CN116868326A - Transistor circuits including edgeless transistors and methods of making the same - Google Patents
Transistor circuits including edgeless transistors and methods of making the same Download PDFInfo
- Publication number
- CN116868326A CN116868326A CN202280016896.5A CN202280016896A CN116868326A CN 116868326 A CN116868326 A CN 116868326A CN 202280016896 A CN202280016896 A CN 202280016896A CN 116868326 A CN116868326 A CN 116868326A
- Authority
- CN
- China
- Prior art keywords
- gate
- dielectric
- gate electrode
- trench isolation
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明公开了,第一场效应晶体管包含第一有源区、覆盖在该有源区上面的第一栅极介电质和覆盖在该第一栅极介电质上面的第一栅极电极,该第一有源区包括源极区、漏极区以及位于该源极区与该漏极区之间的沟道区。第二场效应晶体管包含第二有源区、覆盖在该有源区上面的第二栅极介电质和覆盖在该第二栅极介电质上面的第二栅极电极,该第二有源区包括源极区、漏极区以及位于该源极区与该漏极区之间的沟道区。沟槽隔离区围绕该第一有源区和该第二有源区。该第一场效应晶体管包括边缘区,在该边缘区中,该第一栅极电极垂直于该源极区至该漏极区方向延伸经过该有源区,并且该第二场效应晶体管不包括该边缘区。
The invention discloses that the first field effect transistor includes a first active region, a first gate dielectric covering the active region, and a first gate electrode covering the first gate dielectric. , the first active region includes a source region, a drain region and a channel region located between the source region and the drain region. The second field effect transistor includes a second active region, a second gate dielectric covering the active region, and a second gate electrode covering the second gate dielectric. The source region includes a source region, a drain region and a channel region located between the source region and the drain region. A trench isolation region surrounds the first active region and the second active region. The first field effect transistor includes an edge region, in which the first gate electrode extends through the active region perpendicular to the direction from the source region to the drain region, and the second field effect transistor does not include the edge zone.
Description
相关申请Related applications
本申请要求2021年5月10日提交的美国非临时申请17/316,015号、2021年5月10日提交的美国非临时申请17/316,079号以及2021年10月14日提交的美国非临时申请17/501,163号的优先权权益,这些申请的全部内容以引用方式并入本文。This application calls for U.S. Non-Provisional Application No. 17/316,015 filed on May 10, 2021, U.S. Non-Provisional Application No. 17/316,079 filed on May 10, 2021, and U.S. Non-Provisional Application No. 17 filed on October 14, 2021 /501,163, the entire contents of these applications are incorporated herein by reference.
技术领域Technical field
本公开整体涉及半导体器件领域,并且具体地涉及包括无边缘晶体管的晶体管电路及其制造方法。The present disclosure relates generally to the field of semiconductor devices, and particularly to transistor circuits including edgeless transistors and methods of fabricating the same.
背景技术Background technique
存储器设备的外围(即,驱动器)电路包括被配置为在不同操作电压下操作的多种类型的场效应晶体管。在高器件密度下提供在不同操作电压下操作的场效应晶体管是一个挑战。Peripheral (ie, driver) circuitry of a memory device includes multiple types of field effect transistors configured to operate at different operating voltages. Providing field effect transistors operating at different operating voltages at high device density is a challenge.
发明内容Contents of the invention
根据本发明的一个方面,半导体结构包括:第一场效应晶体管,该第一场效应晶体管包含第一有源区、覆盖在该有源区上面的第一栅极介电质和覆盖在该第一栅极介电质上面的第一栅极电极,该第一有源区包括源极区、漏极区以及位于该源极区与该漏极区之间的沟道区;第二场效应晶体管,该第二场效应晶体管包含第二有源区、覆盖在该有源区上面的第二栅极介电质和覆盖在该第二栅极介电质上面的第二栅极电极,该第二有源区包括源极区、漏极区以及位于该源极区与该漏极区之间的沟道区;和沟槽隔离区,该沟槽隔离区围绕该第一有源区和该第二有源区。该第一场效应晶体管包括边缘区,在该边缘区中,第一栅极电极在垂直于第一水平源极区至漏极区方向的第二水平方向上延伸经过有源区,并且该第二场效应晶体管不包括边缘区,在该边缘区中,第二栅极电极在第二水平方向上延伸经过有源区。According to one aspect of the invention, a semiconductor structure includes: a first field effect transistor including a first active region, a first gate dielectric covering the active region, and a first gate dielectric covering the active region. A first gate electrode on a gate dielectric, the first active region includes a source region, a drain region and a channel region between the source region and the drain region; a second field effect A transistor, the second field effect transistor includes a second active region, a second gate dielectric covering the active region, and a second gate electrode covering the second gate dielectric, the The second active region includes a source region, a drain region and a channel region between the source region and the drain region; and a trench isolation region surrounding the first active region and the second active area. The first field effect transistor includes an edge region in which the first gate electrode extends across the active region in a second horizontal direction perpendicular to the first horizontal source region to drain region direction, and the The second field effect transistor does not include an edge region in which the second gate electrode extends through the active region in a second horizontal direction.
根据本公开的另一方面,提供了一种形成半导体结构的方法,该方法包括:在半导体衬底上方形成硬掩模板;通过蚀刻半导体衬底的未被硬掩模板遮蔽的上部部分来形成浅隔离沟槽,其中该浅隔离沟槽横向围绕位于硬掩模板中的第一硬掩模板下面的第一有源区;通过在浅隔离沟槽中沉积介电填充材料来形成浅沟槽隔离结构;在掩蔽横向围绕间隙区的浅沟槽隔离结构的场区时,使横向围绕第一有源区的浅沟槽隔离结构的间隙区竖直凹陷,其中在浅沟槽隔离结构的位于间隙区中的一部分中形成凹陷水平表面,并且其中该凹陷水平表面相对于浅沟槽隔离结构的位于场区中的最顶部表面竖直凹陷;在第一有源区的顶部表面上形成第一栅极介电质;在第一栅极介电质上方和浅沟槽隔离结构的凹陷水平表面上方形成第一栅极电极材料部分;以及通过图案化第一栅极电极材料部分来形成第一栅极电极,其中第一栅极电极包括下栅极电极部分并且包括上栅极电极部分,该下栅极电极部分接触第一栅极介电质的顶部表面和浅沟槽隔离结构的一对侧壁区段,该上栅极电极部分接触浅沟槽隔离结构的凹陷水平表面的第一区段。According to another aspect of the present disclosure, a method of forming a semiconductor structure is provided, the method comprising: forming a hard mask over a semiconductor substrate; forming a shallow mask by etching an upper portion of the semiconductor substrate that is not shielded by the hard mask. An isolation trench, wherein the shallow isolation trench laterally surrounds a first active region located under a first hard mask in the hard mask; a shallow trench isolation structure is formed by depositing a dielectric fill material in the shallow isolation trench ; When shielding the field region of the shallow trench isolation structure that laterally surrounds the gap region, the gap region of the shallow trench isolation structure that laterally surrounds the first active region is vertically recessed, wherein the shallow trench isolation structure is located in the gap region forming a recessed horizontal surface in a portion of the structure, and wherein the recessed horizontal surface is vertically recessed relative to a topmost surface of the shallow trench isolation structure located in the field region; forming a first gate on the top surface of the first active region dielectric; forming a first gate electrode material portion over the first gate dielectric and over the recessed horizontal surface of the shallow trench isolation structure; and forming the first gate by patterning the first gate electrode material portion an electrode, wherein the first gate electrode includes a lower gate electrode portion and includes an upper gate electrode portion contacting a top surface of the first gate dielectric and a pair of sidewalls of the shallow trench isolation structure A section where the upper gate electrode portion contacts a first section of the recessed horizontal surface of the shallow trench isolation structure.
根据本公开的一个方面,提供了一种包括第一场效应晶体管的半导体结构。第一场效应晶体管包括第一有源区,该第一有源区具有一对纵向侧壁和一对横向侧壁,该对横向侧壁接触沟槽隔离结构的第一部分的侧壁并且由沟槽隔离结构的第一部分横向围绕。第一有源区包括第一源极区、第一漏极区以及位于第一源极区与第一漏极区之间的第一沟道区。包括第一栅极介电质、第一栅极电极、第一平面介电间隔板和第一导电栅极帽盖结构的第一栅极结构覆盖在第一沟道区上面。第一栅极介电质和第一栅极电极接触沟槽隔离结构的第一部分的突出区的侧壁,该侧壁沿着第一水平方向横向延伸。第一平面介电间隔板接触第一栅极电极的顶部表面的第一部分。第一导电栅极帽盖结构包括:第一区段,该第一区段接触第一栅极电极的顶部表面的第二部分;第二区段,该第二区段覆盖在第一平面介电间隔板上面;和连接区段,该连接区段接触第一平面介电间隔板的第一侧壁并连接第一区段和第二区段。According to one aspect of the present disclosure, a semiconductor structure including a first field effect transistor is provided. The first field effect transistor includes a first active region having a pair of longitudinal sidewalls and a pair of lateral sidewalls contacting sidewalls of the first portion of the trench isolation structure and formed by the trench. A first portion of the trough isolation structure surrounds laterally. The first active region includes a first source region, a first drain region, and a first channel region located between the first source region and the first drain region. A first gate structure including a first gate dielectric, a first gate electrode, a first planar dielectric spacer, and a first conductive gate cap structure overlies the first channel region. The first gate dielectric and the first gate electrode contact sidewalls of the protruding region of the first portion of the trench isolation structure, the sidewalls extending laterally along the first horizontal direction. A first planar dielectric spacer contacts a first portion of a top surface of the first gate electrode. The first conductive gate cap structure includes: a first section contacting a second portion of the top surface of the first gate electrode; a second section covering the first planar interface; above the electrical barrier; and a connection section contacting the first sidewall of the first planar dielectric barrier and connecting the first section and the second section.
根据本公开的另一方面,提供了一种形成半导体结构的方法。该方法包括:在半导体材料层上方形成第一栅极介电层和半导体栅极材料层;穿过半导体栅极材料层和第一栅极介电层来形成沟槽隔离结构,其中半导体栅极材料层和第一栅极介电层的图案化部分包括由沟槽隔离结构的第一部分横向围绕的第一栅极介电板和第一栅极电极材料板的堆叠;在第一栅极电极上方形成平面介电间隔层;通过图案化平面介电间隔层来物理地暴露第一半导体栅极材料层的一部分的顶部表面;以及在第一栅极电极材料板的顶部表面的物理暴露部分上形成第一导电栅极帽盖结构;以及将第一栅极介电板和第一栅极电极材料板的堆叠图案化为第一栅极介电质和第一栅极电极的堆叠。According to another aspect of the present disclosure, a method of forming a semiconductor structure is provided. The method includes: forming a first gate dielectric layer and a semiconductor gate material layer above the semiconductor material layer; forming a trench isolation structure through the semiconductor gate material layer and the first gate dielectric layer, wherein the semiconductor gate The patterned portion of the material layer and the first gate dielectric layer includes a stack of a first gate dielectric plate and a first gate electrode material plate laterally surrounded by a first portion of the trench isolation structure; at the first gate electrode forming a planar dielectric spacer layer thereover; physically exposing a portion of the top surface of the first semiconductor gate material layer by patterning the planar dielectric spacer layer; and over the physically exposed portion of the top surface of the first gate electrode material plate forming a first conductive gate cap structure; and patterning a stack of first gate dielectric plates and first gate electrode material plates into a stack of first gate dielectric and first gate electrode.
根据本公开的再一方面,提供了一种包括第一场效应晶体管和第二场效应晶体管的半导体结构。第一场效应晶体管和第二场效应晶体管分别包括第一有源区和第二有源区,其中第一有源区和第二有源区接触沟槽隔离结构的侧壁并且由沟槽隔离结构横向围绕,其中沟槽隔离结构的横向延伸部分位于第一有源区与第二有源区之间。第一栅极介电质和第一栅极电极的堆叠覆盖在第一有源区内的第一沟道区上面,并且接触沟槽隔离结构的横向延伸部分的第一侧壁。第二栅极介电质和第二栅极电极的堆叠覆盖在第二有源区内的第二沟道区上面,并且接触沟槽隔离结构的横向延伸部分的第二侧壁。导电栅极连接结构接触第一栅极电极的顶部表面、第二栅极电极的顶部表面以及沟槽隔离结构的横向延伸部分的顶部表面的一部分,并且包括沿着第一水平方向横向延伸的一对横向侧壁和沿着第二水平方向横向延伸的一对纵向侧壁。第一栅极电极和第二栅极电极的纵向侧壁与导电栅极连接结构的该对纵向侧壁竖直重合。According to yet another aspect of the present disclosure, a semiconductor structure including a first field effect transistor and a second field effect transistor is provided. The first field effect transistor and the second field effect transistor include first and second active regions respectively, wherein the first active region and the second active region contact sidewalls of the trench isolation structure and are isolated by the trench The structure surrounds laterally, wherein a laterally extending portion of the trench isolation structure is located between the first active region and the second active region. The stack of first gate dielectric and first gate electrode overlies the first channel region within the first active region and contacts the first sidewall of the laterally extending portion of the trench isolation structure. The stack of the second gate dielectric and the second gate electrode overlies the second channel region within the second active region and contacts the second sidewall of the laterally extending portion of the trench isolation structure. The conductive gate connection structure contacts a top surface of the first gate electrode, a top surface of the second gate electrode, and a portion of a top surface of a laterally extending portion of the trench isolation structure, and includes a a pair of transverse side walls and a pair of longitudinal side walls extending transversely along the second horizontal direction. The longitudinal sidewalls of the first gate electrode and the second gate electrode vertically coincide with the pair of longitudinal sidewalls of the conductive gate connection structure.
根据本公开的又一方面,半导体结构包括第一场效应晶体管。第一场效应晶体管包括第一有源区、覆盖在该有源区上面的第一栅极介电质、覆盖在该第一栅极介电质上面的第一栅极电极和围绕该第一有源区的沟槽隔离区,该第一有源区包括源极区、漏极区以及位于该源极区与该漏极区之间的沟道区;该第一场效应晶体管不包括边缘区,在该边缘区中,该第一栅极电极在垂直于该源极区至该漏极区方向的水平方向上延伸经过该有源区;该第一栅极电极不覆盖在该沟槽隔离区的一部分上面;并且该第一栅极电极的整个占有区域位于该第一有源区的横向边界上方和该横向边界内。According to yet another aspect of the present disclosure, a semiconductor structure includes a first field effect transistor. The first field effect transistor includes a first active region, a first gate dielectric covering the active region, a first gate electrode covering the first gate dielectric, and a first gate electrode surrounding the first gate dielectric. The trench isolation region of the active region, the first active region includes a source region, a drain region and a channel region between the source region and the drain region; the first field effect transistor does not include an edge region, in the edge region, the first gate electrode extends through the active region in a horizontal direction perpendicular to the direction from the source region to the drain region; the first gate electrode does not cover the trench above a portion of the isolation region; and the entire occupied area of the first gate electrode is located above and within the lateral boundary of the first active region.
根据本公开的又一方面,提供了一种形成半导体结构的方法。该方法包括:在半导体材料层上方形成栅极介电层和半导体栅极材料层;穿过半导体栅极材料层和栅极介电层来形成沟槽隔离结构,其中半导体栅极材料层和栅极介电层的图案化部分包括覆盖在半导体材料层的第一有源区上面的第一栅极介电板和第一栅极电极材料板的第一堆叠,以及覆盖在半导体材料层的第二有源区上面的第二栅极介电板和第二栅极电极材料板的第二堆叠;在第一栅极电极材料板、第二栅极电极材料板和沟槽隔离结构上方形成导电栅极连接材料层;将导电栅极连接材料层图案化为导电栅极连接结构;各向异性地蚀刻第一栅极电极材料板和第二栅极电极材料板的未用导电栅极连接结构覆盖的部分,其中第一栅极电极材料板和第二栅极电极材料板的图案化部分包括第一栅极电极和第二栅极电极;以及将第一栅极介电板和第二栅极介电板分别图案化为第一栅极介电质和第二栅极介电质。According to yet another aspect of the present disclosure, a method of forming a semiconductor structure is provided. The method includes: forming a gate dielectric layer and a semiconductor gate material layer above the semiconductor material layer; forming a trench isolation structure through the semiconductor gate material layer and the gate dielectric layer, wherein the semiconductor gate material layer and the gate The patterned portion of the gate dielectric layer includes a first stack of a first gate dielectric plate and a first gate electrode material overlying a first active region of the layer of semiconductor material, and a third plate overlying the layer of semiconductor material. a second stack of a second gate dielectric plate and a second gate electrode material plate over the two active areas; forming a conductive conductive layer over the first gate electrode material plate, the second gate electrode material plate and the trench isolation structure Gate connection material layer; patterning the conductive gate connection material layer into a conductive gate connection structure; anisotropically etching unused conductive gate connection structures of the first gate electrode material plate and the second gate electrode material plate a covered portion, wherein the patterned portions of the first gate electrode material plate and the second gate electrode material plate include the first gate electrode and the second gate electrode; and connecting the first gate dielectric plate and the second gate electrode The electrode dielectric plate is patterned into a first gate dielectric and a second gate dielectric respectively.
附图说明Description of the drawings
图1A是根据本公开的第一实施方案的在形成各种掺杂阱之后的第一示例性结构的俯视图。图1B是沿着图1A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。图1C是沿着图1A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图1D是沿着图1A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图1E是沿着图1A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图1F是沿着图1A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。1A is a top view of a first exemplary structure after forming various doped wells according to a first embodiment of the present disclosure. Figure IB is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of Figure IA. 1C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of FIG. 1A. FIG. 1D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of FIG. 1A . 1E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of FIG. 1A. FIG. 1F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of FIG. 1A .
图2A是根据本公开的第一实施方案的在形成栅极介电层和半导体栅极材料层之后的第一示例性结构的俯视图。图2B是沿着图2A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。图2C是沿着图2A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图2D是沿着图2A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图2E是沿着图2A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图2F是沿着图2A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。2A is a top view of a first exemplary structure after forming a gate dielectric layer and a semiconductor gate material layer according to the first embodiment of the present disclosure. 2B is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of FIG. 2A. 2C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of FIG. 2A. Figure 2D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of Figure 2A. 2E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of FIG. 2A. 2F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of FIG. 2A.
图3A是根据本公开的第一实施方案的在形成图案化掩模层、浅沟槽和深沟槽之后的第一示例性结构的俯视图。图3B是沿着图3A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。图3C是沿着图3A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图3D是沿着图3A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图3E是沿着图3A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图3F是沿着图3A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。3A is a top view of a first exemplary structure after forming a patterned mask layer, shallow trenches, and deep trenches according to the first embodiment of the present disclosure. 3B is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of FIG. 3A. 3C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of FIG. 3A. Figure 3D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of Figure 3A. 3E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of FIG. 3A. 3F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of FIG. 3A.
图4是根据本公开的第一实施方案的在形成沟槽填充材料层之后的第一示例性结构的竖直剖面图。4 is a vertical cross-sectional view of the first exemplary structure after forming a layer of trench fill material according to the first embodiment of the present disclosure.
图5A是根据本公开的第一实施方案的在形成沟槽隔离结构之后的第一示例性结构的俯视图。图5B是沿着图5A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。图5C是沿着图5A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图5D是沿着图5A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图5E是沿着图5A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图5F是沿着图5A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。5A is a top view of a first exemplary structure after forming a trench isolation structure according to the first embodiment of the present disclosure. Figure 5B is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of Figure 5A. Figure 5C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of Figure 5A. Figure 5D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of Figure 5A. Figure 5E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of Figure 5A. Figure 5F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of Figure 5A.
图6A是根据本公开的第一实施方案的在形成平面半导体间隔层之后的第一示例性结构的俯视图。图6B是沿着图6A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。图6C是沿着图6A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图6D是沿着图6A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图6E是沿着图6A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图6F是沿着图6A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。6A is a top view of a first exemplary structure after forming a planar semiconductor spacer layer according to the first embodiment of the present disclosure. Figure 6B is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of Figure 6A. Figure 6C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of Figure 6A. Figure 6D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of Figure 6A. 6E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of FIG. 6A. Figure 6F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of Figure 6A.
图7A是根据本公开的第一实施方案的在图案化平面半导体间隔层之后的第一示例性结构的俯视图。图7B是沿着图7A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。图7C是沿着图7A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图7D是沿着图7A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图7E是沿着图7A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图7F是沿着图7A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。7A is a top view of a first exemplary structure after patterning a planar semiconductor spacer layer according to a first embodiment of the present disclosure. Figure 7B is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of Figure 7A. 7C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of FIG. 7A. Figure 7D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of Figure 7A. Figure 7E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of Figure 7A. Figure 7F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of Figure 7A.
图8A是根据本公开的第一实施方案的在沉积导电栅极帽盖层和栅极帽盖介电层之后的第一示例性结构的俯视图。图8B是沿着图8A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。图8C是沿着图8A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图8D是沿着图8A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图8E是沿着图8A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图8F是沿着图8A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。8A is a top view of a first exemplary structure after depositing a conductive gate cap layer and a gate cap dielectric layer according to a first embodiment of the present disclosure. 8B is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of FIG. 8A. 8C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of FIG. 8A. Figure 8D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of Figure 8A. 8E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of FIG. 8A. Figure 8F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of Figure 8A.
图9A是根据本公开的第一实施方案的在图案化栅极帽盖介电层、导电栅极帽盖层和平面半导体间隔层之后的第一示例性结构的俯视图。图9B是沿着图9A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。图9C是沿着图9A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图9D是沿着图9A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图9E是沿着图9A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图9F是沿着图9A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。9A is a top view of a first exemplary structure after patterning a gate cap dielectric layer, a conductive gate cap layer, and a planar semiconductor spacer layer in accordance with a first embodiment of the present disclosure. Figure 9B is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of Figure 9A. 9C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of FIG. 9A. Figure 9D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of Figure 9A. Figure 9E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of Figure 9A. 9F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of FIG. 9A.
图10A是根据本公开的第一实施方案的在施加和图案化用于图案化半导体栅极材料层的光致抗蚀剂层之后的第一示例性结构的俯视图。图10B是沿着图10A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。10A is a top view of a first exemplary structure after application and patterning of a photoresist layer for patterning a layer of semiconductor gate material in accordance with a first embodiment of the present disclosure. 10B is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of FIG. 10A.
图10C是沿着图10A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图10D是沿着图10A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图10E是沿着图10A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图10F是沿着图10A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。10C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of FIG. 10A. 10D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of FIG. 10A. 10E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of FIG. 10A. 10F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of FIG. 10A.
图11A是根据本公开的第一实施方案的在施加和图案化半导体栅极材料层和栅极介电层之后的第一示例性结构的俯视图。图11B是沿着图11A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。图11C是沿着图11A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图11D是沿着图11A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图11E是沿着图11A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图11F是沿着图11A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。图11G是沿着图11A的竖直平面G-G'截取的第一示例性结构的竖直剖面图。11A is a top view of a first exemplary structure after applying and patterning a layer of semiconductor gate material and a gate dielectric layer in accordance with a first embodiment of the present disclosure. 11B is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of FIG. 11A. 11C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of FIG. 11A. 11D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of FIG. 11A. 11E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of FIG. 11A. 11F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of FIG. 11A. 11G is a vertical cross-sectional view of the first exemplary structure taken along vertical plane GG' of FIG. 11A.
图12A是根据本公开的第一实施方案的在形成介电栅极间隔物之后的第一示例性结构的俯视图。图12B是沿着图12A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。图12C是沿着图12A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图12D是沿着图12A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图12E是沿着图12A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图12F是沿着图12A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。图12G是沿着图12A的竖直平面G-G'截取的第一示例性结构的竖直剖面图。12A is a top view of a first exemplary structure after forming dielectric gate spacers according to the first embodiment of the present disclosure. Figure 12B is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of Figure 12A. Figure 12C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of Figure 12A. Figure 12D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of Figure 12A. Figure 12E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of Figure 12A. Figure 12F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of Figure 12A. 12G is a vertical cross-sectional view of the first exemplary structure taken along vertical plane GG' of FIG. 12A.
图13A是根据本公开的第一实施方案的在形成源极区和漏极区之后的第一示例性结构的俯视图。图13B是沿着图13A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。图13C是沿着图13A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图13D是沿着图13A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图13E是沿着图13A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图13F是沿着图13A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。图13G是沿着图13A的竖直平面G-G'截取的第一示例性结构的竖直剖面图。13A is a top view of a first exemplary structure after forming source and drain regions according to the first embodiment of the present disclosure. Figure 13B is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of Figure 13A. 13C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of FIG. 13A. Figure 13D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of Figure 13A. Figure 13E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of Figure 13A. Figure 13F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of Figure 13A. 13G is a vertical cross-sectional view of the first exemplary structure taken along vertical plane GG' of FIG. 13A.
图14A是根据本公开的第一实施方案的在形成接触层级介电层和各种接触通孔结构之后的第一示例性结构的俯视图。图14B是沿着图14A的铰接竖直平面B-B'截取的第一示例性结构的竖直剖面图。图14C是沿着图14A的竖直平面C-C'截取的第一示例性结构的竖直剖面图。图14D是沿着图14A的竖直平面D-D'截取的第一示例性结构的竖直剖面图。图14E是沿着图14A的竖直平面E-E'截取的第一示例性结构的竖直剖面图。图14F是沿着图14A的竖直平面F-F'截取的第一示例性结构的竖直剖面图。14A is a top view of a first exemplary structure after forming a contact level dielectric layer and various contact via structures in accordance with the first embodiment of the present disclosure. Figure 14B is a vertical cross-sectional view of the first exemplary structure taken along the hinged vertical plane BB' of Figure 14A. Figure 14C is a vertical cross-sectional view of the first exemplary structure taken along vertical plane CC' of Figure 14A. Figure 14D is a vertical cross-sectional view of the first exemplary structure taken along vertical plane DD' of Figure 14A. 14E is a vertical cross-sectional view of the first exemplary structure taken along the vertical plane EE' of FIG. 14A. Figure 14F is a vertical cross-sectional view of the first exemplary structure taken along vertical plane FF' of Figure 14A.
图15A是根据本公开的第二实施方案的在形成沟槽隔离结构之后的第二示例性结构的俯视图。图15B是沿着图15A的铰接竖直平面B-B'截取的第二示例性结构的竖直剖面图。图15C是沿着图15A的竖直平面C-C'截取的第二示例性结构的竖直剖面图。图15D是沿着图15A的竖直平面D-D'截取的第二示例性结构的竖直剖面图。图15E是沿着图15A的竖直平面E-E'截取的第二示例性结构的竖直剖面图。图15F是沿着图15A的竖直平面F-F'截取的第二示例性结构的竖直剖面图。15A is a top view of a second exemplary structure after forming a trench isolation structure according to a second embodiment of the present disclosure. Figure 15B is a vertical cross-sectional view of the second exemplary structure taken along the hinged vertical plane BB' of Figure 15A. Figure 15C is a vertical cross-sectional view of the second exemplary structure taken along vertical plane CC' of Figure 15A. Figure 15D is a vertical cross-sectional view of the second exemplary structure taken along vertical plane DD' of Figure 15A. Figure 15E is a vertical cross-sectional view of the second exemplary structure taken along the vertical plane EE' of Figure 15A. Figure 15F is a vertical cross-sectional view of the second exemplary structure taken along vertical plane FF' of Figure 15A.
图16A是根据本公开的第二实施方案的在将电掺杂剂注入下半导体栅极材料层的子集之后的第二示例性结构的俯视图。图16B是沿着图16A的铰接竖直平面B-B'截取的第二示例性结构的竖直剖面图。图16C是沿着图16A的竖直平面C-C'截取的第二示例性结构的竖直剖面图。图16D是沿着图16A的竖直平面D-D'截取的第二示例性结构的竖直剖面图。图16E是沿着图16A的竖直平面E-E'截取的第二示例性结构的竖直剖面图。图16F是沿着图16A的竖直平面F-F'截取的第二示例性结构的竖直剖面图。16A is a top view of a second exemplary structure after implanting electrical dopants into a subset of the lower semiconductor gate material layer in accordance with a second embodiment of the present disclosure. Figure 16B is a vertical cross-sectional view of the second exemplary structure taken along the hinged vertical plane BB' of Figure 16A. Figure 16C is a vertical cross-sectional view of the second exemplary structure taken along vertical plane CC' of Figure 16A. Figure 16D is a vertical cross-sectional view of the second exemplary structure taken along vertical plane DD' of Figure 16A. Figure 16E is a vertical cross-sectional view of the second exemplary structure taken along the vertical plane EE' of Figure 16A. Figure 16F is a vertical cross-sectional view of the second exemplary structure taken along vertical plane FF' of Figure 16A.
图17A是根据本公开的第二实施方案的在形成平面半导体间隔层之后的第二示例性结构的俯视图。图17B是沿着图17A的铰接竖直平面B-B'截取的第二示例性结构的竖直剖面图。图17C是沿着图17A的竖直平面C-C'截取的第二示例性结构的竖直剖面图。图17D是沿着图17A的竖直平面D-D'截取的第二示例性结构的竖直剖面图。图17E是沿着图17A的竖直平面E-E'截取的第二示例性结构的竖直剖面图。图17F是沿着图17A的竖直平面F-F'截取的第二示例性结构的竖直剖面图。17A is a top view of a second exemplary structure after forming a planar semiconductor spacer layer according to a second embodiment of the present disclosure. Figure 17B is a vertical cross-sectional view of the second exemplary structure taken along the hinged vertical plane BB' of Figure 17A. Figure 17C is a vertical cross-sectional view of the second exemplary structure taken along vertical plane CC' of Figure 17A. Figure 17D is a vertical cross-sectional view of the second exemplary structure taken along vertical plane DD' of Figure 17A. Figure 17E is a vertical cross-sectional view of the second exemplary structure taken along the vertical plane EE' of Figure 17A. Figure 17F is a vertical cross-sectional view of the second exemplary structure taken along vertical plane FF' of Figure 17A.
图18A是根据本公开的第二实施方案的在图案化平面半导体间隔层之后的第二示例性结构的俯视图。图18B是沿着图18A的铰接竖直平面B-B'截取的第二示例性结构的竖直剖面图。图18C是沿着图18A的竖直平面C-C'截取的第二示例性结构的竖直剖面图。图18D是沿着图18A的竖直平面D-D'截取的第二示例性结构的竖直剖面图。图18E是沿着图18A的竖直平面E-E'截取的第二示例性结构的竖直剖面图。图18F是沿着图18A的竖直平面F-F'截取的第二示例性结构的竖直剖面图。18A is a top view of a second exemplary structure after patterning a planar semiconductor spacer layer in accordance with a second embodiment of the present disclosure. Figure 18B is a vertical cross-sectional view of the second exemplary structure taken along the hinged vertical plane BB' of Figure 18A. Figure 18C is a vertical cross-sectional view of the second exemplary structure taken along vertical plane CC' of Figure 18A. Figure 18D is a vertical cross-sectional view of the second exemplary structure taken along vertical plane DD' of Figure 18A. Figure 18E is a vertical cross-sectional view of the second exemplary structure taken along the vertical plane EE' of Figure 18A. Figure 18F is a vertical cross-sectional view of the second exemplary structure taken along vertical plane FF' of Figure 18A.
图19A是根据本公开的第二实施方案的在沉积导电栅极帽盖层和平面介电间隔层之后的第二示例性结构的俯视图。图19B是沿着图19A的铰接竖直平面B-B'截取的第二示例性结构的竖直剖面图。图19C是沿着图19A的竖直平面C-C'截取的第二示例性结构的竖直剖面图。图19D是沿着图19A的竖直平面D-D'截取的第二示例性结构的竖直剖面图。图19E是沿着图19A的竖直平面E-E'截取的第二示例性结构的竖直剖面图。图19F是沿着图19A的竖直平面F-F'截取的第二示例性结构的竖直剖面图。19A is a top view of a second exemplary structure after depositing a conductive gate capping layer and a planar dielectric spacer layer in accordance with a second embodiment of the present disclosure. Figure 19B is a vertical cross-sectional view of the second exemplary structure taken along the hinged vertical plane BB' of Figure 19A. Figure 19C is a vertical cross-sectional view of the second exemplary structure taken along vertical plane CC' of Figure 19A. Figure 19D is a vertical cross-sectional view of the second exemplary structure taken along vertical plane DD' of Figure 19A. Figure 19E is a vertical cross-sectional view of the second exemplary structure taken along the vertical plane EE' of Figure 19A. Figure 19F is a vertical cross-sectional view of the second exemplary structure taken along vertical plane FF' of Figure 19A.
图20A是根据本公开的第二实施方案的在图案化栅极帽盖介电层、导电栅极帽盖层和平面半导体间隔层之后的第二示例性结构的俯视图。图20B是沿着图20A的铰接竖直平面B-B'截取的第二示例性结构的竖直剖面图。图20C是沿着图20A的竖直平面C-C'截取的第二示例性结构的竖直剖面图。图20D是沿着图20A的竖直平面D-D'截取的第二示例性结构的竖直剖面图。图20E是沿着图20A的竖直平面E-E'截取的第二示例性结构的竖直剖面图。图20F是沿着图20A的竖直平面F-F'截取的第二示例性结构的竖直剖面图。20A is a top view of a second exemplary structure after patterning a gate cap dielectric layer, a conductive gate cap layer, and a planar semiconductor spacer layer in accordance with a second embodiment of the present disclosure. 20B is a vertical cross-sectional view of the second exemplary structure taken along the hinged vertical plane BB' of FIG. 20A. 20C is a vertical cross-sectional view of the second exemplary structure taken along vertical plane CC' of FIG. 20A. 20D is a vertical cross-sectional view of the second exemplary structure taken along vertical plane DD' of FIG. 20A. 20E is a vertical cross-sectional view of the second exemplary structure taken along the vertical plane EE' of FIG. 20A. 20F is a vertical cross-sectional view of the second exemplary structure taken along vertical plane FF' of FIG. 20A.
图21A是根据本公开的第二实施方案的在施加和图案化用于图案化下半导体栅极材料层的光致抗蚀剂层之后的第二示例性结构的俯视图。图21B是沿着图21A的铰接竖直平面B-B'截取的第二示例性结构的竖直剖面图。图21C是沿着图21A的竖直平面C-C'截取的第二示例性结构的竖直剖面图。图21D是沿着图21A的竖直平面D-D'截取的第二示例性结构的竖直剖面图。图21E是沿着图21A的竖直平面E-E'截取的第二示例性结构的竖直剖面图。图21F是沿着图21A的竖直平面F-F'截取的第二示例性结构的竖直剖面图。21A is a top view of a second exemplary structure after application and patterning of a photoresist layer used to pattern a lower semiconductor gate material layer in accordance with a second embodiment of the present disclosure. 21B is a vertical cross-sectional view of the second exemplary structure taken along the hinged vertical plane BB' of FIG. 21A. 21C is a vertical cross-sectional view of the second exemplary structure taken along vertical plane CC' of FIG. 21A. 21D is a vertical cross-sectional view of the second exemplary structure taken along vertical plane DD' of FIG. 21A. 21E is a vertical cross-sectional view of the second exemplary structure taken along the vertical plane EE' of FIG. 21A. 21F is a vertical cross-sectional view of the second exemplary structure taken along the vertical plane FF' of FIG. 21A.
图22A是根据本公开的第二实施方案的在施加和图案化下半导体栅极材料层和栅极介电层之后的第二示例性结构的俯视图。图22B是沿着图22A的铰接竖直平面B-B'截取的第二示例性结构的竖直剖面图。图22C是沿着图22A的竖直平面C-C'截取的第二示例性结构的竖直剖面图。图22D是沿着图22A的竖直平面D-D'截取的第二示例性结构的竖直剖面图。图22E是沿着图22A的竖直平面E-E'截取的第二示例性结构的竖直剖面图。22A is a top view of a second exemplary structure after application and patterning of a lower semiconductor gate material layer and a gate dielectric layer in accordance with a second embodiment of the present disclosure. Figure 22B is a vertical cross-sectional view of the second exemplary structure taken along the hinged vertical plane BB' of Figure 22A. Figure 22C is a vertical cross-sectional view of the second exemplary structure taken along vertical plane CC' of Figure 22A. Figure 22D is a vertical cross-sectional view of the second exemplary structure taken along vertical plane DD' of Figure 22A. Figure 22E is a vertical cross-sectional view of the second exemplary structure taken along the vertical plane EE' of Figure 22A.
图22F是沿着图22A的竖直平面F-F'截取的第二示例性结构的竖直剖面图。图22G是沿着图22A的竖直平面G-G'截取的第二示例性结构的竖直剖面图。Figure 22F is a vertical cross-sectional view of the second exemplary structure taken along vertical plane FF' of Figure 22A. 22G is a vertical cross-sectional view of the second exemplary structure taken along vertical plane GG' of FIG. 22A.
图23A是根据本公开的第二实施方案的在形成介电栅极间隔物之后的第二示例性结构的俯视图。图23B是沿着图23A的铰接竖直平面B-B'截取的第二示例性结构的竖直剖面图。图23C是沿着图23A的竖直平面C-C'截取的第二示例性结构的竖直剖面图。图23D是沿着图23A的竖直平面D-D'截取的第二示例性结构的竖直剖面图。图23E是沿着图23A的竖直平面E-E'截取的第二示例性结构的竖直剖面图。图23F是沿着图23A的竖直平面F-F'截取的第二示例性结构的竖直剖面图。图23G是沿着图23A的竖直平面G-G'截取的第二示例性结构的竖直剖面图。23A is a top view of a second exemplary structure after forming dielectric gate spacers according to a second embodiment of the present disclosure. Figure 23B is a vertical cross-sectional view of the second exemplary structure taken along the hinged vertical plane BB' of Figure 23A. Figure 23C is a vertical cross-sectional view of the second exemplary structure taken along vertical plane CC' of Figure 23A. Figure 23D is a vertical cross-sectional view of the second exemplary structure taken along vertical plane DD' of Figure 23A. Figure 23E is a vertical cross-sectional view of the second exemplary structure taken along the vertical plane EE' of Figure 23A. Figure 23F is a vertical cross-sectional view of the second exemplary structure taken along vertical plane FF' of Figure 23A. 23G is a vertical cross-sectional view of the second exemplary structure taken along vertical plane GG' of FIG. 23A.
图24A是根据本公开的第二实施方案的在形成源极区和漏极区之后的第二示例性结构的俯视图。图24B是沿着图24A的铰接竖直平面B-B'截取的第二示例性结构的竖直剖面图。图24C是沿着图24A的竖直平面C-C'截取的第二示例性结构的竖直剖面图。图24D是沿着图24A的竖直平面D-D'截取的第二示例性结构的竖直剖面图。图24E是沿着图24A的竖直平面E-E'截取的第二示例性结构的竖直剖面图。图24F是沿着图24A的竖直平面F-F'截取的第二示例性结构的竖直剖面图。图24G是沿着图24A的竖直平面G-G'截取的第二示例性结构的竖直剖面图。24A is a top view of a second exemplary structure after forming source and drain regions according to the second embodiment of the present disclosure. Figure 24B is a vertical cross-sectional view of the second exemplary structure taken along the hinged vertical plane BB' of Figure 24A. Figure 24C is a vertical cross-sectional view of the second exemplary structure taken along vertical plane CC' of Figure 24A. Figure 24D is a vertical cross-sectional view of the second exemplary structure taken along vertical plane DD' of Figure 24A. Figure 24E is a vertical cross-sectional view of the second exemplary structure taken along the vertical plane EE' of Figure 24A. Figure 24F is a vertical cross-sectional view of the second exemplary structure taken along vertical plane FF' of Figure 24A. Figure 24G is a vertical cross-sectional view of the second exemplary structure taken along vertical plane GG' of Figure 24A.
图25A是根据本公开的第二实施方案的在形成接触层级介电层和各种接触通孔结构之后的第二示例性结构的俯视图。图25B是沿着图25A的铰接竖直平面B-B'截取的第二示例性结构的竖直剖面图。图25C是沿着图25A的竖直平面C-C'截取的第二示例性结构的竖直剖面图。图25D是沿着图25A的竖直平面D-D'截取的第二示例性结构的竖直剖面图。图25E是沿着图25A的竖直平面E-E'截取的第二示例性结构的竖直剖面图。图25F是沿着图25A的竖直平面F-F'截取的第二示例性结构的竖直剖面图。25A is a top view of a second exemplary structure after forming a contact level dielectric layer and various contact via structures in accordance with a second embodiment of the present disclosure. Figure 25B is a vertical cross-sectional view of the second exemplary structure taken along the hinged vertical plane BB' of Figure 25A. Figure 25C is a vertical cross-sectional view of the second exemplary structure taken along vertical plane CC' of Figure 25A. Figure 25D is a vertical cross-sectional view of the second exemplary structure taken along vertical plane DD' of Figure 25A. Figure 25E is a vertical cross-sectional view of the second exemplary structure taken along the vertical plane EE' of Figure 25A. Figure 25F is a vertical cross-sectional view of the second exemplary structure taken along vertical plane FF' of Figure 25A.
图26A是根据本公开的第三实施方案的在形成沟槽隔离结构之后的第三示例性结构的俯视图。图26B是沿着图26A的铰接竖直平面B-B'截取的第三示例性结构的竖直剖面图。26A is a top view of a third exemplary structure after forming a trench isolation structure according to a third embodiment of the present disclosure. Figure 26B is a vertical cross-sectional view of the third exemplary structure taken along the hinged vertical plane BB' of Figure 26A.
图27A是根据本公开的第三实施方案的在形成平面半导体间隔层之后的第三示例性结构的俯视图。图27B是沿着图27A的铰接竖直平面B-B'截取的第三示例性结构的竖直剖面图。27A is a top view of a third exemplary structure after forming a planar semiconductor spacer layer according to a third embodiment of the present disclosure. Figure 27B is a vertical cross-sectional view of the third exemplary structure taken along the hinged vertical plane BB' of Figure 27A.
图28A是根据本公开的第三实施方案的在图案化平面半导体间隔层之后的第三示例性结构的俯视图。图28B是沿着图28A的铰接竖直平面B-B'截取的第三示例性结构的竖直剖面图。28A is a top view of a third exemplary structure after patterning a planar semiconductor spacer layer in accordance with a third embodiment of the present disclosure. Figure 28B is a vertical cross-sectional view of the third exemplary structure taken along the hinged vertical plane BB' of Figure 28A.
图29A是根据本公开的第三实施方案的在沉积上半导体栅极材料层和导电栅极帽盖层之后的第三示例性结构的俯视图。图29B是沿着图29A的铰接竖直平面B-B'截取的第三示例性结构的竖直剖面图。29A is a top view of a third exemplary structure after depositing a layer of semiconductor gate material and a conductive gate capping layer in accordance with a third embodiment of the present disclosure. Figure 29B is a vertical cross-sectional view of the third exemplary structure taken along the hinged vertical plane BB' of Figure 29A.
图30A是根据本公开的第三实施方案的在图案化导电栅极帽盖层和上半导体栅极材料层之后的第三示例性结构的俯视图。图30B是沿着图30A的铰接竖直平面B-B'截取的第三示例性结构的竖直剖面图。30A is a top view of a third exemplary structure after patterning a conductive gate capping layer and an upper semiconductor gate material layer in accordance with a third embodiment of the present disclosure. 30B is a vertical cross-sectional view of the third exemplary structure taken along the hinged vertical plane BB' of FIG. 30A.
图31A是根据本公开的第三实施方案的在施加和图案化用于图案化平面半导体间隔层和下半导体栅极材料层的光致抗蚀剂层之后的第三示例性结构的俯视图。图31B是沿着图31A的铰接竖直平面B-B'截取的第三示例性结构的竖直剖面图。31A is a top view of a third exemplary structure after application and patterning of a photoresist layer for patterning a planar semiconductor spacer layer and a lower semiconductor gate material layer in accordance with a third embodiment of the present disclosure. 31B is a vertical cross-sectional view of the third exemplary structure taken along the hinged vertical plane BB' of FIG. 31A.
图32A是根据本公开的第三实施方案的在施加和图案化平面半导体间隔层和下半导体栅极材料层之后的第三示例性结构的俯视图。图32B是沿着图32A的铰接竖直平面B-B'截取的第三示例性结构的竖直剖面图。图32C是沿着图32A的竖直平面C-C'截取的第三示例性结构的竖直剖面图。32A is a top view of a third exemplary structure after applying and patterning a planar semiconductor spacer layer and a lower semiconductor gate material layer in accordance with a third embodiment of the present disclosure. Figure 32B is a vertical cross-sectional view of the third exemplary structure taken along the hinged vertical plane BB' of Figure 32A. 32C is a vertical cross-sectional view of the third exemplary structure taken along vertical plane CC' of FIG. 32A.
图32D是沿着图32A的竖直平面D-D'截取的第三示例性结构的竖直剖面图。Figure 32D is a vertical cross-sectional view of the third exemplary structure taken along vertical plane DD' of Figure 32A.
图33A是根据本公开的第三实施方案的在形成介电栅极间隔物之后的第三示例性结构的俯视图。图33B是沿着图33A的铰接竖直平面B-B'截取的第三示例性结构的竖直剖面图。33A is a top view of a third exemplary structure after forming dielectric gate spacers according to a third embodiment of the present disclosure. 33B is a vertical cross-sectional view of the third exemplary structure taken along the hinged vertical plane BB' of FIG. 33A.
图34A是根据本公开的第三实施方案的在形成源极区和漏极区之后的第三示例性结构的俯视图。图34B是沿着图34A的铰接竖直平面B-B'截取的第三示例性结构的竖直剖面图。图34C是沿着图34A的竖直平面C-C'截取的第三示例性结构的竖直剖面图。图34D是沿着图34A的竖直平面D-D'截取的第三示例性结构的竖直剖面图。34A is a top view of a third exemplary structure after forming source and drain regions according to a third embodiment of the present disclosure. 34B is a vertical cross-sectional view of the third exemplary structure taken along the hinged vertical plane BB' of FIG. 34A. 34C is a vertical cross-sectional view of the third exemplary structure taken along vertical plane CC' of FIG. 34A. Figure 34D is a vertical cross-sectional view of the third exemplary structure taken along vertical plane DD' of Figure 34A.
图35A是根据本公开的第三实施方案的在形成接触层级介电层和各种接触通孔结构之后的第三示例性结构的俯视图。图35B是沿着图35A的铰接竖直平面B-B'截取的第三示例性结构的竖直剖面图。35A is a top view of a third exemplary structure after forming a contact level dielectric layer and various contact via structures in accordance with a third embodiment of the present disclosure. Figure 35B is a vertical cross-sectional view of the third exemplary structure taken along the hinged vertical plane BB' of Figure 35A.
图36A是比较用感测放大器晶体管结构的俯视图。图36B是沿着图36A的竖直平面B-B'截取的比较用感测放大器晶体管结构的竖直剖面图。FIG. 36A is a top view of the transistor structure of the comparison sense amplifier. 36B is a vertical cross-sectional view of the comparative sense amplifier transistor structure taken along the vertical plane BB' of FIG. 36A.
图37A是根据本公开的第四实施方案的第四示例性感测放大器晶体管结构的俯视图。图37B是沿着图37A的竖直平面B-B'截取的第四示例性感测放大器晶体管结构的竖直剖面图。Figure 37A is a top view of a fourth exemplary sense amplifier transistor structure according to a fourth embodiment of the present disclosure. Figure 37B is a vertical cross-sectional view of a fourth exemplary sense amplifier transistor structure taken along vertical plane BB' of Figure 37A.
图38是图36A的两个相邻比较用感测放大器晶体管结构的俯视图。图39是根据本公开的第四实施方案的图37A的两个相邻第四示例性感测放大器晶体管结构的俯视图。FIG. 38 is a top view of the structures of two adjacent comparison sense amplifier transistors of FIG. 36A. 39 is a top view of two adjacent fourth exemplary sense amplifier transistor structures of FIG. 37A according to a fourth embodiment of the present disclosure.
图40A是根据本公开的第一实施方案的第一示例性半导体结构的俯视图。图40B是沿着图40A的竖直平面B-B'截取的第一示例性半导体结构的竖直剖面图。40A is a top view of a first exemplary semiconductor structure according to a first embodiment of the present disclosure. 40B is a vertical cross-sectional view of the first exemplary semiconductor structure taken along vertical plane BB' of FIG. 40A.
图41是两个相邻比较用晶体管结构的俯视图。图42是根据本公开的第一实施方案的两个相邻第一示例性晶体管结构的俯视图。图43是根据本公开的第二实施方案的两个相邻第二示例性晶体管结构的俯视图。图44是根据本公开的第二实施方案的第二示例性晶体管结构的另选构型的俯视图。Figure 41 is a top view of the structures of two adjacent transistors for comparison. 42 is a top view of two adjacent first exemplary transistor structures according to the first embodiment of the present disclosure. 43 is a top view of two adjacent second exemplary transistor structures according to a second embodiment of the present disclosure. 44 is a top view of an alternative configuration of a second exemplary transistor structure according to a second embodiment of the present disclosure.
图45A是根据本公开的第三实施方案的第三示例性晶体管结构的俯视图。图45B是沿着图45A的竖直平面B-B'截取的第三示例性晶体管结构的竖直剖面图。Figure 45A is a top view of a third exemplary transistor structure according to a third embodiment of the present disclosure. Figure 45B is a vertical cross-sectional view of a third exemplary transistor structure taken along vertical plane BB' of Figure 45A.
图46A是根据本公开的第三实施方案的第三示例性晶体管结构的另一俯视图。图46B和图46C是分别沿着图46A的竖直面B-B'和C-C'截取的第三示例性晶体管结构的竖直剖面图。Figure 46A is another top view of a third exemplary transistor structure according to a third embodiment of the present disclosure. 46B and 46C are vertical cross-sectional views of a third exemplary transistor structure taken along vertical planes BB' and CC', respectively, of FIG. 46A.
图47A是根据本公开的第五实施方案的在形成浅沟槽之后的第五示例性结构的俯视图。图47B、图47C和图47D是分别沿着图47A的竖直面B-B'、C-C'和D-D'截取的第五示例性结构的竖直剖面图。47A is a top view of a fifth exemplary structure after forming shallow trenches according to a fifth embodiment of the present disclosure. 47B, 47C, and 47D are vertical cross-sectional views of the fifth exemplary structure taken along vertical planes BB', CC', and DD', respectively, of FIG. 47A.
图48A是根据本公开的第五实施方案的在形成浅沟槽隔离结构之后的第五示例性结构的俯视图。图48B、图48C和图48D是分别沿着图48A的竖直面B-B'、C-C'和D-D'截取的第五示例性结构的竖直剖面图。48A is a top view of a fifth exemplary structure after forming a shallow trench isolation structure according to a fifth embodiment of the present disclosure. 48B, 48C, and 48D are vertical cross-sectional views of the fifth exemplary structure taken along vertical planes BB', CC', and DD', respectively, of FIG. 48A.
图49A是根据本公开的第五实施方案的在使浅沟槽隔离结构的间隙区竖直凹陷之后的第五示例性结构的俯视图。图49B、图49C和图49D是分别沿着图49A的竖直面B-B'、C-C'和D-D'截取的第五示例性结构的竖直剖面图。49A is a top view of a fifth exemplary structure after vertically recessing a gap region of a shallow trench isolation structure according to a fifth embodiment of the present disclosure. 49B, 49C, and 49D are vertical cross-sectional views of the fifth exemplary structure taken along vertical planes BB', CC', and DD', respectively, of FIG. 49A.
图50A是根据本公开的第五实施方案的在移除硬掩模板和形成栅极介电层之后的第五示例性结构的俯视图。图50B、图50C和图50D是分别沿着图50A的竖直面B-B'、C-C'和D-D'截取的第五示例性结构的竖直剖面图。50A is a top view of a fifth exemplary structure after removing the hard mask and forming a gate dielectric layer according to a fifth embodiment of the present disclosure. 50B, 50C, and 50D are vertical cross-sectional views of the fifth exemplary structure taken along vertical planes BB', CC', and DD', respectively, of FIG. 50A.
图51A是根据本公开的第五实施方案的在形成栅极电极材料部分之后的第五示例性结构的俯视图。图51B、图51C和图51D是分别沿着图51A的竖直面B-B'、C-C'和D-D'截取的第五示例性结构的竖直剖面图。51A is a top view of a fifth exemplary structure after forming a gate electrode material portion according to a fifth embodiment of the present disclosure. 51B, 51C, and 51D are vertical cross-sectional views of the fifth exemplary structure taken along vertical planes BB', CC', and DD', respectively, of FIG. 51A.
图52A是根据本公开的第五实施方案的在形成栅极介电质和栅极电极之后的第五示例性结构的俯视图。图52B、图52C和图52D是分别沿着图52A的竖直面B-B'、C-C'和D-D'截取的第五示例性结构的竖直剖面图。52A is a top view of a fifth exemplary structure after forming a gate dielectric and a gate electrode according to a fifth embodiment of the present disclosure. 52B, 52C, and 52D are vertical cross-sectional views of the fifth exemplary structure taken along vertical planes BB', CC', and DD', respectively, of FIG. 52A.
图53A是根据本公开的第五实施方案的在形成介电衬垫层和源极/漏极扩展区之后的第五示例性结构的俯视图。图53B、图53C和图53D是分别沿着图53A的竖直面B-B'、C-C'和D-D'截取的第五示例性结构的竖直剖面图。53A is a top view of a fifth exemplary structure after forming a dielectric liner layer and source/drain extension regions according to a fifth embodiment of the present disclosure. 53B, 53C, and 53D are vertical cross-sectional views of the fifth exemplary structure taken along vertical planes BB', CC', and DD', respectively, of FIG. 53A.
图54A是根据本公开的第五实施方案的在形成主介电间隔物和深源极/漏极区之后的第五示例性结构的俯视图。图54B、图54C和图54D是分别沿着图54A的竖直面B-B'、C-C'和D-D'截取的第五示例性结构的竖直剖面图。54A is a top view of a fifth exemplary structure after forming main dielectric spacers and deep source/drain regions according to a fifth embodiment of the present disclosure. 54B, 54C, and 54D are vertical cross-sectional views of the fifth exemplary structure taken along vertical planes BB', CC', and DD', respectively, of FIG. 54A.
图55A是根据本公开的第五实施方案的在形成金属半导体合金区之后的第五示例性结构的俯视图。图55B、图55C和图55D是分别沿着图55A的竖直面B-B'、C-C'和D-D'截取的第五示例性结构的竖直剖面图。55A is a top view of a fifth exemplary structure after forming a metal-semiconductor alloy region according to a fifth embodiment of the present disclosure. 55B, 55C, and 55D are vertical cross-sectional views of the fifth exemplary structure taken along vertical planes BB', CC', and DD', respectively, of FIG. 55A.
图56A是根据本公开的第五实施方案的在形成平面化介电层之后的第五示例性结构的俯视图。图56B、图56C和图56D是分别沿着图56A的竖直面B-B'、C-C'和D-D'截取的第五示例性结构的竖直剖面图。56A is a top view of a fifth exemplary structure after forming a planarized dielectric layer according to a fifth embodiment of the present disclosure. 56B, 56C, and 56D are vertical cross-sectional views of the fifth exemplary structure taken along vertical planes BB', CC', and DD', respectively, of FIG. 56A.
图57A是根据本公开的第五实施方案的在形成各种接触通孔结构之后的第五示例性结构的俯视图。图57B、图57C和图57D是分别沿着图57A的竖直面B-B'、C-C'和D-D'截取的第五示例性结构的竖直剖面图。57A is a top view of a fifth exemplary structure after forming various contact via structures according to a fifth embodiment of the present disclosure. 57B, 57C, and 57D are vertical cross-sectional views of the fifth exemplary structure taken along vertical planes BB', CC', and DD', respectively, of FIG. 57A.
具体实施方式Detailed ways
本公开的实施方案提供了包括无边缘晶体管的晶体管电路及其制造方法,其各个方面在下面描述。此类包括无边缘晶体管的高密度晶体管电路可以在各种应用中采用,诸如存储器设备(诸如三维存储器阵列)的感测放大器和外围低电压驱动器电路。Embodiments of the present disclosure provide transistor circuits including edgeless transistors and methods of fabricating the same, various aspects of which are described below. Such high-density transistor circuits, including edgeless transistors, may be employed in a variety of applications, such as sense amplifiers and peripheral low-voltage driver circuits for memory devices such as three-dimensional memory arrays.
附图未按比例绘制。在其中示出元件的单个实例的情况下可以重复元件的多个实例,除非明确地描述或以其他方式清楚地指出不存在元件的重复。序号诸如“第一”、“第二”和“第三”仅仅被用于标识类似的元件,并且在本公开的整个说明书和权利要求书中可采用不同序号。相同的附图标号表示相同的元件或相似的元件。除非另有说明,具有相同附图标号的元件被假定具有相同的组成。如本文所用,定位在第二元件“上”的第一元件可以定位在第二元件的表面的外侧上或者第二元件的内侧上。如本文所用,如果在第一元件的表面和第二元件的表面之间存在物理接触,则第一元件“直接”定位在第二元件上。The drawings are not to scale. Where a single instance of an element is shown, multiple instances of an element may be repeated unless explicitly described or otherwise clearly indicates that there is no duplication of the element. Serial numbers such as "first," "second," and "third" are merely used to identify similar elements, and different serial numbers may be employed throughout the specification and claims of this disclosure. The same reference numbers indicate the same elements or similar elements. Unless stated otherwise, elements with the same reference number are assumed to have the same composition. As used herein, a first element positioned "on" a second element may be positioned on the outside of a surface of the second element or on the inside of the second element. As used herein, a first element is positioned "directly" on a second element if there is physical contact between the surface of the first element and the surface of the second element.
如本文所用,“层”是指包括具有厚度的区域的材料部分。层可在下层或上覆结构的整体上方延伸,或者可具有小于下层或上覆结构的范围的范围。例如,层可以定位在连续结构的顶部表面和底部表面之间或在连续结构的顶部表面和底部表面处的任何一对水平平面之间。层可水平地、竖直地和/或沿着锥形表面延伸。衬底可以是层,可以在其中包括一个或多个层,和/或可以在其上、在其之上和/或在其之下具有一个或多个层。As used herein, "layer" refers to a portion of material that includes a region having a thickness. A layer may extend over the entirety of the underlying layer or overlying structure, or may have an extent that is less than the extent of the underlying layer or overlying structure. For example, a layer may be positioned between the top and bottom surfaces of the continuous structure or between any pair of horizontal planes at the top and bottom surfaces of the continuous structure. The layers may extend horizontally, vertically and/or along tapered surfaces. The substrate may be a layer, may include one or more layers therein, and/or may have one or more layers on, above, and/or below it.
如本文所用,“层叠堆”是指层的叠堆。如本文所用,“线”或“线结构”是指具有主要延伸方向的层,即具有该层延伸最大的方向。As used herein, a "layer stack" refers to a stack of layers. As used herein, a "line" or "line structure" refers to a layer having a primary direction of extension, ie, the direction in which the layer extends greatest.
如本文所用,“半导体材料”是指具有在1.0×10-6S/cm至1.0×105S/cm的范围内的电导率的材料。如本文所用,“半导体材料”是指在其中不存在电掺杂剂的情况下具有在1.0×10-6S/cm至1.0×105S/cm的范围内的电导率的材料,并且能够在适当掺杂电掺杂剂时产生具有在1.0S/cm至1.0×105S/cm的范围内的电导率的掺杂材料。如本文所用,“电掺杂剂”是指将空穴添加到能带结构内的价带的p型掺杂剂,或者将电子添加到能带结构内的导带的n型掺杂剂。如本文所用,“导电材料”是指具有大于1.0×105S/cm的电导率的材料。如本文所用,“绝缘体材料”、“绝缘材料”或“介电材料”是指具有小于1.0×10-6S/cm的电导率的材料。如本文所用,“重掺杂半导体材料”是指以足够高的原子浓度掺杂有电掺杂剂以变成导电材料(即,具有大于1.0×105S/cm的电导率)的半导体材料。“掺杂半导体材料”可以是重掺杂半导体材料,或可以是包括呈提供在1.0×10-6S/cm至1.0×105S/cm的范围内的电导率的浓度的电掺杂剂(即,p型掺杂剂和/或n型掺杂剂)的半导体材料。“本征半导体材料”是指不掺杂有电掺杂物的半导体材料。因此,半导体材料可以是半导体的或导电的,并且可以是本征半导体材料或掺杂半导体材料。掺杂半导体材料可以是半导体的或导电的,这取决于在其中的电掺杂剂的原子浓度。如本文所用,“金属材料”是指其中包括至少一种金属元素的导电材料。所有电导率测量都在标准条件下进行。As used herein, "semiconductor material" refers to a material having an electrical conductivity in the range of 1.0×10 -6 S/cm to 1.0×10 5 S/cm. As used herein, "semiconductor material" refers to a material that has an electrical conductivity in the range of 1.0×10 -6 S/cm to 1.0×10 5 S/cm in the absence of electrical dopants and is capable of Suitable doping with electrical dopants results in a doped material having an electrical conductivity in the range of 1.0 S/cm to 1.0×10 5 S/cm. As used herein, "electrical dopant" refers to a p-type dopant that adds holes to the valence band within the energy band structure, or an n-type dopant that adds electrons to the conduction band within the energy band structure. As used herein, "conductive material" refers to a material having an electrical conductivity greater than 1.0×10 5 S/cm. As used herein, "insulator material,""insulatingmaterial," or "dielectric material" refers to a material having an electrical conductivity of less than 1.0×10 −6 S/cm. As used herein, "heavily doped semiconductor material" refers to a semiconductor material that is doped with an electrical dopant at a sufficiently high atomic concentration to become an electrically conductive material (i.e., has an electrical conductivity greater than 1.0×10 5 S/cm) . "Doped semiconductor material" may be a heavily doped semiconductor material, or may include an electrical dopant at a concentration that provides a conductivity in the range of 1.0×10 -6 S/cm to 1.0×10 5 S/cm (i.e., p-type dopants and/or n-type dopants) semiconductor materials. "Intrinsic semiconductor material" refers to a semiconductor material that is not doped with electrical dopants. Thus, a semiconductor material may be semiconducting or conductive, and may be an intrinsic semiconductor material or a doped semiconductor material. Doped semiconductor materials may be semiconducting or conductive, depending on the atomic concentration of electrical dopants therein. As used herein, "metallic material" refers to an electrically conductive material that includes at least one metallic element therein. All conductivity measurements were performed under standard conditions.
如本文中所用,“场效应晶体管”是指具有半导体沟道的任何半导体器件,电流以由外电场调制的电流密度流过所述半导体沟道。如本文所使用,“沟道区”是指其中电荷载流子的迁移率受所施加电场影响的半导体区。“栅极电极”是指通过施加电场来控制沟道区中的电子迁移率的导电材料部分。“源极区”是指供应流动穿过沟道区的电荷载流子的掺杂半导体区。“漏极区”是指接收由源极区供应且流动穿过沟道区的电荷载流子的掺杂半导体区。“源极/漏极区”可以是源极区或漏极区。“有源区”是指场效应晶体管的源极区、漏极区和沟道区的统称。“源极扩展区”是指作为源极区的一部分且具有比源极区的其余部分更低的掺杂剂浓度的掺杂半导体区。“漏极扩展区”是指作为漏极区的一部分且具有比漏极区的其余部分更低的掺杂剂浓度的掺杂半导体区。“有源区扩展”是指源极扩展区或漏极扩展区。As used herein, "field effect transistor" refers to any semiconductor device having a semiconductor channel through which current flows at a current density modulated by an external electric field. As used herein, "channel region" refers to a semiconductor region in which the mobility of charge carriers is affected by an applied electric field. "Gate electrode" refers to the portion of conductive material that controls electron mobility in the channel region through the application of an electric field. "Source region" refers to the doped semiconductor region that supplies charge carriers flowing through the channel region. "Drain region" refers to a doped semiconductor region that receives charge carriers supplied from the source region and flowing through the channel region. A "source/drain region" may be a source region or a drain region. "Active region" refers to the collective name of the source region, drain region and channel region of a field effect transistor. "Source extension region" refers to a doped semiconductor region that is part of the source region and has a lower dopant concentration than the remainder of the source region. "Drain extension region" refers to a doped semiconductor region that is part of the drain region and has a lower dopant concentration than the remainder of the drain region. "Active area extension" refers to a source extension area or a drain extension area.
参考图1A至图1F,示出了根据本公开的实施方案的第一示例性结构。第一示例性结构包括半导体衬底2。如本文所使用,“半导体衬底”是指包括至少一个半导体材料部分(即,半导体材料的至少一部分)的衬底。半导体衬底2至少在其顶部部分处包括半导体材料。半导体衬底2可以可选地在其底部部分处包括至少一个附加材料层。在一个实施方案中,半导体衬底2可以是由半导体材料(例如,单晶硅晶片)组成的块状半导体衬底,或者可以是绝缘体上半导体(SOI)衬底,其包括位于半导体(例如,硅)材料部分下面的埋入式绝缘体层(诸如,氧化硅层)和位于埋入式绝缘体层下面的手柄衬底。Referring to FIGS. 1A-1F , a first exemplary structure according to an embodiment of the present disclosure is shown. The first exemplary structure includes semiconductor substrate 2 . As used herein, "semiconductor substrate" refers to a substrate that includes at least one portion of semiconductor material (ie, at least a portion of semiconductor material). Semiconductor substrate 2 includes a semiconductor material at least at its top portion. The semiconductor substrate 2 may optionally comprise at least one additional material layer at its bottom portion. In one embodiment, the semiconductor substrate 2 may be a bulk semiconductor substrate composed of a semiconductor material (e.g., a single crystal silicon wafer), or may be a semiconductor-on-insulator (SOI) substrate, which includes a semiconductor substrate located on a semiconductor (e.g., A buried insulator layer (such as a silicon oxide layer) underlying the silicon) material portion and a handle substrate underlying the buried insulator layer.
半导体衬底2可以包括衬底半导体层4,该衬底半导体层包括轻掺杂半导体材料部分,在该衬底半导体层上可以形成至少一个场效应晶体管。在一个实施方案中,整个半导体衬底2可以是衬底半导体层4。在另一实施方案中,衬底半导体层4可以包括半导体衬底2的上部部分,诸如硅晶片中的掺杂阱。衬底半导体层4中可以包括轻掺杂半导体材料,该轻掺杂半导体材料包括原子浓度在1.0×1014/cm3至1.0×1018/cm3(诸如1.0×1015/cm3至1.0×1017/cm3)的范围内的电掺杂剂,但是也可以采用更低和更高的原子浓度。The semiconductor substrate 2 may include a substrate semiconductor layer 4 including a lightly doped semiconductor material portion, on which at least one field effect transistor may be formed. In one embodiment, the entire semiconductor substrate 2 may be the substrate semiconductor layer 4 . In another embodiment, the substrate semiconductor layer 4 may comprise an upper portion of the semiconductor substrate 2, such as a doped well in a silicon wafer. The substrate semiconductor layer 4 may include a lightly doped semiconductor material, the lightly doped semiconductor material including an atomic concentration of 1.0×10 14 /cm 3 to 1.0×10 18 /cm 3 (such as 1.0×10 15 /cm 3 to 1.0 ×10 17 /cm 3 ), but lower and higher atomic concentrations can also be used.
衬底半导体层4的半导体材料可以是元素半导体材料(诸如硅)或至少两种元素半导体材料的合金(诸如硅锗合金),或者可以是化合物半导体材料(诸如III-V化合物半导体材料或II-VI化合物半导体材料),或者可以是有机半导体材料。在半导体衬底2是块状半导体衬底的情况下,衬底半导体层4的厚度可在0.5mm至2mm的范围内。在半导体衬底2是绝缘体上半导体衬底的情况下,衬底半导体层4的厚度可在100nm至1,000nm的范围内,但是也可以采用更小和更大的厚度。The semiconductor material of the substrate semiconductor layer 4 may be an elemental semiconductor material (such as silicon) or an alloy of at least two elemental semiconductor materials (such as a silicon-germanium alloy), or may be a compound semiconductor material (such as a III-V compound semiconductor material or II- VI compound semiconductor material), or may be an organic semiconductor material. In the case where the semiconductor substrate 2 is a bulk semiconductor substrate, the thickness of the substrate semiconductor layer 4 may be in the range of 0.5 mm to 2 mm. In the case where the semiconductor substrate 2 is a semiconductor-on-insulator substrate, the thickness of the base semiconductor layer 4 may be in the range of 100 nm to 1,000 nm, but smaller and larger thicknesses may also be used.
可以在半导体衬底2的上部部分中(例如,在衬底半导体层4中)形成各种掺杂阱(5,6)。各种掺杂阱(5,6)可以包括具有相应p型掺杂的p型阱5和具有相应n型掺杂的n型阱6。例如,p型阱5可以包括第一p型阱6A、第二p型阱5B、第三p型阱5C等。n型阱6可以包括第一n型阱6A、第二n型阱6B、第三n型阱6C、第四n型阱6D等。可以采用包括各种掺杂阱(5,6)的区来形成各种半导体器件。例如,包括第一n型阱6A的区可以包括第一p型场效应晶体管区100,包括p掺杂源极和漏极区的第一p型场效应晶体管随后将形成在该第一p型场效应晶体管区中;包括第一p型阱5A的区可以包括第一n型场效应晶体管区200,包括n掺杂源极和漏极区的第一n型场效应晶体管随后将形成在该第一n型场效应晶体管区中;包括第二n型阱6B的区可以包括第二p型场效应晶体管区300,包括p掺杂源极和漏极区的第二p型场效应晶体管随后将形成在该第二p型场效应晶体管区中;包括第二p型阱5B的区可以包括第二n型场效应晶体管区400,包括n掺杂源极和漏极区的第二n型场效应晶体管随后将形成在该第二n型场效应晶体管区中;包括第三n型阱6C的区可以包括第三p型场效应晶体管区500,包括p掺杂源极和漏极区的第三p型场效应晶体管将随后形成在该第三p型场效应晶体管区中;并且包括第三p型阱5C的区可以包括第三n型场效应晶体管区600,包括n掺杂源极和漏极区的第二n型场效应晶体管随后将形成在该第三n型场效应晶体管区中。可选地,包括第四n掺杂阱6D的区可以包括第一无源器件区700,第一无源器件诸如电阻器随后形成在该第一无源器件区中。可选地,其中衬底半导体层4被物理地暴露的区可以用于无源器件区,诸如第二无源器件区800,第二无源器件诸如电容器随后形成在该无源器件区中。例如,区100和200可以包含低电压晶体管,区300和400可以包含在比低电压晶体管更低的电压下操作的超低电压晶体管,并且区500和600可以包含在比低电压晶体管更高的电压下操作的高电压晶体管。Various doped wells (5, 6) may be formed in the upper part of the semiconductor substrate 2 (eg in the substrate semiconductor layer 4). The various doped wells (5,6) may include a p-type well 5 with corresponding p-type doping and an n-type well 6 with corresponding n-type doping. For example, the p-type well 5 may include a first p-type well 6A, a second p-type well 5B, a third p-type well 5C, and the like. The n-type well 6 may include a first n-type well 6A, a second n-type well 6B, a third n-type well 6C, a fourth n-type well 6D, and so on. Various semiconductor devices may be formed using regions including various doped wells (5,6). For example, the region including first n-type well 6A may include a first p-type field effect transistor region 100 in which a first p-type field effect transistor including p-doped source and drain regions will subsequently be formed. In the field effect transistor region; the region including the first p-type well 5A may include the first n-type field effect transistor region 200 in which a first n-type field effect transistor including n-doped source and drain regions will subsequently be formed. In the first n-type field effect transistor region; the region including the second n-type well 6B may include a second p-type field effect transistor region 300, followed by a second p-type field effect transistor including p-doped source and drain regions. will be formed in this second p-type field effect transistor region; the region including the second p-type well 5B may include a second n-type field effect transistor region 400, a second n-type including n-doped source and drain regions. Field effect transistors will then be formed in this second n-type field effect transistor region; the region including the third n-type well 6C may include the third p-type field effect transistor region 500, including p-doped source and drain regions. A third p-type field effect transistor will subsequently be formed in this third p-type field effect transistor region; and the region including the third p-type well 5C may include a third n-type field effect transistor region 600, including an n-doped source A second n-type field effect transistor and a drain region will then be formed in the third n-type field effect transistor region. Alternatively, the region including the fourth n-doped well 6D may include a first passive device region 700 in which a first passive device such as a resistor is subsequently formed. Alternatively, the region where the substrate semiconductor layer 4 is physically exposed may be used for a passive device region, such as the second passive device region 800, in which a second passive device such as a capacitor is subsequently formed. For example, regions 100 and 200 may include low voltage transistors, regions 300 and 400 may include ultra-low voltage transistors that operate at a lower voltage than low voltage transistors, and regions 500 and 600 may include regions that operate at a higher voltage than low voltage transistors. A high voltage transistor that operates under voltage.
各种器件区可以按任何图案布置在半导体衬底2的顶部表面上。虽然采用其中半导体沟道的方向(即,场效应晶体管的沟道区中的电流流动的方向)平行于第一水平方向hd1且垂直于第二水平方向hd2的实施方案描述本公开,但应当理解,半导体沟道的方向可以针对随后形成的每个场效应晶体管沿着任何方向取向。可以适当地选择每个掺杂阱(5,6)的深度和每个掺杂阱(5,6)中的掺杂剂浓度。例如,每个掺杂阱(5,6)中的掺杂剂浓度可在1.0×1014/cm3至1.0×1018/cm3(诸如1.0×1015/cm3至1.0×1017/cm3)的范围内,但是也可以采用更低和更高的原子浓度。每个阱(5,6)的深度可在50nm至2,000nm的范围内,但是也可以采用更小和更大的深度。Various device regions may be arranged on the top surface of semiconductor substrate 2 in any pattern. Although the present disclosure is described using an embodiment in which the direction of the semiconductor channel (ie, the direction of current flow in the channel region of the field effect transistor) is parallel to the first horizontal direction hd1 and perpendicular to the second horizontal direction hd2 , it should be understood that , the direction of the semiconductor channel can be oriented in any direction for each field effect transistor subsequently formed. The depth of each doped well (5,6) and the dopant concentration in each doped well (5,6) may be appropriately selected. For example, the dopant concentration in each doped well (5, 6) may be in the range of 1.0×10 14 /cm 3 to 1.0×10 18 /cm 3 (such as 1.0×10 15 /cm 3 to 1.0×10 17 / cm 3 ), but lower and higher atomic concentrations can also be used. The depth of each well (5,6) may range from 50 nm to 2,000 nm, although smaller and larger depths are also possible.
参考图2A至图2F,各种栅极介电层(20L,22L)可以形成在半导体衬底2的顶部表面上。例如,第一栅极介电层22L可以形成在其中随后将形成采用较薄栅极介电质的低电压场效应晶体管和超低电压场效应晶体管的区中,并且第二栅极介电层20L可以形成在随后将形成采用较厚栅极介电质的高电压场效应晶体管的区中。在例示性示例中,第一p型场效应晶体管区100可以包括低电压p型场效应晶体管,第一n型场效应晶体管区200可以包括低电压n型场效应晶体管,第二p型场效应晶体管区300可以包括超低电压p型场效应晶体管,第二n型场效应晶体管区400可以包括超低电压n型场效应晶体管,第三p型场效应晶体管区500可以包括高电压p型场效应晶体管,并且第三n型场效应晶体管区600可以包括高电压n型场效应晶体管。可以在存储器设备的外围(例如,驱动器)电路中采用以上晶体管。可以在存储器设备的感测放大器电路中采用附加晶体管。在这种情况下,第一栅极介电层22L可以形成在第一p型场效应晶体管区100、第一n型场效应晶体管区200、第二p型场效应晶体管区300和第二n型场效应晶体管区400中。第二栅极介电层20L可以形成在第三p型场效应晶体管区500中和第三n型场效应晶体管区600中。根据需要,第一无源器件区700和第二无源器件区800可以包括第一栅极介电层22L的一部分和/或第二栅极介电层20L的一部分。在例示性示例中,第二栅极介电层20L可以形成在半导体衬底2的顶部表面上,并且可被图案化以使得从第一p型场效应晶体管区100、第一n型场效应晶体管区200、第二p型场效应晶体管区300和第二n型场效应晶体管区400移除第二栅极介电层20L的部分。随后,可通过热氧化半导体衬底2的物理暴露表面部分和/或通过沉积介电材料(诸如氧化硅)来形成第一栅极介电层22L。第一栅极介电层22L的厚度可在1nm至6nm(诸如1.5nm至3nm)的范围内,但是也可以采用更小和更大的厚度。在超低电压晶体管区300和400中相比,第一栅极介电层22L在低电压晶体管区100和200中可以更厚。第二栅极介电层20L的厚度可以比第一栅极介电层22L的厚度更厚,并且可在4nm至30nm(诸如6nm至15nm)的范围内,但是也可以采用更小和更大的厚度。Referring to FIGS. 2A-2F , various gate dielectric layers ( 20L, 22L) may be formed on the top surface of semiconductor substrate 2 . For example, the first gate dielectric layer 22L may be formed in a region where low voltage field effect transistors and ultra-low voltage field effect transistors employing thinner gate dielectrics will subsequently be formed, and the second gate dielectric layer 22L 20L may be formed in areas where high voltage field effect transistors using thicker gate dielectrics will subsequently be formed. In an illustrative example, the first p-type field effect transistor region 100 may include a low voltage p-type field effect transistor, the first n-type field effect transistor region 200 may include a low voltage n-type field effect transistor, and the second p-type field effect transistor may include a low voltage p-type field effect transistor. Transistor region 300 may include ultra-low voltage p-type field effect transistors, second n-type field effect transistor region 400 may include ultra-low voltage n-type field effect transistors, and third p-type field effect transistor region 500 may include high voltage p-type field effect transistors. effect transistor, and the third n-type field effect transistor region 600 may include a high voltage n-type field effect transistor. The above transistors may be employed in peripheral (eg, driver) circuitry of the memory device. Additional transistors may be employed in the sense amplifier circuit of the memory device. In this case, the first gate dielectric layer 22L may be formed in the first p-type field effect transistor region 100, the first n-type field effect transistor region 200, the second p-type field effect transistor region 300 and the second n-type field effect transistor region 100. field effect transistor region 400 . The second gate dielectric layer 20L may be formed in the third p-type field effect transistor region 500 and the third n-type field effect transistor region 600 . As needed, the first passive device region 700 and the second passive device region 800 may include a portion of the first gate dielectric layer 22L and/or a portion of the second gate dielectric layer 20L. In an illustrative example, the second gate dielectric layer 20L may be formed on the top surface of the semiconductor substrate 2 and may be patterned such that from the first p-type field effect transistor region 100 , the first n-type field effect transistor region 100 The transistor region 200, the second p-type field effect transistor region 300, and the second n-type field effect transistor region 400 remove portions of the second gate dielectric layer 20L. Subsequently, first gate dielectric layer 22L may be formed by thermally oxidizing a physically exposed surface portion of semiconductor substrate 2 and/or by depositing a dielectric material, such as silicon oxide. The thickness of first gate dielectric layer 22L may be in the range of 1 nm to 6 nm, such as 1.5 nm to 3 nm, although smaller and larger thicknesses may also be used. The first gate dielectric layer 22L may be thicker in the low voltage transistor regions 100 and 200 than in the ultra-low voltage transistor regions 300 and 400 . The thickness of the second gate dielectric layer 20L may be thicker than that of the first gate dielectric layer 22L, and may be in the range of 4 nm to 30 nm (such as 6 nm to 15 nm), but smaller and larger thicknesses may also be used. thickness of.
可以在第一和第二栅极介电层(22L,20L)上形成抛光停止垫层23L和半导体栅极材料层24L。抛光停止垫层23L可以包括可以用作抛光停止物的任何合适的牺牲材料,诸如氮化硅和/或氮化硅和氧化硅的双层。半导体栅极材料层24L可以包括重掺杂多晶硅层。可选地,抛光停止垫层23L也可以形成在半导体栅极材料层24L的顶部上。层(23L,24L)的厚度可在50nm至300nm(诸如100nm至200nm)的范围内,但是也可以采用更小和更大的厚度。A polish stop pad layer 23L and a semiconductor gate material layer 24L may be formed on the first and second gate dielectric layers (22L, 20L). Polish stop pad layer 23L may include any suitable sacrificial material that may serve as a polish stop, such as silicon nitride and/or a bilayer of silicon nitride and silicon oxide. Semiconductor gate material layer 24L may include a heavily doped polysilicon layer. Alternatively, polish stop pad layer 23L may also be formed on top of semiconductor gate material layer 24L. The thickness of the layers (23L, 24L) may be in the range of 50 nm to 300 nm (such as 100 nm to 200 nm), although smaller and larger thicknesses may also be used.
参考图3A至图3F,可以在层(23L,24L)上沉积掩模层29,诸如光致抗蚀剂层或硬掩模层29。掩模层29被图案化以围绕其中随后将形成半导体器件的每个区域形成开口的图案。例如,在场效应晶体管区(100、200、300、400、500、600)的区域内,掩模层29中的开口的区域可以位于有源区的区域之外(即,源极区、漏极区和沟道区的区域之外)。在无源器件区(700,800)的区域内,每个掩模层29中的开口的区域可以位于随后将形成的无源器件的区域之外。可执行各向异性蚀刻,以将掩模层29中的开口的图案转印穿过下面层。例如,深沟槽7D可在区500、600、700和800中穿过抛光停止垫层23L形成到半导体衬底2的上部部分中。深沟槽7D的深度可在1,000nm至2,000nm的范围内,但是也可以采用更小和更大的深度。浅沟槽7C可以在区100、200、300和400中穿过半导体栅极材料层24L(并且可选地穿过位于半导体栅极材料层24L上的抛光停止垫层的任何部分)形成到半导体衬底2的上部部分中。浅沟槽7S的深度可以比深沟槽7D的深度更浅。浅沟槽7S的深度可在150nm至500nm的范围内,但是也可以采用更小和更大的深度。随后可以移除掩模层29。深沟槽7D和浅沟槽7S的组合统称为沟槽7。沟槽7将层(23L,24L)划分为抛光停止板23和栅极电极材料板24。此外,沟槽将栅极介电层(22L,20L)划分为栅极介电板(22,20),这些栅极介电板可以包括例如第一栅极介电板22和第二栅极介电板20。Referring to Figures 3A-3F, a mask layer 29, such as a photoresist layer or a hard mask layer 29, may be deposited over layers (23L, 24L). Mask layer 29 is patterned to form a pattern of openings around each area in which a semiconductor device will subsequently be formed. For example, within the area of the field effect transistor regions (100, 200, 300, 400, 500, 600), the area of the opening in the mask layer 29 may be located outside the area of the active area (ie, source area, drain area area and channel area). Within the area of the passive device regions (700, 800), the area of the openings in each mask layer 29 may be located outside the area of the passive devices that will subsequently be formed. Anisotropic etching may be performed to transfer the pattern of openings in mask layer 29 through the underlying layer. For example, deep trenches 7D may be formed in regions 500, 600, 700, and 800 into the upper portion of semiconductor substrate 2 through polish stop pad layer 23L. The depth of deep trench 7D can range from 1,000nm to 2,000nm, but smaller and larger depths are also possible. Shallow trenches 7C may be formed in regions 100, 200, 300, and 400 through the semiconductor gate material layer 24L (and optionally through any portion of the polish stop pad layer located on the semiconductor gate material layer 24L) to the semiconductor in the upper part of substrate 2. The depth of the shallow trench 7S may be shallower than the depth of the deep trench 7D. The depth of shallow trench 7S can range from 150nm to 500nm, but smaller and larger depths are also possible. Masking layer 29 can then be removed. The combination of deep trench 7D and shallow trench 7S is collectively referred to as trench 7 . The trench 7 divides the layers (23L, 24L) into polishing stop plates 23 and gate electrode material plates 24. Additionally, trenches divide the gate dielectric layers (22L, 20L) into gate dielectric plates (22, 20), which may include, for example, a first gate dielectric plate 22 and a second gate dielectric plate 22, 20L. Dielectric plate 20.
参考图4,至少一个沟槽填充材料层8L可以保形地沉积在沟槽7中以及抛光停止板23和栅极电极材料板24上方。该至少一个沟槽填充材料层8L可以由至少一种介电填充材料(诸如氧化硅)组成,或者可以包括介电衬垫(诸如氧化硅衬垫)与至少一种半导体填充材料(诸如非晶硅或多晶硅)的组合。Referring to FIG. 4 , at least one layer of trench fill material 8L may be conformally deposited in trench 7 and over polish stop plate 23 and gate electrode material plate 24 . The at least one trench fill material layer 8L may be composed of at least one dielectric fill material, such as silicon oxide, or may include a dielectric liner, such as a silicon oxide liner, and at least one semiconductor fill material, such as an amorphous silicon or polysilicon).
参考图5A至图5F,可以通过平面化工艺从抛光停止板23和栅极电极材料板24的顶部表面上方移除至少一个沟槽填充材料层8L的多余部分,该平面化工艺可以包括化学机械抛光(CMP)工艺。CMP工艺在抛光停止板23上停止,并且如果栅极电极材料板24暴露在抛光停止板23之间,则可选地在这些栅极电极材料板上停止。可以在CMP工艺期间移除位于栅极电极材料板24上方的抛光停止板23,并且通过CMP工艺将位于其他区中的抛光停止板23变薄,并且/或者通过选择性蚀刻(诸如热磷酸蚀刻)将这些抛光停止板完全或部分剥离。Referring to FIGS. 5A to 5F , excess portions of at least one trench filling material layer 8L may be removed from above the top surfaces of the polishing stop plate 23 and the gate electrode material plate 24 through a planarization process, which may include chemical mechanical Polishing (CMP) process. The CMP process stops at the polishing stop plates 23 and optionally at the gate electrode material plates 24 if they are exposed between the polishing stop plates 23 . The polish stop plate 23 located above the gate electrode material plate 24 may be removed during the CMP process and the polish stop plate 23 located in other areas may be thinned by the CMP process and/or by selective etching such as hot phosphoric acid etching. ) Completely or partially peel off these polish stop plates.
填充沟槽7的至少一个沟槽填充材料层8L的剩余部分构成沟槽隔离结构8,这些沟槽隔离结构可以是使半导体衬底2的半导体材料与介电表面接触并且在随后将形成的相邻半导体器件之间提供电隔离的连续结构。沟槽隔离结构8包括位于深沟槽7D中的深沟槽隔离结构8D和位于浅沟槽7S中的浅沟槽隔离结构8S。The remainder of the at least one trench fill material layer 8L filling the trench 7 constitutes trench isolation structures 8 which may be phases that bring the semiconductor material of the semiconductor substrate 2 into contact with the dielectric surface and will subsequently be formed. A continuous structure that provides electrical isolation between adjacent semiconductor devices. The trench isolation structure 8 includes a deep trench isolation structure 8D located in the deep trench 7D and a shallow trench isolation structure 8S located in the shallow trench 7S.
一般来讲,沟槽隔离结构8可以穿过板(23L,24L)和栅极介电层(22L,20L)而形成。半导体栅极材料层24L和第一栅极介电层22L的图案化部分包括由沟槽隔离结构8的相应部分横向围绕的栅极介电板22和栅极电极材料板24的堆叠。Generally speaking, trench isolation structure 8 may be formed through the plates (23L, 24L) and gate dielectric layers (22L, 20L). The patterned portions of semiconductor gate material layer 24L and first gate dielectric layer 22L include a stack of gate dielectric plates 22 and gate electrode material plates 24 laterally surrounded by corresponding portions of trench isolation structures 8 .
参考图6A至图6F,可以在栅极电极材料板(24,23)和沟槽隔离结构8上方沉积平面介电间隔层30L和平面半导体间隔层34L。平面介电间隔层30L包括介电材料诸如氧化硅,并且可以通过保形或非保形沉积工艺形成。平面介电间隔层30L的厚度可在3nm至30nm的范围内,但是也可以采用更小和更大的厚度。平面半导体间隔层34L包括半导体材料,诸如多晶硅材料、硅锗合金材料或化合物半导体材料。平面半导体间隔层34L的厚度可在30nm至300nm(诸如60nm至150nm)的范围内,但是也可以采用更小和更大的厚度。Referring to FIGS. 6A-6F , a planar dielectric spacer layer 30L and a planar semiconductor spacer layer 34L may be deposited over the gate electrode material plates (24, 23) and trench isolation structure 8. Planar dielectric spacer layer 30L includes a dielectric material such as silicon oxide, and may be formed by a conformal or non-conformal deposition process. The thickness of planar dielectric spacer layer 30L may be in the range of 3 nm to 30 nm, although smaller and larger thicknesses may also be used. The planar semiconductor spacer layer 34L includes a semiconductor material, such as polysilicon material, silicon germanium alloy material, or compound semiconductor material. The thickness of the planar semiconductor spacer layer 34L may be in the range of 30 nm to 300 nm, such as 60 nm to 150 nm, although smaller and larger thicknesses may also be used.
参考图7A至图7F,光致抗蚀剂层(未示出)被施加在第一示例性结构上方,并且可被光刻图案化以在第一p型阱5A与沟槽隔离结构8之间的界面的区域上方以及在第一n型阱6A与沟槽隔离结构8之间的界面的区域上方形成开口。具体地,光致抗蚀剂层中的开口可以形成在包括低电压场效应晶体管的沟道区之间的界面的区域中,该低电压场效应晶体管随后将形成在第一p型场效应晶体管区100中和第一n型场效应晶体管区200中。此外,可以从其中随后将形成采用厚栅极介电质的高电压场效应晶体管的区域(诸如,第三p型场效应晶体管区500和第三n型场效应晶体管区600的区域)移除光致抗蚀剂层。Referring to FIGS. 7A-7F , a photoresist layer (not shown) is applied over the first exemplary structure and may be photolithographically patterned to form a gap between the first p-type well 5A and the trench isolation structure 8 Openings are formed above the region of the interface between the first n-type well 6A and the trench isolation structure 8 . Specifically, the opening in the photoresist layer may be formed in a region including an interface between channel regions of a low voltage field effect transistor that will subsequently be formed in a first p-type field effect transistor. in region 100 and in first n-type field effect transistor region 200 . Additionally, regions in which high voltage field effect transistors employing thick gate dielectrics will subsequently be formed, such as the third p-type field effect transistor region 500 and the third n-type field effect transistor region 600 , may be removed. Photoresist layer.
可执行各向异性蚀刻工艺,以移除平面半导体间隔层34L和平面介电间隔层30L的未掩蔽部分。板23和沟槽隔离结构8的顶部表面可以在第三p型场效应晶体管区500和第三n型场效应晶体管区600中物理地暴露。在一个实施方案中,穿过第一p型场效应晶体管区100中和第一n型场效应晶体管区200中的平面半导体间隔层34L和平面介电间隔层30L的开口可以包括浅沟槽隔离结构8S的一部分的区域、第一栅极电极材料板24的一部分的区域以及另一第一栅极电极材料板24的一部分的区域。An anisotropic etching process may be performed to remove unmasked portions of planar semiconductor spacer layer 34L and planar dielectric spacer layer 30L. The top surface of the plate 23 and the trench isolation structure 8 may be physically exposed in the third p-type field effect transistor region 500 and the third n-type field effect transistor region 600 . In one embodiment, openings through planar semiconductor spacer layer 34L and planar dielectric spacer layer 30L in first p-type field effect transistor region 100 and in first n-type field effect transistor region 200 may include shallow trench isolation. An area of a portion of structure 8S, an area of a portion of first gate electrode material plate 24 , and an area of a portion of another first gate electrode material plate 24 .
一般来讲,平面半导体间隔层34L和平面介电间隔层30L可以采用蚀刻工艺来图案化,该蚀刻工艺采用蚀刻掩模,诸如图案化光致抗蚀剂层。通过图案化平面半导体间隔层34L和平面介电间隔层30L来物理地暴露第一半导体栅极材料层24L的顶部表面的一部分(包括第一半导体栅极材料板24的顶部表面的一部分)。随后可以例如通过灰化去除光致抗蚀剂层。Generally speaking, planar semiconductor spacer layer 34L and planar dielectric spacer layer 30L may be patterned using an etching process using an etch mask, such as a patterned photoresist layer. A portion of the top surface of first semiconductor gate material layer 24L (including a portion of the top surface of first semiconductor gate material plate 24 ) is physically exposed by patterning planar semiconductor spacer layer 34L and planar dielectric spacer layer 30L. The photoresist layer can then be removed, for example by ashing.
参考图8A至图8F,包括金属材料的导电栅极连接材料层可以直接沉积在物理暴露的顶部表面板(23,24)和沟槽隔离结构8上。在一个实施方案中,导电栅极连接材料层可以包括导电栅极帽盖层40L。导电栅极帽盖层40L可以包括金属材料,诸如元素金属(例如,钨和/或钛)、金属间合金、导电金属氮化物(例如,TiN或WN)、导电金属碳化物、重掺杂半导体(例如,重掺杂多晶硅)和/或导电金属半导体合金(诸如,金属硅化物)。导电栅极帽盖层40L的厚度可在20nm至200nm(诸如40nm至100nm)的范围内,但是也可以采用更小和更大的厚度。一般来讲,导电栅极帽盖层40L可以沉积在平面半导体间隔层34L上方并且直接沉积在层(23L,24L)的剩余部分的顶部表面上,即直接沉积在板(23,24)的顶部表面上。Referring to FIGS. 8A to 8F , a conductive gate connection material layer including a metallic material may be deposited directly on the physically exposed top surface plate ( 23 , 24 ) and trench isolation structure 8 . In one embodiment, the conductive gate connection material layer may include conductive gate capping layer 40L. Conductive gate capping layer 40L may include metallic materials such as elemental metals (eg, tungsten and/or titanium), intermetallic alloys, conductive metal nitrides (eg, TiN or WN), conductive metal carbides, heavily doped semiconductors (eg, heavily doped polysilicon) and/or conductive metal semiconductor alloys (such as metal silicides). The thickness of conductive gate capping layer 40L may range from 20 nm to 200 nm, such as 40 nm to 100 nm, although smaller and larger thicknesses may also be used. Generally speaking, the conductive gate capping layer 40L may be deposited over the planar semiconductor spacer layer 34L and directly on the top surfaces of the remainder of the layers (23L, 24L), i.e. directly on top of the plates (23, 24) On the surface.
随后可在导电栅极帽盖层40L上方沉积栅极帽盖介电层50L。栅极帽盖介电层50L包括介电材料,诸如氮化硅。栅极帽盖介电层50L的厚度可在20nm至100nm(诸如30nm至50nm)的范围内,但是也可以采用更小和更大的厚度。Gate cap dielectric layer 50L may then be deposited over conductive gate cap layer 40L. Gate cap dielectric layer 50L includes a dielectric material, such as silicon nitride. Gate cap dielectric layer 50L may have a thickness in the range of 20 nm to 100 nm, such as 30 nm to 50 nm, although smaller and larger thicknesses may also be used.
参考图9A至图9F,第一光致抗蚀剂层53可被施加在第一示例性结构上方,并且可被光刻图案化以形成离散图案化光致抗蚀剂材料部分。第一光致抗蚀剂层53的图案化部分可以包括覆盖在第一p型场效应晶体管区100中和第一n型场效应晶体管区200中的平面半导体材料层34L的边缘上面的第一部分。第一光致抗蚀剂层53的图案化部分可以包括限定将形成在第三p型场效应晶体管区500中和第三n型场效应晶体管区600中的栅极电极的形状的第二部分。第一光致抗蚀剂层53的图案化部分可以包括覆盖第一无源器件区700内和第二无源器件区800中的相应区域的附加部分。Referring to FIGS. 9A-9F , a first photoresist layer 53 may be applied over the first exemplary structure and may be photolithographically patterned to form discrete patterned photoresist material portions. The patterned portion of first photoresist layer 53 may include a first portion overlying an edge of planar semiconductor material layer 34L in first p-type field effect transistor region 100 and in first n-type field effect transistor region 200 . The patterned portion of the first photoresist layer 53 may include a second portion defining the shape of the gate electrode to be formed in the third p-type field effect transistor region 500 and the third n-type field effect transistor region 600 . The patterned portion of the first photoresist layer 53 may include additional portions covering corresponding areas within the first passive device region 700 and the second passive device region 800 .
可执行第一各向异性蚀刻工艺,以将第一光致抗蚀剂层53中的图案转印穿过栅极帽盖介电层50L、导电栅极帽盖层40L、平面半导体间隔层34L和板23的位于平面介电间隔层30L的区域之外的部分,这些部分包括板23的位于第三p型场效应晶体管区500和第三n型场效应晶体管区600内的部分。平面介电间隔层30L、第二栅极介电板20和沟槽隔离结构8可以用作第一各向异性蚀刻工艺的蚀刻停止结构。在平面介电间隔层30L、第二栅极介电板20和沟槽隔离结构8包括氧化硅的情况下,第一各向异性蚀刻工艺的终端步骤的蚀刻化学物质可以对于氧化硅选择性地蚀刻平面半导体间隔层34L和板23的半导体材料。A first anisotropic etch process may be performed to transfer the pattern in first photoresist layer 53 through gate cap dielectric layer 5OL, conductive gate cap layer 4OL, planar semiconductor spacer layer 34L and portions of plate 23 located outside the area of planar dielectric spacer layer 30L, including portions of plate 23 located within third p-type field effect transistor region 500 and third n-type field effect transistor region 600 . Planar dielectric spacer layer 30L, second gate dielectric plate 20 and trench isolation structure 8 may serve as etch stop structures for the first anisotropic etching process. In the case where planar dielectric spacer layer 30L, second gate dielectric plate 20 and trench isolation structure 8 include silicon oxide, the etch chemistry of the termination step of the first anisotropic etch process may be selective to silicon oxide. The planar semiconductor spacer layer 34L and the semiconductor material of the plate 23 are etched.
栅极帽盖介电层50L的每个图案化部分包括栅极帽盖介电质50。导电栅极帽盖层40L的每个图案化部分包括导电栅极帽盖结构40。平面半导体间隔层34L的每个图案化部分包括平面半导体间隔板34。Each patterned portion of gate cap dielectric layer 50L includes gate cap dielectric 50 . Each patterned portion of conductive gate cap layer 40L includes conductive gate cap structure 40 . Each patterned portion of planar semiconductor spacer layer 34L includes planar semiconductor spacer plate 34 .
第一栅极帽盖介电质50、第一导电栅极帽盖结构40和第一平面半导体间隔板34的邻接组合可以形成在第一p型场效应晶体管区100和/或第一n型场效应晶体管区200中的每个栅极电极材料板24的顶部表面上。在这种情况下,第一导电栅极帽盖结构40可以形成在第一栅极电极材料板24的一部分的物理暴露的顶部表面上。根据本发明的一个方面,第一p型场效应晶体管区100或第一n型场效应晶体管区200中的第一导电栅极帽盖结构40包括:第一区段,该第一区段接触下面的栅极电极材料板24的顶部表面的一部分;第二区段,该第二区段覆盖在第一平面介电间隔层34L上面;和连接区段,该连接区段接触第一平面介电间隔层34L的第一侧壁并连接第一区段和第二区段。A contiguous combination of first gate cap dielectric 50 , first conductive gate cap structure 40 and first planar semiconductor spacer 34 may be formed in first p-type field effect transistor region 100 and/or first n-type on the top surface of each gate electrode material plate 24 in field effect transistor region 200 . In this case, the first conductive gate cap structure 40 may be formed on a physically exposed top surface of a portion of the first plate of gate electrode material 24 . According to one aspect of the invention, the first conductive gate cap structure 40 in the first p-type field effect transistor region 100 or the first n-type field effect transistor region 200 includes: a first section contacting a portion of the top surface of the underlying plate of gate electrode material 24; a second section overlying the first planar dielectric spacer layer 34L; and a connection section contacting the first planar dielectric spacer 34L. The first sidewall of electrical isolation layer 34L connects the first section and the second section.
根据本发明的一个方面,第一导电栅极帽盖结构40的一部分覆盖浅沟槽隔离结构8的下面部分的顶部表面的一部分,并且第一导电栅极帽盖结构40的底部表面的一部分接触浅沟槽隔离结构8的下面部分的顶部表面的该部分。第一平面半导体间隔板34的第一侧壁覆盖在平面介电间隔层30L的第一侧壁上面、与该平面介电间隔层的第一侧壁竖直重合,并且接触第一导电栅极帽盖结构40的连接区段。第一平面半导体间隔板34可以形成在平面介电间隔层30L的顶部表面上,而半导体栅极板24(即,半导体栅极材料层24L的一部分)由平面介电间隔层30L覆盖。第一导电栅极帽盖结构40直接形成在第一平面半导体间隔板34上。随后可以例如通过灰化移除第一光致抗蚀剂层53。According to one aspect of the invention, a portion of the first conductive gate cap structure 40 covers a portion of the top surface of the lower portion of the shallow trench isolation structure 8 and a portion of the bottom surface of the first conductive gate cap structure 40 contacts This portion of the top surface of the underlying portion of the shallow trench isolation structure 8 . The first sidewall of the first planar semiconductor spacer 34 overlies, vertically coincides with the first sidewall of the planar dielectric spacer 30L, and contacts the first conductive gate. Connection section of cap structure 40 . First planar semiconductor spacer plate 34 may be formed on a top surface of planar dielectric spacer layer 30L, with semiconductor gate plate 24 (ie, a portion of semiconductor gate material layer 24L) covered by planar dielectric spacer layer 30L. The first conductive gate cap structure 40 is formed directly on the first planar semiconductor spacer plate 34 . The first photoresist layer 53 may then be removed, for example by ashing.
参考图10A至图10F,第二光致抗蚀剂层57可被施加在第一示例性结构上方,并且可被光刻图案化以提供图案化光致抗蚀剂材料部分,这些图案化光致抗蚀剂材料部分具有随后将形成在第一p型场效应晶体管区100、第一n型场效应晶体管区200、第二p型场效应晶体管区300和第二n型场效应晶体管区400中的栅极电极的形状。在一个实施方案中,第二光致抗蚀剂层57的图案化部分的区域可以包括在图9A至图9F的处理步骤中采用的第一光致抗蚀剂层53的图案化部分的全部区域。第二光致抗蚀剂层57可以覆盖第三p型场效应晶体管区500、第三n型场效应晶体管区600和无源器件区(700,800)的全部区域。Referring to FIGS. 10A-10F , a second photoresist layer 57 may be applied over the first exemplary structure and may be photolithographically patterned to provide patterned photoresist material portions that pattern the photoresist material. The resist material portions will subsequently be formed in the first p-type field effect transistor region 100 , the first n-type field effect transistor region 200 , the second p-type field effect transistor region 300 , and the second n-type field effect transistor region 400 the shape of the gate electrode. In one embodiment, the area of the patterned portion of the second photoresist layer 57 may include all of the patterned portion of the first photoresist layer 53 employed in the processing steps of Figures 9A-9F. area. The second photoresist layer 57 may cover all areas of the third p-type field effect transistor region 500, the third n-type field effect transistor region 600, and the passive device regions (700, 800).
参考图11A至图11G,可执行第二各向异性蚀刻工艺,以将第二光致抗蚀剂层57的图案转印穿过平面介电间隔层30L、抛光停止板23、栅极电极材料板24和第一栅极介电板22。平面介电间隔层30L的每个图案化部分构成平面介电间隔板30。抛光停止板23的每个图案化部分构成介电部分13。介电部分13可以包括氮化硅部分,这些氮化硅部分用作区500和600中的高压晶体管中的复合氮化硅/氧化硅栅极介电质(13,20)的一部分。栅极电极材料板24的每个图案化部分包括栅极电极14。第一栅极介电板22的每个图案化部分构成第一栅极介电质12。第二各向异性蚀刻工艺的终端部分对于半导体衬底2的半导体材料可以是选择性的。随后可以例如通过灰化移除第二光致抗蚀剂层57。Referring to FIGS. 11A-11G , a second anisotropic etching process may be performed to transfer the pattern of the second photoresist layer 57 through the planar dielectric spacer layer 30L, the polish stop plate 23 , the gate electrode material plate 24 and first gate dielectric plate 22. Each patterned portion of planar dielectric spacer layer 30L constitutes planar dielectric spacer plate 30 . Each patterned portion of the polish stop plate 23 constitutes the dielectric portion 13 . Dielectric portion 13 may include silicon nitride portions used as part of the composite silicon nitride/silicon oxide gate dielectric (13, 20) in the high voltage transistors in regions 500 and 600. Each patterned portion of the plate of gate electrode material 24 includes a gate electrode 14 . Each patterned portion of first gate dielectric plate 22 constitutes first gate dielectric 12 . The terminal portion of the second anisotropic etching process may be selective to the semiconductor material of the semiconductor substrate 2 . The second photoresist layer 57 may then be removed, for example by ashing.
一般来讲,第一栅极介电板22和栅极电极材料板24的堆叠可以被图案化为第一栅极介电质12和第一栅极电极14的堆叠。通过采用光致抗蚀剂层57作为图案化蚀刻掩模的第二各向异性蚀刻工艺将栅极电极材料板24图案化为栅极电极14。可以通过相同的蚀刻工艺(诸如第二各向异性蚀刻工艺)将第一栅极介电板22和平面介电间隔层30L分别图案化为第一栅极介电质12和第一平面介电间隔板30。Generally speaking, the stack of first gate dielectric plate 22 and gate electrode material plate 24 may be patterned into a stack of first gate dielectric 12 and first gate electrode 14 . Plate 24 of gate electrode material is patterned into gate electrode 14 by a second anisotropic etching process using photoresist layer 57 as a patterning etch mask. First gate dielectric plate 22 and planar dielectric spacer layer 30L may be patterned into first gate dielectric 12 and first planar dielectric, respectively, by the same etch process, such as a second anisotropic etch process. Spacer plate 30.
在将第一栅极电极材料板24图案化为第一栅极电极14时,第一平面介电间隔板30覆盖栅极电极14的顶部表面的第一部分。栅极电极14的顶部表面的第一部分接触第一平面介电间隔板30的底部表面。第一导电栅极帽盖结构40包括:第一区段,该第一区段接触栅极电极14的顶部表面的第二部分;第二区段,该第二区段覆盖在第一平面介电间隔板30上面;和连接区段,该连接区段接触第一平面介电间隔板30的第一侧壁并连接第一区段和第二区段。When patterning the first sheet of gate electrode material 24 into the first gate electrode 14 , the first planar dielectric spacer 30 covers a first portion of the top surface of the gate electrode 14 . A first portion of the top surface of gate electrode 14 contacts the bottom surface of first planar dielectric spacer 30 . The first conductive gate cap structure 40 includes a first section contacting a second portion of the top surface of the gate electrode 14 and a second section covering the first planar intermediary. above the electrical spacer plate 30; and a connection section that contacts the first side wall of the first planar dielectric spacer plate 30 and connects the first section and the second section.
参考图12A至图12G,源极/漏极扩展区(未示出)可以可选地通过采用相应的图案化注入掩模层(诸如图案化光致抗蚀剂层)和相应的离子注入工艺注入p型掺杂剂和n型掺杂剂来形成。可通过保形沉积工艺(诸如化学气相沉积工艺)来沉积包括介电材料的介电栅极间隔材料层。介电栅极间隔材料层的介电材料可以包括例如氮化硅和/或氧化硅。可执行各向异性蚀刻工艺,以蚀刻介电栅极间隔材料层的水平延伸部分。介电栅极间隔材料层的剩余竖直延伸部分构成介电栅极间隔物56。Referring to FIGS. 12A-12G , source/drain extension regions (not shown) may optionally be implanted using a corresponding patterned implant mask layer (such as a patterned photoresist layer) and a corresponding ion implantation process. It is formed by injecting p-type dopants and n-type dopants. The dielectric gate spacer material layer including the dielectric material may be deposited by a conformal deposition process, such as a chemical vapor deposition process. The dielectric material of the dielectric gate spacer material layer may include, for example, silicon nitride and/or silicon oxide. An anisotropic etching process may be performed to etch horizontally extending portions of the dielectric gate spacer material layer. The remaining vertical extensions of the layer of dielectric gate spacer material constitute dielectric gate spacers 56 .
各向异性蚀刻工艺可扩展到对于栅极电极14的材料选择性地蚀刻第二栅极介电板20和沟槽隔离结构8的介电材料的未掩蔽部分。在这种情况下,第二栅极介电板20可被图案化为第二栅极介电质10(其可以包括用于区500和600中的高压晶体管的复合氮化硅/氧化硅栅极介电质(10,13)的部分),并且沟槽隔离结构8的物理暴露的顶部表面可以是竖直凹陷的。在一个实施方案中,每个第二栅极介电质10的外部侧壁可与栅极间隔物56中的相应栅极间隔物的外部侧壁竖直重合。如本文所用,如果第一表面覆盖在第二表面上面或位于第二表面下面或者第二表面覆盖在第一表面上面或位于第一表面下面,并且第一表面和第二表面位于同一竖直平面内,则第一表面和第二表面在竖直方向上彼此重合。在一个实施方案中,沟槽隔离结构8的顶部表面的凹陷部分可以处于或大约处于第三场效应晶体管区(500,600)中的第三掺杂阱(5C,5D)的顶部表面的高度。The anisotropic etching process can be extended to etch unmasked portions of the dielectric material of the second gate dielectric plate 20 and the trench isolation structure 8 selectively with respect to the material of the gate electrode 14 . In this case, second gate dielectric plate 20 may be patterned into second gate dielectric 10 (which may include composite silicon nitride/silicon oxide gates for the high voltage transistors in regions 500 and 600 portions of the polar dielectric (10, 13)), and the physically exposed top surface of the trench isolation structure 8 may be vertically recessed. In one embodiment, the outer sidewalls of each second gate dielectric 10 may vertically coincide with the outer sidewalls of a corresponding one of the gate spacers 56 . As used herein, if a first surface overlies or underlies a second surface or the second surface overlies or underlies the first surface, and the first and second surfaces lie in the same vertical plane , the first surface and the second surface coincide with each other in the vertical direction. In one embodiment, the recessed portion of the top surface of trench isolation structure 8 may be at or about the height of the top surface of the third doped well (5C, 5D) in the third field effect transistor region (500, 600).
在一个实施方案中,位于第一场效应晶体管区(100或200)内的第一介电栅极间隔物56包括上部部分,该上部部分横向围绕并接触第一导电栅极帽盖结构40和平面半导体间隔板34,并且接触第一平面介电间隔板30的顶部表面的一部分。第一介电栅极间隔物56接触第一半导体间隔板34的与第一平面介电间隔板30的第一侧壁竖直重合的第一侧壁,以及第一平面半导体间隔板34的与第一平面介电间隔板34的第二侧壁横向偏移的第二侧壁。第一介电栅极间隔物56的外部侧壁可与第一平面介电间隔板30的第二侧壁竖直重合。In one embodiment, first dielectric gate spacer 56 located within first field effect transistor region (100 or 200) includes an upper portion that laterally surrounds and contacts first conductive gate cap structure 40 and Planar semiconductor spacer 34 and contacts a portion of the top surface of first planar dielectric spacer 30 . The first dielectric gate spacer 56 contacts the first sidewall of the first semiconductor spacer 34 that is vertically coincident with the first sidewall of the first planar dielectric spacer 30 and the first sidewall of the first planar semiconductor spacer 34 . The second sidewall of the first planar dielectric spacer plate 34 is laterally offset from the second sidewall. The outer sidewalls of the first dielectric gate spacers 56 may vertically coincide with the second sidewalls of the first planar dielectric spacer plate 30 .
第一平面半导体间隔板34可接触第一平面介电间隔板30的顶部表面,可具有比第一平面介电间隔板30更小的面积,并且可接触第一导电栅极帽盖结构40的第二区段的底部表面,该底部表面覆盖在第一平面介电间隔板30和第一平面半导体间隔板34的堆叠上面。第一导电栅极帽盖结构40的一部分覆盖浅沟槽隔离结构8的第一部分的顶部表面,该第一部分围绕第一掺杂阱(5A或6A)的位于栅极结构(12,14,30,34,40,50)和第一栅极介电质间隔物56下面的一部分。如图12F所示,深沟槽隔离结构8D的第一部分的位于第一导电栅极帽盖结构40下面的区段8P1在第一沟槽隔离结构8D的第一部分的凹陷区8R1的水平顶部表面上方突出,这是因为在使沟槽隔离结构8的未掩蔽部分竖直凹陷的各向异性蚀刻工艺期间,第一导电栅极帽盖结构40掩蔽了深沟槽隔离结构8D的第一部分的突出区段8P。同样地,如图12B所示,浅沟槽隔离结构8S的第一部分的位于第一导电栅极帽盖结构40下面的区段8P2在浅沟槽隔离结构8S的第一部分的凹陷区8R2的水平顶部表面上方突出。The first planar semiconductor spacer 34 may contact the top surface of the first planar dielectric spacer 30 , may have a smaller area than the first planar dielectric spacer 30 , and may contact the first conductive gate cap structure 40 The bottom surface of the second section overlying the stack of first planar dielectric spacers 30 and first planar semiconductor spacers 34 . A portion of the first conductive gate cap structure 40 covers the top surface of the first portion of the shallow trench isolation structure 8 surrounding the portion of the first doped well (5A or 6A) located at the gate structure (12, 14, 30 , 34, 40, 50) and a portion below the first gate dielectric spacer 56. As shown in FIG. 12F , the section 8P1 of the first portion of the deep trench isolation structure 8D located below the first conductive gate cap structure 40 is on the horizontal top surface of the recessed region 8R1 of the first portion of the first trench isolation structure 8D. protrudes upward because the first conductive gate cap structure 40 masks the protrusion of the first portion of the deep trench isolation structure 8D during the anisotropic etching process that vertically recesses the unmasked portion of the trench isolation structure 8 Section 8P. Likewise, as shown in FIG. 12B , the section 8P2 of the first portion of the shallow trench isolation structure 8S below the first conductive gate cap structure 40 is at the level of the recessed region 8R2 of the first portion of the shallow trench isolation structure 8S. Project above the top surface.
包括第一栅极介电质12、第一栅极电极14、第一平面介电间隔板30和第一导电栅极帽盖结构40的第一栅极结构(12,14,30,34,40,50)覆盖在区100和200中的第一(例如,低电压或超低电压)场效应晶体管的第一沟道区15上面,如图12C所示。第一沟道区15可以是掺杂阱(5,6)的在平面视图中与第一栅极结构(12,14,30,34,40,50)具有面积重叠的表面部分。在一个实施方案中,第一栅极介电质12和第一栅极电极14包括侧壁,这些侧壁沿着第一水平方向hd1横向延伸、彼此竖直重合、与横向围绕掺杂阱(5,6)的一部分的沟槽隔离结构8的一部分的凹陷区8R2的侧壁横向间隔开,并且与沟槽隔离结构8的该部分的另一个区的侧壁竖直重合。A first gate structure (12, 14, 30, 34, including a first gate dielectric 12, a first gate electrode 14, a first planar dielectric spacer 30, and a first conductive gate cap structure 40, 40, 50) overlays the first channel region 15 of the first (eg, low voltage or ultra-low voltage) field effect transistor in regions 100 and 200, as shown in Figure 12C. The first channel region 15 may be a surface portion of the doped well (5, 6) having an area overlap with the first gate structure (12, 14, 30, 34, 40, 50) in plan view. In one embodiment, the first gate dielectric 12 and the first gate electrode 14 include sidewalls extending laterally along the first horizontal direction hd1, vertically coincident with each other, and laterally surrounding the doped well ( The sidewalls of the recessed region 8R2 of a portion of the trench isolation structure 8 of 5, 6) are laterally spaced apart and vertically coincident with the sidewalls of the other region of the trench isolation structure 8.
在一个实施方案中,第一栅极介电质12和第一栅极电极14接触沟槽隔离结构8的该部分的突出区(即,突出区段)8P2的侧壁。该侧壁沿着第一水平方向hd1横向延伸。第一平面介电间隔板30接触第一栅极电极14的顶部表面的第一部分,并且第一导电栅极帽盖结构40包括:第一区段,该第一区段接触第一栅极电极14的顶部表面的第二部分;第二区段,该第二区段覆盖在第一平面介电间隔板30上面;和连接区段,该连接区段接触第一平面介电间隔板30的第一侧壁并连接第一区段和第二区段。In one embodiment, the first gate dielectric 12 and the first gate electrode 14 contact the sidewalls of the protruding region (ie, protruding section) 8P2 of the portion of the trench isolation structure 8 . The side wall extends laterally along the first horizontal direction hd1. The first planar dielectric spacer 30 contacts a first portion of the top surface of the first gate electrode 14 and the first conductive gate cap structure 40 includes a first section contacting the first gate electrode 14 a second portion of the top surface of 14; a second section overlying the first planar dielectric spacer 30; and a connection section contacting the first planar dielectric spacer 30 The first side wall connects the first section and the second section.
在一个实施方案中,第一栅极介电质12包括接触沟槽隔离结构8的第一部分的突出区8P2的侧壁的第一侧壁。第一栅极电极14包括接触沟槽隔离结构8的第一部分的突出区8P2的侧壁的第一侧壁。沿着第一水平方向hd1横向延伸的第一栅极介电质12的第二侧壁和第一栅极电极14的第二侧壁接触第一介电栅极间隔物56的下部部分的侧壁。第一栅极介电质12和第一栅极电极14的附加侧壁接触第一介电栅极间隔物56的下部部分的附加侧壁,该下部部分沿着垂直于第一水平方向hd1的第二水平方向hd2横向延伸。In one embodiment, first gate dielectric 12 includes first sidewalls contacting sidewalls of protruding region 8P2 of the first portion of trench isolation structure 8 . The first gate electrode 14 includes a first sidewall contacting a sidewall of the protruding region 8P2 of the first portion of the trench isolation structure 8 . The second sidewall of the first gate dielectric 12 and the second sidewall of the first gate electrode 14 extending laterally along the first horizontal direction hd1 contact the side of the lower portion of the first dielectric gate spacer 56 wall. The additional sidewalls of the first gate dielectric 12 and the first gate electrode 14 contact the additional sidewalls of the lower portion of the first dielectric gate spacer 56 along a direction perpendicular to the first horizontal direction hd1 The second horizontal direction hd2 extends laterally.
包括第二复合氮化硅/氧化硅栅极介电质(13,10)、第二栅极电极40(其包括第二导电栅极帽盖结构40)的第二栅极结构(10,13,40,50)覆盖在区500和600中的第二(例如,高电压)场效应晶体管的第二沟道区17上面,如图12F所示。Second gate structure (10,13) including a second composite silicon nitride/silicon oxide gate dielectric (13,10), a second gate electrode 40 including a second conductive gate cap structure 40 , 40, 50) overlays the second channel region 17 of the second (eg, high voltage) field effect transistor in regions 500 and 600, as shown in Figure 12F.
参考图13A至图13G,可执行掩蔽离子注入工艺,以将p型掺杂剂注入n型阱6的未掩蔽表面部分内并且将n型掺杂剂注入p型阱5的未掩蔽表面部分内。图案化光致抗蚀剂层、栅极结构{(12,10,14,13,30,34,40,50)和(10,13,40,50)}和介电栅极间隔物56的组合可在每个离子注入工艺期间用作复合注入掩模。源极区和漏极区形成在p掺杂阱5和n掺杂阱6的已注入表面部分内。源极区和漏极区被统称为源极/漏极区(65,66),其包括形成在n掺杂阱6中的相应n掺杂阱内的p掺杂源极/漏极区65和形成在p掺杂阱5中的相应p掺杂阱内的n掺杂源极/漏极区66。Referring to FIGS. 13A to 13G , a masked ion implantation process may be performed to inject p-type dopants into the unmasked surface portion of n-type well 6 and to inject n-type dopants into the unmasked surface portion of p-type well 5 . Patterned photoresist layer, gate structures {(12,10,14,13,30,34,40,50) and (10,13,40,50)} and dielectric gate spacers 56 The combination can be used as a composite implant mask during each ion implantation process. Source and drain regions are formed within implanted surface portions of p-doped well 5 and n-doped well 6 . The source and drain regions are collectively referred to as source/drain regions (65, 66), which include p-doped source/drain regions 65 formed within corresponding n-doped wells 6 and n-doped source/drain regions 66 formed within corresponding p-doped wells in p-doped well 5 .
在一个实施方案中,可在其中形成高电压场效应晶体管的器件区(诸如,第三场效应晶体管区(500,600))中采用用于增加场效应晶体管的击穿电压的构型。在这种情况下,p掺杂源极/漏极区65可以包括被附加沟槽隔离结构8(例如,深沟槽隔离结构8D)横向间隔开的内部p掺杂源极/漏极区65I和外部p掺杂源极/漏极区65O,该附加沟槽隔离结构可以与第一场效应晶体管区(100,200)中的沟槽隔离结构8(例如,浅沟槽隔离结构8S)分离。此外,n掺杂源极/漏极区66可以包括被另一附加沟槽隔离结构8横向间隔开的内部n掺杂源极/漏极区66I和外部n掺杂源极/漏极区66O。可选地,可以采用阱接触源极/漏极区65W来促进掺杂阱的偏置。In one embodiment, configurations for increasing the breakdown voltage of field effect transistors may be employed in device regions in which high voltage field effect transistors are formed, such as third field effect transistor regions (500, 600). In this case, p-doped source/drain regions 65 may include inner p-doped source/drain regions 65I laterally spaced apart by additional trench isolation structures 8 (eg, deep trench isolation structures 8D) and external p-doped source/drain regions 65O, this additional trench isolation structure may be separate from the trench isolation structure 8 (eg, shallow trench isolation structure 8S) in the first field effect transistor region (100, 200). Additionally, n-doped source/drain regions 66 may include inner n-doped source/drain regions 66I and outer n-doped source/drain regions 66O laterally spaced apart by another additional trench isolation structure 8 . Alternatively, well contact source/drain regions 65W may be employed to facilitate biasing of the doped well.
在一个实施方案中,位于低和超低电压场效应晶体管区(100,200,300,400)内的栅极电极14可掺杂有p型掺杂剂或n型掺杂剂,以形成掺杂有p型掺杂剂或n型掺杂剂的掺杂栅极电极(25,26)。掺杂栅极电极(25,26)包括形成在p型场效应晶体管区(100,300)中的p掺杂第二栅极电极25和形成在n型场效应晶体管区(200,400)中的n掺杂第二栅极电极26。另选地或除此之外,可通过在多晶硅14上形成金属以及对金属进行退火以在多晶硅的暴露的顶部表面上形成金属硅化物,来将多晶硅栅极电极14和/或重掺杂半导体(例如,重掺杂多晶硅)导电栅极帽盖结构40硅化物化。In one embodiment, the gate electrode 14 located within the low and ultra-low voltage field effect transistor regions (100, 200, 300, 400) may be doped with p-type dopants or n-type dopants to form doped with p-type dopants. doped gate electrode with n-type dopants (25,26). The doped gate electrodes (25, 26) include a p-doped second gate electrode 25 formed in the p-type field effect transistor region (100, 300) and an n-doped second gate electrode 25 formed in the n-type field effect transistor region (200, 400). second gate electrode 26 . Alternatively or in addition, the polysilicon gate electrode 14 and/or the semiconductor may be heavily doped by forming metal on the polysilicon 14 and annealing the metal to form a metal suicide on the exposed top surface of the polysilicon. The conductive gate cap structure 40 is silicided (eg, heavily doped polysilicon).
一般来讲,可在各种场效应晶体管区(100,200,300,400,500,600)中形成具有不同栅极介电质厚度、不同栅极长度(即,源极区与漏极区之间的不同横向距离)和不同构型的各种场效应晶体管。Generally speaking, various field effect transistor regions (100, 200, 300, 400, 500, 600) can be formed with different gate dielectric thicknesses, different gate lengths (ie, different lateral distances between source and drain regions), and different textures. Various types of field effect transistors.
参考图14A至图14F,随后可以形成接触层级介电层70和各种接触通孔结构(76A,76G,86A,86G,96A,96G,96R,96C)。接触层级介电层70包括介电材料诸如氧化硅,并且可以通过保形或非保形沉积工艺形成。接触层级介电层70的顶部表面可以通过平面化工艺诸如化学机械抛光(CMP)工艺来平面化。栅极帽盖介电质50的最顶部表面与接触层级介电层70的顶部表面之间的竖直距离可在30nm到500nm的范围内,但也可以采用更小和更大的竖直距离。Referring to FIGS. 14A-14F, contact level dielectric layer 70 and various contact via structures (76A, 76G, 86A, 86G, 96A, 96G, 96R, 96C) may subsequently be formed. Contact level dielectric layer 70 includes a dielectric material such as silicon oxide, and may be formed by a conformal or non-conformal deposition process. The top surface of contact level dielectric layer 70 may be planarized by a planarization process such as a chemical mechanical polishing (CMP) process. The vertical distance between the topmost surface of the gate cap dielectric 50 and the top surface of the contact level dielectric layer 70 may be in the range of 30 nm to 500 nm, although smaller and larger vertical distances may also be used. .
接触层级介电层70覆盖在这些场效应晶体管中的每个场效应晶体管上面并横向围绕每个场效应晶体管。在图13B所示的一个实施方案中,第一晶体管区(100,200)中的第一场效应晶体管的第一栅极电极(14,26)的顶部表面的第一部分14A接触第一平面介电间隔板30,第一栅极电极14的顶部表面的第二部分14B接触导电栅极帽盖结构40的下部部分,并且接触层级介电层70可以接触第一栅极电极(14,26)的顶部表面的第三部分14C。第一栅极电极14的顶部表面的第三部分14C可通过第一栅极电极14的顶部表面的第一部分14A与第一栅极电极14的顶部表面的第二部分14B横向间隔开。A contact level dielectric layer 70 overlies and laterally surrounds each of these field effect transistors. In one embodiment shown in Figure 13B, a first portion 14A of the top surface of the first gate electrode (14, 26) of the first field effect transistor in the first transistor region (100, 200) contacts the first planar dielectric spacer Plate 30, second portion 14B of the top surface of first gate electrode 14 contacts a lower portion of conductive gate cap structure 40, and contact level dielectric layer 70 may contact the top of first gate electrode (14, 26) The third part of the surface 14C. The third portion 14C of the top surface of the first gate electrode 14 may be laterally spaced apart from the second portion 14B of the top surface of the first gate electrode 14 by the first portion 14A of the top surface of the first gate electrode 14 .
接触通孔结构(76A,76G,86A,86G,96A,96G,96R,96C)包括:第一场效应晶体管区(100,200)内接触源极/漏极区(65,66)的第一源极/漏极区接触通孔结构76A,如图14C所示;第一场效应晶体管区(100,200)内接触与半导体板34横向偏移的导电栅极帽盖结构40的下部部分的顶部表面的第一栅极接触通孔结构76G;第二场效应晶体管区(300,400)内接触源极/漏极区(65,66)的第二源极/漏极区接触通孔结构86A;第二场效应晶体管区(300,400)内接触第二栅极电极(25,26)的第二栅极接触通孔结构86G;第三场效应晶体管区(500,600)内接触源极/漏极区(65,66)的第三源极/漏极区接触通孔结构96A;以及第三场效应晶体管区(500,600)内接触导电栅极帽盖结构40的顶部表面的第三栅极接触通孔结构96G。此外,接触通孔结构(76A,76G,86A,86G,96A,96G,96R,96C)可以包括接触第一无源器件(诸如电阻器)的第一无源器件接触通孔结构96R以及接触第二无源器件(诸如电容器)的第二无源器件接触通孔结构96C。The contact via structure (76A, 76G, 86A, 86G, 96A, 96G, 96R, 96C) includes: a first source contacting the source/drain region (65, 66) in the first field effect transistor region (100, 200) The /drain region contacts via structure 76A, as shown in FIG. 14C; the first field effect transistor region (100, 200) contacts the top surface of the lower portion of the conductive gate cap structure 40 laterally offset from the semiconductor plate 34. A gate contact via structure 76G; a second source/drain region contact via structure 86A in the second field effect transistor region (300, 400) that contacts the source/drain region (65, 66); a second field effect transistor region (300, 400) The second gate contact via structure 86G in the transistor area (300,400) contacts the second gate electrode (25,26); the third field effect transistor area (500,600) contacts the source/drain area (65,66) a third source/drain region contact via structure 96A; and a third gate contact via structure 96G within the third field effect transistor region (500, 600) that contacts the top surface of the conductive gate cap structure 40. Additionally, the contact via structures (76A, 76G, 86A, 86G, 96A, 96G, 96R, 96C) may include a first passive device contact via structure 96R that contacts a first passive device, such as a resistor, and a first passive device contact via structure 96R that contacts a first passive device, such as a resistor. A second passive device of the two passive devices, such as a capacitor, contacts via structure 96C.
一般来讲,可在第一场效应晶体管区(100或200)中形成第一场效应晶体管。第一场效应晶体管包括第一有源区,该第一有源区具有一对纵向侧壁和一对横向侧壁,该对横向侧壁接触沟槽隔离结构8的第一部分的侧壁并且由沟槽隔离结构的第一部分横向围绕。第一有源区包括第一源极区、第一漏极区以及位于第一源极区与第一漏极区之间的第一沟道区。第一场效应晶体管可以包括第一栅极结构(12、14、25或26、30、34、40、50)。Generally speaking, the first field effect transistor may be formed in the first field effect transistor region (100 or 200). The first field effect transistor includes a first active region having a pair of longitudinal sidewalls and a pair of lateral sidewalls contacting the sidewalls of the first portion of the trench isolation structure 8 and formed by A first portion of the trench isolation structure surrounds laterally. The first active region includes a first source region, a first drain region, and a first channel region located between the first source region and the first drain region. The first field effect transistor may include a first gate structure (12, 14, 25 or 26, 30, 34, 40, 50).
可在第二场效应晶体管区(300或400)中形成第二场效应晶体管。第二场效应晶体管包括第二有源区,该第二有源区具有一对纵向侧壁和一对横向侧壁,该对横向侧壁接触沟槽隔离结构8的第二部分的侧壁并且由沟槽隔离结构的第二部分横向围绕。包括第二栅极介电质12和第二栅极电极(25或26)的第二栅极结构(12、25或26)覆盖在第二有源区上面。接触层级介电层70覆盖在第一栅极结构(12、14、25或26、30、34、40、50)和第二栅极结构(12、25或26)上面。至少一个栅极接触结构(诸如第二栅极接触通孔结构86G)与第二栅极电极(25或26)的顶部表面的一部分接触。不与该至少一个栅极接触结构86G接触的第二栅极电极(25或26)的整个顶部表面与接触层级介电层70接触。A second field effect transistor may be formed in the second field effect transistor region (300 or 400). The second field effect transistor includes a second active region having a pair of longitudinal sidewalls and a pair of lateral sidewalls contacting the sidewalls of the second portion of the trench isolation structure 8 and laterally surrounded by a second portion of the trench isolation structure. A second gate structure (12, 25 or 26) including a second gate dielectric 12 and a second gate electrode (25 or 26) overlies the second active area. Contact level dielectric layer 70 overlies the first gate structure (12, 14, 25 or 26, 30, 34, 40, 50) and the second gate structure (12, 25 or 26). At least one gate contact structure, such as second gate contact via structure 86G, contacts a portion of the top surface of the second gate electrode (25 or 26). The entire top surface of the second gate electrode (25 or 26) that is not in contact with the at least one gate contact structure 86G is in contact with the contact level dielectric layer 70.
第一示例性结构可以包括附加场效应晶体管,诸如形成在第三场效应晶体管区(500或600)中的第三场效应晶体管。附加场效应晶体管包括附加有源区,该附加有源区具有一对纵向侧壁和一对横向侧壁,该对横向侧壁接触沟槽隔离结构8的附加部分的侧壁并且由沟槽隔离结构的附加部分横向围绕。附加场效应晶体管包括覆盖在附加有源区上面的附加栅极结构(10,13,40,50)。附加栅极结构(10,13,40,50)可以包括附加复合栅极介电质和附加导电栅极帽盖结构40,该附加复合栅极介电质包括具有比第一栅极介电质12更大厚度的氧化硅子层10以及氮化硅子层13,该附加导电栅极帽盖结构具有与第一导电栅极帽盖结构40的第一区段相同的厚度和相同的材料组成。氮化硅部分13的整个顶部表面与附加导电栅极帽盖结构40的底部表面接触。The first exemplary structure may include additional field effect transistors, such as a third field effect transistor formed in the third field effect transistor region (500 or 600). The additional field effect transistor includes an additional active region having a pair of longitudinal sidewalls and a pair of lateral sidewalls contacting the sidewalls of the additional portion of the trench isolation structure 8 and being isolated by the trench Additional parts of the structure surround it laterally. Additional field effect transistors include additional gate structures (10, 13, 40, 50) overlying the additional active regions. The additional gate structures (10, 13, 40, 50) may include an additional composite gate dielectric and an additional conductive gate cap structure 40, the additional composite gate dielectric having a higher density than the first gate dielectric. The additional conductive gate cap structure has the same thickness and the same material composition as the first section of the first conductive gate cap structure 40. The entire top surface of silicon nitride portion 13 is in contact with the bottom surface of additional conductive gate cap structure 40 .
在一个实施方案中,第一示例性结构还可以包括无源器件,该无源器件可选自电容器、电阻器或本领域已知的任何其他无源器件。无源器件包括层堆叠,该层堆叠从底部到顶部包括第一介电层(诸如氧化硅栅极介电质12和氮化硅部分13的另一实例)、第二介电层(诸如平面介电间隔板30)、半导体板(诸如平面半导体间隔板34)和金属板(诸如导电栅极帽盖结构40)。第二介电层具有与第一平面介电间隔板30相同的材料组成和相同的厚度。金属板具有与第一导电栅极帽盖结构40的第一区段相同的材料组成和相同的厚度。In one embodiment, the first exemplary structure may also include a passive device, which may be selected from a capacitor, a resistor, or any other passive device known in the art. The passive device includes a layer stack that includes, from bottom to top, a first dielectric layer (such as another example of silicon oxide gate dielectric 12 and silicon nitride portion 13), a second dielectric layer (such as a planar dielectric spacers 30), semiconductor plates (such as planar semiconductor spacers 34), and metal plates (such as conductive gate cap structure 40). The second dielectric layer has the same material composition and the same thickness as the first planar dielectric spacer plate 30 . The metal plate has the same material composition and the same thickness as the first section of the first conductive gate cap structure 40 .
参考图15A至图15F,可通过重新布置和/或省略掺杂阱(5,6)的子集,从图5A至图5F的第一示例性结构得到根据本公开的第二实施方案的第二示例性结构。例如,在第一实施方案中,第一p掺杂阱5A可延伸到区100中由第一n掺杂阱6A占据的区域中。另选地,在第一实施方案中,第一n掺杂阱6A可延伸到区200中由第一p掺杂阱5A占据的区域中。在图15B所示的构型中,可形成第一p掺杂阱5A,使得在第一n型场效应晶体管区200内设置由沟槽隔离结构8的相应部分横向围绕的多个有源区。第一p型场效应晶体管区100在第二示例性结构的附图中未示出,但是可存在于第二示例性结构内。虽然采用其中在第一n型场效应晶体管区200内存在多对有源区的实施方案来描述了本公开,但是本文明确设想了其中在第一p型场效应晶体管区100内存在多对有源区并且在第一p型场效应晶体管区100中形成具有相同几何特征的场效应晶体管的实施方案。换句话说,本公开的器件可形成为具有相反的导电类型。Referring to FIGS. 15A to 15F , a second embodiment according to the present disclosure may be obtained from the first exemplary structure of FIGS. 5A to 5F by rearranging and/or omitting a subset of the doped wells ( 5 , 6 ). Two exemplary structures. For example, in a first embodiment, first p-doped well 5A may extend into the area of region 100 occupied by first n-doped well 6A. Alternatively, in the first embodiment, the first n-doped well 6A may extend into the area of region 200 occupied by the first p-doped well 5A. In the configuration shown in FIG. 15B , the first p-doped well 5A may be formed such that a plurality of active regions laterally surrounded by corresponding portions of the trench isolation structure 8 are provided within the first n-type field effect transistor region 200 . The first p-type field effect transistor region 100 is not shown in the figure of the second exemplary structure, but may be present within the second exemplary structure. Although the present disclosure has been described in terms of embodiments in which there are multiple pairs of active regions within the first n-type field effect transistor region 200 , it is expressly contemplated herein that there are multiple pairs of active regions in the first p-type field effect transistor region 100 . source region and form an implementation of a field effect transistor with the same geometric characteristics in the first p-type field effect transistor region 100 . In other words, devices of the present disclosure may be formed with opposite conductivity types.
一般来讲,可在半导体衬底2内的半导体材料层上方形成至少一个栅极介电层和至少一个半导体栅极材料层,并且可穿过该至少一个半导体栅极材料层和该至少一个栅极介电层形成沟槽隔离结构8。如图15A和15B所示,该至少一个半导体栅极材料层和该至少一个栅极介电层的图案化部分包括覆盖在半导体材料层的第一有源区51上面的第一栅极介电板22A和第一栅极电极材料板24A的第一堆叠(22A,24A),以及覆盖在半导体材料层的第二有源区52上面的第二栅极介电板22B和第二栅极电极材料板24B的第二堆叠(22B,24B)。Generally speaking, at least one gate dielectric layer and at least one semiconductor gate material layer may be formed over the semiconductor material layer in the semiconductor substrate 2 and may pass through the at least one semiconductor gate material layer and the at least one gate material layer. The polar dielectric layer forms the trench isolation structure 8 . As shown in FIGS. 15A and 15B , the at least one semiconductor gate material layer and the patterned portion of the at least one gate dielectric layer include a first gate dielectric covering the first active region 51 of the semiconductor material layer. First stack (22A, 24A) of plate 22A and first gate electrode material plate 24A, and second gate dielectric plate 22B and second gate electrode overlying second active region 52 of semiconductor material layer Second stack (22B, 24B) of material sheets 24B.
第一堆叠(22A,24A)和第二堆叠(22B,24B)可位于相同的场效应晶体管区内,诸如第一n型场效应晶体管区200。沟槽隔离结构8包括框架部分8F,该框架部分连续地横向围绕第一有源区51和第二有源区52。沟槽隔离结构8的横向延伸部分8L可以位于第一有源区51与第二有源区52之间。The first stack (22A, 24A) and the second stack (22B, 24B) may be located within the same field effect transistor region, such as first n-type field effect transistor region 200. The trench isolation structure 8 includes a frame portion 8F that continuously and laterally surrounds the first active region 51 and the second active region 52 . The lateral extension portion 8L of the trench isolation structure 8 may be located between the first active region 51 and the second active region 52 .
参考图16A至图16F,可执行掩模离子注入工艺,以将栅极电极材料板24的任何部分掺杂为具有合适的导电类型。在例示性示例中,n掺杂栅极电极材料板126可形成在第一和第二n型场效应晶体管区(200,400)中,并且p掺杂栅极电极材料板125可形成在第二p型场效应晶体管区300和第一p型场效应晶体管区(未示出)中。Referring to Figures 16A-16F, a masked ion implantation process may be performed to dope any portion of the gate electrode material plate 24 to have a suitable conductivity type. In an illustrative example, a plate of n-doped gate electrode material 126 may be formed in the first and second n-type field effect transistor regions (200, 400), and a plate of p-doped gate electrode material 125 may be formed in the second p-type field effect transistor region (200, 400). p-type field effect transistor region 300 and a first p-type field effect transistor region (not shown).
参考图17A至图17F,可执行图6A至图6F的处理步骤,以在栅极电极材料板(125,126)、板23和沟槽隔离结构8的顶部表面上方形成平面介电间隔层30L和平面半导体间隔层34L。平面介电间隔层30L和平面半导体间隔层34L中的每一者的厚度和材料组成可与第一示例性结构中的相同。Referring to Figures 17A-17F, the process steps of Figures 6A-6F may be performed to form planar dielectric spacers 30L and planar over the top surfaces of gate electrode material plates (125, 126), plate 23, and trench isolation structure 8 Semiconductor spacer layer 34L. The thickness and material composition of each of planar dielectric spacer layer 30L and planar semiconductor spacer layer 34L may be the same as in the first exemplary structure.
参考图18A至图18F,可执行图7A至图7F的处理步骤,以图案化平面介电间隔层30L和平面半导体间隔层34L。在第二实施方案中,平面介电间隔层30L和平面半导体间隔层34L可被图案化,使得平面介电间隔层30L和平面半导体间隔层34L保留在第二场效应晶体管区(300,400)中和无源器件区(700,800)中,并且被从第一场效应晶体管区(100,200)和第三场效应晶体管区(500,600)中移除。在这种情况下,第一有源区和第二有源区可设置在第一n型场效应晶体管区200内,并且平面介电间隔层30L和平面半导体间隔层34L的剩余部分可位于第一有源区51和第二有源区52的区域之外。Referring to Figures 18A-18F, the process steps of Figures 7A-7F may be performed to pattern planar dielectric spacer layer 30L and planar semiconductor spacer layer 34L. In a second embodiment, planar dielectric spacer layer 30L and planar semiconductor spacer layer 34L may be patterned such that planar dielectric spacer layer 30L and planar semiconductor spacer layer 34L remain in the second field effect transistor region (300, 400) and in the passive device area (700,800) and removed from the first field effect transistor area (100,200) and the third field effect transistor area (500,600). In this case, the first active region and the second active region may be disposed within the first n-type field effect transistor region 200, and the remaining portions of the planar dielectric spacer layer 30L and the planar semiconductor spacer layer 34L may be located in the first n-type field effect transistor region 200. outside the area of the first active area 51 and the second active area 52 .
参考图19A至图19F,可执行图8A至图8F的处理步骤,以直接在栅极电极材料板126、板23和沟槽隔离结构8的物理暴露的顶部表面上并且在平面半导体间隔层34上方沉积包括金属材料的导电栅极连接材料层。在一个实施方案中,导电栅极连接材料层可以包括导电栅极帽盖层40L,该导电栅极帽盖层可具有与第一示例性结构中的相同的材料组成和相同的厚度范围。随后可在导电栅极帽盖层40L上方沉积栅极帽盖介电层50L。栅极帽盖介电层50L包括介电材料,诸如氮化硅。Referring to FIGS. 19A-19F , the processing steps of FIGS. 8A-8F may be performed directly on the physically exposed top surfaces of gate electrode material plate 126 , plate 23 and trench isolation structure 8 and on planar semiconductor spacer layer 34 A layer of conductive gate connection material including metallic material is deposited above. In one embodiment, the conductive gate connection material layer may include a conductive gate cap layer 40L, which may have the same material composition and the same thickness range as in the first exemplary structure. Gate cap dielectric layer 50L may then be deposited over conductive gate cap layer 40L. Gate cap dielectric layer 50L includes a dielectric material, such as silicon nitride.
参考图20A至图20F,第一光致抗蚀剂层53可被施加在第二示例性结构上方,并且可被光刻图案化以形成离散图案化光致抗蚀剂材料部分。第一光致抗蚀剂层53的图案化部分可以包括限定随后将形成在第一场效应晶体管区(100,200)中的栅极结构的形状的第一部分。第一光致抗蚀剂层53的图案化部分可以包括限定随后将形成在第三p型场效应晶体管区500中和第三n型场效应晶体管区600中的栅极电极的形状的第二部分。第一光致抗蚀剂层53的图案化部分可以包括覆盖第一无源器件区700内和第二无源器件区800中的相应区域的附加部分。Referring to Figures 20A-20F, a first photoresist layer 53 can be applied over the second example structure and can be photolithographically patterned to form discrete patterned photoresist material portions. The patterned portion of first photoresist layer 53 may include a first portion that defines the shape of a gate structure that will subsequently be formed in first field effect transistor region (100, 200). The patterned portion of the first photoresist layer 53 may include a second layer defining a shape of a gate electrode that will subsequently be formed in the third p-type field effect transistor region 500 and the third n-type field effect transistor region 600 . part. The patterned portion of the first photoresist layer 53 may include additional portions covering corresponding areas within the first passive device region 700 and the second passive device region 800 .
可执行第一各向异性蚀刻工艺,以将第一光致抗蚀剂层53中的图案转印穿过栅极帽盖介电层50L、导电栅极帽盖层40L、平面半导体间隔层34L和板23的位于平面介电间隔层30L的区域之外的部分,这些部分位于第三p型场效应晶体管区500和第三n型场效应晶体管区600内。平面介电间隔层30L、第二栅极介电板20和沟槽隔离结构8可以用作第一各向异性蚀刻工艺的蚀刻停止结构。在平面介电间隔层30L、第二栅极介电板20和沟槽隔离结构8包括氧化硅的情况下,第一各向异性蚀刻工艺的终端步骤的蚀刻化学物质可以对于氧化硅选择性地蚀刻平面半导体间隔层34L和氮化硅板23的半导体材料。A first anisotropic etch process may be performed to transfer the pattern in first photoresist layer 53 through gate cap dielectric layer 5OL, conductive gate cap layer 4OL, planar semiconductor spacer layer 34L and portions of plate 23 outside the area of planar dielectric spacer layer 30L, which portions are located within third p-type field effect transistor region 500 and third n-type field effect transistor region 600 . Planar dielectric spacer layer 30L, second gate dielectric plate 20 and trench isolation structure 8 may serve as etch stop structures for the first anisotropic etching process. In the case where planar dielectric spacer layer 30L, second gate dielectric plate 20 and trench isolation structure 8 include silicon oxide, the etch chemistry of the termination step of the first anisotropic etch process may be selective to silicon oxide. The planar semiconductor spacer layer 34L and the semiconductor material of the silicon nitride plate 23 are etched.
栅极帽盖介电层50L的每个图案化部分包括栅极帽盖介电质50。导电栅极帽盖层40L的每个图案化部分包括导电栅极帽盖结构40。平面半导体间隔层34L的每个图案化部分包括平面半导体间隔板34。栅极电极材料板126的每个图案化部分包括栅极电极116。Each patterned portion of gate cap dielectric layer 50L includes gate cap dielectric 50 . Each patterned portion of conductive gate cap layer 40L includes conductive gate cap structure 40 . Each patterned portion of planar semiconductor spacer layer 34L includes planar semiconductor spacer plate 34 . Each patterned portion of the plate of gate electrode material 126 includes a gate electrode 116 .
一般来讲,第一栅极电极材料板126可以设置在第一有源区51上,并且第二栅极电极材料板126可以设置在第二有源区52上,该第二有源区通过沟槽隔离结构8的部分8L与第一有源区间隔开。可以各向异性地蚀刻第一栅极电极材料板126和第二栅极电极材料板126的部分。第一栅极电极材料板126和第二栅极电极材料板126的图案化部分分别包括第一栅极电极116和第二栅极电极116。Generally speaking, the first gate electrode material plate 126 may be disposed on the first active region 51 and the second gate electrode material plate 126 may be disposed on the second active region 52 through Portion 8L of trench isolation structure 8 is spaced apart from the first active region. Portions of the first gate electrode material plate 126 and the second gate electrode material plate 126 may be anisotropically etched. The patterned portions of the first and second gate electrode material plates 126 , 126 respectively include first and second gate electrodes 116 , 116 .
根据本发明的一个方面,导电栅极帽盖结构40的侧壁可形成为与在图18A至图18F的处理步骤中形成的平面半导体间隔层34L的侧壁相邻,使得导电栅极帽盖结构40的与平面半导体间隔层34L的侧壁相邻的竖直延伸部分包括在导电栅极帽盖结构40内。一般来讲,形成在第一场效应晶体管区(100,200)内的导电栅极帽盖结构40可形成为具有竖直突出部分,该竖直突出部分是导电栅极帽盖层40L的形成为与在图18A至图18F的处理步骤中形成的平面半导体间隔层34L的侧壁相邻的竖直延伸部分的剩余部分。According to one aspect of the invention, the sidewalls of the conductive gate cap structure 40 may be formed adjacent the sidewalls of the planar semiconductor spacer layer 34L formed in the processing steps of FIGS. 18A-18F such that the conductive gate cap structure The vertically extending portion of structure 40 adjacent the sidewalls of planar semiconductor spacer layer 34L is included within conductive gate cap structure 40 . Generally speaking, the conductive gate cap structure 40 formed within the first field effect transistor region (100, 200) may be formed to have a vertical protruding portion, the vertical protruding portion being formed with the conductive gate cap layer 40L. The remainder of the vertically extending portion adjacent the sidewalls of the planar semiconductor spacer layer 34L formed in the processing steps of FIGS. 18A to 18F .
第一栅极帽盖介电质50、第一导电栅极帽盖结构40、第一平面半导体间隔板34和一对第一栅极电极116的邻接组合可跨第一n型场效应晶体管区200中的一对有源区(51,52)形成。一般来讲,每个第一导电栅极帽盖结构40构成导电栅极连接结构,该导电栅极连接结构在下面的一对第一栅极电极116之间提供导电路径,该对第一栅极电极覆盖在由沟槽隔离结构8L分开的该对有源区(51,52)上面。因此,包括导电栅极帽盖层40L的导电栅极连接材料层可被图案化为包括第一导电栅极帽盖结构40的导电栅极连接结构。随后可以例如通过灰化移除第一光致抗蚀剂层53。The contiguous combination of first gate cap dielectric 50, first conductive gate cap structure 40, first planar semiconductor spacer 34, and pair of first gate electrodes 116 may span the first n-type field effect transistor region A pair of active regions (51,52) in 200 is formed. Generally speaking, each first conductive gate cap structure 40 forms a conductive gate connection structure that provides a conductive path between an underlying pair of first gate electrodes 116 . A pole electrode overlies the pair of active regions (51, 52) separated by trench isolation structure 8L. Accordingly, the conductive gate connection material layer including the conductive gate cap layer 40L may be patterned into a conductive gate connection structure including the first conductive gate cap structure 40 . The first photoresist layer 53 may then be removed, for example by ashing.
参考图21A至图21F,第二光致抗蚀剂层57可被施加在第二示例性结构上方,并且可被光刻图案化以提供图案化光致抗蚀剂材料部分,这些图案化光致抗蚀剂材料部分具有随后将形成在第二p型场效应晶体管区300和第二n型场效应晶体管区400中的栅极电极的形状。可以根据需要选择第二光致抗蚀剂层57的图案化部分的形状。在一个实施方案中,第二光致抗蚀剂层57的图案化部分可具有与有源区与沟槽隔离结构8之间的界面相邻的凸出区段。Referring to FIGS. 21A-21F , a second photoresist layer 57 may be applied over the second exemplary structure and may be photolithographically patterned to provide patterned photoresist material portions that pattern the photoresist material portions. The resist material portion has the shape of the gate electrode that will subsequently be formed in the second p-type field effect transistor region 300 and the second n-type field effect transistor region 400 . The shape of the patterned portion of the second photoresist layer 57 can be selected as desired. In one embodiment, the patterned portion of second photoresist layer 57 may have raised sections adjacent the interface between the active area and trench isolation structure 8 .
参考图22A至图22G,可执行第二各向异性蚀刻工艺,以将第二光致抗蚀剂层57的图案转印穿过平面介电间隔层30L、栅极电极材料板(126,125)和栅极介电板22。平面介电间隔层30L的每个图案化部分构成平面介电间隔板30。栅极电极材料板(126,125)的每个图案化部分构成栅极电极(116,115)。栅极介电板22的每个图案化部分构成栅极介电质12。第二各向异性蚀刻工艺的终端部分对于半导体衬底2的半导体材料可以是选择性的。随后可以例如通过灰化移除第二光致抗蚀剂层57。22A-22G, a second anisotropic etch process may be performed to transfer the pattern of second photoresist layer 57 through planar dielectric spacer layer 30L, gate electrode material plates (126, 125), and Gate dielectric plate 22. Each patterned portion of planar dielectric spacer layer 30L constitutes planar dielectric spacer plate 30 . Each patterned portion of a plate of gate electrode material (126, 125) constitutes a gate electrode (116, 115). Each patterned portion of gate dielectric plate 22 constitutes gate dielectric 12 . The terminal portion of the second anisotropic etching process may be selective to the semiconductor material of the semiconductor substrate 2 . The second photoresist layer 57 may then be removed, for example by ashing.
随后,可任选地执行另一各向异性蚀刻工艺,以图案化位于第一场效应晶体管区(100,200)内的栅极介电板22。栅极介电板22的不位于栅极电极126下面的部分可被蚀刻,并且栅极介电板22的在第一场效应晶体管区(100,200)中的剩余部分构成栅极介电质12。Subsequently, another anisotropic etch process may optionally be performed to pattern the gate dielectric plate 22 within the first field effect transistor region (100, 200). Portions of the gate dielectric plate 22 that are not underlying the gate electrode 126 may be etched, and the remaining portions of the gate dielectric plate 22 in the first field effect transistor region ( 100 , 200 ) constitute the gate dielectric 12 .
第一栅极介电质12和第一栅极电极116的堆叠覆盖在第一场效应晶体管区(100或200)中的第一有源区51内的第一沟道区上面,并且接触沟槽隔离结构8的横向延伸部分8F的第一侧壁。第二栅极介电质12和第二栅极电极116的堆叠覆盖在第二有源区52内的第二沟道区上面,并且接触沟槽隔离结构8的横向延伸部分8F的第二侧壁。导电栅极连接结构(包括第一导电栅极帽盖结构40)接触第一栅极电极116的顶部表面、第二栅极电极116的顶部表面以及沟槽隔离结构8的横向延伸部分8F的顶部表面的一部分。包括第一导电栅极帽盖结构40的导电栅极连接结构包括沿着第一水平方向hd1横向延伸的一对横向侧壁和沿着第二水平方向hd2横向延伸的一对纵向侧壁。The stack of first gate dielectric 12 and first gate electrode 116 overlies the first channel region within the first active region 51 in the first field effect transistor region (100 or 200) and contacts the trench. The first side wall of the laterally extending portion 8F of the slot isolation structure 8 . The stack of second gate dielectric 12 and second gate electrode 116 overlies the second channel region within second active region 52 and contacts the second side of lateral extension 8F of trench isolation structure 8 wall. The conductive gate connection structure (including the first conductive gate cap structure 40 ) contacts the top surface of the first gate electrode 116 , the top surface of the second gate electrode 116 and the top of the lateral extension 8F of the trench isolation structure 8 part of the surface. The conductive gate connection structure including the first conductive gate cap structure 40 includes a pair of lateral sidewalls extending transversely along the first horizontal direction hd1 and a pair of longitudinal sidewalls extending transversely along the second horizontal direction hd2.
沟槽隔离结构8包括框架部分8F,该框架部分连续地横向围绕第一有源区和第二有源区。包括第一导电栅极帽盖结构40的导电栅极连接结构包括第一端部部分和第二端部部分,该第二端部部分覆盖在沟槽隔离结构8的框架部分8F的顶部表面的相应区段上面并接触该相应区段。第一栅极电极116和第二栅极电极116的纵向侧壁与导电栅极连接结构的沿着第二水平方向hd2横向延伸的该对纵向侧壁竖直重合。Trench isolation structure 8 includes a frame portion 8F that continuously and laterally surrounds the first active region and the second active region. The conductive gate connection structure including the first conductive gate cap structure 40 includes a first end portion and a second end portion covering a top surface of the frame portion 8F of the trench isolation structure 8 above and in contact with the corresponding section. The longitudinal side walls of the first gate electrode 116 and the second gate electrode 116 vertically coincide with the pair of longitudinal side walls of the conductive gate connection structure extending laterally along the second horizontal direction hd2.
第一栅极介电质12的第一横向侧壁(沿着第一水平方向hd1延伸)和第一栅极电极116的第一横向侧壁(沿着第一水平方向hd1延伸)彼此竖直重合,并且接触沟槽隔离结构8的横向延伸部分8L的第一侧壁。第二栅极介电质12的第一纵向侧壁(沿着第一水平方向hd1延伸)和第二栅极电极116的第一横向侧壁(沿着第一水平方向hd1延伸)彼此竖直重合,并且接触沟槽隔离结构8的横向延伸部分8L的第二侧壁。The first lateral sidewall of the first gate dielectric 12 (extending along the first horizontal direction hd1 ) and the first lateral sidewall of the first gate electrode 116 (extending along the first horizontal direction hd1 ) are perpendicular to each other. overlap and contact the first side wall of the lateral extension portion 8L of the trench isolation structure 8 . The first longitudinal sidewall of the second gate dielectric 12 (extending along the first horizontal direction hd1 ) and the first lateral sidewall (extending along the first horizontal direction hd1 ) of the second gate electrode 116 are perpendicular to each other. overlap and contact the second side wall of the laterally extending portion 8L of the trench isolation structure 8 .
第一栅极介电质12的第二纵向侧壁(沿着第一水平方向hd1延伸)和第一栅极电极116的第二横向侧壁(沿着第一水平方向hd1延伸)彼此竖直重合,并且接触沟槽隔离结构8的框架部分8F的第一侧壁。第二栅极介电质12的第二纵向侧壁(沿着第一水平方向hd1延伸)和第二栅极电极116的第二横向侧壁(沿着第一水平方向hd1延伸)彼此竖直重合,并且接触沟槽隔离结构8的框架部分8F的第二侧壁。The second longitudinal sidewall of the first gate dielectric 12 (extending along the first horizontal direction hd1 ) and the second lateral sidewall (extending along the first horizontal direction hd1 ) of the first gate electrode 116 are perpendicular to each other. overlap and contact the first side wall of the frame portion 8F of the trench isolation structure 8 . The second longitudinal sidewall of the second gate dielectric 12 (extending along the first horizontal direction hd1 ) and the second lateral sidewall (extending along the first horizontal direction hd1 ) of the second gate electrode 116 are perpendicular to each other. overlap and contact the second side wall of the frame portion 8F of the trench isolation structure 8 .
在一个实施方案中,导电栅极连接结构包括金属栅极连接结构40,该金属栅极连接结构在第一栅极电极116的主要区段上方、在沟槽隔离结构8的横向延伸部分8L上方以及在第二栅极电极116的整个区域上方具有第一厚度,并且在第一栅极电极116的互补区段上方具有大于第一厚度的第二厚度。In one embodiment, the conductive gate connection structure includes a metal gate connection structure 40 over the main section of the first gate electrode 116 and over the lateral extension 8L of the trench isolation structure 8 and a first thickness over the entire area of second gate electrode 116 and a second thickness greater than the first thickness over complementary sections of first gate electrode 116 .
参考图23A至图23G,源极/漏极扩展区(未示出)可以可选地通过采用相应的图案化注入掩模层(诸如图案化光致抗蚀剂层)和相应的离子注入工艺注入p型掺杂剂和n型掺杂剂来形成。可通过保形沉积工艺(诸如化学气相沉积工艺)来沉积包括介电材料的介电栅极间隔材料层。介电栅极间隔材料层的介电材料可以包括例如氮化硅和/或氧化硅。可执行各向异性蚀刻工艺,以蚀刻介电栅极间隔材料层的水平延伸部分。介电栅极间隔材料层的剩余竖直延伸部分构成介电栅极间隔物56。Referring to Figures 23A-23G, source/drain extension regions (not shown) may optionally be implanted using a corresponding patterned implant mask layer (such as a patterned photoresist layer) and a corresponding ion implantation process. It is formed by injecting p-type dopants and n-type dopants. The dielectric gate spacer material layer including the dielectric material may be deposited by a conformal deposition process, such as a chemical vapor deposition process. The dielectric material of the dielectric gate spacer material layer may include, for example, silicon nitride and/or silicon oxide. An anisotropic etching process may be performed to etch horizontally extending portions of the dielectric gate spacer material layer. The remaining vertical extensions of the layer of dielectric gate spacer material constitute dielectric gate spacers 56 .
各向异性蚀刻工艺可扩展到对于栅极电极116的材料选择性地蚀刻第二栅极介电板20和沟槽隔离结构8的介电材料的未掩蔽部分。可在各向异性蚀刻工艺期间并行地蚀刻第二场效应晶体管区(300,400)中的平面介电间隔板30。在这种情况下,第三场效应晶体管区(500,600)中的第二栅极介电板20可被图案化为第二栅极介电质10,并且沟槽隔离结构8的物理暴露的顶部表面可以是竖直凹陷的。在一个实施方案中,每个第二栅极介电质10的外部侧壁可与栅极间隔物56中的相应栅极间隔物的外部侧壁竖直重合。在一个实施方案中,沟槽隔离结构8的顶部表面的凹陷部分可以处于或大约处于第三场效应晶体管区(500,600)中的第三掺杂阱(5C,6C)的顶部表面的高度。The anisotropic etching process can be extended to etch unmasked portions of the dielectric material of the second gate dielectric plate 20 and the trench isolation structure 8 selectively with respect to the material of the gate electrode 116 . The planar dielectric spacer 30 in the second field effect transistor region (300, 400) may be etched in parallel during the anisotropic etch process. In this case, the second gate dielectric plate 20 in the third field effect transistor region (500, 600) may be patterned with the second gate dielectric 10 and the top of the trench isolation structure 8 physically exposed The surface may be vertically concave. In one embodiment, the outer sidewalls of each second gate dielectric 10 may vertically coincide with the outer sidewalls of a corresponding one of the gate spacers 56 . In one embodiment, the recessed portion of the top surface of trench isolation structure 8 may be at or about the height of the top surface of the third doped well (5C, 6C) in the third field effect transistor region (500, 600).
在一个实施方案中,位于第一场效应晶体管区(100或200)内的第一介电栅极间隔物56包括横向围绕包括第一导电栅极帽盖结构40的导电栅极连接结构的上部部分,以及在包括沟槽隔离结构8的框架部分8F的顶部表面的水平平面与包括第一有源区和第二有源区的顶部表面的水平平面之间竖直延伸且接触第一栅极电极116和第二栅极电极116中的一者的相应纵向侧壁的四个下部部分。In one embodiment, first dielectric gate spacer 56 located within first field effect transistor region (100 or 200) includes an upper portion laterally surrounding a conductive gate connection structure including first conductive gate cap structure 40 portion, and extends vertically between a horizontal plane including the top surface of the frame portion 8F of the trench isolation structure 8 and a horizontal plane including the top surface of the first active region and the second active region and contacts the first gate Four lower portions of respective longitudinal sidewalls of one of electrode 116 and second gate electrode 116 .
参考图24A至图24G,可执行掩蔽离子注入工艺,以将p型掺杂剂注入n型阱6的未掩蔽表面部分内并且将n型掺杂剂注入p型阱5的未掩蔽表面部分内。图案化光致抗蚀剂层、栅极结构(12,10,116,115,13,34,40,50)和介电栅极间隔物56的组合可在每个离子注入工艺期间用作复合注入掩模。源极区和漏极区形成在p掺杂阱5和n掺杂阱6的已注入表面部分内。源极区和漏极区被统称为源极/漏极区(65,66),其包括形成在n掺杂阱6中的相应n掺杂阱内的p掺杂源极/漏极区65和形成在p掺杂阱5中的相应p掺杂阱内的n掺杂源极/漏极区66。Referring to FIGS. 24A to 24G , a masked ion implantation process may be performed to inject p-type dopants into the unmasked surface portion of n-type well 6 and to inject n-type dopants into the unmasked surface portion of p-type well 5 . The combination of patterned photoresist layer, gate structure (12, 10, 116, 115, 13, 34, 40, 50) and dielectric gate spacer 56 can be used as a composite implant mask during each ion implantation process. Source and drain regions are formed within implanted surface portions of p-doped well 5 and n-doped well 6 . The source and drain regions are collectively referred to as source/drain regions (65, 66), which include p-doped source/drain regions 65 formed within corresponding n-doped wells 6 and n-doped source/drain regions 66 formed within corresponding p-doped wells in p-doped well 5 .
在一个实施方案中,可在其中形成高电压场效应晶体管的器件区(诸如,第三场效应晶体管区(500,600))中采用用于增加场效应晶体管的击穿电压的构型。在这种情况下,p掺杂源极/漏极区65可以包括被附加沟槽隔离结构8横向间隔开的内部p掺杂源极/漏极区65I和外部p掺杂源极/漏极区65O,该附加沟槽隔离结构可以与第一场效应晶体管区(100,200)中的沟槽隔离结构8分离。此外,n掺杂源极/漏极区66可以包括被另一附加沟槽隔离结构8横向间隔开的内部n掺杂源极/漏极区66I和外部n掺杂源极/漏极区66O。可选地,可以采用阱接触源极/漏极区65W来促进掺杂阱的偏置。In one embodiment, configurations for increasing the breakdown voltage of field effect transistors may be employed in device regions in which high voltage field effect transistors are formed, such as third field effect transistor regions (500, 600). In this case, p-doped source/drain regions 65 may include inner p-doped source/drain regions 65I and outer p-doped source/drain regions laterally spaced apart by additional trench isolation structures 8 Region 65O, this additional trench isolation structure may be separated from the trench isolation structure 8 in the first field effect transistor region (100, 200). Additionally, n-doped source/drain regions 66 may include inner n-doped source/drain regions 66I and outer n-doped source/drain regions 66O laterally spaced apart by another additional trench isolation structure 8 . Alternatively, well contact source/drain regions 65W may be employed to facilitate biasing of the doped well.
参考图25A至图25F,随后可以形成接触层级介电层70和各种接触通孔结构(76A,76G,86A,86G,96A,96G,96R,96C)。接触层级介电层70包括介电材料诸如氧化硅,并且可以通过保形或非保形沉积工艺形成。接触层级介电层70的顶部表面可以通过平面化工艺诸如化学机械抛光(CMP)工艺来平面化。栅极帽盖介电质50的最顶部表面与接触层级介电层70的顶部表面之间的竖直距离可在30nm到500nm的范围内,但也可以采用更小和更大的竖直距离。Referring to Figures 25A-25F, contact level dielectric layer 70 and various contact via structures (76A, 76G, 86A, 86G, 96A, 96G, 96R, 96C) may subsequently be formed. Contact level dielectric layer 70 includes a dielectric material such as silicon oxide, and may be formed by a conformal or non-conformal deposition process. The top surface of contact level dielectric layer 70 may be planarized by a planarization process such as a chemical mechanical polishing (CMP) process. The vertical distance between the topmost surface of the gate cap dielectric 50 and the top surface of the contact level dielectric layer 70 may be in the range of 30 nm to 500 nm, although smaller and larger vertical distances may also be used. .
接触通孔结构(76A,76G,86A,86G,96A,96G,96R,96C)包括:第一场效应晶体管区(100,200)内接触源极/漏极区(65,66)的第一源极/漏极区接触通孔结构76A;第一场效应晶体管区(100,200)内接触导电栅极帽盖结构40的顶部表面的第一栅极接触通孔结构76G;第二场效应晶体管区(300,400)内接触源极/漏极区(65,66)的第二源极/漏极区接触通孔结构86A;接触第二栅极电极(25,26)的第二栅极接触通孔结构86G;第三场效应晶体管区(500,600)内接触源极/漏极区(65,66)的第三源极/漏极区接触通孔结构96A;以及第三场效应晶体管区(500,600)内接触导电栅极帽盖结构40的顶部表面的第三栅极接触通孔结构96G。此外,接触通孔结构(76A,76G,86A,86G,96A,96G,96R,96C)可以包括接触第一无源器件(诸如电阻器)的第一无源器件接触通孔结构96R以及接触第二无源器件(诸如电容器)的第二无源器件接触通孔结构96C。The contact via structure (76A, 76G, 86A, 86G, 96A, 96G, 96R, 96C) includes: a first source contacting the source/drain region (65, 66) in the first field effect transistor region (100, 200) /Drain region contact via structure 76A; first gate contact via structure 76G in first field effect transistor region (100, 200) contacting the top surface of conductive gate cap structure 40; second field effect transistor region (300, 400 ) second source/drain region contact via structure 86A contacting the source/drain region (65, 66); second gate contact via structure 86G contacting the second gate electrode (25, 26) ;The third source/drain region contact via structure 96A in the third field effect transistor region (500,600) contacting the source/drain region (65,66); and the third field effect transistor region (500,600) in contact The third gate contact via structure 96G of the top surface of the conductive gate cap structure 40 . Additionally, the contact via structures (76A, 76G, 86A, 86G, 96A, 96G, 96R, 96C) may include a first passive device contact via structure 96R that contacts a first passive device, such as a resistor, and a first passive device contact via structure 96R that contacts a first passive device, such as a resistor. A second passive device of the two passive devices, such as a capacitor, contacts via structure 96C.
一般来讲,可在各种场效应晶体管区(100,200,300,400,500,600)中形成具有不同栅极介电质厚度、不同栅极长度(即,源极区与漏极区之间的不同横向距离)和不同构型的各种场效应晶体管。介电栅极间隔物56可覆盖在第二场效应晶体管区(300,400)中的场效应晶体管的源极/漏极区(65,66)的外围区上面,并且接触沟槽隔离结构8的相应部分的侧壁。Generally speaking, various field effect transistor regions (100, 200, 300, 400, 500, 600) can be formed with different gate dielectric thicknesses, different gate lengths (ie, different lateral distances between source and drain regions), and different textures. Various types of field effect transistors. Dielectric gate spacers 56 may overlie peripheral regions of the source/drain regions (65, 66) of the field effect transistors in the second field effect transistor region (300, 400) and contact corresponding portions of the trench isolation structure 8 part of the side wall.
第二示例性结构可以包括位于第一场效应晶体管区(100或200)中的第一场效应晶体管和第二场效应晶体管的组合。第一场效应晶体管和第二场效应晶体管分别包括第一有源区51和第二有源区52。第一有源区和第二有源区接触沟槽隔离结构8的侧壁,并且由该沟槽隔离结构横向围绕。沟槽隔离结构8的横向延伸部分8L位于第一有源区51与第二有源区52之间。The second exemplary structure may include a combination of first field effect transistors and second field effect transistors located in the first field effect transistor region (100 or 200). The first field effect transistor and the second field effect transistor include a first active region 51 and a second active region 52 respectively. The first active region and the second active region contact the sidewalls of the trench isolation structure 8 and are laterally surrounded by the trench isolation structure. The lateral extension portion 8L of the trench isolation structure 8 is located between the first active region 51 and the second active region 52 .
第二示例性结构可以包括位于第二场效应晶体管区(300或400)中的第三场效应晶体管。第三场效应晶体管包括:第三有源区,该第三有源区由沟槽隔离结构8的附加部分横向围绕;第三栅极介电质12和第三栅极电极(116或115)的堆叠,该堆叠具有接触沟槽隔离结构8的附加部分的侧壁且沿着第一水平方向hd1横向延伸的横向侧壁;附加介电栅极间隔物56,这些附加介电栅极间隔物具有贯穿其中的相应开口并且接触沟槽隔离结构8的附加部分的侧壁的相应子集以及第三栅极电极(116或115)的相应纵向侧壁(沿着第二水平方向hd2横向延伸)。The second exemplary structure may include a third field effect transistor located in the second field effect transistor region (300 or 400). The third field effect transistor includes: a third active region laterally surrounded by an additional portion of the trench isolation structure 8; a third gate dielectric 12 and a third gate electrode (116 or 115) a stack having lateral sidewalls contacting additional portions of the trench isolation structure 8 and extending laterally along the first horizontal direction hd1; additional dielectric gate spacers 56 having A respective subset of the sidewalls having respective openings therethrough and contacting the additional portion of the trench isolation structure 8 and the respective longitudinal sidewalls of the third gate electrode (116 or 115) (extending laterally along the second horizontal direction hd2) .
第一栅极电极116和第二栅极电极116不接触接触层级介电层70,并且通过第一介电栅极间隔物56和导电栅极连接结构(体现为导电栅极帽盖结构40)与接触层级介电层70间隔开。第三栅极电极(116或115)可具有与第一栅极电极116和第二栅极电极116相同的厚度。第三栅极电极(116或115)的顶部表面的一部分与接触层级介电层70直接接触。The first gate electrode 116 and the second gate electrode 116 are not in contact with the contact level dielectric layer 70 and are connected through the first dielectric gate spacer 56 and the conductive gate connection structure (embodied as the conductive gate cap structure 40 ). Spaced apart from contact level dielectric layer 70 . The third gate electrode (116 or 115) may have the same thickness as the first gate electrode 116 and the second gate electrode 116. A portion of the top surface of the third gate electrode (116 or 115) is in direct contact with the contact level dielectric layer 70.
至少一个栅极接触结构(诸如第一栅极接触通孔结构76G)延伸穿过接触层级介电层70并且接触导电栅极连接结构的该部分的顶部表面,该导电栅极连接结构包括至少部分地覆盖在下面的第一栅极电极116上面的导电栅极帽盖结构40,并且至少一个附加栅极接触结构(诸如第二栅极接触通孔结构86G)延伸穿过接触层级介电层70并且接触第三栅极电极116的顶部表面的一部分。第三栅极电极116的整个顶部表面与至少一个附加栅极接触结构或接触层级介电层70接触。At least one gate contact structure, such as first gate contact via structure 76G, extends through contact level dielectric layer 70 and contacts a top surface of the portion of the conductive gate connection structure that includes at least a portion of conductive gate cap structure 40 groundly overlying underlying first gate electrode 116 and at least one additional gate contact structure (such as second gate contact via structure 86G) extending through contact level dielectric layer 70 and contacts a portion of the top surface of the third gate electrode 116 . The entire top surface of third gate electrode 116 is in contact with at least one additional gate contact structure or contact level dielectric layer 70 .
第二示例性结构可以包括附加场效应晶体管,诸如形成在第三场效应晶体管区(500或600)中的第四场效应晶体管。附加场效应晶体管包括附加有源区,该附加有源区具有一对纵向侧壁和一对横向侧壁,该对横向侧壁接触沟槽隔离结构8的附加部分的侧壁并且由沟槽隔离结构的附加部分横向围绕。附加场效应晶体管包括覆盖在附加有源区上面的附加栅极结构(10,13,40,50)。附加栅极结构(10,13,40,50)可以包括附加复合栅极介电质(10,13)和附加导电栅极帽盖结构40,该附加复合栅极介电质包括具有比第一栅极介电质12更大厚度的氧化硅子层10以及氮化硅子层13,该附加导电栅极帽盖结构具有与第一导电栅极帽盖结构40的第一区段相同的厚度和相同的材料组成。氮化硅子层13的整个顶部表面与附加导电栅极帽盖结构40的底部表面接触。The second example structure may include additional field effect transistors, such as a fourth field effect transistor formed in the third field effect transistor region (500 or 600). The additional field effect transistor includes an additional active region having a pair of longitudinal sidewalls and a pair of lateral sidewalls contacting the sidewalls of the additional portion of the trench isolation structure 8 and being isolated by the trench Additional parts of the structure surround it laterally. Additional field effect transistors include additional gate structures (10, 13, 40, 50) overlying the additional active regions. The additional gate structures (10, 13, 40, 50) may include an additional composite gate dielectric (10, 13) and an additional conductive gate cap structure 40, the additional composite gate dielectric having a higher conductivity than the first A greater thickness of the silicon oxide sub-layer 10 and a silicon nitride sub-layer 13 of the gate dielectric 12, the additional conductive gate cap structure having the same thickness and the same material composition. The entire top surface of silicon nitride sub-layer 13 is in contact with the bottom surface of additional conductive gate cap structure 40 .
在一个实施方案中,第二示例性结构可以包括无源器件,该无源器件可选自电容器、电阻器或本领域已知的任何其他无源器件。无源器件包括层堆叠,该层堆叠从底部到顶部包括第一介电层(诸如氧化硅栅极介电质12和氮化硅栅极介电质13的另一实例)、第二介电层(诸如平面介电间隔板30)、第二半导体板(诸如平面半导体间隔板34)和金属板(诸如导电栅极帽盖结构40)。第一介电层具有与第一栅极介电质12相同的材料组成和相同的厚度。第一半导体板可具有与第一栅极电极(14、25或26)相同的厚度。第二介电层具有与第一平面介电间隔板30相同的材料组成和相同的厚度。金属板具有与第一导电栅极帽盖结构40的第一区段相同的材料组成和相同的厚度。In one embodiment, the second exemplary structure may include a passive device that may be selected from a capacitor, a resistor, or any other passive device known in the art. The passive device includes a layer stack that includes, from bottom to top, a first dielectric layer (such as another example of silicon oxide gate dielectric 12 and silicon nitride gate dielectric 13 ), a second dielectric layer layer (such as planar dielectric spacer plate 30), a second semiconductor plate (such as planar semiconductor spacer plate 34), and a metal plate (such as conductive gate cap structure 40). The first dielectric layer has the same material composition and the same thickness as the first gate dielectric 12 . The first semiconductor plate may have the same thickness as the first gate electrode (14, 25 or 26). The second dielectric layer has the same material composition and the same thickness as the first planar dielectric spacer plate 30 . The metal plate has the same material composition and the same thickness as the first section of the first conductive gate cap structure 40 .
参考图26A至图26B,可通过重新布置和/或省略掺杂阱(5,6)的子集,从图5A至图5F的第一示例性结构得到根据本公开的第三实施方案的第三示例性结构。例如,可形成第一p掺杂阱5A,使得在第一n型场效应晶体管区200内设置由沟槽隔离结构8的相应部分横向围绕的多个有源区。第二场效应晶体管区(300或400)可形成为与第一场效应晶体管区(100或200)相邻。第一p型场效应晶体管区100和第二n型场效应晶体管区400在第三示例性结构的附图中未示出,但是可存在于第三示例性结构内。虽然采用其中在第一n型场效应晶体管区200内存在多对有源区的实施方案来描述了本公开,但是本文明确设想了其中在第一p型场效应晶体管区100内存在多对有源区并且在第一p型场效应晶体管区100中形成具有相同几何特征的场效应晶体管的实施方案。换句话说,本公开的器件可形成为具有相反的导电类型。Referring to FIGS. 26A-26B , a third embodiment according to the present disclosure may be obtained from the first exemplary structure of FIGS. 5A-5F by rearranging and/or omitting a subset of the doped wells ( 5 , 6 ). Three exemplary structures. For example, the first p-doped well 5A may be formed such that a plurality of active regions laterally surrounded by corresponding portions of the trench isolation structure 8 are provided within the first n-type field effect transistor region 200 . The second field effect transistor region (300 or 400) may be formed adjacent to the first field effect transistor region (100 or 200). The first p-type field effect transistor region 100 and the second n-type field effect transistor region 400 are not shown in the drawings of the third exemplary structure, but may be present within the third exemplary structure. Although the present disclosure has been described in terms of embodiments in which there are multiple pairs of active regions within the first n-type field effect transistor region 200 , it is expressly contemplated herein that there are multiple pairs of active regions in the first p-type field effect transistor region 100 . source region and form an implementation of a field effect transistor with the same geometric characteristics in the first p-type field effect transistor region 100 . In other words, devices of the present disclosure may be formed with opposite conductivity types.
一般来讲,可在半导体衬底2内的半导体材料层上方形成至少一个栅极介电层和至少一个半导体栅极材料层,并且可穿过该至少一个半导体栅极材料层和该至少一个栅极介电层形成沟槽隔离结构8。该至少一个半导体栅极材料层和该至少一个栅极介电层的图案化部分包括覆盖在半导体材料层的第一有源区上面的第一栅极介电板22和第一栅极电极材料板24的第一堆叠(22,24),以及覆盖在半导体材料层的第二有源区上面的第二栅极介电板22和第二栅极电极材料板24的第二堆叠(22,24)。第一堆叠(22,24)和第二堆叠(22,24)可位于相同的场效应晶体管区内,诸如第一n型场效应晶体管区200。沟槽隔离结构8包括框架部分8F,该框架部分连续地横向围绕第一有源区和第二有源区。沟槽隔离结构8的横向延伸部分8L可位于第一有源区与第二有源区之间。可选地,可执行掩模离子注入工艺,以将栅极电极材料板24的任何部分掺杂为具有合适的导电类型。Generally speaking, at least one gate dielectric layer and at least one semiconductor gate material layer may be formed over the semiconductor material layer in the semiconductor substrate 2 and may pass through the at least one semiconductor gate material layer and the at least one gate material layer. The polar dielectric layer forms the trench isolation structure 8 . The at least one semiconductor gate material layer and the patterned portion of the at least one gate dielectric layer include a first gate dielectric plate 22 and a first gate electrode material overlying the first active region of the semiconductor material layer. a first stack (22, 24) of plates 24, and a second stack (22, 22, 24) of a second gate dielectric plate 22 and a second gate electrode material plate 24 overlying the second active region of the semiconductor material layer. twenty four). The first stack (22, 24) and the second stack (22, 24) may be located within the same field effect transistor region, such as first n-type field effect transistor region 200. Trench isolation structure 8 includes a frame portion 8F that continuously and laterally surrounds the first active region and the second active region. Laterally extending portion 8L of trench isolation structure 8 may be located between the first active region and the second active region. Alternatively, a masked ion implantation process may be performed to dope any portion of the gate electrode material plate 24 to have a suitable conductivity type.
参考图27A和图27B,可执行图6A至图6F的处理步骤,以在栅极电极材料板24和沟槽隔离结构8的顶部表面上方形成平面介电间隔层30L和平面半导体间隔层34L。平面介电间隔层30L和平面半导体间隔层34L中的每一者的厚度和材料组成可与第一示例性结构中的相同。Referring to FIGS. 27A and 27B , the process steps of FIGS. 6A through 6F may be performed to form planar dielectric spacer layer 30L and planar semiconductor spacer layer 34L over the top surface of gate electrode material plate 24 and trench isolation structure 8 . The thickness and material composition of each of planar dielectric spacer layer 30L and planar semiconductor spacer layer 34L may be the same as in the first exemplary structure.
参考图28A至图28F,可执行图7A至图7F的处理步骤,以图案化平面介电间隔层30L和平面半导体间隔层34L。在第三实施方案中,平面介电间隔层30L和平面半导体间隔层34L可被图案化,使得平面介电间隔层30L和平面半导体间隔层34L的图案化剩余部分的侧壁形成在第二场效应晶体管区(300或400)中。可从第一场效应晶体管区(100,200)、第三场效应晶体管区(500,600)和与第一场效应晶体管区(100,200)邻接的第二场效应晶体管区(300,400)的外围区移除平面介电间隔层30L和平面半导体间隔层34L。在这种情况下,第一有源区和第二有源区可设置在第一n型场效应晶体管区200内,并且平面介电间隔层30L和平面半导体间隔层34L的剩余部分可位于第一有源区和第二有源区的区域之外。在一个实施方案中,平面半导体间隔层34L的侧壁可垂直于第二场效应晶体管区(300,400)中要图案化的栅极电极的方向。例如,平面半导体间隔层34L的侧壁可平行于第一水平方向hd1。Referring to Figures 28A-28F, the process steps of Figures 7A-7F may be performed to pattern planar dielectric spacer layer 30L and planar semiconductor spacer layer 34L. In a third embodiment, planar dielectric spacer layer 30L and planar semiconductor spacer layer 34L may be patterned such that sidewalls of the patterned remaining portions of planar dielectric spacer layer 30L and planar semiconductor spacer layer 34L are formed in the second field effect transistor area (300 or 400). Planar interposers may be removed from peripheral areas of the first field effect transistor area (100,200), the third field effect transistor area (500,600), and the second field effect transistor area (300,400) adjacent to the first field effect transistor area (100,200). Electrical spacer layer 30L and planar semiconductor spacer layer 34L. In this case, the first active region and the second active region may be disposed within the first n-type field effect transistor region 200, and the remaining portions of the planar dielectric spacer layer 30L and the planar semiconductor spacer layer 34L may be located in the first n-type field effect transistor region 200. outside the area of the first active area and the second active area. In one embodiment, the sidewalls of the planar semiconductor spacer layer 34L may be perpendicular to the direction of the gate electrode to be patterned in the second field effect transistor region (300, 400). For example, the sidewalls of the planar semiconductor spacer layer 34L may be parallel to the first horizontal direction hd1.
参考图29A至图29F,可执行图8A至图8F的处理步骤,以直接在栅极电极材料板24和沟槽隔离结构8的物理暴露的顶部表面上并且在平面半导体间隔层34上方沉积导电栅极连接材料层(234L,236L)。在一个实施方案中,导电栅极连接材料层(236L,240L)可以包括竖直堆叠,该竖直堆叠从底部到顶部包括半导体栅极帽盖层236L和任选导电栅极帽盖层240L,该半导体栅极帽盖层包括重掺杂半导体材料。重掺杂半导体材料可以包括掺杂半导体材料诸如多晶硅,并且可具有与下面的栅极电极材料板24相同类型的掺杂。如果采用具有不同导电类型的多个栅极电极材料板24,则半导体栅极帽盖层236L的不同部分可掺杂有不同导电类型的电掺杂剂,以匹配相应的下面的栅极电极材料板24的导电类型。半导体栅极帽盖层236L的厚度可在30nm至300nm(诸如40nm至100nm)的范围内,但是也可以采用更小和更大的厚度。导电栅极帽盖层240L可具有与第一示例性结构中的导电栅极帽盖层40相同的材料组成和相同的厚度范围。导电栅极帽盖层240L可以包括金属硅化物层。另选地,导电栅极帽盖层240L可在该步骤中被省略,然后在随后的步骤中通过栅极电极的上表面的硅化物化来形成。可选地,随后可在导电栅极帽盖层240L上方沉积栅极帽盖介电层(未示出)。栅极帽盖介电层包括介电材料,诸如氮化硅。栅极帽盖介电层(如果存在)的厚度可在20nm至100nm(诸如30nm至50nm)的范围内,但是也可以采用更小和更大的厚度。Referring to FIGS. 29A-29F , the process steps of FIGS. 8A-8F may be performed to deposit conductive materials directly on the gate electrode material plate 24 and the physically exposed top surface of the trench isolation structure 8 and above the planar semiconductor spacer layer 34 Gate connection material layers (234L, 236L). In one embodiment, the conductive gate connection material layers (236L, 240L) may include a vertical stack including, from bottom to top, a semiconductor gate capping layer 236L and an optional conductive gate capping layer 240L, The semiconductor gate capping layer includes heavily doped semiconductor material. The heavily doped semiconductor material may include a doped semiconductor material such as polysilicon, and may have the same type of doping as the underlying gate electrode material plate 24 . If multiple gate electrode material plates 24 with different conductivity types are employed, different portions of the semiconductor gate capping layer 236L may be doped with electrical dopants of different conductivity types to match the corresponding underlying gate electrode materials. The conductivity type of plate 24. The thickness of semiconductor gate capping layer 236L may be in the range of 30 nm to 300 nm, such as 40 nm to 100 nm, although smaller and larger thicknesses may also be used. The conductive gate cap layer 240L may have the same material composition and the same thickness range as the conductive gate cap layer 40 in the first exemplary structure. Conductive gate capping layer 240L may include a metal suicide layer. Alternatively, the conductive gate capping layer 240L may be omitted in this step and then formed by silicide of the upper surface of the gate electrode in a subsequent step. Optionally, a gate cap dielectric layer (not shown) may be subsequently deposited over conductive gate cap layer 240L. The gate cap dielectric layer includes a dielectric material such as silicon nitride. The gate cap dielectric layer, if present, may have a thickness in the range of 20 nm to 100 nm (such as 30 nm to 50 nm), although smaller and larger thicknesses may also be used.
参考图30A至图30B,第一光致抗蚀剂层53可被施加在第三示例性结构上方,并且可被光刻图案化以形成离散图案化光致抗蚀剂材料部分。第一光致抗蚀剂层53的图案化部分可以包括第二场效应晶体管区(300和/或400)中的开口。可执行第一各向异性蚀刻工艺,以将第一光致抗蚀剂层53中的图案转印穿过可选的栅极帽盖介电层(如果存在)、导电栅极帽盖层240L、半导体栅极帽盖层236L和平面半导体间隔层34L。第一各向异性蚀刻工艺对于平面介电间隔层30L的介电材料可以是具有选择性的。Referring to Figures 30A-30B, a first photoresist layer 53 may be applied over the third example structure and may be photolithographically patterned to form discrete patterned photoresist material portions. The patterned portion of first photoresist layer 53 may include openings in the second field effect transistor region (300 and/or 400). A first anisotropic etch process may be performed to transfer the pattern in first photoresist layer 53 through the optional gate cap dielectric layer (if present), conductive gate cap layer 240L , a semiconductor gate capping layer 236L and a planar semiconductor spacer layer 34L. The first anisotropic etch process may be selective to the dielectric material of planar dielectric spacer layer 30L.
参考图31A和图31B,第二光致抗蚀剂层57可被施加在第三示例性结构上方,并且可被光刻图案化以提供具有随后将形成的栅极电极和无源器件的形状的图案化光致抗蚀剂材料部分。可以根据需要选择第二光致抗蚀剂层57的图案化部分的形状。在一个实施方案中,第二光致抗蚀剂层57的图案化部分可能已经延伸跨过平面半导体间隔层34L的边缘并且跨过导电栅极连接材料层(234L,240L)的一部分的边缘,该部分在第二场效应晶体管区(300和/或400)内覆盖在平面半导体间隔层34L的外围部分上面。Referring to FIGS. 31A and 31B , a second photoresist layer 57 may be applied over the third exemplary structure and may be photolithographically patterned to provide shapes with gate electrodes and passive devices that will subsequently be formed. part of the patterned photoresist material. The shape of the patterned portion of the second photoresist layer 57 can be selected as desired. In one embodiment, the patterned portion of the second photoresist layer 57 may have extended across the edge of the planar semiconductor spacer layer 34L and across the edge of a portion of the conductive gate connection material layers (234L, 240L), This portion overlies the peripheral portion of the planar semiconductor spacer layer 34L within the second field effect transistor region (300 and/or 400).
参考图32A至图32D,可执行第二各向异性蚀刻工艺,以将第二光致抗蚀剂层57的图案转印穿过介电栅极帽盖层(如果存在)、导电栅极连接材料层(234L,240L)、平面半导体间隔层34L、平面介电间隔层30L、栅极电极材料板24和栅极介电板22。导电栅极帽盖层240L的每个图案化部分构成导电栅极帽盖结构240。半导体栅极帽盖层236L的每个图案化部分构成半导体栅极帽盖结构236。平面半导体间隔层34L的每个图案化部分构成平面半导体间隔板34。平面介电间隔层30L的每个图案化部分构成平面介电间隔板30。栅极电极材料板24的每个图案化部分包括栅极电极14。栅极介电板22的每个图案化部分构成栅极介电质12。第二各向异性蚀刻工艺的终端部分对于半导体衬底2的半导体材料可以是选择性的。随后可以例如通过灰化移除第二光致抗蚀剂层57。Referring to FIGS. 32A-32D , a second anisotropic etch process may be performed to transfer the pattern of second photoresist layer 57 through the dielectric gate capping layer (if present), the conductive gate connections Material layers (234L, 240L), planar semiconductor spacer layer 34L, planar dielectric spacer layer 30L, gate electrode material plate 24 and gate dielectric plate 22. Each patterned portion of conductive gate cap layer 240L constitutes conductive gate cap structure 240 . Each patterned portion of semiconductor gate cap layer 236L constitutes semiconductor gate cap structure 236 . Each patterned portion of the planar semiconductor spacer layer 34L constitutes the planar semiconductor spacer plate 34 . Each patterned portion of planar dielectric spacer layer 30L constitutes planar dielectric spacer plate 30 . Each patterned portion of the plate of gate electrode material 24 includes a gate electrode 14 . Each patterned portion of gate dielectric plate 22 constitutes gate dielectric 12 . The terminal portion of the second anisotropic etching process may be selective to the semiconductor material of the semiconductor substrate 2 . The second photoresist layer 57 may then be removed, for example by ashing.
第一栅极介电质12和第一栅极电极14的堆叠覆盖在第一场效应晶体管区(100或200)中的第一有源区51内的第一沟道区上面,并且接触沟槽隔离结构8的横向延伸部分8F的第一侧壁。第二栅极介电质12和第二栅极电极14的堆叠覆盖在第二有源区52内的第二沟道区上面,并且接触沟槽隔离结构8的横向延伸部分8F的第二侧壁。包括半导体栅极帽盖结构236和导电栅极帽盖结构240的第一导电栅极连接结构接触第一栅极电极14的顶部表面、第二栅极电极14的顶部表面以及沟槽隔离结构8的横向延伸部分8F的顶部表面的一部分。包括第一导电栅极帽盖结构240的第一导电栅极连接结构包括沿着第一水平方向hd1横向延伸的一对横向侧壁和沿着第二水平方向hd2横向延伸的一对纵向侧壁。第一栅极电极14的整个顶部表面和第二栅极电极14的整个顶部表面接触导电栅极连接结构(236,240)的底部表面,诸如半导体栅极帽盖结构236的底部表面。The stack of first gate dielectric 12 and first gate electrode 14 overlies the first channel region within the first active region 51 in the first field effect transistor region (100 or 200) and contacts the trench. The first side wall of the laterally extending portion 8F of the slot isolation structure 8 . The stack of second gate dielectric 12 and second gate electrode 14 overlies the second channel region within second active region 52 and contacts the second side of lateral extension 8F of trench isolation structure 8 wall. The first conductive gate connection structure including the semiconductor gate cap structure 236 and the conductive gate cap structure 240 contacts the top surface of the first gate electrode 14 , the top surface of the second gate electrode 14 and the trench isolation structure 8 A portion of the top surface of the laterally extending portion 8F. The first conductive gate connection structure including the first conductive gate cap structure 240 includes a pair of lateral sidewalls extending transversely along the first horizontal direction hd1 and a pair of longitudinal sidewalls extending transversely along the second horizontal direction hd2 . The entire top surface of the first gate electrode 14 and the entire top surface of the second gate electrode 14 contact the bottom surface of the conductive gate connection structure (236, 240), such as the bottom surface of the semiconductor gate cap structure 236.
沟槽隔离结构8包括框架部分8F,该框架部分连续地横向围绕第一有源区51和第二有源区52。包括作为半导体栅极帽盖结构236和导电栅极帽盖结构240的堆叠的第一导电栅极连接结构包括第一端部部分和第三端部部分,该第三端部部分覆盖在沟槽隔离结构8的框架部分8F的顶部表面的相应区段上面并接触该相应区段,如图32A所示。第一栅极电极14和第二栅极电极14的纵向侧壁与第一导电栅极连接结构的沿着第二水平方向hd2横向延伸的该对纵向侧壁竖直重合。The trench isolation structure 8 includes a frame portion 8F that continuously and laterally surrounds the first active region 51 and the second active region 52 . The first conductive gate connection structure included as a stack of semiconductor gate cap structure 236 and conductive gate cap structure 240 includes a first end portion and a third end portion covering the trench. Above and in contact with a corresponding section of the top surface of the frame portion 8F of the isolation structure 8, as shown in Figure 32A. The longitudinal side walls of the first gate electrode 14 and the second gate electrode 14 vertically coincide with the pair of longitudinal side walls of the first conductive gate connection structure extending laterally along the second horizontal direction hd2.
第一栅极介电质12的第一横向侧壁(沿着第一水平方向hd1延伸)和第一栅极电极14的第一横向侧壁(沿着第一水平方向hd1延伸)彼此竖直重合,并且接触沟槽隔离结构8的横向延伸部分8L的第一侧壁。第二栅极介电质12的第一纵向侧壁(沿着第一水平方向hd1延伸)和第二栅极电极14的第一横向侧壁(沿着第一水平方向hd1延伸)彼此竖直重合,并且接触沟槽隔离结构8的横向延伸部分8L的第二侧壁。The first lateral sidewall of the first gate dielectric 12 (extending along the first horizontal direction hd1 ) and the first lateral sidewall of the first gate electrode 14 (extending along the first horizontal direction hd1 ) are perpendicular to each other. overlap and contact the first side wall of the lateral extension portion 8L of the trench isolation structure 8 . The first longitudinal sidewall of the second gate dielectric 12 (extending along the first horizontal direction hd1 ) and the first lateral sidewall (extending along the first horizontal direction hd1 ) of the second gate electrode 14 are perpendicular to each other. overlap and contact the second side wall of the laterally extending portion 8L of the trench isolation structure 8 .
第一栅极介电质12的第二纵向侧壁(沿着第一水平方向hd1延伸)和第一栅极电极14的第二横向侧壁(沿着第一水平方向hd1延伸)彼此竖直重合,并且接触沟槽隔离结构8的框架部分8F的第一侧壁。第二栅极介电质12的第二纵向侧壁(沿着着第一水平方向hd1延伸)和第二栅极电极14的第二横向侧壁(沿着第一水平方向hd1延伸)彼此竖直重合,并且接触沟槽隔离结构8的框架部分8F的第二侧壁。The second longitudinal sidewall of the first gate dielectric 12 (extending along the first horizontal direction hd1 ) and the second lateral sidewall of the first gate electrode 14 (extending along the first horizontal direction hd1 ) are perpendicular to each other. overlap and contact the first side wall of the frame portion 8F of the trench isolation structure 8 . The second longitudinal sidewall of the second gate dielectric 12 (extending along the first horizontal direction hd1 ) and the second lateral sidewall (extending along the first horizontal direction hd1 ) of the second gate electrode 14 are perpendicular to each other. directly coincide with and contact the second side wall of the frame portion 8F of the trench isolation structure 8 .
在一个实施方案中,第一导电栅极连接结构包括金属栅极连接结构,该金属栅极连接结构包括在整个第一栅极电极14(其包括第一栅极电极14的主要区段)上方、在沟槽隔离结构8的横向延伸部分8L上方以及在整个第二栅极电极14上方具有均匀厚度的导电栅极帽盖结构240。In one embodiment, the first conductive gate connection structure includes a metal gate connection structure included over the entire first gate electrode 14 including a major section of the first gate electrode 14 , a conductive gate cap structure 240 having a uniform thickness over the lateral extension 8L of the trench isolation structure 8 and over the entire second gate electrode 14 .
在一个实施方案中,第一导电栅极连接结构还包括半导体栅极连接结构,该半导体栅极连接结构包括半导体栅极帽盖结构236,该半导体栅极帽盖结构整体具有均匀厚度并且接触第一栅极电极14、沟槽隔离结构8L的横向延伸部分和第二栅极电极14的顶部表面。在一个实施方案中,第一导电栅极连接结构还包括金属栅极连接结构,该金属栅极连接结构包括导电栅极帽盖结构240,该导电栅极帽盖结构接触半导体栅极连接结构的整个顶部表面并且具有与半导体栅极结构相同的面积。In one embodiment, the first conductive gate connection structure further includes a semiconductor gate connection structure including a semiconductor gate cap structure 236 having a uniform thickness overall and contacting the first A gate electrode 14 , a lateral extension of the trench isolation structure 8L and a top surface of the second gate electrode 14 . In one embodiment, the first conductive gate connection structure further includes a metal gate connection structure including a conductive gate cap structure 240 that contacts the semiconductor gate connection structure. the entire top surface and has the same area as the semiconductor gate structure.
根据本公开的一方面,第二导电栅极连接结构可设置在第二场效应晶体管区(300和/或400)内。第二导电栅极连接结构包括第二半导体栅极帽盖结构236和第二导电栅极帽盖结构240的堆叠。第二半导体栅极帽盖结构236包括:第一区段,该第一区段接触下面的栅极电极14的顶部表面的一部分;第二区段,该第二区段覆盖在平面介电间隔板34上面;和连接区段,该连接区段接触平面介电间隔板34的第一侧壁并连接第一区段和第二区段。According to an aspect of the present disclosure, a second conductive gate connection structure may be disposed within the second field effect transistor region (300 and/or 400). The second conductive gate connection structure includes a stack of a second semiconductor gate cap structure 236 and a second conductive gate cap structure 240 . The second semiconductor gate cap structure 236 includes a first section contacting a portion of the top surface of the underlying gate electrode 14 and a second section overlying a planar dielectric spacer. above the plate 34; and a connection section that contacts the first side wall of the planar dielectric spacer plate 34 and connects the first section and the second section.
参考图33A至图33B,源极/漏极扩展区(未示出)可以可选地通过采用相应的图案化注入掩模层(诸如图案化光致抗蚀剂层)和相应的离子注入工艺注入p型掺杂剂和n型掺杂剂来形成。可通过保形沉积工艺(诸如化学气相沉积工艺)来沉积包括介电材料的介电栅极间隔材料层。介电栅极间隔材料层的介电材料可以包括例如氮化硅和/或氧化硅。可执行各向异性蚀刻工艺,以蚀刻介电栅极间隔材料层的水平延伸部分。介电栅极间隔材料层的剩余竖直延伸部分构成介电栅极间隔物56。Referring to FIGS. 33A-33B , the source/drain extension regions (not shown) may optionally be implanted using a corresponding patterned implant mask layer (such as a patterned photoresist layer) and a corresponding ion implantation process. It is formed by injecting p-type dopants and n-type dopants. The dielectric gate spacer material layer including the dielectric material may be deposited by a conformal deposition process, such as a chemical vapor deposition process. The dielectric material of the dielectric gate spacer material layer may include, for example, silicon nitride and/or silicon oxide. An anisotropic etching process may be performed to etch horizontally extending portions of the dielectric gate spacer material layer. The remaining vertical extensions of the layer of dielectric gate spacer material constitute dielectric gate spacers 56 .
各向异性蚀刻工艺可扩展到对于栅极电极14的材料选择性地蚀刻第一栅极介电质12、第二栅极介电板20和沟槽隔离结构8的介电材料的未掩蔽部分。可在各向异性蚀刻工艺期间并行地蚀刻第二场效应晶体管区(300,400)中的平面介电间隔板30。在这种情况下,第三场效应晶体管区(500,600)中的第二栅极介电板20可被图案化为第二栅极介电质10,并且沟槽隔离结构8的物理暴露的顶部表面可以是竖直凹陷的。在一个实施方案中,每个第二栅极介电质10的外部侧壁可与栅极间隔物56中的相应栅极间隔物的外部侧壁竖直重合。在一个实施方案中,沟槽隔离结构8的顶部表面的凹陷部分可以处于或大约处于第三场效应晶体管区(500,600)中的第三掺杂阱(5C,6C)的顶部表面的高度。The anisotropic etch process can be extended to etch unmasked portions of the dielectric material of the first gate dielectric 12 , the second gate dielectric plate 20 and the trench isolation structure 8 selectively to the material of the gate electrode 14 . The planar dielectric spacer 30 in the second field effect transistor region (300, 400) may be etched in parallel during the anisotropic etch process. In this case, the second gate dielectric plate 20 in the third field effect transistor region (500, 600) may be patterned with the second gate dielectric 10 and the top of the trench isolation structure 8 physically exposed The surface may be vertically concave. In one embodiment, the outer sidewalls of each second gate dielectric 10 may vertically coincide with the outer sidewalls of a corresponding one of the gate spacers 56 . In one embodiment, the recessed portion of the top surface of trench isolation structure 8 may be at or about the height of the top surface of the third doped well (5C, 6C) in the third field effect transistor region (500, 600).
在一个实施方案中,位于第一场效应晶体管区(100或200)内的第一介电栅极间隔物56包括横向围绕(包括半导体栅极帽盖结构236和导电栅极帽盖结构240的堆叠)的导电栅极连接结构的上部部分,以及在包括沟槽隔离结构8的框架部分8F的顶部表面的水平平面与包括第一有源区和第二有源区的顶部表面的水平平面之间竖直延伸、接触第一栅极电极14和第二栅极电极14中的一者的相应纵向侧壁并且接触第一有源区和第二有源区中的相应一者的顶部表面的四个下部部分。In one embodiment, the first dielectric gate spacer 56 located within the first field effect transistor region (100 or 200) includes a lateral surround including the semiconductor gate cap structure 236 and the conductive gate cap structure 240. an upper portion of the conductive gate connection structure of the stack), and between a horizontal plane including the top surface of the frame portion 8F of the trench isolation structure 8 and a horizontal plane including the top surface of the first active region and the second active region extending vertically between each other, contacting the respective longitudinal sidewalls of one of the first gate electrode 14 and the second gate electrode 14 and contacting the top surface of the respective one of the first and second active regions Four lower sections.
参考图34A至图34D,可执行掩蔽离子注入工艺,以将p型掺杂剂注入n型阱6的未掩蔽表面部分内并且将n型掺杂剂注入p型阱5的未掩蔽表面部分内。图案化光致抗蚀剂层、栅极结构(12,10,14,30,34,236,240)和介电栅极间隔物56的组合可在每个离子注入工艺期间用作复合注入掩模。源极区和漏极区形成在p掺杂阱5和n掺杂阱6的已注入表面部分内。源极区和漏极区被统称为源极/漏极区(65,66),其包括形成在n掺杂阱6中的相应n掺杂阱内的p掺杂源极/漏极区65和形成在p掺杂阱5中的相应p掺杂阱内的n掺杂源极/漏极区66。Referring to FIGS. 34A to 34D , a masked ion implantation process may be performed to inject p-type dopants into the unmasked surface portion of n-type well 6 and to inject n-type dopants into the unmasked surface portion of p-type well 5 . The combination of patterned photoresist layer, gate structure (12, 10, 14, 30, 34, 236, 240) and dielectric gate spacer 56 can be used as a composite implant mask during each ion implantation process. Source and drain regions are formed within implanted surface portions of p-doped well 5 and n-doped well 6 . The source and drain regions are collectively referred to as source/drain regions (65, 66), which include p-doped source/drain regions 65 formed within corresponding n-doped wells 6 and n-doped source/drain regions 66 formed within corresponding p-doped wells in p-doped well 5 .
在一个实施方案中,可在其中形成高电压场效应晶体管的器件区(诸如,第三场效应晶体管区(500,600))中采用用于增加场效应晶体管的击穿电压的构型。在这种情况下,p掺杂源极/漏极区65可以包括被附加沟槽隔离结构8横向间隔开的内部p掺杂源极/漏极区65I和外部p掺杂源极/漏极区65O,该附加沟槽隔离结构可以与第一场效应晶体管区(100,200)中的沟槽隔离结构8分离。此外,n掺杂源极/漏极区66可以包括被另一附加沟槽隔离结构8横向间隔开的内部n掺杂源极/漏极区66I和外部n掺杂源极/漏极区66O。可选地,可以采用阱接触源极/漏极区65W来促进掺杂阱的偏置。In one embodiment, configurations for increasing the breakdown voltage of field effect transistors may be employed in device regions in which high voltage field effect transistors are formed, such as third field effect transistor regions (500, 600). In this case, p-doped source/drain regions 65 may include inner p-doped source/drain regions 65I and outer p-doped source/drain regions laterally spaced apart by additional trench isolation structures 8 Region 65O, this additional trench isolation structure may be separated from the trench isolation structure 8 in the first field effect transistor region (100, 200). Additionally, n-doped source/drain regions 66 may include inner n-doped source/drain regions 66I and outer n-doped source/drain regions 66O laterally spaced apart by another additional trench isolation structure 8 . Alternatively, well contact source/drain regions 65W may be employed to facilitate biasing of the doped well.
参考图35A和图35B,随后可以形成接触层级介电层70和各种接触通孔结构(76A,76G,86A,86G,96A,96G,96R,96C)。接触层级介电层70包括介电材料诸如氧化硅,并且可以通过保形或非保形沉积工艺形成。接触层级介电层70的顶部表面可以通过平面化工艺诸如化学机械抛光(CMP)工艺来平面化。栅极帽盖介电质50的最顶部表面与接触层级介电层70的顶部表面之间的竖直距离可在30nm到500nm的范围内,但也可以采用更小和更大的竖直距离。Referring to Figures 35A and 35B, contact level dielectric layer 70 and various contact via structures (76A, 76G, 86A, 86G, 96A, 96G, 96R, 96C) may subsequently be formed. Contact level dielectric layer 70 includes a dielectric material such as silicon oxide, and may be formed by a conformal or non-conformal deposition process. The top surface of contact level dielectric layer 70 may be planarized by a planarization process such as a chemical mechanical polishing (CMP) process. The vertical distance between the topmost surface of the gate cap dielectric 50 and the top surface of the contact level dielectric layer 70 may be in the range of 30 nm to 500 nm, although smaller and larger vertical distances may also be used. .
接触通孔结构(76A,76G,86A,86G,96A,96G,96R,96C)包括:第一场效应晶体管区(100或200)内接触源极/漏极区(65,66)的第一源极/漏极区接触通孔结构76A;第一场效应晶体管区(100或200)内接触导电栅极帽盖结构240的顶部表面的第一栅极接触通孔结构76G;第二场效应晶体管区(300或400)内接触源极/漏极区(65,66)的第二源极/漏极区接触通孔结构86A;接触第二栅极电极(25,26)的第二栅极接触通孔结构86G;第三场效应晶体管区(500,600)内接触源极/漏极区(65,66)的第三源极/漏极区接触通孔结构96A;以及第三场效应晶体管区(500,600)内接触导电栅极帽盖结构240的顶部表面的第三栅极接触通孔结构96G。此外,接触通孔结构(76A,76G,86A,86G,96A,96G,96R,96C)可以包括接触第一无源器件(诸如电阻器)的第一无源器件接触通孔结构96R以及接触第二无源器件(诸如电容器)的第二无源器件接触通孔结构96C。The contact via structure (76A, 76G, 86A, 86G, 96A, 96G, 96R, 96C) includes: a first contact source/drain region (65, 66) in the first field effect transistor region (100 or 200) Source/drain region contact via structure 76A; first gate contact via structure 76G within first field effect transistor region (100 or 200) contacting the top surface of conductive gate cap structure 240; second field effect transistor region (100 or 200) contacting the top surface of conductive gate cap structure 240; The second source/drain region contacting the source/drain region (65, 66) in the transistor region (300 or 400) contacts the via structure 86A; the second gate contacting the second gate electrode (25, 26) pole contact via structure 86G; a third source/drain region contact via structure 96A in the third field effect transistor region (500, 600) contacting the source/drain region (65, 66); and a third field effect transistor A third gate contact via structure 96G contacts the top surface of conductive gate cap structure 240 in region (500, 600). Additionally, the contact via structures (76A, 76G, 86A, 86G, 96A, 96G, 96R, 96C) may include a first passive device contact via structure 96R that contacts a first passive device, such as a resistor, and a first passive device contact via structure 96R that contacts a first passive device, such as a resistor. A second passive device of the two passive devices, such as a capacitor, contacts via structure 96C.
一般来讲,可在各种场效应晶体管区(100,200,300,400,500,600)中形成具有不同栅极介电质厚度、不同栅极长度(即,源极区与漏极区之间的不同横向距离)和不同构型的各种场效应晶体管。介电栅极间隔物56可覆盖在第二场效应晶体管区(300或400)中的场效应晶体管的源极/漏极区(65,66)的外围区上面,并且接触沟槽隔离结构8的相应部分的侧壁。Generally speaking, various field effect transistor regions (100, 200, 300, 400, 500, 600) can be formed with different gate dielectric thicknesses, different gate lengths (ie, different lateral distances between source and drain regions), and different textures. Various types of field effect transistors. Dielectric gate spacers 56 may overlie peripheral regions of the source/drain regions (65, 66) of the field effect transistors in the second field effect transistor region (300 or 400) and contact the trench isolation structure 8 corresponding part of the side wall.
第三示例性结构可以包括位于第一场效应晶体管区(100或200)中的第一场效应晶体管和第二场效应晶体管的组合。第一场效应晶体管和第二场效应晶体管分别包括第一有源区51和第二有源区52。第一有源区和第二有源区接触沟槽隔离结构8的侧壁,并且由该沟槽隔离结构横向围绕。沟槽隔离结构8的横向延伸部分8L位于第一有源区51与第二有源区52之间。The third exemplary structure may include a combination of first field effect transistors and second field effect transistors located in the first field effect transistor region (100 or 200). The first field effect transistor and the second field effect transistor include a first active region 51 and a second active region 52 respectively. The first active region and the second active region contact the sidewalls of the trench isolation structure 8 and are laterally surrounded by the trench isolation structure. The lateral extension portion 8L of the trench isolation structure 8 is located between the first active region 51 and the second active region 52 .
第三示例性结构可以包括位于第二场效应晶体管区(300或400)中的第三场效应晶体管。第三场效应晶体管包括:第三有源区,该第三有源区由沟槽隔离结构8的附加部分横向围绕;第三栅极介电质12和第三栅极电极14的堆叠,该堆叠具有接触沟槽隔离结构8的附加部分的侧壁且沿着第一水平方向hd1横向延伸的横向侧壁;附加介电栅极间隔物56,这些附加介电栅极间隔物具有贯穿其中的相应开口并且接触沟槽隔离结构8的附加部分的侧壁的相应子集以及第三栅极电极14的相应纵向侧壁(沿着第二水平方向hd2横向延伸)。The third exemplary structure may include a third field effect transistor located in the second field effect transistor region (300 or 400). The third field effect transistor includes: a third active region laterally surrounded by additional portions of trench isolation structure 8; a stack of third gate dielectric 12 and third gate electrode 14, The stack has lateral sidewalls contacting additional portions of the trench isolation structure 8 and extending laterally along the first horizontal direction hd1; additional dielectric gate spacers 56 having therethrough A respective subset of the sidewalls of the additional portion of the trench isolation structure 8 and a respective longitudinal sidewall of the third gate electrode 14 (extending laterally along the second horizontal direction hd2 ) are respectively opened and contacted.
第三场效应晶体管的第三栅极电极14的顶部表面的一部分可与接触层级介电材料层70接触。包括半导体栅极帽盖结构236和导电栅极帽盖结构240的堆叠的附加导电栅极帽盖结构可接触第三栅极电极14的顶部表面的另一部分。附加导电栅极帽盖结构可以包括与第一场效应晶体管区(100和/或200)中的导电栅极连接结构相同的一组材料。至少一个栅极接触结构(诸如第一栅极接触通孔结构76G)可竖直延伸穿过接触层级介电层70并且可接触第一场效应晶体管区(100和/或200)中的导电栅极连接结构(236,240)的顶部表面,并且至少一个附加栅极接触结构(诸如第二栅极接触通孔结构86G)可竖直延伸穿过接触层级介电层70并且可接触附加导电栅极帽盖结构(236,240)的顶部表面。A portion of the top surface of the third gate electrode 14 of the third field effect transistor may be in contact with the contact level dielectric material layer 70 . An additional conductive gate cap structure including a stack of semiconductor gate cap structure 236 and conductive gate cap structure 240 may contact another portion of the top surface of third gate electrode 14 . The additional conductive gate cap structure may comprise the same set of materials as the conductive gate connection structure in the first field effect transistor region (100 and/or 200). At least one gate contact structure, such as first gate contact via structure 76G, may extend vertically through contact level dielectric layer 70 and may contact the conductive gate in the first field effect transistor region (100 and/or 200) The top surface of the electrode connection structure (236, 240) and at least one additional gate contact structure (such as the second gate contact via structure 86G) can extend vertically through the contact level dielectric layer 70 and can contact the additional conductive gate cap The top surface of the cover structure (236,240).
第一栅极电极14和第二栅极电极14不接触接触层级介电层70,并且通过第一介电栅极间隔物56和包括导电栅极帽盖结构240的导电栅极连接结构与接触层级介电层70间隔开。第三栅极电极14可具有与第一栅极电极14和第二栅极电极14相同的厚度。第三栅极电极14的顶部表面的一部分与接触层级介电层70直接接触。The first gate electrode 14 and the second gate electrode 14 do not contact the contact level dielectric layer 70 and are contacted by the first dielectric gate spacer 56 and the conductive gate connection structure including the conductive gate cap structure 240 Level dielectric layers 70 are spaced apart. The third gate electrode 14 may have the same thickness as the first gate electrode 14 and the second gate electrode 14 . A portion of the top surface of third gate electrode 14 is in direct contact with contact level dielectric layer 70 .
至少一个栅极接触结构(诸如第一栅极接触通孔结构76G)延伸穿过接触层级介电层70并且接触导电栅极连接结构的顶部表面,该导电栅极连接结构包括导电栅极帽盖结构240,并且至少一个附加栅极接触结构(诸如第二栅极接触通孔结构86G)延伸穿过接触层级介电层70并且接触第三栅极电极14的顶部表面的一部分。第三栅极电极14的整个顶部表面与至少一个附加栅极接触结构或接触层级介电层70接触。At least one gate contact structure, such as first gate contact via structure 76G, extends through contact level dielectric layer 70 and contacts a top surface of the conductive gate connection structure, which includes a conductive gate cap structure 240 , and at least one additional gate contact structure, such as second gate contact via structure 86G, extends through contact level dielectric layer 70 and contacts a portion of the top surface of third gate electrode 14 . The entire top surface of third gate electrode 14 is in contact with at least one additional gate contact structure or contact level dielectric layer 70 .
第三示例性结构可以包括附加场效应晶体管,诸如形成在第三场效应晶体管区(500或600)中的第四场效应晶体管。附加场效应晶体管包括附加有源区,该附加有源区具有一对纵向侧壁和一对横向侧壁,该对横向侧壁接触沟槽隔离结构8的附加部分的侧壁并且由沟槽隔离结构的附加部分横向围绕。附加场效应晶体管包括覆盖在附加有源区上面的附加栅极结构(10,14,236,240)。附加栅极结构(10,14,236,240)可以包括具有比第一栅极介电质12更大厚度的附加栅极介电质10、附加栅极电极14(其可具有与第一栅极电极14相同的厚度)、具有与第一半导体栅极帽盖结构236相同的厚度和相同的材料组成的附加半导体栅极帽盖结构236,以及具有与第一导电栅极帽盖结构240相同的厚度和相同的材料组成的附加导电栅极帽盖结构240。附加栅极电极14的整个顶部表面与附加半导体栅极帽盖结构236的底部表面接触。The third exemplary structure may include additional field effect transistors, such as a fourth field effect transistor formed in the third field effect transistor region (500 or 600). The additional field effect transistor includes an additional active region having a pair of longitudinal sidewalls and a pair of lateral sidewalls contacting the sidewalls of the additional portion of the trench isolation structure 8 and being isolated by the trench Additional parts of the structure surround it laterally. Additional field effect transistors include additional gate structures (10, 14, 236, 240) overlying the additional active regions. Additional gate structures (10, 14, 236, 240) may include additional gate dielectric 10 having a greater thickness than first gate dielectric 12, additional gate electrode 14 (which may have the same thickness as first gate electrode 14 thickness), an additional semiconductor gate cap structure 236 having the same thickness and the same material composition as the first semiconductor gate cap structure 236 , and having the same thickness and the same material composition as the first conductive gate cap structure 240 An additional conductive gate cap structure 240 composed of a material. The entire top surface of the additional gate electrode 14 is in contact with the bottom surface of the additional semiconductor gate cap structure 236 .
在一个实施方案中,第三示例性结构可以包括无源器件,该无源器件可选自电容器、电阻器或本领域已知的任何其他无源器件。无源器件包括层堆叠,该层堆叠从底部到顶部包括第一介电层(诸如栅极介电质12的另一实例)、第一半导体板(诸如栅极电极14)、第二介电层(诸如平面介电间隔板30)、第二半导体板(诸如平面半导体间隔板34)、第三半导体板(诸如半导体栅极帽盖结构236)和金属板(诸如导电栅极帽盖结构240)。第一介电层具有与第一栅极介电质12相同的材料组成和相同的厚度。第一半导体板可具有与第一栅极电极14相同的厚度。第二介电层具有与第一平面介电间隔板30相同的材料组成和相同的厚度。第三半导体板具有与第一场效应晶体管区(100和/或200)中的第一半导体栅极帽盖结构236相同的材料组成和相同的厚度。金属板具有与第一场效应晶体管区(100和/或200)中的第一导电栅极帽盖结构240相同的材料组成和相同的厚度。In one embodiment, the third exemplary structure may include a passive device that may be selected from a capacitor, a resistor, or any other passive device known in the art. The passive device includes a layer stack that includes, from bottom to top, a first dielectric layer (such as another example of gate dielectric 12), a first semiconductor plate (such as gate electrode 14), a second dielectric layer layer (such as planar dielectric spacer plate 30), a second semiconductor plate (such as planar semiconductor spacer plate 34), a third semiconductor plate (such as semiconductor gate cap structure 236), and a metal plate (such as conductive gate cap structure 240 ). The first dielectric layer has the same material composition and the same thickness as the first gate dielectric 12 . The first semiconductor plate may have the same thickness as the first gate electrode 14 . The second dielectric layer has the same material composition and the same thickness as the first planar dielectric spacer plate 30 . The third semiconductor plate has the same material composition and the same thickness as the first semiconductor gate cap structure 236 in the first field effect transistor region (100 and/or 200). The metal plate has the same material composition and the same thickness as the first conductive gate cap structure 240 in the first field effect transistor region (100 and/or 200).
图36A至图36B示出了比较用感测放大器晶体管900C。晶体管900C可位于驱动器电路的感测放大器区中。晶体管900C的栅极电极(40,50)在有源区51上方在第二水平方向(例如,晶体管宽度方向)hd2上延伸。第二水平方向hd2垂直于第一水平方向(例如,晶体管长度方向)hd1,该第一水平方向平行于源极至漏极方向。比较用感测放大器晶体管900C包括边缘区,在该边缘区中,栅极电极(40,50)在第二水平方向hd2上延伸经过有源区51并且覆盖在沟槽隔离区8的一部分上面。36A to 36B illustrate a comparison sense amplifier transistor 900C. Transistor 900C may be located in the sense amplifier region of the driver circuit. The gate electrode (40, 50) of transistor 900C extends in a second horizontal direction (eg, transistor width direction) hd2 above active region 51. The second horizontal direction hd2 is perpendicular to the first horizontal direction (eg, the transistor length direction) hd1 , which is parallel to the source-to-drain direction. The comparison sense amplifier transistor 900C includes an edge region in which the gate electrode (40, 50) extends through the active region 51 in the second horizontal direction hd2 and covers a portion of the trench isolation region 8.
图37A和图37B示出了根据本公开的第四实施方案的第四示例性感测放大器晶体管900T。在晶体管900T中可以省略栅极帽盖介电质50,并且栅极电极可以包括重掺杂多晶硅部分14和导电栅极帽盖结构,该导电栅极帽盖结构包括位于多晶硅部分14上的自对准硅化物部分40。晶体管900T不包括边缘区,在该边缘区中,栅极电极(14,40)在第二水平方向hd2上延伸经过有源区51。因此,栅极电极(14,40)不覆盖在沟槽隔离区8的一部分上面,并且栅极电极(14,40)的整个占有区域位于有源区51的横向边界上方和该横向边界内。因此,栅极电极(14,40)可以与有源区51自对准,并且具有与有源区51的宽度基本上相同的宽度。硅化物部分40可充当栅极接触通孔结构76G分接区域。另选地,导电栅极帽盖结构40可以包括金属和/或金属氮化物结构,诸如W/TiN/Ti结构。37A and 37B illustrate a fourth exemplary sense amplifier transistor 900T according to a fourth embodiment of the present disclosure. Gate cap dielectric 50 may be omitted in transistor 900T, and the gate electrode may include heavily doped polysilicon portion 14 and a conductive gate cap structure including a self-contained gate cap on polysilicon portion 14 . Align the suicide portion 40 . Transistor 900T does not include an edge region in which the gate electrode (14, 40) extends past the active region 51 in the second horizontal direction hd2. Therefore, the gate electrode (14, 40) does not cover a portion of the trench isolation region 8 and the entire occupied area of the gate electrode (14, 40) is located above and within the lateral boundaries of the active region 51. Therefore, the gate electrode (14, 40) may be self-aligned with the active region 51 and have substantially the same width as the active region 51. Silicide portion 40 may serve as gate contact via structure 76G tap region. Alternatively, conductive gate cap structure 40 may include a metal and/or metal nitride structure, such as a W/TiN/Ti structure.
图38是图36A的两个相邻比较用感测放大器晶体管900C的俯视图,并且图39是根据本发明的第四实施方案的图37A的两个相邻第四示例性感测放大器晶体管900T的俯视图。由于晶体管900C中的边缘区,相邻晶体管900C的有源区51之间沿着第二水平方向hd2的距离d1比相邻晶体管900T的有源区51之间沿着第二水平方向hd2的距离d2更长。因此,与比较用晶体管900C相比,无边缘晶体管900T可形成为更靠近彼此并且占据更少芯片空间。因此,可减小整个芯片尺寸。38 is a top view of two adjacent comparison sense amplifier transistors 900C of FIG. 36A, and FIG. 39 is a top view of two adjacent fourth exemplary sense amplifier transistors 900T of FIG. 37A according to the fourth embodiment of the present invention. . Due to the edge region in the transistor 900C, the distance d1 between the active regions 51 of adjacent transistors 900C along the second horizontal direction hd2 is larger than the distance between the active regions 51 of adjacent transistors 900T along the second horizontal direction hd2 d2 is longer. Therefore, edgeless transistors 900T may be formed closer to each other and occupy less chip space than comparative transistor 900C. Therefore, the overall chip size can be reduced.
图40A和图40B示出了根据本公开的第一实施方案的第一示例性晶体管100T。晶体管100T可位于外围电路的低或超低电压晶体管区(100、200、300或400)中。例如,晶体管100T可位于图14A和图14B的区100中。晶体管100T也是无边缘的并且没有上述边缘区。40A and 40B illustrate a first exemplary transistor 100T according to the first embodiment of the present disclosure. Transistor 100T may be located in a low or ultra-low voltage transistor region (100, 200, 300 or 400) of the peripheral circuit. For example, transistor 100T may be located in region 100 of Figures 14A and 14B. Transistor 100T is also edgeless and lacks the edge regions described above.
图41是包含上述边缘区的两个相邻比较用晶体管100C的俯视图,在该边缘区中,栅极电极(40,50)延伸经过有源区51的后侧边界。图42是在有源区51的后侧上没有边缘区的图40A的两个相邻第一示例性晶体管100T的俯视图。由于晶体管100C中的边缘区,相邻晶体管100C的有源区51之间沿着第二水平方向hd2的距离d3比相邻晶体管100T的有源区51之间沿着第二水平方向hd2的距离d4更长。因此,与比较用晶体管100C相比,实施方案晶体管100T可形成为更靠近彼此并且占据更少芯片空间。因此,可减小整个芯片尺寸。FIG. 41 is a top view of two adjacent comparison transistors 100C including the above-described edge region in which the gate electrodes (40, 50) extend past the rear boundary of the active region 51. FIG. 42 is a top view of two adjacent first exemplary transistors 100T of FIG. 40A without edge regions on the rear side of active region 51 . Due to the edge region in the transistor 100C, the distance d3 between the active regions 51 of adjacent transistors 100C along the second horizontal direction hd2 is larger than the distance along the second horizontal direction hd2 between the active regions 51 of adjacent transistors 100T. d4 is longer. Therefore, embodiment transistors 100T may be formed closer to each other and occupy less chip space than comparative transistor 100C. Therefore, the overall chip size can be reduced.
图43是根据本公开的第二实施方案的两个相邻第二示例性晶体管200T的俯视图。第二示例性晶体管200T可位于图25A和图25B的低或超低电压晶体管区200中。晶体管200T是无边缘的并且在有源区51的前侧和后侧上没有边缘区。栅极电极(40,50)位于有源区51的边界(即,占有区域)上方并且完全位于该有源区的边界内。因此,与晶体管100T相比,无边缘晶体管200T可形成为更靠近彼此,并且相邻晶体管200C的有源区51之间沿着第二水平方向hd2的距离d5比相邻晶体管100T的有源区51之间沿着第二水平方向hd2的距离d4甚至更短更长。因此,实施方案晶体管200T可形成为甚至更靠近彼此并且占据甚至更少芯片空间。Figure 43 is a top view of two adjacent second exemplary transistors 200T according to the second embodiment of the present disclosure. The second example transistor 200T may be located in the low or ultra-low voltage transistor region 200 of Figures 25A and 25B. Transistor 200T is edgeless and has no edge areas on the front and back sides of active area 51 . The gate electrodes (40, 50) are located above and completely within the boundaries of the active area 51 (ie, the occupied area). Therefore, the edgeless transistors 200T may be formed closer to each other than the transistor 100T, and the distance d5 between the active regions 51 of adjacent transistors 200C along the second horizontal direction hd2 is longer than the active regions of the adjacent transistors 100T. The distance d4 between 51 along the second horizontal direction hd2 is even shorter and longer. Therefore, embodiment transistors 200T may be formed even closer to each other and occupy even less chip space.
图44是根据本公开的第二实施方案的第二示例性晶体管200T的另选构型的俯视图。在图44的构型中,如图43所示,第一栅极接触通孔结构76G可定位成更靠近下面的栅极电极(40,50)的中部,而不是更靠近下面的栅极电极(40,50)的边缘。这种构型降低了下面的栅极电极(40,50)的接触垫区域与第一栅极接触通孔结构76G之间未对准的风险。Figure 44 is a top view of an alternative configuration of a second exemplary transistor 200T according to a second embodiment of the present disclosure. In the configuration of Figure 44, as shown in Figure 43, the first gate contact via structure 76G may be positioned closer to the middle of the underlying gate electrode (40, 50) rather than closer to the underlying gate electrode The edge of (40,50). This configuration reduces the risk of misalignment between the contact pad areas of the underlying gate electrodes (40, 50) and the first gate contact via structure 76G.
图45A、图45B、图46A、图46B和图46C示出了根据本公开的第三实施方案的第三示例性晶体管结构。上覆半导体栅极帽盖结构236和导电栅极帽盖结构240用作用于晶体管结构的栅极接触通孔结构76G分接区域,这些晶体管结构含有带边缘晶体管和无边缘晶体管两者。具体地,无边缘晶体管没有上覆半导体栅极帽盖结构236并且可以包括无边缘栅极电极14。带边缘晶体管包括延伸经过有源区51的边界的上覆半导体栅帽盖结构236和下面的栅极电极14,如图46A和图46C所示。45A, 45B, 46A, 46B, and 46C illustrate a third exemplary transistor structure according to the third embodiment of the present disclosure. The overlying semiconductor gate cap structure 236 and the conductive gate cap structure 240 serve as gate contact via structure 76G tap areas for transistor structures containing both edge and edgeless transistors. Specifically, the edgeless transistor does not have an overlying semiconductor gate cap structure 236 and may include an edgeless gate electrode 14 . The edge-band transistor includes an overlying semiconductor gate cap structure 236 and underlying gate electrode 14 extending across the boundary of active region 51, as shown in Figures 46A and 46C.
通过在多晶硅栅极电极14和半导体栅极帽盖结构236的上表面上包括相应的硅化物区25S和240来减小该多晶硅栅极电极和该半导体栅极帽盖结构的电阻。半导体栅极帽盖结构236沿着第二水平方向hd2在两个相邻晶体管结构之间延伸,并且充当公共栅极接触通孔结构76G分接区域。此外,由于下面的栅极电极14和上覆半导体栅极帽盖结构236两者都包括具有硅化物帽盖结构的多晶硅,所以调整仅包括下面的栅极电极14的无边缘晶体管以及包括下面的栅极电极14和上覆半导体栅极帽盖结构236两者的带边缘晶体管的特性变得更加容易。The resistance of the polysilicon gate electrode 14 and the semiconductor gate cap structure 236 is reduced by including corresponding suicide regions 25S and 240 on their upper surfaces. The semiconductor gate cap structure 236 extends between two adjacent transistor structures along the second horizontal direction hd2 and serves as a common gate contact via structure 76G tap region. Furthermore, since both the underlying gate electrode 14 and the overlying semiconductor gate cap structure 236 include polysilicon with a suicide cap structure, an edgeless transistor including only the underlying gate electrode 14 and an edgeless transistor including the underlying Characterization of edge-band transistors is facilitated by both the gate electrode 14 and the overlying semiconductor gate cap structure 236 .
晶体管结构可形成为更靠近彼此(例如,沿着第二水平方向分开相对小的距离d2)并且占据相对更少的芯片空间。因此,可减小整个芯片尺寸。The transistor structures may be formed closer to each other (eg, separated by a relatively small distance d2 along the second horizontal direction) and occupy relatively less chip space. Therefore, the overall chip size can be reduced.
参考图47A至图47D,示出了在形成浅沟槽之后的根据本公开的第五实施方案的第五示例性结构。第五示例性结构可形成为第一示例性结构、第二示例性结构或第三示例性结构的附加部分,或者可替换第一示例性结构、第二示例性结构或第三示例性结构中的任一者的全部或一部分。在一个实施方案中,通过形成附加器件区,或者通过用图47A至图47D中所示的器件区替换图1A至图1E的第一示例性结构中的一个或多个器件区,可从图1A至图1F中所示的第一示例性结构得到第五示例性结构。Referring to FIGS. 47A-47D , a fifth exemplary structure according to the fifth embodiment of the present disclosure after forming shallow trenches is shown. The fifth exemplary structure may be formed as an additional part of the first exemplary structure, the second exemplary structure, or the third exemplary structure, or may be substituted in the first exemplary structure, the second exemplary structure, or the third exemplary structure. all or part of any of. In one embodiment, by forming additional device regions, or by replacing one or more device regions in the first exemplary structure of FIGS. 1A-1E with the device regions shown in FIGS. The first exemplary structure shown in FIGS. 1A to 1F results in a fifth exemplary structure.
在例示性示例中,第五示例性结构可以包括第一掺杂阱5E和第二掺杂阱5F,这两者中的每一者可独立地具有第一导电类型的掺杂或第二导电类型的掺杂。第一掺杂阱5E和第二掺杂阱5F中的每一者可以与图1A至图1F中所示的p型阱(5A,5B,5C)或n型阱(6A,6B,6C,6D)相同的方式形成在衬底半导体层4的上部部分中。第一掺杂阱5E和第二掺杂阱5F中的每一者可以独立地包括原子浓度在1.0×1014/cm3至1.0×1018/cm3(诸如,1.0×1015/cm3至1.0×1017/cm3)的范围内的第一导电类型的掺杂剂或第二导电类型的掺杂剂,但是也可以采用更低和更高的原子浓度。每个掺杂阱(5E,5F)的深度可在50nm至2,000nm的范围内,但是也可以采用更小和更大的深度。第一掺杂阱5E用于形成外围晶体管,而第二掺杂阱用于形成存储器设备(诸如三维存储器设备)的感测放大器晶体管。In an illustrative example, the fifth exemplary structure may include a first doped well 5E and a second doped well 5F, each of which may independently have doping of a first conductivity type or a second conductivity. type of doping. Each of the first doped well 5E and the second doped well 5F may be connected to a p-type well (5A, 5B, 5C) or an n-type well (6A, 6B, 6C, 6C, 6A, 6B, 6C) shown in FIGS. 1A to 1F 6D) is formed in the upper portion of the substrate semiconductor layer 4 in the same manner. Each of the first doped well 5E and the second doped well 5F may independently include an atomic concentration in the range of 1.0×10 14 /cm 3 to 1.0×10 18 /cm 3 (such as, 1.0×10 15 /cm 3 to 1.0 × 10 17 /cm 3 ) of the first conductivity type dopant or the second conductivity type dopant, although lower and higher atomic concentrations may also be used. The depth of each doped well (5E, 5F) can range from 50nm to 2,000nm, although smaller and larger depths are also possible. The first doped well 5E is used to form peripheral transistors, while the second doped well is used to form sense amplifier transistors of a memory device, such as a three-dimensional memory device.
可以在包括掺杂阱(5E,5F)的半导体衬底的顶部表面上方顺序地沉积氧化硅垫介电层和硬掩模材料层。光致抗蚀剂层(未示出)可被施加在硬掩模材料层的顶部表面上方,并且可被光刻图案化以形成多个离散光致抗蚀剂材料部分。在一个实施方案中,该多个离散光致抗蚀剂材料部分可以包括具有相应矩形水平剖面形状且完全位于掺杂阱(5E,5F)中的相应一者的区域内的光致抗蚀剂材料部分。在一个实施方案中,矩形水平剖面形状可具有平行于第一水平方向hd1的一对纵向边缘和平行于第二水平方向hd2的一对横向边缘,该第二水平方向垂直于第一水平方向hd1。A silicon oxide pad dielectric layer and a hard mask material layer may be deposited sequentially over the top surface of the semiconductor substrate including the doped wells (5E, 5F). A photoresist layer (not shown) can be applied over the top surface of the hard mask material layer and can be photolithographically patterned to form a plurality of discrete photoresist material portions. In one embodiment, the plurality of discrete photoresist material portions may comprise photoresist having respective rectangular horizontal cross-sectional shapes and located entirely within the region of a respective one of the doped wells (5E, 5F) Material section. In one embodiment, the rectangular horizontal cross-sectional shape may have a pair of longitudinal edges parallel to a first horizontal direction hd1 and a pair of transverse edges parallel to a second horizontal direction hd2 perpendicular to the first horizontal direction hd1 .
可执行第一各向异性蚀刻工艺,以将光致抗蚀剂材料部分的图案转印穿过硬掩模材料层和氧化硅垫介电层。可在每个图案化光致抗蚀剂材料部分下方形成氧化硅垫介电质120和硬掩模板21的竖直堆叠。每个氧化硅垫介电质120是氧化硅垫介电层的图案化部分,并且每个硬掩模板21是硬掩模材料层的图案化部分。在一个实施方案中,氧化硅垫介电质120可基本上由氧化硅组成,并且可具在3nm至30nm(诸如6nm至15nm)的范围内的厚度,但是也可以采用更小和更大的厚度。在一个实施方案中,硬掩模板21可基本上由氮化硅组成,并且可具在60nm至300nm(诸如100nm至200nm)的范围内的厚度,但是也可以采用更小和更大的厚度。光致抗蚀剂层可例如通过灰化来移除,或者另选地,可在随后的各向异性蚀刻工艺期间被并行移除。A first anisotropic etch process may be performed to transfer a pattern of portions of photoresist material through the layer of hard mask material and the silicon oxide pad dielectric layer. A vertical stack of silicon oxide pad dielectric 120 and hard mask 21 may be formed beneath each portion of patterned photoresist material. Each silicon oxide pad dielectric 120 is a patterned portion of the silicon oxide pad dielectric layer, and each hard mask plate 21 is a patterned portion of the hard mask material layer. In one embodiment, silicon oxide pad dielectric 120 may consist essentially of silicon oxide and may have a thickness in the range of 3 nm to 30 nm, such as 6 nm to 15 nm, although smaller and larger thicknesses may also be used. thickness. In one embodiment, hard mask 21 may consist essentially of silicon nitride and may have a thickness in the range of 60 nm to 300 nm, such as 100 nm to 200 nm, although smaller and larger thicknesses may also be used. The photoresist layer may be removed, for example by ashing, or alternatively may be removed in parallel during a subsequent anisotropic etching process.
可执行第二各向异性蚀刻工艺,以将硬掩模板21的图案转印到半导体衬底的上部部分中。通过第二各向异性蚀刻工艺对半导体衬底的未被硬掩模板21掩蔽的上部部分进行各向异性蚀刻,以形成浅隔离沟槽7。浅隔离沟槽7横向围绕半导体衬底的有源区51,这些有源区是由浅隔离沟槽7横向围绕的半导体衬底的图案化上部部分。有源区51包括第一有源区51A和第二有源区51B,该第一有源区位于硬掩模板21的第一硬掩模板21A下面并且包括第一掺杂阱5E的一部分,该第二有源区位于硬掩模板21的第二硬掩模板21B下面并且包括第二掺杂阱5F的一部分。A second anisotropic etching process may be performed to transfer the pattern of the hard mask 21 into the upper portion of the semiconductor substrate. The upper portion of the semiconductor substrate that is not masked by the hard mask 21 is anisotropically etched by a second anisotropic etching process to form shallow isolation trenches 7 . The shallow isolation trenches 7 laterally surround the active regions 51 of the semiconductor substrate, which are the patterned upper portions of the semiconductor substrate laterally surrounded by the shallow isolation trenches 7 . The active region 51 includes a first active region 51A and a second active region 51B. The first active region is located under the first hard mask 21A of the hard mask 21 and includes a portion of the first doping well 5E. The second active region is located under the second hard mask 21B of the hard mask 21 and includes a portion of the second doped well 5F.
在一个实施方案中,每个有源区51可具有相应的矩形顶部表面。在一个实施方案中,第一有源区51A的顶部表面沿着第一水平方向hd1具有第一有源区长度ARL1,并且沿着第二水平方向hd2具有第一有源区宽度ARW1。在一个实施方案中,第二有源区51B的顶部表面沿着第二水平方向hd1具有第二有源区长度ARL2,并且沿着第二水平方向hd2具有第二有源区宽度ARW2。浅隔离沟槽7的深度可在200nm至800nm(诸如300nm至600nm)的范围内,但是也可以采用更小和更大的深度。每个有源区51的厚度可与浅隔离沟槽7的深度相同。In one embodiment, each active area 51 may have a corresponding rectangular top surface. In one embodiment, the top surface of the first active area 51A has a first active area length ARL1 along the first horizontal direction hd1 and a first active area width ARW1 along the second horizontal direction hd2. In one embodiment, the top surface of the second active area 51B has a second active area length ARL2 along the second horizontal direction hd1 and a second active area width ARW2 along the second horizontal direction hd2. The depth of the shallow isolation trench 7 may be in the range of 200 nm to 800 nm (such as 300 nm to 600 nm), although smaller and larger depths may also be used. The thickness of each active region 51 may be the same as the depth of the shallow isolation trench 7 .
参考图48A至图48D,至少一种介电填充材料可保形地沉积在沟槽7中和硬掩模板21上方。该至少一种介电填充材料可以包括氧化硅材料。可选地,可在沉积该至少一种介电填充材料之前沉积介电衬垫,诸如氮化硅衬垫(未明确示出)。可通过平面化工艺从包括硬掩模板21的顶部表面的水平平面上方移除该至少一种介电填充材料的多余部分,该平面化工艺包括化学机械抛光(CMP)工艺。在一个实施方案中,CMP工艺在硬掩模板21上停止。Referring to FIGS. 48A-48D , at least one dielectric fill material may be conformally deposited in trench 7 and over hard mask 21 . The at least one dielectric fill material may include silicon oxide material. Optionally, a dielectric liner, such as a silicon nitride liner (not explicitly shown), may be deposited prior to depositing the at least one dielectric fill material. Excess portions of the at least one dielectric fill material may be removed from above a horizontal plane including the top surface of hardmask 21 by a planarization process, including a chemical mechanical polishing (CMP) process. In one embodiment, the CMP process stops on hard mask 21 .
填充沟槽7的至少一种介电填充材料的剩余部分构成沟槽隔离结构8,该沟槽隔离结构可以是使半导体衬底的半导体材料与介电表面接触并在随后将形成的相邻半导体器件的有源区51之间提供电隔离的连续结构。沟槽隔离结构8可以包括位于浅隔离沟槽7中的浅沟槽隔离结构。每个器件有源区51可以包括由沟槽隔离结构8的相应部分横向围绕的相应掺杂阱(5E,5F)的图案化部分。硬掩模板21中的每个硬掩模板可以包括位于水平平面内的相应水平底部表面和位于另一水平平面内的相应水平顶部表面。The remainder of the at least one dielectric fill material filling trench 7 constitutes a trench isolation structure 8 which may be an adjacent semiconductor that brings the semiconductor material of the semiconductor substrate into contact with the dielectric surface and will subsequently be formed. A continuous structure providing electrical isolation between active regions 51 of the device. Trench isolation structure 8 may include a shallow trench isolation structure located in shallow isolation trench 7 . Each device active region 51 may include a patterned portion of a respective doped well (5E, 5F) laterally surrounded by a respective portion of trench isolation structure 8. Each of the hard masks 21 may include a respective horizontal bottom surface located in a horizontal plane and a respective horizontal top surface located in another horizontal plane.
参考图49A至图49D,光致抗蚀剂层27可被施加在硬掩模板21和沟槽隔离结构8上方,并且可被光刻图案化以形成开口,该开口具有包括位于第一掺杂阱5E上方的第一硬掩模板21A的整个区域的区域。根据本公开的一个方面,图案化光致抗蚀剂层27中的开口的外围可以从第一硬掩模板21A的侧壁横向向外偏移至少最小横向偏移距离。在一个实施方案中,最小横向偏移距离可等于或大于随后将形成的介电间隔件的横向厚度。在一个实施方案中,最小横向偏移距离可在5nm至200nm(诸如10nm至100nm)的范围内,但是也可采用更小和更大的最小横向偏移距离。Referring to FIGS. 49A-49D , a photoresist layer 27 may be applied over the hard mask 21 and the trench isolation structure 8 and may be photolithographically patterned to form an opening having a first doped The entire area of the first hard mask 21A above the well 5E. According to one aspect of the present disclosure, the periphery of the opening in patterned photoresist layer 27 may be offset laterally outward from the sidewalls of first hard mask 21A by at least a minimum lateral offset distance. In one embodiment, the minimum lateral offset distance may be equal to or greater than the lateral thickness of the dielectric spacer to be subsequently formed. In one embodiment, the minimum lateral offset distance may be in the range of 5 nm to 200 nm (such as 10 nm to 100 nm), although smaller and larger minimum lateral offset distances may also be used.
根据本公开的一个方面,第一硬掩模板21A的侧壁与图案化光致抗蚀剂层27中围绕第一硬掩模板21A的开口的外围之间的区域的至少一个区可足够宽以容纳至少一个栅极接触通孔结构。换句话说,第一硬掩模板21A的侧壁与图案化光致抗蚀剂层27中的开口的外围之间的间隙区32可围绕第一硬掩模板21A连续地延伸,并且包括其中可以随后在不与第一硬掩模板21A或图案化光致抗蚀剂层27具有面积重叠的情况下形成至少一个栅极接触通孔结构的区域。According to one aspect of the present disclosure, at least one region between the sidewalls of the first hard mask 21A and the periphery of the patterned photoresist layer 27 surrounding the opening of the first hard mask 21A may be wide enough to Accommodating at least one gate contact via structure. In other words, the gap region 32 between the sidewalls of the first hard mask 21A and the periphery of the opening in the patterned photoresist layer 27 may extend continuously around the first hard mask 21A, and may include A region of at least one gate contact via structure is then formed without area overlap with first hard mask 21A or patterned photoresist layer 27 .
可执行对于硬掩模板21的材料选择性地蚀刻沟槽隔离结构8的材料的蚀刻工艺,以在掩蔽第二硬掩模板21B、第二有源区5B和横向围绕间隙区32的沟槽隔离结构8的场区时,使横向围绕第一有源区51A(即,第一掺杂阱5E的位于第一硬掩模板21A下面的部分)的沟槽隔离结构8的间隙区32竖直凹陷。蚀刻工艺可包括各向异性蚀刻工艺(诸如反应离子蚀刻工艺)。沟槽隔离结构8的场区可以包括沟槽隔离结构8的被光致抗蚀剂层27覆盖的部分。沟槽隔离结构8的凹陷水平表面形成在沟槽隔离结构8的位于间隙区32中的一部分中。凹陷水平表面相对于沟槽隔离结构8的位于场区中且包含在第二水平平面中的最顶部表面竖直凹陷。An etching process may be performed to selectively etch the material of the trench isolation structure 8 with respect to the material of the hard mask 21 to mask the trench isolation of the second hard mask 21B, the second active region 5B, and laterally surrounding the gap region 32 When the field region of the structure 8 is formed, the gap region 32 of the trench isolation structure 8 that laterally surrounds the first active region 51A (ie, the portion of the first doped well 5E located under the first hard mask 21A) is vertically recessed. . The etching process may include an anisotropic etching process (such as a reactive ion etching process). The field region of the trench isolation structure 8 may include a portion of the trench isolation structure 8 covered by the photoresist layer 27 . The recessed horizontal surface of the trench isolation structure 8 is formed in a portion of the trench isolation structure 8 located in the gap region 32 . The recessed horizontal surface is vertically recessed relative to the topmost surface of the trench isolation structure 8 located in the field region and contained in the second horizontal plane.
一般来讲,通过在硬掩模板21存在于半导体衬底上时,执行蚀刻沟槽隔离结构8的未掩蔽部分的蚀刻工艺来使沟槽隔离结构8的间隙区32竖直凹陷。凹陷水平表面形成在包括硬掩模板21的底部表面的水平平面上方,并且形成在包括硬掩模板21的顶部表面的水平平面下方。在一个实施方案中,凹陷水平表面可位于水平平面内。随后可例如通过灰化移除图案化光致抗蚀剂层27。Generally speaking, the gap region 32 of the trench isolation structure 8 is vertically recessed by performing an etching process to etch the unmasked portion of the trench isolation structure 8 while the hard mask 21 is present on the semiconductor substrate. The recessed horizontal surface is formed above a horizontal plane including the bottom surface of the hard mask template 21 and below a horizontal plane including the top surface of the hard mask template 21 . In one embodiment, the recessed horizontal surface may lie in a horizontal plane. Patterned photoresist layer 27 may then be removed, such as by ashing.
参考图50A至图50D,可执行选择性第一蚀刻工艺(诸如湿法蚀刻工艺),以对于沟槽隔离结构8和氧化硅垫介电质120的材料选择性地移除硬掩模板21。例如,如果硬掩模板21包括氮化硅,则第一蚀刻工艺可以包括采用热磷酸的湿法蚀刻工艺。Referring to FIGS. 50A-50D , a selective first etch process (such as a wet etch process) may be performed to selectively remove the hard mask 21 with respect to the materials of the trench isolation structure 8 and the silicon oxide pad dielectric 120 . For example, if the hard mask 21 includes silicon nitride, the first etching process may include a wet etching process using hot phosphoric acid.
可执行可选的第二蚀刻工艺,以对于半导体衬底的材料选择性地移除氧化硅垫介电质120。例如,第二蚀刻工艺可以包括各向异性蚀刻工艺(诸如反应离子蚀刻工艺)或各向同性蚀刻工艺(诸如湿法蚀刻工艺)。氧化硅垫介电质120(如果存在)可被移除,并且有源区的顶部表面可在穿过沟槽隔离结构8的开口周围物理地暴露。An optional second etch process may be performed to remove the silicon oxide pad dielectric 120 selectively to the material of the semiconductor substrate. For example, the second etching process may include an anisotropic etching process (such as a reactive ion etching process) or an isotropic etching process (such as a wet etching process). Silicon oxide pad dielectric 120 (if present) may be removed and the top surface of the active area may be physically exposed around the opening through trench isolation structure 8 .
例如,通过掺杂阱(5E,5F)的表面部分的热氧化以及/或者通过栅极介电材料层的保形沉积,可在掺杂阱(5E,5F)的物理暴露表面上形成栅极介电层20L。保形沉积的栅极介电材料层(如果采用)可以包括氧化硅和/或介电金属氧化物材料(诸如,氧化铝、氧化铪、氧化钽、氧化镧、氧化钇等)。栅极介电层20L的厚度可在2nm至50nm(诸如6nm至30nm)的范围内,但是也可以采用更小和更大的厚度。For example, a gate may be formed on the physically exposed surface of the doped well (5E, 5F) by thermal oxidation of a surface portion of the doped well (5E, 5F) and/or by conformal deposition of a layer of gate dielectric material Dielectric layer 20L. The conformally deposited gate dielectric material layer, if employed, may include silicon oxide and/or dielectric metal oxide materials (such as aluminum oxide, hafnium oxide, tantalum oxide, lanthanum oxide, yttrium oxide, etc.). The thickness of gate dielectric layer 20L may range from 2 nm to 50 nm, such as 6 nm to 30 nm, although smaller and larger thicknesses may also be used.
另选地,可省略第二蚀刻工艺并且可保留垫介电质120。在这种情况下,垫介电质120用作栅极介电层20L。Alternatively, the second etch process may be omitted and pad dielectric 120 may be retained. In this case, pad dielectric 120 serves as gate dielectric layer 20L.
栅极介电层20L的顶部表面可位于第一水平平面HP1内。沟槽隔离结构8的最顶部表面可位于第二水平平面HP2内。沟槽隔离结构8的在间隙区32中的凹陷水平表面可位于第三水平平面HP3内。第一水平平面HP1与第二水平平面HP2之间的竖直距离可在60nm至300nm的范围内,但也可以采用更小或更大的竖直距离。在一个实施方案中,第三水平平面HP3与第一水平平面HP1之间的竖直距离可在第二水平平面HP2与第一水平平面HP1之间的竖直距离的10%至90%(诸如20%至80%和/或30%至70%)的范围内。The top surface of the gate dielectric layer 20L may be located within the first horizontal plane HP1. The topmost surface of the trench isolation structure 8 may be located within the second horizontal plane HP2. The recessed horizontal surface of the trench isolation structure 8 in the gap region 32 may be located within the third horizontal plane HP3. The vertical distance between the first horizontal plane HP1 and the second horizontal plane HP2 may be in the range of 60 nm to 300 nm, but smaller or larger vertical distances may also be used. In one embodiment, the vertical distance between the third horizontal plane HP3 and the first horizontal plane HP1 may be 10% to 90% of the vertical distance between the second horizontal plane HP2 and the first horizontal plane HP1 (such as 20% to 80% and/or 30% to 70%).
参考图51A至图51D,至少一种栅极电极材料可沉积在位于穿过沟槽隔离结构8的开口中的腔中。该至少一种栅极电极材料包括导电材料(诸如重掺杂多晶硅和/或金属(即,金属或金属合金)材料)和/或重掺杂非晶半导体材料(诸如重掺杂非晶硅),该重掺杂非晶半导体材料可在后续退火工艺时转变为导电材料(诸如重掺杂多晶硅)。Referring to FIGS. 51A-51D , at least one gate electrode material may be deposited in a cavity located in an opening through trench isolation structure 8 . The at least one gate electrode material includes a conductive material (such as heavily doped polysilicon and/or a metallic (ie, metal or metal alloy) material) and/or a heavily doped amorphous semiconductor material (such as heavily doped amorphous silicon) , the heavily doped amorphous semiconductor material can be transformed into a conductive material (such as heavily doped polysilicon) during a subsequent annealing process.
可执行平面化工艺(诸如化学机械抛光(CMP)工艺),以从第二水平平面HP2(即,包括沟槽隔离结构8的最顶部表面的水平平面)上方移除该至少一个栅极电极材料的部分。可根据需要执行热退火,以将该至少一种栅极电极材料中的任何非晶半导体材料转换为导电的重掺杂多晶半导体材料。该至少一种栅极电极材料的剩余部分构成栅极电极材料部分24',其包括第一栅极电极材料部分24E'和第二栅极电极材料部分24F'。第一栅极电极材料部分24E'可覆盖在第一有源区51A(即,第一掺杂阱5E的一部分)上面,并且第二栅极电极材料部分24F'可覆盖在第二有源区51B(即,第二掺杂阱5F的一部分)上面。第一栅极电极材料部分24E'可形成在栅极介电层20L和沟槽隔离结构8的位于第三水平平面HP3内的凹陷水平表面上方和上面。A planarization process, such as a chemical mechanical polishing (CMP) process, may be performed to remove the at least one gate electrode material from above the second horizontal plane HP2 (ie, the horizontal plane including the topmost surface of trench isolation structure 8 ) part. Thermal annealing may be performed as desired to convert any amorphous semiconductor material in the at least one gate electrode material to a conductive heavily doped polycrystalline semiconductor material. The remainder of the at least one gate electrode material constitutes gate electrode material portion 24', which includes a first gate electrode material portion 24E' and a second gate electrode material portion 24F'. The first gate electrode material portion 24E' may overlie the first active region 51A (ie, a portion of the first doped well 5E), and the second gate electrode material portion 24F' may overlie the second active region 51B (ie, a portion of the second doped well 5F). The first gate electrode material portion 24E' may be formed over and over the gate dielectric layer 20L and the recessed horizontal surface of the trench isolation structure 8 within the third horizontal plane HP3.
参考图52A至图52D,光致抗蚀剂层57可被施加在栅极电极材料部分24'和沟槽隔离结构8上方,并且可被光刻图案化为随后将形成的栅极电极的图案。在例示性示例中,图案化光致抗蚀剂层57可以包括沿着第二水平方向hd2横跨第一有源区51A的一对第一光致抗蚀剂材料部分和沿着第二水平方向hd2横跨第二有源区51B的一对第二光致抗蚀剂材料部分。根据本公开的一个方面,在平面图中的该对第一光致抗蚀剂材料部分的外围可以完全位于由间隙区32的外部外围(即,由横向围绕第一有源区51A的沟槽隔离结构8的凹陷水平表面的外部外围)限定的区域内。在一个实施方案中,平面图中的该对第一光致抗蚀剂材料部分的外围可与间隙区32的外部外围向内横向间隔开随后将形成的介电间隔物的至少一个横向厚度。在一个实施方案中,覆盖在第二有源区51B上面的图案化光致抗蚀剂层57的每个光致抗蚀剂材料部分的横向范围可大于第二有源区51B沿着第二水平方向hd2的宽度,并且覆盖在第二有源区上面的图案化光致抗蚀剂层57的光致抗蚀剂材料部分的横向边缘可在平面图(诸如图52A的俯视图)中完全位于第二有源区的区域之外。Referring to Figures 52A-52D, a photoresist layer 57 can be applied over the gate electrode material portion 24' and the trench isolation structure 8, and can be photolithographically patterned into the pattern of the gate electrode that will subsequently be formed. . In an illustrative example, patterned photoresist layer 57 may include a pair of first photoresist material portions across first active region 51A along second horizontal direction hd2 and along a second horizontal direction hd2 Direction hd2 spans a pair of second photoresist material portions of second active region 51B. According to one aspect of the present disclosure, the periphery of the pair of first photoresist material portions in plan view may be located entirely by the outer periphery of gap region 32 (i.e., separated by a trench laterally surrounding first active region 51A within the area defined by the outer periphery of the recessed horizontal surface of structure 8). In one embodiment, the periphery of the pair of first photoresist material portions in plan view may be laterally spaced inwardly from the outer periphery of gap region 32 by at least one lateral thickness of a dielectric spacer that will subsequently be formed. In one embodiment, the lateral extent of each photoresist material portion of patterned photoresist layer 57 overlying second active region 51B may be greater than that along second active region 51B. The width of the horizontal direction hd2, and the lateral edges of the portion of photoresist material of the patterned photoresist layer 57 overlying the second active area may be completely located in a plan view (such as the top view of FIG. 52A). 2. Outside the area of the active area.
可执行各向异性蚀刻工艺,以蚀刻栅极电极材料部分24'和栅极介电层20L的未被图案化光致抗蚀剂层57掩蔽的部分。各向异性蚀刻工艺可以包括第一蚀刻步骤和第二蚀刻步骤,该第一蚀刻步骤对于沟槽隔离结构8和栅极介电层20L的材料选择性地蚀刻栅极电极材料部分24'的材料,该第二蚀刻步骤对于半导体衬底的材料(其为掺杂阱(5E,5F)的材料)选择性地蚀刻栅极介电层20L的材料。栅极电极材料部分24'的图案化部分构成栅极电极24,这些栅极电极包括覆盖在第一掺杂阱5E中的第一有源区51A上面的第一栅极电极24E和覆盖在第二掺杂阱5F中的第二有源区51B上面的第二栅极电极24F。栅极介电层20L的图案化部分构成栅极介电质20,这些栅极介电质包括第一栅极介电质20E和第二栅极介电质20F。An anisotropic etching process may be performed to etch gate electrode material portions 24' and portions of gate dielectric layer 20L that are not masked by patterned photoresist layer 57. The anisotropic etching process may include a first etching step that selectively etches the material of the gate electrode material portion 24 ′ with respect to the material of the trench isolation structure 8 and the gate dielectric layer 20L and a second etching step. , this second etching step selectively etches the material of the gate dielectric layer 20L with respect to the material of the semiconductor substrate (which is the material of the doped wells (5E, 5F)). The patterned portions of gate electrode material portion 24' constitute gate electrodes 24, which include first gate electrode 24E overlying first active region 51A in first doped well 5E and overlying first active region 51A in first doped well 5E. The second gate electrode 24F above the second active region 51B in the second doped well 5F. Patterned portions of gate dielectric layer 20L constitute gate dielectric 20, which include first gate dielectric 2OE and second gate dielectric 2OF.
一般来讲,至少一个第一栅极电极24E可通过图案化第一栅极电极材料部分24E'来形成,并且至少一个第二栅极电极24F可通过图案化第二栅极电极材料部分24F'来形成。至少一个第一栅极电极24E包括相应下栅极电极部分并且包括相应上栅极电极部分,该相应下栅极电极部分接触相应第一栅极介电质20E的顶部表面和沟槽隔离结构8的一对侧壁区段,该相应上栅极电极部分接触沟槽隔离结构8的凹陷水平表面的相应第一区段的顶部表面并且具有暴露在间隙区32中的侧壁。每个下栅极电极部分完全位于第一水平平面HP1与第三水平平面HP3之间,并且每个上栅极电极部分完全位于第二水平平面HP2与第三水平平面HP3之间。Generally speaking, at least one first gate electrode 24E may be formed by patterning a first gate electrode material portion 24E', and at least one second gate electrode 24F may be formed by patterning a second gate electrode material portion 24F'. to form. At least one first gate electrode 24E includes a respective lower gate electrode portion and includes a respective upper gate electrode portion that contacts a top surface of the respective first gate dielectric 20E and the trench isolation structure 8 A pair of sidewall sections, the respective upper gate electrode portions contact the top surface of the respective first section of the recessed horizontal surface of the trench isolation structure 8 and have sidewalls exposed in the gap region 32 . Each lower gate electrode portion is completely between the first and third horizontal planes HP1 and HP3, and each upper gate electrode portion is completely between the second and third horizontal planes HP2 and HP3.
在一个实施方案中,第一有源区51A的顶部表面沿着第一水平方向hd1具有有源区长度ARL,并且沿着第二水平方向hd2具有有源区宽度ARW。在一个实施方案中,每个第一栅极电极24E的下栅极电极部分沿着第二水平方向hd2具有与有源区宽度ARW相同的下电极宽度LEW。上栅极电极部分沿着第二水平方向hd2具有大于有源区宽度ARW的上电极宽度UEW。随后可例如通过灰化移除图案化光致抗蚀剂层57。In one embodiment, the top surface of the first active area 51A has an active area length ARL along the first horizontal direction hd1 and an active area width ARW along the second horizontal direction hd2. In one embodiment, the lower gate electrode portion of each first gate electrode 24E has the same lower electrode width LEW as the active area width ARW along the second horizontal direction hd2. The upper gate electrode portion has an upper electrode width UEW greater than the active area width ARW along the second horizontal direction hd2. Patterned photoresist layer 57 may then be removed, such as by ashing.
参考图53A至图53D,可选的介电衬垫层55L可保形地沉积在栅极电极24和沟槽隔离结构8的物理暴露表面上,包括保形地沉积在间隙区32中。介电衬垫层55L(如果存在)包括第一介电间隔材料层。介电衬垫层55L可保形地形成在栅极电极24上方和周围以及沟槽隔离结构8的凹陷水平表面上方。介电衬垫55L包括介电材料诸如氮化硅,并且具有在1nm至20nm(诸如2nm至10nm)的范围内的厚度,但是也可以采用更小和更大的厚度。一般来讲,可选择介电衬垫层55L的厚度以优化随后将形成的源极/漏极扩展区64的轮廓。Referring to FIGS. 53A-53D , optional dielectric liner layer 55L may be conformally deposited on gate electrode 24 and physically exposed surfaces of trench isolation structure 8 , including conformally deposited in gap region 32 . Dielectric liner layer 55L, if present, includes a first layer of dielectric spacer material. Dielectric liner layer 55L may be conformally formed over and around gate electrode 24 and over the recessed horizontal surface of trench isolation structure 8 . Dielectric liner 55L includes a dielectric material such as silicon nitride, and has a thickness in the range of 1 nm to 20 nm, such as 2 nm to 10 nm, although smaller and larger thicknesses may also be employed. In general, the thickness of dielectric liner layer 55L may be selected to optimize the profile of source/drain extensions 64 that will subsequently be formed.
可将电掺杂剂注入到有源区(51A,51B)的暴露表面部分中以形成源极/漏极扩展区64。每个源极/漏极扩展区64可与相应的下面的掺杂阱(5E,5F)形成p-n结。源极/漏极扩展区64可以包括原子浓度在1.0×1017/cm3至1.0×1020/cm3的范围内的相应导电类型的电掺杂剂,但是也可以采用更小和更大的原子浓度。每个源极/漏极扩展区64的深度可在5nm至100nm(诸如10nm至50nm)的范围内,但是也可以采用更小和更大的深度。Electrical dopants may be implanted into the exposed surface portions of active regions (51A, 51B) to form source/drain extension regions 64. Each source/drain extension 64 may form a pn junction with a corresponding underlying doped well (5E, 5F). Source/drain extensions 64 may include electrical dopants of corresponding conductivity types with atomic concentrations in the range of 1.0×10 17 /cm 3 to 1.0×10 20 /cm 3 , although smaller and larger sizes may also be used. atomic concentration. The depth of each source/drain extension 64 may be in the range of 5 nm to 100 nm (such as 10 nm to 50 nm), although smaller and larger depths may also be used.
参考图54A至图54D,可保形地沉积主介电间隔层。主介电间隔层包括介电间隔材料层。一般来讲,可在栅极电极24和沟槽隔离结构8上方沉积至少一个介电间隔材料层。该至少一个介电间隔材料层包括可选的介电衬垫层55L和主介电间隔层。第二介电间隔层包括介电材料,诸如氧化硅。主介电间隔层的厚度可在10nm至300nm(诸如20nm至150nm)的范围内,但是也可以采用更小和更大的厚度。Referring to Figures 54A-54D, the main dielectric spacer layer may be conformally deposited. The main dielectric spacer layer includes a layer of dielectric spacer material. Generally, at least one layer of dielectric spacer material may be deposited over gate electrode 24 and trench isolation structure 8 . The at least one layer of dielectric spacer material includes optional dielectric liner layer 55L and a main dielectric spacer layer. The second dielectric spacer layer includes a dielectric material, such as silicon oxide. The thickness of the main dielectric spacer layer may range from 10 nm to 300 nm (such as 20 nm to 150 nm), although smaller and larger thicknesses may also be used.
可执行各向异性蚀刻工艺,以移除该至少一个介电间隔材料层的水平延伸部分。一般来讲,可在第一栅极电极24E、第二栅极电极24F上方和周围以及在沟槽隔离结构8的凹陷水平表面和最顶部表面上方保形地形成至少一个介电间隔材料层。该至少一个介电间隔材料层的剩余部分包括:介电栅极间隔物(55,56),这些介电栅极间隔物横向围绕并接触栅极电极24中的相应栅极电极;和介电隔离间隔物(55',56'),这些介电隔离间隔物接触沟槽隔离结构8的位于第二水平平面HP2与第三水平平面HP3之间的侧壁。An anisotropic etching process may be performed to remove horizontally extending portions of the at least one layer of dielectric spacer material. Generally speaking, at least one layer of dielectric spacer material may be conformally formed over and around first gate electrode 24E, second gate electrode 24F and over the recessed horizontal surfaces and topmost surfaces of trench isolation structure 8 . The remainder of the at least one layer of dielectric spacer material includes: dielectric gate spacers (55, 56) that laterally surround and contact respective ones of gate electrodes 24; and dielectric Isolation spacers (55', 56'), these dielectric isolation spacers contact the sidewalls of the trench isolation structure 8 between the second horizontal plane HP2 and the third horizontal plane HP3.
在一个实施方案中,每个介电栅极间隔物(55,56)可以是包括至少两种不同组成的复合介电栅极间隔物(其可具有不同介电质组成),并且介电隔离间隔物(55',56')可以是包括至少两种不同组成的复合介电隔离间隔物。在一个实施方案中,每个介电栅极间隔物(55,56)可以包括主介电栅极间隔物56(其可以是主介电间隔层的图案化部分)和可选的衬垫介电栅极间隔物55(其是介电衬垫层55L的图案化部分)。在一个实施方案中,介电隔离间隔物(55',56')可以包括主介电隔离间隔物56(其可以是主介电间隔层的图案化部分)和可选的衬垫介电栅极隔离间隔物55(其是介电衬垫层55L的图案化部分)。In one embodiment, each dielectric gate spacer (55, 56) may be a composite dielectric gate spacer including at least two different compositions (which may have different dielectric compositions), and the dielectric isolation The spacers (55', 56') may be composite dielectric isolation spacers including at least two different compositions. In one embodiment, each dielectric gate spacer (55, 56) may include a main dielectric gate spacer 56 (which may be a patterned portion of the main dielectric spacer layer) and optional liner spacers. Electrical gate spacers 55 (which are patterned portions of dielectric liner layer 55L). In one embodiment, the dielectric isolation spacers (55', 56') may include a main dielectric isolation spacer 56 (which may be a patterned portion of the main dielectric spacer layer) and an optional pad dielectric gate Polar isolation spacers 55 (which are patterned portions of dielectric liner layer 55L).
介电栅极间隔物(55,56)包括至少一个第一介电栅极间隔物(55,56),该至少一个第一介电栅极间隔物横向围绕相应的第一栅极电极24E并且接触沟槽隔离结构8的凹陷水平表面的相应第二区段。介电隔离间隔物(55',56')接触沟槽隔离结构8的在间隙区32中的侧壁,这些侧壁将沟槽隔离结构8的凹陷水平表面连接到沟槽隔离结构8的最顶部表面。The dielectric gate spacers (55, 56) include at least one first dielectric gate spacer (55, 56) laterally surrounding the respective first gate electrode 24E and A corresponding second section of the recessed horizontal surface of the trench isolation structure 8 is contacted. Dielectric isolation spacers (55', 56') contact the sidewalls of trench isolation structure 8 in gap region 32, these sidewalls connect the recessed horizontal surface of trench isolation structure 8 to the outermost surface of trench isolation structure 8. top surface.
在一个实施方案中,介电隔离间隔物(55',56')包括与介电栅极间隔物(55,56)相同的一组材料。在一个实施方案中,介电隔离间隔物(55',56')的底部表面的内部外围与介电隔离间隔物(55',56')的底部表面的外部外围之间的横向尺寸可与介电栅极间隔物(55,56)的底部表面的内部外围与介电栅极间隔物(55,56)的底部表面的外部外围之间的横向尺寸相同。In one embodiment, dielectric isolation spacers (55', 56') include the same set of materials as dielectric gate spacers (55, 56). In one embodiment, the lateral dimension between the inner periphery of the bottom surface of the dielectric isolation spacers (55', 56') and the outer periphery of the bottom surface of the dielectric isolation spacers (55', 56') may be The lateral dimensions between the inner periphery of the bottom surface of the dielectric gate spacers (55, 56) and the outer periphery of the bottom surface of the dielectric gate spacers (55, 56) are the same.
在一个实施方案中,介电隔离间隔物(55',56')不与半导体衬底直接接触,并且整个介电隔离间隔物(55',56')位于包括沟槽隔离结构8的凹陷水平表面的水平平面上方(即,第三水平平面HP3上方)。在图54B和图54C所示的一个实施方案中,每个介电栅极间隔物(55,56)包括接触第一有源区51A的顶部表面的区段的一对第一底部表面,以及接触位于包括该对第一底部表面的水平平面上方的沟槽隔离结构8的凹陷水平表面的第二区段的一对第二底部表面。In one embodiment, the dielectric isolation spacers (55', 56') are not in direct contact with the semiconductor substrate and the entire dielectric isolation spacers (55', 56') are located at the level of the recess that includes the trench isolation structure 8 Above the horizontal plane of the surface (ie above the third horizontal plane HP3). In one embodiment shown in Figures 54B and 54C, each dielectric gate spacer (55, 56) includes a pair of first bottom surfaces contacting a section of the top surface of first active region 51A, and A pair of second bottom surfaces contact a second section of the recessed horizontal surface of the trench isolation structure 8 above a horizontal plane including the pair of first bottom surfaces.
在一个实施方案中,介电栅极间隔物(55,56)与沟槽隔离结构8的侧壁横向间隔开,这些侧壁将沟槽隔离结构8的凹陷水平表面连接到沟槽隔离结构8的最顶部表面。In one embodiment, dielectric gate spacers (55, 56) are laterally spaced from sidewalls of trench isolation structure 8 that connect the recessed horizontal surfaces of trench isolation structure 8 to trench isolation structure 8 the topmost surface.
可将电掺杂剂注入到掺杂区64和源极/漏极扩展区64的表面部分中以形成深源极/漏极区66。每个深源极/漏极区66可与相应的下面的掺杂阱(5E,5F)中的相应有源区(51A,51B)形成p-n结。源极/漏极扩展区64的注入部分可并入到深源极/漏极区66中的相应一者中,并且可具有与深源极/漏极区66中的相应一者相同的导电类型的掺杂。深源极/漏极区66可以包括原子浓度在5.0×1018/cm3至2.0×1021/cm3的范围内的相应导电类型的电掺杂剂,但是也可以采用更小和更大的原子浓度。每个深源极/漏极区66的深度可在30nm至600nm(诸如60nm至300nm)的范围内,但是也可以采用更小和更大的深度。源极/漏极扩展区64和深源极/漏极区66的每个连续组合构成源极/漏极区(64,66),该源极/漏极区可充当源极区或漏极区。p-n结可形成在每个源极/漏极区(64,66)与下面的掺杂阱(5E,5F)中的相应有源区(51A,51B)之间。Electrical dopants may be implanted into doped regions 64 and surface portions of source/drain extension regions 64 to form deep source/drain regions 66 . Each deep source/drain region 66 may form a pn junction with a corresponding active region (51A, 51B) in a corresponding underlying doped well (5E, 5F). The implanted portions of source/drain extension regions 64 may be incorporated into respective ones of deep source/drain regions 66 and may have the same conductivity as respective ones of deep source/drain regions 66 type of doping. Deep source/drain regions 66 may include electrical dopants of corresponding conductivity types with atomic concentrations in the range of 5.0×10 18 /cm 3 to 2.0×10 21 /cm 3 , although smaller and larger sizes may also be used. atomic concentration. The depth of each deep source/drain region 66 may be in the range of 30 nm to 600 nm, such as 60 nm to 300 nm, although smaller and larger depths may also be used. Each successive combination of source/drain extension region 64 and deep source/drain region 66 constitutes a source/drain region (64, 66) which may function as either a source region or a drain region district. A pn junction may be formed between each source/drain region (64, 66) and the corresponding active region (51A, 51B) in the underlying doped well (5E, 5F).
可形成第一场效应晶体管902和第二场效应晶体管904。第一场效应晶体管902可以包括非感测放大器晶体管的外围晶体管。第一场效应晶体管902包括第一有源区51A和第一栅极结构(20E,24E),该第一有源区包括半导体衬底的位于穿过沟槽隔离结构8的第一开口内的一部分,该第一栅极结构包括第一栅极介电质20E和第一栅极电极24E。第一栅极电极24E包括下栅极电极部分并且包括上栅极电极部分,该下栅极电极部分接触第一栅极介电质20E的顶部表面和沟槽隔离结构8的一对侧壁区段,该上栅极电极部分接触沟槽隔离结构8的凹陷水平表面的第一区段。下栅极电极部分可位于包括沟槽隔离结构8的凹陷水平表面的第三水平平面HP3下方,并且上栅极电极部分可位于第三水平平面HP3上方。第一介电栅极间隔物(55,56)横向围绕第一栅极电极24E并接触沟槽隔离结构8的凹陷水平表面的第二区段。第一场效应晶体管902包括上述边缘区。A first field effect transistor 902 and a second field effect transistor 904 may be formed. The first field effect transistor 902 may include peripheral transistors that are not sense amplifier transistors. The first field effect transistor 902 includes a first active region 51A including a first opening of the semiconductor substrate through the trench isolation structure 8 and a first gate structure (20E, 24E). In part, the first gate structure includes first gate dielectric 20E and first gate electrode 24E. First gate electrode 24E includes a lower gate electrode portion that contacts a top surface of first gate dielectric 20E and a pair of sidewall regions of trench isolation structure 8 and includes an upper gate electrode portion. section, the upper gate electrode portion contacts the first section of the recessed horizontal surface of the trench isolation structure 8 . The lower gate electrode part may be located below the third horizontal plane HP3 including the recessed horizontal surface of the trench isolation structure 8 , and the upper gate electrode part may be located above the third horizontal plane HP3 . First dielectric gate spacers (55, 56) laterally surround first gate electrode 24E and contact the second section of the recessed horizontal surface of trench isolation structure 8. The first field effect transistor 902 includes the above-mentioned edge region.
第二场效应904包括无边缘感测放大器晶体管。第二场效应晶体管904包括第二有源区51B并且包括第二栅极结构(20F,24F),该第二有源区包括半导体衬底的位于穿过沟槽隔离结构8的第二开口内的另一部分,该第二栅极结构包括第二栅极介电质20F和第二栅极电极24F。第二栅极电极24F包括一对侧壁,该对侧壁从第二栅极电极24F的顶部表面的相应边缘笔直地竖直延伸到位于第二栅极电极24F下面的第二栅极介电质20F的顶部表面的相应边缘。在一个实施方案中,第二栅极电极24F的整个该对侧壁与沟槽隔离结构8的相应侧壁接触。在一个实施方案中,第二栅极电极24F包括与沟槽隔离结构8的侧壁区段接触的第一侧壁,以及与一对介电栅极间隔物(55,156)接触的第二侧壁,该对介电栅极间隔物包括相应的主介电栅极间隔物156和可选的衬垫介电栅极间隔物55。每个第二介电栅极间隔物(55,56)接触第二栅极电极24F和沟槽隔离结构8的侧壁。The second field effect 904 includes an edgeless sense amplifier transistor. The second field effect transistor 904 includes a second active region 51B including a second opening of the semiconductor substrate through the trench isolation structure 8 and includes a second gate structure (20F, 24F). Another portion of the second gate structure includes a second gate dielectric 20F and a second gate electrode 24F. Second gate electrode 24F includes a pair of sidewalls extending straight vertically from respective edges of a top surface of second gate electrode 24F to a second gate dielectric located beneath second gate electrode 24F. The corresponding edge of the top surface of the quality 20F. In one embodiment, the entire pair of sidewalls of second gate electrode 24F are in contact with corresponding sidewalls of trench isolation structure 8 . In one embodiment, second gate electrode 24F includes a first sidewall in contact with a sidewall section of trench isolation structure 8 and a second sidewall in contact with a pair of dielectric gate spacers (55, 156) , the pair of dielectric gate spacers includes a respective main dielectric gate spacer 156 and an optional pad dielectric gate spacer 55. Each second dielectric gate spacer (55, 56) contacts the second gate electrode 24F and the sidewalls of the trench isolation structure 8.
参考图55A至图55D,形成金属半导体合金(诸如金属硅化物)的金属(例如,W、Co、Ni、Ti、Ta等)可沉积在源极/漏极区(64,66)的物理暴露表面上和栅极电极24的顶部表面上。金属半导体合金区(例如,硅化物区,诸如W、Co、Ni、Ti、Ta等硅化物区)(68,58)可通过执行退火工艺来形成,该退火工艺引起金属与源极/漏极区(64,66)的表面部分和栅极电极24的表面部分的反应(在栅极电极24包括半导体材料诸如硅或硅锗合金的情况下)。金属半导体合金区(68,58)包括与源极/漏极区(64,66)接触的源极/漏极金属半导体合金区68,以及与栅极电极24接触的栅极金属半导体合金区58。金属的未反应部分可例如通过湿法蚀刻工艺来移除,该湿法蚀刻工艺对于金属半导体合金区(68,58)的金属半导体合金选择性地蚀刻该金属。Referring to Figures 55A-55D, a metal (eg, W, Co, Ni, Ti, Ta, etc.) forming a metal-semiconductor alloy (such as a metal suicide) may be deposited at the physical exposure of the source/drain regions (64, 66) surface and on the top surface of gate electrode 24 . Metal-semiconductor alloy regions (e.g., silicide regions such as W, Co, Ni, Ti, Ta, etc.) (68,58) can be formed by performing an annealing process that causes the metal to interact with the source/drain Reaction of surface portions of regions (64, 66) and surface portions of gate electrode 24 (in the case where gate electrode 24 includes a semiconductor material such as silicon or a silicon-germanium alloy). The metal semiconductor alloy regions (68, 58) include a source/drain metal semiconductor alloy region 68 in contact with the source/drain regions (64, 66), and a gate metal semiconductor alloy region 58 in contact with the gate electrode 24 . Unreacted portions of the metal may be removed, for example, by a wet etching process that etch the metal selectively with respect to the metal-semiconductor alloy of the metal-semiconductor alloy regions (68, 58).
在一个实施方案中,第一栅极金属半导体合金部分58可具有底部表面,该底部表面在位于包括沟槽隔离结构8的最顶部表面的水平平面下方(即,在第二水平平面HP2下方)的水平平面内接触第一栅极电极24E的顶部表面,并且可具有顶部表面,该顶部表面位于包括沟槽隔离结构8的最顶部表面的水平平面上方。在一个实施方案中,第二栅极电极24F包括位于与第一栅极电极(20E,24E)的顶部表面相同的水平平面内的顶部表面。In one embodiment, the first gate metal semiconductor alloy portion 58 may have a bottom surface below a horizontal plane that includes the topmost surface of the trench isolation structure 8 (ie, below the second horizontal plane HP2) contacts the top surface of the first gate electrode 24E in a horizontal plane and may have a top surface located above a horizontal plane including the topmost surface of the trench isolation structure 8 . In one embodiment, second gate electrode 24F includes a top surface located in the same horizontal plane as the top surface of first gate electrode (20E, 24E).
参考图56A至图56D,至少一个介电衬垫(172,174)可保形地沉积在沟槽隔离结构8、金属半导体合金区(68,58)和介电间隔物{(55,56),(55’,56’),(55,136)}上方。该至少一个介电衬垫(172,174)可包括第一介电衬垫172和第二介电衬垫174。在一个实施方案中,第一介电衬垫172可包括具有在3nm到60nm的范围内的厚度的氧化硅衬垫,并且第二介电衬垫174可包括具有在3nm到60nm的范围内的厚度的氮化硅衬垫。Referring to Figures 56A-56D, at least one dielectric liner (172,174) may be conformally deposited on the trench isolation structure 8, the metal-semiconductor alloy region (68,58) and the dielectric spacer {(55,56),( 55',56'),(55,136)} above. The at least one dielectric pad (172, 174) may include a first dielectric pad 172 and a second dielectric pad 174. In one embodiment, the first dielectric liner 172 may include a silicon oxide liner having a thickness in the range of 3 nm to 60 nm, and the second dielectric liner 174 may include a silicon oxide liner having a thickness in the range of 3 nm to 60 nm. thickness of silicon nitride liner.
接触层级介电层70可沉积在该至少一个介电衬垫(172,174)上方。第一接触层级介电层70包括介电材料,诸如未掺杂硅酸盐玻璃、掺杂硅酸盐玻璃或有机硅酸盐玻璃。可选地,可执行平面化工艺,以平面化接触层级介电层70的顶部表面。A contact level dielectric layer 70 may be deposited over the at least one dielectric pad (172, 174). First contact level dielectric layer 70 includes a dielectric material such as undoped silicate glass, doped silicate glass, or organic silicate glass. Optionally, a planarization process may be performed to planarize the top surface of contact level dielectric layer 70 .
参考图57A至图57D,接触通孔腔可穿过接触层级介电层70和该至少一个介电衬垫(172,174)来形成,并且可用至少一种导电材料来填充以形成各种接触通孔结构(176A,176G,186A,186G)。接触通孔结构(176A,176G,186A,186G)可包括:接触第一场效应晶体管902的源极/漏极金属半导体合金区68或源极/漏极区(64,66)中的相应一者的第一源极/漏极接触通孔结构176A、接触栅极金属半导体合金区或第一栅极电极24E中的相应一者的第一栅极接触通孔结构176G、接触第二场效应晶体管904的源极/漏极金属半导体合金区68或源极/漏极区(64,66)中的相应一者的第二源极/漏极接触通孔结构186A,以及接触栅极金属半导体合金区或第二栅极电极24F中的相应一者的第二栅极接触通孔结构186G。一般来讲,栅极接触通孔结构(176G,186G)可穿过平面化介电层70来形成,使得第一栅极接触通孔结构176G电连接到第一栅极电极24E中的相应一者,并且第二栅极接触通孔结构186G电连接到第二栅极电极24F中的相应一者。Referring to FIGS. 57A-57D , contact via cavities may be formed through contact level dielectric layer 70 and the at least one dielectric pad (172, 174) and may be filled with at least one conductive material to form various contact vias. Structure (176A, 176G, 186A, 186G). The contact via structures (176A, 176G, 186A, 186G) may include contacting a corresponding one of the source/drain metal semiconductor alloy region 68 or the source/drain regions (64, 66) of the first field effect transistor 902. A first source/drain contact via structure 176A, a first gate contact via structure 176G contacting a corresponding one of the gate metal semiconductor alloy region or the first gate electrode 24E, and a second field effect Second source/drain contact via structure 186A of respective one of source/drain metal semiconductor alloy region 68 or source/drain regions (64, 66) of transistor 904, and contact gate metal semiconductor Second gate contact via structure 186G of a respective one of alloy region or second gate electrode 24F. Generally speaking, gate contact via structures (176G, 186G) may be formed through planarized dielectric layer 70 such that first gate contact via structure 176G is electrically connected to a corresponding one of first gate electrode 24E. , and the second gate contact via structure 186G is electrically connected to a corresponding one of the second gate electrodes 24F.
在一个实施方案中,第一栅极接触通孔结构176G中的每一者可在平面图中完全位于第一有源区51A的顶部表面的区域之外,并且可完全位于间隙区32(即,由沟槽隔离结构8的凹陷水平表面的内部外围和沟槽隔离结构8的凹陷水平表面的外部外围横向界定的区)内。换句话说,第一栅极接触通孔结构176G可在平面图中完全位于沟槽隔离结构8的凹陷水平表面的区域之内。第二栅极接触通孔结构186G中的每一者可在平面图中完全位于第二有源区51B的顶部表面的区域之内。In one embodiment, each of the first gate contact via structures 176G may be located completely outside the area of the top surface of the first active region 51A in plan view and may be completely located in the gap region 32 (i.e., within a region laterally bounded by the inner periphery of the recessed horizontal surface of the trench isolation structure 8 and the outer periphery of the recessed horizontal surface of the trench isolation structure 8). In other words, the first gate contact via structure 176G may be completely within the area of the recessed horizontal surface of the trench isolation structure 8 in plan view. Each of the second gate contact via structures 186G may be located entirely within the area of the top surface of the second active region 51B in plan view.
参考第五实施方案,提供了包括第一场效应晶体管的半导体结构。该半导体结构包括沟槽隔离结构8,该沟槽隔离结构位于半导体衬底的上部部分中并且包括穿过其中的第一开口。沟槽隔离结构8包括间隙区,该间隙区具有凹陷水平表面、横向围绕第一开口,并且由包括沟槽隔离结构8的最顶部表面的沟槽隔离结构8的场区横向围绕。第一场效应晶体管包括第一有源区,该第一有源区包括半导体衬底的位于穿过沟槽隔离结构8的第一开口内的一部分。第一场效应晶体管包括第一栅极结构(24E 20E),该第一栅极结构包括第一栅极介电质20E和第一栅极电极24E。第一栅极电极24E包括下栅极电极部分并且包括上栅极电极部分,该下栅极电极部分接触第一栅极介电质20E的顶部表面和沟槽隔离结构8的一对侧壁区段,该上栅极电极部分接触沟槽隔离结构8的凹陷水平表面的第一区段。第一介电栅极间隔物(55,56)横向围绕第一栅极电极24E并接触沟槽隔离结构8的凹陷水平表面的第二区段。Referring to a fifth embodiment, a semiconductor structure including a first field effect transistor is provided. The semiconductor structure includes a trench isolation structure 8 located in an upper portion of the semiconductor substrate and including a first opening therethrough. Trench isolation structure 8 includes a gap region having a recessed horizontal surface, laterally surrounding the first opening, and laterally surrounded by a field region of trench isolation structure 8 including a topmost surface of trench isolation structure 8 . The first field effect transistor includes a first active region including a portion of the semiconductor substrate located within a first opening through trench isolation structure 8 . The first field effect transistor includes a first gate structure (24E-20E) including a first gate dielectric 20E and a first gate electrode 24E. First gate electrode 24E includes a lower gate electrode portion that contacts a top surface of first gate dielectric 20E and a pair of sidewall regions of trench isolation structure 8 and includes an upper gate electrode portion. section, the upper gate electrode portion contacts the first section of the recessed horizontal surface of the trench isolation structure 8 . First dielectric gate spacers (55, 56) laterally surround first gate electrode 24E and contact the second section of the recessed horizontal surface of trench isolation structure 8.
在本发明的实施方案中,高压非感测放大器外围晶体管902(其位于感测放大器电路之外)可形成为具有栅极边缘区域以改善其电特性的稳定性,这是因为其在第一水平方向hd1上的栅极电极24E长度较短,并且接触工艺对其栅极介电层具有较大影响。相反,低或超低电压感测放大器晶体管904(其在比晶体管902更低的电压下操作)可形成为具有较大栅极电极24F长度并且没有栅极边缘区域。晶体管904的栅极接触件186G位于有源区51B上方。因此,减小了器件面积。此外,可使用相同的处理步骤并行地制造晶体管902和904两者,这减少了处理步骤的数量并降低了工艺的成本。In embodiments of the present invention, the high voltage non-sense amplifier peripheral transistor 902 (which is external to the sense amplifier circuit) may be formed with a gate edge region to improve the stability of its electrical characteristics since it first The length of the gate electrode 24E in the horizontal direction hd1 is shorter, and the contact process has a greater impact on its gate dielectric layer. Conversely, low or ultra-low voltage sense amplifier transistor 904 (which operates at a lower voltage than transistor 902) may be formed with a larger gate electrode 24F length and no gate edge region. Gate contact 186G of transistor 904 is located over active region 51B. Therefore, the device area is reduced. Additionally, both transistors 902 and 904 can be fabricated in parallel using the same processing steps, which reduces the number of processing steps and reduces the cost of the process.
虽然前面提及特定优选实施方案,但是将理解本公开不限于此。本领域的普通技术人员将会想到,可对所公开的实施方案进行各种修改,并且此类修改旨在落在本公开的范围内。在本公开中示出采用特定结构和/或构型的实施方案,应当理解,本公开可以以功能上等同的任何其他兼容结构和/或构型来实践,前提条件是此类取代不被明确地禁止或以其他方式被本领域的普通技术人员认为是不可能的。本文引用的所有出版物、专利申请和专利均以引用方式全文并入本文。Although specific preferred embodiments are mentioned above, it will be understood that the disclosure is not limited thereto. It will be apparent to those of ordinary skill in the art that various modifications may be made to the disclosed embodiments, and such modifications are intended to be within the scope of the present disclosure. While embodiments are shown in this disclosure employing specific structures and/or configurations, it is understood that the disclosure may be practiced with any other compatible structures and/or configurations that are functionally equivalent, provided that such substitutions are not expressly made. prohibited or otherwise considered impossible by a person of ordinary skill in the art. All publications, patent applications, and patents cited herein are incorporated by reference in their entirety.
Claims (60)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/316,015 | 2021-05-10 | ||
US17/316,079 | 2021-05-10 | ||
US17/501,163 US12027520B2 (en) | 2021-05-10 | 2021-10-14 | Transistor circuits including fringeless transistors and method of making the same |
US17/501,163 | 2021-10-14 | ||
PCT/US2022/012579 WO2022240452A1 (en) | 2021-05-10 | 2022-01-14 | Transistor circuits including fringeless transistors and method of making the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116868326A true CN116868326A (en) | 2023-10-10 |
Family
ID=88236376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280016896.5A Pending CN116868326A (en) | 2021-05-10 | 2022-01-14 | Transistor circuits including edgeless transistors and methods of making the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116868326A (en) |
-
2022
- 2022-01-14 CN CN202280016896.5A patent/CN116868326A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220029018A1 (en) | Method for manufacturing semiconductor device with recess, epitaxial growth and diffusion | |
KR102757532B1 (en) | Semiconductor device | |
KR100549008B1 (en) | How to manufacture a fin field effect transistor using isotropic etching technology | |
US20070004117A1 (en) | Semiconductor device and method of manufacturing semiconductor device | |
CN108811517A (en) | High voltage field effect transistor with laterally extending gate dielectric and method of making the same | |
US7524733B2 (en) | Asymmetric source/drain transistor employing selective epitaxial growth (SEG) layer and method of fabricating same | |
US20090267125A1 (en) | Semiconductor device and method of manufacturing the same | |
KR102167625B1 (en) | Semiconductor devices and methods of manufacturing the same | |
CN110021551B (en) | Semiconductor device and method for manufacturing the same | |
KR102374905B1 (en) | Transistor gates and method of forming | |
KR20210032874A (en) | Gate resistance reduction through low-resistivity conductive layer | |
US20230079098A1 (en) | Field effect transistors with gate fins and method of making the same | |
US20220367449A1 (en) | Transistor circuits including fringeless transistors and method of making the same | |
US20220359690A1 (en) | Transistor circuits including fringeless transistors and method of making the same | |
US20220359501A1 (en) | Transistor circuits including fringeless transistors and method of making the same | |
US20220278209A1 (en) | High voltage field effect transistors with metal-insulator-semiconductor contacts and method of making the same | |
CN116868326A (en) | Transistor circuits including edgeless transistors and methods of making the same | |
TW202333238A (en) | Semiconductor device and method of manufacture | |
WO2022240452A1 (en) | Transistor circuits including fringeless transistors and method of making the same | |
US9911827B2 (en) | SBFET transistor and corresponding fabrication process | |
US20240072042A1 (en) | Transistor circuits including fringeless transistors and method of making the same | |
US20240147730A1 (en) | Transistor circuits including fringeless transistors and method of making the same | |
US20240063278A1 (en) | Transistor circuits including fringeless transistors and method of making the same | |
US20240258317A1 (en) | Transistor circuits including fringeless transistors and method of making the same | |
CN117642863A (en) | Field effect transistor with reduced gate edge area and method of manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20250325 Address after: U.S.A. Applicant after: SANDISK TECHNOLOGIES Inc. Country or region after: U.S.A. Address before: American Texas Applicant before: SANDISK TECHNOLOGIES LLC Country or region before: U.S.A. |