[go: up one dir, main page]

CN116896416A - A device and method for preparing multi-channel broadband light-atom interface - Google Patents

A device and method for preparing multi-channel broadband light-atom interface Download PDF

Info

Publication number
CN116896416A
CN116896416A CN202310870764.5A CN202310870764A CN116896416A CN 116896416 A CN116896416 A CN 116896416A CN 202310870764 A CN202310870764 A CN 202310870764A CN 116896416 A CN116896416 A CN 116896416A
Authority
CN
China
Prior art keywords
optical
frequency
quantum
comb
erbium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310870764.5A
Other languages
Chinese (zh)
Inventor
周强
廖金宇
魏世海
范云茹
马晓燠
邓光伟
王浟
宋海智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202310870764.5A priority Critical patent/CN116896416A/en
Publication of CN116896416A publication Critical patent/CN116896416A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5563Digital frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明涉及一种多频道宽带光‑原子界面的制备装置与方法,本发明通过结合光频梳产生技术与频率啁啾调控技术,在掺铒固态材料中制备多频道宽带原子频率梳,并通过多频道宽带原子频率梳对光通信波段宽带多频率复用的量子关联或纠缠光子对中的一个光子进行时域多模存储,从而建立另一个光子与原子频率梳之间的量子关联或纠缠,形成光‑原子界面。本发明用于制备多频道宽带光‑原子界面的各组件均可来自成熟的光电器件,有利于发展实用化的基于光‑原子界面的量子网络节点。通过此方法制备出的光‑原子界面具有大带宽、多频道等优势,可在量子通信、量子纠缠网络等领域得到广泛应用。

The invention relates to a device and method for preparing a multi-channel broadband optical-atom interface. The invention prepares a multi-channel broadband atomic frequency comb in an erbium-doped solid material by combining optical frequency comb generation technology and frequency chirp control technology. The multi-channel broadband atomic frequency comb performs time-domain multi-mode storage of one photon in the quantum correlation or entanglement photon pair of broadband multi-frequency multiplexing in the optical communication band, thereby establishing the quantum correlation or entanglement between the other photon and the atomic frequency comb. Formation of light-atom interface. Each component used in the present invention to prepare a multi-channel broadband light-atom interface can be derived from mature optoelectronic devices, which is conducive to the development of practical quantum network nodes based on light-atom interfaces. The optical-atom interface prepared by this method has the advantages of large bandwidth and multi-channel, and can be widely used in fields such as quantum communication and quantum entanglement networks.

Description

一种多频道宽带光-原子界面的制备装置与方法A device and method for preparing multi-channel broadband light-atom interface

技术领域Technical field

本发明属于量子信息领域,具体涉及一种多频道宽带光通信波段光-原子界面制备装置与方法。The invention belongs to the field of quantum information, and specifically relates to a multi-channel broadband optical communication band optical-atom interface preparation device and method.

背景技术Background technique

量子网络由局域的量子节点与连接局域量子节点的量子信道组成,局域量子节点的功能是对量子信息进行获取、处理和传递,而量子信道的功能是实现局域量子节点的连接。这种连接可以有效地实现局域量子节点之间的信息交换,提高信息处理能力,所以如何构建高效实用的量子信道是构建量子网络的关键。作为量子信息的常用载体,光子在任何传输介质中传输都存在信号随距离增加而衰减的问题,这限制了其传播距离。针对此问题,一个有效的解决方法是利用量子中继方法实现不同节点间量子比特的纠缠交换,继而建立全链路的纠缠,实现任意距离的量子节点互联。完整的量子中继节点需要包含量子存储器、贝尔态测量装置等基本组成单元,其中量子存储器在纠缠交换过程上发挥着至关重要的同步作用。A quantum network consists of local quantum nodes and quantum channels connecting local quantum nodes. The function of local quantum nodes is to acquire, process and transmit quantum information, while the function of quantum channels is to realize the connection of local quantum nodes. This connection can effectively realize information exchange between local quantum nodes and improve information processing capabilities. Therefore, how to build an efficient and practical quantum channel is the key to building a quantum network. As a common carrier of quantum information, photon transmission in any transmission medium has the problem of signal attenuation as the distance increases, which limits its propagation distance. To address this problem, an effective solution is to use the quantum relay method to realize the entanglement exchange of qubits between different nodes, and then establish full-link entanglement to realize the interconnection of quantum nodes at any distance. A complete quantum relay node needs to include basic components such as quantum memory and Bell state measurement device. Quantum memory plays a vital synchronization role in the entanglement exchange process.

作为实现量子网络的重要器件,量子存储器实现的物理基础是利用光与原子之间的相互作用,原子通过吸收光子建立光原子界面,即实现了对光量子态的存储。量子存储器性能的一个重要考量因素是存储带宽,更宽带的存储器是提高网络通信速度的必要条件。当前,用于建立光原子界面的常用物理体系包括:单原子、原子系综、稀土掺杂固态系综、NV/SiV色心、量子点、光机械振子等。然而,目前已实现的光原子界面存在频道个数少、存储带宽较低的问题,限制了量子网络的的通信速度。因此,亟需开发出一种多频道、大带宽的光-原子界面的制备装置。As an important device for realizing quantum networks, the physical basis for realizing quantum memory is to utilize the interaction between light and atoms. Atoms establish photoatom interfaces by absorbing photons, which realizes the storage of light quantum states. An important consideration for quantum memory performance is storage bandwidth, and wider-bandwidth memory is necessary to increase network communication speeds. Currently, commonly used physical systems used to establish optical atom interfaces include: single atoms, atomic ensembles, rare earth-doped solid-state ensembles, NV/SiV color centers, quantum dots, optomechanical oscillators, etc. However, the currently implemented optical atom interface has problems such as a small number of channels and low storage bandwidth, which limits the communication speed of quantum networks. Therefore, there is an urgent need to develop a multi-channel, large-bandwidth light-atom interface preparation device.

发明内容Contents of the invention

本发明所要解决的技术问题是针对现有技术存在的需求,提供一种多频道宽带光通信波段光-原子界面实现方法。The technical problem to be solved by the present invention is to provide a multi-channel broadband optical communication band light-atom interface implementation method in response to the existing needs of the existing technology.

为解决上述技术问题,本发明实施例提供一种多频道宽带光通信波段光-原子界面制备装置,包括多频道宽带原子频率梳制备装置和多频率模式复用的光通信波段量子关联源或量子纠缠源,二者之间通过光纤连接;In order to solve the above technical problems, embodiments of the present invention provide a multi-channel broadband optical communication band optical-atom interface preparation device, including a multi-channel broadband atomic frequency comb preparation device and a multi-frequency mode multiplexed optical communication band quantum correlation source or quantum Entanglement source, the two are connected through optical fiber;

所述多频道宽带原子频率梳制备装置利用光频梳产生技术和频率啁啾调控技术在掺铒固态材料中制备多频道宽带原子频率梳;The multi-channel broadband atomic frequency comb preparation device uses optical frequency comb generation technology and frequency chirp control technology to prepare multi-channel broadband atomic frequency combs in erbium-doped solid materials;

所述多频率模式复用的光通信波段量子关联源或量子纠缠源通过周期极化铌酸锂波导产生多频率模式复用的量子关联光子对或量子纠缠光子对,所述原子频率梳对所述量子关联光子对或量子纠缠光子对中的一个光子进行时域多模存储,建立所述量子关联光子对或量子纠缠光子对中的另一个光子与所述原子频率梳之间的量子关联或量子纠缠,形成多频道带宽的光通信波段光-原子界面。The multi-frequency mode multiplexed optical communication band quantum correlation source or quantum entanglement source generates multi-frequency mode multiplexed quantum correlation photon pairs or quantum entangled photon pairs through periodically polarized lithium niobate waveguides, and the atomic frequency comb pairs One photon in the quantum correlated photon pair or the quantum entangled photon pair is stored in a time domain multi-mode, and a quantum correlation between the other photon in the quantum correlated photon pair or the quantum entangled photon pair and the atomic frequency comb is established, or Quantum entanglement forms a multi-channel bandwidth optical communication band light-atom interface.

在上述技术方案的基础上,本发明还可以做如下改进。On the basis of the above technical solution, the present invention can also make the following improvements.

进一步的,所述多频道宽带原子频率梳制备装置包括依次连接的第一激光源15、第一光强度调制器16、第一光相位调制器17、第二光相位调制器18、光开光19和第一可调光衰减器20,所述第一可调光衰减器20一端连接所述光开关19,第一可调光衰减器20的另一端与光环形器21的第一端口相连接,光环形器21的第二端口与掺铒固态材料22的一端相连接;Further, the multi-channel broadband atomic frequency comb preparation device includes a first laser source 15, a first optical intensity modulator 16, a first optical phase modulator 17, a second optical phase modulator 18, and an optical switch 19 connected in sequence. and a first adjustable light attenuator 20, one end of the first adjustable light attenuator 20 is connected to the optical switch 19, and the other end of the first adjustable light attenuator 20 is connected to the first port of the optical circulator 21 , the second port of the optical circulator 21 is connected to one end of the erbium-doped solid material 22;

所述第一激光源15用于提供连续、稳定的泵浦光;The first laser source 15 is used to provide continuous and stable pump light;

所述光强度调制器16和第一光相位调制器17用于将所述第一激光源15输出的泵浦光调制为具有若干梳齿的光频梳;The light intensity modulator 16 and the first optical phase modulator 17 are used to modulate the pump light output by the first laser source 15 into an optical frequency comb with several comb teeth;

所述第二光相位调制器18用于对光频梳加载周期性移频信号,每一个周期内会将梳齿进行若干次等间隔移频,每一个梳齿经过周期性移频后的区间为一个频域模式,具有若干类似梳齿的光频梳成为多模式泵浦光;The second optical phase modulator 18 is used to load the optical frequency comb with periodic frequency shifting signals. In each cycle, the comb teeth will be frequency shifted several times at equal intervals. The interval after each comb tooth undergoes periodic frequency shifting. It is a frequency domain mode, and an optical frequency comb with several comb-like teeth becomes a multi-mode pump light;

所述第一可调光衰减器20用于调节泵浦光的功率。The first adjustable optical attenuator 20 is used to adjust the power of pump light.

进一步的,所述多频率模式复用量子关联源或量子纠缠源包括依次连接的第二激光源1、第二光强度调制器2、光放大器3、第二可调光衰减器4、偏振控制器5、起偏器6、非线性晶体波导7、第一光隔离器8;Further, the multi-frequency mode multiplexed quantum correlation source or quantum entanglement source includes a second laser source 1, a second light intensity modulator 2, an optical amplifier 3, a second adjustable optical attenuator 4, and a polarization control unit connected in sequence. 5, polarizer 6, nonlinear crystal waveguide 7, first optical isolator 8;

第一光隔离器8的一端与所述非线性晶体波导7连接,第一光隔离器8的另一端与第一密集波分复用器9的公共端(C端)相连接,第一密集波分复用器9的透射端(T端)和第一光滤波器10的一端相连接,第一密集波分复用器9的反射端(R端)和第二密集波分复用器11的公共端(C端)相连接,第二密集波分复用器11的透射端(T端)和第二光滤波器12的输入端相连接,第二光滤波器12的N个输出端和第三密集波分复用器13的N个透射端(T端)分别相连接,第三密集波分复用器13的公共端(C端)与第二光隔离器14的一端相连接,第二光隔离器14的另一端与所述多频道宽带原子频率梳制备装置中的掺铒固态材料22的一端相连接。One end of the first optical isolator 8 is connected to the nonlinear crystal waveguide 7 , and the other end of the first optical isolator 8 is connected to the common end (C end) of the first dense wavelength division multiplexer 9 . The transmission end (T end) of the wavelength division multiplexer 9 is connected to one end of the first optical filter 10, and the reflection end (R end) of the first dense wavelength division multiplexer 9 is connected to the second dense wavelength division multiplexer 9. The common end (C end) of 11 is connected, the transmission end (T end) of the second dense wavelength division multiplexer 11 is connected with the input end of the second optical filter 12, and the N outputs of the second optical filter 12 terminals are respectively connected to the N transmission terminals (T terminals) of the third dense wavelength division multiplexer 13, and the common terminal (C terminal) of the third dense wavelength division multiplexer 13 is connected to one terminal of the second optical isolator 14. The other end of the second optical isolator 14 is connected to one end of the erbium-doped solid material 22 in the multi-channel broadband atomic frequency comb preparation device.

进一步的,所述掺铒固态材料22为掺铒铌酸锂晶体、掺铒硅酸钇晶体、掺铒石英光纤或掺铒钒酸钆晶体。Further, the erbium-doped solid material 22 is an erbium-doped lithium niobate crystal, an erbium-doped yttrium silicate crystal, an erbium-doped quartz fiber, or an erbium-doped gadolinium vanadate crystal.

进一步的,所述第一激光源15和第二激光源1为固态激光源、气体激光源、半导体激光源或染料激光源。Further, the first laser source 15 and the second laser source 1 are solid-state laser sources, gas laser sources, semiconductor laser sources or dye laser sources.

进一步的,所述第一强度调制器16和第二强度调制器2为基于声光效应或电光效应的强度调制器;Further, the first intensity modulator 16 and the second intensity modulator 2 are intensity modulators based on the acousto-optic effect or the electro-optic effect;

和/或,所述第一光相位调制器17和第二光相位调制器18为以KDP晶体或铌酸锂晶体作为电光晶体的电光相位调制器。And/or, the first optical phase modulator 17 and the second optical phase modulator 18 are electro-optical phase modulators using KDP crystal or lithium niobate crystal as the electro-optical crystal.

进一步的,第一密集波分复用器9、第二密集波分复用器11和第三密集波分复用器13为薄膜型密集波分复用器、体光栅型密集波分复用器、阵列波导光栅型密集波分复用器或光纤光栅型密集波分复用器。Further, the first dense wavelength division multiplexer 9, the second dense wavelength division multiplexer 11 and the third dense wavelength division multiplexer 13 are thin film type dense wavelength division multiplexers and volume grating type dense wavelength division multiplexers. device, arrayed waveguide grating type dense wavelength division multiplexer or fiber grating type dense wavelength division multiplexer.

进一步的,所述第一光滤波器10、第二光滤波器12为光纤布拉格光栅滤波器、级联的光纤布拉格光栅滤波器或体光栅滤波器;Further, the first optical filter 10 and the second optical filter 12 are fiber Bragg grating filters, cascaded fiber Bragg grating filters or volume grating filters;

和/或,所述偏振控制器5为波片型偏振控制器或光纤偏振控制器。And/or, the polarization controller 5 is a wave plate polarization controller or an optical fiber polarization controller.

为解决上述技术问题,本发明实施例提供一种多频道宽带光通信波段光-原子界面的制备方法,采用上述的多频道宽带光通信波段光-原子界面的制备装置实现,包括以下步骤:In order to solve the above technical problems, embodiments of the present invention provide a method for preparing a multi-channel broadband optical communication band light-atom interface, which is implemented by using the above-mentioned multi-channel broadband optical communication band light-atom interface preparation device, including the following steps:

利用光频梳产生技术和频率啁啾调控技术在掺铒固态材料中制备多频道宽带的原子频率梳;Use optical frequency comb generation technology and frequency chirp control technology to prepare multi-channel broadband atomic frequency combs in erbium-doped solid materials;

通过所述原子频率梳对宽带多频率模式复用的光通信波段量子关联光子对或量子纠缠光子对中的一个光子进行时域多模存储,建立所述量子关联光子对或量子纠缠光子对中的另一个光子与所述原子频率梳之间的量子关联或量子纠缠,形成多频道宽带的光通信波段光-原子界面。The atomic frequency comb performs time-domain multi-mode storage of one photon in a quantum correlated photon pair or a quantum entangled photon pair in the optical communication band multiplexed in a broadband multi-frequency mode, and establishes the quantum correlated photon pair or quantum entangled photon pair. The quantum correlation or quantum entanglement between another photon and the atomic frequency comb forms a multi-channel broadband optical communication band light-atom interface.

进一步的,所述原子频率梳的制备方法,具体包括以下步骤:Further, the preparation method of the atomic frequency comb specifically includes the following steps:

通过光频梳技术产生具有若干梳齿的光频梳,通过频率啁啾调控技术使光频梳产生周期性移频,每个周期内对梳齿进行若干次等间隔移频,每一个梳齿经过周期性移频后的区间为一个频域模式,具有若干类似梳齿的光频梳成为多模式泵浦光,将所述多模式泵浦光泵浦掺铒固态材料,泵浦光与掺铒固态材料中的铒离子系综发生相互作用,利用光谱烧孔原理使掺铒固态材料中激发相应铒离子,其余的基态铒离子组成多频道原子频率梳。The optical frequency comb technology is used to generate an optical frequency comb with several comb teeth. The frequency chirp control technology is used to cause the optical frequency comb to generate periodic frequency shifts. In each cycle, the comb teeth are frequency shifted several times at equal intervals. Each comb tooth The interval after periodic frequency shifting is a frequency domain mode. An optical frequency comb with several comb-like teeth becomes a multi-mode pump light. The multi-mode pump light pumps the erbium-doped solid-state material. The pump light and doped solid-state material The erbium ion ensemble in the erbium solid material interacts, and the spectral hole burning principle is used to excite the corresponding erbium ions in the erbium-doped solid material, and the remaining ground state erbium ions form a multi-channel atomic frequency comb.

本发明的有益效果是:本发明涉及一种多频道宽带的光通信波段光-原子界面制备装置,通过光频梳技术产生具有若干梳齿的光频梳,通过频率啁啾调控技术使光频梳的梳齿产生周期性移频,每个周期内对梳齿进行若干次移频,若干次移频的移频量为一个设定值的一倍至若干倍。任意一个经过周期性移频的梳齿代表一个频域模式,具有若干梳齿的光频梳成为多模式泵浦光。将经过上述调制后所产生的多模式泵浦光输入掺铒固态材料中,泵浦光与掺铒固态材料中的铒离子系综发生相互作用,利用光谱烧孔原理在掺铒固态材料中制备出多频道原子频率梳。因为铒离子具有较宽的吸收谱,可以在较宽的范围内制备原子频率梳。原子频率梳与闲频光子发生相互作用,实现存储,建立不同频率模式信号光子与铒离子系综的量子关联/纠缠,形成光-原子界面。The beneficial effects of the present invention are: the present invention relates to a multi-channel broadband optical communication band optical-atom interface preparation device, which uses optical frequency comb technology to produce an optical frequency comb with several comb teeth, and uses frequency chirp control technology to make the optical frequency comb The comb teeth of the comb produce periodic frequency shifts, and the comb teeth are frequency shifted several times in each cycle, and the frequency shift amount of the frequency shifts is one to several times a set value. Any comb tooth that undergoes periodic frequency shifting represents a frequency domain mode, and an optical frequency comb with several comb teeth becomes a multi-mode pump light. The multi-mode pump light generated after the above modulation is input into the erbium-doped solid material. The pump light interacts with the erbium ion ensemble in the erbium-doped solid material. The spectral hole burning principle is used to prepare the erbium-doped solid material. Output multi-channel atomic frequency comb. Because erbium ions have a broad absorption spectrum, atomic frequency combs can be prepared over a wide range. The atomic frequency comb interacts with idler frequency photons to achieve storage, establish quantum correlation/entanglement between different frequency mode signal photons and erbium ion ensembles, and form a light-atom interface.

本发明制备光通信波段光-原子界面各组件,均可来自成熟的光电器件,有利于基于光-原子界面的量子节点的实用化发展。通过此方法制备出的光-原子界面具有易于实现,大带宽,多频道等优势,所制备的稀土量子存储器能够对光通信波段纠缠光子实现大带宽,多频道存储,提高量子信息的传输速度等方面能够产生有益效果,可在量子通信、量子纠缠网络等领域得到广泛应用。Each component of the light-atom interface prepared by the present invention in the optical communication band can be derived from mature optoelectronic devices, which is conducive to the practical development of quantum nodes based on the light-atom interface. The light-atom interface prepared by this method has the advantages of easy implementation, large bandwidth, and multi-channel. The prepared rare earth quantum memory can achieve large bandwidth, multi-channel storage of entangled photons in the optical communication band, and improve the transmission speed of quantum information. It can produce beneficial effects and can be widely used in fields such as quantum communications and quantum entanglement networks.

附图说明Description of the drawings

图1为本发明实施例的一种多频道宽带的光通信波段光-原子界面制备装置的结构示意图;Figure 1 is a schematic structural diagram of a multi-channel broadband optical communication band optical-atom interface preparation device according to an embodiment of the present invention;

图2为采用本发明实施例的一种多频道宽带的光通信波段光-原子界面制备装置得到的掺铒固体材料22中五个频道的原子频率梳的吸收谱。Figure 2 shows the absorption spectra of five channels of atomic frequency combs in the erbium-doped solid material 22 obtained by using a multi-channel broadband optical communication band optical-atom interface preparation device according to an embodiment of the present invention.

附图中,各标号所代表的部件列表如下:In the drawings, the parts represented by each number are listed as follows:

1、第二激光源,2、第二光强度调制器,3、光放大器,4、第二可调光衰减器,5、偏振控制器,6、起偏器,7、非线性晶体波导,8、第一光隔离器,9、第一密集波分复用器,10、第一光滤波器,11、第二密集波分复用器,12、第二光滤波器,13、第三密集波分复用器,14、第二光隔离器,15、第一激光源,16、第一光强度调制器,17、第一光相位调制器,18、第二光相位调制器,19、光开关,20、第一可调光衰减器,21、光环形器,22、掺铒固态材料。1. Second laser source, 2. Second light intensity modulator, 3. Optical amplifier, 4. Second adjustable optical attenuator, 5. Polarization controller, 6. Polarizer, 7. Nonlinear crystal waveguide, 8. The first optical isolator, 9. The first dense wavelength division multiplexer, 10. The first optical filter, 11. The second dense wavelength division multiplexer, 12. The second optical filter, 13. The third Dense wavelength division multiplexer, 14. Second optical isolator, 15. First laser source, 16. First optical intensity modulator, 17. First optical phase modulator, 18. Second optical phase modulator, 19 , Optical switch, 20. First adjustable optical attenuator, 21. Optical circulator, 22. Erbium-doped solid material.

具体实施方式Detailed ways

以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。The principles and features of the present invention are described below with reference to the accompanying drawings. The examples cited are only used to explain the present invention and are not intended to limit the scope of the present invention.

如图1所示,本发明第一实施例提供一种多频道宽带的光通信波段光-原子界面制备装置,包括多频道宽带原子频率梳制备装置和多频率模式复用的光通信波段量子关联源或量子纠缠源,二者之间通过光纤连接;As shown in Figure 1, the first embodiment of the present invention provides a multi-channel broadband optical communication band optical-atom interface preparation device, including a multi-channel broadband atomic frequency comb preparation device and a multi-frequency mode multiplexed optical communication band quantum correlation source or quantum entanglement source, the two are connected through optical fibers;

所述多频道宽带原子频率梳制备装置利用光频梳产生技术和频率啁啾调控技术在掺铒固态材料中制备多频道宽带原子频率梳;The multi-channel broadband atomic frequency comb preparation device uses optical frequency comb generation technology and frequency chirp control technology to prepare multi-channel broadband atomic frequency combs in erbium-doped solid materials;

所述多频率模式复用的光通信波段量子关联源或量子纠缠源通过周期极化铌酸锂波导产生多频率模式复用的量子关联光子对或量子纠缠光子对,所述原子频率梳对所述量子关联光子对或量子纠缠光子对中的一个光子进行时域多模存储,建立所述量子关联光子对或量子纠缠光子对中的另一个光子与所述原子频率梳之间的量子关联或量子纠缠,形成多频道带宽的光通信波段光-原子界面。The multi-frequency mode multiplexed optical communication band quantum correlation source or quantum entanglement source generates multi-frequency mode multiplexed quantum correlation photon pairs or quantum entangled photon pairs through periodically polarized lithium niobate waveguides, and the atomic frequency comb pairs One photon in the quantum correlated photon pair or the quantum entangled photon pair is stored in a time domain multi-mode, and a quantum correlation between the other photon in the quantum correlated photon pair or the quantum entangled photon pair and the atomic frequency comb is established, or Quantum entanglement forms a multi-channel bandwidth optical communication band light-atom interface.

上述实施例结合光频梳和频率啁啾调控技术,在一个掺铒固态材料中同时制备多个大带宽的原子频率梳,配合多频率模式复用关联/纠缠光子存储,实现多频道光-原子界面。The above embodiment combines optical frequency comb and frequency chirp control technology to simultaneously prepare multiple large-bandwidth atomic frequency combs in an erbium-doped solid-state material, and cooperates with multi-frequency mode multiplexing associated/entangled photon storage to achieve multi-channel light-atom interface.

本实施例中,所述多频道宽带原子频率梳制备装置包括依次连接的第一激光源15、第一光强度调制器16、第一光相位调制器17、第二光相位调制器18、光开光19和第一可调光衰减器20,所述第一可调光衰减器20的一端连接所述光开关19,第一可调光衰减器20的另一端与光环形器21的第一端口相连接,光环形器21的第二端口与掺铒固态材料22的一端相连接;In this embodiment, the multi-channel broadband atomic frequency comb preparation device includes a first laser source 15, a first optical intensity modulator 16, a first optical phase modulator 17, a second optical phase modulator 18, and an optical Turn on the light 19 and the first adjustable light attenuator 20. One end of the first adjustable light attenuator 20 is connected to the optical switch 19, and the other end of the first adjustable light attenuator 20 is connected to the first end of the optical circulator 21. The ports are connected, and the second port of the optical circulator 21 is connected to one end of the erbium-doped solid material 22;

所述第一激光源15用于提供连续、稳定的泵浦光;The first laser source 15 is used to provide continuous and stable pump light;

所述光强度调制器16和第一光相位调制器17用于将所述第一激光源15输出的泵浦光调制为具有若干梳齿的光频梳;The light intensity modulator 16 and the first optical phase modulator 17 are used to modulate the pump light output by the first laser source 15 into an optical frequency comb with several comb teeth;

所述第二光相位调制器18用于对光频梳加载周期性移频信号,每一个周期内会将梳齿进行若干次等间隔移频,每一个梳齿经过周期性移频后的区间为一个频域模式,具有若干类似梳齿的光频梳成为多模式泵浦光;The second optical phase modulator 18 is used to load the optical frequency comb with periodic frequency shifting signals. In each cycle, the comb teeth will be frequency shifted several times at equal intervals. The interval after each comb tooth undergoes periodic frequency shifting. It is a frequency domain mode, and an optical frequency comb with several comb-like teeth becomes a multi-mode pump light;

所述第一可调光衰减器20用于调节泵浦光的功率。The first adjustable optical attenuator 20 is used to adjust the power of pump light.

所述多频率模式复用量子关联源或量子纠缠源包括依次连接的第二激光源1、第二光强度调制器2、光放大器3、第二可调光衰减器4、偏振控制器5、起偏器6、非线性晶体波导7、第一光隔离器8;The multi-frequency mode multiplexing quantum correlation source or quantum entanglement source includes a second laser source 1, a second light intensity modulator 2, an optical amplifier 3, a second adjustable light attenuator 4, a polarization controller 5, which are connected in sequence. Polarizer 6, nonlinear crystal waveguide 7, first optical isolator 8;

第一光隔离器8的一端与所述非线性晶体波导7连接,第一光隔离器8的另一端与第一密集波分复用器9的公共端(C端)相连接,第一密集波分复用器9的透射端(T端)和第一光滤波器10的一端相连接,第一密集波分复用器9的反射端(R端)和第二密集波分复用器11的公共端(C端)相连接,第二密集波分复用器11的透射端(T端)和第二光滤波器12的输入端相连接,第二光滤波器12的N个输出端和第三密集波分复用器13的N个透射端(T端)分别相连接,第三密集波分复用器13的公共端(C端)与第二光隔离器14的一端相连接,第二光隔离器14的另一端与所述多频道宽带原子频率梳制备装置中的掺铒固态材料22的一端相连接。One end of the first optical isolator 8 is connected to the nonlinear crystal waveguide 7 , and the other end of the first optical isolator 8 is connected to the common end (C end) of the first dense wavelength division multiplexer 9 . The transmission end (T end) of the wavelength division multiplexer 9 is connected to one end of the first optical filter 10, and the reflection end (R end) of the first dense wavelength division multiplexer 9 is connected to the second dense wavelength division multiplexer 9. The common end (C end) of 11 is connected, the transmission end (T end) of the second dense wavelength division multiplexer 11 is connected with the input end of the second optical filter 12, and the N outputs of the second optical filter 12 terminals are respectively connected to the N transmission terminals (T terminals) of the third dense wavelength division multiplexer 13, and the common terminal (C terminal) of the third dense wavelength division multiplexer 13 is connected to one terminal of the second optical isolator 14. The other end of the second optical isolator 14 is connected to one end of the erbium-doped solid material 22 in the multi-channel broadband atomic frequency comb preparation device.

其中,第一激光源15输出中心波长为1531.88nm的窄线宽连续泵浦光,所述第一激光源15采用外腔式半导体激光器;Among them, the first laser source 15 outputs narrow linewidth continuous pump light with a central wavelength of 1531.88 nm, and the first laser source 15 adopts an external cavity semiconductor laser;

第一激光源15输出的窄线宽连续泵浦光输入第一光强度调制器16,经强度调制成为脉冲光,第一光强度调制器16采用铌酸锂电光强度调制器;The narrow linewidth continuous pump light output by the first laser source 15 is input into the first light intensity modulator 16 and is intensity modulated into pulsed light. The first light intensity modulator 16 uses a lithium niobate electro-optical intensity modulator;

第一光强度调制器16输出的脉冲光输入第一光相位调制器17,第一光相位调制器根据其上加载的15GHz微波和电光相位调制原理,将输入其中的脉冲光转化为中心波长在1531.88nm,梳齿间隔为15GHz,梳齿数量为5个的光频梳;The pulsed light output by the first optical intensity modulator 16 is input to the first optical phase modulator 17. The first optical phase modulator converts the input pulsed light into a central wavelength at 1531.88nm, comb tooth spacing is 15GHz, and the number of comb teeth is 5 optical frequency combs;

第一光相位调制器17输出的光频梳输入第二光相位调制器18,根据电光相位调制原理,在第二光相位调制器18上加载扫频范围为0-5GHz,扫频间隔为50MHz,扫频周期为10微秒的扫频微波信号,对输入其中的光频梳进行周期性移频,每个周期内实现光频梳范围从-5GHz到5GHz,间隔为50MHz;第一光相位调制器17和第二光相位调制器18采用铌酸锂电光相位调制器。The optical frequency comb output by the first optical phase modulator 17 is input to the second optical phase modulator 18. According to the principle of electro-optical phase modulation, the frequency sweep range of the second optical phase modulator 18 is loaded to be 0-5GHz, and the frequency sweep interval is 50MHz. , a swept microwave signal with a frequency sweep period of 10 microseconds, and the optical frequency comb input into it is periodically shifted. In each period, the optical frequency comb range is realized from -5GHz to 5GHz, with an interval of 50MHz; the first optical phase The modulator 17 and the second optical phase modulator 18 adopt lithium niobate electro-optical phase modulators.

所述光开关19采用1×2MEMS光纤光开关,用于控制制备原子频率梳的泵浦光的通断,在复用的闲频光子进入掺铒固态材料22前保持“开启”,闲频光子进入掺铒固态材料22时保持“关断”。本实施例中,第二光相位调制器18输出的光频梳输入光开关19,光开光根据加载其上的电信号,工作于“开启”或者“关断”状态。在“开启”状态下,输入光开关19的光频梳从其输出端输出;在“关断”状态下,输入光开关19的光频梳不从其输出端输出。在1s的周期内,光开光保持“开启”状态时间为300ms,其余时间保持“关断”状态。The optical switch 19 adopts a 1×2 MEMS fiber optical switch, which is used to control the on and off of the pump light for preparing the atomic frequency comb, and remains "on" before the multiplexed idler photons enter the erbium-doped solid material 22. The idler photons Entering the erbium-doped solid state material 22 remains "off". In this embodiment, the optical frequency comb output by the second optical phase modulator 18 is input into the optical switch 19, and the optical switch operates in the "on" or "off" state according to the electrical signal loaded thereon. In the "on" state, the optical frequency comb input to the optical switch 19 is output from its output end; in the "off" state, the optical frequency comb input to the optical switch 19 is not output from its output end. In a 1s period, the light switch remains "on" for 300ms and remains "off" for the rest of the time.

所述第二强度调制器2将所述第二激光源1输出的窄线宽连续激光调制为脉冲泵浦光;本实施例中,第二激光源1输出中心波长为1540.60nm的连续泵浦激光;第二激光源1输出的连续泵浦激光输入第二光强度调制器2,第二强度调制器2将连续泵浦激光调制为脉宽为300ps的脉冲泵浦激光;第二激光源1采用外腔式半导体激光器,第二强度调制器2采用铌酸锂电光强度调制器。The second intensity modulator 2 modulates the narrow linewidth continuous laser output by the second laser source 1 into pulsed pump light; in this embodiment, the second laser source 1 outputs continuous pump light with a central wavelength of 1540.60nm. Laser; the continuous pump laser output by the second laser source 1 is input to the second light intensity modulator 2, and the second intensity modulator 2 modulates the continuous pump laser into a pulse pump laser with a pulse width of 300ps; the second laser source 1 An external cavity semiconductor laser is used, and the second intensity modulator 2 is a lithium niobate electro-optical intensity modulator.

所述光放大器3以及第二可调光衰减器4实现泵浦光功率的调节;本实施例中,第二强度调制器2输出的脉冲泵浦激光输入第二光放大器3,第二光放大器3实现输入其中的脉冲泵浦激光的功率放大;The optical amplifier 3 and the second adjustable optical attenuator 4 realize the adjustment of the pump optical power; in this embodiment, the pulse pump laser output by the second intensity modulator 2 is input to the second optical amplifier 3, and the second optical amplifier 3. Realize the power amplification of the pulse pump laser input into it;

第二光放大器3输出的脉冲泵浦激光输入第二光衰减器4,实现脉冲泵浦激光的功率调控,从光衰减器4中输出的脉冲泵浦激光的平均光功率为0.49mW;光放大器3采用掺铒光纤放大器,第二可调光衰减器4采用可调式光纤衰减器。The pulse pump laser output from the second optical amplifier 3 is input into the second optical attenuator 4 to realize power control of the pulse pump laser. The average optical power of the pulse pump laser output from the optical attenuator 4 is 0.49mW; the optical amplifier 3 uses an erbium-doped fiber amplifier, and the second adjustable optical attenuator 4 uses an adjustable fiber attenuator.

第二光衰减器4输出的脉冲泵浦激光输入偏振控制器5,实现的脉冲泵浦激光的偏振控制;The pulse pump laser output from the second optical attenuator 4 is input to the polarization controller 5 to realize polarization control of the pulse pump laser;

偏振控制器5输出的脉冲泵浦激光输入起偏器6,从起偏器6输出的脉冲泵浦激光为线偏振光;通过改变偏振控制器5的工作状态可以使得从起偏器6输出的脉冲泵浦激光的功率达到最大。所述偏振控制器5采用光纤偏振控制器,起偏器6采用光纤起偏器。The pulse pump laser output from the polarization controller 5 is input to the polarizer 6, and the pulse pump laser output from the polarizer 6 is linearly polarized light; by changing the working state of the polarization controller 5, the pulse pump laser output from the polarizer 6 can be The power of the pulse pump laser reaches its maximum. The polarization controller 5 adopts an optical fiber polarization controller, and the polarizer 6 adopts an optical fiber polarizer.

所述非线性晶体波导(7)在泵浦光作用下,其中发生自发参量下转换过程产生带宽覆盖波长λs1、λs2……λsn的宽谱信号光子和带宽覆盖波长λi1、λi2……λin的宽谱闲频光子,波长为λsk(k=1、2、……n)的信号光子和波长为λik(k=1、2、……n)的闲频光子之间存在着量子关联或者量子纠缠。在本实施例中,起偏器6输出的线偏振脉冲泵浦激光输入非线性晶体波导7,非线性晶体波导7采用周期极化铌酸锂波导。在非线性晶体波导7中,中心波长为1540.60nm的脉冲泵浦激光首先通过二次谐波产生过程产生中心波长为770.30nm的脉冲泵浦激光,后者通过自发参量下转换过程中心波长在1540.60nm,谱宽大于60nm的光子对,每个光子对中的一个为信号光子,另一个为闲频光子。根据自发参量下转换过程的原理,信号光子与闲频光子之间存在量子关联。Under the action of pump light, the nonlinear crystal waveguide (7) undergoes a spontaneous parametric down-conversion process to generate broad-spectrum signal photons with bandwidths covering wavelengths λ s1 , λ s2 ...λ sn and bandwidths covering wavelengths λ i1 , λ i2 ...λ in broad spectrum idler photon, signal photon with wavelength λ sk (k=1, 2,...n) and idler photon with wavelength λ ik (k=1, 2,...n) There is quantum correlation or quantum entanglement between them. In this embodiment, the linearly polarized pulse pump laser output from the polarizer 6 is input into the nonlinear crystal waveguide 7, and the nonlinear crystal waveguide 7 adopts a periodically polarized lithium niobate waveguide. In the nonlinear crystal waveguide 7, the pulse pump laser with the center wavelength of 1540.60 nm first generates the pulse pump laser with the center wavelength of 770.30 nm through the second harmonic generation process, and the latter generates the center wavelength at 1540.60 through the spontaneous parametric down-conversion process. nm, photon pairs with a spectral width greater than 60nm, one of each photon pair is a signal photon and the other is an idler photon. According to the principle of spontaneous parametric down-conversion process, there is a quantum correlation between signal photons and idler photons.

在非线性晶体波导7中产生的量子关联/纠缠光子对从其中输出,然后输入第二光隔离器8;从第二光隔离器8输出的量子关联/纠缠光子对输入第一密集波分复用器9的公共端(C端)。The quantum correlation/entanglement photon pairs generated in the nonlinear crystal waveguide 7 are output from it, and then input into the second optical isolator 8; the quantum correlation/entanglement photon pairs output from the second optical isolator 8 are input into the first dense wave division complex The common terminal (C terminal) of user 9.

所述第一密集波分复用器9和第二密集波分复用器11分别用于滤出宽谱的信号光子和闲频光子;所述第一光滤波器10的N(N≤n)个输出端口中第k(k=1、……N)个端口用于输出中心波长为λsk的信号光子,N个输出端口输出的信号光子不存在频谱重叠;本实施例中,第一密集波分复用器9的透射端(T端)输出中心波长在1549nm,带宽为100GHz的信号光子,反射端(R端)输出波长不在透射端透射波长范围内的光子;The first dense wavelength division multiplexer 9 and the second dense wavelength division multiplexer 11 are respectively used to filter out wide spectrum signal photons and idler photons; the N of the first optical filter 10 (N≤n ) The kth (k=1,...N) port among the output ports is used to output signal photons with a central wavelength of λ sk , and there is no spectrum overlap among the signal photons output by the N output ports; in this embodiment, the first The transmission end (T end) of the dense wavelength division multiplexer 9 outputs signal photons with a central wavelength of 1549 nm and a bandwidth of 100 GHz, and the reflection end (R end) outputs photons whose wavelength is not within the transmission wavelength range of the transmission end;

第一密集波分复用器9透射端输出的信号光子输入第一光滤波器10,第一光滤波器10的五个输出端分别输出五个频率模式的信号光子,每个频率模式带宽为10GHz,相邻频率模式中心频率间隔为15GHz;The signal photons output from the transmission end of the first dense wavelength division multiplexer 9 are input to the first optical filter 10. The five output ends of the first optical filter 10 respectively output signal photons of five frequency modes. The bandwidth of each frequency mode is 10GHz, the center frequency interval of adjacent frequency modes is 15GHz;

第一密集波分复用器9反射端(R端)输出的光子输入第二密集波分复用器11,第二密集波分复用器11的透射端(T端)输出中心波长在1532nm,带宽为100GHz的闲频光子;第二密集波分复用器11透射端(T端)输出的闲频光子输入第二光滤波器12。The photons output from the reflection end (R end) of the first dense wavelength division multiplexer 9 are input to the second dense wavelength division multiplexer 11, and the transmission end (T end) of the second dense wavelength division multiplexer 11 outputs a center wavelength of 1532 nm , idler photons with a bandwidth of 100 GHz; the idler photons output from the transmission end (T end) of the second dense wavelength division multiplexer 11 are input to the second optical filter 12 .

所述第二光滤波器(12)的N个输出端口中第k(k=1、2、……n)个端口用于输出中心波长为λik的闲频光子,N个输出端口输出的闲频光子不存在频谱重叠;本实施例中,第二光滤波器12的五个输出端分别输出五个频率模式的闲频光子,每个频率模式带宽为10GHz,相邻频率模式中心频率间隔为15GHz。从第一光滤波器10的第j(j=1,2……5)个输出端输出的信号光子和从第二光滤波器12的第j(j=1,2……5)个输出端输出的闲频光子构成一对量子关联/纠缠光子对;The kth (k=1, 2,...n) port among the N output ports of the second optical filter (12) is used to output idler photons with a central wavelength of λ ik , and the N output ports output There is no spectrum overlap for idler photons; in this embodiment, the five output terminals of the second optical filter 12 respectively output idler photons in five frequency modes. The bandwidth of each frequency mode is 10 GHz, and the center frequencies of adjacent frequency modes are spaced apart. to 15GHz. The signal photons output from the jth (j=1,2...5) output terminal of the first optical filter 10 and the jth (j=1,2...5) output from the second optical filter 12 The idler photons output from the terminal constitute a pair of quantum correlated/entangled photons;

所述第三密集波分复用器(13)的第k(k=1、2、……N)个透射端(T端)的透射中心波长为λik(k=1、……N),实现N个透射端(T端)输入的闲频光子的多频率模式复用;本实施例中,第二光滤波器12输出的五个频率模式的闲频光子输入第三密集波分复用器13的五个透射端(T端),且均从第三密集波分复用器13的公共端(C端)出射,从而实现五个频率模式的闲频光子的复用。The transmission center wavelength of the kth (k=1, 2,...N) transmission end (T end) of the third dense wavelength division multiplexer (13) is λ ik (k=1,...N) , realizing multi-frequency mode multiplexing of idler frequency photons input by N transmission terminals (T terminals); in this embodiment, the idler frequency photons of five frequency modes output by the second optical filter 12 are input into the third dense wavelength division complex The five transmission ends (T end) of the device 13 are all emitted from the common end (C end) of the third dense wavelength division multiplexer 13, thereby realizing the multiplexing of idler photons in five frequency modes.

所述第二光隔离器14用于阻挡在掺铒固态材料22中制备原子频率梳的泵浦光进入所述宽带多频率模式复用的通信波段量子关联源或量子纠缠源。The second optical isolator 14 is used to block the pump light of the atomic frequency comb prepared in the erbium-doped solid material 22 from entering the broadband multi-frequency mode multiplexed communication band quantum correlation source or quantum entanglement source.

第一光隔离器8和第二光隔离器14采用光纤隔离器,第一密集波分复用器9、第二密集波分复用器11和第三密集波分复用器13采用膜片式密集波分复用器,第一光滤波器10和第二光滤波器12采用五级级联的光纤布拉格光栅。The first optical isolator 8 and the second optical isolator 14 adopt optical fiber isolators, and the first dense wavelength division multiplexer 9 , the second dense wavelength division multiplexer 11 and the third dense wavelength division multiplexer 13 adopt diaphragms. Type Dense Wavelength Division Multiplexer, the first optical filter 10 and the second optical filter 12 adopt five-level cascaded fiber Bragg gratings.

从光开关19输出的光频梳进入第一光衰减器20,以实现功率调节。从第一光衰减器20中输出的光频梳入射光环行器21的第一端口,从光环形器21的第二端口出射,然后入射掺铒固体材料22。光频梳作为泵浦光与掺铒固体材料22中的铒离子系综发生相互作用,激发相应铒离子,其余的基态铒离子组成具有五个频域模式的原子频率梳。原子频率梳的每一个频梳的频域带宽为10GHz,每个模式的原子频率频梳梳齿间隔为50MHz,相邻频率模式间隔5GHz。图2为实验测量得到的掺铒固体材料22中五个频道的原子频率梳的吸收谱,从图2中可见每个原子频率梳的模式带宽为10GHz,模式内相邻梳齿之间的宽度为50MHz;The optical frequency comb output from the optical switch 19 enters the first optical attenuator 20 to achieve power adjustment. The optical frequency comb output from the first optical attenuator 20 is incident on the first port of the optical circulator 21 , emerges from the second port of the optical circulator 21 , and then is incident on the erbium-doped solid material 22 . As pump light, the optical frequency comb interacts with the erbium ion ensemble in the erbium-doped solid material 22 to excite the corresponding erbium ions, and the remaining ground state erbium ions form an atomic frequency comb with five frequency domain modes. The frequency domain bandwidth of each frequency comb of the atomic frequency comb is 10GHz, the comb tooth spacing of the atomic frequency comb of each mode is 50MHz, and the spacing between adjacent frequency modes is 5GHz. Figure 2 is the experimentally measured absorption spectrum of the atomic frequency comb of five channels in the erbium-doped solid material 22. It can be seen from Figure 2 that the mode bandwidth of each atomic frequency comb is 10GHz, and the width between adjacent comb teeth in the mode is 50MHz;

第二光滤波器12输出的五个频率模式的闲频光子输入第三密集波分复用器13的五个透射端(T端),均从第三密集波分复用器13的公共端(C端)出射,所述第三密集波分复用器13的公共端(C端)输出的多频率模式复用闲频光子通过第二光隔离器14进入掺铒固态材料22后,相干存储于多频道原子频率梳中,由于从第一光滤波器10的第k(k=1、……N)个输出端口中输出的信号光子和输入第三密集波分复用器13第k(k=1、……N)个透射端(T端)并从其公共端(C端)输出的闲频光子之间存在量子关联或量子纠缠,而闲频光子存储于原子频率梳中的过程为相干相互作用,因此存储多频率模式复用闲频光子的多频道原子频率梳和多频道信号光子之间存在量子关联或纠缠,即实现了多频道宽带的光-原子界面。The idler photons of the five frequency modes output by the second optical filter 12 are input to the five transmission terminals (T terminals) of the third dense wavelength division multiplexer 13 , and are all connected from the common terminal of the third dense wavelength division multiplexer 13 (Terminal C) is emitted from the common terminal (Terminal C) of the third dense wavelength division multiplexer 13. After the multi-frequency mode multiplexed idler photons enter the erbium-doped solid material 22 through the second optical isolator 14, they become coherent. stored in the multi-channel atomic frequency comb, since the signal photon output from the kth (k=1,...N) output port of the first optical filter 10 and the kth input to the third dense wavelength division multiplexer 13 There is quantum correlation or quantum entanglement between the idler photons output from the (k=1,...N) transmission ends (T end) and their common end (C end), and the idler photons are stored in the atomic frequency comb The process is a coherent interaction, so there is quantum correlation or entanglement between the multi-channel atomic frequency comb that stores multi-frequency mode multiplexed idler photons and the multi-channel signal photons, that is, a multi-channel broadband light-atom interface is achieved.

实施例中:In the example:

1、15:激光源为外腔式半导体激光器1. 15: The laser source is an external cavity semiconductor laser.

2、16:强度调制器为铌酸锂电光强度调制器2. 16: The intensity modulator is a lithium niobate electro-optical intensity modulator.

3:光放大器为掺铒光纤放大器3: The optical amplifier is an erbium-doped fiber amplifier

4、20:可调衰减器为可调式光纤衰减器4. 20: The adjustable attenuator is an adjustable optical fiber attenuator

5:偏振控制器为光纤偏振控制器5: The polarization controller is a fiber polarization controller

6:起偏器为光纤起偏器6: The polarizer is an optical fiber polarizer.

7:非线性晶体波导为周期极化铌酸锂波导7: The nonlinear crystal waveguide is a periodically polarized lithium niobate waveguide.

8、14:光隔离器为光纤隔离器8. 14: The optical isolator is a fiber optic isolator.

9、11、13:密集波分复用器为膜片式密集波分复用器9, 11, 13: The dense wavelength division multiplexer is a diaphragm type dense wavelength division multiplexer.

10、12:光滤波器为五级级联的光纤布拉格光栅10, 12: The optical filter is a five-stage cascade fiber Bragg grating.

17、18:相位调制器为铌酸锂电光相位调制器17, 18: The phase modulator is a lithium niobate electro-optical phase modulator.

19:光开光为1×2MEMS光纤光开关19: Optical switch is a 1×2 MEMS optical fiber switch

21:光环形器为光纤环形器21: Optical circulator is a fiber optic circulator

22:掺铒固态材料为位于10mK温度环境下、0.3T磁场中的掺铒光纤22: The erbium-doped solid material is an erbium-doped optical fiber located in a 10mK temperature environment and a 0.3T magnetic field.

可选的,所述掺铒固态材料22为掺铒铌酸锂晶体、掺铒硅酸钇晶体、掺铒石英光纤或掺铒钒酸钆晶体。Optionally, the erbium-doped solid material 22 is an erbium-doped lithium niobate crystal, an erbium-doped yttrium silicate crystal, an erbium-doped quartz fiber, or an erbium-doped gadolinium vanadate crystal.

可选的,所述第一激光源15和第二激光源1为固态激光源、气体激光源、半导体激光源或染料激光源。Optionally, the first laser source 15 and the second laser source 1 are solid-state laser sources, gas laser sources, semiconductor laser sources or dye laser sources.

可选的,所述第一强度调制器16和第二强度调制器2为基于声光效应或电光效应的强度调制器;Optionally, the first intensity modulator 16 and the second intensity modulator 2 are intensity modulators based on the acousto-optic effect or the electro-optic effect;

和/或,所述第一光相位调制器17和第二光相位调制器18为以KDP晶体或铌酸锂晶体作为电光晶体的电光相位调制器。And/or, the first optical phase modulator 17 and the second optical phase modulator 18 are electro-optical phase modulators using KDP crystal or lithium niobate crystal as the electro-optical crystal.

可选的,第一密集波分复用器9、第二密集波分复用器11和第三密集波分复用器13为薄膜型密集波分复用器、体光栅型密集波分复用器、阵列波导光栅型密集波分复用器或光纤光栅型密集波分复用器。Optionally, the first dense wavelength division multiplexer 9, the second dense wavelength division multiplexer 11 and the third dense wavelength division multiplexer 13 are thin film type dense wavelength division multiplexers or volume grating type dense wavelength division multiplexers. device, arrayed waveguide grating type dense wavelength division multiplexer or fiber grating type dense wavelength division multiplexer.

可选的,所述第一光滤波器10、第二光滤波器12为光纤布拉格光栅滤波器、级联的光纤布拉格光栅滤波器或体光栅滤波器;Optionally, the first optical filter 10 and the second optical filter 12 are fiber Bragg grating filters, cascaded fiber Bragg grating filters or volume grating filters;

和/或,所述偏振控制器5为波片型偏振控制器或光纤偏振控制器。And/or, the polarization controller 5 is a wave plate polarization controller or an optical fiber polarization controller.

本发明通过结合光频梳产生技术与频率啁啾调控技术,在掺铒固态材料中制备多频道宽带原子频率梳,并通过多频道宽带原子频率梳对光通信波段宽带多频率复用的量子关联或纠缠光子对中的一个光子进行时域多模存储,从而建立另一个光子与原子频率梳之间的量子关联或纠缠,形成光-原子界面。本发明用于制备多频道宽带光-原子界面的各组件均可来自成熟的光电器件,有利于发展实用化的基于光-原子界面的量子网络节点。通过此方法制备出的光-原子界面具有大带宽、多频道等优势,可在量子通信、量子纠缠网络等领域得到广泛应用。The present invention combines optical frequency comb generation technology and frequency chirp control technology to prepare multi-channel broadband atomic frequency combs in erbium-doped solid materials, and uses the multi-channel broadband atomic frequency comb to perform quantum correlation for broadband multi-frequency multiplexing of optical communication bands. Or one photon in the entangled photon pair is stored in time domain multi-mode, thereby establishing the quantum correlation or entanglement between the other photon and the atomic frequency comb, forming a light-atom interface. Each component used in the present invention to prepare multi-channel broadband light-atom interfaces can be derived from mature optoelectronic devices, which is conducive to the development of practical quantum network nodes based on light-atom interfaces. The light-atom interface prepared by this method has the advantages of large bandwidth and multi-channel, and can be widely used in fields such as quantum communication and quantum entanglement networks.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "an example," "specific examples," or "some examples" or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the invention. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.

Claims (10)

1.一种多频道宽带光通信波段光-原子界面的制备装置,其特征在于,包括多频道宽带原子频率梳制备装置和多频率模式复用的光通信波段量子关联源或量子纠缠源,二者之间通过光纤连接;1. A multi-channel broadband optical communication band optical-atom interface preparation device, characterized in that it includes a multi-channel broadband atomic frequency comb preparation device and a multi-frequency mode multiplexed optical communication band quantum correlation source or quantum entanglement source, 2. are connected through optical fiber; 所述多频道宽带原子频率梳制备装置利用光频梳产生技术和频率啁啾调控技术在掺铒固态材料中制备多频道宽带原子频率梳;The multi-channel broadband atomic frequency comb preparation device uses optical frequency comb generation technology and frequency chirp control technology to prepare multi-channel broadband atomic frequency combs in erbium-doped solid materials; 所述多频率模式复用的光通信波段量子关联源或量子纠缠源通过周期极化铌酸锂波导产生多频率模式复用的量子关联光子对或量子纠缠光子对,所述原子频率梳对所述量子关联光子对或量子纠缠光子对中的一个光子进行时域多模存储,建立所述量子关联光子对或量子纠缠光子对中的另一个光子与所述原子频率梳之间的量子关联或量子纠缠,形成多频道带宽的光通信波段光-原子界面。The multi-frequency mode multiplexed optical communication band quantum correlation source or quantum entanglement source generates multi-frequency mode multiplexed quantum correlation photon pairs or quantum entangled photon pairs through periodically polarized lithium niobate waveguides, and the atomic frequency comb pairs One photon in the quantum correlated photon pair or the quantum entangled photon pair is stored in a time domain multi-mode, and a quantum correlation between the other photon in the quantum correlated photon pair or the quantum entangled photon pair and the atomic frequency comb is established, or Quantum entanglement forms a multi-channel bandwidth optical communication band light-atom interface. 2.根据权利要求1所述的一种多频道宽带光通信波段光-原子界面的制备装置,其特征在于,所述多频道宽带原子频率梳制备装置包括依次连接的第一激光源(15)、第一光强度调制器(16)、第一光相位调制器(17)、第二光相位调制器(18)、光开光(19)和第一可调光衰减器(20),所述第一可调光衰减器(20)的一端连接所述光开关(19),第一可调光衰减器(20)的另一端与光环形器(21)的第一端口相连接,光环形器(21)的第二端口与掺铒固态材料(22)的一端相连接;2. A multi-channel broadband optical communication band optical-atom interface preparation device according to claim 1, characterized in that the multi-channel broadband atomic frequency comb preparation device includes first laser sources (15) connected in sequence , the first light intensity modulator (16), the first light phase modulator (17), the second light phase modulator (18), the light switch (19) and the first adjustable light attenuator (20), the One end of the first adjustable light attenuator (20) is connected to the optical switch (19), and the other end of the first adjustable light attenuator (20) is connected to the first port of the optical circulator (21). The second port of the device (21) is connected to one end of the erbium-doped solid material (22); 所述第一激光源(15)用于提供连续、稳定的泵浦光;The first laser source (15) is used to provide continuous and stable pump light; 所述光强度调制器(16)和第一光相位调制器(17)用于将所述第一激光源(15)输出的泵浦光调制为具有若干梳齿的光频梳;The light intensity modulator (16) and the first optical phase modulator (17) are used to modulate the pump light output by the first laser source (15) into an optical frequency comb with several comb teeth; 所述第二光相位调制器(18)用于对光频梳加载周期性移频信号,每一个周期内会将梳齿进行若干次等间隔移频,每一个梳齿经过周期性移频后的区间为一个频域模式,具有若干类似梳齿的光频梳成为多模式泵浦光;The second optical phase modulator (18) is used to load the optical frequency comb with periodic frequency shifting signals. In each cycle, the comb teeth will be frequency shifted several times at equal intervals. After each comb tooth undergoes periodic frequency shifting, The interval is a frequency domain mode, and an optical frequency comb with several comb-like teeth becomes a multi-mode pump light; 所述第一可调光衰减器(20)用于调节泵浦光的功率。The first adjustable optical attenuator (20) is used to adjust the power of pump light. 3.根据权利要求1所述的一种多频道宽带光通信波段光-原子界面的制备装置,其特征在于,所述多频率模式复用量子关联源或量子纠缠源包括依次连接的第二激光源(1)、第二光强度调制器(2)、光放大器(3)、第二可调光衰减器(4)、偏振控制器(5)、起偏器(6)、非线性晶体波导(7)、第一光隔离器(8);3. A device for preparing a multi-channel broadband optical communication band light-atom interface according to claim 1, characterized in that the multi-frequency mode multiplexed quantum correlation source or quantum entanglement source includes second lasers connected in sequence. Source (1), second light intensity modulator (2), optical amplifier (3), second adjustable optical attenuator (4), polarization controller (5), polarizer (6), nonlinear crystal waveguide (7), first optical isolator (8); 第一光隔离器(8)的一端与所述非线性晶体波导(7)连接,第一光隔离器(8)的另一端与第一密集波分复用器(9)的公共端(C端)相连接,第一密集波分复用器(9)的透射端(T端)和第一光滤波器(10)的一端相连接,第一密集波分复用器(9)的反射端(R端)和第二密集波分复用器(11)的公共端(C端)相连接,第二密集波分复用器(11)的透射端(T端)和第二光滤波器(12)的输入端相连接,第二光滤波器(12)的N个输出端和第三密集波分复用器(13)的N个透射端(T端)分别相连接,第三密集波分复用器(13)的公共端(C端)与第二光隔离器(14)的一端相连接,第二光隔离器(14)的另一端与所述多频道宽带原子频率梳制备装置中的掺铒固态材料(22)的一端相连接。One end of the first optical isolator (8) is connected to the nonlinear crystal waveguide (7), and the other end of the first optical isolator (8) is connected to the common end (C) of the first dense wavelength division multiplexer (9). end) are connected, the transmission end (T end) of the first dense wavelength division multiplexer (9) is connected to one end of the first optical filter (10), the reflection end of the first dense wavelength division multiplexer (9) The end (R end) is connected to the common end (C end) of the second dense wavelength division multiplexer (11), and the transmission end (T end) of the second dense wavelength division multiplexer (11) is connected to the second optical filter The input terminals of the second optical filter (12) are connected to each other, and the N output terminals of the second optical filter (12) are connected to the N transmission terminals (T terminals) of the third dense wavelength division multiplexer (13). The common end (C end) of the dense wavelength division multiplexer (13) is connected to one end of the second optical isolator (14), and the other end of the second optical isolator (14) is connected to the multi-channel broadband atomic frequency comb. One end of the erbium-doped solid material (22) in the preparation device is connected. 4.根据权利要求1-3任一项所述的一种多频道宽带光通信波段光-原子界面制备装置,其特征在于,所述掺铒固态材料(22)为掺铒铌酸锂晶体、掺铒硅酸钇晶体、掺铒石英光纤或掺铒钒酸钆晶体。4. A multi-channel broadband optical communication band light-atom interface preparation device according to any one of claims 1 to 3, characterized in that the erbium-doped solid material (22) is an erbium-doped lithium niobate crystal, Erbium-doped yttrium silicate crystal, erbium-doped silica fiber or erbium-doped gadolinium vanadate crystal. 5.根据权利要求1-3任一项所述的一种多频道宽带光通信波段光-原子界面制备装置,其特征在于,所述第一激光源(15)和第二激光源(1)为固态激光源、气体激光源、半导体激光源或染料激光源。5. A multi-channel broadband optical communication band optical-atom interface preparation device according to any one of claims 1 to 3, characterized in that the first laser source (15) and the second laser source (1) It is a solid-state laser source, a gas laser source, a semiconductor laser source or a dye laser source. 6.根据权利要求1-3任一项所述的一种多频道宽带光通信波段光-原子界面制备装置,其特征在于,所述第一强度调制器(16)和第二强度调制器(2)为基于声光效应或电光效应的强度调制器;6. A multi-channel broadband optical communication band optical-atom interface preparation device according to any one of claims 1-3, characterized in that the first intensity modulator (16) and the second intensity modulator (16) 2) It is an intensity modulator based on the acousto-optic effect or the electro-optic effect; 和/或,所述第一光相位调制器(17)和第二光相位调制器(18)为以KDP晶体或铌酸锂晶体作为电光晶体的电光相位调制器。And/or, the first optical phase modulator (17) and the second optical phase modulator (18) are electro-optical phase modulators using KDP crystal or lithium niobate crystal as the electro-optical crystal. 7.根据权利要求1-3任一项所述一种多频道宽带的光通信波段光-原子界面制备装置,其特征在于,第一密集波分复用器(9)、第二密集波分复用器(11)和第三密集波分复用器(13)为薄膜型密集波分复用器、体光栅型密集波分复用器、阵列波导光栅型密集波分复用器或光纤光栅型密集波分复用器。7. A multi-channel broadband optical communication band optical-atom interface preparation device according to any one of claims 1 to 3, characterized in that the first dense wavelength division multiplexer (9), the second dense wavelength division multiplexer (9), The multiplexer (11) and the third dense wavelength division multiplexer (13) are a thin film type dense wavelength division multiplexer, a volume grating type dense wavelength division multiplexer, an arrayed waveguide grating type dense wavelength division multiplexer or an optical fiber Grating type dense wavelength division multiplexer. 8.根据权利要求1-3任一项所述的一种多频道宽带光通信波段光-原子界面制备装置,其特征在于,所述第一光滤波器(10)、第二光滤波器(12)为光纤布拉格光栅滤波器、级联的光纤布拉格光栅滤波器或体光栅滤波器;8. A multi-channel broadband optical communication band optical-atom interface preparation device according to any one of claims 1 to 3, characterized in that the first optical filter (10), the second optical filter ( 12) It is a fiber Bragg grating filter, a cascaded fiber Bragg grating filter or a volume grating filter; 和/或,所述偏振控制器(5)为波片型偏振控制器或光纤偏振控制器。And/or, the polarization controller (5) is a wave plate polarization controller or an optical fiber polarization controller. 9.一种多频道宽带光通信波段光-原子界面的制备方法,使用权利要求1-8任一项所述的多频道宽带光通信波段光-原子界面的制备装置实现,其特征在于,包括以下步骤:9. A method for preparing a multi-channel broadband optical communication band light-atom interface, which is realized by using the multi-channel broadband optical communication band light-atom interface preparation device according to any one of claims 1 to 8, characterized in that: Following steps: 利用光频梳产生技术和频率啁啾调控技术在掺铒固态材料中制备多频道宽带的原子频率梳;Use optical frequency comb generation technology and frequency chirp control technology to prepare multi-channel broadband atomic frequency combs in erbium-doped solid materials; 通过所述原子频率梳对宽带多频率模式复用的光通信波段量子关联光子对或量子纠缠光子对中的一个光子进行时域多模存储,建立所述量子关联光子对或量子纠缠光子对中的另一个光子与所述原子频率梳之间的量子关联或量子纠缠,形成多频道宽带的光通信波段光-原子界面。The atomic frequency comb performs time-domain multi-mode storage of one photon in a quantum correlated photon pair or a quantum entangled photon pair in the optical communication band multiplexed in a broadband multi-frequency mode, and establishes the quantum correlated photon pair or quantum entangled photon pair. The quantum correlation or quantum entanglement between another photon and the atomic frequency comb forms a multi-channel broadband optical communication band light-atom interface. 10.根据权利要求9所述的一种多频道宽带光通信波段光-原子界面制备方法,其特征在于,所述原子频率梳的制备方法,具体包括以下步骤:10. A method for preparing a multi-channel broadband optical communication band optical-atom interface according to claim 9, characterized in that the preparation method of the atomic frequency comb specifically includes the following steps: 通过光频梳技术产生具有若干梳齿的光频梳,通过频率啁啾调控技术使光频梳产生周期性移频,每个周期内对梳齿进行若干次等间隔移频,每一个梳齿经过周期性移频后的区间为一个频域模式,具有若干类似梳齿的光频梳成为多模式泵浦光,将所述多模式泵浦光泵浦掺铒固态材料,泵浦光与掺铒固态材料中的铒离子系综发生相互作用,利用光谱烧孔原理使掺铒固态材料中激发相应铒离子,其余的基态铒离子组成多频道原子频率梳。The optical frequency comb technology is used to generate an optical frequency comb with several comb teeth. The frequency chirp control technology is used to cause the optical frequency comb to generate periodic frequency shifts. In each cycle, the comb teeth are frequency shifted several times at equal intervals. Each comb tooth The interval after periodic frequency shifting is a frequency domain mode. An optical frequency comb with several comb-like teeth becomes a multi-mode pump light. The multi-mode pump light pumps the erbium-doped solid-state material. The pump light and doped solid-state material The erbium ion ensemble in the erbium solid material interacts, and the spectral hole burning principle is used to excite the corresponding erbium ions in the erbium-doped solid material, and the remaining ground state erbium ions form a multi-channel atomic frequency comb.
CN202310870764.5A 2023-07-17 2023-07-17 A device and method for preparing multi-channel broadband light-atom interface Pending CN116896416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310870764.5A CN116896416A (en) 2023-07-17 2023-07-17 A device and method for preparing multi-channel broadband light-atom interface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310870764.5A CN116896416A (en) 2023-07-17 2023-07-17 A device and method for preparing multi-channel broadband light-atom interface

Publications (1)

Publication Number Publication Date
CN116896416A true CN116896416A (en) 2023-10-17

Family

ID=88310420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310870764.5A Pending CN116896416A (en) 2023-07-17 2023-07-17 A device and method for preparing multi-channel broadband light-atom interface

Country Status (1)

Country Link
CN (1) CN116896416A (en)

Similar Documents

Publication Publication Date Title
Chou et al. 1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO 3 waveguides
EP0828178B1 (en) Wavelength conversion apparatus with improved efficiency, easy adjustability, and polarization insensitivity
CN103840359B (en) A kind of tunable multi-wavelength is stablized narrow cable and wide optical fiber laser
CN111327369B (en) A Frequency Domain Multiplexing Quantum Channel Basic Link in Optical Fiber Communication Band
US20040156572A1 (en) Apparatus for providing timing jitter tolerant optical modulation of a first signal by a second signal
CN112946968B (en) A hybrid integrated optical communication band on-chip quantum entanglement source
CN102608824B (en) Tunable optical frequency converter based on phase modulator
CN114336227B (en) Microwave signal generating device based on low-distortion dissipative Kerr soliton
CN104330939A (en) SBS broadband tunable optical fiber delay system
JPH10303822A (en) Optical transmitting device
JPH03289736A (en) frequency division multiple access network
CN113224622A (en) Communication band high-flatness large-comb-tooth-spacing linear polarization electro-optic modulation optical frequency comb light source
CN102778799B (en) Tunable optical frequency converter based on amplitude modulator
CN115799966A (en) Optical signal generation method based on optical frequency comb frequency extraction and self-injection locking
CN104852272B (en) The optical function signal generator of multi-wavelength harmonic frequency time history synthesis
CN113055098B (en) Frequency domain multiplexing propaganda type single photon source of optical communication waveband
US6584260B2 (en) Electro-optical device and a wavelength selection method utilizing the same
CN116896416A (en) A device and method for preparing multi-channel broadband light-atom interface
CN100442136C (en) A non-return-to-zero code to return-to-zero code all-optical code conversion device
CN114825000B (en) Single-cavity double-optical-frequency comb generating device and method with adjustable repetition frequency
CN112882310B (en) A Phase Regeneration Method for Signals of Arbitrary High-Order Modulation Format Based on Kerr Combs
CN118068627A (en) On-chip light-atom entanglement interface device and method
CN106772819A (en) The interference-type all-optical switch of chalcogenide glass photonic crystal fiber 2 × 2 and control method
CN114759422B (en) An Erbium-doped Optical Waveguide-Based On-Chip Quantum Memory for Communication Band
Bracken et al. All-optical wavelength conversions based on MgO-doped LiNbO 3 QPM waveguides using an EDFA as a pump source

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination