2200g of water glass (sodium silicate) and stirring them evenly. In addition, the amount of acidified water glass used in the flotation using three different collectors in this application example is 3700g/ton (i.e., the amount of acidified water glass required to process 1 ton of high-calcium fluorite ore is 3700g); the amount of sodium humate used in the flotation using three different collectors in this application example is 450g/ton (i.e., the amount of sodium humate required to process 1 ton of high-calcium fluorite ore is 450g). In addition, the amount of oleic acid in this application example is 50 g/ton (i.e., the amount of oleic acid required to treat 1 ton of high-calcium fluorite ore is 50 g); the amount of BHA-Ce mixture prepared in Comparative Example 1 is 320 g/ton (i.e., the amount of BHA-Ce mixture prepared in Comparative Example 1 required to treat 1 ton of high-calcium fluorite ore is 320 g); the amount of BHA-Ce metal complex prepared in Example 1 is 320 g/ton (i.e., the amount of BHA-Ce metal complex prepared in Example 1 required to treat 1 ton of high-calcium fluorite ore is 320 g); when the BHA-Ce mixture prepared in Comparative Example 1 or the BHA-Ce metal complex prepared in Example 1 is used as a fluorite roughing collector, the amount of pine oil used as a foaming agent is 50 g/ton (i.e., the amount of pine oil required to treat 1 ton of high-calcium fluorite ore is 50 g). Other flotation conditions (such as pH adjuster, inhibitor dosage, etc.) are exactly the same, and flotation tests are carried out respectively, and the results are compared in Table 2.
表1中数据是根据XRF荧光半定量分析或化学分析法所得,分析结果均来自具备检测分析资质的检测机构。The data in Table 1 are obtained based on XRF fluorescence semi-quantitative analysis or chemical analysis, and the analysis results are all from testing institutions with testing and analysis qualifications.
表2中原矿及萤石粗精矿品位结果出自具备检测分析资质的检测机构化学分析结果,尾矿及所有产品的回收率根据回收率计算公式计算得出:The grade results of the raw ore and fluorite concentrate in Table 2 are derived from the chemical analysis results of a testing agency with testing and analysis qualifications. The recovery rates of tailings and all products are calculated according to the recovery rate calculation formula:
粗精矿CaF2回收率=(粗精矿CaF2品位×粗精矿产率)/(原矿CaF2品位×原矿产率)×100%;Rough concentrate CaF2 recovery rate = (rough concentrate CaF2 grade × rough concentrate yield) / (raw ore CaF2 grade × raw ore yield) × 100%;
尾矿CaF2回收率=(1-粗精矿CaF2回收率)×100%。Tailings CaF2 recovery rate = (1-rough concentrate CaF2 recovery rate) × 100%.
表1原矿样主要成分分析Table 1 Analysis of main components of raw ore samples
表2浮选试验结果Table 2 Flotation test results
表2测试结果表明,相比油酸,采用BHA-Ce(包括对比例1制备的BHA-Ce混合物、实施例1制备的BHA-Ce金属配合物)作为捕收剂,显著提高了粗精矿CaF2品位,同时能保证回收率,对萤石的选择性显著高于油酸。而对比例1制备的BHA-Ce混合物捕收剂对萤石的捕收能力非常差,在与实施例1制备的BHA-Ce金属配合物同等用量条件下,回收率低了约27个百分点,甚至远低于油酸的选别效果。The test results in Table 2 show that compared with oleic acid, the use of BHA-Ce (including the BHA-Ce mixture prepared in Comparative Example 1 and the BHA-Ce metal complex prepared in Example 1) as a collector significantly improves the grade of CaF 2 in the coarse concentrate, while ensuring the recovery rate, and the selectivity for fluorite is significantly higher than that of oleic acid. However, the BHA-Ce mixture collector prepared in Comparative Example 1 has a very poor ability to collect fluorite. Under the same dosage conditions as the BHA-Ce metal complex prepared in Example 1, the recovery rate is about 27 percentage points lower, even far lower than the separation effect of oleic acid.
应用实施例2Application Example 2
将实施例2制备的BHA-Ce混合物、对比例1制备的BHA-Ce混合物、以及油酸钠分别作为捕收剂应用于高钙萤石矿中浮选萤石,具体应用方法如下:The BHA-Ce mixture prepared in Example 2, the BHA-Ce mixture prepared in Comparative Example 1, and sodium oleate were respectively used as collectors to flotation fluorite in high-calcium fluorite ore. The specific application method is as follows:
高钙萤石矿石样品为内蒙某白云岩型高钙萤石原矿样,其中白云石及方解石(碳酸钙CaCO3)比例高达50%,萤石品位为32%左右,原矿样主要成分分析见表3。原矿的选别工艺流程见图3。The high calcium fluorite ore sample is a dolomite type high calcium fluorite ore sample from Inner Mongolia, in which the proportion of dolomite and calcite (calcium carbonate CaCO 3 ) is as high as 50%, and the fluorite grade is about 32%. The main component analysis of the ore sample is shown in Table 3. The separation process of the ore is shown in Figure 3.
原矿经磨矿至-0.074mm粒级占92%后,将其加入浮选槽中,并加入适量的水,在浮选机进行搅拌。首先加入pH调整剂氢氧化钠搅拌3分钟,调节矿浆pH至7.5左右,然后依次加入脉石抑制剂酸化水玻璃、腐殖酸钠和单宁酸,搅拌5分钟,接着加入捕收剂搅拌3分钟。本应用实施例分别采用油酸钠、对比例1制备的BHA-Ce混合物和实施例2制备的BHA-Ce混合物分别作为萤石粗选捕收剂。当使用油酸钠作为捕收剂时,加入捕收剂搅拌3分钟后充气开始浮选,浮选时间为10分钟。当使用对比例1制备的BHA-Ce混合物或实施例2制备的BHA-Ce混合物分别作为萤石粗选捕收剂时,加入捕收剂搅拌3分钟后需继续加入起泡剂松醇油,最后充气,开始浮选,浮选时间均为10分钟。浮选完毕后得到泡沫产品即萤石粗精矿产品,以及矿浆沉砂即尾矿产品。After the raw ore is ground to a particle size of -0.074 mm accounting for 92%, it is added to the flotation tank, and an appropriate amount of water is added and stirred in the flotation machine. First, add the pH adjuster sodium hydroxide and stir for 3 minutes to adjust the pH of the pulp to about 7.5, then add the gangue inhibitor acidified water glass, sodium humate and tannic acid in sequence, stir for 5 minutes, and then add the collector and stir for 3 minutes. This application example uses sodium oleate, the BHA-Ce mixture prepared in Comparative Example 1, and the BHA-Ce mixture prepared in Example 2 as fluorite roughing collectors. When sodium oleate is used as a collector, add the collector and stir for 3 minutes before aerating and starting flotation, and the flotation time is 10 minutes. When the BHA-Ce mixture prepared in Comparative Example 1 or the BHA-Ce mixture prepared in Example 2 is used as a fluorite roughing collector, after adding the collector and stirring for 3 minutes, it is necessary to continue to add the foaming agent pine oil, and finally aerate and start flotation, and the flotation time is 10 minutes. After flotation, the foam product, i.e., the fluorite coarse concentrate product, and the slurry sedimentation product, i.e., the tailings product, are obtained.
上述所述酸化水玻璃是将250g硫酸与250水玻璃(硅酸钠)混合,搅拌均匀后制备而成。The acidified water glass is prepared by mixing 250 g of sulfuric acid with 250 g of water glass (sodium silicate) and stirring evenly.
本应用实施例中采用三种不同捕收剂进行浮选时,采用的酸化水玻璃均为500克/吨,采用的腐殖酸钠用量均为100克/吨(即处理1吨高钙萤石原矿所需的腐殖酸钠用量为100克),采用的单宁酸的用量均为200克/吨(即处理1吨高钙萤石原矿所需的单宁酸用量为200克)。本应用实施例中油酸钠用量为65克/吨(即处理1吨高钙萤石原矿所需的油酸钠用量为65克);对比例1制备的BHA-Ce混合物用量为400克/吨(即处理1吨高钙萤石原矿所需的对比例1制备的BHA-Ce混合物用量为400克);实施例2制备的BHA-Ce混合物用量为400克/吨(即处理1吨高钙萤石原矿所需的实施例2制备的BHA-Ce混合物用量为400克);当使用对比例1制备的BHA-Ce混合物或实施例2制备的BHA-Ce混合物分别作为萤石粗选捕收剂时采用的起泡剂松醇油用量均是50克/吨(即处理1吨高钙萤石原矿所需的松醇油用量为50克)。其他浮选条件(例如pH调整剂,抑制剂用量等)完全相同,分别进行浮选试验,结果对比见表4。In this application example, when three different collectors are used for flotation, the acidified water glass used is 500 g/ton, the sodium humate used is 100 g/ton (i.e., the amount of sodium humate required to treat 1 ton of high-calcium fluorite ore is 100 g), and the amount of tannic acid used is 200 g/ton (i.e., the amount of tannic acid required to treat 1 ton of high-calcium fluorite ore is 200 g). In this application example, the amount of sodium oleate used is 65 g/ton (i.e., the amount of sodium oleate required to treat 1 ton of high-calcium fluorite ore is 65 g); the amount of BHA-Ce mixture prepared in Comparative Example 1 is 400 g/ton (i.e., the amount of BHA-Ce mixture prepared in Comparative Example 1 required to treat 1 ton of high-calcium fluorite ore is 400 g); the amount of BHA-Ce mixture prepared in Example 2 is 400 g/ton (i.e., the amount of BHA-Ce mixture prepared in Example 2 required to treat 1 ton of high-calcium fluorite ore is 400 g); when the BHA-Ce mixture prepared in Comparative Example 1 or the BHA-Ce mixture prepared in Example 2 is used as a fluorite roughing collector, the amount of pine oil used as a foaming agent is 50 g/ton (i.e., the amount of pine oil required to treat 1 ton of high-calcium fluorite ore is 50 g). Other flotation conditions (such as pH adjuster, inhibitor dosage, etc.) are exactly the same, and flotation tests are carried out respectively, and the results are compared in Table 4.
表3中数据是根据XRF荧光半定量分析或化学分析法所得,分析结果均来自具备检测分析资质的检测机构。The data in Table 3 are obtained based on XRF fluorescence semi-quantitative analysis or chemical analysis, and the analysis results are all from testing institutions with testing and analysis qualifications.
表4中萤石粗精矿及尾矿品位结果出自具备检测分析资质的检测机构化学分析结果,原矿品位及所有产品的回收率根据如下回收率计算公式计算得出:The results of the fluorite rough concentrate and tailings grades in Table 4 are derived from the chemical analysis results of a testing agency with testing and analysis qualifications. The ore grade and the recovery rate of all products are calculated according to the following recovery calculation formula:
原矿CaF2品位=(精矿CaF2品位×粗精矿产率+尾矿CaF2品位×尾矿产率)/原矿产率×100%;Raw ore CaF2 grade = (concentrate CaF2 grade × rough concentrate yield + tailings CaF2 grade × tailings yield) / raw ore yield × 100%;
粗精矿CaF2回收率=(精矿CaF2品位×粗精矿产率)/(原矿CaF2品位×原矿产率)×100%;Rough concentrate CaF2 recovery rate = (concentrate CaF2 grade × rough concentrate yield) / (raw ore CaF2 grade × raw ore yield) × 100%;
尾矿CaF2回收率=(1-粗精矿CaF2回收率)×100%。Tailings CaF2 recovery rate = (1-rough concentrate CaF2 recovery rate) × 100%.
表3原矿样主要成分分析表Table 3 Main component analysis of raw ore samples
表4浮选试验结果Table 4 Flotation test results
表4结果表明,相比油酸钠,采用实施例2制备的BHA-Ce混合物作为捕收剂,显著提高了粗精矿CaF2品位,同时能保证回收率,对萤石的选择性显著高于油酸钠。而对比例1制备的BHA-Ce混合物捕收剂对萤石的捕收能力非常差,在与实施例2制备的BHA-Ce混合物同等用量条件下,回收率低了约45个百分点,甚至远低于油酸钠的选别效果。The results in Table 4 show that compared with sodium oleate, the use of the BHA-Ce mixture prepared in Example 2 as a collector significantly improves the grade of CaF 2 in the coarse concentrate, while ensuring the recovery rate, and the selectivity for fluorite is significantly higher than that of sodium oleate. However, the BHA-Ce mixture collector prepared in Comparative Example 1 has a very poor ability to collect fluorite. Under the same dosage conditions as the BHA-Ce mixture prepared in Example 2, the recovery rate is about 45 percentage points lower, even far lower than the separation effect of sodium oleate.
选择性通常参考的标准是品位而非回收率,回收率一般是作为捕收剂捕收能力的判断依据,油酸钠粗精矿品位仅为43.68%,而实施例2制备的BHA-Ce混合物的粗精矿品位达到了52.91%,提高了近10%。The standard for selectivity is usually grade rather than recovery rate. Recovery rate is generally used as a basis for judging the collection capacity of the collector. The grade of the crude concentrate of sodium oleate is only 43.68%, while the grade of the crude concentrate of the BHA-Ce mixture prepared in Example 2 reaches 52.91%, an increase of nearly 10%.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2023105524500 | 2023-05-17 | ||
CN202310552450 | 2023-05-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116943871A CN116943871A (en) | 2023-10-27 |
CN116943871B true CN116943871B (en) | 2024-04-26 |
Family
ID=88443476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310688345.XA Active CN116943871B (en) | 2023-05-17 | 2023-06-12 | Efficient collector, preparation method thereof and application of efficient collector in fluorite flotation in high-calcium fluorite ore |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116943871B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118988567B (en) * | 2024-10-21 | 2025-01-24 | 平利县裕祥盛亿矿业有限公司 | A barite flotation method and system based on infrared spectroscopy analysis microwave |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69131509D1 (en) * | 1990-05-09 | 1999-09-09 | Fuji Photo Film Co Ltd | Photographic processing composition and processing method using the same |
CN107694763A (en) * | 2017-09-29 | 2018-02-16 | 江西理工大学 | Cigarette base hydroximic acid collecting agent and its preparation method and application |
CN107755098A (en) * | 2017-09-29 | 2018-03-06 | 内蒙古科技大学 | A kind of method that light rare earth mineral floating efficiently suppresses fluorite |
CN109261366A (en) * | 2018-09-10 | 2019-01-25 | 中南大学 | A kind of combination medicament and its application method removing calcite in advance for high calcium fluorite reverse flotation |
CN109433426A (en) * | 2018-12-25 | 2019-03-08 | 郑州智锦电子科技有限公司 | Oxide ores mineral collectors such as a kind of collecting fluorite and preparation method thereof |
CN111841896A (en) * | 2020-08-06 | 2020-10-30 | 武汉工程大学 | A kind of benzoheterocyclic hydroxamic acid collector and its preparation method and application |
CN113695086A (en) * | 2021-08-20 | 2021-11-26 | 昆明理工大学 | Flotation separation method of bastnaesite and barite |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109890508A (en) * | 2016-08-04 | 2019-06-14 | 凯米罗总公司 | The method of mineral ore flotation is carried out there are polyvalent metal ion |
-
2023
- 2023-06-12 CN CN202310688345.XA patent/CN116943871B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69131509D1 (en) * | 1990-05-09 | 1999-09-09 | Fuji Photo Film Co Ltd | Photographic processing composition and processing method using the same |
CN107694763A (en) * | 2017-09-29 | 2018-02-16 | 江西理工大学 | Cigarette base hydroximic acid collecting agent and its preparation method and application |
CN107755098A (en) * | 2017-09-29 | 2018-03-06 | 内蒙古科技大学 | A kind of method that light rare earth mineral floating efficiently suppresses fluorite |
CN109261366A (en) * | 2018-09-10 | 2019-01-25 | 中南大学 | A kind of combination medicament and its application method removing calcite in advance for high calcium fluorite reverse flotation |
CN109433426A (en) * | 2018-12-25 | 2019-03-08 | 郑州智锦电子科技有限公司 | Oxide ores mineral collectors such as a kind of collecting fluorite and preparation method thereof |
CN111841896A (en) * | 2020-08-06 | 2020-10-30 | 武汉工程大学 | A kind of benzoheterocyclic hydroxamic acid collector and its preparation method and application |
CN113695086A (en) * | 2021-08-20 | 2021-11-26 | 昆明理工大学 | Flotation separation method of bastnaesite and barite |
Non-Patent Citations (2)
Title |
---|
稀土矿浮选中Ce3+对萤石的活化作用机理;王介良 等;《中国有色金属学报》(第6期);第1196-1203页 * |
镧系金属-苯甲羟肟酸有机配合物对萤石和方解石的捕收性能研究;李颖颖 等;《矿产保护与利用》(第3期);第135-141页 * |
Also Published As
Publication number | Publication date |
---|---|
CN116943871A (en) | 2023-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106542512B (en) | Utilize the high-purity phosphoric acid lithium preparation method of the lithium waste liquid of old and useless battery | |
KR101973479B1 (en) | Manufacturing Method of High Purity Lithium Carbonate with Controlled Size, Size Distribution And Shape | |
CN116943871B (en) | Efficient collector, preparation method thereof and application of efficient collector in fluorite flotation in high-calcium fluorite ore | |
CN109225649B (en) | Phosphorite layer a ore reverse flotation composite collecting agent and preparation method thereof | |
CN101565778A (en) | Method for depositing and separating tungsten and molybdenum in tungstate/molybdate mixed solution | |
CN106977123A (en) | A kind of citric acid for being used to remove impurity fluorine in ardealite adds water the process washed | |
CN110369152B (en) | Flotation process for micro-fine particle phosphorite | |
CN109019646A (en) | A method of Aluminum sol is prepared using gangue | |
CN108654844B (en) | Application of an organic phosphoric acid compound in the flotation of scheelite | |
CN103331212A (en) | Carbonate phosphorite reverse flotation collecting agent and preparation method thereof | |
US5271848A (en) | Treating of waste water with bauxite to remove phosphates from the waste water | |
CN103820646B (en) | A kind of method extracting gallium from flyash | |
CN108745655A (en) | A kind of double hydroxy fatty acid soap collecting agents and preparation method thereof | |
CN111534704A (en) | A method for synergistically extracting potassium and rubidium from potassium-bearing rocks | |
CN113477409B (en) | Calcium-containing gangue combined inhibitor for scheelite flotation and preparation and application methods thereof | |
CN113797893B (en) | Dephosphorizing agent, preparation method thereof and treatment method of phosphorus-containing sewage | |
CN110407236B (en) | Preparation method of electric automobile-grade lithium carbonate | |
CN118142489A (en) | Method for preparing adsorption material by utilizing pegmatite tailings | |
CN114130541B (en) | A method for purifying non-weakly magnetic tailings to produce concentrate and the concentrate obtained | |
CN111036412B (en) | Application of inhibitor HPMA in positive flotation and magnesium removal of phosphate ore | |
CN112374679A (en) | Treatment method of wastewater generated in cobaltosic oxide preparation process | |
CN114789086B (en) | Corrosion pretreatment flotation method for low-grade refractory ilmenite | |
CN116764817A (en) | Apatite direct flotation collector and application thereof | |
CN111250034A (en) | Modification method and application of desulfurization slag | |
CN117085848A (en) | Collophanite low-temperature reverse flotation collector and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |