CN116901061A - Robotic arm trajectory tracking control method based on preset performance - Google Patents
Robotic arm trajectory tracking control method based on preset performance Download PDFInfo
- Publication number
- CN116901061A CN116901061A CN202310719125.9A CN202310719125A CN116901061A CN 116901061 A CN116901061 A CN 116901061A CN 202310719125 A CN202310719125 A CN 202310719125A CN 116901061 A CN116901061 A CN 116901061A
- Authority
- CN
- China
- Prior art keywords
- error
- mechanical arm
- tracking
- preset performance
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims abstract description 39
- 238000013528 artificial neural network Methods 0.000 claims abstract description 35
- 230000001052 transient effect Effects 0.000 claims abstract description 5
- 230000003044 adaptive effect Effects 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 17
- 239000013598 vector Substances 0.000 claims description 15
- 230000001133 acceleration Effects 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 2
- 101150050759 outI gene Proteins 0.000 claims 1
- 230000000452 restraining effect Effects 0.000 claims 1
- 230000007704 transition Effects 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 18
- 230000032683 aging Effects 0.000 abstract description 2
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 230000005484 gravity Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Feedback Control In General (AREA)
Abstract
基于预设性能的机械臂轨迹跟踪控制方法,属于非线性系统控制领域。本发明针对机械臂的轨迹跟踪问题设计了一种基于指定时间预设性能函数的控制器,其控制对象为一考虑未知系统动力学和外界干扰的刚性机械臂,采用预设性能控制和转换误差的方法设计控制律,实现指定时间轨迹跟踪控制,其收敛时间可直接给定,收敛精度精确可控,系统的瞬态性能也可提前规定。同时引入径向基函数神经网络,根据系统的状态量估计机械臂的未知系统动力学,使得系统能够有效的克服未知系统动力学和外界干扰,不需要知道外界扰动的上界具体值,有利于机械臂系统在不同的老化程度下和不同环境下正常工作。
The robot arm trajectory tracking control method based on preset performance belongs to the field of nonlinear system control. The present invention designs a controller based on a preset performance function at a specified time for the trajectory tracking problem of a robotic arm. Its control object is a rigid robotic arm that considers unknown system dynamics and external interference, and adopts preset performance control and conversion errors. This method is used to design the control law to achieve specified time trajectory tracking control. The convergence time can be directly given, the convergence accuracy is precise and controllable, and the transient performance of the system can also be specified in advance. At the same time, the radial basis function neural network is introduced to estimate the unknown system dynamics of the manipulator according to the state quantity of the system, so that the system can effectively overcome the unknown system dynamics and external interference without knowing the specific upper bound value of the external disturbance, which is beneficial to Robotic arm systems work normally under different degrees of aging and in different environments.
Description
技术领域Technical field
本发明属于非线性系统控制领域,涉及一种机械臂指定时间轨迹跟踪控制算法,具体涉及一种基于预设性能的机械臂轨迹跟踪控制方法。The invention belongs to the field of nonlinear system control, relates to a robot arm trajectory tracking control algorithm at a specified time, and specifically relates to a robot arm trajectory tracking control method based on preset performance.
背景技术Background technique
机械臂系统是一个具备强时变、强耦合等特性的高度非线性控制系统,其非线性项包括重力、科里奥利力和离心力,因此,实现较高的控制精度一直是一个难题。The manipulator system is a highly nonlinear control system with strong time-varying and strong coupling characteristics. Its nonlinear terms include gravity, Coriolis force and centrifugal force. Therefore, achieving high control accuracy has always been a problem.
预设性能控制技术是指设计控制器使得闭环系统的跟踪误差收敛到一个预先设定的允许范围内的同时,保证收敛速度和超调量满足预先设定的条件,即要求瞬态和稳态性能同时得到满足,以提高控制系统的性能。Preset performance control technology refers to designing the controller so that the tracking error of the closed-loop system converges to a preset allowable range while ensuring that the convergence speed and overshoot meet the preset conditions, that is, transient and steady state requirements. Performance is met simultaneously to improve the performance of the control system.
近年来,对于机械臂轨迹跟踪控制的研究已经取得了十分显著的成果,但在系统收敛时间这一问题上仍存在一定的问题,无法直接给定一个值作为收敛时间,因此对于收敛时间的问题有待进一步研究。In recent years, research on robotic arm trajectory tracking control has achieved very significant results. However, there are still certain problems with the system convergence time. It is impossible to directly give a value as the convergence time. Therefore, for the convergence time problem Awaiting further research.
发明内容Contents of the invention
本发明的目的是为了解决在机械臂轨迹跟踪控制中,无法给定收敛时间的问题,提供一种基于预设性能和RBF神经网络的机械臂指定时间轨迹跟踪控制方法,该方法采用机械臂的拉格朗日动力学模型,考虑机械臂的未知系统动力学和外部环境干扰,设计一种基于RBF神经网络的不确定性估计器,采用预设性能控制思想,采用RBF神经网络对未知系统动力学和外界扰动进行处理,设计得出控制律和自适应律,实现机械臂的指定时间轨迹跟踪控制。The purpose of the present invention is to solve the problem that the convergence time cannot be given in the trajectory tracking control of the robotic arm, and to provide a designated time trajectory tracking control method for the robotic arm based on preset performance and RBF neural network. This method uses the robotic arm's The Lagrangian dynamics model considers the unknown system dynamics and external environmental interference of the manipulator, and designs an uncertainty estimator based on the RBF neural network. It adopts the idea of preset performance control and uses the RBF neural network to estimate the unknown system dynamics. It learns and processes external disturbances, and designs control laws and adaptive laws to achieve specified time trajectory tracking control of the robotic arm.
本发明的目的是通过以下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
基于预设性能的机械臂轨迹跟踪控制方法,所述方法为:A robotic arm trajectory tracking control method based on preset performance, the method is:
步骤一:设计基于RBF神经网络的未知系统动力学估计器;Step 1: Design an unknown system dynamics estimator based on RBF neural network;
步骤二:设计指定时间预设性能函数对跟踪误差进行约束;Step 2: Design a preset performance function at a specified time to constrain the tracking error;
步骤三:采用误差转换的方式,将对跟踪误差的约束问题转为有界性问题;Step 3: Use error conversion to convert the constraint problem of tracking error into a bounded problem;
步骤四:设计滑模使转换后误差有界;Step 4: Design the sliding mode so that the error after conversion is bounded;
步骤五:设计基于预设性能和RBF神经网络的控制律和自适应律,实现轨迹跟踪控制。Step 5: Design the control law and adaptive law based on the preset performance and RBF neural network to achieve trajectory tracking control.
进一步地,所述步骤一具体为:考虑未知系统动力学、外界干扰的刚性机械臂的轨迹跟踪控制问题,设计径向基函数神经网络对未知系统动力学进行估计,其表达式为:Further, the first step is specifically: considering the trajectory tracking control problem of the rigid manipulator with unknown system dynamics and external interference, designing a radial basis function neural network to estimate the unknown system dynamics, and its expression is:
其中,为未知系统动力学,简写为H,q=[q1,q2,...,qn]T为关节角位置,为关节角速度,n为机械臂的关节个数,W*∈RN×n为神经网络的期望权值,RN×n为N*n维度的矩阵,N为神经网络节点数,S(X)=[s1(X),s2(X),...,sN(X)]T∈RN为神经网络的隐含层输出,si(X)为径向基函数,其表达式为si(X)=exp[-(X-ξi)T(X-ξi)/ηi 2],ξi为中心值,ηi为宽度值,Rn为n维列向量,W*TS(X)∈Rn为神经网络的输出,ζ为一个小的近似误差向量。in, is the unknown system dynamics, abbreviated as H, q=[q 1 , q 2 ,..., q n ] T is the joint angular position, is the joint angular velocity, n is the number of joints of the manipulator, W * ∈R N×n is the expected weight of the neural network, R N×n is the matrix of N*n dimensions, N is the number of neural network nodes, S(X )=[s 1 (X), s 2 (X),..., s N (X)] T ∈R N is the hidden layer output of the neural network, s i (X) is the radial basis function, where The expression is s i (X) = exp [-(X-ξ i ) T (X-ξ i )/η i 2 ], ξ i is the center value, η i is the width value, and R n is an n-dimensional column vector , W *T S(X)∈R n is the output of the neural network, and ζ is a small approximate error vector.
进一步地,所述步骤一具体为:引入机械臂动力学模型:Further, step one is specifically: introducing a robotic arm dynamics model:
其中,τ=[τ1,τ2,...,τn]T为由各关节执行器提供的控制力矩,q=[q1,q2,...,qn]T为关节角位置,为关节角速度,/>为关节角加速度,M(q)∈Rn×n为惯量矩阵,/>为包含离心力与哥氏力的力矩向量,G(q)∈Rn为重力矩向量,n为机械臂的关节个数,/>为摩擦力矩,Rn为n维列向量;Among them, τ = [τ 1 , τ 2 ,..., τ n ] T is the control torque provided by each joint actuator, q = [q 1 , q 2 ,..., q n ] T is the joint angle Location, is the joint angular velocity,/> is the joint angular acceleration, M(q)∈R n×n is the inertia matrix,/> is the moment vector including centrifugal force and Coriolis force, G(q)∈R n is the gravity moment vector, n is the number of joints of the mechanical arm,/> is the friction moment, R n is an n-dimensional column vector;
机械臂系统中存在未知系统动力学和外加干扰等各项未知因素,在此引入辅助变量对机械臂不确定性进行简化处理,令X1=q,将系统变为如下形式:There are various unknown factors such as unknown system dynamics and external interference in the robotic arm system. Here, auxiliary variables are introduced to simplify the uncertainty of the robotic arm, let X 1 =q, Change the system to the following form:
令表示未知系统动力学;make Represents unknown system dynamics;
采用RBF神经网络对未知系统动力学进行补偿,具体表达式为:The RBF neural network is used to compensate for unknown system dynamics. The specific expression is:
其中,W*为神经网络的期望权值,但是具体的值是未知的,因此,对其设计自适应律进行在线估计,定义为W*的估计值,/>为权值的估计误差,其表达式为:Among them, W * is the expected weight of the neural network, but the specific value is unknown. Therefore, its design adaptive law is estimated online, defined is the estimated value of W * ,/> is the estimation error of the weight, and its expression is:
的自适应律为:/> The adaptive law of is:/>
其中,Γ为正定的对角阵,为线性滑模的转置信号,γ为一个正常值,用于提升自适应律的鲁棒性,选择合适的参数和足够多的节点,使用/>能够完成对不确定性的估计,并且估计误差是有界的。Among them, Γ is a positive definite diagonal matrix, is the transposed signal of the linear sliding mode, γ is a normal value, used to improve the robustness of the adaptive law, select appropriate parameters and enough nodes, use/> able to cope with uncertainty is estimated, and the estimation error is bounded.
进一步地,所述步骤二具体为:根据机械臂系统误差模型,设计一个指定时间预设性能函数,用于对轨迹跟踪误差进行约束,实现指定时间实际收敛的要求,指定时间预设性能函数形式为:Further, the second step is specifically: according to the manipulator system error model, design a preset performance function at a specified time to constrain the trajectory tracking error and achieve the actual convergence requirements at the specified time. The preset performance function form at the specified time is for:
其中,βi为指定时间性能函数,ai为性能函数的初值,bi为性能函数的终值,T为可自由设定的指定时间,t即为时间信号;Among them, β i is the specified time performance function, a i is the initial value of the performance function, b i is the final value of the performance function, T is the freely set specified time, and t is the time signal;
定义机械臂关节角期望信号qd,跟踪误差为e=q-qd,利用指定时间性能函数对跟踪误差做约束为:Define the expected signal q d for the joint angle of the manipulator, and the tracking error is e=qq d . The specified time performance function is used to constrain the tracking error as:
-Fiβi≤ei≤Fiβi -F i β i ≤ e i ≤ F i β i
Fi为可自由选定的常数,ei为机械臂第i个关节的跟踪误差,对上式进行化简,可得当t>T时,跟踪误差的约束为:F i is a freely selectable constant, e i is the tracking error of the i-th joint of the manipulator. Simplifying the above equation, we can get that when t>T, the tracking error constraint is:
-Fibi≤ei≤Fibi -F i b i ≤ e i ≤ F i b i
在上述约束中,bi,T,Fi均为可自由设定的常值,即可通过选取合适的参数,使得系统跟踪误差在指定时间T之前收敛到绝对值为Fibi的界限内。In the above constraints, b i , T and F i are all constant values that can be set freely. By selecting appropriate parameters, the system tracking error can converge to the limit of absolute value F i b i before the specified time T. Inside.
进一步地,所述步骤三具体为:为了实现步骤二中对跟踪误差的约束,引入误差转换的方式来进行处理,将原有跟踪误差约束问题转换为等效的无约束问题,误差转换关系式为:Further, the third step is specifically: in order to realize the constraint on the tracking error in step two, an error conversion method is introduced for processing, and the original tracking error constraint problem is converted into an equivalent unconstrained problem. The error conversion relationship is: for:
ei=βiTi(εi)e i =β i T i (ε i )
反解误差转换关系式得转换误差为: The conversion error obtained by back-solving the error conversion relationship is:
其中,Ti为误差转换函数,可以看出,当εi→+∞,Ti=Fi,当εi→-∞,Ti=-Fi,由ei与εi的关系式可知,只要证明了转换后的误差εi是有界的,就能满足误差约束关系式,即完成指定时间预设性能控制。Among them, T i is the error conversion function. It can be seen that when ε i →+∞, T i =F i , when ε i →-∞, T i =-F i , it can be known from the relationship between e i and ε i , as long as it is proved that the converted error ε i is bounded, the error constraint relationship can be satisfied, that is, the preset performance control at the specified time is completed.
进一步地,对转换误差εi求导得:Furthermore, the derivative of the conversion error ε i is:
令得:/> make Got:/>
将其简化为: Simplify this to:
由上述步骤计算得到转换误差及其导数后,即可进一步设计控制律实现对转换误差的有界性控制。After the conversion error and its derivative are calculated through the above steps, the control law can be further designed to achieve bounded control of the conversion error.
进一步地,所述步骤四具体为:针对步骤三中得到的转换误差,设计一个线性滑模来实现对转换误差εi的有界性要求,设计滑模形式为:Further, the fourth step is specifically: for the conversion error obtained in step three, design a linear sliding mode to achieve the boundedness requirement of the conversion error ε i . The designed sliding mode form is:
是二关节机械臂的第i个转换误差信号,在前面解释预设性能控制时用到;而/>是将两个信号写成一个向量的形式,在后续设计控制器时用到; is the i-th conversion error signal of the two-joint manipulator, which is used in the previous explanation of preset performance control; and/> It is to write the two signals into a vector form, which will be used in the subsequent design of the controller;
其中,Λ为正定对角阵,通过设计控制器完成对滑模量的有界性证明,即可完成上述提到转换误差的有界性证明。Among them, Λ is a positive definite diagonal matrix. By designing a controller to prove the boundedness of the sliding modulus, the boundedness proof of the conversion error mentioned above can be completed.
进一步地,对滑模公式求导并化简可得:Furthermore, by deriving and simplifying the sliding mode formula, we can get:
其中, in,
分析滑模表达式可得:当滑模量有界时,转换误差εi和其导数都是有界的,因此,通过设计控制器完成对滑模量的有界性证明,即可完成上述提到转换误差的有界性证明。Analyzing the sliding mode expression, we can get that: when the sliding modulus is bounded, the conversion error ε i and its derivative are both bounded. Therefore, by designing the controller to prove the boundedness of the sliding modulus, the above can be completed. Proof of boundedness of conversion error is mentioned.
进一步地,所述步骤五具体为:针对步骤一至四中设计的神经网络计算式,对跟踪误差的约束式,误差转换关系式以及线性滑模量,设计基于预设性能的机械臂指定时间轨迹跟踪控制律和自适应律,实现指定时间轨迹跟踪控制,其中:Further, the fifth step is specifically: based on the neural network calculation formula designed in steps one to four, the constraint formula for the tracking error, the error conversion relationship formula and the linear sliding modulus, design a specified time trajectory of the manipulator based on the preset performance Tracking control law and adaptive law realize specified time trajectory tracking control, where:
基于预设性能的机械臂指定时间轨迹跟踪控制律为:The specified time trajectory tracking control law of the manipulator based on the preset performance is:
其中,K为可自由选定的正对角阵;Among them, K is a freely selectable diagonal matrix;
自适应律为: The adaptive law is:
其中,Γ为正定的对角阵,γ为一个正的常值,用于提升自适应律的鲁棒性,两者均可自由设置。在使用以上控制律和自适应律的情况下,即可实现机械臂跟踪误差的指定时间收敛,并保证其瞬态性能在可控范围内。Among them, Γ is a positive definite diagonal matrix, and γ is a positive constant value, which is used to improve the robustness of the adaptive law. Both can be set freely. By using the above control law and adaptive law, the specified time convergence of the manipulator tracking error can be achieved, and its transient performance can be guaranteed to be within a controllable range.
相比于现有技术,本发明具有如下优点:本发明针对机械臂的轨迹跟踪问题设计了一种基于指定时间预设性能函数的控制器,其控制对象为一考虑未知系统动力学和外界干扰的刚性机械臂,采用预设性能控制和转换误差的方法设计控制律,实现指定时间轨迹跟踪控制,其收敛时间可直接给定,收敛精度精确可控,系统的瞬态性能也可提前规定。同时引入径向基函数神经网络,根据系统的状态量估计机械臂的未知系统动力学,使得系统能够有效的克服未知系统动力学和外界干扰,不需要知道外界扰动的上界具体值,有利于机械臂系统在不同的老化程度下和不同环境下正常工作。Compared with the existing technology, the present invention has the following advantages: for the trajectory tracking problem of the robotic arm, the present invention designs a controller based on a preset performance function at a specified time, and its control object is a controller that takes into account unknown system dynamics and external interference. The rigid manipulator adopts the method of preset performance control and conversion error to design the control law to achieve specified time trajectory tracking control. Its convergence time can be directly given, the convergence accuracy is precise and controllable, and the transient performance of the system can also be specified in advance. At the same time, the radial basis function neural network is introduced to estimate the unknown system dynamics of the manipulator according to the state quantity of the system, so that the system can effectively overcome the unknown system dynamics and external interference without knowing the specific upper bound value of the external disturbance, which is beneficial to Robotic arm systems work normally under different degrees of aging and in different environments.
附图说明Description of the drawings
图1为机械臂指定时间轨迹跟踪控制系统框图;Figure 1 is a block diagram of the robot arm's specified time trajectory tracking control system;
图2为指定收敛时间T=2s时关节角1位置跟踪情况图;Figure 2 shows the joint angle 1 position tracking situation when the convergence time T=2s is specified;
图3为指定收敛时间T=2s时关节角2位置跟踪情况图;Figure 3 shows the joint angle 2 position tracking situation when the convergence time T=2s is specified;
图4为指定收敛时间T=2s时关节角1位置跟踪误差收敛情况图;Figure 4 is a diagram showing the convergence of joint angle 1 position tracking error when the convergence time T=2s is specified;
图5为指定收敛时间T=2s时关节角2位置跟踪误差收敛情况图;Figure 5 is a diagram showing the convergence of joint angle 2 position tracking error when the convergence time T=2s is specified;
图6为指定收敛时间T=2s时神经网络权值W1收敛情况图;Figure 6 shows the convergence situation of the neural network weight W 1 when the convergence time T=2s is specified;
图7为指定收敛时间T=2s时神经网络权值W2收敛情况图;Figure 7 shows the convergence situation of the neural network weight W 2 when the convergence time T=2s is specified;
图8为指定收敛时间T=2s时控制力矩信号图;Figure 8 shows the control torque signal diagram when the convergence time T=2s is specified;
图9为指定收敛时间T=0.7s时关节角1位置跟踪情况图;Figure 9 shows the joint angle 1 position tracking situation when the convergence time T=0.7s is specified;
图10为指定收敛时间T=0.7s时关节角2位置跟踪情况图;Figure 10 shows the joint angle 2 position tracking situation when the convergence time T=0.7s is specified;
图11为指定收敛时间T=0.7s时关节角1位置跟踪误差收敛情况图;Figure 11 is a diagram showing the convergence of joint angle 1 position tracking error when the convergence time T=0.7s is specified;
图12为指定收敛时间T=0.7s时关节角2位置跟踪误差收敛情况图;Figure 12 is a diagram showing the convergence of joint angle 2 position tracking error when the convergence time T=0.7s is specified;
图13为指定收敛时间T=0.7s时神经网络权值W1收敛情况图;Figure 13 shows the convergence situation of the neural network weight W 1 when the convergence time T=0.7s is specified;
图14为指定收敛时间T=0.7s时神经网络权值W2收敛情况图;Figure 14 shows the convergence situation of the neural network weight W 2 when the convergence time T=0.7s is specified;
图15为指定收敛时间T=0.7s时控制力矩信号图。Figure 15 shows the control torque signal diagram when the convergence time T=0.7s is specified.
具体实施方式Detailed ways
下面结合附图和实施例对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。The technical solution of the present invention will be further described below in conjunction with the accompanying drawings and examples, but it is not limited thereto. Any modification or equivalent replacement of the technical solution of the present invention without departing from the spirit and scope of the technical solution of the present invention shall be covered. within the protection scope of the present invention.
实施例1:Example 1:
对于一个一般的刚性机械臂,考虑以下拉格朗日形式的n连杆机械臂模型:For a general rigid manipulator, consider the following n-link manipulator model in Lagrangian form:
其中,τ=[τ1,τ2,…,τn]T为由各关节执行器提供的控制力矩,q=[q1,q2,…,qn]T为关节角位置,为关节角速度,/>为关节角加速度,M(q)∈Rn ×n为惯量矩阵,/>为包含离心力与哥氏力的力矩向量,G(q)∈Rn为重力矩向量,n为机械臂的关节个数,/>为摩擦力矩,Rn表示一个n维列向量。引入辅助变量X1、X2对机械臂模型进行简化处理Among them, τ = [τ 1 , τ 2 ,..., τ n ] T is the control torque provided by each joint actuator, q = [q 1 , q 2 ,..., q n ] T is the joint angular position, is the joint angular velocity,/> is the joint angular acceleration, M(q)∈R n ×n is the inertia matrix,/> is the moment vector including centrifugal force and Coriolis force, G(q)∈R n is the gravity moment vector, n is the number of joints of the mechanical arm,/> is the friction moment, R n represents an n-dimensional column vector. Introducing auxiliary variables X 1 and X 2 to simplify the robotic arm model
令表示未知系统动力学。从/>的表达式可知,其与系统的q和/>信号有关,即机械臂的关节角位置信号和关节角速度信号,选取这两个信号作为RBF神经网络的输入信号,通过对权值设计合适的自适应律,即可完成对未知系统动力学的估计。make Represents unknown system dynamics. From/> It can be seen from the expression that it is related to the q and /> of the system The signals are related, that is, the joint angular position signal and the joint angular velocity signal of the manipulator. These two signals are selected as the input signals of the RBF neural network. By designing an appropriate adaptive law for the weights, the estimation of the dynamics of the unknown system can be completed. .
采用RBF神经网络对未知系统动力学进行补偿,具体表达式如下:The RBF neural network is used to compensate for unknown system dynamics. The specific expression is as follows:
其中,X为神经网络的输入信号,W*∈RN×n为神经网络的期望权值,RN×n表示一个N*n维度的矩阵,N为神经网络节点数,S(X)=[s1(X),s2(X),...,sN(X)]T∈RN为神经网络的隐含层输出,si(X)为径向基函数,其表达式为ξi为中心值,ηi为宽度值。 Among them , [s 1 (X),s 2 (X),...,s N (X)] T ∈R N is the hidden layer output of the neural network, s i (X) is the radial basis function, and its expression for ξ i is the center value, and eta i is the width value.
其中,W*是期望的权值,但是具体的值是未知的,因此,对其设计自适应律进行在线估计。定义为W*的估计值,/>为权值的估计误差,其表达式为:Among them, W * is the expected weight, but the specific value is unknown, so its design adaptive law is estimated online. definition is the estimated value of W * ,/> is the estimation error of the weight, and its expression is:
的自适应律如下式所示: The adaptive law is as follows:
其中,Γ为正定的对角阵,为线性滑模的转置信号,γ为一个较小的正常值,用于提升自适应律的鲁棒性,根据径向基函数si(X)的表达式,选择合适的中心值和宽度值,并选取足够多的节点,使用/>即可完成对不确定性/>的估计,并且估计误差是有界的。Among them, Γ is a positive definite diagonal matrix, is the transposed signal of the linear sliding mode, γ is a small normal value, which is used to improve the robustness of the adaptive law. According to the expression of the radial basis function s i (X), select the appropriate center value and width value, and select enough nodes, use/> To complete the analysis of uncertainty/> is estimated, and the estimation error is bounded.
考虑上述机械臂系统,引入辅助变量Z1=e,将动力学模型转换为误差动力学模型,如下式所示:Considering the above manipulator system, introduce the auxiliary variable Z 1 =e, Convert the dynamic model into an error dynamics model, as shown in the following formula:
其中,H为的缩写,M为M(q)的缩写,/>为期望角加速度信号。Among them, H is The abbreviation of M is the abbreviation of M(q),/> is the desired angular acceleration signal.
接着,引入指定时间预设性能函数:Next, introduce the preset performance function for a specified time:
利用指定时间性能函数对机械臂跟踪误差进行约束如下:The specified time performance function is used to constrain the robot arm tracking error as follows:
-Fiβi≤ei≤Fiβi (8);-F i β i ≤ e i ≤ F i β i (8);
针对上述误差约束问题,采用误差转换的形式将问题等效为对转换后误差的有界性证明问题,其表达式如下:In view of the above error constraint problem, the problem is equivalent to the boundedness proof problem of the converted error in the form of error conversion, and its expression is as follows:
ei=βiTi(εi) (9);e i =β i T i (ε i ) (9);
Ti为误差转换函数,可以看出,当εi→+∞,Ti=Fi,当εi→-∞,Ti=-Fi,由ei与εi的关系式可知,只要证明了转换后的误差εi是有界的,就能满足误差约束关系式,即完成指定时间预设性能控制。T i is the error conversion function. It can be seen that when ε i →+∞,T i =F i , when ε i →-∞,T i =-F i , from the relationship between e i and ε i , as long as It is proved that the converted error ε i is bounded and can satisfy the error constraint relationship, that is, the preset performance control at the specified time is completed.
在根据关系式反解可得转换误差为:According to the inverse solution of the relationship, the conversion error can be obtained as:
接着,对转换误差εi求导可得:Then, derivation of the conversion error ε i can be obtained:
令得:make have to:
进一步的,将上述式写为向量形式,可得:Further, writing the above equation into vector form, we can get:
其中, in,
上文提到,我们需要设计控制器使得转换误差ε有界即可,对收敛时间和精度不做要求,因此,在此考虑使用一个简单的线性滑模来对ε实现有界稳定。设计滑模量如下:As mentioned above, we need to design the controller so that the conversion error ε is bounded, and there are no requirements for convergence time and accuracy. Therefore, we consider using a simple linear sliding mode to achieve bounded stability for ε. The design slip modulus is as follows:
对其求导,可得:Taking its derivative, we can get:
其中,Q为中间变量,其表达式为 Among them, Q is an intermediate variable, and its expression is
接着,可以通过设计控制器τ,使得滑模量Es有界,进而可得转换误差ε有界,即最终完成对跟踪误差的指定时间控制。Then, the controller τ can be designed so that the sliding modulus E s is bounded, and then the conversion error ε can be obtained to be bounded, that is, the specified time control of the tracking error is finally completed.
考虑上文中化简所得机械臂系统,估计未知系统动力学所得的RBF神经网络计算式及其权值自适应律下,设计如下式的控制器,即可对该系统完成指定时间控制。Considering the simplified robotic arm system obtained above, and the RBF neural network calculation formula obtained by estimating the dynamics of the unknown system and its weight adaptive law, the controller of the following formula is designed to complete the specified time control of the system.
其中,K为可自由选定的正对角阵。Among them, K is a freely selectable diagonal matrix.
下面对所设计的控制律和自适应律进行稳定性分析:The following is a stability analysis of the designed control law and adaptive law:
将控制器τ带入到式(16)中,并结合式(3)和式(4),可得:Bringing the controller τ into equation (16), and combining equations (3) and (4), we can get:
考虑如下李雅普诺夫函数:Consider the following Lyapunov function:
对其求导可得:Taking its derivative we can get:
将和/>代入可得:Will and/> Substitute to get:
显然,则上式可化简为:Obviously, Then the above formula can be simplified to:
接下来分别对这四项进行放缩处理。Next, these four items are scaled separately.
-Es TKEs≤-λmin(K)||Es||2 (23)。-E s T KE s ≤ -λ min (K)||E s || 2 (23).
λmin(K)为矩阵K的最小特征值;λ min (K) is the minimum eigenvalue of matrix K;
为矩阵/>的最大特征值; is matrix/> The maximum eigenvalue;
引入杨氏不等式:Introduce Young’s inequality:
其中,x,y为任意实数,λ>0可自由选取,上式中,p和q为不等式定义的实数,并无实际意义,p>1,q>1并且满足(p-1)(q-1)=1Among them, x and y are any real numbers, λ>0 can be freely selected. In the above formula, p and q are real numbers defined by the inequality, which have no practical significance. p>1, q>1 and satisfy (p-1) (q -1)=1
通过上式对Es Tζ放缩可得:By scaling E s T ζ in the above formula, we can get:
α0为一个正的常数,其值可自由选定。α 0 is a positive constant, and its value can be selected freely.
通过矩阵的迹的定义将展开可得:By definition of the trace of a matrix, Expand to get:
分别为矩阵/>W*的第i行,第j列元素。 respectively matrix/> The i-th row and j-th column element of W * .
其中,由杨氏不等式Among them, by Young’s inequality
可得:Available:
即:Right now:
综合式(23),(24),(26),(30)可得:Comprehensive formulas (23), (24), (26), (30) can be obtained:
令进一步简化上式得:make Further simplifying the above formula we get:
令可得:make Available:
由上式可得,选择合适的K,使得α1>0,即可得α3>0。对式(33)积分可得:From the above formula, we can get α 3 >0 by choosing appropriate K so that α 1 >0. By integrating equation (33) we can get:
由式(34)可得,线性滑模Es和神经网络的权值误差量是有界的,而根据滑模量的定义式(14)可得,ε和/>是有界的,即转换误差εi是有界的,使得跟踪误差满足式(8),可知跟踪误差始终保持在一个预定义的集合内,通过调整预设性能函数的参数,可使跟踪误差在指定时间内收敛到一个较小的域内,完成实际指定时间收敛。From equation (34), we can get the linear sliding mode E s and the weight error of the neural network is bounded, and according to the definition of sliding modulus (14), we can get, ε and /> is bounded, that is, the conversion error ε i is bounded, so that the tracking error satisfies equation (8). It can be seen that the tracking error is always maintained within a predefined set. By adjusting the parameters of the preset performance function, the tracking error can be It converges to a smaller domain within the specified time and completes the actual specified time convergence.
采用二自由度机械臂模型进行仿真,考虑式(1)的机械臂模型:A two-degree-of-freedom manipulator model is used for simulation, and the manipulator model of equation (1) is considered:
其中,in,
C21=0,C 21 =0,
G1=(m1+m2)l1gcos(q2)+m2l2gcos(q2+q2),G 1 =(m 1 +m 2 )l 1 gcos(q 2 )+m 2 l 2 gcos(q 2 +q 2 ),
G2=m2l2gcos(q2+q2),G 2 =m 2 l 2 gcos(q 2 +q 2 ),
mi为连杆质量,li为连杆长度,Ji为连杆转动惯量,其标称值选择如下m i is the mass of the connecting rod, l i is the length of the connecting rod, J i is the moment of inertia of the connecting rod, and its nominal value is selected as follows
关节转角的期望值设定如下:The expected value of the joint angle is set as follows:
假设机械臂参数存在20%的不确定性:Assume a 20% uncertainty in the robot arm parameters:
在本次仿真中,跟踪误差要求满足式(8)所示约束,其中,In this simulation, the tracking error is required to satisfy the constraints shown in equation (8), where,
Fi=0.2,T为收敛时间,可自由设定,最终结果为跟踪误差将在指定的T时刻前收敛到绝对值为0.0002的界内。F i =0.2, T is the convergence time, which can be set freely. The final result is that the tracking error will converge to an absolute value of 0.0002 before the specified T time.
外界扰动设置为以下形式:根据式(17)给出的控制律,仿真结果如下图2-图15所示。The external disturbance is set in the following form: According to the control law given by Equation (17), the simulation results are shown in Figures 2 to 15 below.
图2-图8为设定时间为2s的情况,可以看出机械臂关节角能在设定时间2s之前跟踪上给定的期望信号,并且所用到的神经网络权值是有界的。图9-图15为设定时间为0.7s的情况,同样的,机械臂能在设定时间0.7s之前跟踪上期望信号,证明所提出的方法具有保证机械臂在自由设定的时间之前跟踪上期望信号的能力。Figures 2 to 8 show the situation where the set time is 2s. It can be seen that the joint angle of the manipulator can track the given expected signal before the set time of 2s, and the neural network weights used are bounded. Figures 9 to 15 show the case where the set time is 0.7s. Similarly, the robotic arm can track the desired signal before the set time of 0.7s, which proves that the proposed method can ensure that the robotic arm tracks before the freely set time. ability to receive desired signals.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310719125.9A CN116901061B (en) | 2023-06-16 | 2023-06-16 | Mechanical arm track tracking control method based on preset performance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310719125.9A CN116901061B (en) | 2023-06-16 | 2023-06-16 | Mechanical arm track tracking control method based on preset performance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116901061A true CN116901061A (en) | 2023-10-20 |
CN116901061B CN116901061B (en) | 2024-07-09 |
Family
ID=88355441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310719125.9A Active CN116901061B (en) | 2023-06-16 | 2023-06-16 | Mechanical arm track tracking control method based on preset performance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116901061B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118456420A (en) * | 2024-04-25 | 2024-08-09 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | A TLOE diagnosis and processing method for manipulator based on square sum evaluation function |
CN118527813A (en) * | 2024-06-14 | 2024-08-23 | 倍可机器人(无锡)有限公司 | Integrated laser welding robot system, control method and storage medium |
CN118952191A (en) * | 2024-08-04 | 2024-11-15 | 安庆师范大学 | A DNN-based adaptive control method for robotic arms |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108227504A (en) * | 2018-01-25 | 2018-06-29 | 河海大学常州校区 | Microthrust test fractional order adaptive fuzzy nerve inverting TSM control method |
JP2019093464A (en) * | 2017-11-21 | 2019-06-20 | トヨタ自動車株式会社 | Power assist device |
CN112180729A (en) * | 2020-10-09 | 2021-01-05 | 电子科技大学中山学院 | Self-adaptive trajectory tracking control method for mechanical arm |
CN112241124A (en) * | 2020-10-27 | 2021-01-19 | 南昌大学 | Design method of self-adaptive inversion integral nonsingular fast terminal sliding mode controller |
CN114063458A (en) * | 2021-11-19 | 2022-02-18 | 中国矿业大学 | Preset performance control method of non-triangular structure system independent of initial conditions |
CN115502986A (en) * | 2022-11-15 | 2022-12-23 | 沈阳工业大学 | Multi-joint mechanical arm event drive control method based on state observer |
CN115533904A (en) * | 2022-10-09 | 2022-12-30 | 国网黑龙江省电力有限公司伊春供电公司 | Mechanical arm preset performance track tracking control method based on neural network sliding mode |
-
2023
- 2023-06-16 CN CN202310719125.9A patent/CN116901061B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019093464A (en) * | 2017-11-21 | 2019-06-20 | トヨタ自動車株式会社 | Power assist device |
CN108227504A (en) * | 2018-01-25 | 2018-06-29 | 河海大学常州校区 | Microthrust test fractional order adaptive fuzzy nerve inverting TSM control method |
CN112180729A (en) * | 2020-10-09 | 2021-01-05 | 电子科技大学中山学院 | Self-adaptive trajectory tracking control method for mechanical arm |
CN112241124A (en) * | 2020-10-27 | 2021-01-19 | 南昌大学 | Design method of self-adaptive inversion integral nonsingular fast terminal sliding mode controller |
CN114063458A (en) * | 2021-11-19 | 2022-02-18 | 中国矿业大学 | Preset performance control method of non-triangular structure system independent of initial conditions |
CN115533904A (en) * | 2022-10-09 | 2022-12-30 | 国网黑龙江省电力有限公司伊春供电公司 | Mechanical arm preset performance track tracking control method based on neural network sliding mode |
CN115502986A (en) * | 2022-11-15 | 2022-12-23 | 沈阳工业大学 | Multi-joint mechanical arm event drive control method based on state observer |
Non-Patent Citations (1)
Title |
---|
张超;孙延超;马广富;李传江;: "挠性航天器预设性能自适应姿态跟踪控制", 哈尔滨工业大学学报, no. 04, 30 April 2018 (2018-04-30) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118456420A (en) * | 2024-04-25 | 2024-08-09 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | A TLOE diagnosis and processing method for manipulator based on square sum evaluation function |
CN118527813A (en) * | 2024-06-14 | 2024-08-23 | 倍可机器人(无锡)有限公司 | Integrated laser welding robot system, control method and storage medium |
CN118952191A (en) * | 2024-08-04 | 2024-11-15 | 安庆师范大学 | A DNN-based adaptive control method for robotic arms |
Also Published As
Publication number | Publication date |
---|---|
CN116901061B (en) | 2024-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112904728B (en) | Mechanical arm sliding mode control track tracking method based on improved approach law | |
CN112180729B (en) | Self-adaptive trajectory tracking control method for mechanical arm | |
CN116901061A (en) | Robotic arm trajectory tracking control method based on preset performance | |
Jung et al. | Neural network impedance force control of robot manipulator | |
Kim et al. | Optimal design of CMAC neural-network controller for robot manipulators | |
CN110154028A (en) | A Model-Free Adaptive Integral Terminal Sliding Mode Control Method for Manipulators | |
WO2018023201A1 (en) | Adaptive terminal sliding mode control method | |
CN111596545A (en) | Self-adaptive fault-tolerant preset performance control method for multi-input multi-output mechanical system | |
CN115256386B (en) | Neural Adaptive Control Method for Uncertain Manipulators Considering Tracking Error Constraints | |
CN112077839B (en) | Motion control method and device for mechanical arm | |
CN108267952B (en) | An adaptive finite-time control method for underwater robots | |
CN113093538A (en) | Non-zero and game neural-optimal control method of modular robot system | |
Zhang et al. | Adaptive backstepping control design for uncertain non-smooth strictfeedback nonlinear systems with time-varying delays | |
CN116068893A (en) | Mechanical arm self-adaptive fractional order sliding mode control method, equipment and medium | |
CN119526389A (en) | A sliding mode control method for a robotic arm | |
CN115284276A (en) | Robot joint torque control method based on long short-term memory network | |
Chen et al. | Prescribed performance control of underactuated surface vessels' trajectory using a neural network and integral time-delay sliding mode | |
CN116991068A (en) | Motor control method and system based on distributed preset time gradient descent method | |
Hu et al. | Impedance with Finite‐Time Control Scheme for Robot‐Environment Interaction | |
CN111427264B (en) | A Neural Adaptive Fixed Time Control Method for Complex Telemanipulation Technology | |
Qiao et al. | Adaptive PID control of robotic manipulators without equality/inequality constraints on control gains | |
CN113219841B (en) | Nonlinear control method for underwater multi-joint hydraulic mechanical arm based on adaptive robustness | |
CN110908389A (en) | Self-adaptive rapid speed tracking control method for uncertain underwater robot | |
CN118493398B (en) | Self-adaptive fixed time control method for mechanical arm | |
CN108132602B (en) | Neural network sliding mode self-adaptive control method for solid-state brewing yeast turning manipulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |