CN116830014A - Augmented reality device and method for detecting user gaze - Google Patents
Augmented reality device and method for detecting user gaze Download PDFInfo
- Publication number
- CN116830014A CN116830014A CN202280007181.3A CN202280007181A CN116830014A CN 116830014 A CN116830014 A CN 116830014A CN 202280007181 A CN202280007181 A CN 202280007181A CN 116830014 A CN116830014 A CN 116830014A
- Authority
- CN
- China
- Prior art keywords
- light
- user
- eyes
- pattern
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
Description
技术领域Technical field
本公开涉及一种用于检测用户凝视的增强现实(AR)设备和方法,并且更具体地,涉及一种通过使用位于AR设备的支撑件中的光发射器和光接收器来检测用户凝视的AR设备及其方法。The present disclosure relates to an augmented reality (AR) device and method for detecting a user's gaze, and more particularly, to an AR device that detects a user's gaze by using a light emitter and a light receiver located in a support of the AR device Apparatus and methods thereof.
背景技术Background technique
增强现实(AR)是一种将虚拟图像投射到现实世界的物理环境空间或现实世界对象上并将虚拟图像作为单个图像显示的技术。当佩戴在用户的面部或头部时,AR设备允许用户通过使用透视显示器(例如,用户眼前的波导)的眼镜型设备看到现实场景和虚拟图像。随着对这种AR设备的研究正在积极进行,各种类型的可穿戴设备已经发布或预计将发布。在相关技术的眼镜型AR设备中,通常在围绕波导的边缘部分上布置相机以跟踪用户的凝视,这使得AR设备的边缘部分被放大,并且进一步导致佩戴AR设备的用户感觉不舒服。Augmented reality (AR) is a technology that projects virtual images onto a real-world physical environment space or real-world objects and displays the virtual image as a single image. When worn on the user's face or head, AR devices allow the user to see real-life scenes and virtual images through a glasses-type device that uses a see-through display (e.g., a waveguide in front of the user's eyes). As research into such AR devices is actively underway, various types of wearable devices have been released or are expected to be released. In related art glasses-type AR devices, cameras are usually arranged on the edge portion surrounding the waveguide to track the user's gaze, which causes the edge portion of the AR device to be magnified and further causes the user wearing the AR device to feel uncomfortable.
发明内容Contents of the invention
技术问题technical problem
提供了一种能够通过使用位于从AR设备的框架延伸的支撑件中的光反射器和光接收器来检测用户凝视的增强现实(AR)设备和方法。An augmented reality (AR) device and method are provided that are capable of detecting a user's gaze by using light reflectors and light receivers located in a support extending from a frame of the AR device.
提供了一种能够通过使用通过形成在波导上的光反射器反射的光来检测用户凝视的AR设备和方法。An AR device and method capable of detecting a user's gaze by using light reflected by a light reflector formed on a waveguide are provided.
提供了一种能够通过基于形成在光反射器上的图案计算AR设备的支撑件的偏置程度来更准确地检测用户凝视的AR设备和方法。Provided are an AR device and a method capable of more accurately detecting a user's gaze by calculating the degree of offset of a support of the AR device based on a pattern formed on a light reflector.
技术方案Technical solutions
根据本公开的一方面,提供了一种增强现实(AR)设备,包括:波导;光反射器,包括图案;支撑件,被配置为将AR设备固定到AR设备的用户的面部;光发射器和光接收器,安装在支撑件上;以及至少一个处理器,被配置为:控制光发射器向光反射器发射光,基于由光接收器接收到的光来识别图案,以及基于所识别的图案来获得AR设备的用户的凝视信息,其中,向光反射器发射的光被光反射器反射,并被导向用户的眼睛,并且其中,由光接收器接收到的光包括被导向用户的眼睛的光被用户的眼睛反射的光。According to an aspect of the present disclosure, an augmented reality (AR) device is provided, including: a waveguide; a light reflector including a pattern; a support configured to secure the AR device to a face of a user of the AR device; and a light emitter and a light receiver mounted on the support; and at least one processor configured to: control the light emitter to emit light to the light reflector, identify the pattern based on the light received by the light receiver, and based on the identified pattern to obtain the gaze information of the user of the AR device, wherein the light emitted to the light reflector is reflected by the light reflector and directed to the user's eyes, and wherein the light received by the light receiver includes the light that is directed to the user's eyes. Light is reflected by the user's eyes.
支撑件可以包括:镜腿,从围绕波导的框架延伸以定位在用户的耳朵上;以及鼻子支撑件,从所述框架延伸并定位在所述用户的鼻子上。The support may include temples extending from a frame surrounding the waveguide for positioning on the user's ears, and a nose support extending from the frame and positioning on the user's nose.
光反射器可以涂覆在波导上。Light reflectors can be coated on the waveguide.
光反射器可以形成在波导上。Light reflectors can be formed on the waveguide.
至少一个处理器还可以被配置为分析所识别的图案并且识别支撑件相对于框架的偏置程度,支撑件从框架延伸。At least one processor may also be configured to analyze the identified pattern and identify the degree of offset of the support relative to the frame from which the support extends.
至少一个处理器还可以被配置为:基于支撑件相对于框架的偏置程度来生成用于计算用户的凝视点的位置的映射函数,并且基于映射函数和支撑件相对于框架的偏置程度,获得用户的凝视信息。The at least one processor may be further configured to: generate a mapping function for calculating the position of the user's gaze point based on the degree of offset of the support relative to the frame, and based on the mapping function and the degree of offset of the support relative to the frame, Obtain the user's gaze information.
至少一个处理器还可以被配置为:基于由光接收器接收到的光来获得与用户的眼睛相对应的一个或多个特征点的位置。At least one processor may be further configured to obtain the position of one or more feature points corresponding to the user's eyes based on the light received by the light receiver.
至少一个处理器可以被配置为:将与用户的眼睛相对应的一个或多个特征点的位置以及支撑件相对于框架的偏置程度输入到映射函数中,并计算用户的凝视点的位置。At least one processor may be configured to input the position of one or more feature points corresponding to the user's eyes and the degree of offset of the support relative to the frame into the mapping function and calculate the position of the user's gaze point.
一个或多个特征点的位置可以包括用户眼睛的瞳孔特征点的位置和用户眼睛的闪烁特征点的位置。The position of the one or more feature points may include the position of the pupil feature point of the user's eye and the position of the flicker feature point of the user's eye.
至少一个处理器还可以被配置为:在波导上的特定位置处显示目标点以校准映射函数,通过光接收器接收由注视所显示的目标点的用户的眼睛反射的光,以及基于由注视所显示的目标点的用户的眼睛反射的光来校准映射函数。The at least one processor may be further configured to: display a target point at a specific location on the waveguide to calibrate the mapping function, receive through the light receiver light reflected by the eye of a user looking at the displayed target point, and based on the light reflected by the gaze. The target point displayed is the light reflected by the user's eye to calibrate the mapping function.
至少一个处理器还可以被配置为:基于由注视所显示的目标点的用户的眼睛反射的光,识别光反射器的图案;基于所识别的图案,识别支撑件的偏置程度;以及基于由注视所显示的目标点的用户的眼睛反射的光,获得与注视所显示的目标点的用户的眼睛相对应的一个或多个特征点的位置。The at least one processor may be further configured to: identify a pattern of the light reflector based on light reflected by an eye of a user looking at the displayed target point; identify a degree of bias of the support based on the identified pattern; and based on The position of one or more feature points corresponding to the eyes of the user looking at the displayed target point is obtained from the light reflected by the user's eyes looking at the displayed target point.
至少一个处理器还可以被配置为:将镜腿的偏置程度和一个或多个特征点的位置输入到映射函数中;以及校准映射函数,使得从映射函数输出目标点的位置值。At least one processor may be further configured to: input the offset degree of the temple and the position of one or more feature points into the mapping function; and calibrate the mapping function such that the position value of the target point is output from the mapping function.
光发射器可以是红外发光二极管(IR LED),并且光接收器是IR相机。The light emitter may be an infrared light emitting diode (IR LED), and the light receiver may be an IR camera.
光发射器可以是红外(IR)扫描仪,并且光接收器是IR检测器。The light emitter may be an infrared (IR) scanner and the light receiver an IR detector.
至少一个处理器还可以被配置为:基于从IR检测器获得的IR光,获得根据支撑件相对于框架的偏置程度校准的与用户眼睛相对应的一个或多个特征点的位置;以及基于与用户眼睛相对应的一个或多个特征点的经校准的位置来获得用户的凝视信息。At least one processor may be further configured to: obtain, based on the IR light obtained from the IR detector, the position of one or more feature points corresponding to the user's eyes calibrated according to the degree of offset of the support relative to the frame; and based on The user's gaze information is obtained from the calibrated positions of one or more feature points corresponding to the user's eyes.
根据本公开的另一方面,提供了一种由增强现实(AR)设备执行的检测用户凝视的方法,该方法包括:由安装在AR设备的支撑件中的光发射器向包括图案的光反射器发射光,由光发射器发射的光被导向佩戴AR设备的用户的眼睛;由安装在支撑件上的光接收器接收由用户的眼睛反射的光;基于通过光接收器接收到的光来识别图案;以及基于所识别的图案来获得用户的凝视信息。According to another aspect of the present disclosure, there is provided a method of detecting user gaze performed by an augmented reality (AR) device, the method comprising: reflecting light including a pattern from a light emitter installed in a support of the AR device The light emitted by the light emitter is directed to the eyes of the user wearing the AR device; the light reflected by the user's eyes is received by the light receiver installed on the support; based on the light received through the light receiver Recognize the pattern; and obtain the user's gaze information based on the recognized pattern.
该方法还可以包括:分析所识别的图案并基于所识别的图案来识别支撑件相对于框架的偏置程度,其中,支撑件从框架延伸,其中,获得凝视信息可以包括基于支撑件相对于框架的偏置程度来确定用户的凝视方向。The method may further include analyzing the recognized pattern and identifying a degree of offset of the support relative to the frame based on the recognized pattern, wherein the support extends from the frame, wherein obtaining the gaze information may include based on the support relative to the frame The degree of offset is used to determine the user's gaze direction.
该方法还可以包括基于支撑件相对于框架的偏置程度来生成用于计算用户的凝视点的位置的映射函数,其中,获得凝视信息可以包括基于映射函数和支撑件相对于框架的偏置程度来计算用户的凝视点的位置。The method may further include generating a mapping function for calculating the position of the user's gaze point based on the degree of offset of the support relative to the frame, wherein obtaining the gaze information may include based on the mapping function and the degree of offset of the support relative to the frame to calculate the location of the user's gaze point.
该方法还可以包括:基于由光接收器接收到的光,获得与用户的眼睛相对应的一个或多个特征点的位置,其中,获得凝视信息包括将与用户的眼睛相对应的一个或多个特征点的位置以及支撑件相对于框架的偏置程度输入到映射函数中并计算用户的凝视点的位置。The method may further include: obtaining the position of one or more feature points corresponding to the user's eyes based on the light received by the light receiver, wherein obtaining the gaze information includes converting one or more feature points corresponding to the user's eyes. The position of each feature point and the offset degree of the support relative to the frame are input into the mapping function and the position of the user's gaze point is calculated.
根据本公开的另一方面,提供了一种计算机可读记录介质,其上记录有用于执行方法的程序,该方法包括:通过安装在AR设备的支撑件中的光发射器向包括图案的光反射器发射光,由光发射器发射的光被导向佩戴AR设备的用户的眼睛;通过安装在支撑件上的光接收器接收由用户的眼睛反射的光;基于通过光接收器接收到的光来识别图案;以及基于所识别的图案来获得用户的凝视信息。According to another aspect of the present disclosure, there is provided a computer-readable recording medium having recorded thereon a program for executing a method, which method includes: emitting light including a pattern through a light emitter installed in a support of an AR device. The reflector emits light, and the light emitted by the light emitter is directed to the eyes of the user wearing the AR device; the light reflected by the user's eyes is received through the light receiver installed on the support; based on the light received through the light receiver to recognize the pattern; and to obtain the user's gaze information based on the recognized pattern.
附图说明Description of the drawings
图1是示出了根据本公开的示例实施例的增强现实(AR)设备使用位于AR设备的镜腿(temple)部分中的凝视检测器来检测用户凝视的示例的图。1 is a diagram illustrating an example in which an augmented reality (AR) device detects a user's gaze using a gaze detector located in a temple portion of the AR device according to an example embodiment of the present disclosure.
图2是示出了根据本公开的示例实施例的AR设备的示例的图。FIG. 2 is a diagram illustrating an example of an AR device according to example embodiments of the present disclosure.
图3是根据本公开的示例实施例的AR设备的框图。3 is a block diagram of an AR device according to an example embodiment of the present disclosure.
图4是示出了根据本公开的示例实施例的AR设备的光发射器和光接收器的操作的示例的图。4 is a diagram illustrating an example of operations of a light transmitter and a light receiver of an AR device according to an example embodiment of the present disclosure.
图5a是示出了根据本公开的示例实施例的发射平面光的光发射器的示例的图。FIG. 5a is a diagram illustrating an example of a light emitter that emits planar light according to an example embodiment of the present disclosure.
图5b是示出了根据本公开的示例实施例的发射点光的光发射器的示例的图。5b is a diagram illustrating an example of a light emitter that emits point light according to an example embodiment of the present disclosure.
图5c是示出了根据本公开的示例实施例的发射线光的光发射器的示例的图。FIG. 5c is a diagram illustrating an example of a light emitter that emits line light according to an example embodiment of the present disclosure.
图6a是示出了根据本公开的示例实施例的光发射器和光接收器布置在AR设备的镜腿中的示例的图。6a is a diagram illustrating an example in which a light emitter and a light receiver are arranged in a temple of an AR device according to an example embodiment of the present disclosure.
图6b是示出了根据本公开的示例实施例的光发射器和光接收器布置在AR设备的鼻子支撑件中的示例的图。6b is a diagram illustrating an example in which a light emitter and a light receiver are arranged in a nose support of an AR device according to an example embodiment of the present disclosure.
图6c是示出了根据本公开的示例实施例的光发射器和光接收器布置在AR设备的镜腿和鼻子支撑件中的示例的图。6c is a diagram illustrating an example in which a light emitter and a light receiver are arranged in temples and a nose support of an AR device according to an example embodiment of the present disclosure.
图6d是示出了根据本公开的示例实施例的光发射器和光接收器布置在AR设备的镜腿和鼻子支撑件中的示例的图。6d is a diagram illustrating an example in which a light emitter and a light receiver are arranged in temples and a nose support of an AR device according to an example embodiment of the present disclosure.
图7a是示出了根据本公开的示例实施例的形成在AR设备的光反射器上的点图案的示例的图。7a is a diagram illustrating an example of a dot pattern formed on a light reflector of an AR device according to an example embodiment of the present disclosure.
图7b是示出了根据本公开的示例实施例的形成在AR设备的光反射器上的网格图案的示例的图。7b is a diagram illustrating an example of a grid pattern formed on a light reflector of an AR device according to an example embodiment of the present disclosure.
图7c是示出了根据本公开的示例实施例的2D标记物形式的图案的示例的图。Figure 7c is a diagram illustrating an example of a pattern in the form of a 2D marker according to an example embodiment of the present disclosure.
图7d是示出了根据本公开的示例实施例的覆盖波导的一部分的光反射器的示例的图。Figure 7d is a diagram illustrating an example of a light reflector covering a portion of a waveguide according to an example embodiment of the present disclosure.
图8a是示出了根据本公开的示例实施例的在AR设备的镜腿被偏置之前的光发射角度和图案的图。8a is a diagram illustrating a light emission angle and pattern before the temples of the AR device are biased according to an example embodiment of the present disclosure.
图8b是示出了根据本公开的示例实施例的在AR设备的镜腿被偏置之后的光发射角度和图案的图。8b is a diagram illustrating a light emission angle and pattern after the temples of the AR device are biased according to an example embodiment of the present disclosure.
图9是示出了根据本公开的示例实施例的当AR设备的光发射器是红外(IR)扫描仪时从通过由光接收器接收到的光的阵列中识别的图案的示例的图。9 is a diagram illustrating an example of a pattern recognized from an array of light received by a light receiver when a light emitter of an AR device is an infrared (IR) scanner according to an example embodiment of the present disclosure.
图10是示出了根据本公开的示例实施例的当AR设备的光发射器是IR扫描仪时从通过AR设备的光接收器接收到的光的阵列中识别的眼睛特征的示例的图。10 is a diagram illustrating an example of eye characteristics recognized from an array of light received through a light receiver of an AR device when the light emitter of the AR device is an IR scanner according to an example embodiment of the present disclosure.
图11是示出了根据本公开的示例实施例的由AR设备使用以计算眼球中心并计算用户的凝视点的函数的示例的图。11 is a diagram illustrating an example of a function used by an AR device to calculate an eyeball center and calculate a user's gaze point according to an example embodiment of the present disclosure.
图12是根据本公开的示例实施例的由AR设备执行的检测用户凝视的方法的流程图。12 is a flowchart of a method of detecting user gaze performed by an AR device according to an example embodiment of the present disclosure.
具体实施方式Detailed ways
在下文中,现在将参考附图详细描述本公开的实施例,以使本领域的技术人员能够毫无困难地执行本公开。然而,本公开可以以许多不同形式体现,且不应被解释为受限于本文中所阐述的本公开的实施例。为了清楚地描述本公开,省略了与本公开的描述无关的部分,并且在整个本说明书中,相似的附图标记被指派给相似的元件。Hereinafter, embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings to enable those skilled in the art to carry out the present disclosure without difficulty. This disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments of the disclosure set forth herein. In order to clearly describe the present disclosure, parts irrelevant to the description of the present disclosure are omitted, and similar reference numerals are assigned to similar elements throughout this specification.
在整个说明书中,将理解,当一个元件被称为“连接到”另一元件时,它可以“直接连接到”该另一元件或者通过中间元件“电连接到”另一元件。此外,当元件被称为“包括”构成元件时,除非对其存在任何其他具体提及,否则还可以包括而不排除其他构成元件。Throughout this specification, it will be understood that when an element is referred to as being "connected to" another element, it can be "directly connected" to the other element or "electrically connected" to the other element through intervening elements. Furthermore, when an element is referred to as "comprising" a constituent element, other constituent elements may also be included but not excluded unless there is any other specific reference thereto.
本文中的术语“增强现实(AR)”表示一种提供在现实世界的物理环境空间上观看虚拟图像或连同现实对象一起观看虚拟图像的技术。The term "augmented reality (AR)" as used herein refers to a technology that provides viewing of virtual images over a real-world physical environment space or together with real objects.
此外,术语“AR设备”表示能够创建“AR”的设备,并且不仅包括通常佩戴在用户面部上的AR眼镜,而且包括头戴式显示器(HMD)装置和佩戴在用户头部上的AR头盔等。In addition, the term "AR device" means a device capable of creating "AR" and includes not only AR glasses that are usually worn on the user's face, but also head-mounted display (HMD) devices and AR helmets worn on the user's head, etc. .
同时,术语“现实场景”表示用户通过AR设备看到的现实世界的场景,并且可以包括现实世界对象。此外,术语“虚拟图像”表示由光学引擎生成的图像,并且可以包括静态图像和动态图像两者。虚拟图像可以与现实场景一起进行观察,并且可以是表示关于现实场景中的现实对象的信息、关于AR设备的操作的信息、控制菜单等的图像。Meanwhile, the term "real-world scene" refers to the real-world scene that the user sees through the AR device, and can include real-world objects. Furthermore, the term "virtual image" means an image generated by an optical engine, and may include both static images and dynamic images. The virtual image can be observed together with the real scene, and can be an image representing information about real objects in the real scene, information about the operation of the AR device, a control menu, and the like.
因此,AR设备可以配备有:光学引擎,用于生成包括由光源生成的光的虚拟图像;以及波导,由透明材料形成,用于将由光学引擎生成的虚拟图像引导到用户眼睛并允许用户一起看到现实世界的场景和虚拟图像。此外,如上所述,AR设备需要能够允许用户观察现实世界的场景,因此,需要用于重定向基本上具有直线度的光路的光学元件,以通过波导将由光学引擎生成的光引导到用户眼睛。这里,光的路径可以通过使用由例如反射镜进行的反射或通过使用由衍射元件(例如,衍射光学元件(DOE)或全息光学元件(HOE))进行的衍射来重定向,但本公开不限于此。Therefore, the AR device may be equipped with: an optical engine for generating a virtual image including light generated by the light source; and a waveguide formed of a transparent material for guiding the virtual image generated by the optical engine to the user's eyes and allowing the user to look together to real-world scenes and virtual images. Furthermore, as mentioned above, AR devices need to be able to allow users to observe real-world scenes, and therefore, optical elements for redirecting light paths with substantially straightness are needed to guide the light generated by the optical engine to the user's eyes through waveguides. Here, the path of the light may be redirected by using reflection by, for example, a mirror or by using diffraction by a diffractive element, such as a diffractive optical element (DOE) or a holographic optical element (HOE), but the present disclosure is not limited thereto. this.
以下,将参考附图详细描述本公开。Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings.
图1是示出了根据本公开的示例实施例的增强现实(AR)设备1000使用位于AR设备1000的镜腿部分中的凝视检测器1500来检测用户凝视的示例的图。1 is a diagram illustrating an example in which an augmented reality (AR) device 1000 detects a user's gaze using a gaze detector 1500 located in a temple portion of the AR device 1000 according to an example embodiment of the present disclosure.
参考图1,AR设备1000可以通过使用光发射器1510和光接收器1520来检测用户的凝视。用于检测用户凝视的光发射器1510和光接收器1520可以设置在例如AR设备1000的镜腿部分中,并且AR设备1000可以通过使用设置在镜腿部分中的光发射器1510和光接收器1520高效地识别用户眼睛。红外(IR)光可以从设置在镜腿部分中的光发射器1510向AR设备1000的波导发射,被光反射器反射,以及通过设置在镜腿部分中的光接收器1520从用户眼睛接收。此外,AR设备1000可以基于所接收到的IR光获得关于用户眼睛的信息,并通过使用所获得的关于眼睛的信息来检测用户的凝视方向。Referring to FIG. 1 , the AR device 1000 may detect a user's gaze by using a light emitter 1510 and a light receiver 1520 . The light emitter 1510 and the light receiver 1520 for detecting the user's gaze may be provided in, for example, a temple portion of the AR device 1000, and the AR device 1000 may be highly efficient by using the light emitter 1510 and the light receiver 1520 provided in the temple portion. to identify the user's eyes. Infrared (IR) light may be emitted from the light emitter 1510 disposed in the temple portion toward the waveguide of the AR device 1000, reflected by the light reflector, and received from the user's eyes through the light receiver 1520 disposed in the temple portion. Furthermore, the AR device 1000 may obtain information about the user's eyes based on the received IR light and detect the user's gaze direction by using the obtained information about the eyes.
AR设备1000表示能够创建“AR”的设备,并且可以包括例如佩戴在用户面部上的AR眼镜,但本公开不限于此。例如,AR设备1000可以包括佩戴在用户头部上的头戴式显示器(HMD)装置和AR头盔等。在这种情况下,凝视检测器1500可以在HMD装置中设置在HMD装置的面向用户眼睛的侧面的内侧部分上,或者在AR头盔中设置在AR头盔的面向用户眼睛的侧面的内侧部分上。The AR device 1000 represents a device capable of creating “AR” and may include, for example, AR glasses worn on a user's face, but the present disclosure is not limited thereto. For example, the AR device 1000 may include a head-mounted display (HMD) device worn on the user's head, an AR helmet, and the like. In this case, the gaze detector 1500 may be provided on an inner portion of the side of the HMD device facing the user's eyes in the HMD device, or on the inner portion of the side of the AR helmet facing the user's eyes in the AR helmet.
图2是示出了根据本公开的示例实施例的AR设备1000的示例的图。FIG. 2 is a diagram illustrating an example of the AR device 1000 according to an example embodiment of the present disclosure.
参考图2,AR设备1000可以包括被配置为作为眼镜型显示设备由用户佩戴的眼镜型主体。Referring to FIG. 2 , the AR device 1000 may include a glasses-type body configured to be worn by a user as a glasses-type display device.
眼镜型主体可以包括框架110和支撑件190。支撑件190可以从框架110延伸并且用于将AR设备1000安置在用户头部上。支撑件190可以包括镜腿191和鼻子支撑件192。镜腿191可以从框架110延伸,并且可以用于在眼镜型主体的侧表面上将AR设备1000固定到用户头部。鼻子支撑件192可以从框架110延伸并且可以用于将AR设备1000安置在用户的鼻子上,并且可以包括例如鼻梁和鼻垫,但本公开不限于此。The glasses-type body may include a frame 110 and a support 190 . Support 190 may extend from frame 110 and be used to position AR device 1000 on the user's head. The support 190 may include temples 191 and a nose support 192 . The temples 191 may extend from the frame 110 and may be used to secure the AR device 1000 to the user's head on the side surfaces of the glasses-type body. The nose support 192 may extend from the frame 110 and may be used to position the AR device 1000 on the user's nose, and may include, for example, a nose bridge and a nose pad, although the disclosure is not limited thereto.
此外,光反射器1400所附接到的波导170可以位于框架110上。框架110可以形成为围绕波导170的外周表面。波导170可以被配置为在输入区域中接收投射光并且在输出区域中输出输入光的至少一部分。波导170可以包括左眼波导170L和右眼波导170R。Additionally, the waveguide 170 to which the light reflector 1400 is attached may be located on the frame 110 . The frame 110 may be formed around the outer peripheral surface of the waveguide 170 . Waveguide 170 may be configured to receive projected light in an input region and to output at least a portion of the input light in an output region. Waveguide 170 may include left eye waveguide 170L and right eye waveguide 170R.
左眼光反射器1400L和左眼波导170L可以设置在与用户左眼相对应的位置处,并且右眼光反射器1400R和右眼波导170R可以设置在与用户右眼相对应的位置处。例如,左眼光反射器1400L可以附接到左眼波导170L,或者右眼光反射器1400R可以附接到右眼波导170R,但本公开不限于此。此外,例如,左眼光反射器1400L可以涂覆在左眼波导170L的内侧上以附接到左眼波导170L,或者右眼光反射器1400R可以涂覆在右眼波导170R的内侧上以附接到右眼波导170R。The left eye reflector 1400L and the left eye waveguide 170L may be disposed at a position corresponding to the user's left eye, and the right eye reflector 1400R and the right eye waveguide 170R may be disposed at a position corresponding to the user's right eye. For example, the left eye reflector 1400L may be attached to the left eye waveguide 170L, or the right eye reflector 1400R may be attached to the right eye waveguide 170R, but the disclosure is not limited thereto. Additionally, for example, the left eye reflector 1400L may be coated on the inside of the left eye waveguide 170L to attach to the left eye waveguide 170L, or the right eye reflector 1400R may be coated on the inside of the right eye waveguide 170R to attach to the left eye waveguide 170L. Right eye waveguide 170R.
此外,投射包括图像的显示光的投影仪的光学引擎120可以包括左眼光学引擎120L和右眼光学引擎120R。左眼光学引擎120L和右眼光学引擎120R可以位于AR设备1000的两侧上。备选地,一个光学引擎120可以被包括在AR设备1000的鼻子支撑件192周围的中心部分中。从光学引擎120发射的光可以通过波导170来显示。In addition, the optical engine 120 of the projector that projects display light including an image may include a left-eye optical engine 120L and a right-eye optical engine 120R. The left eye optical engine 120L and the right eye optical engine 120R may be located on both sides of the AR device 1000 . Alternatively, an optical engine 120 may be included in a central portion of the AR device 1000 around the nose support 192 . Light emitted from optical engine 120 may be displayed through waveguide 170 .
凝视检测器1500的光发射器1510和光接收器1520可以设置在AR设备1000的支撑件190的内侧部分上,这是支撑件190和用户眼睛之间的位置。光发射器1510和光接收器1520可以在AR设备1000的支撑件190中设置为面向光反射器1400。例如,光发射器1510和光接收器1520可以在AR设备1000的镜腿191的内侧上设置在与框架110间隔约10mm至15mm的位置处,以便在不受用户头发等干扰的情况下分别发射和接收IR光。The light emitter 1510 and the light receiver 1520 of the gaze detector 1500 may be disposed on an inner portion of the support 190 of the AR device 1000, which is a position between the support 190 and the user's eyes. The light emitter 1510 and the light receiver 1520 may be disposed in the support 190 of the AR device 1000 facing the light reflector 1400. For example, the light emitter 1510 and the light receiver 1520 may be disposed on the inside of the temple 191 of the AR device 1000 at a position about 10 mm to 15 mm apart from the frame 110, so as to respectively emit and Receive IR light.
图3是根据本公开的示例实施例的AR设备1000的框图。3 is a block diagram of an AR device 1000 according to an example embodiment of the present disclosure.
参考图3,根据本公开的示例实施例的AR设备1000可以包括用户输入器1100、麦克风1200、显示器1300、光反射器1400、凝视检测器1500、通信接口1600、存储设备1700和处理器1800。此外,凝视检测器1500可以包括光发射器1510和光接收器1520。Referring to FIG. 3 , an AR device 1000 according to an example embodiment of the present disclosure may include a user input 1100, a microphone 1200, a display 1300, a light reflector 1400, a gaze detector 1500, a communication interface 1600, a storage device 1700, and a processor 1800. Additionally, gaze detector 1500 may include a light emitter 1510 and a light receiver 1520.
用户输入器1100是指用户输入用于控制AR设备1000的数据的装置。例如,用户输入器1100可以包括键盘、圆顶开关、触摸板(例如,触摸型电容触摸板、压力型电阻覆盖触摸板、红外传感器型触摸板、表面声波传导触摸板、集成式张力测量触摸板、压电效应型触摸板)、滚轮、轻推开关,但本公开不限于此。The user inputter 1100 refers to a device through which the user inputs data for controlling the AR device 1000 . For example, the user input 1100 may include a keyboard, a dome switch, a touch pad (e.g., a touch-type capacitive touch pad, a pressure-type resistive overlay touch pad, an infrared sensor-type touch pad, a surface acoustic wave conduction touch pad, an integrated tension measurement touch pad , piezoelectric effect type touch panel), scroll wheel, push switch, but the present disclosure is not limited thereto.
麦克风1200可以接收外部音频信号,并将所接收到的音频信号处理成电语音数据。例如,麦克风1200可以从外部设备或扬声器接收音频信号。麦克风1200可以使用各种降噪算法来去除在接收外部音频信号的过程期间产生的噪声。麦克风1200可以接收用于控制AR设备1000的用户的语音输入。The microphone 1200 may receive external audio signals and process the received audio signals into electrical voice data. For example, microphone 1200 may receive audio signals from an external device or speaker. The microphone 1200 may use various noise reduction algorithms to remove noise generated during the process of receiving external audio signals. The microphone 1200 may receive a user's voice input for controlling the AR device 1000 .
显示器1300可以显示由AR设备1000处理的信息。例如,显示器1300可以显示用于捕获AR设备1000的周围环境的图像的用户界面、以及与基于AR设备1000的周围环境的所捕获的图像提供的服务相关的信息。Display 1300 may display information processed by AR device 1000. For example, the display 1300 may display a user interface for capturing an image of the surrounding environment of the AR device 1000, and information related to a service provided based on the captured image of the surrounding environment of the AR device 1000.
根据本公开的示例实施例,显示器1300可以提供AR图像。根据本公开的示例实施例的显示器1300可以包括波导170和光学引擎120。波导170可以包括透明材料,当用户佩戴AR设备1000时,通过该透明材料可以看到后表面的部分区域。波导1320可以被配置为包括透明材料的单层或多层结构的平板,通过该透明材料可以内部反射并传播光。波导1320可以面向光学引擎120的出射表面以接收从光学引擎120投射的虚拟图像的光。这里,透明材料是一种光能够通过的材料,其透明度可以不是100%,并且可以具有特定颜色。根据本公开的示例实施例,波导170包括透明材料,因此用户不仅可以观看虚拟图像的虚拟对象,而且可以观看外部现实场景,因此波导170可以被称为透视显示。显示器1300可以通过波导170输出虚拟图像的虚拟对象,从而提供AR图像。当AR设备1000是眼镜型设备时,显示器1300可以包括左显示器和右显示器。According to example embodiments of the present disclosure, the display 1300 may provide AR images. The display 1300 according to example embodiments of the present disclosure may include a waveguide 170 and an optical engine 120. Waveguide 170 may include a transparent material through which a portion of the rear surface is visible when a user wears AR device 1000 . Waveguide 1320 may be configured as a flat plate including a single layer or a multi-layer structure of transparent material through which light can be internally reflected and propagated. The waveguide 1320 may face the exit surface of the optical engine 120 to receive the light of the virtual image projected from the optical engine 120 . Here, a transparent material is a material through which light can pass, its transparency may not be 100%, and it may have a specific color. According to an example embodiment of the present disclosure, the waveguide 170 includes a transparent material, so the user can view not only the virtual object of the virtual image, but also the external real scene, and therefore the waveguide 170 can be called a see-through display. The display 1300 may output a virtual object of a virtual image through the waveguide 170, thereby providing an AR image. When the AR device 1000 is a glasses-type device, the display 1300 may include a left display and a right display.
光反射器1400可以反射从稍后将描述的光发射器1510发射的光。光反射器1400和波导170可以设置在面向用户眼睛的位置处,并且可以彼此附接。例如,光反射器1400可以涂覆在波导170的至少部分区域上。此外,除了波导170之外,光反射器1400还可以附接到或涂覆在眼镜型AR设备1000中包括的其他元件上,例如,用于视力矫正的视力矫正透镜或安装用于保护波导的盖玻璃170。光反射器1400可以包括能够反射从光发射器1510发射的IR光的材料。光反射器1400可以是例如银、金、铜或包括这些金属中的一种或多种的材料,但本公开不限于此。因此,从光发射器1510发射的IR光可以被光反射器1400反射并被导向用户眼睛,并且从用户眼睛反射回的IR光可以被光反射器1400反射并被导向光接收器1520。The light reflector 1400 may reflect light emitted from the light emitter 1510 which will be described later. The light reflector 1400 and the waveguide 170 may be disposed at a position facing the user's eyes, and may be attached to each other. For example, light reflector 1400 may be coated on at least a portion of waveguide 170 . Furthermore, in addition to the waveguide 170, the light reflector 1400 may be attached to or coated on other elements included in the glasses-type AR device 1000, such as a vision correction lens for vision correction or a lens mounted to protect the waveguide. Cover glass 170. Light reflector 1400 may include a material capable of reflecting IR light emitted from light emitter 1510 . The light reflector 1400 may be, for example, silver, gold, copper, or a material including one or more of these metals, but the disclosure is not limited thereto. Accordingly, IR light emitted from the light emitter 1510 may be reflected by the light reflector 1400 and directed to the user's eyes, and IR light reflected back from the user's eyes may be reflected by the light reflector 1400 and directed to the light receiver 1520 .
光反射器1400可以涂覆在波导170上以具有特定图案。形成在光反射器1400上的图案可以包括例如点图案、线图案、网格图案、2D标记物等,但本公开不限于此。此外,形成在光反射器1400上的图案可以形成在例如波导170的用户凝视不太频繁被定向的部分上。形成在光反射器1400上的图案可以形成在例如波导170的不干扰捕获或扫描用户眼睛的部分上。例如,在光反射器1400中,特定图案可以指示由从光发射器1510发射的光被反射的部分和光不被反射的部分形成的图案。由于在光反射器1400中,向光未被反射的部分发射的光不被光反射器1400反射,因此光接收器1520不接收向光未被反射的部分发射的光。因此,可以从由光接收器1520接收到的光中检测光反射器1400的由光被反射的部分和光未被反射的部分形成的图案。此外,当从光发射器1510发射的光是IR光时,特定图案可以包括用于反射IR光的材料,并且用于反射IR光的材料对于用户眼睛可以不可见。由于用户通过AR设备1000观察到的大部分现实世界光或现实场景包括可见光,因此用户可以不被形成有特定图案的光反射器1400干扰,并且可以观察到现实世界光或现实场景。Light reflector 1400 may be coated on waveguide 170 to have a specific pattern. Patterns formed on the light reflector 1400 may include, for example, dot patterns, line patterns, grid patterns, 2D markers, etc., but the present disclosure is not limited thereto. Furthermore, the pattern formed on the light reflector 1400 may be formed on, for example, a portion of the waveguide 170 where the user's gaze is less frequently directed. The pattern formed on the light reflector 1400 may be formed, for example, on a portion of the waveguide 170 that does not interfere with capturing or scanning the user's eyes. For example, in the light reflector 1400, the specific pattern may indicate a pattern formed by portions where light emitted from the light emitter 1510 is reflected and portions where the light is not reflected. Since the light emitted toward the portion where the light is not reflected in the light reflector 1400 is not reflected by the light reflector 1400, the light receiver 1520 does not receive the light emitted toward the portion where the light is not reflected. Therefore, the pattern of the photo reflector 1400 formed by the portion where the light is reflected and the portion where the light is not reflected can be detected from the light received by the light receiver 1520 . Furthermore, when the light emitted from the light emitter 1510 is IR light, the specific pattern may include a material for reflecting the IR light, and the material for reflecting the IR light may be invisible to the user's eyes. Since most of the real-world light or real-world scene observed by the user through the AR device 1000 includes visible light, the user may not be disturbed by the light reflector 1400 formed with a specific pattern, and may observe the real-world light or real-world scene.
凝视检测器1500可以包括发射IR光以检测用户凝视的光发射器1510和接收IR光的光接收器1520,并且可以检测与佩戴AR设备1000的用户的用户凝视相关的数据。The gaze detector 1500 may include a light emitter 1510 that emits IR light to detect the user's gaze and a light receiver 1520 that receives the IR light, and may detect data related to the user's gaze of the user wearing the AR device 1000 .
凝视检测器1500的光发射器1510可以向光反射器1400发射IR光,使得被光反射器1400反射的IR光可以被导向用户眼睛。光发射器1510可以向光反射器1400发射IR光,所发射的IR光可以被光反射器1400反射,以及所反射的IR光可以被导向用户眼睛。光发射器1510可以设置在AR设备1000中的可以向光反射器1400发射IR光的位置处。光发射器1510可以位于图2的支撑件190(例如,如图2的镜腿191和鼻子支撑件192)上,该支撑件190将AR设备1000支撑在用户面部上。The light emitter 1510 of the gaze detector 1500 may emit IR light toward the light reflector 1400 so that the IR light reflected by the light reflector 1400 may be directed to the user's eyes. The light emitter 1510 may emit IR light toward the light reflector 1400, the emitted IR light may be reflected by the light reflector 1400, and the reflected IR light may be directed to the user's eyes. The light emitter 1510 may be disposed in the AR device 1000 at a position where the IR light may be emitted to the light reflector 1400. The light emitter 1510 may be located on the support 190 of Figure 2 (eg, temples 191 and nose support 192 of Figure 2) that supports the AR device 1000 on the user's face.
此外,从用户眼睛反射的IR光可以被光反射器1400反射并被凝视检测器1500的光接收器1520接收。导向用户眼睛的IR光可以从用户眼睛反射,从用户眼睛反射的IR光可以被光反射器1400反射,以及光接收器1520可以接收被光反射器1400反射的IR光。光接收器1520可以设置在AR设备1000中的可以接收从光反射器1400反射的IR光的位置处。光接收器1520可以位于图2的支撑件190(例如,如图2的镜腿191和鼻子支撑件192)上,该支撑件190将AR设备1000支撑在用户面部上。此外,例如,图2的鼻子支撑件192可以包括鼻梁和鼻垫。此外,鼻梁与鼻垫可以是集成配置的,但本公开不限如此。Furthermore, IR light reflected from the user's eyes may be reflected by the light reflector 1400 and received by the light receiver 1520 of the gaze detector 1500 . The IR light directed to the user's eyes may be reflected from the user's eyes, the IR light reflected from the user's eyes may be reflected by the light reflector 1400 , and the light receiver 1520 may receive the IR light reflected by the light reflector 1400 . The light receiver 1520 may be disposed in the AR device 1000 at a position where the IR light reflected from the light reflector 1400 can be received. The light receiver 1520 may be located on the support 190 of Figure 2 (eg, temples 191 and nose support 192 of Figure 2) that supports the AR device 1000 on the user's face. Additionally, nose support 192 of FIG. 2 may include a nose bridge and a nose pad, for example. In addition, the nose bridge and the nose pad may be integrated, but the present disclosure is not limited to this.
例如,光发射器1510可以是发射IR光的IR发光二极管(LED),并且光接收器1520可以是捕获IR光的IR相机。在这种情况下,IR相机可以使用被光反射器1400反射的IR光来捕获用户眼睛。当光发射器1510是IR LED并且光接收器1520是IR相机时,光发射器1510可以向光反射器1400发射平面光的IR光,并且光接收器1520可以接收从光反射器1400反射的平面光的IR光。平面光可以是以平面形式发射的光,并且从光发射器1510发射的平面光可以被导向光反射器1400的整个区域的至少一部分。光反射器1400的整个区域的至少一部分可以被设置为使得从光反射器1400的整个区域的至少一部分反射的平面光可以覆盖用户眼睛。For example, light emitter 1510 may be an IR light emitting diode (LED) that emits IR light, and light receiver 1520 may be an IR camera that captures IR light. In this case, the IR camera may use the IR light reflected by the light reflector 1400 to capture the user's eyes. When the light emitter 1510 is an IR LED and the light receiver 1520 is an IR camera, the light emitter 1510 may emit the IR light of the planar light to the light reflector 1400 , and the light receiver 1520 may receive the planar light reflected from the light reflector 1400 Light IR light. The planar light may be light emitted in a planar form, and the planar light emitted from the light emitter 1510 may be directed to at least a portion of the entire area of the light reflector 1400 . At least a portion of the entire area of the light reflector 1400 may be disposed such that the plane light reflected from at least a portion of the entire area of the light reflector 1400 may cover the user's eyes.
备选地,例如,光发射器1510可以是发射IR光的IR扫描仪,并且光接收器1520可以是检测IR光的IR检测器。在这种情况下,IR扫描仪可以发射IR光,使得用于扫描用户眼睛的IR光被导向用户眼睛,并且IR检测器可以检测从用户眼睛反射的IR光。当光发射器1510是发射IR光的IR扫描仪并且光接收器1520是检测IR光的IR检测器时,光发射器1510可以以线的形式发射线光,并且从光发射器1510发射的线光可以被导向光反射器1400的整个区域的一部分。光反射器1400的整个区域的至少一部分可以被设置为使得从光反射器1400的整个区域的至少一部分反射的线光可以覆盖用户眼睛。当光发射器1510是发射IR光的IR扫描仪并且光接收器1520是检测IR光的IR检测器时,光发射器1510可以以点的形式发射点光,并且从光发射器发射的点光1510可以被导向光反射器1400的整个区域的一部分。光反射器1400的整个区域的至少一部分可以被设置为使得从光反射器1400的整个区域的至少一部分反射的点光可以覆盖用户眼睛。Alternatively, for example, the light emitter 1510 may be an IR scanner that emits IR light, and the light receiver 1520 may be an IR detector that detects the IR light. In this case, the IR scanner may emit IR light such that the IR light for scanning the user's eyes is directed to the user's eyes, and the IR detector may detect the IR light reflected from the user's eyes. When the light emitter 1510 is an IR scanner that emits IR light and the light receiver 1520 is an IR detector that detects IR light, the light emitter 1510 may emit line light in the form of a line, and the line emitted from the light emitter 1510 Light may be directed to a portion of the entire area of light reflector 1400. At least part of the entire area of the light reflector 1400 may be disposed so that line light reflected from at least part of the entire area of the light reflector 1400 may cover the user's eyes. When the light emitter 1510 is an IR scanner that emits IR light and the light receiver 1520 is an IR detector that detects IR light, the light emitter 1510 may emit point light in the form of points, and the point light emitted from the light emitter 1510 may be directed to a portion of the entire area of light reflector 1400. At least a portion of the entire area of the light reflector 1400 may be disposed such that point light reflected from at least a portion of the entire area of the light reflector 1400 may cover the user's eyes.
当光发射器1510是IR扫描仪并且光接收器1520是IR检测器时,光发射器151可以向光反射器1400发射点光或线光的IR光,并且光接收器1520可以接收从光反射器1400反射的点光或线光的IR光。在这种情况下,光发射器1510可以在移动光发射器1510的光发射方向的同时顺序地发射IR光,使得点光或线光的IR光可以覆盖用户眼睛所在的空间。尽管IR扫描仪通常包括IR LED和能够控制从IR LED发射的IR光的方向并反射IR光的微机电系统(MEMS)反射镜,但在下文中,IR扫描仪、IR LED和MEMS反射镜被统称为并被描述为IR扫描仪。此外,尽管IR检测器通常包括安装在需要光检测的部分中的若干个光电二极管,但在下文中,IR检测器和光电二极管被描述为IR检测器。When the light emitter 1510 is an IR scanner and the light receiver 1520 is an IR detector, the light emitter 151 may emit IR light of point light or line light to the light reflector 1400, and the light receiver 1520 may receive light reflected from the light reflector 1400. The point light or line light IR light reflected by the detector 1400. In this case, the light emitter 1510 may sequentially emit IR light while moving the light emission direction of the light emitter 1510 so that the IR light of point light or line light may cover the space where the user's eyes are. Although an IR scanner typically includes an IR LED and a microelectromechanical system (MEMS) mirror capable of controlling the direction of IR light emitted from the IR LED and reflecting the IR light, in the following, IR scanner, IR LED, and MEMS mirror are collectively referred to as is and is described as an IR scanner. Furthermore, although an IR detector generally includes several photodiodes installed in a part requiring light detection, in the following, the IR detector and the photodiode are described as IR detectors.
当AR设备1000是眼镜型设备时,光发射器1510和光接收器1520可以设置在AR设备1000的镜腿191上。例如,参考图2,光发射器1510和光接收器1520可以设置在AR设备1000的镜腿191的内侧部分上,这是镜腿191和用户眼睛之间的位置。例如,参考图2,光发射器1510和光接收器1520可以在AR设备1000的镜腿191的内侧上设置在与框架110间隔约10mm至15mm的位置处。光发射器1510和光接收器1520可以在AR设备1000的镜腿191中设置为面向光反射器1400。When the AR device 1000 is a glasses-type device, the light emitter 1510 and the light receiver 1520 may be provided on the temples 191 of the AR device 1000 . For example, referring to FIG. 2, the light emitter 1510 and the light receiver 1520 may be disposed on the inner part of the temple 191 of the AR device 1000, which is the position between the temple 191 and the user's eyes. For example, referring to FIG. 2 , the light emitter 1510 and the light receiver 1520 may be disposed on the inner side of the temple 191 of the AR device 1000 at a position spaced approximately 10 mm to 15 mm from the frame 110 . The light emitter 1510 and the light receiver 1520 may be disposed in the temple 191 of the AR device 1000 facing the light reflector 1400.
此外,例如,参考图2,光发射器1510和光接收器1520可以设置在AR设备1000的鼻子支撑件192上。光发射器1510和光接收器1520可以设置在AR设备1000的鼻子支撑件192的内侧部分上,这是鼻子支撑件192和用户眼睛之间的位置。例如,参考图2,光发射器1510和光接收器1520可以在AR设备1000的鼻子支撑件192的内侧上设置在与框架110间隔约10mm至15mm的位置处。光发射器1510和光接收器1520可以在AR设备1000的鼻子支撑件192中设置为面向光反射器1400。Furthermore, for example, referring to FIG. 2 , the light emitter 1510 and the light receiver 1520 may be provided on the nose support 192 of the AR device 1000 . The light emitter 1510 and the light receiver 1520 may be disposed on an inner portion of the nose support 192 of the AR device 1000, which is a position between the nose support 192 and the user's eyes. For example, referring to FIG. 2 , the light emitter 1510 and the light receiver 1520 may be disposed on the inner side of the nose support 192 of the AR device 1000 at a position spaced approximately 10 mm to 15 mm from the frame 110 . The light emitter 1510 and the light receiver 1520 may be disposed in the nose support 192 of the AR device 1000 facing the light reflector 1400.
凝视检测器1500可以向处理器1800提供与用户眼睛的凝视相关的数据,并且处理器1800可以基于与用户眼睛的凝视相关的数据来获得用户的凝视信息。与用户眼睛的凝视相关的数据是由凝视检测器1500获得的数据,并且可以包括从光发射器1510发射的IR光的类型(例如,点光、线光或平面光)、从光发射器1510发射的IR光的特性、关于从光发射器1510发射的IR光的发射区域的数据、以及指示从光接收器1520接收的IR光的特性的数据。此外,用户的凝视信息是与用户凝视相关的信息,可以通过分析与用户眼睛的凝视相关的数据来生成,并且可以包括关于例如用户瞳孔的位置、瞳孔中心点的位置、用户虹膜的位置、用户眼睛的中心、用户眼睛的闪烁特征点的位置、用户的凝视点、用户的凝视方向等的信息,但本公开不限于此。用户的凝视方向可以是例如从用户眼睛的中心朝向用户凝视的凝视点的用户凝视的方向。例如,用户的凝视方向可以由从用户左眼的中心朝向凝视点的矢量值以及从用户右眼的中心朝向凝视点的矢量值来表示,但本公开不限于此。根据本公开的示例实施例,凝视检测器1500可以以先前确定的时间间隔检测与佩戴AR设备1000的用户的凝视有关的数据。The gaze detector 1500 may provide the processor 1800 with data related to the gaze of the user's eyes, and the processor 1800 may obtain the user's gaze information based on the data related to the gaze of the user's eyes. Data related to the gaze of the user's eyes is data obtained by the gaze detector 1500 and may include the type of IR light emitted from the light emitter 1510 (eg, point light, line light, or plane light), the type of IR light emitted from the light emitter 1510 Characteristics of the emitted IR light, data regarding the emission area of the IR light emitted from the light emitter 1510 , and data indicating characteristics of the IR light received from the light receiver 1520 . In addition, the user's gaze information is information related to the user's gaze, which can be generated by analyzing data related to the gaze of the user's eyes, and can include information about, for example, the position of the user's pupil, the position of the pupil center point, the position of the user's iris, the user's Information such as the center of the eye, the position of the flickering characteristic point of the user's eye, the user's gaze point, the user's gaze direction, etc., but the present disclosure is not limited thereto. The user's gaze direction may be, for example, the direction of the user's gaze from the center of the user's eyes toward a gaze point of the user's gaze. For example, the user's gaze direction may be represented by a vector value from the center of the user's left eye toward the gaze point and a vector value from the center of the user's right eye toward the gaze point, but the present disclosure is not limited thereto. According to an example embodiment of the present disclosure, the gaze detector 1500 may detect data related to the gaze of the user wearing the AR device 1000 at a previously determined time interval.
通信接口1600可以向/从外部设备和服务器发送/接收用于接收与AR设备1000相关的服务的数据。The communication interface 1600 may transmit/receive data for receiving services related to the AR device 1000 to/from external devices and servers.
存储设备1700可以存储要由稍后将描述的处理器1800执行的程序,并且可以存储输入到AR设备1000或从AR设备1000输出的数据。The storage device 1700 may store a program to be executed by the processor 1800 which will be described later, and may store data input to or output from the AR device 1000 .
存储设备1700可以包括内部存储器或外部存储器中的至少一个。The storage device 1700 may include at least one of internal memory or external memory.
内部存储器可以包括以下至少一项:例如,易失性存储器(例如,动态RAM(DRAM)、静态RAM(SRAM)、同步动态RAM(SDRAM)等)、非易失性存储器(例如,一次性可编程ROM(OTPROM)、可编程ROM(PROM)、可擦除可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)、掩膜ROM、闪速ROM等)、硬盘驱动器(HDD)或固态驱动器(SSD)。根据本公开的示例实施例,处理器1800可以将从非易失性存储器或另一元件中的至少一个接收到的命令或数据加载到易失性存储器中并且处理该命令或数据。此外,处理器1800可以将从另一元件接收或生成的数据存储在非易失性存储器中。外部存储器可以包括以下至少一项:例如紧凑型闪存(CF)、安全数字(SD)、微型安全数字(Micro-SD)、迷你安全数字(Mini-SD)、极速数字(xD)或记忆棒。The internal memory may include at least one of the following: for example, volatile memory (e.g., dynamic RAM (DRAM), static RAM (SRAM), synchronous dynamic RAM (SDRAM), etc.), non-volatile memory (e.g., one-time removable memory) Programmable ROM (OTPROM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), mask ROM, flash ROM, etc.), hard disk drive (HDD) or Solid State Drive (SSD). According to example embodiments of the present disclosure, the processor 1800 may load a command or data received from at least one of a non-volatile memory or another element into the volatile memory and process the command or data. Additionally, processor 1800 may store data received or generated from another element in non-volatile memory. The external memory may include at least one of the following: Compact Flash (CF), Secure Digital (SD), Micro Secure Digital (Micro-SD), Mini Secure Digital (Mini-SD), Extreme Digital (xD), or a Memory Stick.
存储在存储设备1700中的程序可以根据它们的功能被分类为多个模块。根据示例实施例,多个模块中的每一个可以包括一个或多个计算机可读代码,其可以包括例如光照射代码1710、光接收代码1720、眼睛特征检测代码1730、图案检测代码1740、偏置确定代码1750、瞳孔位置检测代码1760、凝视确定代码1770和校准代码1780。例如,存储器可以被包括在凝视检测器1500中,并且在这种情况下,光照射代码1710和光接收代码1720可以作为固件存储在凝视检测器1500中所包括的存储器中。Programs stored in the storage device 1700 may be classified into a plurality of modules according to their functions. According to an example embodiment, each of the plurality of modules may include one or more computer readable codes, which may include, for example, light illumination code 1710, light reception code 1720, eye feature detection code 1730, pattern detection code 1740, bias Determination code 1750, pupil position detection code 1760, gaze determination code 1770, and calibration code 1780. For example, a memory may be included in the gaze detector 1500, and in this case, the light irradiation code 1710 and the light reception code 1720 may be stored in the memory included in the gaze detector 1500 as firmware.
处理器1800控制AR设备1000的整体操作。例如,处理器1800可以执行存储设备1700中存储的程序,从而总体上控制用户输入器1100、麦克风1200、显示器1300、光反射器1400、凝视检测器1500、通信接口1600、存储设备1700等。The processor 1800 controls the overall operation of the AR device 1000. For example, the processor 1800 may execute a program stored in the storage device 1700 to generally control the user input 1100, the microphone 1200, the display 1300, the light reflector 1400, the gaze detector 1500, the communication interface 1600, the storage device 1700, and the like.
处理器1800可以执行存储在存储设备1700中的光照射代码1710、光接收代码1720、眼睛特征检测代码1730、图案检测代码1740、偏置确定代码1750、瞳孔位置检测代码1760、凝视确定代码1770和校准代码1780,从而确定用户的凝视点和凝视方向。The processor 1800 may execute the light irradiation code 1710, the light reception code 1720, the eye feature detection code 1730, the pattern detection code 1740, the offset determination code 1750, the pupil position detection code 1760, the gaze determination code 1770, and Calibrate code 1780 to determine the user's gaze point and gaze direction.
根据本公开的示例实施例,AR设备1000可以包括多个处理器1800,并且光照射代码1710、光接收代码1720、眼睛特征检测代码1730、图案检测代码1740、偏置确定代码1750、瞳孔位置检测代码1760、凝视确定代码1770和校准代码1780可以由多个处理器1800执行。According to an example embodiment of the present disclosure, the AR device 1000 may include a plurality of processors 1800, and a light illumination code 1710, a light reception code 1720, an eye feature detection code 1730, a pattern detection code 1740, an offset determination code 1750, a pupil position detection code Code 1760 , gaze determination code 1770 , and calibration code 1780 may be executed by multiple processors 1800 .
例如,光照射代码1710、光接收代码1720、眼部特征检测代码1730、图案检测代码1740、偏置确定代码1750、瞳孔位置检测代码1760、凝视确定代码1770和校准代码1780中的一些可以由第一处理器执行,并且光照射代码1710、光接收代码1720、眼睛特征检测代码1730、图案检测代码1740、偏置确定代码1750、瞳孔位置检测代码1760、凝视确定代码1770和校准代码1780中的其他可以由第二处理器执行,但本公开不限于此。For example, some of the light exposure code 1710, the light reception code 1720, the eye feature detection code 1730, the pattern detection code 1740, the offset determination code 1750, the pupil position detection code 1760, the gaze determination code 1770, and the calibration code 1780 may be determined by A processor executes, and others of light exposure code 1710 , light reception code 1720 , eye feature detection code 1730 , pattern detection code 1740 , offset determination code 1750 , pupil position detection code 1760 , gaze determination code 1770 , and calibration code 1780 It may be executed by the second processor, but the present disclosure is not limited thereto.
例如,凝视检测器1500可以包括另一处理器和存储器,并且另一处理器可以执行存储在存储器中的光照射代码1710和光接收代码1720,并且处理器1800可以执行存储在存储设备1700中的眼睛特征检测代码1730、图案检测代码1740、偏置确定代码1750、瞳孔位置检测代码1760、凝视确定代码1770和校准代码1780。For example, the gaze detector 1500 may include another processor and memory, and the other processor may execute the light illumination code 1710 and the light reception code 1720 stored in the memory, and the processor 1800 may execute the eye-level code 1720 stored in the storage device 1700 . Feature detection code 1730, pattern detection code 1740, offset determination code 1750, pupil position detection code 1760, gaze determination code 1770, and calibration code 1780.
处理器1800可以执行存储在存储设备1700中的光照射代码1710,使得光发射器1510可以向光反射器1400发射IR光。处理器1800可以通过执行光照射代码1710来控制光发射器1510,并且由处理器1800控制的光发射器1510可以向光反射器1400的至少部分区域发射IR光,使得被反射器1400反射的IR光可以覆盖用户眼睛。The processor 1800 may execute the light illumination code 1710 stored in the storage device 1700 so that the light emitter 1510 may emit IR light to the light reflector 1400. The processor 1800 may control the light emitter 1510 by executing the light illumination code 1710, and the light emitter 1510 controlled by the processor 1800 may emit IR light to at least a partial area of the light reflector 1400 such that the IR light reflected by the reflector 1400 The light can cover the user's eyes.
例如,当光接收器1520是IR相机时,光发射器1510可以是IR LED,并且处理器1800可以控制IR LED,使得从IR LED发射的IR光可以被光反射器1400反射并照射到包括用户眼睛的区域,以便IR相机捕获用户眼睛。例如,为了通过使用光反射器1400反射从IR LED发射的光并将光照射到包括用户眼睛的区域,处理器1800可以控制从IR LED发射的IR光的照射方向,并向IR LED供应电力,从而控制从IR LED发射IR光。For example, when the light receiver 1520 is an IR camera, the light emitter 1510 may be an IR LED, and the processor 1800 may control the IR LED such that the IR light emitted from the IR LED may be reflected by the light reflector 1400 and irradiated to a target including a user. The eye area for the IR camera to capture the user's eyes. For example, in order to reflect the light emitted from the IR LED by using the light reflector 1400 and irradiate the light to an area including the user's eyes, the processor 1800 may control the irradiation direction of the IR light emitted from the IR LED and supply power to the IR LED, Thereby controlling the emission of IR light from the IR LED.
根据本公开的一个示例实施例,IR相机和IR LED可以朝向AR设备1000的光反射器1400安装,使得IR相机可以捕获用户眼睛的整个区域,并且处理器1800可以控制朝向光反射器1400安装的IR LED以发射IR光。将参考图5a更详细地描述控制从IR LED发射的IR光的照射方向的示例。According to an example embodiment of the present disclosure, the IR camera and the IR LED may be installed toward the light reflector 1400 of the AR device 1000 so that the IR camera may capture the entire area of the user's eyes, and the processor 1800 may control the IR camera installed toward the light reflector 1400 IR LED to emit IR light. An example of controlling the illumination direction of IR light emitted from the IR LED will be described in more detail with reference to FIG. 5a.
根据本公开的另一示例实施例,当光接收器1520是IR检测器时,光发射器1510可以是IR扫描仪,并且处理器1800可以控制IR扫描仪通过使用光反射器1400反射从IR扫描仪发射的IR光来扫描用户眼睛,使得IR检测器可以检测用户眼睛。例如,为了通过使用光反射器1400反射从IR扫描仪发射的光来扫描用户眼睛,处理器1800可以控制从IR扫描仪发射的IR光的照射方向,并且向IR扫描仪供应电力,从而控制从IR扫描仪发射IR光。将参考图5b和图5c更详细地描述控制从IR扫描仪发射的IR光的照射方向的示例。According to another example embodiment of the present disclosure, when the light receiver 1520 is an IR detector, the light emitter 1510 may be an IR scanner, and the processor 1800 may control the IR scanner to reflect from the IR scan using the light reflector 1400 The IR light emitted by the device scans the user's eyes so that the IR detector can detect the user's eyes. For example, in order to scan the user's eyes by using the light reflector 1400 to reflect the light emitted from the IR scanner, the processor 1800 may control the irradiation direction of the IR light emitted from the IR scanner and supply power to the IR scanner, thereby controlling the light emitted from the IR scanner. IR scanners emit IR light. An example of controlling the illumination direction of IR light emitted from the IR scanner will be described in more detail with reference to FIGS. 5b and 5c.
处理器1800可以执行存储在存储设备1700中的光接收代码1720,使得光接收器1520可以从用户眼睛接收被光反射器1400反射的光。处理器1800可以通过执行光接收代码1720来控制光接收器1520,并且由处理器1800控制的光接收器1520可以从用户眼睛接收被光反射器1400反射的光。The processor 1800 may execute the light receiving code 1720 stored in the storage device 1700 so that the light receiver 1520 may receive the light reflected by the light reflector 1400 from the user's eyes. The processor 1800 may control the light receiver 1520 by executing the light receiving code 1720, and the light receiver 1520 controlled by the processor 1800 may receive the light reflected by the light reflector 1400 from the user's eyes.
例如,当光发射器1510是IR LED时,光接收器1520可以是IR相机,并且处理器1800可以控制IR相机通过来自用户眼睛的被反射器1400反射的光来捕获用户眼睛。For example, when the light emitter 1510 is an IR LED, the light receiver 1520 may be an IR camera, and the processor 1800 may control the IR camera to capture the user's eyes through light from the user's eyes reflected by the reflector 1400.
备选地,例如,当光发射器1510是IR扫描仪时,光接收器1520可以是IR检测器,并且处理器1800可以控制IR检测器检测来自用户眼睛的被光反射器1400反射的IR光,使得IR检测器可以检测用户眼睛。Alternatively, for example, when the light emitter 1510 is an IR scanner, the light receiver 1520 may be an IR detector, and the processor 1800 may control the IR detector to detect IR light from the user's eyes that is reflected by the light reflector 1400 , so that the IR detector can detect the user's eyes.
处理器1800可以执行存储在存储设备1700中的眼睛特征检测代码1730,从而检测与用户眼睛的凝视相关的特征。例如,处理器1800可以执行眼睛特征检测代码1730,从而检测用户眼睛的瞳孔特征点的位置和用户眼睛的闪烁特征点的位置。瞳孔特征点可以是例如瞳孔中心点,并且眼睛的闪烁特征点可以是所检测的眼睛区域中的亮度大于或等于特定值的部分。瞳孔特征点的位置和眼睛的闪烁特征点的位置可以例如通过在光接收器1520的坐标系中指示位置的坐标值来识别。例如,光接收器1520的坐标系可以是IR相机的坐标系或IR检测器的坐标系,并且光接收器1520的坐标系中的坐标值可以是2D坐标值。The processor 1800 may execute the eye feature detection code 1730 stored in the storage device 1700 to detect features related to the gaze of the user's eyes. For example, the processor 1800 may execute the eye feature detection code 1730 to detect the position of the pupil feature point of the user's eye and the position of the flicker feature point of the user's eye. The pupil feature point may be, for example, a pupil center point, and the flicker feature point of the eye may be a portion of the detected eye area where the brightness is greater than or equal to a specific value. The position of the pupil feature point and the position of the eye's flicker feature point can be identified, for example, by coordinate values indicating the position in the coordinate system of the light receiver 1520 . For example, the coordinate system of the light receiver 1520 may be the coordinate system of the IR camera or the coordinate system of the IR detector, and the coordinate values in the coordinate system of the light receiver 1520 may be 2D coordinate values.
处理器1800可以通过分析由光接收器1520接收到的光来检测与眼睛凝视相关的特征。例如,当光接收器1520是IR相机时,处理器1800可以在由IR相机捕获的图像中识别瞳孔特征点的位置和眼睛的闪烁特征点的位置。备选地,例如,当光接收器1520是IR检测器时,处理器1800可以分析由IR检测器检测到的IR光,从而识别瞳孔特征点的位置和眼睛的闪烁特征点的位置。当基于IR检测器检测到的IR光来识别特征点的位置时,瞳孔特征点的位置和闪烁特征点的位置可以具有通过反映支撑件190的偏置而校准的值。将参考图11更详细地描述通过反映支撑件190的偏置而校准的瞳孔特征点的位置和闪烁特征点的位置。Processor 1800 may detect features related to eye gaze by analyzing light received by light receiver 1520 . For example, when the light receiver 1520 is an IR camera, the processor 1800 may identify the location of the pupil feature point and the location of the eye's flicker feature point in the image captured by the IR camera. Alternatively, for example, when the light receiver 1520 is an IR detector, the processor 1800 may analyze the IR light detected by the IR detector to identify the location of the pupil feature point and the location of the eye's flicker feature point. When the position of the feature point is identified based on the IR light detected by the IR detector, the position of the pupil feature point and the position of the flicker feature point may have values calibrated by reflecting the offset of the support 190 . The positions of the pupil feature points and the positions of the flicker feature points calibrated by reflecting the offset of the support 190 will be described in more detail with reference to FIG. 11 .
此外,处理器1800可以分析由光接收器1520接收到的光,从而获得指示瞳孔特征点位置的坐标值和指示眼睛的闪烁特征点位置的坐标值。例如,当光接收器1520是IR相机时,处理器1800可以从IR相机的坐标系获得瞳孔特征点的坐标值和眼睛的闪烁特征点的坐标值。IR相机的坐标系可以用于指示眼睛的瞳孔特征点的位置和闪烁特征点的位置,并且例如,可以预先设置IR相机的坐标系上的与由IR相机捕获的图像的像素相对应的坐标值。此外,基于通过IR相机接收到的IR光的属性(例如,亮度),可以识别与眼睛的特征点相对应的坐标值。In addition, the processor 1800 may analyze the light received by the light receiver 1520, thereby obtaining coordinate values indicating the position of the pupil feature point and coordinate values indicating the position of the flash feature point of the eye. For example, when the light receiver 1520 is an IR camera, the processor 1800 may obtain the coordinate values of the pupil feature point and the coordinate values of the flicker feature point of the eye from the coordinate system of the IR camera. The coordinate system of the IR camera may be used to indicate the position of the pupil feature point of the eye and the position of the flicker feature point, and for example, coordinate values on the coordinate system of the IR camera corresponding to the pixels of the image captured by the IR camera may be set in advance . Furthermore, based on the properties (for example, brightness) of the IR light received through the IR camera, coordinate values corresponding to the feature points of the eye can be identified.
例如,当光接收器1520是IR相机时,处理器1800可以在由IR相机捕获的图像中识别瞳孔中心点的位置。处理器1800可以识别通过包括多个光电二极管的IR相机的图像传感器接收到的IR光的亮度,并且在由IR相机捕获的图像的像素中识别接收指示瞳孔的IR光的至少一个像素,从而识别瞳孔中心点的位置。例如,由IR相机捕获的图像中的像素的位置可以通过IR相机的坐标系来识别,并且瞳孔中心点的位置可以具有IR相机的坐标系中的坐标值,如与瞳孔中心点相对应的至少一个像素的位置值。For example, when light receiver 1520 is an IR camera, processor 1800 may identify the location of the pupil center point in an image captured by the IR camera. The processor 1800 may identify brightness of IR light received through an image sensor of an IR camera including a plurality of photodiodes, and identify at least one pixel receiving IR light indicative of a pupil among pixels of an image captured by the IR camera, thereby identifying The position of the pupil center point. For example, the location of a pixel in an image captured by an IR camera may be identified by the coordinate system of the IR camera, and the location of the pupil center point may have coordinate values in the coordinate system of the IR camera, such as at least one corresponding to the pupil center point The position value of a pixel.
例如,处理器1800可以识别由IR相机捕获的图像中的最亮点的位置,以识别眼睛的闪烁特征点。处理器1800可以识别通过包括多个光电二极管的IR相机的图像传感器接收到的IR光的亮度,并且可以在由IR相机捕获的图像的像素中识别与等于或大于特定参考的明亮IR光相对应的至少一个像素,从而识别眼睛的闪烁特征点的位置。例如,处理器1800可以在由IR相机捕获的图像的像素中识别与最亮IR光相对应的像素,从而识别眼睛的闪烁特征点的位置。例如,由IR相机捕获的图像中的像素的位置可以通过IR相机的坐标系来识别,并且眼睛的闪烁特征点的位置可以具有IR相机的坐标系中的坐标值,如与闪烁特征点相对应的像素的位置值。For example, the processor 1800 may identify the location of the brightest point in an image captured by an IR camera to identify flickering characteristic points of the eye. The processor 1800 may identify a brightness of IR light received through an image sensor of an IR camera including a plurality of photodiodes, and may identify among pixels of an image captured by the IR camera corresponding to bright IR light that is equal to or greater than a specific reference At least one pixel of the image is used to identify the location of the flashing feature point of the eye. For example, the processor 1800 may identify the pixels corresponding to the brightest IR light among the pixels of the image captured by the IR camera, thereby identifying the location of the flash characteristic point of the eye. For example, the position of a pixel in an image captured by an IR camera can be identified by the coordinate system of the IR camera, and the position of the flicker feature point of the eye can have coordinate values in the coordinate system of the IR camera, such as corresponding to the flicker feature point The position value of the pixel.
备选地,例如,当光接收器1520是IR检测器时,处理器1800可以计算IR检测器的坐标系中的瞳孔特征点的坐标值和眼睛的闪烁特征点的坐标值。Alternatively, for example, when the light receiver 1520 is an IR detector, the processor 1800 may calculate coordinate values of the pupil feature point and coordinate values of the flicker feature point of the eye in the coordinate system of the IR detector.
当光发射器1510是IR扫描仪时,处理器1800可控制IR扫描仪顺序地使点光源或线光源照射以覆盖用户眼睛所在的区域,并通过IR检测器顺序地接收从用户眼睛反射的光以扫描用户眼睛所在的区域。此外,处理器1800可以分析通过IR检测器顺序接收到的光的阵列,从而识别眼睛的瞳孔特征点和闪烁特征点。When the light emitter 1510 is an IR scanner, the processor 1800 can control the IR scanner to sequentially illuminate the point light source or the line light source to cover the area where the user's eyes are, and sequentially receive the light reflected from the user's eyes through the IR detector. to scan the area where the user's eyes are. Additionally, the processor 1800 may analyze the array of light sequentially received through the IR detector to identify pupil feature points and flicker feature points of the eye.
IR检测器的坐标系可以用于指示瞳孔的瞳孔特征点的位置和眼睛的闪烁特征点的位置,并且例如,可以预先设置IR检测器的坐标系上的与通过IR检测器顺序接收到的光的阵列中的光相对应的坐标值。例如,从IR扫描仪发射的光的照射方向和照射时间可以根据IR扫描仪的操作设置值来确定,并且可以由从IR扫描仪发射的光形成光的阵列。例如,基于从IR扫描仪发射的光的照射方向和照射时间以及从IR检测器接收到的光的接收时间,可以识别IR检测器的坐标系上的与光阵列中的光相对应的坐标值。此外,基于通过IR检测器顺序接收到的光的阵列中的光的属性(例如,亮度),可以识别与眼睛的特征点相对应的光和光的坐标值。The coordinate system of the IR detector may be used to indicate the position of the pupil feature point of the pupil and the position of the flicker feature point of the eye, and for example, the coordinate system of the IR detector may be preset to correspond to the light sequentially received through the IR detector The coordinate values corresponding to the light in the array. For example, the irradiation direction and irradiation time of the light emitted from the IR scanner may be determined according to the operation setting value of the IR scanner, and an array of lights may be formed from the light emitted from the IR scanner. For example, based on the irradiation direction and irradiation time of the light emitted from the IR scanner and the reception time of the light received from the IR detector, coordinate values on the coordinate system of the IR detector corresponding to the light in the light array can be identified . Furthermore, based on the properties (for example, brightness) of the light in the array of light sequentially received through the IR detector, the light corresponding to the feature point of the eye and the coordinate values of the light can be identified.
例如,处理器1800可以在所接收到的光阵列中识别亮度等于或小于特定值的光,从而基于IR检测器的坐标系上的与所识别的光相对应的坐标值来识别瞳孔特征点的位置。For example, the processor 1800 may identify light whose brightness is equal to or less than a specific value in the received light array, thereby identifying the pupil feature point based on coordinate values on the coordinate system of the IR detector corresponding to the identified light. Location.
例如,处理器1800可以在所接收到的光阵列中识别亮度等于或大于特定值的光,从而将IR检测器的坐标系上的与所识别的光相对应的坐标值识别为眼睛的闪烁特征点的坐标值。For example, the processor 1800 may identify light whose brightness is equal to or greater than a specific value in the received light array, thereby identifying the coordinate value corresponding to the identified light on the coordinate system of the IR detector as a flicker characteristic of the eye. The coordinate value of the point.
此外,例如,当光接收器1520是IR检测器时,瞳孔特征点的坐标值和眼睛的闪烁特征点的坐标值可以是通过反映AR设备1000的支撑件190的偏置程度而校准的值,这将在下面进行描述。在这种情况下,处理器1800可以计算通过反映AR设备1000的镜腿191的偏置程度和/或鼻子支撑件192的偏置程度而校准的瞳孔特征点的坐标值和眼睛的闪烁特征点的坐标值。可以将经校准的坐标值输入到将在下面描述的映射函数。Furthermore, for example, when the light receiver 1520 is an IR detector, the coordinate value of the pupil feature point and the coordinate value of the flicker feature point of the eye may be values calibrated by reflecting the offset degree of the support 190 of the AR device 1000, This is described below. In this case, the processor 1800 may calculate the coordinate values of the pupil feature points and the flicker feature points of the eyes calibrated by reflecting the offset degree of the temples 191 of the AR device 1000 and/or the offset degree of the nose support 192 coordinate value. Calibrated coordinate values can be input to a mapping function described below.
处理器1800可以执行存储在存储设备1700中的图案检测代码1740,从而检测光反射器1400的图案。光反射器1400可以涂覆在AR设备1000的波导170的一个表面上以具有特定图案。处理器1800可以通过光接收器1520接收被用户眼睛反射并被光反射器1400反射的IR光,并基于所接收到的IR光来识别图案的形状。形成在光反射器1400上的图案可以包括例如点图案、线图案、网格图案、2D标记物等,但本公开不限于此。将参考图7a至图7d更详细地描述形成在光反射器1400上并由图案检测代码1740识别的图案的示例。当镜腿191相对于框架110偏置时,由图案检测代码1740识别的图案可以具有变形的形状。The processor 1800 may execute the pattern detection code 1740 stored in the storage device 1700 to detect the pattern of the light reflector 1400 . The light reflector 1400 may be coated on one surface of the waveguide 170 of the AR device 1000 to have a specific pattern. The processor 1800 may receive the IR light reflected by the user's eyes and reflected by the light reflector 1400 through the light receiver 1520 and identify the shape of the pattern based on the received IR light. Patterns formed on the light reflector 1400 may include, for example, dot patterns, line patterns, grid patterns, 2D markers, etc., but the present disclosure is not limited thereto. Examples of patterns formed on the light reflector 1400 and identified by the pattern detection code 1740 will be described in more detail with reference to FIGS. 7a to 7d. When temples 191 are offset relative to frame 110, the pattern identified by pattern detection code 1740 may have a distorted shape.
例如,当光接收器1520是IR相机时,IR相机可以基于被光反射器1400反射的IR光来捕获用户眼睛,并且处理器1800可以从通过捕获用户眼睛而获得的图像识别图像内的图案。For example, when the light receiver 1520 is an IR camera, the IR camera may capture the user's eyes based on the IR light reflected by the light reflector 1400, and the processor 1800 may identify a pattern within the image from the image obtained by capturing the user's eyes.
例如,当光接收器1520是IR检测器时,IR检测器可以顺序地接收被光反射器1400反射的IR光,并且处理器1800可以识别顺序接收到的IR光的阵列中的与光反射器1400的图案相关的部分。For example, when the light receiver 1520 is an IR detector, the IR detector may sequentially receive the IR light reflected by the light reflector 1400, and the processor 1800 may identify an array of sequentially received IR light that is consistent with the light reflector. 1400 pattern related parts.
处理器1800可以执行存储在存储设备1700中的偏置确定代码1750,从而确定AR设备1000的支撑件190相对于框架110偏置的程度。支撑件190可以包括例如镜腿191和鼻子支撑件192。当用户佩戴AR设备1000时,镜腿191可以基于用户头部和面部的尺寸而变宽或变窄。此时,当在支撑件190相对于框架110偏置之后接收到IR光时,偏置确定代码1750可以从所接收到的IR光中识别具有变形形状的图案。此外,偏置确定代码1750可以将具有变形形状的图案与未变形图案进行比较,从而估计支撑件190的偏置程度。例如,偏置确定代码1750可以将具有变形形状的图案与未变形图案进行比较以识别图案的变形程度,并且可以基于图案的变形程度来确定支撑件190的偏置程度。备选地,偏置确定代码1750可以仅分析具有变形形状的图案而不将具有变形形状的图案与未变形图案进行比较,从而估计支撑件190的偏置程度。例如,当图案是点图案时,偏置确定代码1750可以识别具有变形形状的图案中的点之间的间隔之间的差异,从而估计支撑件190的偏置程度。The processor 1800 may execute the offset determination code 1750 stored in the storage device 1700 to determine the degree of offset of the support 190 of the AR device 1000 relative to the frame 110 . The support 190 may include, for example, temples 191 and a nose support 192 . When the user wears the AR device 1000, the temples 191 may become wider or narrower based on the size of the user's head and face. At this time, when IR light is received after the support 190 is biased relative to the frame 110 , the bias determination code 1750 may identify a pattern having a deformed shape from the received IR light. Additionally, the offset determination code 1750 may compare a pattern with a deformed shape to an undeformed pattern to estimate the degree of offset of the support 190 . For example, the offset determination code 1750 may compare a pattern with a deformed shape to an undeformed pattern to identify the degree of deformation of the pattern, and may determine the degree of offset of the support 190 based on the degree of deformation of the pattern. Alternatively, the offset determination code 1750 may estimate the degree of offset of the support 190 by analyzing only patterns with deformed shapes without comparing the patterns with deformed shapes to undeformed patterns. For example, when the pattern is a pattern of dots, the offset determination code 1750 may identify differences between the spacing between dots in the pattern having a deformed shape, thereby estimating the degree of offset of the support 190 .
例如,镜腿191的偏置程度可以表示为偏置角度,该偏置角度指示镜腿191相对于框架110的默认角度与偏置的镜腿191相对于框架110的角度之间的差,但本公开不限于此。此外,例如,鼻子支撑件192的偏置程度可以表示为偏置角度,该偏置角度指示鼻子支撑件192相对于框架110的默认角度与偏置的鼻子支撑件192相对于框架110的角度之间的差,但本公开不限于此。For example, the degree of offset of the temple 191 may be expressed as an offset angle indicating the difference between the default angle of the temple 191 relative to the frame 110 and the offset angle of the temple 191 relative to the frame 110, but The present disclosure is not limited thereto. Additionally, for example, the degree of offset of nose support 192 may be expressed as an offset angle indicating the default angle of nose support 192 relative to frame 110 and the offset angle of nose support 192 relative to frame 110 . difference between, but the present disclosure is not limited to this.
在上文中,已经描述了图案检测代码1740检测形成在光反射器1400上的图案的变形,并且偏置确定代码1750分析具有变形形状的图案以估计支撑件190的偏置程度,但本公开不限于此。In the above, it has been described that the pattern detection code 1740 detects the deformation of the pattern formed on the light reflector 1400, and the offset determination code 1750 analyzes the pattern having a deformed shape to estimate the offset degree of the support 190, but the present disclosure does not Limited to this.
例如,特定图案可以形成在AR设备1000的可以反射从光发射器1510发射的光以将反射的光导向光接收器1520的部分上。例如,该图案可以形成在AR设备1000的框架110的朝向光发射器1510和光接收器1520的部分区域上。例如,该图案可以通过在框架110的部分区域中形成特定曲线来形成。备选地,例如,该图案可以通过在框架110的部分区域上形成能够反射光的材料来形成。此外,该图案可以附接或涂覆在眼镜型AR设备1000中包括的其他元件上,例如,用于视力矫正的视力矫正透镜或安装用于保护波导的盖玻璃。For example, a specific pattern may be formed on a portion of the AR device 1000 that may reflect light emitted from the light emitter 1510 to direct the reflected light to the light receiver 1520 . For example, the pattern may be formed on a portion of the frame 110 of the AR device 1000 facing the light emitter 1510 and the light receiver 1520 . For example, the pattern may be formed by forming specific curves in portions of the frame 110 . Alternatively, for example, the pattern may be formed by forming a material capable of reflecting light on a partial area of the frame 110 . Furthermore, the pattern may be attached or coated on other elements included in the glasses-type AR device 1000, such as a vision correction lens for vision correction or a cover glass installed to protect the waveguide.
备选地,例如,该图案可以形成在AR设备1000的鼻子支撑件192的朝向光发射器1510和光接收器1520的部分区域上。例如,该图案可以通过在鼻子支撑件192的部分区域中形成特定曲线来形成。备选地,例如,该图案可以通过在鼻子支撑件192的部分区域上形成能够反射光的材料来形成。在这种情况下,光发射器1510和光接收器1520优选地位于AR设备1000的镜腿191中,但本公开不限于此。Alternatively, for example, the pattern may be formed on a portion of the nose support 192 of the AR device 1000 facing the light emitter 1510 and the light receiver 1520 . For example, the pattern may be formed by forming specific curves in portions of nose support 192 . Alternatively, for example, the pattern may be formed by forming a light-reflective material on a partial area of the nose support 192 . In this case, the light emitter 1510 and the light receiver 1520 are preferably located in the temple 191 of the AR device 1000, but the present disclosure is not limited thereto.
备选地,例如,该图案可以形成在AR设备1000的镜腿191的朝向光发射器1510和光接收器1520的部分区域中。例如,该图案可以通过在镜腿191的部分区域中形成特定曲线来形成。备选地,例如,该图案可以通过在镜腿191的部分区域上形成能够反射光的材料来形成。在这种情况下,光发射器1510和光接收器1520优选地位于AR设备1000的鼻子支撑件192上,但本公开不限于此。Alternatively, for example, the pattern may be formed in a partial area of the temple 191 of the AR device 1000 facing the light emitter 1510 and the light receiver 1520 . For example, the pattern may be formed by forming specific curves in partial areas of the temples 191 . Alternatively, for example, the pattern may be formed by forming a material capable of reflecting light on a partial area of the temple 191 . In this case, the light emitter 1510 and the light receiver 1520 are preferably located on the nose support 192 of the AR device 1000, but the present disclosure is not limited thereto.
处理器1800可以执行存储在存储设备1700中的瞳孔位置检测代码1760,从而检测用户眼睛的瞳孔位置。瞳孔位置检测代码1760可以基于从光反射器1400反射的IR光来识别用户眼睛的瞳孔位置。The processor 1800 may execute the pupil position detection code 1760 stored in the storage device 1700, thereby detecting the pupil position of the user's eye. The pupil position detection code 1760 may identify the pupil position of the user's eye based on the IR light reflected from the light reflector 1400 .
例如,当光接收器1520是IR相机时,瞳孔位置检测代码1760可以从由IR相机捕获的图像中识别图像内的用户眼睛的瞳孔位置。备选地,例如,当光接收器1520是IR检测器时,瞳孔位置检测代码1760可以分析由IR检测器顺序获得的IR光,从而计算用户眼睛的瞳孔位置。For example, when light receiver 1520 is an IR camera, pupil position detection code 1760 may identify the pupil position of the user's eye within the image from the image captured by the IR camera. Alternatively, for example, when the light receiver 1520 is an IR detector, the pupil position detection code 1760 may analyze the IR light sequentially obtained by the IR detector to calculate the pupil position of the user's eye.
瞳孔位置检测代码1760可以识别用户眼睛的瞳孔中心点,从而识别用户眼睛的瞳孔位置。The pupil position detection code 1760 can identify the pupil center point of the user's eye, thereby identifying the pupil position of the user's eye.
处理器1800可以执行存储在存储设备1700中的凝视确定代码1770,从而获得关于用户凝视的信息。处理器1800可以执行凝视确定代码1770,从而计算用户眼睛的中心的位置。用户眼睛的中心可以是用户眼球的中心。处理器1800可以基于通过瞳孔位置检测代码1760获得的用户眼睛的瞳孔位置和通过偏置确定代码1750获得的支撑件190的偏置程度来计算用户眼睛的中心的位置。例如,处理器1800可以计算用户眼睛的中心的位置,使得基于用于校准支撑件190的偏置程度的矩阵、指示用户眼睛的中心的位置的值、以及通过捕获用户眼睛而获得的图像的轴的偏置而计算的值可以是由瞳孔位置检测代码1760获得的用户眼睛的瞳孔位置的值。例如,眼睛的中心可以是眼球的中心,并且用户眼睛的中心的位置可以具有真实空间的坐标系中的3D坐标值。The processor 1800 may execute the gaze determination code 1770 stored in the storage device 1700 to obtain information about the user's gaze. Processor 1800 may execute gaze determination code 1770 to calculate the location of the center of the user's eyes. The center of the user's eye may be the center of the user's eyeball. The processor 1800 may calculate the position of the center of the user's eye based on the pupil position of the user's eye obtained through the pupil position detection code 1760 and the offset degree of the support 190 obtained through the offset determination code 1750 . For example, the processor 1800 may calculate the position of the center of the user's eye based on a matrix for calibrating the degree of offset of the support 190 , a value indicating the position of the center of the user's eye, and an axis of an image obtained by capturing the user's eye. The value calculated for the offset may be the value of the pupil position of the user's eye obtained by the pupil position detection code 1760 . For example, the center of the eye may be the center of the eyeball, and the position of the center of the user's eye may have a 3D coordinate value in the coordinate system of the real space.
处理器1800可以执行凝视确定代码1770,从而计算用户的凝视点的位置。为了计算用户的凝视点的位置,处理器1800可以预先生成用于从用户眼睛的特征计算凝视点的位置的映射函数。映射函数是用于考虑用户眼睛的特征和支撑件190的偏置信息来计算用户的凝视点的位置的函数,并且可以在校准代码1780的校准过程期间生成,该校准过程将在下面进行描述。例如,凝视点的位置可以具有真实空间中的坐标系中的3D坐标值,但本公开不限于此。例如,凝视点的位置可以具有波导170的坐标系中的坐标值,但本公开不限于此。Processor 1800 may execute gaze determination code 1770 to calculate the location of the user's gaze point. In order to calculate the position of the user's gaze point, the processor 1800 may pre-generate a mapping function for calculating the position of the gaze point from the characteristics of the user's eyes. The mapping function is a function used to calculate the position of the user's gaze point taking into account the characteristics of the user's eyes and the offset information of the support 190, and may be generated during the calibration process of the calibration code 1780, which will be described below. For example, the position of the gaze point may have a 3D coordinate value in a coordinate system in real space, but the present disclosure is not limited thereto. For example, the position of the gaze point may have coordinate values in the coordinate system of the waveguide 170, but the present disclosure is not limited thereto.
处理器1800可以执行凝视确定代码1770,从而基于从偏置确定代码1750获得的偏置程度来校准从眼睛特征检测代码1730获得的与用户凝视相关的特征。此外,处理器1800可以将基于偏置程度校准的与用户凝视相关的特征应用到映射函数,从而计算用户的凝视点的位置。此外,可以基于用户眼睛的中心点的位置和通过凝视确定代码1770计算的用户的凝视点来确定用户的凝视方向。将参考图11更详细地描述通过使用凝视确定代码1770来获得用户的凝视方向的方法。The processor 1800 may execute the gaze determination code 1770 to calibrate the features related to the user's gaze obtained from the eye feature detection code 1730 based on the degree of bias obtained from the bias determination code 1750 . In addition, the processor 1800 may apply the features related to the user's gaze calibrated based on the degree of offset to the mapping function, thereby calculating the position of the user's gaze point. Furthermore, the user's gaze direction may be determined based on the position of the center point of the user's eyes and the user's gaze point calculated by the gaze determination code 1770 . A method of obtaining the user's gaze direction by using the gaze determination code 1770 will be described in more detail with reference to FIG. 11 .
备选地,处理器1800可以在不使用上述映射函数的情况下计算用户的凝视点。例如,当光接收器1520是IR相机时,凝视确定代码1770可以通过使用特定算法从通过捕获用户眼睛而获得的图像中计算用户眼睛的凝视方向。在这种情况下,所获得的凝视方向可以是相机坐标系中的指示用户眼睛的凝视方向的矢量值。用于获得用户眼睛的凝视方向的算法可以是用于拟合3D眼睛模型的算法。用于拟合3D眼睛模型的算法可以是用于通过将与指示用户凝视方向的参考矢量值相对应的眼睛图像与由IR相机捕获的图像进行比较来获得指示用户的凝视方向的矢量值的算法。此外,凝视确定代码1770可以通过使用镜腿191的偏置角度将相机坐标系中的指示凝视方向的矢量值转换为波导170的坐标系中的指示凝视方向的矢量值。此后,凝视确定代码1770可以计算波导170的坐标系中的指示凝视方向的矢量与波导170之间的交点,从而获得用户的凝视点。Alternatively, the processor 1800 may calculate the user's gaze point without using the mapping function described above. For example, when the light receiver 1520 is an IR camera, the gaze determination code 1770 may calculate the gaze direction of the user's eyes from an image obtained by capturing the user's eyes by using a specific algorithm. In this case, the obtained gaze direction may be a vector value in the camera coordinate system indicating the gaze direction of the user's eyes. The algorithm for obtaining the gaze direction of the user's eyes may be an algorithm for fitting a 3D eye model. The algorithm for fitting the 3D eye model may be an algorithm for obtaining a vector value indicating the user's gaze direction by comparing an eye image corresponding to a reference vector value indicating the user's gaze direction with an image captured by the IR camera . Furthermore, the gaze determination code 1770 may convert a vector value indicating the gaze direction in the camera coordinate system into a vector value indicating the gaze direction in the coordinate system of the waveguide 170 by using the offset angle of the temple 191 . Thereafter, the gaze determination code 1770 may calculate the intersection point between the vector indicating the gaze direction in the coordinate system of the waveguide 170 and the waveguide 170 to obtain the user's gaze point.
处理器1800可以执行存储在存储设备1700中的校准代码1780,从而基于支撑件190的偏置角度来校准映射函数。处理器1800可以执行校准代码1780,从而基于预先设置的默认偏置角度和眼睛特征来校准映射函数以获得用户的凝视点。The processor 1800 may execute the calibration code 1780 stored in the storage device 1700 to calibrate the mapping function based on the offset angle of the support 190 . The processor 1800 may execute the calibration code 1780 to calibrate the mapping function to obtain the user's gaze point based on the preset default offset angle and eye characteristics.
例如,当光接收器1520是IR相机时,处理器1800可以通过波导170显示用于校准的目标点,并且通过使用IR相机来捕获注视目标点的用户眼睛。此外,处理器1800可以识别并分析通过捕获用户眼睛而获得的图像内的图案,从而获得支撑件190的偏置角度。此外,处理器1800可以从通过捕获用户眼睛而获得的图像中检测与用户眼睛相关的特征点的位置,并将用户眼睛的特征点的位置和支撑件190的偏置角度输入到映射函数中。处理器1800可以校准映射函数,使得可以从输入了用户眼睛的特征点的位置和支撑件190的偏置角度的映射函数中输出目标点的位置值。For example, when the light receiver 1520 is an IR camera, the processor 1800 may display a target point for calibration through the waveguide 170 and capture the user's eyes looking at the target point by using the IR camera. In addition, the processor 1800 may identify and analyze patterns within an image obtained by capturing the user's eyes, thereby obtaining the offset angle of the support 190 . In addition, the processor 1800 may detect the position of a feature point related to the user's eye from an image obtained by capturing the user's eye, and input the position of the feature point of the user's eye and the offset angle of the support 190 into the mapping function. The processor 1800 may calibrate the mapping function so that the position value of the target point may be output from the mapping function in which the position of the feature point of the user's eye and the offset angle of the support 190 are input.
例如,当光接收器1520是IR检测器时,处理器1800可以通过波导170显示用于校准的目标点,并控制IR扫描仪发射用于扫描注视目标点的用户眼睛的IR光。此外,处理器1800可以通过IR检测器接收并分析从用户眼睛反射的IR光,识别光反射器1400的图案,以及估计镜腿191的偏置角度。处理器1800可以基于镜腿191的偏置角度来分析IR光,从而识别眼睛的经校准的特征点的位置。例如,当处理器1800通过使用IR扫描仪和IR检测器来估计眼睛的特征点的位置时,由于估计眼睛的特征点位置的结果受到IR扫描仪的操作角度的影响,因此眼睛的特征点的位置可以基于支撑件190的偏置通过计算通过从IR扫描仪的操作角度减去支撑件190的偏置角度而获得的值来校准。For example, when the light receiver 1520 is an IR detector, the processor 1800 may display a target point for calibration through the waveguide 170 and control the IR scanner to emit IR light for scanning the user's eyes looking at the target point. In addition, the processor 1800 can receive and analyze the IR light reflected from the user's eyes through the IR detector, identify the pattern of the light reflector 1400, and estimate the offset angle of the temple 191. The processor 1800 may analyze the IR light based on the offset angle of the temple 191 to identify the location of the calibrated feature point of the eye. For example, when the processor 1800 estimates the position of the feature point of the eye by using the IR scanner and the IR detector, since the result of estimating the position of the feature point of the eye is affected by the operating angle of the IR scanner, the feature point of the eye The position may be calibrated based on the offset of the support 190 by calculating a value obtained by subtracting the offset angle of the support 190 from the operating angle of the IR scanner.
此外,处理器1800可以将眼睛的经校准的特征点的位置输入到映射函数中,并校准映射函数,使得可以从输入了眼睛的经校准的特征点的位置的映射函数中输出目标点的位置值。In addition, the processor 1800 may input the position of the calibrated feature point of the eye into the mapping function and calibrate the mapping function such that the position of the target point may be output from the mapping function in which the position of the calibrated feature point of the eye is input. value.
图4是示出了根据本公开的示例实施例的AR设备1000的光发射器1510和光接收器1520的操作的示例的图。FIG. 4 is a diagram illustrating an example of operations of the light emitter 1510 and the light receiver 1520 of the AR device 1000 according to an example embodiment of the present disclosure.
参考图4,光发射器1510可以向光反射器1400发射IR光,并且发射的IR光可以被光反射器1400反射并被导向用户眼睛。此外,导向用户眼睛的IR光可以被用户眼睛反射回来并被导向光反射器1400,并且被用户眼睛反射的IR光可以被光反射器1400反射回来并被导向光接收器1520。此外,光接收器1520可以从用户眼睛接收被光反射器1400反射并被导向光接收器1520的IR光。Referring to FIG. 4 , the light emitter 1510 may emit IR light toward the light reflector 1400 , and the emitted IR light may be reflected by the light reflector 1400 and directed to the user's eyes. In addition, the IR light directed to the user's eyes may be reflected back by the user's eyes and directed to the light reflector 1400 , and the IR light reflected by the user's eyes may be reflected back by the light reflector 1400 and directed to the light receiver 1520 . In addition, the light receiver 1520 may receive the IR light reflected by the light reflector 1400 and directed to the light receiver 1520 from the user's eye.
在图4中,为了便于说明,已经描述了作为眼镜型显示设备的AR设备1000向用户左眼发射IR光并接收从用户左眼反射的IR光,但本公开不限于此。AR设备1000可以以与图4中所示相同的方式向用户右眼发射IR光并且接收从用户右眼反射的IR光。In FIG. 4 , for convenience of explanation, the AR device 1000 as a glasses-type display device has been described as emitting IR light to the user's left eye and receiving IR light reflected from the user's left eye, but the present disclosure is not limited thereto. The AR device 1000 may emit IR light to the user's right eye and receive IR light reflected from the user's right eye in the same manner as shown in FIG. 4 .
图5a是示出了根据本公开的示例实施例的发射平面光的光发射器1510的示例的图。FIG. 5a is a diagram illustrating an example of a light emitter 1510 that emits planar light according to an example embodiment of the present disclosure.
参考图5a,图2的光发射器1510可以是IR LED,并且图2的光接收器1520可以是IR相机。在这种情况下,光发射器1510可以向光反射器1400发射平面光的IR光,并且发射的IR光可以被光反射器1400反射并被导向用户眼睛。例如,为了通过使用光反射器1400反射从IR LED发射的光并将光照射到包括用户眼睛的区域,处理器1800可以控制从IR LED发射的IR光的照射方向,并向IR LED供应电力,从而控制从IR LED发射IR光。此外,被光反射器1400反射的平面光的IR光可以覆盖整个用户眼睛。在这种情况下,光接收器1520可以是IR相机,并且IR相机可以接收被用户眼睛反射的IR光,从而捕获用户眼睛。Referring to Figure 5a, the light emitter 1510 of Figure 2 can be an IR LED, and the light receiver 1520 of Figure 2 can be an IR camera. In this case, the light emitter 1510 may emit the IR light of the plane light toward the light reflector 1400, and the emitted IR light may be reflected by the light reflector 1400 and directed to the user's eyes. For example, in order to reflect the light emitted from the IR LED by using the light reflector 1400 and irradiate the light to an area including the user's eyes, the processor 1800 may control the irradiation direction of the IR light emitted from the IR LED and supply power to the IR LED, Thereby controlling the emission of IR light from the IR LED. In addition, the IR light of the plane light reflected by the light reflector 1400 can cover the entire user's eyes. In this case, the light receiver 1520 may be an IR camera, and the IR camera may receive IR light reflected by the user's eyes, thereby capturing the user's eyes.
例如,可以预先设置IR相机的坐标系上的与由IR相机捕获的图像的像素相对应的坐标值。此外,处理器1800可以基于通过IR相机接收到的IR光的属性(例如,亮度)来识别与眼睛的特征点相对应的坐标值。例如,处理器1800可以识别通过包括多个光电二极管的IR相机的图像传感器接收到的IR光的亮度,并且在由IR相机捕获的图像的像素中识别接收指示瞳孔的IR光的至少一个像素,从而识别IR坐标系上的与瞳孔中心点相对应的坐标值51。在这种情况下,表示瞳孔的IR光可以是亮度低于特定值的IR光,但本公开不限于此。For example, coordinate values on the coordinate system of the IR camera corresponding to pixels of the image captured by the IR camera may be set in advance. In addition, the processor 1800 may identify coordinate values corresponding to the feature points of the eye based on properties (eg, brightness) of the IR light received through the IR camera. For example, processor 1800 may identify the brightness of IR light received by an image sensor of an IR camera including a plurality of photodiodes, and identify at least one pixel among the pixels of an image captured by the IR camera that receives IR light indicative of a pupil, Thus, the coordinate value 51 corresponding to the pupil center point on the IR coordinate system is identified. In this case, the IR light indicating the pupil may be IR light having a brightness lower than a specific value, but the present disclosure is not limited thereto.
此外,例如,处理器1800可以识别通过包括多个光电二极管的IR相机的图像传感器接收到的IR光的亮度,并且可以在由IR相机捕获的图像的像素中识别表示眼睛的闪烁特征点的至少一个像素,从而识别IR坐标系上的与闪烁特征点相对应的坐标值52。在这种情况下,表示眼睛的闪烁特征点的IR光可以是亮度大于特定值的IR光,但本公开不限于此。Furthermore, for example, the processor 1800 may identify the brightness of the IR light received through the image sensor of the IR camera including a plurality of photodiodes, and may identify at least one flicker characteristic point representing the eye among the pixels of the image captured by the IR camera. One pixel, thereby identifying the coordinate value 52 corresponding to the flicker feature point on the IR coordinate system. In this case, the IR light representing the flicker characteristic point of the eye may be IR light having a brightness greater than a specific value, but the present disclosure is not limited thereto.
根据本公开的示例实施例,光发射器1510可以是发射闪烁光的IR LED,并且在这种情况下,光反射器1400可以是IR事件相机。IR事件相机可以是当特定事件发生时被激活并自动捕获对象的IR相机。例如当闪烁光的图案不同时,可以激活IR事件相机以自动捕获用户眼睛。According to an example embodiment of the present disclosure, the light emitter 1510 may be an IR LED that emits flash light, and in this case, the light reflector 1400 may be an IR event camera. An IR event camera can be an IR camera that is activated when a specific event occurs and automatically captures objects. For example, an IR event camera can be activated to automatically capture the user's eyes when the pattern of flashing light is different.
图5b是示出了根据本公开的示例实施例的发射点光的光发射器1510的示例的图。FIG. 5b is a diagram illustrating an example of a light emitter 1510 that emits point light according to an example embodiment of the present disclosure.
参考图5b,图2的光发射器1510可以是IR扫描仪,并且图2的光接收器1520可以是IR检测器。在这种情况下,光发射器1510可以向光反射器1400发射点光的IR光,并且发射的IR光可以被光反射器1400反射并被导向用户眼睛。在这种情况下,光发射器1510可以在将发射方向改变为竖直方向或水平方向的同时顺序地向光反射器1400发射点光的IR光,并且顺序发射的点光的IR光可以被光反射器1400反射以覆盖整个用户眼睛。例如,为了通过使用光反射器1400反射从IR扫描仪顺序发射的点光的IR光并将点光的IR光照射到包括用户眼睛的区域,处理器1800可以控制从IR扫描仪发射的点光的IR光的照射方向。在这种情况下,光发射器1510可以是二维(2D)扫描仪,并且光接收器1520可以是至少一个光电二极管。Referring to Figure 5b, the light emitter 1510 of Figure 2 may be an IR scanner, and the light receiver 1520 of Figure 2 may be an IR detector. In this case, the light emitter 1510 may emit point-light IR light toward the light reflector 1400, and the emitted IR light may be reflected by the light reflector 1400 and directed to the user's eyes. In this case, the light emitter 1510 may sequentially emit the IR light of the point light to the light reflector 1400 while changing the emission direction to the vertical direction or the horizontal direction, and the sequentially emitted IR light of the point light may be The light reflector 1400 reflects to cover the entire user's eyes. For example, in order to reflect the IR light of the spot light sequentially emitted from the IR scanner by using the light reflector 1400 and to irradiate the IR light of the spot light to an area including the user's eyes, the processor 1800 may control the spot light emitted from the IR scanner. The irradiation direction of the IR light. In this case, the light emitter 1510 may be a two-dimensional (2D) scanner, and the light receiver 1520 may be at least one photodiode.
例如,可以预先设置IR检测器的坐标系上的与通过IR检测器顺序接收到的光的阵列中的IR光相对应的坐标值,并且处理器1800可以基于通过IR检测器顺序接收到的IR光的阵列中的IR光的属性(例如,亮度)来识别与眼睛的特征点相对应的坐标值。例如,处理器1800可以在IR检测器的坐标系上识别与所接收到的IR光的阵列中的亮度等于或小于特定值的IR光相对应的坐标值,从而识别IR坐标系上的与瞳孔中心点相对应的坐标值53。此外,例如,处理器1800可以在IR检测器的坐标系上识别与所接收到的IR光的阵列中的亮度等于或小于特定值的IR光相对应的坐标值,从而识别IR坐标系上的与眼睛的闪烁特征点相对应的坐标值54。For example, coordinate values on the coordinate system of the IR detector corresponding to the IR light in the array of light sequentially received through the IR detector may be set in advance, and the processor 1800 may based on the IR light sequentially received through the IR detector. The properties (eg, brightness) of the IR light in the light array are used to identify coordinate values corresponding to feature points of the eye. For example, the processor 1800 may identify coordinate values on the coordinate system of the IR detector corresponding to IR light in the array of received IR lights whose brightness is equal to or less than a specific value, thereby identifying the coordinate value on the IR coordinate system corresponding to the pupil. The coordinate value corresponding to the center point is 53. Furthermore, for example, the processor 1800 may identify a coordinate value on the coordinate system of the IR detector corresponding to the IR light whose brightness is equal to or less than a specific value in the array of received IR light, thereby identifying the coordinate value on the IR coordinate system. The coordinate value 54 corresponding to the flicker feature point of the eye.
图5c是示出了根据本公开的示例实施例的发射线光的光发射器1510的示例的图。FIG. 5c is a diagram illustrating an example of a light emitter 1510 that emits line light according to an example embodiment of the present disclosure.
参考图5c,图2的光发射器1510可以是IR扫描仪,并且图2的光接收器1520可以是IR检测器。在这种情况下,光发射器1510可以向光反射器1400发射线光的IR光,并且发射的IR光可以被光反射器1400反射并被导向用户眼睛。例如,为了通过使用光反射器1400反射从IR扫描仪顺序发射的线光的IR光并将点光的IR光照射到包括用户眼睛的区域,处理器1800可以控制从IR扫描仪发射的点光的IR光的照射方向。在这种情况下,光发射器1510可以在改变发射方向的同时顺序地向光反射器1400发射线光的IR光,并且顺序发射的线光的IR光可以被光反射器1400反射以覆盖整个用户眼睛。在这种情况下,光发射器1510可以是一维(1D)扫描仪,并且光接收器1520可以是包括多个光电二极管的光电二极管阵列。当光接收器1520是光电二极管阵列时,更优选,光接收器1520设置在镜腿191中。例如,当从光发射器1510发射水平线光时,光发射器1510可以将发射方向改变为竖直方向以覆盖包括用户眼睛的区域,并且当从光发射器1510发射竖直线光时,光发射器1510可以将发射方向改变为水平方向。Referring to Figure 5c, the light emitter 1510 of Figure 2 may be an IR scanner, and the light receiver 1520 of Figure 2 may be an IR detector. In this case, the light emitter 1510 may emit linear IR light to the light reflector 1400, and the emitted IR light may be reflected by the light reflector 1400 and directed to the user's eyes. For example, in order to reflect the IR light of the line light sequentially emitted from the IR scanner and to irradiate the IR light of the point light to an area including the user's eyes by using the light reflector 1400, the processor 1800 may control the point light emitted from the IR scanner. The irradiation direction of the IR light. In this case, the light emitter 1510 may sequentially emit the IR light of the line light to the light reflector 1400 while changing the emission direction, and the sequentially emitted IR light of the line light may be reflected by the light reflector 1400 to cover the entire User eyes. In this case, the light emitter 1510 may be a one-dimensional (ID) scanner, and the light receiver 1520 may be a photodiode array including a plurality of photodiodes. When the light receiver 1520 is a photodiode array, more preferably, the light receiver 1520 is disposed in the temple 191 . For example, when a horizontal line of light is emitted from the light emitter 1510, the light emitter 1510 may change the emission direction to a vertical direction to cover an area including the user's eyes, and when a vertical line of light is emitted from the light emitter 1510, the light emitter The transmitter 1510 may change the emission direction to a horizontal direction.
例如,可以预先设置IR检测器的坐标系上的与通过IR检测器顺序接收到的光的阵列中的IR光相对应的坐标值,并且处理器1800可以基于通过IR检测器顺序接收到的IR光的阵列中的IR光的属性(例如,亮度)来识别与眼睛的特征点相对应的坐标值。例如,处理器1800可以识别亮度大于或等于特定值的IR光的线光,并根据各个线光来识别已经接收到线光的多个光电二极管中的与亮度小于或等于特定值的IR光相对应的光电二极管,从而识别IR坐标系上的与瞳孔中心点相对应的坐标值55。此外,例如,处理器1800可以识别亮度大于或等于特定值的IR光的线光,并根据各个线光来识别已经接收到线光的多个光电二极管中的与亮度小于或等于特定值的IR光相对应的光电二极管,从而识别IR坐标系上的与眼睛的闪烁特征点相对应的坐标值56。For example, coordinate values on the coordinate system of the IR detector corresponding to the IR light in the array of light sequentially received through the IR detector may be set in advance, and the processor 1800 may based on the IR light sequentially received through the IR detector. The properties (eg, brightness) of the IR light in the light array are used to identify coordinate values corresponding to feature points of the eye. For example, the processor 1800 may identify a line light of IR light having a brightness greater than or equal to a specific value, and identify, based on each line light, an IR light phase with a brightness less than or equal to a specific value among the plurality of photodiodes that have received the line light. The corresponding photodiode is used to identify the coordinate value 55 corresponding to the pupil center point on the IR coordinate system. Furthermore, for example, the processor 1800 may identify line lights with IR lights having a brightness greater than or equal to a specific value, and identify IR lights with brightness less than or equal to a specific value among the plurality of photodiodes that have received the line lights based on each line light. The photodiode corresponds to the light, thereby identifying the coordinate value 56 on the IR coordinate system corresponding to the flashing characteristic point of the eye.
在图5a至图5c中,为了便于描述,已经描述了作为眼镜型显示设备的AR设备1000向用户的一个眼睛发射IR光的示例,但本公开不限于此。AR设备1000可以以与图5a至图5c中所示相同的方式向用户的另一个眼睛发射IR光。In FIGS. 5a to 5c , for convenience of description, an example in which the AR device 1000 as a glasses-type display device emits IR light to one eye of the user has been described, but the present disclosure is not limited thereto. The AR device 1000 may emit IR light to the user's other eye in the same manner as shown in FIGS. 5a to 5c.
图6a是示出了根据本公开的示例实施例的光发射器1510和光接收器1520设置在AR设备1000的镜腿191中的示例的图。FIG. 6a is a diagram illustrating an example in which the light emitter 1510 and the light receiver 1520 are provided in the temple 191 of the AR device 1000 according to an example embodiment of the present disclosure.
参考图6a,图2的AR设备1000可以是眼镜型设备,并且光发射器1510和光接收器1520可以设置在AR设备1000的镜腿191上。光发射器1510和光接收器1520可以设置在AR设备1000的镜腿191的内侧部分上,这是镜腿191和用户眼睛之间的位置。例如,光发射器1510和光接收器1520可以在AR设备1000的镜腿191的内侧上设置在与框架间隔约10mm至15mm的位置处。光发射器1510和光接收器1520可以在AR设备1000的镜腿191中设置为面向光反射器1400。Referring to FIG. 6a, the AR device 1000 of FIG. 2 may be a glasses-type device, and the light emitter 1510 and the light receiver 1520 may be provided on the temples 191 of the AR device 1000. The light emitter 1510 and the light receiver 1520 may be disposed on an inner portion of the temple 191 of the AR device 1000, which is a position between the temple 191 and the user's eyes. For example, the light emitter 1510 and the light receiver 1520 may be disposed on the inner side of the temple 191 of the AR device 1000 at a position spaced approximately 10 mm to 15 mm from the frame. The light emitter 1510 and the light receiver 1520 may be disposed in the temple 191 of the AR device 1000 facing the light reflector 1400.
图6b是示出了根据本公开的示例实施例的光发射器1510和光接收器1520设置在AR设备1000的鼻子支撑件192中的示例的图。FIG. 6b is a diagram illustrating an example in which the light emitter 1510 and the light receiver 1520 are provided in the nose support 192 of the AR device 1000 according to an example embodiment of the present disclosure.
参考图6b,图2的AR设备1000可以是眼镜型设备,并且光发射器1510和光接收器1520可以设置在AR设备1000的鼻子支撑件192上。光发射器1510和光接收器1520可以设置在AR设备1000的鼻子支撑件192的内侧部分上,这是鼻子支撑件192和用户眼睛之间的位置。光发射器1510和光接收器1520可以在AR设备1000的鼻子支撑件192中设置为面向光反射器1400。Referring to FIG. 6b, the AR device 1000 of FIG. 2 may be a glasses-type device, and the light emitter 1510 and the light receiver 1520 may be provided on the nose support 192 of the AR device 1000. The light emitter 1510 and the light receiver 1520 may be disposed on an inner portion of the nose support 192 of the AR device 1000, which is a position between the nose support 192 and the user's eyes. The light emitter 1510 and the light receiver 1520 may be disposed in the nose support 192 of the AR device 1000 facing the light reflector 1400.
图6c是示出了根据本公开的示例实施例的光发射器1510和光接收器1520设置在AR设备1000的镜腿191和鼻子支撑件192中的示例的图。FIG. 6c is a diagram illustrating an example in which the light emitter 1510 and the light receiver 1520 are provided in the temples 191 and the nose support 192 of the AR device 1000 according to an example embodiment of the present disclosure.
参考图6c,图2的AR设备1000可以是眼镜型设备,光发射器1510可以设置在AR设备1000的镜腿191上,以及光接收器1520可以设置在AR设备1000的鼻子支撑件192上。光发射器1510可以设置在AR设备1000的镜腿191的内侧部分上,这是镜腿191和用户眼睛之间的位置。光接收器1520可以设置在AR设备1000的鼻子支撑件192的内侧部分上,这是鼻子支撑件192和用户眼睛之间的位置。光发射器1510和光接收器1520可以在AR设备1000中设置为面向光反射器1400。Referring to FIG. 6c, the AR device 1000 of FIG. 2 may be a glasses-type device, the light emitter 1510 may be disposed on the temples 191 of the AR device 1000, and the light receiver 1520 may be disposed on the nose support 192 of the AR device 1000. The light emitter 1510 may be disposed on an inner portion of the temple 191 of the AR device 1000, which is a position between the temple 191 and the user's eyes. The light receiver 1520 may be disposed on an inner portion of the nose support 192 of the AR device 1000, which is a position between the nose support 192 and the user's eyes. The light emitter 1510 and the light receiver 1520 may be disposed facing the light reflector 1400 in the AR device 1000 .
图6d是示出了根据本公开的示例实施例的光发射器1510和光接收器1520设置在AR设备1000的镜腿191和鼻子支撑件192中的示例的图。6d is a diagram illustrating an example in which the light emitter 1510 and the light receiver 1520 are provided in the temples 191 and the nose support 192 of the AR device 1000 according to an example embodiment of the present disclosure.
参考图6d,图2的AR设备1000可以是眼镜型设备,光发射器1510可以设置在AR设备1000的鼻子支撑件192上,以及光接收器1520可以设置在AR设备1000的镜腿191上。光发射器1510可以设置在AR设备1000的鼻子支撑件192的内侧部分上,这是鼻子支撑件192和用户眼睛之间的位置。光接收器1520可以设置在AR设备1000的镜腿191的内侧部分上,这是镜腿191和用户眼睛之间的位置。光发射器1510和光接收器1520可以在AR设备1000中设置为面向光反射器1400。Referring to FIG. 6d, the AR device 1000 of FIG. 2 may be a glasses-type device, the light emitter 1510 may be disposed on the nose support 192 of the AR device 1000, and the light receiver 1520 may be disposed on the temples 191 of the AR device 1000. The light emitter 1510 may be disposed on an inner portion of the nose support 192 of the AR device 1000, which is a position between the nose support 192 and the user's eyes. The light receiver 1520 may be disposed on an inner portion of the temple 191 of the AR device 1000, which is a position between the temple 191 and the user's eyes. The light emitter 1510 and the light receiver 1520 may be disposed facing the light reflector 1400 in the AR device 1000 .
在图6a至图6d中,已经描述了一个光发射器1510和一个光接收器1520设置在AR设备1000中,但本公开不限于此。例如,多个光发射器1510可以设置在AR设备1000中。在这种情况下,多个光发射器1510可以设置在镜腿191上,或者多个光发射器1510可以设置在鼻子支撑件192上。备选地,多个光发射器1510可以分开设置在镜腿191和鼻子支撑件192上。In FIGS. 6a to 6d , it has been described that one light transmitter 1510 and one light receiver 1520 are provided in the AR device 1000, but the present disclosure is not limited thereto. For example, a plurality of light emitters 1510 may be provided in the AR device 1000. In this case, the plurality of light emitters 1510 may be provided on the temples 191 , or the plurality of light emitters 1510 may be provided on the nose support 192 . Alternatively, a plurality of light emitters 1510 may be separately provided on the temples 191 and the nose support 192 .
此外,例如,多个光接收器1520可以设置在AR设备1000中。在这种情况下,多个光接收器1520可以设置在镜腿191上,或者多个光接收器1520可以设置在鼻子支撑件192上。备选地,多个光接收器1520可以分开设置在镜腿191和鼻子支撑件192上。Furthermore, for example, a plurality of light receivers 1520 may be provided in the AR device 1000. In this case, the plurality of light receivers 1520 may be provided on the temples 191 , or the plurality of light receivers 1520 may be provided on the nose support 192 . Alternatively, a plurality of light receivers 1520 may be separately provided on the temples 191 and the nose support 192 .
在图6a至图6d中,为了便于描述,已经描述了光发射器1510和光接收器1520设置在作为眼镜型显示设备的AR设备1000的左眼部分中,但本公开不限于此。在AR设备1000中,光发射器1510和光接收器1520可以以与图6a至图6d中所示相同的方式设置在AR设备1000的右眼部分中。In FIGS. 6a to 6d , for convenience of description, it has been described that the light emitter 1510 and the light receiver 1520 are provided in the left eye portion of the AR device 1000 as a glasses-type display device, but the present disclosure is not limited thereto. In the AR device 1000, the light emitter 1510 and the light receiver 1520 may be disposed in the right eye portion of the AR device 1000 in the same manner as shown in FIGS. 6a to 6d.
图7a是示出了根据本公开的示例实施例的形成在AR设备1000的光反射器1400上的点图案的示例的图,图7b是示出了根据本公开的示例实施例的形成在AR设备1000的光反射器1400上的网格图案的示例的图,图7c是示出了根据本公开的示例实施例的2D标记物形式的图案的示例的图,以及图7d是示出了根据本公开的示例实施例的覆盖波导170的一部分的光反射器1400的示例的图。7 a is a diagram illustrating an example of a dot pattern formed on the light reflector 1400 of the AR device 1000 according to an exemplary embodiment of the present disclosure, and FIG. 7 b is a diagram illustrating a dot pattern formed on the light reflector 1400 of the AR device 1000 according to an exemplary embodiment of the present disclosure. Figure 7c is a diagram illustrating an example of a pattern in the form of a 2D marker according to an example embodiment of the present disclosure, and Figure 7d is a diagram illustrating an example of a grid pattern on the light reflector 1400 of the device 1000 according to an example embodiment of the present disclosure. Diagram of an example of light reflector 1400 covering a portion of waveguide 170 of an example embodiment of the present disclosure.
参考图7a,点状图案可以形成在图2的AR设备1000的光反射器1400上。参考图7b,网格状图案可以形成在图2的AR设备1000的光反射器1400上。根据示例实施例,可以不从形成有图案的部分反射IR光。此时,由于点状图案或网格状图案用于检测AR设备的支撑件或镜腿的偏置,因此优选具有规则形状。Referring to FIG. 7a, a dot pattern may be formed on the light reflector 1400 of the AR device 1000 of FIG. 2. Referring to FIG. 7b, a grid-like pattern may be formed on the light reflector 1400 of the AR device 1000 of FIG. 2. According to example embodiments, IR light may not be reflected from the patterned portion. At this time, since the dot pattern or grid pattern is used to detect the offset of the support or temples of the AR device, it is preferable to have a regular shape.
参考图7c,该图案形成在图2的AR设备1000的光反射器1400的用户凝视不太频繁被定向的部分上。所形成的图案例如可以是2D标记物形式的图案,但本公开不限于此。该图案可以形成在例如光反射器1400的不干扰捕获或扫描用户眼睛的部分上。Referring to Figure 7c, this pattern is formed on the portion of the light reflector 1400 of the AR device 1000 of Figure 2 where the user's gaze is less frequently directed. The formed pattern may be, for example, a pattern in the form of a 2D marker, but the disclosure is not limited thereto. The pattern may be formed, for example, on a portion of the light reflector 1400 that does not interfere with capturing or scanning the user's eyes.
参考图7d,光反射器1400可以形成在图2的AR设备1000的波导170的一部分上。例如,光反射器1400可以不位于波导170的与IR光的反射几乎不相关的部分中。Referring to FIG. 7d , a light reflector 1400 may be formed on a portion of the waveguide 170 of the AR device 1000 of FIG. 2 . For example, light reflector 1400 may not be located in a portion of waveguide 170 that has little to do with reflection of IR light.
例如,当光接收器1520是IR相机时,IR相机可以基于被光反射器1400反射的IR光来捕获用户眼睛,并且可以不从形成有图案的部分反射IR光。例如,通过捕获用户眼睛而获得的图像中的未反射IR光的部分可以处于黑色,并且处理器1800可以识别通过捕获用户眼睛而获得的图像中的黑色部分,从而识别图像中的图案。For example, when the light receiver 1520 is an IR camera, the IR camera may capture the user's eyes based on the IR light reflected by the light reflector 1400, and may not reflect the IR light from the patterned portion. For example, a portion in an image obtained by capturing the user's eyes that does not reflect IR light may be in black, and the processor 1800 may identify the black portion in the image obtained by capturing the user's eyes, thereby identifying a pattern in the image.
例如,当光接收器1520是IR检测器时,IR检测器可以顺序地接收被光反射器1400反射的IR光,并且可以不从形成有图案的部分反射IR光。例如,处理器1800可以识别由顺序接收到的IR光形成的IR光阵列的未反射IR光的部分,从而识别光反射器1400的图案。For example, when the light receiver 1520 is an IR detector, the IR detector may sequentially receive the IR light reflected by the light reflector 1400 and may not reflect the IR light from the pattern-formed portion. For example, processor 1800 may identify portions of an IR light array formed by sequentially received IR light that do not reflect IR light, thereby identifying the pattern of light reflector 1400 .
图8a是示出了根据本公开的示例实施例的在AR设备1000的镜腿191被偏置之前的光发射角度与图案的图,并且图8b是示出了根据本公开的示例实施例的在AR设备的镜腿被偏置之后的光发射角度和图案的图。8a is a diagram illustrating light emission angles and patterns before the temples 191 of the AR device 1000 are biased according to an example embodiment of the present disclosure, and FIG. 8b is a diagram illustrating a light emission angle according to an example embodiment of the present disclosure. Illustration of light emission angles and patterns after the temples of an AR device are offset.
参考图8a,在如图2所示的眼镜型AR设备1000中,在镜腿191被偏置之前,光发射器1510可以向其上形成有点图案的光反射器1400发射IR光。根据示例实施例,光发射器1510可以以第一光发射角度80向光反射器1400发射IR光,并且AR设备1000可以基于由光接收器1520接收到的IR光来识别第一图案82。Referring to FIG. 8a, in the glasses-type AR device 1000 as shown in FIG. 2, before the temples 191 are biased, the light emitter 1510 may emit IR light to the light reflector 1400 on which a dot pattern is formed. According to an example embodiment, the light emitter 1510 may emit IR light to the light reflector 1400 at a first light emission angle 80, and the AR device 1000 may identify the first pattern 82 based on the IR light received by the light receiver 1520.
此外,参考图8b,在如图2所示的眼镜型AR设备1000中,在镜腿191被偏置之后,光发射器1510可以以第二光发射角度90向光反射器1400发射IR光,并且AR设备1000可以基于由光接收器1520接收到的IR光来识别第二图案92。In addition, referring to FIG. 8b, in the glasses-type AR device 1000 as shown in FIG. 2, after the temples 191 are biased, the light emitter 1510 may emit IR light to the light reflector 1400 at a second light emission angle 90, And the AR device 1000 can recognize the second pattern 92 based on the IR light received by the light receiver 1520 .
如图8a和图8b所示,第一图案82和第二图案92可以包括彼此间距不同的点,并且AR设备1000可以将第一图案82和第二图案92进行比较,从而识别镜腿191的偏置程度。例如,关于第一图案82的偏置角度可以设置为“0”,并且关于第二图案92的偏置角度可以基于第一图案82中的点与第二图案92中的点之间的位置差异来计算。例如,关于第二图案92的偏置角度可以是第一光发射角度80和第二光发射角度90之间的差值。例如,当与第一出光角度80相对应的图案是第一图案82并且与第一光发射角度80相对应的图案是第二图案92时,处理器1800可以将第一图案82中的点的间距与第二图案92中的点的间距进行比较,从而识别第二图案92中的点的间距相对于第一图案82中的点的间距的差值,并且可以将所识别的差值输入到用于计算镜腿191的偏置程度的至少一个函数中,从而计算镜腿191的偏置程度,该偏置程度指示与第一图案82相对应的第一光发射角度80和与第二图案92相对应的第二光发射角度90之间的差。As shown in FIGS. 8a and 8b , the first pattern 82 and the second pattern 92 may include points with different distances from each other, and the AR device 1000 may compare the first pattern 82 and the second pattern 92 to identify the temple 191 degree of bias. For example, the offset angle with respect to the first pattern 82 may be set to "0", and the offset angle with respect to the second pattern 92 may be based on a position difference between points in the first pattern 82 and points in the second pattern 92 to calculate. For example, the offset angle with respect to the second pattern 92 may be the difference between the first light emission angle 80 and the second light emission angle 90 . For example, when the pattern corresponding to the first light emission angle 80 is the first pattern 82 and the pattern corresponding to the first light emission angle 80 is the second pattern 92, the processor 1800 may convert the dots in the first pattern 82 to The spacing is compared with the spacing of the dots in the second pattern 92, thereby identifying a difference in the spacing of the dots in the second pattern 92 relative to the spacing of the dots in the first pattern 82, and the identified difference can be input to In at least one function for calculating the degree of offset of the temple 191, thereby calculating the degree of offset of the temple 191, the offset degree indicating the first light emission angle 80 corresponding to the first pattern 82 and the second pattern 92 and the corresponding second light emission angle 90 .
此外,例如,当与第一出光角度80相对应的图案是第一图案82并且与第一光发射角度80相对应的图案是第二图案92时,处理器1800可以将第一图案82中的点的位置与第二图案92中的点的置位进行比较,从而识别第二图案92中的点的位置相对于第一图案82中的点的位置的差值,并且可以将所识别的差值输入到用于计算镜腿191的偏置程度的至少一个函数中,从而计算镜腿191的偏置程度,该偏置程度指示与第一图案82相对应的第一光发射角度80和与第二图案92相对应的第二光发射角度90之间的差。Furthermore, for example, when the pattern corresponding to the first light emission angle 80 is the first pattern 82 and the pattern corresponding to the first light emission angle 80 is the second pattern 92 , the processor 1800 may change the pattern in the first pattern 82 The position of the point is compared with the position of the point in the second pattern 92, thereby identifying a difference in the position of the point in the second pattern 92 relative to the position of the point in the first pattern 82, and the identified difference can be The value is input into at least one function for calculating the degree of offset of the temple 191, thereby calculating the degree of offset of the temple 191, the degree of offset being indicative of the first light emission angle 80 corresponding to the first pattern 82 and the The difference between the second light emission angles 90 corresponding to the second pattern 92 .
根据另一示例实施例,处理器1800可以基于第二图案92来识别镜腿191的偏置程度,而不将第一图案82和第二图案92进行比较。在这种情况下,处理器1800可以识别第二图案92中的点的间距的差值,并将所识别的差值输入到用于计算镜腿191的偏置程度的至少一个函数中,从而计算镜腿191的偏置程度。According to another example embodiment, the processor 1800 may identify the degree of offset of the temple 191 based on the second pattern 92 without comparing the first pattern 82 and the second pattern 92 . In this case, the processor 1800 may identify the difference in the spacing of the points in the second pattern 92 and input the identified difference into at least one function for calculating the offset degree of the temple 191, thereby Calculate the degree of offset of the temple 191.
图9是示出了根据本公开的示例实施例的当AR设备1000的光发射器是IR扫描仪1520-1或1520-2时从通过光接收器1520接收到的光的阵列中识别的图案的示例的图。9 is a diagram illustrating patterns recognized from an array of light received through the light receiver 1520 when the light emitter of the AR device 1000 is the IR scanner 1520-1 or 1520-2 according to an example embodiment of the present disclosure. Diagram of an example.
参考图9,IR扫描仪1520-1可以表示在如图2所示的眼镜型AR设备1000的支撑件190被偏置之前的IR扫描仪。IR扫描仪1520-1可以通过使用光反射器1400向用户眼睛所在的区域顺序地发射点光的IR光,并且光接收器1520可以接收第一光阵列90。Referring to FIG. 9 , the IR scanner 1520 - 1 may represent the IR scanner before the support 190 of the glasses-type AR device 1000 shown in FIG. 2 is biased. The IR scanner 1520 - 1 may sequentially emit point-light IR light toward an area where the user's eyes are located by using the light reflector 1400 , and the light receiver 1520 may receive the first light array 90 .
此外,IR扫描仪1520-2可以表示在AR设备1000的支撑件190被偏置之后的IR扫描仪。IR扫描仪1520-2可以通过使用光反射器1400向用户眼睛所在的区域顺序地发射点光的IR光,并且光接收器1520可以接收第二光阵列92。Furthermore, the IR scanner 1520-2 may represent the IR scanner after the support 190 of the AR device 1000 is biased. The IR scanner 1520 - 2 may sequentially emit point-light IR light toward an area where the user's eyes are located by using the light reflector 1400 , and the light receiver 1520 may receive the second light array 92 .
在第一光阵列90和第二光阵列92中,与光反射器1400的点图案相对应的光信号的位置和间隔可以彼此不同,并且AR设备1000可以将第一光阵列90中的与光反射器1400的点图案相对应的部分和第二光阵列92中的与光反射器1400的点图案相对应的部分进行比较。此外,AR设备1000可以基于比较的结果来识别AR设备1000的支撑件190的偏置程度。In the first light array 90 and the second light array 92 , the positions and intervals of the light signals corresponding to the dot patterns of the light reflector 1400 may be different from each other, and the AR device 1000 may combine the light signals in the first light array 90 with the light signals. The portion corresponding to the dot pattern of the reflector 1400 is compared with the portion of the second light array 92 corresponding to the dot pattern of the light reflector 1400 . In addition, the AR device 1000 may identify the degree of offset of the support 190 of the AR device 1000 based on the comparison result.
例如,由于向点图案发射的IR光未被光反射器1400反射,因此在第一光阵列90的与点图案相对应的部分90-1、90-2、90-3和90-4以及第二光阵列92的与点图案相对应的部分92-1、92-2、92-3和92-4中可以未接收到光信号。处理器1800可以识别第一光阵列90中的未接收到光信号的部分,从而识别第一光阵列90中与点图案相对应的部分90-1、90-2、90-3和90-4,并且识别IR扫描仪1520-1的坐标系上分别指示与点图案相对应的部分90-1、90-2、90-3和90-4的坐标值90-5、90-6、90-7和90-8。此外,例如,处理器1800可以识别第二光阵列92中的未接收到光信号的部分,从而识别第二光阵列92中与点图案相对应的部分92-1、92-2、92-3和92-4,并且识别IR扫描仪1520-2的坐标系上分别指示与点图案相对应的部分92-1、92-2、92-3和92-4的坐标值92-5、92-6、92-7和92-8。For example, since the IR light emitted toward the dot pattern is not reflected by the light reflector 1400, the portions 90-1, 90-2, 90-3, and 90-4 of the first light array 90 corresponding to the dot pattern and the third No optical signal may be received in the portions 92-1, 92-2, 92-3, and 92-4 of the two-light array 92 corresponding to the dot patterns. The processor 1800 may identify portions of the first light array 90 that do not receive the optical signal, thereby identifying portions 90-1, 90-2, 90-3, and 90-4 of the first light array 90 that correspond to the dot patterns. , and identify the coordinate values 90-5, 90-6, and 90- of the portions 90-1, 90-2, 90-3, and 90-4 corresponding to the dot pattern on the coordinate system of the IR scanner 1520-1, respectively. 7 and 90-8. Additionally, for example, the processor 1800 may identify portions of the second light array 92 that do not receive optical signals, thereby identifying portions 92-1, 92-2, 92-3 of the second light array 92 that correspond to the dot patterns. and 92-4, and identify the coordinate values 92-5, 92- of the portions 92-1, 92-2, 92-3 and 92-4 corresponding to the dot pattern on the coordinate system of the IR scanner 1520-2, respectively. 6, 92-7 and 92-8.
处理器1800可以将IR扫描仪1520-1的坐标系上分别指示第一光阵列90的与点图案相对应的部分90-1、90-2、90-3和90-4的坐标值90-5、90-6、90-7和90-8与IR扫描仪1520-2的坐标系上分别指示第二光阵列92的与点图案相对应的部分92-1、92-2、92-3和92-4的坐标值92-5、92-6、92-7和92-8进行比较,从而识别坐标值90-5、90-6、90-7和90-8与坐标值92-5、92-6、92-7和92-8之间的差。例如,处理器1800可以基于坐标值90-5和坐标值92-5之间的差值、坐标值90-6和坐标值92-6之间的差值、坐标值90-7和坐标值92-7之间的差值、以及坐标值90-8和坐标值92-8之间的差值来计算AR设备1000的支撑件190的偏置程度。The processor 1800 may respectively indicate the coordinate values 90-1, 90-2, 90-3 and 90-4 of the first light array 90 corresponding to the dot pattern on the coordinate system of the IR scanner 1520-1. 5, 90-6, 90-7 and 90-8 respectively indicate portions 92-1, 92-2 and 92-3 of the second light array 92 corresponding to the dot pattern on the coordinate system of the IR scanner 1520-2. Compare with the coordinate values 92-5, 92-6, 92-7 and 92-8 of 92-4 to identify the coordinate values 90-5, 90-6, 90-7 and 90-8 and the coordinate value 92-5 , the difference between 92-6, 92-7 and 92-8. For example, the processor 1800 may be based on the difference between coordinate value 90-5 and coordinate value 92-5, the difference between coordinate value 90-6 and coordinate value 92-6, the difference between coordinate value 90-7 and coordinate value 92 The difference between -7 and the difference between the coordinate value 90-8 and the coordinate value 92-8 is used to calculate the offset degree of the support 190 of the AR device 1000.
在图9中,为了便于描述,在图9中单独地示出了在AR设备1000的支撑件190被偏置之前的IR扫描仪1520-1和在AR设备1000的支撑件190被偏置之后的IR扫描仪1520-2,以便将在AR设备1000的支撑件190被偏置之前的IR扫描仪1520-1和在AR设备1000的支撑件190被偏置之后的IR扫描仪1520-2区分开。然而,在AR设备1000的支撑件190被偏置之前的IR扫描仪1520-1和在AR设备1000的支撑件190被偏置之后的IR扫描仪1520-2可以是安装在AR设备1000中的同一IR扫描仪。In FIG. 9 , for convenience of description, the IR scanner 1520 - 1 before the support 190 of the AR device 1000 is biased and after the support 190 of the AR device 1000 is biased are separately shown in FIG. 9 IR scanner 1520-2 to distinguish between IR scanner 1520-1 before support 190 of AR device 1000 is biased and IR scanner 1520-2 after support 190 of AR device 1000 is biased open. However, the IR scanner 1520-1 before the support 190 of the AR device 1000 is biased and the IR scanner 1520-2 after the support 190 of the AR device 1000 is biased may be installed in the AR device 1000 Same IR scanner.
此外,在图9中,为了便于描述,已经描述了一个第一光阵列90用于使用在支撑件190被偏置之前的IR扫描仪1520-1来识别点图案,并且一个第二光阵列92用于使用在AR设备1000的支撑件190被偏置之后的IR扫描仪1520-2来识别点图案,但本公开不限于此。用于覆盖点图案的多个光阵列可以用于使用在支撑件190被偏置之前的IR扫描仪1520-1来识别点图案,并且用于覆盖点图案的多个光阵列可以用于使用在支撑件190被偏置之后的IR扫描仪1520-2来识别点图案。Furthermore, in FIG. 9 , for convenience of description, a first light array 90 has been described for identifying the dot pattern using the IR scanner 1520 - 1 before the support 190 is biased, and a second light array 92 The dot pattern is recognized using the IR scanner 1520-2 after the support 190 of the AR device 1000 is biased, but the present disclosure is not limited thereto. Multiple light arrays for overlaying the dot pattern may be used to identify the dot pattern using the IR scanner 1520-1 before the support 190 is biased, and multiple light arrays for overlaying the dot pattern may be used to identify the dot pattern using the IR scanner 1520-1 before the support 190 is biased. The support 190 is biased followed by the IR scanner 1520-2 to identify the dot pattern.
图10是示出了根据本公开的示例实施例的当AR设备1000的光发射器是IR扫描仪1520-1或1520-2时从通过光接收器1520接收到的光的阵列中识别的眼睛特征的示例的图。10 is a diagram illustrating eyes recognized from an array of light received through the light receiver 1520 when the light emitter of the AR device 1000 is the IR scanner 1520-1 or 1520-2 according to an example embodiment of the present disclosure. Diagram of an example of a feature.
参考图10,在如图2所示的眼镜型AR设备1000的支撑件190被偏置之前的IR扫描仪1520-1可以通过使用光反射器1400向用户眼睛所在的区域顺序地发射点光的IR光,并且光接收器1520可以接收第三光阵列100。Referring to FIG. 10 , the IR scanner 1520 - 1 before the support 190 of the glasses-type AR device 1000 as shown in FIG. 2 is biased may sequentially emit point light to the area where the user's eyes are located by using the light reflector 1400 . IR light, and the light receiver 1520 can receive the third light array 100 .
此外,在AR设备1000的支撑件190被偏置之后,IR扫描仪1520-2可以通过使用光反射器1400向用户眼睛所在的区域顺序地发射点光的IR光,并且光接收器1520可以接收第四光阵列102。In addition, after the support 190 of the AR device 1000 is biased, the IR scanner 1520-2 may sequentially emit point-light IR light to an area where the user's eyes are located by using the light reflector 1400, and the light receiver 1520 may receive Fourth light array 102.
在第三光阵列100和第四光阵列102中,与眼睛的特征点相对应的光信号的位置和间距可以彼此不同。考虑到支撑件190的偏置角度,AR设备1000可以校准第四光阵列102中的与眼睛的特征点相对应的部分的位置。In the third light array 100 and the fourth light array 102, the positions and intervals of the light signals corresponding to the characteristic points of the eyes may be different from each other. Considering the offset angle of the support 190, the AR device 1000 may calibrate the position of the portion in the fourth light array 102 corresponding to the feature point of the eye.
例如,处理器1800可以基于第四光阵列102中的光的亮度来识别第四光阵列102中的与眼睛的闪烁特征点相对应的部分102-1,并识别IR扫描仪的坐标系上的指示与眼睛的闪烁特征点相对应的部分102-1的坐标值102-2。此后,处理器1800可以通过使用图9中计算的偏置角度来校准指示眼睛的闪烁特征点的坐标值102-2。例如,处理器1800可以将表示眼睛的闪烁特征点的坐标值102-2乘以图11的补偿矩阵18(将在下面进行描述),从而获得经校准的坐标值。For example, the processor 1800 may identify the portion 102-1 in the fourth light array 102 corresponding to the flicker feature point of the eye based on the brightness of the light in the fourth light array 102, and identify the portion 102-1 on the coordinate system of the IR scanner. The coordinate value 102-2 of the portion 102-1 corresponding to the flicker characteristic point of the eye is indicated. Thereafter, the processor 1800 may calibrate the coordinate value 102-2 of the flicker feature point indicating the eye by using the offset angle calculated in FIG. 9. For example, the processor 1800 may multiply the coordinate value 102-2 representing the flicker characteristic point of the eye by the compensation matrix 18 of FIG. 11 (to be described below), thereby obtaining the calibrated coordinate value.
在图10中,为了便于描述,在图10中单独地示出了在AR设备1000的支撑件190被偏置之前的IR扫描仪1520-1和在AR设备1000的支撑件190被偏置之后的IR扫描仪1520-2,以便将在AR设备1000的支撑件190被偏置之前的IR扫描仪1520-1和在AR设备1000的支撑件190被偏置之后的IR扫描仪1520-2区分开。然而,在AR设备1000的支撑件190被偏置之前的IR扫描仪1520-1和在AR设备1000的支撑件190被偏置之后的IR扫描仪1520-2是安装在AR设备1000中的同一IR扫描仪。In FIG. 10 , for convenience of description, the IR scanner 1520 - 1 before the support 190 of the AR device 1000 is biased and after the support 190 of the AR device 1000 is biased are separately shown in FIG. 10 IR scanner 1520-2 to distinguish between IR scanner 1520-1 before support 190 of AR device 1000 is biased and IR scanner 1520-2 after support 190 of AR device 1000 is biased open. However, the IR scanner 1520-1 before the support 190 of the AR device 1000 is biased and the IR scanner 1520-2 after the support 190 of the AR device 1000 is biased are the same ones installed in the AR device 1000. IR scanner.
此外,在图10中,为了便于描述,已经描述了第三光阵列100用于使用在支撑件190被偏置之前的IR扫描仪1520-1来识别眼睛的特征点,并且一个第四光阵列102用于使用在AR设备1000的支撑件190被偏置之后的IR扫描仪1520-2来识别眼睛的特征点,但本公开不限于此。用于覆盖用户眼睛的多个光阵列可以用于使用在支撑件190被偏置之前的IR扫描仪1520-1来识别眼睛的特征点,并且用于覆盖用户眼睛的多个光阵列可以用于使用在支撑件190被偏置之后的IR扫描仪1520-2来识别眼睛的特征点。In addition, in FIG. 10 , for convenience of description, it has been described that the third light array 100 is used to identify feature points of the eye using the IR scanner 1520 - 1 before the support 190 is biased, and a fourth light array 102 is used to identify feature points of the eyes using the IR scanner 1520-2 after the support 190 of the AR device 1000 is biased, but the present disclosure is not limited thereto. Multiple light arrays for covering the user's eyes may be used to identify feature points of the eyes using the IR scanner 1520-1 before the support 190 is biased, and multiple light arrays for covering the user's eyes may be used to Characteristic points of the eye are identified using the IR scanner 1520-2 after the support 190 is biased.
图11是示出了根据本公开的示例实施例的由AR设备1000使用以计算眼球的中心并计算用户的凝视点16的函数的示例的图。11 is a diagram illustrating an example of a function used by the AR device 1000 to calculate the center of the eyeball and calculate the user's gaze point 16 according to an example embodiment of the present disclosure.
等式11表示IR相机的坐标系中的眼睛的瞳孔中心的坐标值12与真实空间中表示眼球的中心的坐标值13之间的关系。在本公开的示例实施例中,IR相机的坐标系的坐标值12可以具有2D坐标值,并且真实空间的坐标值13可以具有2D坐标值或3D坐标值。Equation 11 represents the relationship between the coordinate value 12 of the pupil center of the eye in the coordinate system of the IR camera and the coordinate value 13 representing the center of the eyeball in real space. In an example embodiment of the present disclosure, the coordinate value 12 of the coordinate system of the IR camera may have a 2D coordinate value, and the coordinate value 13 of the real space may have a 2D coordinate value or a 3D coordinate value.
例如,当将表示眼球中心的坐标值13乘以相机旋转矩阵20和缩放因子并且加上表示图像中的偏置的值时,可以计算眼睛的瞳孔中心的坐标值12。相机旋转矩阵20是考虑到相机设置的位置将真实空间中的坐标值转换为相机的坐标系的坐标值的矩阵。通过将表示眼球中心的坐标值13乘以相机旋转矩阵20,可以将表示眼球中心的坐标值13转换为IR相机的坐标系的坐标值,并且经转换的坐标值的大小可以通过将经转换的坐标值乘以缩放因子来进行归一化。此外,通过将指示图像中的偏置的值添加到经归一化的坐标值的大小,可以通过反映图像中的偏置来校正经归一化的2D坐标值,使得可以计算眼睛的瞳孔中心的坐标值12。此外,表示图像中的偏置的值可以用于将由IR相机捕获的图像中的眼睛位置布置在参考位置处。例如,表示图像中的偏置的值可以是用于基于由IR相机捕获的图像的中心点与所捕获的图像中的眼睛中心点之间的差来将所捕获的图像中的眼睛中心点移动到所捕获的图像的中心点的值。For example, when the coordinate value 13 representing the center of the eyeball is multiplied by the camera rotation matrix 20 and the scaling factor and a value representing the offset in the image is added, the coordinate value 12 of the pupil center of the eye can be calculated. The camera rotation matrix 20 is a matrix that converts coordinate values in the real space into coordinate values in the coordinate system of the camera in consideration of the position where the camera is installed. By multiplying the coordinate value 13 representing the center of the eyeball by the camera rotation matrix 20, the coordinate value 13 representing the center of the eyeball can be converted into a coordinate value of the coordinate system of the IR camera, and the size of the converted coordinate value can be determined by converting Coordinate values are normalized by multiplying them by a scaling factor. Furthermore, by adding a value indicating the offset in the image to the magnitude of the normalized coordinate value, the normalized 2D coordinate value can be corrected by reflecting the offset in the image, allowing the pupil center of the eye to be calculated The coordinate value is 12. Furthermore, the value representing the offset in the image may be used to place the eye position in the image captured by the IR camera at a reference position. For example, a value representing an offset in an image may be a value for moving the center point of the eye in the captured image based on a difference between the center point of the image captured by the IR camera and the center point of the eye in the captured image. The value to the center point of the captured image.
在本公开的示例实施例中,相机旋转矩阵20、缩放因子和表示图像中的偏置的值可以考虑到例如设置IR LED的位置、设置IR相机的位置、IR相机的捕获方向、IR相机的视角、由IR相机捕获的图像、与人类眼睛相关的信息(例如,眼球尺寸、瞳孔尺寸等)、先前捕获的眼睛图像等来确定,并且可以在AR设备1000的制造期间预先设置在AR设备1000中。In an example embodiment of the present disclosure, the camera rotation matrix 20, the scaling factor, and the value representing the bias in the image may take into account, for example, where the IR LED is set, where the IR camera is set, the capture direction of the IR camera, the IR camera's The viewing angle, images captured by the IR camera, information related to human eyes (e.g., eyeball size, pupil size, etc.), previously captured eye images, etc., may be determined in advance on the AR device 1000 during manufacturing of the AR device 1000 middle.
在本公开的示例实施例中,AR设备1000可以将眼睛的瞳孔中心的坐标值12输入到等式11中,从而获得表示眼球的中心的坐标值13。In an example embodiment of the present disclosure, the AR device 1000 may input the coordinate value 12 of the pupil center of the eye into Equation 11, thereby obtaining the coordinate value 13 representing the center of the eyeball.
等式15可以表示值17与用户的凝视点16之间的关系,值17表示眼睛的特征点。例如,可以通过将表示眼睛的特征点的值17乘以补偿矩阵18来获得通过反映支撑件190的偏置而校准的特征点。此外,通过将值(该值是通过将表示眼睛的特征点的值17乘以补偿矩阵18而获得的)输入到映射函数F中而输出的值19可以是表示用户的凝视点的坐标值16。补偿矩阵18可以是用于补偿支撑件190的偏置程度的矩阵。可以通过在图2的AR设备1000的支撑件190未被偏置的状态下从IR相机捕获的图像与在AR设备1000的支撑件190被偏置的状态下由IR相机捕获的图像之间的比较来确定补偿矩阵18,并且补偿矩阵18可以在AR设备1000的制造期间预先设置在AR设备1000中。例如,考虑到支撑件190的偏置程度,补偿矩阵18可以被确定为使得在支撑件190被偏置的状态下从IR相机捕获的图像可以被转换为在支撑件190未被偏置的状态下由IR相机捕获的图像。然而,确定补偿矩阵18的示例不限于此。Equation 15 can represent the relationship between the value 17, which represents the characteristic point of the eye, and the user's gaze point 16. For example, the feature points calibrated by reflecting the offset of the support 190 can be obtained by multiplying the value 17 of the feature point representing the eye by the compensation matrix 18 . Furthermore, the value 19 output by inputting a value 17 representing the characteristic point of the eye by the compensation matrix 18 into the mapping function F may be the coordinate value 16 representing the user's gaze point. . The compensation matrix 18 may be a matrix for compensating the degree of offset of the support 190 . It can be determined by comparing the image captured from the IR camera in a state where the support 190 of the AR device 1000 is not biased and the image captured by the IR camera in a state where the support 190 of the AR device 1000 is biased. The compensation matrix 18 is determined by comparison, and the compensation matrix 18 may be preset in the AR device 1000 during manufacturing of the AR device 1000 . For example, taking into account the degree of bias of the support 190 , the compensation matrix 18 may be determined such that an image captured from an IR camera in a state in which the support 190 is biased may be converted to a state in which the support 190 is not biased. Below is an image captured by an IR camera. However, the example of determining the compensation matrix 18 is not limited to this.
例如,补偿矩阵18可以通过在支撑件190未被偏置的状态下从由IR相机捕获的图像获得的信息与从在AR设备1000的支撑件190被偏置的状态下从由IR相机捕获的图像获得的信息之间的比较来确定。从图像获得的数据可以包括例如图像的尺寸、眼睛在图像中的位置、瞳孔在图像中的位置、图案在图像中的位置等,但本公开不限于此。For example, the compensation matrix 18 may be obtained by comparing information obtained from an image captured by an IR camera in a state in which the support 190 is not biased with information obtained from an image captured by an IR camera in a state in which the support 190 of the AR device 1000 is biased. Determined by comparison between the information obtained from the images. The data obtained from the image may include, for example, the size of the image, the position of the eyes in the image, the position of the pupil in the image, the position of the pattern in the image, etc., but the present disclosure is not limited thereto.
备选地,例如,补偿矩阵18可以通过将在支撑件190未被偏置的状态下从IR相机捕获的图像与从在AR设备1000的支撑件190被偏置的状态下从由IR相机捕获的图像获得的信息进行比较来确定。备选地,例如,补偿矩阵18可以通过将从在支撑件190未被偏置的状态下从IR相机捕获的图像获得的信息与在AR设备1000的支撑件190被偏置的状态下由IR相机捕获的图像进行比较来确定。Alternatively, for example, the compensation matrix 18 may be obtained by comparing an image captured from an IR camera in a state in which the support 190 is not biased with an image captured from an IR camera in a state in which the support 190 of the AR device 1000 is biased. The information obtained from the images is compared to determine. Alternatively, for example, the compensation matrix 18 may be obtained by comparing information obtained from an image captured from an IR camera in a state where the support 190 is not biased with a state in which the support 190 of the AR device 1000 is biased. The images captured by the camera are compared to determine.
此外,作为用于从眼睛的特征点计算用户的凝视点的函数的映射函数F可以被确定为使得用户的凝视点是从奖励矩阵18和眼睛的特征点计算的,并且可以在AR设备1000的制造期间预先设置在AR设备1000中。Furthermore, the mapping function F that is a function for calculating the user's gaze point from the feature points of the eyes may be determined such that the user's gaze point is calculated from the reward matrix 18 and the feature points of the eyes, and may be used in the AR device 1000 It is previously set in the AR device 1000 during manufacturing.
AR设备1000可以使用等式15从眼睛的特征点的位置来获得表示用户的凝视点的坐标值16。The AR device 1000 may obtain the coordinate value 16 representing the user's gaze point from the position of the feature point of the eye using Equation 15.
图12是根据本公开的示例实施例的由图2和图3的AR设备1000执行的检测用户凝视的方法的流程图。FIG. 12 is a flowchart of a method of detecting user gaze performed by the AR device 1000 of FIGS. 2 and 3 according to an example embodiment of the present disclosure.
在操作S1200中,AR设备1000可以通过光发射器1510向光反射器1400发射IR光,该光发射器1510安装在从AR设备1000的框架110延伸的支撑件190上。AR设备1000可以向光反射器1400的至少部分区域发射IR光,使得被光反射器1400反射的IR光可以覆盖用户眼睛。In operation S1200, the AR device 1000 may emit IR light to the light reflector 1400 through the light emitter 1510, which is installed on the support 190 extending from the frame 110 of the AR device 1000. The AR device 1000 may emit IR light to at least a partial area of the light reflector 1400 so that the IR light reflected by the light reflector 1400 may cover the user's eyes.
例如,当光接收器1520是IR相机时,光发射器1510可以是IR LED,并且AR设备1000可以控制IR LED,使得从IR LED发射的IR光可以被光反射器1400反射并且可以覆盖用户眼睛,以便IR相机捕获用户眼睛。备选地,例如,当光接收器1520是IR检测器时,光发射器1510可以是IR扫描仪,并且AR设备1000可以控制IR扫描仪通过使用光反射器1400反射从IR扫描仪发射的IR光来扫描用户眼睛,使得IR检测器可以检测用户眼睛。For example, when the light receiver 1520 is an IR camera, the light emitter 1510 may be an IR LED, and the AR device 1000 may control the IR LED such that the IR light emitted from the IR LED may be reflected by the light reflector 1400 and may cover the user's eyes , so that the IR camera captures the user's eyes. Alternatively, for example, when the light receiver 1520 is an IR detector, the light emitter 1510 may be an IR scanner, and the AR device 1000 may control the IR scanner to reflect the IR emitted from the IR scanner using the light reflector 1400 The light is used to scan the user's eyes so that the IR detector can detect the user's eyes.
在操作S1205中,AR设备1000可以通过安装在从AR设备1000的框架110延伸的支撑件190上的光接收器1520接收被用户眼睛反射并被光反射器1400反射回来的IR光。In operation S1205, the AR device 1000 may receive the IR light reflected by the user's eyes and reflected back by the light reflector 1400 through the light receiver 1520 installed on the support 190 extending from the frame 110 of the AR device 1000.
例如,当光发射器1510是IR LED时,光接收器1520可以是IR相机,并且AR设备1000可以控制IR相机通过来自用户眼睛的被反射器1400反射的光来捕获用户眼睛。备选地,例如,当光发射器1510是IR扫描仪时,光接收器1520可以是IR检测器,并且AR设备1000可以控制IR检测器检测被用户眼睛反射并被光反射器1400反射回来的IR光,使得IR检测器可以检测用户眼睛。For example, when the light emitter 1510 is an IR LED, the light receiver 1520 may be an IR camera, and the AR device 1000 may control the IR camera to capture the user's eyes through light from the user's eyes reflected by the reflector 1400. Alternatively, for example, when the light emitter 1510 is an IR scanner, the light receiver 1520 may be an IR detector, and the AR device 1000 may control the IR detector to detect the light reflected by the user's eyes and reflected back by the light reflector 1400 IR light, allowing the IR detector to detect the user's eyes.
在操作S1210中,AR设备1000可以基于所接收到的IR光来检测预先设置的与用户眼睛的凝视相关的特征。例如,AR设备1000可以检测用户眼睛的瞳孔特征点的位置和眼睛的闪烁特征点的位置。瞳孔特征点可以是例如瞳孔中心点,并且眼睛的闪烁特征点可以是所检测的眼睛区域中的亮度大于或等于特定值的部分。瞳孔特征点的位置和眼睛的闪烁特征点的位置可以例如通过在光接收器1520的坐标系中指示位置的坐标值来识别。例如,光接收器1520的坐标系可以是IR相机的坐标系或IR检测器的坐标系,并且光接收器1520的坐标系中的坐标值可以是2D坐标值。In operation S1210, the AR device 1000 may detect preset characteristics related to the gaze of the user's eyes based on the received IR light. For example, the AR device 1000 may detect the position of the pupil feature point of the user's eye and the position of the flicker feature point of the eye. The pupil feature point may be, for example, a pupil center point, and the flicker feature point of the eye may be a portion of the detected eye area where the brightness is greater than or equal to a specific value. The position of the pupil feature point and the position of the eye's flicker feature point can be identified, for example, by coordinate values indicating the position in the coordinate system of the light receiver 1520 . For example, the coordinate system of the light receiver 1520 may be the coordinate system of the IR camera or the coordinate system of the IR detector, and the coordinate values in the coordinate system of the light receiver 1520 may be 2D coordinate values.
AR设备1000可以通过分析由光接收器1520接收到的光来检测预先设置的与眼睛的凝视相关的特征。例如,当光接收器1520是IR相机时,AR设备1000可以在由IR相机捕获的图像中识别瞳孔特征点的位置和眼睛的闪烁特征点的位置。备选地,例如,当光接收器1520是IR检测器时,AR设备1000可以分析由IR检测器检测到的IR光,从而识别瞳孔特征点的位置和眼睛的闪烁特征点的位置。The AR device 1000 may detect preset characteristics related to the gaze of the eye by analyzing light received by the light receiver 1520 . For example, when the light receiver 1520 is an IR camera, the AR device 1000 can identify the position of the pupil feature point and the position of the blink feature point of the eye in an image captured by the IR camera. Alternatively, for example, when the light receiver 1520 is an IR detector, the AR device 1000 may analyze the IR light detected by the IR detector, thereby identifying the position of the pupil feature point and the position of the blink feature point of the eye.
此外,AR设备1000可以分析由光接收器1520接收到的光,从而获得指示瞳孔特征点位置的坐标值和指示眼睛的闪烁特征点位置的坐标值。例如,当光接收器1520是IR相机时,AR设备1000可以从IR相机的坐标系获得瞳孔特征点的坐标值和眼睛的闪烁特征点的坐标值。例如,当光接收器1520是IR相机时,AR设备1000可以在由IR相机捕获的图像中识别瞳孔中心点的位置。例如,瞳孔中心点的位置可以具有IR相机的坐标系中的坐标值。In addition, the AR device 1000 may analyze the light received by the light receiver 1520, thereby obtaining coordinate values indicating the position of the pupil feature point and coordinate values indicating the position of the flash feature point of the eye. For example, when the light receiver 1520 is an IR camera, the AR device 1000 may obtain the coordinate values of the pupil feature point and the coordinate value of the blink feature point of the eye from the coordinate system of the IR camera. For example, when the light receiver 1520 is an IR camera, the AR device 1000 can identify the location of the pupil center point in an image captured by the IR camera. For example, the position of the pupil center point may have coordinate values in the coordinate system of the IR camera.
例如,AR设备1000可以识别由IR相机捕获的图像中的最亮点的位置,以识别眼睛的闪烁特征点。AR设备1000可以识别通过包括多个光电二极管的IR相机的图像传感器接收到的IR光的亮度,并且可以在由IR相机捕获的图像的像素中识别与等于或大于特定参考的明亮IR光相对应的至少一个像素,从而识别眼睛的闪烁特征点的位置。例如,AR设备1000可以在由IR相机捕获的图像的像素中识别与最亮IR光相对应的像素,从而识别眼睛的闪烁特征点的位置。例如,眼睛的闪烁特征点的位置可以具有IR相机的坐标系中的坐标值。For example, the AR device 1000 can identify the position of the brightest point in an image captured by an IR camera to identify a flicker characteristic point of the eye. The AR device 1000 can identify the brightness of IR light received through an image sensor of an IR camera including a plurality of photodiodes, and can identify in pixels of an image captured by the IR camera corresponding to bright IR light that is equal to or greater than a specific reference At least one pixel of the image is used to identify the location of the flashing feature point of the eye. For example, the AR device 1000 can identify pixels corresponding to the brightest IR light among the pixels of an image captured by an IR camera, thereby identifying the location of a flash feature point of the eye. For example, the position of the blink feature point of the eye may have coordinate values in the coordinate system of the IR camera.
备选地,例如,当光接收器1520是IR检测器时,AR设备1000可以计算IR检测器的坐标系中的瞳孔特征点的坐标值和眼睛的闪烁特征点的坐标值。Alternatively, for example, when the light receiver 1520 is an IR detector, the AR device 1000 may calculate coordinate values of the pupil feature point and coordinate values of the flicker feature point of the eye in the coordinate system of the IR detector.
当光发射器1510是IR扫描仪时,AR设备1000可控制IR扫描仪顺序地使点光源或线光源照射以覆盖用户眼睛所在的区域,并通过IR检测器顺序地接收从用户眼睛反射的光,以扫描用户眼睛所在的区域。此外,AR设备1000可以分析通过IR检测器顺序接收到的光的阵列,从而识别眼睛的瞳孔特征点和闪烁特征点。例如,AR设备1000可以在所接收到的光阵列中识别亮度等于或大于特定值的光,从而识别眼睛的闪烁特征点的坐标。例如,眼睛的闪烁特征点的位置可以具有IR检测器的坐标系中的坐标值。When the light emitter 1510 is an IR scanner, the AR device 1000 can control the IR scanner to sequentially illuminate the point light source or the line light source to cover the area where the user's eyes are, and sequentially receive the light reflected from the user's eyes through the IR detector. , to scan the area where the user's eyes are. Furthermore, the AR device 1000 can analyze an array of light sequentially received through the IR detector, thereby identifying pupil feature points and flicker feature points of the eye. For example, the AR device 1000 can identify light whose brightness is equal to or greater than a specific value in the received light array, thereby identifying the coordinates of the blinking feature point of the eye. For example, the position of the eye's flicker feature point may have coordinate values in the coordinate system of the IR detector.
在操作S1215中,AR设备1000可以基于所接收到的IR光来检测光反射器1400的图案。光反射器1400可以涂覆在AR设备1000的波导170的一个表面上以具有特定图案。AR设备1000可以通过光接收器1520接收被用户眼睛反射并被光反射器1400反射的IR光,并基于所接收到的IR光来识别图案的形状。形成在光反射器1400上的图案可以包括例如点图案、线图案、网格图案、2D标记物等,但本公开不限于此。当镜腿191相对于框架110偏置时,由图案检测代码1740识别的图案可以具有变形的形状。In operation S1215, the AR device 1000 may detect the pattern of the light reflector 1400 based on the received IR light. The light reflector 1400 may be coated on one surface of the waveguide 170 of the AR device 1000 to have a specific pattern. The AR device 1000 may receive the IR light reflected by the user's eyes and reflected by the light reflector 1400 through the light receiver 1520 and recognize the shape of the pattern based on the received IR light. Patterns formed on the light reflector 1400 may include, for example, dot patterns, line patterns, grid patterns, 2D markers, etc., but the present disclosure is not limited thereto. When temples 191 are offset relative to frame 110, the pattern identified by pattern detection code 1740 may have a distorted shape.
例如,当光接收器1520是IR相机时,IR相机可以基于被光反射器1400反射的IR光来捕获用户眼睛,并且AR设备1000可以从通过捕获用户眼睛而获得的图像识别图像内的图案。例如,当光接收器1520是IR检测器时,IR检测器可以顺序地接收被光反射器1400反射的IR光,并且AR设备1000可以识别顺序接收到的IR光的阵列中的与光反射器1400的图案相关的部分。For example, when the light receiver 1520 is an IR camera, the IR camera can capture the user's eyes based on the IR light reflected by the light reflector 1400, and the AR device 1000 can recognize a pattern within the image from the image obtained by capturing the user's eyes. For example, when the light receiver 1520 is an IR detector, the IR detector may sequentially receive the IR light reflected by the light reflector 1400, and the AR device 1000 may identify an array of the sequentially received IR light that is consistent with the light reflector. 1400 pattern related parts.
在操作S1220中,AR设备1000可以确定AR设备1000的支撑件190相对于框架110偏置的程度。当在支撑件190相对于框架110偏置之后接收到IR光时,AR设备1000可以从所接收到的IR光识别具有变形形状的图案。此外,例如,如在图8a和图8b中,AR设备1000可以将具有变形形状的图案与未变形图案进行比较,从而估计支撑件190的偏置程度。例如,镜腿191的偏置程度可以表示为偏置角度,该偏置角度指示镜腿191相对于框架110的默认角度与偏置的镜腿191相对于框架110的角度之间的差,但本公开不限于此。此外,例如,鼻子支撑件192的偏置程度可以表示为偏置角度,该偏置角度指示鼻子支撑件192相对于框架110的默认角度与偏置的鼻子支撑件192相对于框架110的角度之间的差,但本公开不限于此。In operation S1220, the AR device 1000 may determine the degree to which the support 190 of the AR device 1000 is offset relative to the frame 110. When receiving IR light after the support 190 is biased relative to the frame 110, the AR device 1000 may recognize a pattern having a deformed shape from the received IR light. Furthermore, for example, as in FIGS. 8a and 8b , the AR device 1000 may compare a pattern with a deformed shape with an undeformed pattern, thereby estimating the degree of bias of the support 190 . For example, the degree of offset of the temple 191 may be expressed as an offset angle indicating the difference between the default angle of the temple 191 relative to the frame 110 and the offset angle of the temple 191 relative to the frame 110, but The present disclosure is not limited thereto. Additionally, for example, the degree of offset of nose support 192 may be expressed as an offset angle indicating the default angle of nose support 192 relative to frame 110 and the offset angle of nose support 192 relative to frame 110 . difference between, but the present disclosure is not limited to this.
此外,例如,当光接收器1520是IR检测器时,瞳孔特征点的坐标值和眼睛的闪烁特征点的坐标值可以是通过反映AR设备1000的支撑件190的偏置程度而校准的值。当光接收器1520是IR检测器时,例如,当计算与图10的光阵列102中的对应于眼睛的特征点的IR光102-1相对应的坐标值102-2时,可以反映支撑件190的偏置程度。例如,通过反映支撑件190的偏置程度,AR设备1000可以校准由IR检测器接收到的光阵列102中的光中的与光阵列102中眼睛的特征点相对应的光102-1的位置。AR设备1000可以基于光阵列102中的与眼睛的特征点相对应的光102-1的经校准的位置来直接计算IR检测器的坐标系中的与眼睛的特征点相对应的坐标值102。在这种情况下,AR设备1000可以计算通过反映AR设备1000的镜腿191的偏置程度和/或鼻子支撑件192的偏置程度而校准的瞳孔特征点的坐标值和眼睛的闪烁特征点的坐标值。可以将经校准的坐标值输入到映射函数中。Furthermore, for example, when the light receiver 1520 is an IR detector, the coordinate value of the pupil feature point and the coordinate value of the flicker feature point of the eye may be values calibrated by reflecting the offset degree of the support 190 of the AR device 1000 . When the light receiver 1520 is an IR detector, for example, when calculating the coordinate value 102-2 corresponding to the IR light 102-1 corresponding to the feature point of the eye in the light array 102 of FIG. 10, the support may be reflected 190 degree of bias. For example, by reflecting the degree of offset of the support 190, the AR device 1000 can calibrate the position of the light 102-1 in the light array 102 received by the IR detector that corresponds to the characteristic point of the eye in the light array 102. . The AR device 1000 may directly calculate the coordinate value 102 corresponding to the feature point of the eye in the coordinate system of the IR detector based on the calibrated position of the light 102 - 1 in the light array 102 corresponding to the feature point of the eye. In this case, the AR device 1000 may calculate the coordinate values of the pupil feature points and the flicker feature points of the eyes calibrated by reflecting the offset degree of the temples 191 of the AR device 1000 and/or the offset degree of the nose support 192 coordinate value. Calibrated coordinate values can be input into the mapping function.
在操作S1225中,AR设备1000可以基于从光反射器1400反射的IR光来识别用户眼睛的瞳孔位置。例如,当光接收器1520是IR相机时,AR设备1000可以从由IR相机捕获的图像中识别图像内的用户眼睛的瞳孔位置。备选地,例如,当光接收器1520是IR检测器时,AR设备1000可以分析由IR检测器顺序获得的IR光,从而计算用户眼睛的瞳孔位置。AR设备1000可以识别用户眼睛的瞳孔中心点,从而识别用户眼睛的瞳孔位置。In operation S1225, the AR device 1000 may identify the pupil position of the user's eye based on the IR light reflected from the light reflector 1400. For example, when the light receiver 1520 is an IR camera, the AR device 1000 can identify the pupil position of the user's eye within the image from the image captured by the IR camera. Alternatively, for example, when the light receiver 1520 is an IR detector, the AR device 1000 may analyze the IR light sequentially obtained by the IR detector, thereby calculating the pupil position of the user's eye. The AR device 1000 can identify the pupil center point of the user's eye, thereby identifying the pupil position of the user's eye.
在操作S1230,AR设备1000可以获得用户的凝视方向。AR设备1000可以计算用户眼睛的中心的位置。用户眼睛的中心可以是用户眼球的中心。AR设备1000可以基于用户眼睛的瞳孔位置和支撑件190的偏置程度来计算用户眼睛的中心的位置。例如,处理器1800可以计算用户眼睛的中心的位置,使得基于用于校准支撑件190的偏置程度的矩阵、指示用户眼睛的中心的位置的值、以及通过捕获用户眼睛而获得的图像的轴的偏置而计算的值可以是由瞳孔位置检测代码1760获得的用户眼睛的瞳孔位置的值。例如,眼睛的中心可以是眼球的中心,并且用户眼睛的中心的位置可以具有真实空间的坐标系中的3D坐标值。In operation S1230, the AR device 1000 can obtain the user's gaze direction. The AR device 1000 can calculate the position of the center of the user's eyes. The center of the user's eye may be the center of the user's eyeball. The AR device 1000 may calculate the position of the center of the user's eye based on the pupil position of the user's eye and the offset degree of the support 190 . For example, the processor 1800 may calculate the position of the center of the user's eye based on a matrix for calibrating the degree of offset of the support 190 , a value indicating the position of the center of the user's eye, and an axis of an image obtained by capturing the user's eye. The value calculated for the offset may be the value of the pupil position of the user's eye obtained by the pupil position detection code 1760 . For example, the center of the eye may be the center of the eyeball, and the position of the center of the user's eye may have a 3D coordinate value in the coordinate system of the real space.
AR设备1000可以计算用户的凝视点的位置。为了计算用户的凝视点的位置,AR设备1000可以预先生成用于从用户眼睛的特征计算凝视点的位置的映射函数。映射函数是用于考虑用户眼睛的特征和支撑件190的偏置信息来计算用户凝视点的位置的函数,并且可以在校准代码1780的校准过程期间生成。例如,凝视点的位置可以具有真实空间中的坐标系中的3D坐标值,但本公开不限于此。例如,凝视点的位置可以具有波导170的坐标系中的坐标值,但不限于此。The AR device 1000 can calculate the position of the user's gaze point. In order to calculate the position of the user's gaze point, the AR device 1000 may pre-generate a mapping function for calculating the position of the gaze point from the characteristics of the user's eyes. The mapping function is a function used to calculate the location of the user's gaze point taking into account the characteristics of the user's eyes and the offset information of the support 190 , and may be generated during the calibration process of the calibration code 1780 . For example, the position of the gaze point may have a 3D coordinate value in a coordinate system in real space, but the present disclosure is not limited thereto. For example, the position of the gaze point may have coordinate values in the coordinate system of the waveguide 170, but is not limited thereto.
AR设备1000可以基于从偏置确定代码1750获得的偏置程度来校准与用户的凝视相关的特征。此外,AR设备1000可以将基于偏置程度校准的与用户凝视相关的特征应用到映射函数,从而计算用户的凝视点的位置。此外,可以基于用户眼睛的中心点的位置和通过凝视确定代码1770计算的用户的凝视点来确定用户的凝视方向。The AR device 1000 may calibrate features related to the user's gaze based on the degree of offset obtained from the offset determination code 1750 . In addition, the AR device 1000 may apply the features related to the user's gaze calibrated based on the degree of offset to the mapping function, thereby calculating the position of the user's gaze point. Furthermore, the user's gaze direction may be determined based on the position of the center point of the user's eyes and the user's gaze point calculated by the gaze determination code 1770 .
同时,AR设备1000可以基于支撑件190的偏置角度来校准映射函数。AR设备1000可以基于默认的偏置角度和眼睛的特征来校准用于获得用户的凝视点的映射函数。Meanwhile, the AR device 1000 may calibrate the mapping function based on the offset angle of the support 190 . The AR device 1000 may calibrate the mapping function for obtaining the user's gaze point based on the default offset angle and the characteristics of the eye.
例如,当光接收器1520是IR相机时,AR设备1000可以通过波导170显示用于校准的目标点,并且通过使用IR相机来捕获注视目标点的用户眼睛。此外,处理器1800可以识别并分析通过捕获用户眼睛而获得的图像内的图案,从而获得支撑件190的偏置角度。此外,AR设备1000可以从通过捕获用户眼睛而获得的图像中检测与用户眼睛相关的特征点的位置,并将用户眼睛的特征点的位置和支撑件190的偏置角度输入到映射函数中。AR设备1000可以校准映射函数,使得可以从输入了用户眼睛的特征点的位置和支撑件190的偏置角度的映射函数中输出目标点的位置值。For example, when the light receiver 1520 is an IR camera, the AR device 1000 can display a target point for calibration through the waveguide 170 and capture the user's eyes looking at the target point by using the IR camera. In addition, the processor 1800 may identify and analyze patterns within an image obtained by capturing the user's eyes, thereby obtaining the offset angle of the support 190 . In addition, the AR device 1000 may detect the position of a feature point related to the user's eye from an image obtained by capturing the user's eye, and input the position of the feature point of the user's eye and the offset angle of the support 190 into the mapping function. The AR device 1000 can calibrate the mapping function so that the position value of the target point can be output from the mapping function in which the position of the feature point of the user's eye and the offset angle of the support 190 are input.
例如,当光接收器1520是IR检测器时,AR设备1000可以在波导170上显示用于校准的目标点,并控制IR扫描仪发射用于扫描注视目标点的用户眼睛的IR光。此外,AR设备1000可以通过IR检测器接收并分析从用户眼睛反射的IR光,识别光反射器1400的图案,以及估计镜腿191的偏置角度。AR设备1000可以基于镜腿191的偏置角度来分析IR光,从而识别眼睛的经校准的特征点的位置。例如,当AR设备1000通过使用IR扫描仪和IR检测器来估计眼睛的特征点的位置时,由于估计眼睛的特征点位置的结果受到IR扫描仪的操作角度的影响,因此眼睛的特征点的位置可以基于支撑件190的偏置通过计算通过从IR扫描仪的操作角度减去支撑件190的偏置角度而获得的值来校准。For example, when the light receiver 1520 is an IR detector, the AR device 1000 may display a target point for calibration on the waveguide 170 and control the IR scanner to emit IR light for scanning the user's eyes looking at the target point. In addition, the AR device 1000 can receive and analyze the IR light reflected from the user's eyes through the IR detector, identify the pattern of the light reflector 1400, and estimate the offset angle of the temples 191. The AR device 1000 may analyze the IR light based on the offset angle of the temple 191 to identify the position of the calibrated feature point of the eye. For example, when the AR device 1000 estimates the position of the feature point of the eye by using the IR scanner and the IR detector, since the result of estimating the position of the feature point of the eye is affected by the operating angle of the IR scanner, the feature point of the eye The position may be calibrated based on the offset of the support 190 by calculating a value obtained by subtracting the offset angle of the support 190 from the operating angle of the IR scanner.
此外,AR设备1000可以将眼睛的经校准的特征点的位置输入到映射函数中,并校准映射函数,使得可以从输入了眼睛的经校准的特征点的位置的映射函数中输出目标点的位置值。Furthermore, the AR device 1000 may input the position of the calibrated feature point of the eye into the mapping function and calibrate the mapping function such that the position of the target point may be output from the mapping function in which the position of the calibrated feature point of the eye is input. value.
本公开的示例实施例可以被实现为包括计算机可读指令(例如,计算机可执行程序模块)的记录介质。根据示例实施例,计算机可读指令可以是被实现为一个或多个计算机可执行程序模块的计算机代码。计算机可读介质可以是可由计算机访问的任何可用介质,并且可以包括易失性或非易失性介质以及可移除或不可移除介质。此外,计算机可读介质可以包括计算机存储介质和通信介质。计算机存储介质包括以用于存储诸如计算机可读指令、数据结构、程序代码、程序模块或其他数据之类的信息的任何方法或技术实现的易失性和非易失性、可移除和不可移除介质。通信介质通常可以包括计算机可读指令、数据结构、或调制数据信号的其他数据(例如,程序模块)。Example embodiments of the present disclosure may be implemented as a recording medium including computer-readable instructions (eg, computer-executable program modules). According to example embodiments, computer-readable instructions may be computer code implemented as one or more computer-executable program modules. Computer-readable media can be any available media that can be accessed by the computer and can include volatile or nonvolatile media and removable or non-removable media. In addition, computer-readable media may include computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-volatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program code, program modules or other data. Remove the media. Communication media typically may include computer readable instructions, data structures, or other data (eg, program modules) that modulate a data signal.
计算机可读存储介质可以以非暂时性存储介质的形式提供。这里,术语“非暂时性存储介质”是指有形设备,并且不包括信号(例如,电磁波),并且不在数据被半永久地存储在存储介质中的情况与数据被临时存储的情况之间进行区分。例如,非暂时性存储介质可以包括临时存储数据的缓冲器。Computer-readable storage media may be provided in the form of non-transitory storage media. Here, the term "non-transitory storage medium" refers to a tangible device and does not include signals (eg, electromagnetic waves), and does not distinguish between a case where data is semi-permanently stored in the storage medium and a case where data is temporarily stored. For example, non-transitory storage media may include buffers that temporarily store data.
根据本公开的示例实施例,根据本文所公开的本公开的各种实施例的方法可以被包括在计算机程序产品中并被提供。计算机程序产品可以作为商品在卖方和买方之间进行交易。计算机程序产品可以以机器可读存储介质(例如,光盘只读存储器(CD-ROM))的形式分发,或者可以通过应用商店(例如,PlayStoreTM)在线分发(例如,下载或上传),或者直接在两个用户设备(例如,智能电话)之间分发。在线分发的情况下,计算机程序产品(例如,可下载的应用)的至少一部分可以临时存储在机器可读存储介质(例如,制造商的服务器、应用商店的服务器或中继服务器的存储器)中。According to example embodiments of the present disclosure, methods according to various embodiments of the present disclosure disclosed herein may be included in and provided in a computer program product. Computer program products may be traded as commodities between sellers and buyers. The computer program product may be distributed in the form of a machine-readable storage medium (e.g., compact disc read-only memory (CD-ROM)), or may be distributed online (e.g., downloaded or uploaded) through an application store (e.g., PlayStore ™ ), or directly Distributed between two user devices (e.g., smartphones). In the case of online distribution, at least a portion of the computer program product (eg, a downloadable application) may be temporarily stored in a machine-readable storage medium (eg, the memory of a manufacturer's server, an application store's server, or a relay server).
此外,在本说明书中,术语“单元”可以是如处理器或电路的硬件组件和/或由如处理器的硬件组件执行的软件组件。Furthermore, in this specification, the term "unit" may be a hardware component such as a processor or a circuit and/or a software component executed by a hardware component such as a processor.
此外,在说明书中,表述“包括a、b或c中的至少一个”意味着“仅包括a”、“仅包括b”、“仅包括c”、“包括a和b”、“包括b和c”、“包括a和c”、或“包括a、b和c”。Furthermore, in the specification, the expression "including at least one of a, b or c" means "including only a", "including only b", "including only c", "including a and b", "including b and c", "including a and c", or "including a, b and c".
本公开的上述描述仅出于说明目的来提供,并且本领域技术人员将理解,在不修改本公开的技术方面和本质特征的情况下,可以容易地将本公开修改为其他详细配置。因此,应当理解,上述实施例在所有方面是示例性的而不是限制性的。例如,被描述为单个实体的元件在实现中可以是分布式的,并且类似地,被描述为分布式的元件在实现中可以是组合的。The above description of the present disclosure is provided for illustrative purposes only, and it will be understood by those skilled in the art that the present disclosure can be easily modified to other detailed configurations without modifying the technical aspects and essential features of the present disclosure. Therefore, it should be understood that the above-described embodiments are illustrative in all respects and not restrictive. For example, an element described as a single entity may be distributed in an implementation, and similarly, elements described as distributed may be combined in an implementation.
本公开的范围不是由本公开的详细描述限定,而是由所附权利要求限定,并且从权利要求及其等同物的范围和精神得出的所有修改或替代均落入本公开的范围内。The scope of the disclosure is defined not by the detailed description of the disclosure but by the appended claims, and all modifications or substitutions derived from the scope and spirit of the claims and their equivalents are within the scope of the disclosure.
Claims (15)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0008942 | 2021-01-21 | ||
KR10-2021-0084155 | 2021-06-28 | ||
KR10-2021-0128345 | 2021-09-28 | ||
KR1020210128345A KR20220106023A (en) | 2021-01-21 | 2021-09-28 | Augmented rearlity device for detecting gaze of user and method thereof |
PCT/KR2022/000682 WO2022158795A1 (en) | 2021-01-21 | 2022-01-13 | Augmented reality device and method for detecting user's gaze |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116830014A true CN116830014A (en) | 2023-09-29 |
Family
ID=88139679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280007181.3A Pending CN116830014A (en) | 2021-01-21 | 2022-01-13 | Augmented reality device and method for detecting user gaze |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116830014A (en) |
-
2022
- 2022-01-13 CN CN202280007181.3A patent/CN116830014A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10395111B2 (en) | Gaze-tracking system and method | |
US12340016B2 (en) | Head-mounted display device and operating method of the same | |
US9536354B2 (en) | Object outlining to initiate a visual search | |
US11611197B2 (en) | Addressable vertical cavity surface emitting laser array for generating structured light patterns | |
US20180157908A1 (en) | Gaze-tracking system and method of tracking user's gaze | |
JP2017102768A (en) | Information processor, display device, information processing method, and program | |
US11983315B2 (en) | Augmented reality device and method for detecting gaze of user | |
US11527004B2 (en) | Electronic device and operation method thereof | |
JP2022133133A (en) | Generation device, generation method, system, and program | |
KR20220046494A (en) | Eye tracking method and eye tracking sensor | |
EP4220275A1 (en) | Augmented reality device and method for detecting user's gaze | |
JP2022546580A (en) | Audience Synchronized Light Detection | |
KR20220106023A (en) | Augmented rearlity device for detecting gaze of user and method thereof | |
US20230206474A1 (en) | Eye tracking method, apparatus and sensor for determining sensing coverage based on eye model | |
CN116830014A (en) | Augmented reality device and method for detecting user gaze | |
KR20200120466A (en) | Head mounted display apparatus and operating method for the same | |
CN119678092A (en) | Device and method for acquiring images in augmented reality | |
US20230085129A1 (en) | Electronic device and operating method thereof | |
KR20220106011A (en) | Augmented rearlity device for detecting gaze of user and method thereof | |
JP6314339B2 (en) | Eyeglass type display device | |
JP6347067B2 (en) | Eyeglass type display device | |
WO2022158795A1 (en) | Augmented reality device and method for detecting user's gaze | |
CN117730271A (en) | Augmented reality device and method for detecting user gaze | |
KR20230101580A (en) | Eye tracking method, apparatus and sensor for determining sensing coverage based on eye model | |
KR20240074348A (en) | Apparatus and method for obtanning images in an augmented reality |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |