[go: up one dir, main page]

CN116904381B - 一株产己二酸的重组大肠杆菌的构建及其应用 - Google Patents

一株产己二酸的重组大肠杆菌的构建及其应用 Download PDF

Info

Publication number
CN116904381B
CN116904381B CN202310951198.0A CN202310951198A CN116904381B CN 116904381 B CN116904381 B CN 116904381B CN 202310951198 A CN202310951198 A CN 202310951198A CN 116904381 B CN116904381 B CN 116904381B
Authority
CN
China
Prior art keywords
gene
escherichia coli
adipic acid
recombinant
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310951198.0A
Other languages
English (en)
Other versions
CN116904381A (zh
Inventor
刘立明
袁炜佳
高聪
陈修来
刘佳
李晓敏
宋伟
魏婉清
吴静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202310951198.0A priority Critical patent/CN116904381B/zh
Publication of CN116904381A publication Critical patent/CN116904381A/zh
Application granted granted Critical
Publication of CN116904381B publication Critical patent/CN116904381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1294Phosphotransferases with paired acceptors (2.7.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01024Quinate dehydrogenase (1.1.1.24)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01025Shikimate dehydrogenase (1.1.1.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01047Glucose 1-dehydrogenase (1.1.1.47)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/05Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a quinone or similar compound as acceptor (1.2.5)
    • C12Y102/05001Pyruvate dehydrogenase (quinone) (1.2.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/010312-Enoate reductase (1.3.1.31)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01001Transketolase (2.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01002Transaldolase (2.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010543-Deoxy-7-phosphoheptulonate synthase (2.5.1.54)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02001Acetate kinase (2.7.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/09Phosphotransferases with paired acceptors (2.7.9)
    • C12Y207/09002Pyruvate, water dikinase (2.7.9.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01013-Dehydroquinate dehydratase (4.2.1.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/030043-Dehydroquinate synthase (4.2.3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一株产己二酸的重组大肠杆菌的构建及其应用,属于生物技术领域。本发明将大肠杆菌进行改造,敲除了3‑脱氢莽草酸脱氢酶基因aroE、负调控转录抑制因子tyrR、乙酸激酶基因ackA、丙酮酸脱氢酶基因poxB和奎尼酸脱氢酶基因YdiB,过表达了aroB、aroD、aroGFBR、ppsA、tktA、talA、GsQOR和gdh,并通过RBS序列调控己二酸生产的靶点基因片段烯酸还原酶编码基因GsQOR和葡萄糖脱氢酶编码基因gdh的表达强度,再过表达调控顺,顺‑粘康酸的靶点基因aroZ、aroY和catA,最后经发酵放大验证己二酸产量,在48h达5.3g/L。本发明为从顺,顺‑粘康酸生产己二酸提供了新方法,具有较好发展前景,有利于用于工业化生产。

Description

一株产己二酸的重组大肠杆菌的构建及其应用
技术领域
本发明涉及一株产己二酸的重组大肠杆菌的构建及其应用,属于生物技术领域。
背景技术
己二酸别名肥酸,是一种重要的有机二元酸。白色结晶体,结构式为HOOC(CH2)4COOH。能够发生成盐反应、酯化反应、酰胺化反应等,特别是能与二元胺或二元醇缩聚形成高分子聚合物。
己二酸最重要的应用价值主要体现在其可作为尼龙6,6的关键前体。例如,尼龙6,6纤维和树脂的生产是由己二酸与乙二胺缩合反应而成;聚氨酯类树脂和发泡塑料的化学生产需要己二酸作为前体与多元醇缩合而成。此外,己二酸也可作为化工原料和中间体,用于杀虫剂、粘合剂、增塑剂、润滑剂、合成革、合成染料、香料以及食品添加剂等的生产。
利用化学合成法是当前工业生产己二酸的主要方法。美国杜邦公司首创化学生产己二酸的方法,又在原有生产工艺的基础上进一步改进,逐步用环己烷氧化法取代原有生产方法进行己二酸的大规模生产。化学合成法合成己二酸的反应条件为高温加压以及强酸强碱,反应过程较为恶劣。同时,生产原料和中间产物不够安全环保,对人体有明显的危害。生产过程中的一氧化氮和二氧化氮等气体会造成严重的环境污染。在日益重视环境保护的时代背景下,利用苯或环己烷等传统化工原料生产己二酸已经不能完全满足时代发展对环保经济的需要。因此,探索一种己二酸的绿色生产方法具有重要的研究意义。
通过化学加氢方法,顺,顺-粘康酸很容易转化为己二酸。利用生物酶催化法也有报道,但是酶催化活性很低,仅能催化0.7mmol/L顺,顺-粘康酸底物。在现有的研究中,研究人员已经初步尝试将生物法和化学合成法相结合生产己二酸,其具体步骤分为两步:第一步,利用微生物发酵法生产顺,顺-粘康酸;第二步,通过化学合成法转化为己二酸。然而,这些化学催化往往伴随着环境污染、转化率不高等问题。因此,现有技术当中己二酸的生产还有很大的改进空间。
发明内容
为解决上述问题,本发明通过代谢工程手段构建了一株高产己二酸的基因工程菌,以大肠杆菌为出发菌,通过RBS序列调控己二酸生产的靶点基因片段的表达强度,优化了基因表达强度,提高了己二酸发酵生产的产量。
本发明的第一个目的是提供一种产己二酸的重组大肠杆菌,所述重组大肠杆菌敲除了3-脱氢莽草酸脱氢酶基因aroE、负调控转录抑制因子tyrR、乙酸激酶基因ackA、丙酮酸脱氢酶基因poxB和奎尼酸脱氢酶基因YdiB,过表达了DHQ合酶基因aroB、3-脱氢奎尼酸脱水酶基因aroD、3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroGFBR、磷酸烯醇式丙酮酸合酶基因ppsA、转酮醇酶基因tktA、转醛缩酶基因talA、烯酸还原酶基因GsQOR和葡萄糖脱氢酶基因gdh,且所述烯酸还原酶基因GsQOR和葡萄糖脱氢酶基因gdh由含有SEQ ID NO.7-9所示的RBS序列调控表达。
进一步地,所述重组大肠杆菌还过表达了3-脱氢莽草酸脱水酶基因aroZ、原儿茶酸脱羧酶基因aroY和儿茶酚1,2-双加氧酶基因catA。
进一步地,所述3-脱氢莽草酸脱水酶基因aroZ的核苷酸序列如SEQ ID NO.1所示,原儿茶酸脱羧酶基因aroY的核苷酸序列如SEQ ID NO.2所示,儿茶酚1,2-双加氧酶基因catA的核苷酸序列如SEQ ID NO.3所示,烯酸还原酶基因GsQOR的核苷酸序列如SEQ IDNO.4所示(来源于嗜热脂肪地芽孢杆菌),葡萄糖脱氢酶基因gdh的核苷酸序列如SEQ IDNO.5所示,磷酸烯醇式丙酮酸合酶基因ppsA的NCBI编号为NP_416217.1,转酮醇酶基因tktA的NCBI编号为YP_026188.1,转醛醇酶基因talA的NCBI编号为NP_414549.1,DHQ合酶基因aroB的NCBI编号为NP_417848.1,3-脱氢奎尼酸脱水酶的基因aroD的NCBI编号为NP_416208.1,3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroGFBR的核苷酸序列如SEQ IDNO.6所示。
进一步地,3-脱氢莽草酸脱氢酶基因aroE的NCBI编号为NP_417740.1,负调控转录抑制因子基因tyrR的NCBI编号为NP_415839.1,乙酸激酶基因ackA的NCBI编号为NP_416799.1,丙酮酸脱氢酶基因poxB的NCBI编号为NP_415392.1,奎尼酸脱氢酶基因YdiB的NCBI编号为NP_416207.1。
进一步地,以E.coli MG1655为出发菌株。
进一步地,基因GsQOR和基因gdh以pETac为表达载体。
进一步地,基因aroZ、基因aroY和基因catA以pCDFDuet为表达载体。
本发明的第二个目的是提供上述重组大肠杆菌的构建方法,包括以下步骤:
S1、敲除3-脱氢莽草酸脱氢酶基因aroE,敲除负调控转录抑制因子tyrR并在该位点过表达DHQ合酶aroB和3-脱氢奎尼酸脱水酶aroD,敲除乙酸激酶基因ackA并在该位点过表达3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroGFBR,敲除丙酮酸脱氢酶基因poxB并在该位点过表达3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroGFBR和磷酸烯醇式丙酮酸合酶基因ppsA,敲除奎尼酸脱氢酶基因YdiB并在该位点过表达转酮醇酶基因tktA和转醛缩酶基因talA,构建得到出发菌株;
S2、将GsQOR基因片段、gdh基因片段和RBS基因片段连接插入到质粒pCDFDuet中,得到重组质粒pCDFDuet-RBS-GsQOR-gdh;
S3、将重组质粒pCDFDuet-RBS-GsQOR-gdh转化入S1构建的出发菌株中构建得到所述重组大肠杆菌。
进一步地,还包括以下步骤:
(1)将aroZ基因片段、aroY基因片段和catA基因片段连接插入到质粒pETac中,得到重组质粒pETac-aroZ-aroY-catA;
(2)将重组质粒pETac-aroZ-aroY-catA转化入宿主菌中。
进一步地,在步骤S2中,以RBS序列为同源臂融合基因片段。
本发明的第三个目的是提供上述重组大肠杆菌在制备生物、制药、食品或化工领域含己二酸或其衍生物的产品中的应用。
本发明的第四个目的是提供一种生产己二酸的方法,包括以下步骤:采用上述重组大肠杆菌进行发酵生产。
进一步地,当重组大肠杆菌中未导入基因aroZ、aroY和catA时,以粘康酸为底物进行发酵生产。
进一步地,当重组大肠杆菌中导入基因aroZ、aroY和catA时,以葡萄糖为底物进行发酵生产。
进一步地,所述发酵的条件为35-38℃,200-220rpm,菌株发酵初始OD600为0.8-1.0。
进一步地,所述发酵的条件为35-38℃,650-700rpm,10-15%接种量,装液量为30-50%,pH为7.0-7.5,菌株发酵初始OD600为0.8-1.0,通气量为2-3vvm。
进一步地,发酵培养基包括以下组分:葡萄糖10-50g/L、胰蛋白胨10-30g/L、酵母粉3-10g/L、MgSO4·7H2O 5-15g/L、磷酸二氢钾0.5-3g/L、磷酸氢二钾0.1-2g/L、氯化钠0.5-5g/L。
本发明的有益效果:
本发明构建的重组大肠杆菌表达烯酸还原酶编码基因GsQOR和葡萄糖脱氢酶编码基因gdh,并通过RBS筛选优化了基因的表达强度,从而提高以粘康酸为底物的己二酸生产的产量。在此基础上同时表达调控顺,顺-粘康酸的靶点基因和调控己二酸生产的靶点基因,能够实现以葡萄糖为底物从头合成己二酸,使构建的重组菌经发酵48h后,己二酸产量能达到5.3g/L。本发明采用的发酵工艺简单,易于控制,生产成本低,有利于工业化生产。
附图说明
图1为大肠杆菌工程菌中的己二酸生产路径。
图2为重组质粒pETac-aroZ-aroY-catA图谱。
图3为重组质粒pCDFDuet-GsQOR-gdh图谱。
图4为全细胞反应中己二酸含量的变化。
图5为己二酸的一级色谱图和二级质谱图。
图6为摇瓶中己二酸含量的变化。
图7为5L发酵罐中己二酸含量的变化。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
下述实施例中所涉及的材料与方法如下:
质粒构建采用经典分子生物手段进行。
表1表达载体的相关特性
表2 PCR扩增使用的引物
种子培养基:LB培养基,成分包含蛋白胨10g/L,酵母粉5g/L,氯化钠10g/L。
发酵培养基:葡萄糖40g/L、胰蛋白胨20g/L、酵母粉5g/L、MgSO4·7H2O8g/L、磷酸二氢钾1.3g/L、磷酸氢二钾0.7g/L、氯化钠1.1g/L。
己二酸的检测方法:
样品的预处理方法:取2mL发酵液于12,000rpm离心10min,将上清液转移至干净的试管中,用2mL乙酸乙酯萃取,取1mL有机相转移至试管并用氮气吹干。
己二酸的测定:向试管中加入200μL吡啶溶解残留物后,加入200μL N,O-双(三甲基硅烷基)三氟乙酰胺和三甲基氯硅烷混合液(99:1,v/v),65℃反应30min。反应液用氮气吹干后加入1mL正己烷进行气质测定。气质联用条件:色谱柱初始温度50℃,保温1min;以8℃/min升至180℃,无保温时间;以10℃/min升至240℃,保温5min。载气为氦气,流速为1mL/min。
实施例1:重组质粒pETac-aroZ-aroY-catA的构建
用内切酶EcoRI和SalI对质粒pEtac双酶切,用引物对aroZ-S/A、aroY-S/A和catA-S/A分别扩增目的片段aroZ(SEQ ID NO.1)、aroY(SEQ ID NO.2)和catA(SEQ ID NO.3)。将片段aroZ、aroY和catA进行融合PCR后,连接至EcoRI和SalI位点。连接产物化转至E.coliJM109感受态细胞中,挑取阳性转化子菌落PCR,将测序正确的质粒分别命名为pETac-aroZ-aroY-catA(构建示意图见图2)。
实施例2:重组质粒pCDFDuet-GsQOR-gdh的构建
以pET28a-GsQOR质粒为模板,通过引物对GsQOR-S/A扩增SEQ ID NO.4所示的片段GsQOR,以pET28a-gdh质粒为模板,通过引物对gdh-S/A扩增SEQ ID NO.5所示的片段gdh,将片段GsQOR和gdh进行融合PCR后通过同源重组连接至经EcoRI和HindIII双酶切的质粒pCDFDuet,获得连接后的重组质粒pCDFDuet-GsQOR-gdh。将连接产物化转至E.coli JM109感受态细胞中,涂布于含有链霉素抗性的LB固体培养基上,挑取阳性转化子菌落PCR,提取质粒测序验证,将正确的质粒命名为pCDFDuet-GsQOR-gdh(构建示意图见图3)。
实施例3:出发菌株FMME-DHS05的构建
(1)表达载体pJ01-aroB-aroD的构建
本发明所用的DHQ合酶基因aroB和3-脱氢奎尼酸脱水酶基因aroD来源于大肠杆菌,提取大肠杆菌的基因组DNA;根据已公布的基因组信息序列,分别设计验证引物对aroB-F/aroB-R和aroD-F/aroD-R(表3),以提取大肠杆菌的基因组DNA为模板,采用标准的PCR扩增体系和程序,分别扩增获取aroB和aroD基因。PCR扩增获取的roB和aroD,采用琼脂糖凝胶核酸电泳切胶回收,表达载体pJ01利用限制性内切酶ApaI和Sal I进行双酶切3h,酶切产物采用琼脂糖凝胶核酸电泳凝胶回收,aroB、aroD基因和线性化质粒大小分别为1089、759和2502bp。首先分别将aroB和aroD基因与线性化pJ01质粒采用ClonExpress IIOne StepCloning Kit连接酶37℃连接30min,转化至JM109感受态细胞中,挑取单菌落PCR使用YZ-pJ01-F/YZ-pJ01-R(表3)验证,阳性转化子进行测序,比对正确,证明表达载体构建成功,质粒命名为pJ01-aroB和pJ01-aroD。接下来以pJ01-aroD为模板,使用引物pJ-aroD-F/pJ-aroD-R扩增获取Pj23119-aroD,将表达载体pJ01-aroB利用限制性内切酶BamH I和Pst I进行双酶切3h,酶切产物采用琼脂糖凝胶核酸电泳凝胶回收,Pj23119-aroD和pJ01-aroB线性化质粒大小分别为932和3591bp,将Pj23119-aroD片段与线性化pJ01-aroB质粒采用ClonExpressIIOne Step Cloning Kit连接酶37℃连接30min,转化至JM109感受态细胞中,挑取单菌落PCR使用YZ-pJ01-F/YZ-pJ01-R验证,阳性转化子进行测序,比对正确,证明表达载体构建成功,质粒命名为pJ01-aroB-aroD。
表3相关引物序列
(2)表达载体pJ01-tktA-talA的构建
本发明所用的转酮醇酶基因tktA和转醛缩酶基因talA来源于大肠杆菌,提取大肠杆菌的基因组DNA;根据已公布的基因组信息序列,分别设计验证引物对tktA-F/tktA-R和talA-F/talA-R(表4),以提取大肠杆菌的基因组DNA为模板,采用标准的PCR扩增体系和程序,分别扩增获取tktA和talA基因。PCR扩增获取的tktA和talA,采用琼脂糖凝胶核酸电泳切胶回收,表达载体pJ01利用限制性内切酶ApaI和Sal I进行双酶切3h,酶切产物采用琼脂糖凝胶核酸电泳凝胶回收,tktA和talA基因和线性化质粒大小分别为1992、951和2502bp。首先分别将tktA和talA基因与线性化pJ01质粒采用ClonExpress IIOne Step CloningKit连接酶37℃连接30min,转化至JM109感受态细胞中,挑取单菌落PCR使用YZ-pJ01-F/YZ-pJ01-R(表4)验证,阳性转化子进行测序,比对正确,证明表达载体构建成功,质粒命名为pJ01-tktA和pJ01-talA。接下来以pJ01-talA为模板,使用引物pJ-talA-F/pJ-talA-R扩增获取Pj23119-talA,将表达载体pJ01-tktA利用限制性内切酶BamH I和Pst I进行双酶切3h,酶切产物采用琼脂糖凝胶核酸电泳凝胶回收,Pj23119-talA和pJ01-tktA线性化质粒大小分别为1088和4490bp,将Pj23119-talA片段与线性化pJ01-tktA质粒采用ClonExpress IIOneStep Cloning Kit连接酶37℃连接30min,转化至JM109感受态细胞中,挑取单菌落PCR使用YZ-pJ01-F/YZ-pJ01-R验证,阳性转化子进行测序,比对正确,证明表达载体构建成功,质粒命名为pJ01-tktA-talA。
表4相关引物序列
(3)表达载体pJ01-aroGFBR-ppsA的构建
本发明所用的抗反馈抑制的DHAP合成酶基因aroGFBR来源于本实验前期构建(GaoC,Guo L,Ding Q,Hu GP,Ye C,Liu J,Chen XL,Liu LM.Dynamic consolidatedbioprocessing for direct production of xylonate and shikimate from xylan byEscherichia coli.Metabolic Engineering,2020,60:128-137.),序列见SEQ ID NO.6,磷酸烯醇式丙酮酸合酶基因ppsA来源于大肠杆菌,提取大肠杆菌的基因组DNA;根据已公布的基因组信息序列,分别设计验证引物对aroG-F/aroG-R和ppsA-F/ppsA-R(表5),以提取大肠杆菌的基因组DNA为模板,采用标准的PCR扩增体系和程序,分别扩增获取aroGFBR和ppsA基因。PCR扩增获取的aroGFBR和ppsA,采用琼脂糖凝胶核酸电泳切胶回收,表达载体pJ01利用限制性内切酶ApaI和Sal I进行双酶切3h,酶切产物采用琼脂糖凝胶核酸电泳凝胶回收,aroGFBR和ppsA基因和线性化质粒大小分别为2379、1053和2502bp。首先分别将aroGFBR和ppsA基因与线性化pJ01质粒采用ClonExpress IIOne Step Cloning Kit连接酶37℃连接30min,转化至JM109感受态细胞中,挑取单菌落PCR使用YZ-pJ01-F/YZ-pJ01-R(表5)验证,阳性转化子进行测序,比对正确,证明表达载体构建成功,质粒命名为pJ01-aroGFBR和pJ01-ppsA。接下来以pJ01-aroGFBR为模板,使用引物pJ-aroG-F/pJ-aroG-R扩增获取Pj23119-aroG,将表达载体pJ01-ppsA利用限制性内切酶BamH I和Pst I进行双酶切3h,酶切产物采用琼脂糖凝胶核酸电泳凝胶回收,Pj23119-aroG和pJ01-ppsA线性化质粒大小分别为1201和4875bp,将Pj23119-aroG片段与线性化pJ01-ppsA质粒采用ClonExpress IIOne Step Cloning Kit连接酶37℃连接30min,转化至JM109感受态细胞中,挑取单菌落PCR使用YZ-pJ01-F/YZ-pJ01-R验证,阳性转化子进行测序,比对正确,证明表达载体构建成功,质粒命名为pJ01-aroGFBR-ppsA。
表5相关引物序列
引物序列 引物序列(5′-3′)
aroG-F GTAAAGAGGAGAAAAAGCTTGGGCCCatgaattatcagaacgacgatttacgc
aroG-R aatgatgatgatgatgatggtcgacttacccgcgacgcgcttttactgc
ppsA-F CTAGTAAAGAGGAGAAAAAGCTTGGGCCCatgtccaacaatggctcgtcaccgc
ppsA-R taaactcaatgatgatgatgatgatggtcgacttatttcttcagttcagccaggc
pJ-aroG-F ccttagctttcgctaaggatg
pJ-aroG-R cctttctgcgTGGATCCgtttaaactcaat
YZ-pJ01-F ccttagctttcgctaaggatg
YZ-pJ01-R cgcctttgagtgagctgatacc
(4)敲除3-脱氢莽草酸脱氢酶基因aroE
根据NCBI数据库中Escherichia coli MG1655的aroE基因序列设计aroE基因敲除框上下同源臂引物aroE-up-F/aroE-up-R和aroE-down-F/aroE-down-R(表6),以大肠杆菌MG1655基因组为模板扩增aroE的上下游同源臂并进行胶回收。使用引物aroE-up-F/aroE-down-R通过重叠PCR将上下游同源臂融合得到aroE基因敲除框。需要指出的是,aroE基因敲除框上下同源臂之间含有30-40bp的同源序列。使用CRISPR gRNA Design tool网站设计aroE基因的gRNA-N20序列,根据使用gRNA-N20序列使用引物N20-aroE-F/N20-aroE-R(表6)以商业化质粒TargetF-frdA-100为模板通过反向PCA构建aroE基因的gRNA-N20-aroE质粒。将aroE的敲除框以及gRNA-N20-aroE通过电转化的形式导入含有pCas9质粒的E.coliMG1655感受态细胞中(电转化电压和时间分别为2100V和5ms)。将电转的感受态细胞涂布于含卡那霉素(50g/mL)和壮观霉素(33g/mL)的LB固体培养基平板上,倒置培养12-24h。待平板长出单菌落后,使用验证引物YZ-aroE-F和YZ-aroE-R(表3)筛选阳性转化子。成功敲除的转化子电泳条带大小为1405bp,没有敲除的对照组电泳条带大小为2166bp。挑取筛选正确的转化子接种LB培养基中,并添加IPTG诱导以消去gRNA-N20-aroE质粒,再将已消除gRNA-N20-aroE质粒的转化子接种于LB培养基中培养,培养温度为42℃,以消除pCas9质粒,最终获得aroE基因成功敲除的菌株命名为FMME-DHS01。
表6相关引物序列
(5)敲除负调控转录抑制因子tyrR以及过表达DHQ合酶基因aroB和3-脱氢奎尼酸脱水酶基因aroD
根据NCBI数据库中Escherichia coli MG1655的tyrR基因序列设计tyrR基因敲除框上下同源臂引物tyrR-up-F/tyrR-up-R和tyrR-down-F/tyrR-down-R(表7),以Escherichia coli MG1655基因组为模板扩增tyrR的上下游同源臂并进行胶回收。使用引物KZ-ZHK-F/KZ-ZHK-R以pJ01-aroB-aroD质粒为模板扩增Pj23119-aroB-Pj23119-aroD表达框,使用引物tyrR-up-F/tyrR-down-R通过重叠PCR将上下游同源臂以及Pj23119-aroB-Pj23119-aroD表达框融合得到tyrR-Pj23119-aroB-Pj23119-aroD整合框。需要指出的是,tyrR基因敲除框上下同源臂与Pj23119-aroB-Pj23119-aroD表达框之间含有30-40bp的同源序列。使用CRISPRgRNA Design tool网站设计tyrR基因的gRNA-N20序列,根据使用gRNA-N20序列使用引物N20-tyrR-F/N20-tyrR-R(表7)以商业化质粒TargetF-frdA-100为模板通过反向PCA构建tyrR基因的gRNA-N20-tyrR质粒。将tyrR-Pj23119-aroB-Pj23119-aroD整合框以及gRNA-N20-tyrR通过电转化的形式导入含有pCas9质粒的FMME-DHS01感受态细胞中(电转化电压和时间分别为2100V和5ms)。将电转的感受态细胞涂布于含卡那霉素(50g/mL)和壮观霉素(33g/mL)的LB固体培养基平板上,倒置培养12-24h。待平板长出单菌落后,使用验证引物YZ-tyrR-F和YZ-tyrR-R(表7)筛选阳性转化子。成功整合的转化子电泳条带大小为3279bp,没有整合成功的对照组电泳条带大小为2173bp。接下来使用如实施例1中类似操作消除gRNA-N20-tyrR质粒和pCas9质粒,最终获得菌株命名为FMME-DHS02。
表7相关引物序列
引物序列 引物序列(5′-3′)
tyrR-up-F TGCCGTGGATTGACGATGAC
tyrR-up-R gaaattctgcctcgtgatacgcctaGCACGAGTAGATCGAGTAAT
tyrR-down-F ttcctcgctcactgactcgctCGTTTCACATACCGCGATTG
tyrR-down-R GTTCGCCCAGTCTCGTTTCT
N20-tyrR-F TGCGTCTATACCGGAAGATGgttttagagctagaaatagcaagtt
N20-tyrR-R CATCTTCCGGTATAGACGCAactagtattatacctaggactgagc
KZ-ZHK-F taggcgtatcacgaggcaga
KZ-ZHK-R agcgagtcagtgagcgaggaa
YZ-tyrR-F CGACTCGGGATTAAAGCTATGGAGC
YZ-tyrR-R CTGGCAACTGAGATCGACAACACCG
(6)敲除乙酸激酶基因ackA以及过表达抗反馈抑制的DHAP合成酶基因aroGFBR
根据NCBI数据库中Escherichia coli MG1655的ackA基因序列设计敲除引物ackA-up-F/ackA-up-R和ackA-down-F/ackA-down-R(表8),以Escherichia coli MG1655基因组为模板扩增ackA的上下游同源臂并进行胶回收。使用引物KZ-ZHK-F/KZ-ZHK-R以pJ01-aroGFBR质粒为模板扩增Pj23119-aroGFBR表达框,使用引物ackA-up-F/ackA-down-R通过重叠PCR将上下游同源臂以及Pj23119-aroGFBR表达框融合得到ackA-Pj23119-aroGFBR整合框。需要指出的是,ackA基因敲除框上下同源臂与Pj23119-aroGFBR表达框之间含有30-40bp的同源序列。使用CRISPR gRNA Design tool网站设计ackA基因的gRNA-N20序列,根据使用gRNA-N20序列使用引物N20-ackA-F/N20-ackA-R(表8)以商业化质粒TargetF-frdA-100为模板通过反向PCA构建ackA基因的gRNA-N20-ackA质粒。将ackA-Pj23119-aroGFBR整合框以及gRNA-N20-ackA通过电转化的形式导入含有pCas9质粒的FMME-DHS02感受态细胞中(电转化电压和时间分别为2100V和5ms)。将电转的感受态细胞涂布于含卡那霉素(50g/mL)和壮观霉素(33g/mL)的LB固体培养基平板上,倒置培养12-24h。待平板长出单菌落后,使用验证引物YZ-ackA-F和YZ-ackA-R(表8)筛选阳性转化子。成功整合的转化子电泳条带大小为2501bp,没有整合成功的对照组电泳条带大小为2185bp。接下来使用如实施例1中类似操作消除gRNA-N20-ackA质粒和pCas9质粒,最终获得菌株命名为FMME-DHS03。
表8相关引物序列
(7)敲除丙酮酸脱氢酶基因poxB以及过表达抗反馈抑制的DHAP合成酶基因aroGFBR和磷酸烯醇式丙酮酸合酶基因ppsA
根据NCBI数据库中Escherichia coli MG1655的poxB基因序列设计敲除引物poxB-up-F/poxB-up-R和poxB-down-F/poxB-down-R(表9),以Escherichia coli MG1655基因组为模板扩增poxB的上下游同源臂并进行胶回收。使用引物KZ-ZHK-F/KZ-ZHK-R以pJ01-aroGFBR-ppsA质粒为模板扩增Pj23119-aroGFBR-Pj23119-ppsA表达框,使用引物poxB-up-F/poxB-down-R通过重叠PCR将上下游同源臂以及Pj23119-aroGFBR-Pj23119-ppsA表达框融合得到poxB-Pj23119-aroGFBR-Pj23119-ppsA整合框。需要指出的是,poxB基因敲除框上下同源臂与Pj23119-aroGFBR-Pj23119-ppsA表达框之间含有30-40bp的同源序列。使用CRISPR gRNA Designtool网站设计poxB基因的gRNA-N20序列,根据使用gRNA-N20序列使用引物N20-poxB-F/N20-poxB-R(表9)以商业化质粒TargetF-frdA-100为模板通过反向PCA构建poxB基因的gRNA-N20-poxB质粒。将poxB-Pj23119-aroGFBR-Pj23119-ppsA整合框以及gRNA-N20-poxB通过电转化的形式导入含有pCas9质粒的FMME-DHS03感受态细胞中(电转化电压和时间分别为2100V和5ms)。将电转的感受态细胞涂布于含卡那霉素(50g/mL)和壮观霉素(33g/mL)的LB固体培养基平板上,倒置培养12-24h。待平板长出单菌落后,使用验证引物YZ-poxB-F和YZ-poxB-R(表9)筛选阳性转化子。成功整合的转化子电泳条带大小为2496bp,没有整合成功的对照组电泳条带大小为2709bp。接下来使用如实例1中消除gRNA-N20-poxB质粒和pCas9质粒,最终获得菌株命名为FMME-DHS04。
表9相关引物序列
引物序列 引物序列(5′-3′)
poxB-up-F GTCTGAAATTCACCAAACTGCAAC
poxB-up-R tgaaattctgcctcgtgatacgcctattttATTCGAGTGTTTTGGCGATATAAGC
poxB-down-F ttcctcgctcactgactcgctGATGAAGTGATCGAACTGGCGAAAAC
poxB-down-R CGTCGGGTTTGATTTTCATCGCCAC
N20-poxB-F CAAGTTTCTGGATAAAGCGCgttttagagctagaaatagcaagtt
N20-poxB-R GCGCTTTATCCAGAAACTTGactagtattatacctaggactgagc
KZ-ZHK-F taggcgtatcacgaggcaga
KZ-ZHK-R agcgagtcagtgagcgaggaa
YZ-poxB-F GGCTCCGTATATGGATTGGGTAGAG
YZ-poxB-R TCCCATGCTTCTTTCAGGTATTCCC
(8)敲除奎尼酸脱氢酶基因YdiB以及过表达转酮醇酶基因tktA和转醛缩酶基因talA
根据NCBI数据库中Escherichia coli MG1655的YdiB基因序列设计敲除引物YdiB-up-F/YdiB-up-R和YdiB-down-F/YdiB-down-R(表10),以Escherichia coli MG1655基因组为模板扩增YdiB的上下游同源臂并进行胶回收。使用引物KZ-ZHK-F/KZ-ZHK-R以pJ01-tktA-talA质粒为模板扩增Pj23119-tktA-Pj23119-talA表达框,使用引物YdiB-up-F/YdiB-down-R通过重叠PCR将上下游同源臂以及Pj23119-tktA-Pj23119-talA表达框融合得到YdiB-Pj23119-tktA-Pj23119-talA整合框。需要指出的是,YdiB基因敲除框上下同源臂与Pj23119-tktA-Pj23119-talA表达框之间含有30-40bp的同源序列。使用CRISPR gRNA Designtool网站设计YdiB基因的gRNA-N20序列,根据使用gRNA-N20序列使用引物N20-YdiB-F/N20-YdiB-R(表10)以商业化质粒TargetF-frdA-100为模板通过反向PCA构建tyrR基因的gRNA-N20-YdiB质粒。将YdiB-Pj23119-tktA-Pj23119-talA整合框以及gRNA-N20-YdiB通过电转化的形式导入含有pCas9质粒的FMME-DHS04感受态细胞中(电转化电压和时间分别为2100V和5ms)。将电转的感受态细胞涂布于含卡那霉素(50g/mL)和壮观霉素(33g/mL)的LB固体培养基平板上,倒置培养12-24h。待平板长出单菌落后,使用验证引物YZ-YdiB-F和YZ-YdiB-R(表10)筛选阳性转化子。成功整合的转化子电泳条带大小为4428bp,没有整合成功的对照组电泳条带大小为1613bp。接下来使用如实施例1中类似操作消除gRNA-N20-YdiB质粒和pCas9质粒,最终获得菌株命名为FMME-DHS05。
表10相关引物序列
引物序列 引物序列(5′-3′)
YdiB-up-F CATTTTACAGCTCGGCGTTTCGGTC
YdiB-up-R gaaattctgcctcgtgatacgcctaCAATTCGTATTTTGCGGTAACATCC
YdiB-down-F ttcctcgctcactgactcgctTTAAACAGGTCATGGGGTTCGGTGC
YdiB-down-R CTTTGGCACTGCGGAAGGTAAACAG
N20-YdiB-F AAACACCGATTGTGTCGTCAgttttagagctagaaatagcaagtt
N20-YdiB-R TGACGACACAATCGGTGTTTactagtattatacctaggactgagc
KZ-ZHK-F taggcgtatcacgaggcaga
KZ-ZHK-R agcgagtcagtgagcgaggaa
YZ-YdiB-F ACAGCAGCCATTATCTACCTGTACC
YZ-YdiB-R GATGGCTGCACGATTGAGTGCAAT
实施例4:优化RBS的重组质粒的构建
利用表11所示的RBS在质粒pTet进行评价,绿色荧光蛋白作为报告基因进行启动子的筛选。以E.coli MG1655基因组为模板,将引物对Egfp-S/A扩增的片段连接至质粒pTet的EcoRI和SalI位点,经转化、菌落PCR和测序验证获得重组质粒pTet-EGFP。通过设计引物对RBS02pTet-S和RBS02pTet-A、RBS07pTet-S、RBS07pTet-A、RBS13pTet-S、RBS13pTet-A,分别扩增表11所示的含RBS序列的片段,将各片段经同源重组分别连接至质粒pTet的BamHI和EcoRI位点,再分别转化至E.coli JM109感受态细胞中,挑取阳性转化子菌落PCR,分别命名为pTet-egfp-02、pTet-egfp-07、pTet-egfp-13。
表11所使用的启动子序列
最终,将这些重组质粒导入宿主菌E.coli FMME-DHS05中,通过荧光强度确定RBS02(SEQ ID NO.7)、RBS13(SEQ ID NO.8)、RBS07(SEQ ID NO.9)分别为高(H)、中(M)、低(L)强度的RBS。
将筛选的三种强度RBS用于实施例2构建的pCDFDuet-GsQOR-gdh的优化,按照实施例2相同的策略,分别构建用不同强度RBS序列替换各基因原有的RBS序列的重组质粒,分别如下所述:pCDFDuet-H(pCDFDuet-GsQOR(H)-gdh);pCDFDuet-M(pCDFDuet-GsQOR(M)-gdh);pCDFDuet-L(pCDFDuet-GsQOR(L)-gdh)。
实施例5:以粘康酸为底物的产己二酸的重组大肠杆菌的构建
将重组质粒pCDFDuet-GsQOR-gdh和实施例4构建的重组质粒pCDFDuet-H、pCDFDuet-M、pCDFDuet-L转化至菌株E.coli FMME-DHS05中,分别获得携带质粒的重组菌命名为菌株E.coli FMME AA01、E.coli FMME AA02、E.coli FMME AA03和E.coli FMME AA04。
实施例6:重组大肠杆菌全细胞转化生产己二酸
将实施例5构建的重组大肠杆菌分别接种于盛有30mL的LB培养基的100mL锥形瓶中,37℃、200rpm过夜培养。次日按1%(v/v)的比例将菌液转接于含150mL TB液体培养基的500mL锥形瓶中,37℃、200rpm培养至OD600达到0.6-0.8,时添加0.5mM IPTG诱导基因的表达,30℃、200rpm培养14-16h后4℃、6000rpm离心收集菌体。
全细胞转化的验证:
10mL体系:菌体E.coli FMME AA01、E.coli FMME AA02、E.coli FMME AA03和E.coli FMME AA04浓度为0.3g/10mL,底物顺,顺-粘康酸为10g/L,同时添加10mM NADH、39.1mM MgSO4·7H2O和2g/L葡萄糖,缓冲液为磷酸氢二钠-柠檬酸缓冲液,pH为7.0,于30℃反应24h;
结果如图4显示,E.coli FMME AA01、E.coli FMME AA02、E.coli FMME AA03和E.coli FMME AA04分别产生0.81g/L、1.67g/L、1.33g/L和1.02g/L己二酸,转化率分别为8.1%、16.7%、13.3%和10.2%。
实施例7:从头产己二酸的重组大肠杆菌的构建
将实施例1构建的重组质粒pETac-aroZ-aroY-catA分别和实施例2和4构建的重组质粒pCDFDuet-GsQOR-gdh、pCDFDuet-H、pCDFDuet-M、pCDFDuet-L共同转化至菌株E.coliFMME-DHS05中,分别获得携带双质粒的重组菌命名为菌株E.coli FMME AA05、E.coli FMMEAA06、E.coli FMME AA07和E.coli FMME AA08。如图5所示,采用LC-MS验证己二酸合成路径的可行性。图5-a为己二酸标样的一级液质图,显示己二酸在4.28min出峰,图5-c为己二酸标样的二级液质图,己二酸分子量为146,出现m/z 145的碎片离子。图5-b和5-d为样品的一级和二级液质图,在4.28min有出峰,且有m/z 145的碎片离子;说明该路径中有己二酸的生成,即该路径是可行的。
实施例8:重组菌株摇瓶发酵及结果分析
种子液制备:将甘油保藏的实施例7构建的菌种于平板上划线,分别挑取单菌落接种于盛有50ml的LB液体培养基的250ml锥形瓶中,37℃、200rpm/min摇瓶过夜。
发酵条件:以10%的接种量将种子液分别接种于发酵培养基中,使接种后的初始OD600为0.2。37℃、250r/min培养至OD600为0.6-0.8左右时加入5mM IPTG,再于30℃、250rpm/min诱导表达。
发酵培养基:葡萄糖20g/L、胰蛋白胨20g/L、酵母粉5g/L、MgSO4·7H2O8g/L、磷酸二氢钾1.3g/L、磷酸氢二钾0.7g/L、氯化钠1.1g/L。
结果显示,野生型菌株E.coli FMME-DHS05的发酵液中未检测到己二酸,如图6所示,基因工程菌株E.coli FMME AA05、E.coli FMME AA06、E.coli FMME AA07和E.coliFMME AA08的发酵液中己二酸含量为0.48g/L、0.61g/L、0.86g/L和0.73g/L。因此,选择E.coli FMME AA07作为后续发酵罐的出发菌株。
实施例9:发酵罐发酵生产己二酸
在5L发酵罐中检测E.coli FMME AA07菌株的发酵性能。装液量为2L,pH为7.0,压力为1Mpa,温度恒定37℃,700rpm,初始接种OD600为0.8,通气量2-3vvm,发酵周期为48h。
己二酸的放大生产在5L发酵罐中进行。将前培养的E.coli FMME AA07菌液转接至50mL种子培养基中培养8h,取300μL种子液转接至500mL发酵培养基中,培养12h后,调节通过级联搅拌将溶氧控制在35%饱和度以上,氨水调控pH。每12h取一次样,分别测定发酵液中的葡萄糖、己二酸含量。
如图7所示,发酵结束时,己二酸的浓度达到5.3g/L。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (8)

1.一种产己二酸的重组大肠杆菌,其特征在于:所述重组大肠杆菌通过以下改造得到:
敲除大肠杆菌宿主菌基因组上的3-脱氢莽草酸脱氢酶基因aroE,将大肠杆菌宿主菌基因组上的负调控转录抑制因子tyrR替换成DHQ合酶基因aroB和3-脱氢奎尼酸脱水酶基因aroD,将大肠杆菌宿主菌基因组上的乙酸激酶基因ackA替换成3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroG FBR ,将大肠杆菌宿主菌基因组上的丙酮酸脱氢酶基因poxB替换成3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroG FBR 和磷酸烯醇式丙酮酸合酶基因ppsA,将大肠杆菌宿主菌基因组上的奎尼酸脱氢酶基因YdiB替换成转酮醇酶基因tktA和转醛缩酶基因talA,过表达烯酸还原酶基因GsQOR和葡萄糖脱氢酶基因gdh,且所述烯酸还原酶基因GsQOR和葡萄糖脱氢酶基因gdh由SEQ ID NO.7所示的RBS序列调控表达;或
敲除大肠杆菌宿主菌基因组上的3-脱氢莽草酸脱氢酶基因aroE,将大肠杆菌宿主菌基因组上的负调控转录抑制因子tyrR替换成DHQ合酶基因aroB和3-脱氢奎尼酸脱水酶基因aroD,将大肠杆菌宿主菌基因组上的乙酸激酶基因ackA替换成3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroG FBR ,将大肠杆菌宿主菌基因组上的丙酮酸脱氢酶基因poxB替换成3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroG FBR 和磷酸烯醇式丙酮酸合酶基因ppsA,将大肠杆菌宿主菌基因组上的奎尼酸脱氢酶基因YdiB替换成转酮醇酶基因tktA和转醛缩酶基因talA,过表达3-脱氢莽草酸脱水酶基因aroZ、原儿茶酸脱羧酶基因aroY、儿茶酚1,2-双加氧酶基因catA、烯酸还原酶基因GsQOR和葡萄糖脱氢酶基因gdh,且所述烯酸还原酶基因GsQOR和葡萄糖脱氢酶基因gdh由SEQ ID NO.8所示的RBS序列调控表达;
其中,所述3-脱氢莽草酸脱水酶基因aroZ的核苷酸序列如SEQ ID NO.1所示,原儿茶酸脱羧酶基因aroY的核苷酸序列如SEQ ID NO.2所示,儿茶酚1,2-双加氧酶基因catA的核苷酸序列如SEQ ID NO.3所示,烯酸还原酶基因GsQOR的核苷酸序列如SEQ ID NO.4所示,3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroG FBR 的核苷酸序列如SEQ ID NO.6所示,葡萄糖脱氢酶基因gdh的核苷酸序列如SEQ ID NO.5所示,磷酸烯醇式丙酮酸合酶基因ppsA的NCBI编号为NP_416217.1,转酮醇酶基因tktA的NCBI编号为YP_026188.1,转醛醇酶基因talA的NCBI编号为NP_414549.1,DHQ合酶基因aroB的NCBI编号为NP_417848.1,3-脱氢奎尼酸脱水酶的基因aroD的NCBI编号为NP_416208.1,3-脱氢莽草酸脱氢酶基因aroE的NCBI编号为NP_417740.1,负调控转录抑制因子基因tyrR的NCBI编号为NP_415839.1,乙酸激酶基因ackA的NCBI编号为NP_416799.1,丙酮酸脱氢酶基因poxB的NCBI编号为NP_415392.1,奎尼酸脱氢酶基因YdiB的NCBI编号为NP_416207.1。
2.根据权利要求1所述的重组大肠杆菌,其特征在于:以E.coli MG1655为出发菌株。
3.权利要求1或2所述的重组大肠杆菌的构建方法,其特征在于,包括以下步骤:
S1、敲除3-脱氢莽草酸脱氢酶基因aroE,敲除负调控转录抑制因子tyrR并在该位点过表达DHQ合酶aroB和3-脱氢奎尼酸脱水酶aroD,敲除乙酸激酶基因ackA并在该位点过表达3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroG FBR ,敲除丙酮酸脱氢酶基因poxB并在该位点过表达3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroG FBR 和磷酸烯醇式丙酮酸合酶基因ppsA,敲除奎尼酸脱氢酶基因YdiB并在该位点过表达转酮醇酶基因tktA和转醛缩酶基因talA,构建得到出发菌株;
S2、将GsQOR基因片段、gdh基因片段和RBS基因片段连接插入到质粒pCDFDuet中,得到重组质粒pCDFDuet-RBS-GsQOR-gdh
S3、将重组质粒pCDFDuet-RBS-GsQOR-gdh转化入S1构建的出发菌株中构建得到所述重组大肠杆菌;或
还包括以下步骤:
(1)将aroZ基因片段、aroY基因片段和catA基因片段连接插入到质粒pETac中,得到重组质粒pETac-aroZ-aroY-catA
(2)将重组质粒pETac-aroZ-aroY-catA转化入宿主菌中。
4.根据权利要求3所述的构建方法,其特征在于:在步骤S2中,以RBS序列为同源臂融合基因片段。
5.权利要求1或2所述的重组大肠杆菌在制备生物、制药、食品或化工领域的产品中的应用,其特征在于,所述产品为己二酸。
6.一种生产己二酸的方法,其特征在于,包括以下步骤:采用权利要求1或2所述的重组大肠杆菌进行发酵生产;
当重组大肠杆菌中未导入基因aroZaroYcatA时,以粘康酸为底物进行发酵生产;
当重组大肠杆菌中导入基因aroZaroYcatA时,以葡萄糖为底物进行发酵生产。
7.根据权利要求6所述的方法,其特征在于:所述发酵的条件为35-38℃,200-220 rpm,菌株发酵初始OD600为0.8-1.0。
8.根据权利要求6所述的方法,其特征在于:所述发酵的条件为35-38℃,650-700 rpm,10-15%接种量,装液量为30-50%,pH为7.0-7.5,菌株发酵初始OD600为0.8-1.0,通气量为2-3 vvm。
CN202310951198.0A 2023-07-31 2023-07-31 一株产己二酸的重组大肠杆菌的构建及其应用 Active CN116904381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310951198.0A CN116904381B (zh) 2023-07-31 2023-07-31 一株产己二酸的重组大肠杆菌的构建及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310951198.0A CN116904381B (zh) 2023-07-31 2023-07-31 一株产己二酸的重组大肠杆菌的构建及其应用

Publications (2)

Publication Number Publication Date
CN116904381A CN116904381A (zh) 2023-10-20
CN116904381B true CN116904381B (zh) 2024-07-12

Family

ID=88358107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310951198.0A Active CN116904381B (zh) 2023-07-31 2023-07-31 一株产己二酸的重组大肠杆菌的构建及其应用

Country Status (1)

Country Link
CN (1) CN116904381B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555643A (zh) * 2008-03-27 2014-02-05 基因组股份公司 用于产生己二酸和其他化合物的微生物
CN107365782A (zh) * 2017-08-29 2017-11-21 廊坊梅花生物技术开发有限公司 一种基因工程菌及其应用
CN113174398A (zh) * 2021-04-22 2021-07-27 浙江工业大学 一种用于重组表达棘白菌素b脱酰基酶的表达盒及应用
CN113293120A (zh) * 2021-05-17 2021-08-24 江南大学 一株产己二酸的重组大肠杆菌的构建及应用
CN116426455A (zh) * 2023-05-26 2023-07-14 江南大学 一种重组大肠杆菌及其构建方法与其在生产3-脱氢莽草酸中的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667166A (zh) * 2012-09-21 2014-03-26 天津工业生物技术研究所 一株生产己二酸前体物顺,顺-粘康酸的大肠埃希氏菌及应用
CA2897454C (en) * 2015-07-03 2023-03-14 Governing Council Of The University Of Toronto Microorganisms and methods for biosynthesis of adipic acid
CN114107153A (zh) * 2021-11-26 2022-03-01 江南大学 一种生产己二酸的重组菌、构建方法和应用
CN115820518A (zh) * 2022-07-19 2023-03-21 江南大学 高效生产莽草酸的重组大肠杆菌及其应用
CN116083332A (zh) * 2022-12-26 2023-05-09 江南大学 一株产己二酸的重组大肠杆菌的构建及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555643A (zh) * 2008-03-27 2014-02-05 基因组股份公司 用于产生己二酸和其他化合物的微生物
CN107365782A (zh) * 2017-08-29 2017-11-21 廊坊梅花生物技术开发有限公司 一种基因工程菌及其应用
CN113174398A (zh) * 2021-04-22 2021-07-27 浙江工业大学 一种用于重组表达棘白菌素b脱酰基酶的表达盒及应用
CN113293120A (zh) * 2021-05-17 2021-08-24 江南大学 一株产己二酸的重组大肠杆菌的构建及应用
CN116426455A (zh) * 2023-05-26 2023-07-14 江南大学 一种重组大肠杆菌及其构建方法与其在生产3-脱氢莽草酸中的应用

Also Published As

Publication number Publication date
CN116904381A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
CN112143764B (zh) 一种生物酶催化制备布瓦西坦中间体化合物的方法
CN107287143A (zh) 高产丁醇的大肠杆菌基因工程菌及其构建方法与应用
CN103865869B (zh) 一株产α-酮基丁酸的基因工程菌及其应用
CN103740771B (zh) 克雷伯氏肺炎杆菌生产2r,3r-丁二醇的方法
CN105936915A (zh) 一株双基因敲除工程菌及其构建方法和在发酵生产1,3-丙二醇中的应用
CN102154339A (zh) 一种产丁二酸大肠杆菌基因工程菌株的构建方法
CN116426455A (zh) 一种重组大肠杆菌及其构建方法与其在生产3-脱氢莽草酸中的应用
WO2018014488A1 (zh) 大肠杆菌工程菌及其催化马来酸合成富马酸的方法
CN104651388B (zh) 一种高效合成乙烯的构建体及其构建方法和应用
CN111484962A (zh) 一种高效产5α-雄烷二酮的基因工程菌及其应用
CN117004547B (zh) 一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及其应用
CN116904381B (zh) 一株产己二酸的重组大肠杆菌的构建及其应用
CN115058374B (zh) 一种利用丙酮酸合成乙偶姻的重组运动发酵单胞菌及其构建方法与应用
CN116083332A (zh) 一株产己二酸的重组大肠杆菌的构建及其应用
CN107513525B (zh) 一种d-扁桃酸脱氢酶、基因、基因工程菌及其应用
CN113151131B (zh) 一种产异丁香酚单加氧酶的自诱导培养基及其应用
CN102952818B (zh) 用于在蓝细菌中提高脂肪醇产量的构建体和方法
CN112280725B (zh) 一种高效生产琥珀酸的重组大肠杆菌及其构建方法
CN115895989A (zh) 一株高产丁二酸的大肠杆菌及其制备方法与应用
CN104498523B (zh) 一株敲除丙酮酸甲酸裂解酶基因的工程菌及其应用
CN102876625B (zh) 一种产异丁醇的运动发酵单胞菌基因工程菌及其构建方法
CN113234653A (zh) 一种提高合成气发酵产乙醇含量的突变株和利用突变株的应用
CN117089507B (zh) 一种利用廉价碳源合成1,4-丁二醇的大肠杆菌基因工程菌及其应用
CN116121230B (zh) 一种编码大根香叶烯a合成酶的基因的应用
CN108795833A (zh) 乙酸CoA转移酶缺陷型大肠杆菌工程菌及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant