[go: up one dir, main page]

CN116936613B - Quasi-vertical device based on sapphire substrate epitaxy and preparation method thereof - Google Patents

Quasi-vertical device based on sapphire substrate epitaxy and preparation method thereof Download PDF

Info

Publication number
CN116936613B
CN116936613B CN202311201390.4A CN202311201390A CN116936613B CN 116936613 B CN116936613 B CN 116936613B CN 202311201390 A CN202311201390 A CN 202311201390A CN 116936613 B CN116936613 B CN 116936613B
Authority
CN
China
Prior art keywords
gallium oxide
layer
oxide
gallium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311201390.4A
Other languages
Chinese (zh)
Other versions
CN116936613A (en
Inventor
张泽雨林
张春福
刘丁赫
陈大正
赵胜雷
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202311201390.4A priority Critical patent/CN116936613B/en
Publication of CN116936613A publication Critical patent/CN116936613A/en
Application granted granted Critical
Publication of CN116936613B publication Critical patent/CN116936613B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/82Heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention discloses a quasi-vertical device based on sapphire substrate epitaxy and a preparation method thereof, comprising the following steps: a substrate; a p-type oxide heteroepitaxial layer on the substrate; the gallium oxide epitaxial layer is positioned on the p-type oxide heteroepitaxial layer; the p-type oxide heteroepitaxial layer and the gallium oxide epitaxial layer form a composite gate structure together; cathode metal on the gallium oxide epitaxial layer; an anode metal on the p-type oxide heteroepitaxial layer and at least partially surrounding the gallium oxide epitaxial layer; applying a bias voltage to the composite gate structure through the cathode metal and the anode metal; the p-type oxide heteroepitaxial layer, the anode metal, the gallium oxide epitaxial layer and the cathode metal form a heteropn junction quasi-vertical device together. The invention can expand the application range of gallium oxide epitaxial thin film devices.

Description

基于蓝宝石衬底外延的准垂直器件及其制备方法Quasi-vertical device based on sapphire substrate epitaxy and its preparation method

技术领域Technical Field

本发明属于半导体器件技术领域,具体涉及一种基于蓝宝石衬底外延的准垂直器件及其制备方法。The present invention belongs to the technical field of semiconductor devices, and in particular relates to a quasi-vertical device based on sapphire substrate epitaxy and a preparation method thereof.

背景技术Background technique

氧化镓半导体材料以其超宽的禁带宽度(4.4eV~5.3eV)、极高的击穿场强(~8MV/cm),在电力电子器件、深紫外光电器件中具有极大发展潜力。目前报道中指出氧化镓材料可以掺杂III、IV族元素,以作为高导电性的n型半导体,但存在p型掺杂困难的问题。现有的研究尝试了多种异质p型半导体材料,如氧化镓与氧化镍、氧化亚铜等金属氧化物形成的异质pn结,但是其研究基于氧化镓衬底,没有解决氧化镓导热性不足的问题。Gallium oxide semiconductor materials have great development potential in power electronic devices and deep ultraviolet optoelectronic devices due to their ultra-wide bandgap (4.4eV~5.3eV) and extremely high breakdown field strength (~8MV/cm). Current reports indicate that gallium oxide materials can be doped with group III and IV elements to serve as highly conductive n-type semiconductors, but there is a problem of difficulty in p-type doping. Existing studies have tried a variety of heterogeneous p-type semiconductor materials, such as heterogeneous pn junctions formed by gallium oxide and metal oxides such as nickel oxide and cuprous oxide, but their research is based on gallium oxide substrates and does not solve the problem of insufficient thermal conductivity of gallium oxide.

基于蓝宝石衬底氧化镓外延薄膜异质结研究方面,大多聚焦于氧化镓外延膜上进行其他金属氧化物的外延研究,虽然外延薄膜无法开展垂直器件的研究,但蓝宝石衬底对提高氧化镓薄膜的散热有显著帮助。此外,由于蓝宝石衬底与氧化镓外延层之间存在较大的晶格失配,氧化镓外延层并不能获得足够好的薄膜质量,对氧化镓异质外延材料的应用提出了很大挑战。In the research of heterojunction of gallium oxide epitaxial thin film based on sapphire substrate, most of them focus on epitaxial research of other metal oxides on gallium oxide epitaxial film. Although epitaxial thin film cannot carry out research on vertical devices, sapphire substrate can significantly help improve the heat dissipation of gallium oxide thin film. In addition, due to the large lattice mismatch between sapphire substrate and gallium oxide epitaxial layer, gallium oxide epitaxial layer cannot obtain good enough film quality, which poses a great challenge to the application of gallium oxide heteroepitaxial materials.

因此,现有氧化镓异质薄膜外延与异质pn结器件研究不足以发挥氧化镓材料的优势,亟需开发新型氧化镓异质pn结器件的结构。Therefore, the existing research on gallium oxide heterojunction film epitaxy and heterogeneous pn junction devices is not sufficient to give full play to the advantages of gallium oxide materials, and it is urgent to develop new gallium oxide heterogeneous pn junction device structures.

发明内容Summary of the invention

为了解决现有技术中存在的上述问题,本发明提供了一种基于蓝宝石衬底外延的准垂直器件及其制备方法。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides a quasi-vertical device based on sapphire substrate epitaxy and a preparation method thereof. The technical problem to be solved by the present invention is achieved by the following technical solutions:

第一方面,本发明提供一种基于蓝宝石衬底外延的氧化镓异质的准垂直器件,包括:In a first aspect, the present invention provides a quasi-vertical device of gallium oxide heterogeneity based on sapphire substrate epitaxy, comprising:

衬底;substrate;

p型氧化物异质外延层,位于衬底上;A p-type oxide heteroepitaxial layer disposed on a substrate;

氧化镓外延层,位于p型氧化物异质外延层上;p型氧化物异质外延层与氧化镓外延层共同组成复合栅结构;A gallium oxide epitaxial layer is located on the p-type oxide heteroepitaxial layer; the p-type oxide heteroepitaxial layer and the gallium oxide epitaxial layer together form a composite gate structure;

阴极金属,位于氧化镓外延层上;a cathode metal, located on the gallium oxide epitaxial layer;

阳极金属,位于p型氧化物异质外延层上,且至少部分环绕氧化镓外延层;通过阴极金属和阳极金属向复合栅结构施加偏置电压;an anode metal disposed on the p-type oxide heteroepitaxial layer and at least partially surrounding the gallium oxide epitaxial layer; and applying a bias voltage to the composite gate structure through the cathode metal and the anode metal;

其中,p型氧化物异质外延层、阳极金属、氧化镓外延层和阴极金属共同组成异质pn结准垂直器件。Among them, the p-type oxide heteroepitaxial layer, the anode metal, the gallium oxide epitaxial layer and the cathode metal together constitute a heterogeneous pn junction quasi-vertical device.

第二方面,本发明还提供一种基于蓝宝石衬底外延的氧化镓异质的准垂直器件的制备方法,包括:In a second aspect, the present invention further provides a method for preparing a quasi-vertical device of heterogeneous gallium oxide based on sapphire substrate epitaxy, comprising:

提供一衬底;providing a substrate;

使用半导体外延工艺在衬底上外延p型氧化物异质外延层;epitaxially growing a p-type oxide heteroepitaxial layer on a substrate using a semiconductor epitaxial process;

使用半导体外延工艺在p型氧化物异质外延层上外延氧化镓层,在氧化镓层上进行离子注入、并外延高掺的氧化镓层,用于在氧化镓层上表面获得可控的高电子迁移率;epitaxially growing a gallium oxide layer on the p-type oxide heteroepitaxial layer using a semiconductor epitaxial process, performing ion implantation on the gallium oxide layer, and epitaxially growing a highly doped gallium oxide layer, so as to obtain a controllable high electron mobility on the upper surface of the gallium oxide layer;

使用刻蚀工艺图形化所述氧化镓层,形成投影形状为圆形的氧化镓外延层,其中,投影方向为垂直于衬底的方向;The gallium oxide layer is patterned using an etching process to form a gallium oxide epitaxial layer having a circular projection shape, wherein the projection direction is a direction perpendicular to the substrate;

使用金属沉积工艺在氧化镓外延层上沉积阴极金属;depositing a cathode metal on the gallium oxide epitaxial layer using a metal deposition process;

去除多余光刻胶后,使用快速退火工艺,使得阴极金属与氧化镓外延层之间形成欧姆接触;After removing the excess photoresist, a rapid annealing process is used to form an ohmic contact between the cathode metal and the gallium oxide epitaxial layer;

使用金属沉积工艺在p型氧化物异质外延层上、在氧化镓外延层的外围沉积阳极金属;Depositing an anode metal on the p-type oxide heteroepitaxial layer and on the periphery of the gallium oxide epitaxial layer using a metal deposition process;

去除多余光刻胶后,使用快速退火工艺,使得阳极金属与p型氧化物异质外延层之间形成欧姆接触。After removing the excess photoresist, a rapid annealing process is used to form an ohmic contact between the anode metal and the p-type oxide heteroepitaxial layer.

本发明的有益效果:Beneficial effects of the present invention:

本发明提供的一种基于蓝宝石衬底外延的准垂直器件及其制备方法,p型氧化物异质外延层采用氧化镍,氧化镍比氧化镓的热导率高,氧化镓薄膜产生的热量可以通过氧化镍进行散热,可以解决氧化镓的散热问题;氧化镍上生长氧化镓晶格失配小于直接在衬底上生长氧化镓,可以降低氧化镓与蓝宝石衬底之间的晶格失配问题,使得氧化镓薄膜成膜质量得到改善;阳极金属为环状电极,可以有效把电场控制在圆环内测;由p氧化物异质外延薄膜与氧化镓异质外延薄膜一起共同组成p-i-n结构,pin结由于i型层的存在,使得电场可以在i型层中均匀分布,比pn结具有更优秀的承压能力,可以大大提高外延薄膜间的耐压能力以获得更低的漏电流与更高穿电压,扩大了氧化镓外延薄膜器件的应用范围。The invention provides a quasi-vertical device based on sapphire substrate epitaxy and a preparation method thereof. A p-type oxide heteroepitaxial layer adopts nickel oxide. Nickel oxide has higher thermal conductivity than gallium oxide. Heat generated by a gallium oxide film can be dissipated by nickel oxide, thereby solving the heat dissipation problem of gallium oxide. The lattice mismatch of gallium oxide grown on nickel oxide is smaller than that of gallium oxide grown directly on a substrate, thereby reducing the lattice mismatch problem between gallium oxide and the sapphire substrate, thereby improving the film formation quality of the gallium oxide film. The anode metal is a ring-shaped electrode, thereby effectively controlling the electric field within the ring. The p-oxide heteroepitaxial film and the gallium oxide heteroepitaxial film together form a p-i-n structure. Due to the existence of an i-type layer, a pin junction enables an electric field to be evenly distributed in the i-type layer, thereby having better pressure bearing capacity than a pn junction, thereby greatly improving the pressure bearing capacity between epitaxial films to obtain lower leakage current and higher breakdown voltage, thereby expanding the application range of gallium oxide epitaxial film devices.

以下将结合附图及实施例对本发明做进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本发明实施例提供的基于蓝宝石衬底外延的氧化镓异质的准垂直器件的一种结构示意图;FIG1 is a schematic structural diagram of a quasi-vertical device of heterogeneous gallium oxide based on sapphire substrate epitaxy provided by an embodiment of the present invention;

图2是本发明实施例提供的基于蓝宝石衬底外延的氧化镓异质的准垂直器件制备方法的一种流程图。FIG. 2 is a flow chart of a method for preparing a gallium oxide heterogeneous quasi-vertical device based on sapphire substrate epitaxy provided in an embodiment of the present invention.

具体实施方式Detailed ways

下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention is further described in detail below with reference to specific embodiments, but the embodiments of the present invention are not limited thereto.

本发明针对现有技术的不足,提出p型氧化物与氧化镓异质外延薄膜组成异质pn结,通过控制氧化镓的表层掺杂实现pn结间组成p-i-n结构,以使提高器件的击穿电压。此外,p型氧化物的引入对减小氧化镓与蓝宝石之间的晶格失配具有积极作用,可以提高氧化镓外延层的质量,扩大器件应用范围。In view of the shortcomings of the prior art, the present invention proposes that a p-type oxide and a gallium oxide heteroepitaxial thin film form a heterogeneous pn junction, and a p-i-n structure is formed between the pn junctions by controlling the surface doping of gallium oxide, so as to improve the breakdown voltage of the device. In addition, the introduction of the p-type oxide has a positive effect on reducing the lattice mismatch between gallium oxide and sapphire, which can improve the quality of the gallium oxide epitaxial layer and expand the application range of the device.

请参见图1所示,图1是本发明实施例提供的基于蓝宝石衬底外延的氧化镓异质的准垂直器件的一种结构示意图,本发明所提供的一种基于蓝宝石衬底外延的氧化镓异质的准垂直器件,包括:Please refer to FIG. 1 , which is a schematic diagram of a structure of a gallium oxide heterogeneous quasi-vertical device based on sapphire substrate epitaxy provided by an embodiment of the present invention. The gallium oxide heterogeneous quasi-vertical device based on sapphire substrate epitaxy provided by the present invention includes:

衬底10;Substrate 10;

p型氧化物异质外延层20,位于衬底10上;A p-type oxide heteroepitaxial layer 20 , located on the substrate 10 ;

氧化镓外延层30,位于p型氧化物异质外延层20上;p型氧化物异质外延层20与氧化镓外延层30共同组成复合栅结构;可通过控制掺杂浓度形成i层与n层,与p型氧化物组成p-i-n结构;The gallium oxide epitaxial layer 30 is located on the p-type oxide heteroepitaxial layer 20; the p-type oxide heteroepitaxial layer 20 and the gallium oxide epitaxial layer 30 together form a composite gate structure; the i layer and the n layer can be formed by controlling the doping concentration to form a p-i-n structure with the p-type oxide;

阴极金属40,位于氧化镓外延层30上;A cathode metal 40 is located on the gallium oxide epitaxial layer 30;

阳极金属50,位于p型氧化物异质外延层20上,且至少部分环绕氧化镓外延层30;通过阴极金属40和阳极金属50向复合栅结构施加偏置电压;an anode metal 50 disposed on the p-type oxide heteroepitaxial layer 20 and at least partially surrounding the gallium oxide epitaxial layer 30; and applying a bias voltage to the composite gate structure through the cathode metal 40 and the anode metal 50;

其中,p型氧化物异质外延层20、阳极金属50、氧化镓外延层30和阴极金属40共同组成异质pn结准垂直器件。The p-type oxide heteroepitaxial layer 20 , the anode metal 50 , the gallium oxide epitaxial layer 30 and the cathode metal 40 together constitute a heterogeneous pn junction quasi-vertical device.

需要说明的是,p型氧化物异质外延层20以氧化镍为例,其厚度为100nm~1μm;氧化镓外延层30的厚度为100nm~2μm;阳极金属50的厚度为80nm~200nm;阴极金属40的厚度为120nm~200nm;阳极金属50由下到上包括50nm厚的镍金属、150nm厚的金金属;阴极金属40由下到上包括60nm厚的钛金属、120nm厚的金金属。It should be noted that, taking nickel oxide as an example, the p-type oxide heteroepitaxial layer 20 has a thickness of 100nm~1μm; the thickness of the gallium oxide epitaxial layer 30 is 100nm~2μm; the thickness of the anode metal 50 is 80nm~200nm; the thickness of the cathode metal 40 is 120nm~200nm; the anode metal 50 includes 50nm thick nickel metal and 150nm thick gold metal from bottom to top; the cathode metal 40 includes 60nm thick titanium metal and 120nm thick gold metal from bottom to top.

需要说明的是,图1所示实施例仅示意性示出了准垂直器件各层的位置示意图,并不代表其实际尺寸。It should be noted that the embodiment shown in FIG. 1 only schematically shows the positions of the layers of the quasi-vertical device and does not represent its actual size.

综上所述,本发明提供的基于蓝宝石衬底10外延的氧化镓异质的准垂直器件,p型氧化物异质外延层20采用氧化镍,氧化镍比氧化镓的热导率高,氧化镓薄膜产生的热量可以通过氧化镍进行散热,可以解决氧化镓的散热问题;氧化镍上生长氧化镓晶格失配小于直接在蓝宝石上生长氧化镓,可以降低氧化镓与蓝宝石衬底10之间的晶格失配问题,使得氧化镓薄膜成膜质量得到改善;阳极金属50为环状电极,可以有效把电场控制在圆环内测;由p氧化物异质外延薄膜与氧化镓异质外延薄膜一起共同组成p-i-n结构,pin结由于i型层的存在,使得电场可以在i型层中均匀分布,比pn结具有更优秀的承压能力,可以大大提高外延薄膜间的耐压能力以获得更低的漏电流与更高穿电压,扩大了氧化镓外延薄膜器件的应用范围。In summary, the present invention provides a quasi-vertical device of heterogeneous gallium oxide based on epitaxy of a sapphire substrate 10, wherein the p-type oxide heteroepitaxial layer 20 uses nickel oxide, and nickel oxide has a higher thermal conductivity than gallium oxide. The heat generated by the gallium oxide film can be dissipated by nickel oxide, which can solve the heat dissipation problem of gallium oxide; the lattice mismatch of gallium oxide grown on nickel oxide is smaller than that of gallium oxide grown directly on sapphire, which can reduce the lattice mismatch problem between gallium oxide and the sapphire substrate 10, thereby improving the film formation quality of the gallium oxide film; the anode metal 50 is a ring-shaped electrode, which can effectively control the electric field within the ring; the p-oxide heteroepitaxial film and the gallium oxide heteroepitaxial film together form a p-i-n structure, and the pin junction, due to the presence of the i-type layer, allows the electric field to be evenly distributed in the i-type layer, and has better pressure-bearing capacity than the pn junction, which can greatly improve the pressure-bearing capacity between epitaxial films to obtain lower leakage current and higher breakdown voltage, thereby expanding the application range of gallium oxide epitaxial thin film devices.

在本发明的一种可选地实施例中,阳极金属50为环状,环绕氧化镓外延层30,且与氧化镓外延层30间隔设置。In an optional embodiment of the present invention, the anode metal 50 is ring-shaped, surrounds the gallium oxide epitaxial layer 30 , and is spaced apart from the gallium oxide epitaxial layer 30 .

在本发明的一种可选地实施例中,p型氧化物异质外延层20的材料包括氧化镍或氧化亚铜。In an optional embodiment of the present invention, the material of the p-type oxide heteroepitaxial layer 20 includes nickel oxide or cuprous oxide.

在本发明的一种可选地实施例中,衬底10为蓝宝石衬底10,蓝宝石衬底10为C面蓝宝石晶片、R面蓝宝石晶片、A面蓝宝石晶片或M面蓝宝石晶片。In an optional embodiment of the present invention, the substrate 10 is a sapphire substrate 10, and the sapphire substrate 10 is a C-plane sapphire wafer, an R-plane sapphire wafer, an A-plane sapphire wafer, or an M-plane sapphire wafer.

在本发明的一种可选地实施例中,沿垂直于衬底的方向,p型氧化物异质外延层20的厚度为100nm~1μm;可选地,p型氧化物异质外延层20的厚度为100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm或1μm,均能保证准垂直器件的性能。In an optional embodiment of the present invention, the thickness of the p-type oxide heteroepitaxial layer 20 is 100nm~1μm along the direction perpendicular to the substrate; optionally, the thickness of the p-type oxide heteroepitaxial layer 20 is 100nm, 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm or 1μm, which can ensure the performance of the quasi-vertical device.

在本发明的一种可选地实施例中,延垂直于衬底的方向,氧化镓外延层30的厚度为100nm~2μm;可选地,氧化镓外延层30的厚度为100nm、300nm、600nm、800nm、1μm、1.3μm、1.6μm、1.8μm或2μm;均能保证准垂直器件的性能。In an optional embodiment of the present invention, the thickness of the gallium oxide epitaxial layer 30 in a direction perpendicular to the substrate is 100nm~2μm; optionally, the thickness of the gallium oxide epitaxial layer 30 is 100nm, 300nm, 600nm, 800nm, 1μm, 1.3μm, 1.6μm, 1.8μm or 2μm; all of which can ensure the performance of the quasi-vertical device.

基于同一发明构思,请参见图2所示,图2是本发明实施例提供的基于蓝宝石衬底外延的氧化镓异质的准垂直器件制备方法的一种流程图,本发明还提供一种基于蓝宝石衬底外延的氧化镓异质的准垂直器件的制备方法,包括:Based on the same inventive concept, please refer to FIG. 2 , which is a flow chart of a method for preparing a quasi-vertical device of heterogeneous gallium oxide based on sapphire substrate epitaxy provided by an embodiment of the present invention. The present invention also provides a method for preparing a quasi-vertical device of heterogeneous gallium oxide based on sapphire substrate epitaxy, comprising:

提供一衬底10;Providing a substrate 10;

使用半导体外延工艺在衬底10上外延p型氧化物异质外延层20;epitaxially grow a p-type oxide heteroepitaxial layer 20 on the substrate 10 using a semiconductor epitaxial process;

使用半导体外延工艺在p型氧化物异质外延层20上外延氧化镓层,在氧化镓层上进行离子注入、并外延高掺的氧化镓层,用于在氧化镓层上表面获得可控的掺杂梯度,并与金属之间形成良好的欧姆接触;Using a semiconductor epitaxial process to grow an epitaxial gallium oxide layer on the p-type oxide heteroepitaxial layer 20, performing ion implantation on the gallium oxide layer, and growing an epitaxial highly doped gallium oxide layer, so as to obtain a controllable doping gradient on the upper surface of the gallium oxide layer and form a good ohmic contact with the metal;

使用刻蚀工艺图形化氧化镓层,形成投影形状为圆形的氧化镓外延层30,其中,投影方向为垂直于衬底的方向;The gallium oxide layer is patterned by an etching process to form a gallium oxide epitaxial layer 30 having a circular projection shape, wherein the projection direction is a direction perpendicular to the substrate;

使用金属沉积工艺在氧化镓外延层30上沉积阴极金属40;Depositing cathode metal 40 on the gallium oxide epitaxial layer 30 using a metal deposition process;

去除多余光刻胶后,使用快速退火工艺,使得阴极金属40与氧化镓外延层30之间形成欧姆接触;After removing the excess photoresist, a rapid annealing process is used to form an ohmic contact between the cathode metal 40 and the gallium oxide epitaxial layer 30;

使用金属沉积工艺在所述p型氧化物异质外延层20上、在氧化镓外延层30的外围沉积阳极金属50;Depositing an anode metal 50 on the p-type oxide heteroepitaxial layer 20 and on the periphery of the gallium oxide epitaxial layer 30 using a metal deposition process;

去除多余光刻胶后,使用快速退火工艺,使得阳极金属50与p型氧化物异质外延层20之间形成欧姆接触。After removing the excess photoresist, a rapid annealing process is used to form an ohmic contact between the anode metal 50 and the p-type oxide heteroepitaxial layer 20 .

具体地,通过以下过程实现:Specifically, it is achieved through the following process:

配置0.2mol/L氧化镍前驱液(乙酰丙酮镍),配置0.05mol/L的氧化镓前驱液(乙酰丙酮镓);Prepare 0.2 mol/L nickel oxide precursor solution (nickel acetylacetonate) and 0.05 mol/L gallium oxide precursor solution (gallium acetylacetonate);

使用氧化镍前驱液,采用雾化化学气相沉积外延工艺在蓝宝石衬底10上600℃外延氧化镍层;使用氧化镓前驱液,继续升温至850℃外延氧化镓层;Using a nickel oxide precursor liquid, an atomized chemical vapor deposition epitaxial process is used to grow an epitaxial nickel oxide layer at 600° C. on the sapphire substrate 10; using a gallium oxide precursor liquid, the temperature is further raised to 850° C. to grow an epitaxial gallium oxide layer;

在氧化镓层表面可以采取离子注入、继续外延高掺的氧化镓层等手段,使得氧化镓层表面获得可控的高电子迁移率;Ion implantation and continued epitaxial growth of a highly doped gallium oxide layer can be performed on the surface of the gallium oxide layer to obtain a controllable high electron mobility.

采用标准光刻-刻蚀工艺图形化氧化镓外延层,将氧化镓层刻蚀成圆形;The gallium oxide epitaxial layer is patterned using a standard photolithography-etching process, and the gallium oxide layer is etched into a circular shape;

采用光刻-金属沉积工艺,在氧化镓层上,沉积阴极金属40(钛60nm,金12nm);Using a photolithography-metal deposition process, a cathode metal 40 (60 nm titanium and 12 nm gold) is deposited on the gallium oxide layer;

去除多余光刻胶后使用500℃快速退火工艺,使得阴极金属40与氧化镓层之间形成欧姆接触;After removing the excess photoresist, a 500° C. rapid annealing process is used to form an ohmic contact between the cathode metal 40 and the gallium oxide layer;

采用光刻-金属沉积工艺,在氧化镍异质外延层上,氧化镓层外围沉积阳极金属50(镍50nm,金150nm),使得阳极金属50与氧化镍层之间形成欧姆接触.Using the photolithography-metal deposition process, an anode metal 50 (nickel 50nm, gold 150nm) is deposited on the periphery of the gallium oxide layer on the nickel oxide heteroepitaxial layer, so that an ohmic contact is formed between the anode metal 50 and the nickel oxide layer.

在本发明的一种可选地实施例中,衬底10为蓝宝石衬底;In an optional embodiment of the present invention, the substrate 10 is a sapphire substrate;

还包括:对衬底10进行清洗。The method further includes: cleaning the substrate 10 .

具体地,采用标准清洗工艺清洗C面蓝宝石晶圆。Specifically, the C-side sapphire wafer is cleaned using a standard cleaning process.

在本发明的一种可选地实施例中,使用第一Mist-CVD在衬底10上外延生长氧化镍,形成p型氧化物异质外延层;其中,第一Mist-CVD的源为乙酰丙酮镓的水溶液掺杂氢氧化锂,氧化镍为单晶面族;In an optional embodiment of the present invention, nickel oxide is epitaxially grown on the substrate 10 using a first Mist-CVD to form a p-type oxide heteroepitaxial layer; wherein the source of the first Mist-CVD is an aqueous solution of gallium acetylacetonate doped with lithium hydroxide, and the nickel oxide is a single crystal face family;

使用第二Mist-CVD在氧化镍上外延生长氧化镓,形成氧化镓外延层,可获得单晶氧化镓薄膜;其中,第二Mist-CVD的源为氯化镓的水溶液或乙酰丙酮镓的水溶液掺杂氯化锡。A second Mist-CVD is used to epitaxially grow gallium oxide on nickel oxide to form a gallium oxide epitaxial layer, thereby obtaining a single crystal gallium oxide film; wherein the source of the second Mist-CVD is an aqueous solution of gallium chloride or an aqueous solution of gallium acetylacetonate doped with tin chloride.

具体而言,相比现有的物理方式成膜(磁控溅射等),成膜多为多晶或非晶相,而多晶和非晶会带来更多缺陷,从而引起器件在高压下在缺陷处容易击穿;本实施例中获取的单晶氧化镓薄膜,对器件提高耐压特性有很大帮助。Specifically, compared with existing physical film formation methods (magnetron sputtering, etc.), the formed films are mostly polycrystalline or amorphous phases, and polycrystalline and amorphous will bring more defects, which will cause the device to easily break down at the defects under high voltage; the single-crystalline gallium oxide film obtained in this embodiment is of great help to improve the voltage resistance characteristics of the device.

应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。It should be noted that, in this article, relational terms such as first and second, etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is any such actual relationship or order between these entities or operations. Moreover, the term "include", "comprise" or any other variant is intended to cover non-exclusive inclusion, so that the article or device including a series of elements includes not only those elements, but also other elements that are not explicitly listed. In the absence of more restrictions, the elements defined by the sentence "including one..." do not exclude the existence of other identical elements in the article or device including the elements. "Connect" or "connected" and similar words are not limited to physical or mechanical connections, but can include electrical connections, whether direct or indirect. The orientation or position relationship indicated by "up", "down", "left", "right", etc. is based on the orientation or position relationship shown in the accompanying drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present invention.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。In the description of this specification, the description with reference to the terms "one embodiment", "some embodiments", "example", "specific example", or "some examples" etc. means that the specific features or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present invention. In this specification, the schematic representation of the above terms does not necessarily refer to the same embodiment or example. Moreover, the specific features or characteristics described may be combined in any one or more embodiments or examples in a suitable manner. In addition, those skilled in the art may combine and combine different embodiments or examples described in this specification.

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above contents are further detailed descriptions of the present invention in combination with specific preferred embodiments, and it cannot be determined that the specific implementation of the present invention is limited to these descriptions. For ordinary technicians in the technical field to which the present invention belongs, several simple deductions or substitutions can be made without departing from the concept of the present invention, which should be regarded as falling within the scope of protection of the present invention.

Claims (6)

1. The preparation method of the gallium oxide heterogeneous quasi-vertical device based on sapphire substrate epitaxy is characterized by comprising the following steps of:
Providing a substrate;
Epitaxial a p-type oxide heteroepitaxial layer on the substrate using a semiconductor epitaxial process; epitaxially growing nickel oxide or cuprous oxide on the substrate by using first Mist-CVD to form a p-type oxide heteroepitaxial layer; wherein the source of the first Mist-CVD is lithium hydroxide doped with aqueous solution of gallium acetylacetonate;
A semiconductor epitaxial process is used for carrying out epitaxial gallium oxide layer on the p-type oxide heteroepitaxial layer, ion implantation is carried out on the gallium oxide layer, and a highly doped gallium oxide layer is epitaxially used for obtaining controllable high electron mobility on the upper surface of the gallium oxide layer; epitaxially growing gallium oxide on the nickel oxide or cuprous oxide by using a second Mist-CVD to form a gallium oxide epitaxial layer; wherein the source of the second Mist-CVD is aqueous solution of gallium chloride or aqueous solution of gallium acetylacetonate doped with stannic chloride; wherein the p-type oxide heteroepitaxial layer and the gallium oxide layer form a heterojunction p-i-n structure together;
Patterning the gallium oxide layer by using an etching process to form a gallium oxide epitaxial layer with a circular projection shape, wherein the projection direction is a direction perpendicular to the substrate;
Depositing a cathode metal on the gallium oxide epitaxial layer using a metal deposition process;
After removing the redundant photoresist, using a rapid annealing process to form ohmic contact between the cathode metal and the gallium oxide epitaxial layer;
Depositing anode metal on the p-type oxide heteroepitaxial layer and on the periphery of the gallium oxide epitaxial layer by using a metal deposition process;
after removing the excess photoresist, a rapid annealing process is used to form an ohmic contact between the anode metal and the p-type oxide heteroepitaxial layer.
2. A gallium oxide heterogeneous quasi-vertical device based on sapphire substrate epitaxy, prepared using the preparation method of claim 1, comprising:
a substrate;
a p-type oxide heteroepitaxial layer on the substrate;
the gallium oxide epitaxial layer is positioned on the p-type oxide heteroepitaxial layer; the p-type oxide heteroepitaxial layer and the gallium oxide epitaxial layer form a heterojunction p-i-n structure together;
Cathode metal on the gallium oxide epitaxial layer;
An anode metal on the p-oxide heteroepitaxial layer and at least partially surrounding the gallium oxide epitaxial layer; applying a bias voltage to the heterojunction p-i-n structure through the cathode metal and the anode metal;
Wherein the p-oxide heteroepitaxial layer, the anode metal, the gallium oxide epitaxial layer and the cathode metal together form a heterogeneous pn junction quasi-vertical device.
3. The sapphire substrate-epitaxial-based gallium oxide hetero-quasi-vertical device of claim 2 wherein the anode metal is ring-shaped surrounding and spaced apart from the gallium oxide epitaxial layer.
4. The sapphire substrate epitaxy-based gallium oxide heterogeneous quasi-vertical device of claim 2, wherein the substrate is a sapphire substrate that is a C-plane sapphire wafer, an R-plane sapphire wafer, an a-plane sapphire wafer, or an M-plane sapphire wafer.
5. The sapphire substrate epitaxial-based gallium oxide hetero-quasi-vertical device of claim 2 wherein the p-type oxide hetero-epitaxial layer has a thickness of 100 nm-1 μm in a direction perpendicular to the substrate.
6. The sapphire substrate epitaxy-based gallium oxide heterogeneous quasi-vertical device of claim 2, wherein the thickness of the gallium oxide epitaxial layer is 100 nm-2 μm in a direction perpendicular to the substrate.
CN202311201390.4A 2023-09-18 2023-09-18 Quasi-vertical device based on sapphire substrate epitaxy and preparation method thereof Active CN116936613B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311201390.4A CN116936613B (en) 2023-09-18 2023-09-18 Quasi-vertical device based on sapphire substrate epitaxy and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311201390.4A CN116936613B (en) 2023-09-18 2023-09-18 Quasi-vertical device based on sapphire substrate epitaxy and preparation method thereof

Publications (2)

Publication Number Publication Date
CN116936613A CN116936613A (en) 2023-10-24
CN116936613B true CN116936613B (en) 2024-05-14

Family

ID=88390085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311201390.4A Active CN116936613B (en) 2023-09-18 2023-09-18 Quasi-vertical device based on sapphire substrate epitaxy and preparation method thereof

Country Status (1)

Country Link
CN (1) CN116936613B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101140955A (en) * 2006-09-06 2008-03-12 中国科学院微电子研究所 A gallium arsenide PIN diode and its manufacturing method
CN111063742A (en) * 2019-12-13 2020-04-24 中国科学技术大学 Gallium oxide-based PN junction structure and preparation method thereof
CN111244203A (en) * 2020-03-25 2020-06-05 杭州电子科技大学 Solar-blind UV detector based on Ga2O3/CuI hetero-PN junction
CN113471062A (en) * 2021-06-30 2021-10-01 中国科学技术大学 Preparation method of III-group oxide film and epitaxial wafer thereof
WO2023113536A1 (en) * 2021-12-16 2023-06-22 파워큐브세미 (주) Method for controlling carrier concentration of nickel oxide, and schottky diode manufactured by method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037142B2 (en) * 2017-08-10 2022-03-16 株式会社タムラ製作所 diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101140955A (en) * 2006-09-06 2008-03-12 中国科学院微电子研究所 A gallium arsenide PIN diode and its manufacturing method
CN111063742A (en) * 2019-12-13 2020-04-24 中国科学技术大学 Gallium oxide-based PN junction structure and preparation method thereof
CN111244203A (en) * 2020-03-25 2020-06-05 杭州电子科技大学 Solar-blind UV detector based on Ga2O3/CuI hetero-PN junction
CN113471062A (en) * 2021-06-30 2021-10-01 中国科学技术大学 Preparation method of III-group oxide film and epitaxial wafer thereof
WO2023113536A1 (en) * 2021-12-16 2023-06-22 파워큐브세미 (주) Method for controlling carrier concentration of nickel oxide, and schottky diode manufactured by method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"High-quality Crystalline NiO/β-Ga2O3 p-n Heterojunctions Grown by the Low-cost, Vacuum-free Mist-CVD for Ga2O3 Device Application";Zeyulin Zhang et al;《SSRN》;正文及附图1-6 *

Also Published As

Publication number Publication date
CN116936613A (en) 2023-10-24

Similar Documents

Publication Publication Date Title
CN103077963B (en) A kind of Ohm contact electrode, its preparation method and comprise the semiconductor element of this Ohm contact electrode
CN110085681A (en) A kind of gallium oxide PN heterojunction diode and preparation method thereof
CN110112207A (en) A kind of gallium oxide mixing PiN Schottky diode and preparation method thereof
CN111063742B (en) Gallium oxide-based PN junction structure and preparation method thereof
CN108305834A (en) A kind of preparation method of enhancement type gallium nitride fieldtron
WO2018082251A1 (en) Ultraviolet detector provided with gan nanowire array, and manufacturing method therefor
CN103390640B (en) A kind of silicon Schottky junction with Bi2Se3 thin film as contact layer and its preparation method
CN107393969A (en) Gallium nitride-based Schottky diode semiconductor device and manufacturing method thereof
CN106158624A (en) Schottky diode and preparation method thereof
CN113964040A (en) In-situ PN structure gallium oxide power diode and preparation method thereof
CN100483738C (en) Self-supporting SiC based GaN apparatus and its manufacturing method
CN102064229A (en) High resistance GaN room temperature nuclear detector and preparation method thereof
WO2023093294A1 (en) Gallium oxide device and manufacturing method therefor
WO2021139041A1 (en) Gallium oxide schottky diode and preparation method therefor
CN108206220B (en) Preparation method of diamond Schottky diode
CN107481928A (en) Fabrication method of Schottky diode based on non-polar GaN bulk material
CN116936613B (en) Quasi-vertical device based on sapphire substrate epitaxy and preparation method thereof
CN101241947A (en) A kind of PIN type room temperature nuclear radiation detector and its preparation method
CN108550652B (en) Preparation method of avalanche photodiode
CN106972064A (en) Complex thin film structure photovoltaic device and preparation method
CN203026510U (en) Ohmic contact electrode and semiconductor element comprising same
CN102263166A (en) A Method of Improving the Performance of AlGaN-Based Detectors Using Nanoparticles
CN115763230A (en) A kind of P-type gallium oxide thin film and its preparation method and application
CN115377224A (en) Gallium oxide Schottky diode with high-breakdown bipolar field limiting ring structure and preparation method thereof
CN114927576A (en) Low-leakage high-temperature-resistant gallium oxide heterojunction diode and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant