CN116834977A - A range control method for satellite orbit data - Google Patents
A range control method for satellite orbit data Download PDFInfo
- Publication number
- CN116834977A CN116834977A CN202310714660.5A CN202310714660A CN116834977A CN 116834977 A CN116834977 A CN 116834977A CN 202310714660 A CN202310714660 A CN 202310714660A CN 116834977 A CN116834977 A CN 116834977A
- Authority
- CN
- China
- Prior art keywords
- data
- satellite
- model
- orbit
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Remote Sensing (AREA)
- Combustion & Propulsion (AREA)
- Radar, Positioning & Navigation (AREA)
- Chemical & Material Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明涉及卫星轨道数据相关领域,具体为一种卫星轨道数据的范围控制方法,本发明所述的高级神经网络算法采用GPT‑3.5Turbo模型,其具有极高的预测精度和泛化能力,在轨道数据的预测和分析相比现有技术具有一定优势;通过利用高级神经网络的算法,可以快速获取和准确处理卫星测量数据,达到实时控制的效果,同时,该方法可以降低测量设备和控制设备的成本,提高控制效率。
The invention relates to the field related to satellite orbit data, specifically a range control method for satellite orbit data. The advanced neural network algorithm of the invention adopts the GPT-3.5 Turbo model, which has extremely high prediction accuracy and generalization ability. The prediction and analysis of orbit data has certain advantages compared with existing technologies; by using advanced neural network algorithms, satellite measurement data can be quickly acquired and accurately processed to achieve real-time control effects. At the same time, this method can reduce the cost of measurement equipment and control equipment. cost and improve control efficiency.
Description
技术领域Technical field
本发明涉及卫星轨道数据相关领域,具体为一种卫星轨道数据的范围控制方法。The invention relates to the field related to satellite orbit data, and is specifically a range control method of satellite orbit data.
背景技术Background technique
在卫星技术的应用中,对卫星轨道的精确控制是至关重要的。为了实现这一目标,卫星需要安装多种测量设备,包括微小推进器、星间定位设备等,以获取实时轨道数据。In the application of satellite technology, precise control of satellite orbits is crucial. In order to achieve this goal, satellites need to be equipped with a variety of measurement equipment, including micro thrusters, inter-satellite positioning equipment, etc., to obtain real-time orbit data.
然而,由于卫星在轨道上的运动状态各异,轨道数据误差较大,传统的静态控制方法已经无法满足需求。因此,需要寻求一种更精确的轨道数据范围控制方法,以保证卫星的稳定运行。However, due to the different motion states of satellites in orbit and large orbit data errors, traditional static control methods can no longer meet the needs. Therefore, it is necessary to seek a more precise orbit data range control method to ensure the stable operation of satellites.
发明内容Contents of the invention
本发明的目的在于提供一种卫星轨道数据的范围控制方法,以解决上述背景技术中提出的问题。The purpose of the present invention is to provide a range control method for satellite orbit data to solve the problems raised in the above background technology.
为实现上述目的,本发明提供如下技术方案:一种卫星轨道数据的范围控制方法,包括以下步骤:In order to achieve the above objects, the present invention provides the following technical solution: a range control method of satellite orbit data, including the following steps:
步骤S1、获取卫星测量数据;Step S1: Obtain satellite measurement data;
步骤S2、利用高级神经网络的算法,对获取的测量数据进行分析和处理,预测轨道的运动规律,得到预测结果;Step S2: Use advanced neural network algorithms to analyze and process the acquired measurement data, predict the motion patterns of the orbit, and obtain prediction results;
步骤S3、比对卫星测量数据中的观测值和步骤S2中的预测结果,修正数据误差,得到更加准确的轨道数据;Step S3: Compare the observed values in the satellite measurement data with the prediction results in step S2, correct the data errors, and obtain more accurate orbit data;
步骤S4、将修正后的轨道数据传输至卫星,实现即时控制。Step S4: Transmit the corrected orbit data to the satellite to achieve real-time control.
优选的,所述步骤S2中使用的高级神经网络的算法为GPT-3.5Turbo模型,其具体模型处理步骤为:Preferably, the advanced neural network algorithm used in step S2 is the GPT-3.5 Turbo model, and its specific model processing steps are:
步骤a、首先收集卫星测量数据,包括卫星的位置、轨道参数、运动速度参数,并对这些数据进行预处理,消除掉测量误差和噪声,并将数据转化成数字序列格式;Step a. First collect satellite measurement data, including satellite position, orbit parameters, and motion speed parameters, and preprocess these data to eliminate measurement errors and noise, and convert the data into a digital sequence format;
步骤b、在数据预处理之后,使用GPT-3.5Turbo模型进行训练,以对卫星轨道数据进行预测和分析,在此过程中,需要确定模型的输入和输出格式,以及选择参数和算法;Step b. After data preprocessing, use the GPT-3.5 Turbo model for training to predict and analyze satellite orbit data. During this process, it is necessary to determine the input and output formats of the model, as well as select parameters and algorithms;
步骤c、在模型训练完成后,需要采用交叉验证技术对模型进行测试和调整,以确定模型的准确性和稳定性;Step c. After the model training is completed, the model needs to be tested and adjusted using cross-validation technology to determine the accuracy and stability of the model;
步骤d、在模型测试和调整之后,将模型应用到卫星轨道数据的范围控制中,首先,将步骤a中卫星测量数据输入到模型中,并经过处理和预测,得出轨道数据的范围信息,然后,将处理后的轨道数据传输至控制设备,进行实时控制。Step d. After the model is tested and adjusted, the model is applied to the range control of the satellite orbit data. First, the satellite measurement data in step a is input into the model, and after processing and prediction, the range information of the orbit data is obtained. Then, the processed track data is transmitted to the control device for real-time control.
优选的,所述步骤a中对数据进行预处理具体包括:在获取卫星位置数据时,使用数据有效性检查进行严格的数据校验,以判断数据是否准确、完整和一致;在数据校验完成后采用数字滤波器进行滤波处理,减少测量误差和噪声对数据预测的影响;当卫星位置数据出现缺失或异常值时,采用线性插值进行数据插值,填补缺失值和消除异常值;在数据完成上述处理后,使用标准差归一化将数据进行归一化处理,消除不同数据尺度之间的差异。Preferably, the preprocessing of data in step a specifically includes: when obtaining satellite position data, using data validity check to conduct strict data verification to determine whether the data is accurate, complete and consistent; after the data verification is completed Finally, a digital filter is used for filtering processing to reduce the impact of measurement errors and noise on data prediction; when the satellite position data is missing or has outliers, linear interpolation is used for data interpolation to fill in the missing values and eliminate outliers; after the data has completed the above After processing, standard deviation normalization is used to normalize the data to eliminate differences between different data scales.
优选的,所述步骤b中使用GPT-3.5Turbo模型进行训练具体步骤为:Preferably, the specific steps of using the GPT-3.5 Turbo model for training in step b are:
步骤一、在预测卫星位置、轨道参数和速度时,将卫星测量数据以及历史轨道数据作为模型的输入,轨道预测误差和下一时刻的轨道数据等作为模型的输出;Step 1. When predicting satellite position, orbit parameters and speed, satellite measurement data and historical orbit data are used as the input of the model, and the orbit prediction error and orbit data at the next moment are used as the output of the model;
步骤二、在确定模型输入和输出之后,输入近GPT-3.5Turbo模型进行训练,其GPT-3.5Turbo模型具体为:Step 2: After determining the model input and output, input the near-GPT-3.5Turbo model for training. The specific GPT-3.5Turbo model is:
text{MultiHead}(Q,K,V)=text{Concat}(head 1,…,head_h)W^0text{Concat}head_i=text{Attention}(QW_i^Q,KW_i^K,VW_i^V)text{Attention}W_i^Q,W_i^K,W_i^V。text{MultiHead}(Q,K,V)=text{Concat}(head 1,...,head_h)W^0text{Concat}head_i=text{Attention}(QW_i^Q,KW_i^K,VW_i^V)text {Attention}W_i^Q, W_i^K, W_i^V.
其中,Q、K、V分别表示输入的查询向量、键向量和值向量;head_i表示第i个头的输出;text为可训练的权重矩阵;text(MultiHead}表示多头自注意力机制,W_i^Q,W_i^K,W_i^V是多头注意力机制中的可训练参数;text{Concat}将多头的输出连接起来,W^0是最终的输出层权重矩阵;Among them, Q, K, V represent the input query vector, key vector and value vector respectively; head_i represents the output of the i-th head; text is the trainable weight matrix; text(MultiHead} represents the multi-head self-attention mechanism, W_i^Q , W_i^K, W_i^V are trainable parameters in the multi-head attention mechanism; text{Concat} connects the outputs of the multi-heads, and W^0 is the final output layer weight matrix;
步骤三、在模型训练之后,对模型采用交叉验证进行评估,检查模型的准确性和稳定性。Step 3: After model training, evaluate the model using cross-validation to check the accuracy and stability of the model.
优选的,所述步骤S3中修正数据误差,得到更加准确的轨道数据,其中根据数据分析的结果,采用调整输入数据方法,修正预测结果的误差,具体步骤为:Preferably, the data errors are corrected in step S3 to obtain more accurate orbit data. According to the results of data analysis, the input data adjustment method is used to correct the errors of the prediction results. The specific steps are:
步骤S31、通过统计分析和可视化工具,通过统计数据的均值、标准差或分位数等基础统计指标,识别卫星测量数据中的异常点和噪声点,以识别和分析噪声或异常值的来源;Step S31. Use statistical analysis and visualization tools to identify abnormal points and noise points in the satellite measurement data through basic statistical indicators such as the mean, standard deviation or quantile of statistical data to identify and analyze the source of noise or abnormal values;
步骤S32、根据数据分析的结果,利用卡尔曼滤波算法对卫星测量数据中的异常值进行过滤和替换;Step S32: According to the results of data analysis, use the Kalman filter algorithm to filter and replace outliers in the satellite measurement data;
步骤S33、在过滤干扰数据之后,重新采用修正后的数据进行步骤S2中的模型训练,并根据训练后的模型对卫星位置和速度进行预测;Step S33. After filtering the interference data, reuse the corrected data to perform model training in step S2, and predict the satellite position and speed based on the trained model;
步骤S34、在完成数据预测后,将预测结果与步骤S1中卫星测量数据进行比对,以检验数据的精度和稳定性。Step S34: After completing the data prediction, compare the prediction results with the satellite measurement data in step S1 to check the accuracy and stability of the data.
优选的,所述步骤S32中利用卡尔曼滤波算法对卫星测量数据中的异常值进行过滤和替换具体步骤包括:Preferably, the specific steps of using the Kalman filter algorithm to filter and replace outliers in the satellite measurement data in step S32 include:
步骤S321、首先将卫星的位置、速度和加速度状态量定义为系统状态模型,并用系统状态模型表示为如下的线性状态方程:x(k+1)=A_kx(k)+B_ku(k)+V(k),其中x(k)表示系统状态,A_k表示状态转移矩阵,B_k表示控制矩阵,u(k)表示控制输入,V(k)表示系统噪声;Step S321: First define the satellite's position, velocity and acceleration state quantities as a system state model, and use the system state model to express it as the following linear state equation: x(k+1)=A_kx(k)+B_ku(k)+V (k), where x(k) represents the system state, A_k represents the state transition matrix, B_k represents the control matrix, u(k) represents the control input, and V(k) represents the system noise;
步骤S322、卫星测量数据作为观测量,定义卫星的位置和速度向量为观测模型,观测模型可以表示为如下的线性观测方程:z(k)=H_kx(k)+w(k),其中,z(k)表示观测值,H_k表示观测矩阵,w(k)表示测量噪声;Step S322. The satellite measurement data is used as the observation quantity. The position and velocity vector of the satellite are defined as the observation model. The observation model can be expressed as the following linear observation equation: z(k)=H_kx(k)+w(k), where, z (k) represents the observation value, H_k represents the observation matrix, and w(k) represents the measurement noise;
步骤S323、用方差来描述系统噪声和测量噪声,并在系统状态模型、观测模型和初始状态估计中输入系统噪声和测量噪声;Step S323: Use variance to describe the system noise and measurement noise, and input the system noise and measurement noise into the system state model, observation model and initial state estimation;
步骤S324、对卫星的初始化状态进行估计,其中对于卫星位置和速度预测使用如下的初始状态估计:x(0)=[pos0,vel0,acc0],其中pos0,vel0,acc0分别表示卫星的初始位置、初始速度和初始加速度;Step S324: Estimate the initialization state of the satellite, where the following initial state estimation is used for satellite position and velocity prediction: x(0)=[pos0, vel0, acc0], where pos0, vel0, acc0 respectively represent the initial position of the satellite. , initial velocity and initial acceleration;
步骤S325、根据系统状态模型、系统噪声、测量噪声、以及卫星运动规律预测卫星的状态,同时根据观测模型和卫星测量数据对卫星的状态进行修正和更新,并对卡尔曼增益进行计算和更新,进一步提高估计状态的准确性和精度,其中预测卫星的状态和卫星的状态进行修正和更新使用如下的卡尔曼滤波算法公式:Step S325: Predict the status of the satellite based on the system state model, system noise, measurement noise, and satellite motion rules. At the same time, correct and update the status of the satellite based on the observation model and satellite measurement data, and calculate and update the Kalman gain. To further improve the accuracy and precision of the estimated state, the predicted satellite state and satellite state are corrected and updated using the following Kalman filter algorithm formula:
预测: predict:
协方差预测:Pk|k-1=Akpk-1AkT+QkCovariance prediction: Pk|k-1=Akpk-1AkT+Qk
更新:Kk=Pk|k-1HkT(HkPk|k-1HkT+Rk)-1Update: Kk=Pk|k-1HkT(HkPk|k-1HkT+Rk)-1
修正: Correction:
协方差更新:Pk|k=(1-KkHk)Pk|k-1Covariance update: Pk|k=(1-KkHk)Pk|k-1
其中上述公式中是最优状态估计值,Pk|k-1是状态估计误差的协方差矩阵,Kk是卡尔曼增益,zk是观测值,Hk是观测矩阵,Qk是系统噪声的协方差矩阵,Rk是测量噪声的协方差矩阵。In the above formula is the optimal state estimate, Pk|k-1 is the covariance matrix of the state estimation error, Kk is the Kalman gain, zk is the observation value, Hk is the observation matrix, Qk is the covariance matrix of the system noise, and Rk is the measurement noise covariance matrix.
与现有技术相比,本发明的有益效果是:本发明所述的高级神经网络算法采用GPT-3.5Turbo模型,其具有极高的预测精度和泛化能力,在轨道数据的预测和分析相比现有技术具有一定优势;通过利用高级神经网络的算法,可以快速获取和准确处理卫星测量数据,达到实时控制的效果,同时,该方法可以降低测量设备和控制设备的成本,提高控制效率。Compared with the existing technology, the beneficial effects of the present invention are: the advanced neural network algorithm of the present invention adopts the GPT-3.5 Turbo model, which has extremely high prediction accuracy and generalization ability, and is very effective in the prediction and analysis of orbit data. It has certain advantages over existing technology; by using advanced neural network algorithms, satellite measurement data can be quickly acquired and accurately processed to achieve real-time control effects. At the same time, this method can reduce the cost of measurement equipment and control equipment and improve control efficiency.
附图说明Description of the drawings
图1为本发明的方法流程结构示意图。Figure 1 is a schematic structural diagram of the method flow of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
请参阅图1,本发明提供一种技术方案:一种卫星轨道数据的范围控制方法,包括以下步骤:Please refer to Figure 1. The present invention provides a technical solution: a range control method of satellite orbit data, including the following steps:
步骤S1、获取卫星测量数据;Step S1: Obtain satellite measurement data;
步骤S2、利用高级神经网络的算法,对获取的测量数据进行分析和处理,预测轨道的运动规律,得到预测结果;Step S2: Use advanced neural network algorithms to analyze and process the acquired measurement data, predict the motion patterns of the orbit, and obtain prediction results;
步骤S3、比对卫星测量数据中的观测值和步骤S2中的预测结果,修正数据误差,得到更加准确的轨道数据;Step S3: Compare the observed values in the satellite measurement data with the prediction results in step S2, correct the data errors, and obtain more accurate orbit data;
步骤S4、将修正后的轨道数据传输至卫星,实现即时控制。Step S4: Transmit the corrected orbit data to the satellite to achieve real-time control.
进一步的,步骤S2中使用的高级神经网络的算法为GPT-3.5Turbo模型,其具体模型处理步骤为:Furthermore, the advanced neural network algorithm used in step S2 is the GPT-3.5 Turbo model, and its specific model processing steps are:
步骤a、首先收集卫星测量数据,包括卫星的位置、轨道参数、运动速度参数,并对这些数据进行预处理,消除掉测量误差和噪声,并将数据转化成数字序列格式;Step a. First collect satellite measurement data, including satellite position, orbit parameters, and motion speed parameters, and preprocess these data to eliminate measurement errors and noise, and convert the data into a digital sequence format;
步骤b、在数据预处理之后,使用GPT-3.5Turbo模型进行训练,以对卫星轨道数据进行预测和分析,在此过程中,需要确定模型的输入和输出格式,以及选择参数和算法;Step b. After data preprocessing, use the GPT-3.5 Turbo model for training to predict and analyze satellite orbit data. During this process, it is necessary to determine the input and output formats of the model, as well as select parameters and algorithms;
步骤c、在模型训练完成后,需要采用交叉验证技术对模型进行测试和调整,以确定模型的准确性和稳定性;Step c. After the model training is completed, the model needs to be tested and adjusted using cross-validation technology to determine the accuracy and stability of the model;
步骤d、在模型测试和调整之后,将模型应用到卫星轨道数据的范围控制中,首先,将步骤a中卫星测量数据输入到模型中,并经过处理和预测,得出轨道数据的范围信息,然后,将处理后的轨道数据传输至控制设备,进行实时控制。Step d. After the model is tested and adjusted, the model is applied to the range control of the satellite orbit data. First, the satellite measurement data in step a is input into the model, and after processing and prediction, the range information of the orbit data is obtained. Then, the processed track data is transmitted to the control device for real-time control.
进一步的,步骤a中对数据进行预处理具体包括:在获取卫星位置数据时,使用数据有效性检查进行严格的数据校验,以判断数据是否准确、完整和一致;在数据校验完成后采用数字滤波器进行滤波处理,减少测量误差和噪声对数据预测的影响;当卫星位置数据出现缺失或异常值时,采用线性插值进行数据插值,填补缺失值和消除异常值;在数据完成上述处理后,使用标准差归一化将数据进行归一化处理,消除不同数据尺度之间的差异。Further, the preprocessing of data in step a specifically includes: when obtaining satellite position data, use data validity check to conduct strict data verification to determine whether the data is accurate, complete and consistent; after the data verification is completed, use The digital filter performs filtering processing to reduce the impact of measurement errors and noise on data prediction; when satellite position data is missing or has outliers, linear interpolation is used for data interpolation to fill in missing values and eliminate outliers; after the data has completed the above processing , use standard deviation normalization to normalize the data and eliminate the differences between different data scales.
进一步的,步骤b中使用GPT-3.5Turbo模型进行训练具体步骤为:Further, the specific steps of using the GPT-3.5 Turbo model for training in step b are:
步骤一、在预测卫星位置、轨道参数和速度时,将卫星测量数据以及历史轨道数据作为模型的输入,轨道预测误差和下一时刻的轨道数据等作为模型的输出;Step 1. When predicting satellite position, orbit parameters and speed, satellite measurement data and historical orbit data are used as the input of the model, and the orbit prediction error and orbit data at the next moment are used as the output of the model;
步骤二、在确定模型输入和输出之后,输入近GPT-3.5Turbo模型进行训练,其GPT-3.5Turbo模型具体为:Step 2: After determining the model input and output, input the near-GPT-3.5Turbo model for training. The specific GPT-3.5Turbo model is:
text{MultiHead}(Q,K,V)=text{Concat}(head_1,…,head_h)W^0text{Concat}head_i=text{Attention}(QW_i^Q,KW_i^K,VW_i^V)text{Attention}W_i^Q,W_i^K,W_i^V。text{MultiHead}(Q,K,V)=text{Concat}(head_1,...,head_h)W^0text{Concat}head_i=text{Attention}(QW_i^Q,KW_i^K,VW_i^V)text{ Attention}W_i^Q, W_i^K, W_i^V.
其中,Q、K、V分别表示输入的查询向量、键向量和值向量;head_i表示第i个头的输出;text为可训练的权重矩阵;text{MultiHead}表示多头自注意力机制,W i^Q,W i^K,W i^V是多头注意力机制中的可训练参数;text{Concat}将多头的输出连接起来,W^0是最终的输出层权重矩阵;Among them, Q, K, V represent the input query vector, key vector and value vector respectively; head_i represents the output of the i-th head; text is the trainable weight matrix; text{MultiHead} represents the multi-head self-attention mechanism, W i^ Q, W i^K, W i^V are trainable parameters in the multi-head attention mechanism; text{Concat} connects the outputs of the multi-heads, and W^0 is the final output layer weight matrix;
步骤三、在模型训练之后,对模型采用交叉验证进行评估,检查模型的准确性和稳定性。Step 3: After model training, evaluate the model using cross-validation to check the accuracy and stability of the model.
进一步的,步骤S3中修正数据误差,得到更加准确的轨道数据,其中根据数据分析的结果,采用调整输入数据方法,修正预测结果的误差,具体步骤为:Further, in step S3, the data error is corrected to obtain more accurate orbit data. According to the results of data analysis, the input data adjustment method is used to correct the error of the prediction result. The specific steps are:
步骤S31、通过统计分析和可视化工具,通过统计数据的均值、标准差或分位数等基础统计指标,识别卫星测量数据中的异常点和噪声点,以识别和分析噪声或异常值的来源;Step S31. Use statistical analysis and visualization tools to identify abnormal points and noise points in the satellite measurement data through basic statistical indicators such as the mean, standard deviation or quantile of statistical data to identify and analyze the source of noise or abnormal values;
步骤S32、根据数据分析的结果,利用卡尔曼滤波算法对卫星测量数据中的异常值进行过滤和替换;Step S32: According to the results of data analysis, use the Kalman filter algorithm to filter and replace outliers in the satellite measurement data;
步骤S33、在过滤干扰数据之后,重新采用修正后的数据进行步骤S2中的模型训练,并根据训练后的模型对卫星位置和速度进行预测;Step S33. After filtering the interference data, reuse the corrected data to perform model training in step S2, and predict the satellite position and speed based on the trained model;
步骤S34、在完成数据预测后,将预测结果与步骤S1中卫星测量数据进行比对,以检验数据的精度和稳定性。Step S34: After completing the data prediction, compare the prediction results with the satellite measurement data in step S1 to check the accuracy and stability of the data.
进一步的,步骤S32中利用卡尔曼滤波算法对卫星测量数据中的异常值进行过滤和替换具体步骤包括:Further, in step S32, the Kalman filter algorithm is used to filter and replace outliers in the satellite measurement data. The specific steps include:
步骤S321、首先将卫星的位置、速度和加速度状态量定义为系统状态模型,并用系统状态模型表示为如下的线性状态方程:x(k+1)=A_kx(k)+B_ku(k)+V(k),其中x(k)表示系统状态,A_k表示状态转移矩阵,B_k表示控制矩阵,u(k)表示控制输入,V(k)表示系统噪声;Step S321: First define the satellite's position, velocity and acceleration state quantities as a system state model, and use the system state model to express it as the following linear state equation: x(k+1)=A_kx(k)+B_ku(k)+V (k), where x(k) represents the system state, A_k represents the state transition matrix, B_k represents the control matrix, u(k) represents the control input, and V(k) represents the system noise;
步骤S322、卫星测量数据作为观测量,定义卫星的位置和速度向量为观测模型,观测模型可以表示为如下的线性观测方程:z(k)=H_kx(k)+w(k),其中,z(k)表示观测值,H_k表示观测矩阵,w(k)表示测量噪声;Step S322. The satellite measurement data is used as the observation quantity. The position and velocity vector of the satellite are defined as the observation model. The observation model can be expressed as the following linear observation equation: z(k)=H_kx(k)+w(k), where, z (k) represents the observation value, H_k represents the observation matrix, and w(k) represents the measurement noise;
步骤S323、用方差来描述系统噪声和测量噪声,并在系统状态模型、观测模型和初始状态估计中输入系统噪声和测量噪声;Step S323: Use variance to describe the system noise and measurement noise, and input the system noise and measurement noise into the system state model, observation model and initial state estimation;
步骤S324、对卫星的初始化状态进行估计,其中对于卫星位置和速度预测使用如下的初始状态估计:x(0)=[pos0,vel0,acc0],其中pos0,vel0,acc0分别表示卫星的初始位置、初始速度和初始加速度;Step S324: Estimate the initialization state of the satellite, where the following initial state estimation is used for satellite position and velocity prediction: x(0)=[pos0, vel0, acc0], where pos0, vel0, acc0 respectively represent the initial position of the satellite. , initial velocity and initial acceleration;
步骤S325、根据系统状态模型、系统噪声、测量噪声、以及卫星运动规律预测卫星的状态,同时根据观测模型和卫星测量数据对卫星的状态进行修正和更新,并对卡尔曼增益进行计算和更新,进一步提高估计状态的准确性和精度,其中预测卫星的状态和卫星的状态进行修正和更新使用如下的卡尔曼滤波算法公式:Step S325: Predict the status of the satellite based on the system state model, system noise, measurement noise, and satellite motion rules. At the same time, correct and update the status of the satellite based on the observation model and satellite measurement data, and calculate and update the Kalman gain. To further improve the accuracy and precision of the estimated state, the predicted satellite state and satellite state are corrected and updated using the following Kalman filter algorithm formula:
预测: predict:
协方差预测:Pk|k-1=Akpk-1AkT+QkCovariance prediction: Pk|k-1=Akpk-1AkT+Qk
更新:Kk=Pk|k-1HkT(HkPk|k-1HkT+Rk)-1Update: Kk=Pk|k-1HkT(HkPk|k-1HkT+Rk)-1
修正: Correction:
协方差更新:Pk|k=(1-KkHk)Pk|k-1Covariance update: Pk|k=(1-KkHk)Pk|k-1
其中上述公式中是最优状态估计值,Pk|k-1是状态估计误差的协方差矩阵,Kk是卡尔曼增益,zk是观测值,Hk是观测矩阵,Qk是系统噪声的协方差矩阵,Rk是测量噪声的协方差矩阵。In the above formula is the optimal state estimate, Pk|k-1 is the covariance matrix of the state estimation error, Kk is the Kalman gain, zk is the observation value, Hk is the observation matrix, Qk is the covariance matrix of the system noise, and Rk is the measurement noise covariance matrix.
本发明所述的高级神经网络算法采用GPT-3.5Turbo模型,其具有极高的预测精度和泛化能力,在轨道数据的预测和分析相比现有技术具有一定优势;通过利用高级神经网络的算法,可以快速获取和准确处理卫星测量数据,达到实时控制的效果,同时,该方法可以降低测量设备和控制设备的成本,提高控制效率。The advanced neural network algorithm of the present invention adopts the GPT-3.5 Turbo model, which has extremely high prediction accuracy and generalization ability. It has certain advantages over existing technologies in the prediction and analysis of orbit data; by utilizing the advanced neural network The algorithm can quickly acquire and accurately process satellite measurement data to achieve real-time control. At the same time, this method can reduce the cost of measurement equipment and control equipment and improve control efficiency.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those of ordinary skill in the art will understand that various changes, modifications, and substitutions can be made to these embodiments without departing from the principles and spirit of the invention. and modifications, the scope of the invention is defined by the appended claims and their equivalents.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310714660.5A CN116834977A (en) | 2023-06-16 | 2023-06-16 | A range control method for satellite orbit data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310714660.5A CN116834977A (en) | 2023-06-16 | 2023-06-16 | A range control method for satellite orbit data |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116834977A true CN116834977A (en) | 2023-10-03 |
Family
ID=88171717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310714660.5A Pending CN116834977A (en) | 2023-06-16 | 2023-06-16 | A range control method for satellite orbit data |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116834977A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118194028A (en) * | 2024-05-17 | 2024-06-14 | 中国西安卫星测控中心 | Low orbit satellite abnormal state identification method based on mixed probability principal component analysis |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102968552A (en) * | 2012-10-26 | 2013-03-13 | 郑州威科姆科技股份有限公司 | Satellite orbit data estimation and correction method |
US20200319350A1 (en) * | 2019-04-02 | 2020-10-08 | Technology And Engineering Center For Space Utilization, Chinese Academy Of Sciences | Method for achieving space-based autonomous navigation of global navigation satellite system (gnss) satellites |
US20220017239A1 (en) * | 2020-07-17 | 2022-01-20 | The Aerospace Corporation | Methods and systems for orbit estimation of a satellite |
CN115113646A (en) * | 2022-07-07 | 2022-09-27 | 上海交通大学 | Method and system for continuous estimation of flat root state of satellite formation based on Kalman filter |
-
2023
- 2023-06-16 CN CN202310714660.5A patent/CN116834977A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102968552A (en) * | 2012-10-26 | 2013-03-13 | 郑州威科姆科技股份有限公司 | Satellite orbit data estimation and correction method |
US20200319350A1 (en) * | 2019-04-02 | 2020-10-08 | Technology And Engineering Center For Space Utilization, Chinese Academy Of Sciences | Method for achieving space-based autonomous navigation of global navigation satellite system (gnss) satellites |
US20220017239A1 (en) * | 2020-07-17 | 2022-01-20 | The Aerospace Corporation | Methods and systems for orbit estimation of a satellite |
CN115113646A (en) * | 2022-07-07 | 2022-09-27 | 上海交通大学 | Method and system for continuous estimation of flat root state of satellite formation based on Kalman filter |
Non-Patent Citations (1)
Title |
---|
刘俊宏;谷德峰;赖育网;易东云;: "DORIS实时定轨中的频偏估计方法研究", 武汉大学学报(信息科学版), no. 08, 5 August 2012 (2012-08-05), pages 956 - 959 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118194028A (en) * | 2024-05-17 | 2024-06-14 | 中国西安卫星测控中心 | Low orbit satellite abnormal state identification method based on mixed probability principal component analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4914457B2 (en) | Automatic virtual measurement system and method | |
CN111191726B (en) | A Fault Classification Method Based on Weakly Supervised Learning Multilayer Perceptron | |
CN109827579B (en) | A method and system for real-time correction of filter model in combined positioning | |
CN111680870B (en) | Comprehensive evaluation method for quality of target motion trail | |
CN114567288B (en) | Distribution collaborative nonlinear system state estimation method based on variable decibels | |
CN108958226B (en) | TE process fault detection method based on survival information potential-principal component analysis algorithm | |
CN106441300A (en) | Self-adaptive collaborative navigation and filtering method | |
CN116821697A (en) | Mechanical equipment fault diagnosis method based on small sample learning | |
CN114964313A (en) | A Method of Temperature Compensation of Fiber Optic Gyroscope Based on RVM | |
CN111860839A (en) | Crane fault monitoring method based on multi-signal fusion and Adam optimization algorithm | |
CN117370771A (en) | Knowledge embedding filling soft measurement method based on conditional fractional diffusion | |
CN116834977A (en) | A range control method for satellite orbit data | |
CN118690571B (en) | A control method and system for an autonomous harvester based on digital twins | |
CN103389360B (en) | Based on the debutanizing tower butane content soft measuring method of probability principal component regression model | |
CN118032340A (en) | Fault diagnosis expert system for steam turbine | |
CN109655057B (en) | Filtering optimization method and system for accelerator measurement value of six-push unmanned aerial vehicle | |
CN112016208B (en) | Hidden fault diagnosis method and system considering disturbance | |
CN105373805A (en) | A multi-sensor maneuvering target tracking method based on the principle of maximum entropy | |
CN118311941A (en) | A non-intrusive digital-analog linkage control system fault detection method | |
CN114199249A (en) | Multi-AUV (autonomous Underwater vehicle) cooperative localization measurement anomaly detection method for improving ANFIS (artificial neural field of view) | |
CN113111717A (en) | Linear time-varying system parameter identification method | |
Peng et al. | Online Self-calibration of Camera-IMU External Parameters and IMU Initialization for Stereo VI-SLAM | |
CN118500392B (en) | Error correction method of underwater robot DVL speed measurement based on improved ELM | |
CN113009888B (en) | Production line equipment state prediction and recognition device | |
CN114996938B (en) | A dynamic data correction method for distributed output prediction of improvement processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |