CN116822380B - Collaborative optimization method for tail gas recycling in copper smelting process based on digital twin - Google Patents
Collaborative optimization method for tail gas recycling in copper smelting process based on digital twin Download PDFInfo
- Publication number
- CN116822380B CN116822380B CN202311094435.2A CN202311094435A CN116822380B CN 116822380 B CN116822380 B CN 116822380B CN 202311094435 A CN202311094435 A CN 202311094435A CN 116822380 B CN116822380 B CN 116822380B
- Authority
- CN
- China
- Prior art keywords
- data
- parameters
- model
- output
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 131
- 230000008569 process Effects 0.000 title claims abstract description 106
- 238000005457 optimization Methods 0.000 title claims abstract description 69
- 238000003723 Smelting Methods 0.000 title claims abstract description 56
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 29
- 239000010949 copper Substances 0.000 title claims abstract description 29
- 238000004064 recycling Methods 0.000 title claims abstract description 15
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 128
- 238000004519 manufacturing process Methods 0.000 claims abstract description 117
- 238000006477 desulfuration reaction Methods 0.000 claims abstract description 90
- 230000023556 desulfurization Effects 0.000 claims abstract description 90
- 238000006243 chemical reaction Methods 0.000 claims abstract description 53
- 238000013528 artificial neural network Methods 0.000 claims abstract description 26
- 238000004891 communication Methods 0.000 claims abstract description 26
- 239000002253 acid Substances 0.000 claims abstract description 24
- 230000007774 longterm Effects 0.000 claims abstract description 17
- 230000003993 interaction Effects 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims description 51
- 230000006870 function Effects 0.000 claims description 47
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 44
- 238000003062 neural network model Methods 0.000 claims description 36
- 239000007789 gas Substances 0.000 claims description 34
- 238000007405 data analysis Methods 0.000 claims description 33
- 238000004088 simulation Methods 0.000 claims description 31
- 238000004422 calculation algorithm Methods 0.000 claims description 21
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 16
- 238000011156 evaluation Methods 0.000 claims description 16
- 238000012800 visualization Methods 0.000 claims description 16
- 238000011084 recovery Methods 0.000 claims description 15
- 239000013598 vector Substances 0.000 claims description 15
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 13
- 239000003546 flue gas Substances 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 12
- 238000007418 data mining Methods 0.000 claims description 12
- 230000006872 improvement Effects 0.000 claims description 12
- 230000000007 visual effect Effects 0.000 claims description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 11
- 238000009499 grossing Methods 0.000 claims description 11
- 210000002569 neuron Anatomy 0.000 claims description 11
- 238000007781 pre-processing Methods 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- 239000011593 sulfur Substances 0.000 claims description 11
- 238000004458 analytical method Methods 0.000 claims description 10
- 238000007726 management method Methods 0.000 claims description 10
- 238000013079 data visualisation Methods 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 9
- 230000004927 fusion Effects 0.000 claims description 9
- 230000009977 dual effect Effects 0.000 claims description 8
- 238000012423 maintenance Methods 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 238000012549 training Methods 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 6
- 238000013480 data collection Methods 0.000 claims description 5
- 230000003862 health status Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 230000002776 aggregation Effects 0.000 claims description 3
- 238000004220 aggregation Methods 0.000 claims description 3
- 238000013499 data model Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 239000003344 environmental pollutant Substances 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 3
- 238000007620 mathematical function Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 238000005065 mining Methods 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 231100000719 pollutant Toxicity 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims 1
- 239000002184 metal Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 238000009776 industrial production Methods 0.000 abstract 1
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000004821 distillation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000013024 troubleshooting Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/30—Administration of product recycling or disposal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/06—Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Human Resources & Organizations (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Medical Informatics (AREA)
- Geometry (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computer Hardware Design (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Sustainable Development (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开一种基于数字孪生在铜冶炼过程中尾气回收利用的协同优化方法,属于金属冶炼尾气回收利用的智能控制领域。对硫酸反应塔的状态参数以及过程参数进行采集,获取整个生产流程的完整数据信息,其次,根据上述数据构建脱硫制酸生产工艺流程的数字孪生模型,利用所构建的生产工艺流程数字孪生模型通过BPNLP神经网络不断迭代获取最优运行参数,与实体设备实时数据分析比较,并将所获取数据通过通信协议上传至人机交互界面,实现整个工业生产与客户端的“虚‑实联动”;最后,根据最优化参数结果通过过程参数控制系统对实际生产流程工艺的运行参数进行实时优化控制,实现“以虚控实”,长期保证脱硫效率以及硫酸制取速度的最大化。
The invention discloses a collaborative optimization method for tail gas recycling in the copper smelting process based on digital twins, and belongs to the field of intelligent control of metal smelting tail gas recycling. Collect the state parameters and process parameters of the sulfuric acid reaction tower to obtain complete data information of the entire production process. Secondly, build a digital twin model of the desulfurization and acid production process based on the above data, and use the constructed digital twin model of the production process to pass The BPNLP neural network continuously iteratively obtains optimal operating parameters, analyzes and compares them with real-time data of physical equipment, and uploads the obtained data to the human-computer interaction interface through the communication protocol to achieve "virtual-real linkage" between the entire industrial production and the client; finally, Based on the optimization parameter results, the operating parameters of the actual production process can be optimized and controlled in real time through the process parameter control system to achieve "virtual control of reality" and ensure long-term maximization of desulfurization efficiency and sulfuric acid production speed.
Description
技术领域Technical field
本发明涉及金属冶炼尾气回收利用的智能控制领域,具体涉及一种基于数字孪生在铜冶炼过程中尾气回收利用的协同优化方法。The invention relates to the field of intelligent control of metal smelting tail gas recycling, and specifically relates to a collaborative optimization method for tail gas recycling in the copper smelting process based on digital twins.
背景技术Background technique
目前,邱祖军、张峰等人提出MGG(Mitsubishi Gas-gas Heater)的烟气换热技术,烟气中SO2被吸收氧化为硫酸铵,再经蒸发浓缩结晶,获得硫酸铵产品,蔡兵等人提出了一种双氧水烟气脱硫技术,已成为目前较多工厂解决二氧化硫大气污染的主要手段,但是在整个工艺流程中涉及到二氧化硫与双氧水的液相分离的精馏操作,该操作是典型的多输入多输出(MIMO)、大迟延、严重非线性化、强参数耦合的复杂工艺,多年来其中的建模、优化、控制问题均是众多学者研究的热点问题。并且目前大量的研究集中在以污染防治为目的的脱硫制酸代替传统脱硫的研究上。在制酸过程中,液位、温度、物料比等相关参数的输入都会对输出参数二氧化硫转化率、吸收率产生较大影响。同时现有脱硫制酸的研究大多集中在其环境污染评价方面,或者仅仅关注硫酸的回收效率。针脱硫制酸过程污染防治与资源回收的协同优化方法研究较少。At present, Qiu Zujun, Zhang Feng and others have proposed MGG (Mitsubishi Gas-gas Heater) flue gas heat exchange technology. SO 2 in the flue gas is absorbed and oxidized into ammonium sulfate, and then evaporated, concentrated and crystallized to obtain ammonium sulfate products. Cai Bing et al. People have proposed a hydrogen peroxide flue gas desulfurization technology, which has become the main means for many factories to solve sulfur dioxide air pollution. However, the entire process involves the distillation operation of liquid phase separation of sulfur dioxide and hydrogen peroxide. This operation is typical For many years, the modeling, optimization, and control issues of complex processes involving multiple input and multiple output (MIMO), large delays, severe nonlinearity, and strong parameter coupling have been hot topics studied by many scholars. And currently a large amount of research is focused on the replacement of traditional desulfurization with desulfurization and acid production for the purpose of pollution prevention and control. In the acid making process, the input of relevant parameters such as liquid level, temperature, and material ratio will have a great impact on the output parameters sulfur dioxide conversion rate and absorption rate. At the same time, most of the existing research on desulfurization and sulfuric acid production focuses on its environmental pollution assessment, or only focuses on the recovery efficiency of sulfuric acid. There are few studies on collaborative optimization methods for pollution prevention and resource recovery in the desulfurization and acid production process.
BP神经网络是一种广泛应用于工业过程优化的模型;而BP神经网络采用的梯度法往往福尔斯局部极小值;如果拟合函数过于复杂,可能会出现多个拟合局部最小值,这将给实际应用带来很大障碍。BP neural network is a model widely used in industrial process optimization; the gradient method used by BP neural network often results in Falls local minima; if the fitting function is too complex, multiple fitting local minima may appear, This will bring great obstacles to practical application.
发明内容Contents of the invention
针对制酸精馏操作中的优化问题,本发明的目的在于提供一种基于数字孪生在铜冶炼过程中尾气回收利用的协同优化方法,能够实现制酸过程中状态参数的实时采集、分析、决策下达,通过分析二氧化硫方法、将多参数耦合关联布局、脱硫工艺流程,建立可交互、可视化、可优化的烟气制酸系统数字孪生模型,达到“虚实结合、以虚控实”的目的,实现二氧化硫制酸的生产速率最大化以及更大的经济价值,具体包括以下步骤:In view of the optimization problem in the acid-making distillation operation, the purpose of the present invention is to provide a collaborative optimization method for exhaust gas recovery and utilization in the copper smelting process based on digital twins, which can realize real-time collection, analysis, and decision-making of state parameters in the acid-making process. According to the order, by analyzing the sulfur dioxide method, coupling the multi-parameter layout and desulfurization process, an interactive, visual and optimizable digital twin model of the flue gas sulfuric acid production system was established to achieve the purpose of "combination of virtual and real, and virtual control of real". To maximize the production rate and greater economic value of sulfur dioxide acid production, the following steps are specifically included:
Step1:从以往数据库中调取熔炼过程脱硫制酸的状态参数、过程参数、以及评价指标,并对数据进行预处理、数据预测与数据挖掘,构建以往数据库。Step1: Retrieve the state parameters, process parameters, and evaluation indicators of desulfurization and acid production in the smelting process from the previous database, and perform data preprocessing, data prediction, and data mining to build a previous database.
Step2:通过现场工业的接触式、电磁式等传感器或依靠人工试验记录等方式采集实时数据,包括状态参数和过程参数,这些参数共同构成实时数据库;所述状态参数包括炉体内温度、压力、液位、气液比值;所述过程参数包括输入二氧化硫、双氧水的浓度与流速、输出硫酸的浓度与流量。Step2: Collect real-time data through on-site industrial contact and electromagnetic sensors or rely on manual test records, including status parameters and process parameters. These parameters together constitute a real-time database; the status parameters include furnace body temperature, pressure, liquid, etc. position, gas-liquid ratio; the process parameters include the concentration and flow rate of input sulfur dioxide and hydrogen peroxide, and the concentration and flow rate of output sulfuric acid.
Step3:以往数据库和实时数据库构成数字孪生动态模型数据库,通过TCP通信协议实现数字孪生动态模型数据库与服务器、服务器与unity3D组成的前端界面之间的数据互通连接,并将数字孪生动态数据库中相关数据的可视化图形显示在该前端界面上。Step3: The previous database and the real-time database constitute the digital twin dynamic model database. The data interoperability connection between the digital twin dynamic model database and the server, the server and the front-end interface composed of unity3D is realized through the TCP communication protocol, and the relevant data in the digital twin dynamic database are The visual graphics are displayed on the front-end interface.
Step4:将步骤Step3的得到的数字孪生动态模型数据库作为数字孪生模型仿真信号引入到脱硫制酸的数字孪生模型中,该模型通过数据进行模拟仿真,仿真模型采用基于两阶段BPNLP神经网络的非线性优化结合近似全局优化算法进行搭建,用于不断优化通过数字孪生模型得出的最优参数对应的过程参数,根据以二氧化硫脱硫率与硫酸转化率的最大化参数得到最适合的生产最优工程参数。Step 4: Introduce the digital twin dynamic model database obtained in Step 3 as the digital twin model simulation signal into the digital twin model of desulfurization and acid production. The model is simulated through data. The simulation model uses nonlinearity based on the two-stage BPNLP neural network. The optimization is combined with an approximate global optimization algorithm to continuously optimize the process parameters corresponding to the optimal parameters obtained through the digital twin model. The most suitable production optimal engineering parameters are obtained based on the maximizing parameters of the sulfur dioxide desulfurization rate and sulfuric acid conversion rate. .
Step5:将预测得到二氧化硫脱硫率与硫酸转化率最大的状态下的过程参数与以往数据库进行数据挖掘同类聚合、进行降噪、弥补缺失值处理,然后与实时数据库进行参数比较,判断目前的实时数据还有哪些参数需要改进;最终在实时数据下通过优化全局算法得到的最优参数改进方案。Step 5: Perform data mining similar aggregation, noise reduction, and missing value processing on the process parameters predicted to maximize the sulfur dioxide desulfurization rate and sulfuric acid conversion rate with previous databases, and then compare parameters with the real-time database to determine the current real-time data Which parameters still need to be improved? Finally, the optimal parameter improvement plan is obtained by optimizing the global algorithm under real-time data.
Step6:通过TCP协议,将最优参数数据改进方案进行可视化,并将数据的可视化图形显示在unity3D前端的人机界面上。Step6: Visualize the optimal parameter data improvement plan through the TCP protocol, and display the visual graphics of the data on the human-machine interface of the unity3D front-end.
Step7:在最优参数改进方案中,操作人员根据得到的参数改进方案以及人工经验进行控制指令下达。Step7: In the optimal parameter improvement plan, the operator issues control instructions based on the obtained parameter improvement plan and manual experience.
Step8:控制指令通过TCP协议与simulink的脱硫制酸仿真控制模型(包括气液进出的液位-流量串级控制系统,塔内的液位—压力串级控制系统、塔内温度的双输入与双输出分级解耦控制系统这三个控制系统)连接,构成控制系统,如图3所示,控制系统远端连接实际工业服务器,将最优参数值与实时数据值比较,根据其差值对实际炉体进行参数控制,控制生产中的阀门、调节器实现对实际生产的指导。Step8: The control instructions are passed through the TCP protocol and simulink's desulfurization and sulfuric acid production simulation control model (including the liquid level-flow cascade control system for gas and liquid inlet and outlet, the liquid level-pressure cascade control system in the tower, and the dual input and The three control systems (double output hierarchical decoupling control system) are connected to form a control system, as shown in Figure 3. The control system is remotely connected to the actual industrial server, compares the optimal parameter values with the real-time data values, and compares them based on their differences. The actual furnace body is controlled by parameters, and the valves and regulators in production are controlled to guide actual production.
Step9:继续重复Step2~Step5的步骤,采集实时数据,通过仿真神经网络数字孪生模型得到最优控制参数,再将该两个数据进行比较,进而又再反馈控制炉体过程参数,不断重复,长久保证脱硫效率以及硫酸制取速度的最大化。Step9: Continue to repeat the steps of Step2~Step5, collect real-time data, obtain the optimal control parameters through simulating the neural network digital twin model, and then compare the two data, and then feed back the control furnace process parameters, and repeat continuously for a long time. Ensure the desulfurization efficiency and sulfuric acid production speed are maximized.
由于整个反应过程最终硫酸产量以及脱硫转化率是受塔内温度、压力、催化剂与双氧水液位等多因素耦合在一起共同影响的,所以仿真模型采用S4所述的基于两阶段BPNLP神经网络的非线性优化结合近似全局优化算法进行搭建;所述两阶段BPNLP网络模型,在第一阶段的神经网络预处理形成冶炼过程的拟合后,基于拟合后的神经网络模型进行冶炼参数优化过程;根据整个两阶段过程的特点,以及相应的条件约束和BP神经网络输出函数的平滑过程,采用近似全局优化算法,形成了形式统一约束的两阶段BPNLP网络模型,具体构成、涉及路线、操作流程如图3所示,具体包括以下内容:Since the final sulfuric acid output and desulfurization conversion rate of the entire reaction process are coupled together by multiple factors such as temperature, pressure, catalyst and hydrogen peroxide level in the tower, the simulation model uses the non-linear method based on the two-stage BPNLP neural network described in S4. Linear optimization is combined with an approximate global optimization algorithm to build the two-stage BPNLP network model. After the neural network preprocessing in the first stage forms the fitting of the smelting process, the smelting parameter optimization process is performed based on the fitted neural network model; according to Based on the characteristics of the entire two-stage process, as well as the corresponding conditional constraints and the smoothing process of the BP neural network output function, an approximate global optimization algorithm is used to form a two-stage BPNLP network model with unified form constraints. The specific composition, involved routes, and operating procedures are shown in the figure. 3, specifically including the following:
S1:对数据模型库中的数据进行处理,规定从数据库中传来的输入样本;根据铜冶炼中脱硫制酸的生产工艺,在输入样本服从正态分布的情况下,选取样本中的均值和标准差σ。S1: Process the data in the data model library and specify the input samples transmitted from the database; according to the production process of desulfurization and acid production in copper smelting, when the input samples obey the normal distribution, select the mean and sum of the samples Standard deviation σ.
S2:BP神经网络模型属于误差反向传播神经网络,需要构建如下三个方面:输入层、隐藏层和输出层;该模型包含神经元、权重、阈值、层和激活函数;本发明根据脱硫制酸过程的实时状态参数和污染物硫的回收利用转化率建立BP神经网络模型。S2: The BP neural network model belongs to the error back propagation neural network and needs to be constructed in the following three aspects: input layer, hidden layer and output layer; the model includes neurons, weights, thresholds, layers and activation functions; the present invention is based on the desulfurization process A BP neural network model was established for the real-time state parameters of the acid process and the recovery and utilization conversion rate of pollutant sulfur.
S3:首先是输入层、隐藏层和输出层参数的建立,根据数据库里的五个状态参数作为BP自然网络模型的输入变量,即压力、塔内温度、液位、气液比值和硫气的流量通入,输出层是硫酸的转化率与脱硫效率,在BP神经网络模型隐藏层计算的基础上,将二次脱硫工艺冶炼参数与硫酸协同优化之间的隐藏层设置为两层,并根据实际工艺设置节点。S3: First, the parameters of the input layer, hidden layer and output layer are established. The five state parameters in the database are used as input variables of the BP natural network model, namely pressure, temperature in the tower, liquid level, gas-liquid ratio and sulfur gas. Flow input, the output layer is the conversion rate and desulfurization efficiency of sulfuric acid. Based on the hidden layer calculation of the BP neural network model, the hidden layer between the smelting parameters of the secondary desulfurization process and the collaborative optimization of sulfuric acid is set to two layers, and based on Actual process setting node.
S4:对上述两个隐藏层的转换函数可以定义为S4: The conversion function for the above two hidden layers can be defined as
其中p和q是输入和输出变量的维数,N是样本的数量;i是神经元的隐藏层,i=1表示输入层,即为输入变量,如/>为冶炼过程中的反应炉压力、/>为塔内温度、/>为塔内液位、/>为输入管道到塔内的气液比值和/>的硫气的流量通入等,/>则是表示输出变量参数,并对上述/>中的每一类输入变量的样本数量分别被定义为/>,以对每个样本都进行计算,具体如下:where p and q are the dimensions of the input and output variables, N is the number of samples; i is the hidden layer of the neuron, i=1 represents the input layer, That is the input variable, such as/> is the reactor pressure during the smelting process/> is the temperature inside the tower,/> is the liquid level in the tower,/> is the gas-liquid ratio from the input pipe to the tower and/> The flow rate of sulfur gas is introduced, etc./> It means output variable parameters, and for the above/> The number of samples for each type of input variable in is defined as/> , to calculate each sample, as follows:
因为i是神经元的隐层,所以每个样本都需要计算出它的输出值具体如下:Because i is the hidden layer of the neuron, its output value needs to be calculated for each sample details as follows:
这里假设对于第k层,有s个神经元;l(l=1,2,……H)是隐藏层的的层数;其中代表上述每个输入变量对应的权重,θ为偏置值,/>即为第k层第1隐藏层的偏置值,p为固定值表示样本数量;/>为在第k层的输入变量的样本节点。It is assumed here that for the k-th layer, there are s neurons; l (l=1,2, ... H) is the number of hidden layers; where represents the weight corresponding to each of the above input variables, θ is the offset value,/> That is the bias value of the first hidden layer of the kth layer, p is a fixed value indicating the number of samples;/> is the sample node of the input variable in the kth layer.
同样,以作为模型的输入,可以得到输出/>:Similarly, with As input to the model, the output can be obtained/> :
为使结果逼近目标,将输出与实际输出的误差从输出层反向传送到网络的下一层;/>表示每一次传递中第i隐藏层的偏置值,每传递一次,便对神经元的阀值和权值进行调整;重复这个递归过程,直到第k个隐藏层,因此可以得到输出层的函数值/>:In order to make the result close to the target, the output The error with the actual output is transmitted backward from the output layer to the next layer of the network;/> Represents the bias value of the i-th hidden layer in each pass. Each pass, the threshold and weight of the neuron are adjusted; this recursive process is repeated until the k-th hidden layer, so the function of the output layer can be obtained value/> :
S5:但由于BP神经网络模型泛化能力不足,可能导致模型仿真结果出现异常值,因此,需要对模型输出进行二次平滑处理;对非平滑前模型的泛化精度定义为奇异值(负数)在所有样本预测值中所占的比例;使得泛化精度可以设定为可接受范围;S5: However, due to the insufficient generalization ability of the BP neural network model, outliers may appear in the model simulation results. Therefore, the model output needs to be smoothed twice; the generalization accuracy of the model before non-smoothing is defined as a singular value (negative number) The proportion of the predicted values of all samples; so that the generalization accuracy can be set to an acceptable range;
根据本发明核心:在什么样的条件下,在什么样的状态、过程参数组合下,获得最大的转化率,最大的脱硫效率;于是对上述模型进行泛化精度优化,采用进行参数优化后的BP神经网络进行二阶段BPNLP的预测模拟学习。According to the core of the present invention: under what conditions, under what state and combination of process parameters, the maximum conversion rate and maximum desulfurization efficiency can be obtained; then the generalization accuracy of the above model is optimized, and the parameter optimized model is used The BP neural network performs two-stage prediction simulation learning of BPNLP.
S6:将BP神经网络模型的输出函数设定为冶炼烟气中硫酸最大转化率与最大的脱硫效率,为将BP神经网络模型进行更好的仿真预测,解决冶炼烟气脱硫输出函数最小化问题;采用的污染减排优化的BPNLP神经网络模型表示为如下数学函数:S6: Set the output function of the BP neural network model to the maximum conversion rate of sulfuric acid and the maximum desulfurization efficiency in the smelting flue gas. In order to conduct better simulation predictions of the BP neural network model and solve the problem of minimizing the output function of the smelting flue gas desulfurization ;The BPNLP neural network model used for pollution reduction optimization is expressed as the following mathematical function:
J表示索引函数,用于表示要得到的最优脱硫转化率与速率的函数索引,函数Min表示从二阶段BPNLP估计结果的输出的映射,其中输入变量x为期望的索引;其中c是线性变换向量,为硫酸的转化率与脱硫效率的2×1向量;表示 BP 模型预测的估计结果,表示从具有输入变量的 BPNLP 模型的输出估计结果到期望索引的线性变换。J represents the index function, which is used to represent the function index of the optimal desulfurization conversion rate and rate to be obtained. The function Min represents the mapping of the output from the two-stage BPNLP estimation results, where the input variable x is the desired index; where c is the linear transformation The vector is a 2×1 vector of sulfuric acid conversion rate and desulfurization efficiency; represents the estimation result predicted by the BP model, Represents the linear transformation from the output estimate of a BPNLP model with input variables to the desired index.
为了最小化排放问题,非线性规划如下:To minimize the emission problem, the nonlinear programming is as follows:
其中,b,L,U是常数列向量,f是一个非线性函数,x是决策变量向量,其是包括压力、塔内温度、液位、气液比值和二氧化硫的流量,通入的5×1向量;A是常数矩阵,线性截断函数Ax表示通过归一化域后并消除异常后的数据。Among them, b, L, U are constant column vectors, f is a nonlinear function, x is a decision variable vector, which includes pressure, tower temperature, liquid level, gas-liquid ratio and sulfur dioxide flow rate. The incoming 5× 1 vector; A is a constant matrix, and the linear truncation function Ax represents the data after passing through the normalized domain and eliminating anomalies.
S7:通过上述拟合函数N(x),x可以生成多个局部最小值,产生多个解并且进一步影响全局优化;采用随机散点法选取初始值,以适应初始值优化的等步长变化;确认从最优值中的优化结果中选择模型模拟的最小值;对于整个神经网络模型,将待优化变量的区域进行网格化使用“网格和样本”方法,与局部搜索技能相结合,进化框架内的求解过程,来找到全局最优解。S7: Through the above fitting function N(x), x can generate multiple local minima, generate multiple solutions and further affect the global optimization; use the random scatter method to select the initial value to adapt to the equal step changes of the initial value optimization ; Confirm that the minimum value of the model simulation is selected from the optimization results in the optimal value; for the entire neural network model, grid the area of the variable to be optimized using the "grid and sample" method, combined with local search skills, The solution process within the evolutionary framework is used to find the global optimal solution.
S8:此外,对输出函数进行平滑处理,使预测值有意义;假设输出样本取输出值的某个维度值,然后需要进一步扩展模型的比较来模拟输出值,从而使输出函数平滑地取域中的值,并过滤掉不合理的值(例如在基本相同的条件下,预测输出值与其相邻的输出值差异明显的过大或过小)。S8: In addition, the output function is smoothed to make the predicted value meaningful; assuming that the output sample takes a certain dimension value of the output value, then the comparison of the model needs to be further expanded to simulate the output value, so that the output function smoothly takes the domain value, and filter out unreasonable values (for example, under basically the same conditions, the difference between the predicted output value and its adjacent output value is obviously too large or too small).
S9:最终完成数据孪生模型最优参数的求解,将得出的结果如一种基于数字孪生在铜冶炼过程中尾气回收利用的协同优化方法具体步骤S6中进行数据可视化发送到unity3D中完成人机交互的后续内容。S9: Finally complete the solution of the optimal parameters of the data twin model, and the results obtained, such as a collaborative optimization method based on digital twins for exhaust gas recycling in the copper smelting process. In specific step S6, the data is visualized and sent to unity3D to complete human-computer interaction. follow-up content.
本发明的另一目的在于提供一种基于数字孪生在铜冶炼过程中尾气回收利用的协同优化系统,如附图2所示,包括数据库模块、数据分析模块、可视化模块、设备管理控制模块、通信服务模块。Another object of the present invention is to provide a collaborative optimization system based on digital twins for tail gas recycling in the copper smelting process. As shown in Figure 2, it includes a database module, a data analysis module, a visualization module, an equipment management control module, and a communication module. Service module.
所述数据库模块用于对冶炼过程脱硫制酸运行过程中的实时的数据进行采集,获取整个工艺流程中塔体的数据信息;包括几何参数数据单元、运行状态参数单元、实时过程参数单元、神经网络模型单元。The database module is used to collect real-time data during the operation of desulfurization and sulfuric acid production in the smelting process, and obtain the data information of the tower in the entire process flow; including a geometric parameter data unit, an operating status parameter unit, a real-time process parameter unit, and a neural network. Network model unit.
所述数据分析模块则是从上述数据库模块得到状态数据,对数据进行预处理、分析通过数字孪生模型得到最优参数预测值,达到脱硫制酸工艺中资源回收协同优化的目的;包括算法库单元、数据预处理单元、特征提取单元、数据挖掘单元。The data analysis module obtains status data from the above-mentioned database module, preprocesses and analyzes the data to obtain the optimal parameter prediction values through the digital twin model, and achieves the purpose of collaborative optimization of resource recovery in the desulfurization and sulfuric acid production process; including algorithm library units , data preprocessing unit, feature extraction unit, data mining unit.
所述可视化模块主要用于图形化显示上述两个模块的数据;包括融合模型单元、结果传输单元、数据图形化单元、图形动态显示单元。The visualization module is mainly used to graphically display the data of the above two modules; it includes a fusion model unit, a result transmission unit, a data graphical unit, and a graphic dynamic display unit.
所述设备智能管理模块用于结合上述模块结果,包含依据上述数据库模块,实现设备全生命周期信息获取,完成设备实时智能优化运维,并根据最优运行参数,在控制系统的输出下,对实际生产的状态参数进行实时高效的控制;包括评价指标单元、控制模块单元、智能决策单元以及控制指令单元。The equipment intelligent management module is used to combine the above-mentioned module results, including the above-mentioned database module, to achieve equipment life cycle information acquisition, complete equipment real-time intelligent optimization operation and maintenance, and according to the optimal operating parameters and the output of the control system, Real-time and efficient control of actual production status parameters; including evaluation index unit, control module unit, intelligent decision-making unit and control instruction unit.
所述通信服务模块主要实现上述四个模块之间的相互关联,将数据库模块内的数据实时调取到数据分析模块,并将数据分析模块得到的结果发送到可视化模块,最终根据数据可视化的结果应用到设备智能管理模块,完成各个模块之间的信息调取,关联;包括生产数据文本、现场图像等多种类型的消息;并提供实时通信功能完成可视化模块中的图像实时更新功能,并确保通信的正确性、稳定性和安全性,保证设备智能运维模块正确的指令下达,完成调控;并记录各模块用于记录平台的运行日志,以便后续分析和排错。The communication service module mainly realizes the correlation between the above four modules, transfers the data in the database module to the data analysis module in real time, and sends the results obtained by the data analysis module to the visualization module, and finally obtains the results based on the data visualization. Applied to the equipment intelligent management module, it completes the information retrieval and association between various modules; including production data text, on-site images and other types of messages; and provides real-time communication functions to complete the real-time update function of images in the visualization module, and ensure The correctness, stability and security of communication ensure that the intelligent operation and maintenance module of the equipment issues correct instructions and completes the control; and records the operation logs of each module to record the platform for subsequent analysis and troubleshooting.
优选的,本发明所述几何参数数据单元含有实际生产的现场设备数据:包括生产炉体、进出管道的相关尺寸、气液流量、生产参数等,并对长期运行数据进行存储、调取;Preferably, the geometric parameter data unit of the present invention contains actual production field equipment data: including the relevant dimensions of the production furnace body, inlet and outlet pipes, gas and liquid flow rates, production parameters, etc., and stores and retrieves long-term operation data;
本发明所述运行状态参数单元含有在生产冶炼的运行数据,包括生产炉体内的温度、压力、液位等相关信息,描述系统或设备在运行时的状态和性能;并提供关于整个系统或设备健康状况、工作效率、资源利用情况等方面的信息,并对长期运行数据进行存储、调取。The operating status parameter unit of the present invention contains operating data during production and smelting, including temperature, pressure, liquid level and other relevant information in the production furnace body, describing the status and performance of the system or equipment during operation; and providing information about the entire system or equipment. Health status, work efficiency, resource utilization and other aspects of information, and store and retrieve long-term operating data.
本发明所述实时过程参数单元含有更新实时进入反应的管道加入输入量、生产输出量,用于描述和评估系统、设备或过程的当前状态和性能,提供关于整个系统或设备健康状况、工作效率、资源利用情况等方面的信息,并对长期运行数据进行存储、调取。The real-time process parameter unit of the present invention contains the pipeline input amount and production output amount that update the reaction in real time, and is used to describe and evaluate the current status and performance of the system, equipment or process, and provide information on the health status and work efficiency of the entire system or equipment. , resource utilization and other aspects of information, and store and retrieve long-term running data.
本发明所述神经网络模型单元,则是进行记录长期运行状态下,神经网络模型中每一次的运行日志记录,记录每一次的相关参数权重、迭代次数、输出输入比值。The neural network model unit of the present invention records each operation log record of the neural network model under long-term operation, and records each relevant parameter weight, number of iterations, and output-to-input ratio.
本发明所述算法库单元用于对BP模型的输出进行二次平滑处理,利用其较强的非线性映射能力和灵活的网络结构来提高预测可靠性,对铜冶炼脱硫制酸工艺这类大样本数据趋于更好的拟合,并结合全局最优搜索方法,完成数据孪生模型最优参数的求解。The algorithm library unit of the present invention is used to perform secondary smoothing processing on the output of the BP model, and utilizes its strong nonlinear mapping ability and flexible network structure to improve prediction reliability, and is suitable for large-scale projects such as the copper smelting desulfurization and acid production process. The sample data tends to fit better, and combined with the global optimal search method, the optimal parameters of the data twin model are solved.
本发明所述数据预处理单元通过对历史数据中最优参数改变,提前对实时数据采集中经常出现的数据缺失,大偏差噪声进行预处理,避免设备数据进行重复大量的相同优化。The data preprocessing unit of the present invention preprocesses the missing data and large deviation noise that often occur in real-time data collection in advance by changing the optimal parameters in historical data to avoid repeated large amounts of the same optimization of equipment data.
本发明所述特征提取单元通过BP神经网络模型,根据数据库里的五个状态参数作为BP自然网络模型的输入变量,输出层是硫酸的转化率与脱硫效率,以及隐藏层的设置来对数据进行预测训练并验证样本分类。The feature extraction unit of the present invention uses the BP neural network model and uses the five state parameters in the database as the input variables of the BP natural network model. The output layer is the conversion rate and desulfurization efficiency of sulfuric acid, as well as the settings of the hidden layer. Predict training and validate sample classification.
本发明所述数据挖掘单元则是发现长期生产数据中的隐藏模式、关联规则和趋势,在进行特征提取之前之前,进行提前的数据分析,对得到的生产输入信息整体特征进行挖掘,从而识别出数据中的趋势、异常模式和相关性。The data mining unit of the present invention discovers hidden patterns, association rules and trends in long-term production data. Before feature extraction, it performs advance data analysis and mines the overall characteristics of the obtained production input information, thereby identifying Trends, unusual patterns, and correlations in data.
本发明所述融合模型单元模型融合是将多个数据分析模块的预测结果结合起来,以获得更准确和可靠的预测;通过将不同数据、不同日期在模型中得到的预测结果相互结合,提高整个系统的性能,以获得更高的准确率和鲁棒性。The fusion model unit model fusion of the present invention combines the prediction results of multiple data analysis modules to obtain more accurate and reliable predictions; by combining the prediction results obtained in the model with different data and different dates, the entire system performance to achieve higher accuracy and robustness.
本发明所述结果传输单元是将有数据分析模块得到的最优参数进行定时调取,实时更新所得到的最优参数,将这些输出结果以合适的形式传递给后端的数据分析系统,以便支持决策、提供洞察、驱动后续可视化流程并进行进一步的分析。The result transmission unit of the present invention regularly retrieves the optimal parameters obtained by the data analysis module, updates the obtained optimal parameters in real time, and transmits these output results to the back-end data analysis system in a suitable form to support Make decisions, provide insights, drive subsequent visualization processes and conduct further analysis.
本发明所述数据图形化单元则是将由结果传输单元得到的结果最优参数数据进行可视化图形展示,利用如条形图、折线图、散点图以及饼图等对输出参数、过程参数等传达数据之间的关系、趋势、模式。The data graphical unit of the present invention performs a visual graphical display of the result optimal parameter data obtained by the result transmission unit, and uses bar charts, line charts, scatter charts, pie charts, etc. to convey output parameters, process parameters, etc. Relationships, trends, and patterns between data.
本发明所述图形动态显示单元主要驱动整个模块不断向数据分析模块调取实时数据并进行数据可视化的图形更新,使得图形可以随着数据的实时或频繁变化而更新,以便及时呈现最新的信息和趋势。The graphic dynamic display unit of the present invention mainly drives the entire module to continuously retrieve real-time data from the data analysis module and perform graphic updates for data visualization, so that the graphics can be updated with real-time or frequent changes in data, so as to present the latest information and information in a timely manner. trend.
本发明所述评价指标单元主要是对得到的最优运行参数与实时运行参数进行比较,根据评价指标得到哪些参数需要加权,在不同的评价指标下需要有很高的权重去进行调控,衡量模型的准确性、性能和可靠性,帮助工作人员了解模型的表现并做出决策。The evaluation index unit of the present invention mainly compares the obtained optimal operating parameters with the real-time operating parameters, and determines which parameters need to be weighted according to the evaluation index. Under different evaluation indexes, high weights are required for regulation and measurement models. accuracy, performance, and reliability to help workers understand model performance and make decisions.
本发明所述控制模块单元是根据比较得出的改变值,进行气液进出的液位-流量串级控制系统,塔内的液位—压力串级控制系统、塔内温度的双输入与双输出分级的解耦控制,在反馈的调节下,完成在数字孪生仿真模拟到实际生产的控制。The control module unit of the present invention is a liquid level-flow cascade control system for gas and liquid in and out, a liquid level-pressure cascade control system in the tower, and dual input and dual input of the temperature in the tower based on the changed values obtained from the comparison. The decoupled control of output classification, under the regulation of feedback, completes the control from digital twin simulation to actual production.
本发明所述智能决策单元是利用数据分析模块现有的数据和信息作为基础,通过分析、挖掘和整合得到的最优参数与现场实际生产数据,识别出模式、趋势和规律,从而提供有针对性和可靠性的生产决策建议。The intelligent decision-making unit of the present invention uses the existing data and information of the data analysis module as a basis, and identifies patterns, trends and laws through analysis, mining and integration of optimal parameters and actual on-site production data, thereby providing targeted Advice on production decisions regarding performance and reliability.
本发明所述控制指令单元指在智能决策单元后负责生成、验证和发送智能决策后的控制指令,并监测系统状态和接收反馈的关键组件;完成操作人员通过向系统发送命令来调控实际生产中的对实际生产控制参数的阀门、调节器、控制器下达有关阀开度、控制器开度调节的控制指令,指导最终目标铜冶炼尾气脱硫制酸资源回收的协同优化。The control instruction unit of the present invention refers to the key component responsible for generating, verifying and sending control instructions after intelligent decision-making, monitoring the system status and receiving feedback after the intelligent decision-making unit; completing the operation of the operator to control the actual production by sending commands to the system. It issues control instructions regarding valve opening and controller opening adjustment to the actual production control parameters of the valves, regulators, and controllers to guide the collaborative optimization of the ultimate goal of copper smelting tail gas desulfurization and sulfuric acid resource recovery.
本发明所述通信服务模块,提供了将上述四个模块连接、传输和交互的能力;该通信模块允许不同系统、设备或节点之间通过物理或虚拟通道进行通信,并支持从数据库模块中数据的发送、接收和处理消息传递,以及数据分析模块消息的传输和接收,包括生产数据文本、现场图像等多种类型的消息;并提供实时通信功能完成可视化模块中的图像实时更新功能,并确保通信的正确性、稳定性和安全性,保证设备智能运维模块正确的指令下达,完成调控;并记录各模块用于记录平台的运行日志,以便后续分析和排错。The communication service module of the present invention provides the ability to connect, transmit and interact with the above four modules; the communication module allows communication between different systems, devices or nodes through physical or virtual channels, and supports data collection from the database module Send, receive and process message transmission, as well as the transmission and reception of data analysis module messages, including production data text, on-site images and other types of messages; and provide real-time communication functions to complete the real-time update function of images in the visualization module, and ensure The correctness, stability and security of communication ensure that the intelligent operation and maintenance module of the equipment issues correct instructions and completes the control; and records the operation logs of each module to record the platform for subsequent analysis and troubleshooting.
与现有技术相比,本发明至少具有以下有益效果:Compared with the prior art, the present invention at least has the following beneficial effects:
(1)本发明所述的基于两阶段BPNLP网络模型在铜冶炼尾气脱硫制酸中资源回收协同优化数字孪生平台,主要针对典型的多输入多输出、大迟延、严重非线性化、强参数耦合的复杂工艺,在建模、优化、控制问题上的复杂问题,利用数字孪生技术与BPNLP神经网络算法,来建立实时数据上传交互、建立数字孪生模型来进行实时数据分析并得出脱硫效率与硫酸转化率预测的最优运行参数、实时数据比较与指令下达,达到了通过数字孪生平台实现资源回收协同优化,能够有效提高环境保护能力以及企业效益,具有广泛的应用前景。(1) The digital twin platform of the present invention based on the two-stage BPNLP network model for collaborative optimization of resource recovery in copper smelting tail gas desulfurization and sulfuric acid production is mainly aimed at typical multi-input multi-output, large delay, severe nonlinearity, and strong parameter coupling. For complex processes and complex problems in modeling, optimization, and control, we use digital twin technology and BPNLP neural network algorithm to establish real-time data upload interaction, establish a digital twin model to conduct real-time data analysis, and obtain desulfurization efficiency and sulfuric acid. The optimal operating parameters for conversion rate prediction, real-time data comparison and instruction issuance achieve collaborative optimization of resource recovery through the digital twin platform, which can effectively improve environmental protection capabilities and corporate benefits, and has broad application prospects.
(2)本发明据实际生产中铜冶炼脱硫制酸生产工艺的特点,采用基于BP神经网络的二次平滑处理与非线性优化结合的BPNLP神经网络用近似全局优化的方法来获得最优的脱硫参数。本发明通过搭建仿真模拟平台,该平台可实时通过TCP通信实时获取烟气制酸精馏过程中的关键参数信息如塔内压力、温度、液位高度,并且可实现各个单元的数据共享进行虚实联动,根据二氧化硫的转化反应进行数字孪生仿真,进而预测获得烟气制酸过程中的最佳二氧化硫脱硫率与硫酸最佳平衡转化率,以及在此最佳平衡速率下的对应温度、压力等过程参数,最终通过反馈控制实际生产设备控制器达到最佳脱硫效率。(2) According to the characteristics of the desulfurization and acid production process of copper smelting in actual production, the present invention uses the BPNLP neural network based on the secondary smoothing process of the BP neural network and nonlinear optimization to obtain the optimal desulfurization using an approximate global optimization method. parameter. The present invention builds a simulation platform, which can obtain key parameter information in the flue gas acid-making distillation process in real time through TCP communication, such as pressure, temperature, and liquid level in the tower, and can realize data sharing of each unit for virtual and real purposes. Linkage, digital twin simulation is performed based on the conversion reaction of sulfur dioxide, and then the optimal sulfur dioxide desulfurization rate and the optimal equilibrium conversion rate of sulfuric acid in the flue gas sulfuric acid production process are predicted, as well as the corresponding temperature, pressure and other processes at this optimal equilibrium rate. parameters, and finally achieve the best desulfurization efficiency through feedback control of the actual production equipment controller.
附图说明Description of the drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the technical solutions of the embodiments of the present invention more clearly, the drawings needed to describe the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without exerting creative efforts.
图1是本发明基于两阶段BPNLP网络模型在铜冶炼尾气脱硫制酸中资源回收协同优化数字孪生的方法流程图;Figure 1 is a flow chart of the present invention's method for collaboratively optimizing digital twins for resource recovery in copper smelting tail gas desulfurization and sulfur production based on the two-stage BPNLP network model;
图2是本发明所构建的脱硫制酸工艺流程与数字孪生模型;Figure 2 is the desulfurization and acid production process flow and digital twin model constructed by the present invention;
图3是本发明采用的二阶段BPNLP神经网络模型运行流程图;Figure 3 is a flow chart of the operation of the two-stage BPNLP neural network model used in the present invention;
图4是实施例硫酸最优参数控制参数结果图;(a)实施例1中在BPNLP算法下最大硫酸转化率的迭代优化调控过程;(b)实施例1中在BPNLP算法下最大脱硫率的迭代优化调控过程;(c)实施例中假定液位40米为最优输出值时,实际液位的控制过程。Figure 4 is a graph showing the optimal parameter control parameters of sulfuric acid in the embodiment; (a) the iterative optimization and control process of the maximum sulfuric acid conversion rate under the BPNLP algorithm in Example 1; (b) the maximum desulfurization rate under the BPNLP algorithm in Example 1 Iterative optimization control process; (c) In the embodiment, it is assumed that the liquid level of 40 meters is the optimal output value, and the control process of the actual liquid level.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
实施例1Example 1
一种基于数字孪生在铜冶炼过程中尾气回收利用的协同优化方法,具体包含以下步骤:A collaborative optimization method for tail gas recycling in the copper smelting process based on digital twins, which specifically includes the following steps:
S1:从以往数据库中调取熔炼过程脱硫制酸的状态参数、过程参数、以及评价指标,并对数据进行预处理、数据预测与数据挖掘,构建可交互、可计算、可优化的以往数据库。S1: Retrieve the state parameters, process parameters, and evaluation indicators of desulfurization and sulfuric acid production in the smelting process from the previous database, and perform data preprocessing, data prediction, and data mining to build an interactive, computable, and optimizable past database.
以往数据库中所采用的数据内容具体包括:塔体设备几何特征如塔体高度、塔体直径、塔体封头大小以及由管道通入的给风量、柴油量、给氧量等以及包括脱硫制酸塔内,塔体脱硫制酸塔的塔体温度、液位、压力、比值等的状态参数;以及输入端(二氧化硫与双氧水通入的流量、流速、浓度等相关参数)、输出端(表征二氧化硫转化率的硫酸含量以及表征脱硫率的水的产出量等相关参数)等过程参数;以及对结果输出进行尾气处理转化率、脱硫效率、硫酸转化率、输出尾气含硫量等相关评价指标。The data content used in the previous database specifically includes: tower equipment geometric characteristics such as tower height, tower diameter, tower head size, air supply volume, diesel volume, oxygen supply volume introduced through the pipeline, etc., as well as desulfurization systems. In the acid tower, the status parameters of the tower body temperature, liquid level, pressure, ratio, etc. of the desulfurization and acid-making tower; as well as the input end (the flow rate, flow rate, concentration and other related parameters of sulfur dioxide and hydrogen peroxide), the output end (characterization Process parameters such as sulfur dioxide conversion rate, sulfuric acid content, and water output that characterizes desulfurization rate); and related evaluation indicators such as tail gas treatment conversion rate, desulfurization efficiency, sulfuric acid conversion rate, and output tail gas sulfur content for the result output. .
S2:通过现场工业的接触式、电磁式等传感器或依靠人工试验记录等方式采集实时数据,所述状态参数包括炉体内温度、压力、液位、气液比值的状态参数,所述过程参数包括输入二氧化硫、双氧水的浓度与流速以及输出硫酸的浓度与流量的过程参数,由这些参数共同构成实时数据库。S2: Collect real-time data through on-site industrial contact and electromagnetic sensors or rely on manual test records. The state parameters include the state parameters of temperature, pressure, liquid level, and gas-liquid ratio in the furnace. The process parameters include Input the concentration and flow rate of sulfur dioxide and hydrogen peroxide, and output the process parameters of the concentration and flow rate of sulfuric acid. These parameters together form a real-time database.
S3:所述以往数据库和实时数据库构成数字孪生动态模型数据库,通过TCP通信协议实现数字孪生动态模型数据库与服务器、服务器与unity3D组成的前端界面之间的数据互通连接,并将数字孪生动态数据库中相关数据的可视化图形显示在该前端界面上。S3: The previous database and the real-time database constitute the digital twin dynamic model database, and the data interoperability connection between the digital twin dynamic model database and the server, the server and the front-end interface composed of unity3D is realized through the TCP communication protocol, and the digital twin dynamic database is Visual graphics of relevant data are displayed on this front-end interface.
S4:利用采集的以往数据和实时生产数据构建铜冶炼尾气脱硫制酸工艺流程的数字孪生模型:将S3得到的数字孪生动态模型数据库作为数字孪生模型仿真信号引入到脱硫制酸的数字孪生模型中,该模型通过数据进行模拟仿真,采用基于两阶段BPNLP神经网络的非线性优化结合近似全局优化的方法,来不断优化通过数字孪生模型得出的最优参数对应的过程参数,根据以二氧化硫脱硫率与硫酸转化率的最大化参数得到最适合的生产最优工程参数。S4: Use the collected past data and real-time production data to build a digital twin model of the copper smelting tail gas desulfurization and sulfuric acid production process: introduce the digital twin dynamic model database obtained in S3 as a digital twin model simulation signal into the digital twin model of the desulfurization and sulfuric acid production process. , the model conducts simulations through data, and uses nonlinear optimization based on a two-stage BPNLP neural network combined with an approximate global optimization method to continuously optimize the process parameters corresponding to the optimal parameters obtained through the digital twin model. According to the sulfur dioxide desulfurization rate The parameters maximizing the conversion rate of sulfuric acid are the most suitable engineering parameters for production.
S5:将预测得到二氧化硫脱硫率与硫酸转化率最大的状态下的过程参数与以往数据库进行数据挖掘同类聚合、进行降噪、弥补缺失值处理,然后与实时数据库进行参数比较,判断目前的实时数据还有哪些参数需要改进;最终在实时数据下通过优化全局算法得到的最优参数改进方案。S5: Perform data mining similar aggregation, noise reduction, and missing value processing on the predicted process parameters in the state where the sulfur dioxide desulfurization rate and sulfuric acid conversion rate are maximum with the previous database, and then compare the parameters with the real-time database to determine the current real-time data Which parameters still need to be improved? Finally, the optimal parameter improvement plan is obtained by optimizing the global algorithm under real-time data.
S6:同样通过TCP协议,将最优参数数据改进方案进行可视化,并将数据的可视化图形显示在unity3D前端的人机界面上。S6: Also through the TCP protocol, the optimal parameter data improvement plan is visualized, and the visual graphics of the data are displayed on the human-machine interface of the unity3D front-end.
S7:在最优参数改进方案中,操作人员根据得到的参数改进方案以及人工经验进行控制指令下达。S7: In the optimal parameter improvement plan, the operator issues control instructions based on the obtained parameter improvement plan and manual experience.
控制指令通过TCP协议与simulink的脱硫制酸仿真控制模型(包括气液进出的液位-流量串级控制系统,塔内的液位—压力串级控制系统、塔内温度的双输入与双输出分级解耦控制系统这三个控制系统)连接构成控制系统,如图3所示,控制系统远端连接实际工业服务器,将最优参数值与实时数据值比较,根据其差值对实际炉体进行参数控制,控制生产中的阀门、调节器实现对实际生产的指导。The control instructions pass through the TCP protocol and simulink's desulfurization and sulfuric acid production simulation control model (including the liquid level-flow cascade control system for gas and liquid inlet and outlet, the liquid level-pressure cascade control system in the tower, and the dual input and dual output of the temperature in the tower The hierarchical decoupling control system (these three control systems) are connected to form a control system, as shown in Figure 3. The control system is remotely connected to the actual industrial server, compares the optimal parameter values with the real-time data values, and compares the actual furnace body according to the difference. Carry out parameter control and control valves and regulators in production to guide actual production.
S8:继续重复S2~S5的步骤,采集实时数据,通过仿真神经网络数字孪生模型得到最优控制参数,再将该两个数据进行比较,进而又再反馈控制炉体过程参数,不断重复,长久保证脱硫效率以及硫酸制取速度的最大化。S8: Continue to repeat the steps of S2~S5, collect real-time data, obtain the optimal control parameters through simulating the neural network digital twin model, and then compare the two data, and then feed back the control furnace process parameters, and repeat continuously for a long time. Ensure the desulfurization efficiency and sulfuric acid production speed are maximized.
作为本发明进一步优选实施方案:As a further preferred embodiment of the present invention:
本发明整个铜冶炼烟气脱硫制酸脱硫的具工艺是将熔炼炉排放的烟气进行干燥、洗涤后,其中的二氧化硫在转化器中催化氧化成三氧化硫,而后在吸收塔中与水发生反应生成硫酸,反应过程的化学方程式为:The entire copper smelting flue gas desulfurization and acid production desulfurization process of the present invention is to dry and wash the flue gas discharged from the smelting furnace, and the sulfur dioxide in it is catalytically oxidized into sulfur trioxide in the converter, and then reacts with water in the absorption tower. The reaction produces sulfuric acid. The chemical equation of the reaction process is:
式中Q为化学反应放出的热量。In the formula, Q is the heat released by the chemical reaction.
由于整个反应过程最终硫酸产量以及脱硫转化率是受塔内温度、压力、催化剂与双氧水液位等多因素耦合在一起共同影响的,所以仿真模型采用S4所述的基于两阶段BPNLP神经网络的非线性优化结合近似全局优化算法进行搭建;所述两阶段BPNLP网络模型,在第一阶段的神经网络预处理形成冶炼过程的拟合后,基于拟合后的神经网络模型进行冶炼参数优化过程;根据整个两阶段过程的特点,以及相应的条件约束和BP神经网络输出函数的平滑过程,采用近似全局优化算法,形成了形式统一约束的两阶段BPNLP网络模型,具体构成、涉及路线、操作流程如图3所示,具体包括以下内容:Since the final sulfuric acid output and desulfurization conversion rate of the entire reaction process are coupled together by multiple factors such as temperature, pressure, catalyst and hydrogen peroxide level in the tower, the simulation model uses the non-linear method based on the two-stage BPNLP neural network described in S4. Linear optimization is combined with an approximate global optimization algorithm to build the two-stage BPNLP network model. After the neural network preprocessing in the first stage forms the fitting of the smelting process, the smelting parameter optimization process is performed based on the fitted neural network model; according to Based on the characteristics of the entire two-stage process, as well as the corresponding conditional constraints and the smoothing process of the BP neural network output function, an approximate global optimization algorithm is used to form a two-stage BPNLP network model with unified form constraints. The specific composition, involved routes, and operating procedures are shown in the figure. 3, specifically including the following:
(1)对数据模型库中的数据进行处理,在训练神经网络之前,需要对样本数据进行处理;首先是规定输入样本;根据铜冶炼中脱硫制酸的生产工艺,假定输入样本服从正态分布,利用统计数据处理的基本原理,选取样本中的均值和标准差σ;通过扩展模型的实际区间输出值,样本方差2σ,即样本数据与期望值之差的平方和;训练并验证样本分类,主要内容包括将所有的实验数据分为训练样本和仿真验证样本来构建BP自然网络模型;并通过校准训练集和预测集来比较相应的模型误差。(1) Process the data in the data model library. Before training the neural network, the sample data needs to be processed; first, the input sample is specified; according to the production process of desulfurization and acid production in copper smelting, it is assumed that the input sample obeys the normal distribution. , using the basic principles of statistical data processing, select the mean and standard deviation σ in the sample; by expanding the actual interval output value of the model, the sample variance 2σ, which is the sum of squares of the difference between the sample data and the expected value; train and verify sample classification, mainly The content includes dividing all experimental data into training samples and simulation verification samples to build a BP natural network model; and comparing the corresponding model errors by calibrating the training set and prediction set.
(2)BP神经网络模型属于误差反向传播神经网络,需要构建如下三个方面:冶炼生产中的参数输入层、隐藏层和预测结果输出层;该模型包含神经元、权重、阈值、层和激活函数;本实施例根据脱硫制酸过程的实时状态参数和污染物硫的回收利用转化率建立BP神经网络模型。(2) The BP neural network model is an error back propagation neural network and needs to be constructed in the following three aspects: parameter input layer, hidden layer and prediction result output layer in smelting production; the model includes neurons, weights, thresholds, layers and Activation function; This embodiment establishes a BP neural network model based on the real-time state parameters of the desulfurization and sulfur production process and the recovery and utilization conversion rate of pollutant sulfur.
(3)首先是输入层、隐藏层和输出层参数的建立,根据数据库里的五个状态参数作为BP自然网络模型的输入变量,即压力、塔内温度、液位、气液比值和硫气的流量通入;输出层是硫酸的转化率与脱硫效率;在BP神经网络模型隐藏层计算的基础上,BP神经网络模型是维度为“5-25-15-4”的网络组成结构,将二次脱硫工艺冶炼参数与硫酸协同优化之间的隐藏层设置为两层,并根据实际工艺设置节点。(3) First, the parameters of the input layer, hidden layer and output layer are established. The five state parameters in the database are used as input variables of the BP natural network model, namely pressure, temperature in the tower, liquid level, gas-liquid ratio and sulfur gas. traffic access; the output layer is the conversion rate and desulfurization efficiency of sulfuric acid; based on the calculation of the hidden layer of the BP neural network model, the BP neural network model is a network structure with a dimension of "5-25-15-4". The hidden layer between the smelting parameters of the secondary desulfurization process and the collaborative optimization of sulfuric acid is set to two layers, and the nodes are set according to the actual process.
(4)对上述两个隐藏层的转换函数可以定义为(4) The conversion function for the above two hidden layers can be defined as
即为输入变量,如/>为冶炼过程中的反应炉压力、/>为塔内温度、/>为塔内液位、/>为输入管道到塔内的气液比值、/>的硫气的流量通;/>为输出量,/>则表示输出的硫酸转化率,/>为硫酸制取速度。 That is the input variable, such as/> is the reactor pressure during the smelting process/> is the temperature inside the tower,/> is the liquid level in the tower,/> is the gas-liquid ratio from the input pipe to the tower,/> The flow rate of sulfur gas;/> is the output quantity,/> then represents the output sulfuric acid conversion rate,/> is the production speed of sulfuric acid.
重复BPNLP两阶段的优化预测迭代这个递归过程,直到第H个隐藏层,因此可以得到关于五维输入x以及两维输出y的函数值:Repeat the recursive process of BPNLP's two-stage optimization prediction iteration until the Hth hidden layer, so the function values of the five-dimensional input x and the two-dimensional output y can be obtained :
(5)但在实际应用于铜冶炼的行业中时,由于脱硫工艺操作是典型的多输入多输出、大迟延、严重非线性化、强参数耦合的复杂工艺,单一采用BP神经网络模型存在泛化能力不足,仿真结果不够准确的问题;因此需要对模型输出进行二次平滑处理;非平滑前模型的泛化精度定义为奇异值(负数)在所有样本预测值中所占的比例;使得泛化精度可以设定为可接受范围。(5) However, when actually applied to the copper smelting industry, since the desulfurization process operation is a typical complex process with multiple inputs and multiple outputs, large delays, severe nonlinearity, and strong parameter coupling, there are widespread problems in using the BP neural network model alone. The problem of insufficient generalization ability and inaccurate simulation results; therefore, it is necessary to perform secondary smoothing on the model output; the generalization accuracy of the model before non-smoothing is defined as the proportion of singular values (negative numbers) in the predicted values of all samples; making the generalization The accuracy can be set to an acceptable range.
(6)将BP神经网络模型的输出函数设定为冶炼烟气中硫酸最大转化率与最大的脱硫效率,为将BP神经网络模型进行更好的仿真预测,解决冶炼烟气脱硫输出函数最小化问题;采用的污染减排优化的BPNLP神经网络模型表示为如下数学函数:(6) The output function of the BP neural network model is set to the maximum conversion rate of sulfuric acid and the maximum desulfurization efficiency in the smelting flue gas. In order to conduct better simulation predictions of the BP neural network model and solve the problem of minimizing the output function of the desulfurization of the smelting flue gas Question; the BPNLP neural network model used for pollution reduction optimization is expressed as the following mathematical function:
J表示索引函数,用于表示要得到的最优脱硫转化率与速率的函数索引,函数Min表示从二阶段BPNLP估计出很多结果中对得到预测输出的映射,其中输入变量x(每种输入参数)为期望的索引;其中c是线性变换向量,为硫酸的转化率与脱硫效率的2×1向量;表示 BP 模型预测的估计结果,表示从具有输入变量的 BPNLP 模型的输出估计结果到期望索引的线性变换。J represents the index function, which is used to represent the function index of the optimal desulfurization conversion rate and rate to be obtained. The function Min represents the predicted output obtained from the many results estimated by the two-stage BPNLP. mapping, where the input variable x (each input parameter) is the desired index; where c is a linear transformation vector, which is a 2×1 vector of sulfuric acid conversion rate and desulfurization efficiency; Represents the estimation result of the BP model prediction, and represents the linear transformation from the output estimation result of the BPNLP model with input variables to the expected index.
为了最小化排放问题,非线性规划如下:To minimize the emission problem, the nonlinear programming is as follows:
其中,b,L,U是常数列向量,f是一个非线性函数,x是决策变量向量,其是包括压力、塔内温度、液位、气液比值和二氧化硫的流量,通入的5×1向量;A是常数矩阵,线性截断函数Ax表示通过归一化域后并消除异常后的数据。Among them, b, L, U are constant column vectors, f is a nonlinear function, x is a decision variable vector, which includes pressure, tower temperature, liquid level, gas-liquid ratio and sulfur dioxide flow rate. The incoming 5× 1 vector; A is a constant matrix, and the linear truncation function Ax represents the data after passing through the normalized domain and eliminating anomalies.
(7)通过上述拟合函数N(x),x可以生成多个局部最小值,这可以产生多个解并且进一步影响全局优化;采用随机散点法选取初始值,以适应初始值优化的等步长变化;确认从得到的脱硫制酸工艺中最优值中的优化结果中选择模型模拟的最小值。(7) Through the above fitting function N(x), x can generate multiple local minima, which can produce multiple solutions and further affect the global optimization; the random scatter method is used to select the initial value to adapt to the initial value optimization etc. Step size change; confirm that the minimum value of the model simulation is selected from the optimization results obtained from the optimal value in the desulfurization and acid production process.
(8)此外,对输出函数进行平滑处理,使预测值有意义,假设输出样本取输出值的某个维度值,然后需要进一步扩展模型的比较来模拟输出值,从而使输出函数平滑地取域中的值,并过滤掉不合理的值(例如负值)。(8) In addition, the output function is smoothed to make the predicted value meaningful. Assume that the output sample takes a certain dimension value of the output value, and then the comparison of the model needs to be further expanded to simulate the output value, so that the output function smoothly takes the domain values in , and filter out unreasonable values (such as negative values).
(9)最终完成数据孪生模型最优参数的求解,将得出的结果如一种基于数字孪生在铜冶炼过程中尾气回收利用的协同优化方法具体步骤S6中进行数据可视化发送到unity3D中完成人机交互的后续内容。(9) Finally complete the solution of the optimal parameters of the data twin model, and the results obtained, such as a collaborative optimization method based on digital twins for exhaust gas recovery and utilization in the copper smelting process, perform data visualization in step S6 and send it to unity3D to complete the human-machine completion The continuation of the interaction.
作为本发明的进一步优选实施方式:As a further preferred embodiment of the present invention:
S1:调取以往数据库,同时以铜冶炼工厂中脱硫制酸工艺的数据例作为实时生产数据来进行演示:S1: Retrieve the previous database, and use the data example of the desulfurization and acid production process in the copper smelting plant as real-time production data to demonstrate:
本次的物理参数、状态过程参数表示如下:设定反应塔内温度在1000℃-1200℃之间,压力在2MPa左右,反应塔的高度为70米,直径为10米,,硫酸的通入流速为500立方米每小时,流速为5米每秒。The physical parameters and state process parameters of this time are expressed as follows: the temperature in the reaction tower is set between 1000℃-1200℃, the pressure is about 2MPa, the height of the reaction tower is 70 meters, the diameter is 10 meters, and the sulfuric acid is introduced The flow rate is 500 cubic meters per hour and the flow rate is 5 meters per second.
S2:将给定设备连接到基于数字孪生的滚动轴承剩余寿命在线预测装置,包括:数据库模块、数据分析模块、可视化图形模块、通信服务模块、设备智能管理模块;S2: Connect the given equipment to the online prediction device for the remaining life of rolling bearings based on digital twins, including: database module, data analysis module, visual graphics module, communication service module, and equipment intelligent management module;
S3:假定以S1中用于采集到的数据为实际生产中采集到的实时数据,将上述实时数据输入到数字孪生仿真模型中,构建一个以上述数据为运行状态的数字化模型,目的是实现通过数据进行与实际生产设备的动态交互与虚实联动。S3: Assume that the data collected in S1 is the real-time data collected in actual production, input the above-mentioned real-time data into the digital twin simulation model, and build a digital model with the above-mentioned data as the running state, with the purpose of achieving The data is dynamically interacted with the actual production equipment and linked with the virtual and real.
S4:根据S3中构建的数字孪生模型,通过算法库对上述状态参数、物理参数、过程参数相关数据进行模拟生产状况的运行,并在算法库中的主要模型——BPNLP神经网络模型的不断重复模拟迭代下,根据五维输入变量(反应炉压力、塔内温度、塔内液位、输入管道到塔内的气液比值、硫气的流量)去寻找预测最优运行输出参数(最适合的脱硫效率与硫酸转化率);根据上述输入得到本次实验模拟出的最优输出为:脱硫率94.23%、以及硫酸转化率98.9%,气体浓度8%。整个迭代过程中脱硫率与硫酸转化率结果如图4(a)、图4(b)所示。S4: Based on the digital twin model built in S3, the above-mentioned state parameters, physical parameters, and process parameter-related data are simulated through the algorithm library to simulate production conditions, and the main model in the algorithm library - the BPNLP neural network model is continuously repeated. Under simulation iteration, find and predict the optimal operating output parameters (the most suitable Desulfurization efficiency and sulfuric acid conversion rate); based on the above input, the optimal output simulated in this experiment is: desulfurization rate 94.23%, sulfuric acid conversion rate 98.9%, gas concentration 8%. The results of desulfurization rate and sulfuric acid conversion rate during the entire iteration process are shown in Figure 4(a) and Figure 4(b).
S5:根据通信服务模块,将上述数字孪生数据库、仿真数据连接到通信网络中,通信模块具体包括:数据打包单元、通信架构单元、数据解码单元、传输调度单元,传输至可视化平台上,并进行数据可视化折线图显示,并显示最优参数。S5: According to the communication service module, connect the above-mentioned digital twin database and simulation data to the communication network. The communication module specifically includes: data packaging unit, communication architecture unit, data decoding unit, transmission scheduling unit, transmit them to the visualization platform, and perform Data visualization line chart is displayed and the optimal parameters are displayed.
S6:在实际生产中操作人员可以根据显示的最优参数与目前实时运行参数的比较以及数据权重,下达控制指令,而在本次模拟下,对此时最优输出参数脱硫率94.23%、以及硫酸转化率98.9%,在历史数据库中找到对应的各项生产指标,以炉内液位,液位控制在40米左右在是最合适的,之后下达目标液位40米的控制指令。S6: In actual production, operators can issue control instructions based on the comparison between the displayed optimal parameters and the current real-time operating parameters and the data weight. Under this simulation, the desulfurization rate of the optimal output parameters at this time is 94.23%, and The sulfuric acid conversion rate is 98.9%. The corresponding production indicators are found in the historical database. Based on the liquid level in the furnace, it is most appropriate to control the liquid level at about 40 meters. Then a control instruction is issued to target the liquid level at 40 meters.
S7:上述控制指令连接到simulink搭建的反馈控制系统中,控制系统根据输入设定值与当前值的不断反馈比较完成过程参数调控,以液位为例,整个液位的调控过程如图4(c)所示。S7: The above control instructions are connected to the feedback control system built by simulink. The control system completes the process parameter regulation based on the continuous feedback comparison between the input set value and the current value. Taking liquid level as an example, the entire liquid level control process is shown in Figure 4 ( c) shown.
S8:通过上述通信服务模块连接实际生产工况下的阀门、调节器、控制器完成对实际生产的指导;并根据实际生产需要,不断重复实时数据采集、数字孪生仿真、可视化图表更新、以虚控实,长期保证脱硫效率以及硫酸制取速度的最大化。S8: Connect the valves, regulators, and controllers under actual production conditions through the above communication service module to complete the guidance of actual production; and continuously repeat real-time data collection, digital twin simulation, visual chart update, and virtual chart updating according to actual production needs. Real control ensures long-term maximization of desulfurization efficiency and sulfuric acid production speed.
实施例Example
一种基于数字孪生在铜冶炼过程中尾气回收利用的协同优化系统,如附图2所示,包括数据库模块、数据分析模块、可视化模块、设备管理控制模块、通信服务模块。A collaborative optimization system based on digital twins for tail gas recycling in the copper smelting process, as shown in Figure 2, includes a database module, a data analysis module, a visualization module, an equipment management control module, and a communication service module.
本实施例所述数据库模块用于对冶炼过程脱硫制酸运行过程中的实时的数据进行采集,获取整个工艺流程中塔体的数据信息;包括几何参数数据单元、运行状态参数单元、实时过程参数单元、神经网络模型单元。The database module described in this embodiment is used to collect real-time data during the operation of desulfurization and sulfuric acid production in the smelting process, and obtain data information of the tower in the entire process flow; including a geometric parameter data unit, an operating status parameter unit, and real-time process parameters. Unit, neural network model unit.
本实施例所述几何参数数据单元含有实际生产的现场设备数据:包括生产炉体的相关尺寸、高度、生产参数等,并对长期运行数据进行存储、调取;The geometric parameter data unit described in this embodiment contains actual production field equipment data: including the relevant dimensions, height, production parameters, etc. of the production furnace body, and long-term operation data is stored and retrieved;
本实施例所述运行状态参数单元含有在生产冶炼的运行数据,包括生产炉体内的温度、压力、液位等相关信息,描述系统或设备在运行时的状态和性能;并提供关于整个系统或设备健康状况、工作效率、资源利用情况等方面的信息,并对长期运行数据进行存储、调取。The operating status parameter unit described in this embodiment contains operating data in production smelting, including temperature, pressure, liquid level and other relevant information in the production furnace, describing the status and performance of the system or equipment during operation; and providing information about the entire system or equipment. Information on equipment health, work efficiency, resource utilization, etc., and store and retrieve long-term operating data.
本实施例所述实时过程参数单元含有更新实时进入反应的管道加入输入量、生产输出量,用于描述和评估系统、设备或过程的当前状态和性能,提供关于整个系统或设备健康状况、工作效率、资源利用情况等方面的信息,并对长期运行数据进行存储、调取。The real-time process parameter unit described in this embodiment includes updating the pipeline input and production output in real-time into the reaction, which is used to describe and evaluate the current status and performance of the system, equipment or process, and provide information about the health status and work of the entire system or equipment. Efficiency, resource utilization and other aspects of information, and long-term operation data storage and retrieval.
本实施例所述神经网络模型单元,则是进行记录长期运行状态下,神经网络模型中每一次的运行日志记录,记录每一次的相关参数权重、迭代次数、输出输入比值。The neural network model unit described in this embodiment records each operation log record of the neural network model under long-term operation, and records each relevant parameter weight, iteration number, and output-input ratio.
本实施例所述数据分析模块则是从上述数据库模块得到状态数据,对数据进行预处理、分析通过数字孪生模型得到最优参数预测值,达到脱硫制酸工艺中资源回收协同优化的目的;包括算法库单元、数据预处理单元、特征提取单元、数据挖掘单元。The data analysis module described in this embodiment obtains status data from the above-mentioned database module, preprocesses and analyzes the data to obtain optimal parameter prediction values through the digital twin model, and achieves the purpose of collaborative optimization of resource recovery in the desulfurization and acid production process; including Algorithm library unit, data preprocessing unit, feature extraction unit, and data mining unit.
本实施例所述算法库单元用于对BP模型的输出进行二次平滑处理,利用其较强的非线性映射能力和灵活的网络结构来提高预测可靠性,对铜冶炼脱硫制酸工艺这类大样本数据趋于更好的拟合,并结合全局最优搜索方法,完成数据孪生模型最优参数的求解。The algorithm library unit described in this embodiment is used to perform secondary smoothing processing on the output of the BP model, using its strong nonlinear mapping ability and flexible network structure to improve prediction reliability. Large sample data tends to fit better, and combined with the global optimal search method, the optimal parameters of the data twin model are solved.
本实施例所述数据预处理单元通过对历史数据中最优参数改变,提前对实时数据采集中经常出现的数据缺失,大偏差噪声进行预处理,避免设备数据进行重复大量的相同优化。The data preprocessing unit described in this embodiment preprocesses the missing data and large deviation noise that often occur in real-time data collection in advance by changing the optimal parameters in historical data to avoid repeating a large amount of the same optimization on equipment data.
本实施例所述特征提取单元通过BP神经网络模型,根据数据库里的五个状态参数作为BP自然网络模型的输入变量,输出层是硫酸的转化率与脱硫效率,以及隐藏层的设置来对数据进行预测训练并验证样本分类。The feature extraction unit described in this embodiment uses the BP neural network model and uses the five state parameters in the database as the input variables of the BP natural network model. The output layer is the conversion rate and desulfurization efficiency of sulfuric acid, as well as the settings of the hidden layer. Perform predictive training and verify sample classification.
本实施例所述数据挖掘单元则是发现长期生产数据中的隐藏模式、关联规则和趋势,在进行特征提取之前之前,进行提前的数据分析,对得到的生产输入信息整体特征进行挖掘,从而识别出数据中的趋势、异常模式和相关性。The data mining unit described in this embodiment discovers hidden patterns, association rules and trends in long-term production data. Before feature extraction, it performs advance data analysis to mine the overall characteristics of the obtained production input information to identify Identify trends, unusual patterns, and correlations in your data.
本实施例所述可视化模块主要用于图形化显示上述两个模块的数据;包括融合模型单元、结果传输单元、数据图形化单元、图形动态显示单元。The visualization module described in this embodiment is mainly used to graphically display the data of the above two modules; it includes a fusion model unit, a result transmission unit, a data graphical unit, and a graphic dynamic display unit.
本实施例所述融合模型单元模型融合是将多个数据分析模块的预测结果结合起来,以获得更准确和可靠的预测;通过将不同数据、不同日期在模型中得到的预测结果相互结合,提高整个系统的性能,以获得更高的准确率和鲁棒性。The fusion model unit model fusion described in this embodiment combines the prediction results of multiple data analysis modules to obtain more accurate and reliable predictions; by combining the prediction results obtained in the model with different data and different dates, it is possible to improve Overall system performance for higher accuracy and robustness.
本实施例所述结果传输单元是将有数据分析模块得到的最优参数进行定时调取,实时更新所得到的最优参数,将这些输出结果以合适的形式传递给后端的数据分析系统,以便支持决策、提供洞察、驱动后续可视化流程并进行进一步的分析。The result transmission unit described in this embodiment regularly retrieves the optimal parameters obtained by the data analysis module, updates the obtained optimal parameters in real time, and transmits these output results to the back-end data analysis system in a suitable form, so that Support decision-making, provide insights, drive subsequent visualization processes and conduct further analysis.
本实施例所述数据图形化单元则是将由结果传输单元得到的结果最优参数数据进行可视化图形展示,利用如条形图、折线图、散点图以及饼图等对输出参数、过程参数等传达数据之间的关系、趋势、模式。The data graphical unit described in this embodiment performs a visual graphical display of the optimal parameter data obtained by the result transmission unit, and uses bar charts, line charts, scatter charts, pie charts, etc. to display output parameters, process parameters, etc. Convey relationships, trends, and patterns among data.
本实施例所述图形动态显示单元主要驱动整个模块不断向数据分析模块调取实时数据并进行数据可视化的图形更新,使得图形可以随着数据的实时或频繁变化而更新,以便及时呈现最新的信息和趋势。The graphic dynamic display unit described in this embodiment mainly drives the entire module to continuously retrieve real-time data from the data analysis module and update the graphics for data visualization, so that the graphics can be updated with real-time or frequent changes in the data, so as to present the latest information in a timely manner. and trends.
本实施例所述设备智能管理模块用于结合上述模块结果,包含依据上述数据库模块,实现设备全生命周期信息获取,完成设备实时智能优化运维,并根据最优运行参数,在控制系统的输出下,对实际生产的状态参数进行实时高效的控制;包括评价指标单元、控制模块单元、智能决策单元以及控制指令单元。The equipment intelligent management module described in this embodiment is used to combine the above module results, including based on the above database module, to achieve equipment life cycle information acquisition, complete equipment real-time intelligent optimization operation and maintenance, and based on the optimal operating parameters, in the output of the control system Under the control, the actual production status parameters are controlled in real time and efficiently; including evaluation index unit, control module unit, intelligent decision-making unit and control instruction unit.
本实施例所述评价指标单元主要是对得到的最优运行参数与实时运行参数进行比较,根据评价指标得到哪些参数需要加权,在不同的评价指标下需要有很高的权重去进行调控,衡量模型的准确性、性能和可靠性,帮助工作人员了解模型的表现并做出决策。The evaluation index unit described in this embodiment mainly compares the obtained optimal operating parameters with the real-time operating parameters, and determines which parameters need to be weighted according to the evaluation index. High weights are required for regulation and measurement under different evaluation indexes. Model accuracy, performance, and reliability help workers understand model performance and make decisions.
本实施例所述控制模块单元是根据比较得出的改变值,进行气液进出的液位-流量串级控制系统,塔内的液位—压力串级控制系统、塔内温度的双输入与双输出分级的解耦控制,在反馈的调节下,完成在数字孪生仿真模拟到实际生产的控制。The control module unit described in this embodiment performs a liquid level-flow cascade control system for gas and liquid in and out, a liquid level-pressure cascade control system in the tower, and a dual input and The dual-output hierarchical decoupling control, under the adjustment of feedback, completes the control from digital twin simulation to actual production.
本实施例所述智能决策单元是利用数据分析模块现有的数据和信息作为基础,通过分析、挖掘和整合得到的最优参数与现场实际生产数据,识别出模式、趋势和规律,从而提供有针对性和可靠性的生产决策建议。The intelligent decision-making unit described in this embodiment uses the existing data and information of the data analysis module as a basis, and identifies patterns, trends and laws through analysis, mining and integration of optimal parameters and actual on-site production data, thereby providing effective Recommendations for targeted and reliable production decisions.
本实施例所述控制指令单元指在智能决策单元后负责生成、验证和发送智能决策后的控制指令,并监测系统状态和接收反馈的关键组件;完成操作人员通过向系统发送命令来调控实际生产中的对实际生产控制参数的阀门、调节器、控制器下达有关阀开度、控制器开度调节的控制指令,指导最终目标铜冶炼尾气脱硫制酸资源回收的协同优化。The control instruction unit described in this embodiment refers to the key component responsible for generating, verifying and sending control instructions after intelligent decision-making, monitoring the system status and receiving feedback after the intelligent decision-making unit; the operator controls the actual production by sending commands to the system. The valves, regulators, and controllers in the actual production control parameters issue control instructions related to valve opening and controller opening adjustment to guide the collaborative optimization of the ultimate goal of copper smelting tail gas desulfurization and sulfuric acid resource recovery.
所述通信服务模块主要实现上述四个模块之间的相互关联,将数据库模块内的数据实时调取到数据分析模块,并将数据分析模块得到的结果发送到可视化模块,最终根据数据可视化的结果应用到设备智能管理模块,完成各个模块之间的信息调取,关联;包括生产数据文本、现场图像等多种类型的消息;并提供实时通信功能完成可视化模块中的图像实时更新功能,并确保通信的正确性、稳定性和安全性,保证设备智能运维模块正确的指令下达,完成调控;并记录各模块用于记录平台的运行日志,以便后续分析和排错。The communication service module mainly realizes the correlation between the above four modules, transfers the data in the database module to the data analysis module in real time, and sends the results obtained by the data analysis module to the visualization module, and finally obtains the results based on the data visualization. Applied to the equipment intelligent management module, it completes the information retrieval and association between various modules; including production data text, on-site images and other types of messages; and provides real-time communication functions to complete the real-time update function of images in the visualization module, and ensure The correctness, stability and security of communication ensure that the intelligent operation and maintenance module of the equipment issues correct instructions and completes the control; and records the operation logs of each module to record the platform for subsequent analysis and troubleshooting.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311094435.2A CN116822380B (en) | 2023-08-29 | 2023-08-29 | Collaborative optimization method for tail gas recycling in copper smelting process based on digital twin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311094435.2A CN116822380B (en) | 2023-08-29 | 2023-08-29 | Collaborative optimization method for tail gas recycling in copper smelting process based on digital twin |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116822380A CN116822380A (en) | 2023-09-29 |
CN116822380B true CN116822380B (en) | 2023-11-14 |
Family
ID=88117025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311094435.2A Active CN116822380B (en) | 2023-08-29 | 2023-08-29 | Collaborative optimization method for tail gas recycling in copper smelting process based on digital twin |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116822380B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117150819B (en) * | 2023-10-30 | 2024-01-30 | 天津市东瑞钢铁铸造股份有限公司 | Molten steel filtering method and system for steel casting |
CN117787507B (en) * | 2024-02-23 | 2024-05-03 | 宝鸡核力材料科技有限公司 | Full chain optimizing method and device for tape rolling process |
CN119358288B (en) * | 2024-12-24 | 2025-03-11 | 广东巨晨装备科技有限公司 | Smelting simulation method based on digital twin technology |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110045608A (en) * | 2019-04-02 | 2019-07-23 | 太原理工大学 | Based on the twin mechanical equipment component structural dynamic state of parameters optimization method of number |
CN112427624A (en) * | 2020-11-04 | 2021-03-02 | 中国科学院重庆绿色智能技术研究院 | Casting and forging double-control forming system based on digital twinning and parameter optimization method |
CN112926765A (en) * | 2021-01-22 | 2021-06-08 | 湖南大唐先一科技有限公司 | Desulfurization system operation optimization method and information physical fusion system |
CN113192568A (en) * | 2021-03-15 | 2021-07-30 | 山东钢铁股份有限公司 | Refining furnace desulfurization terminal point forecasting method and system |
-
2023
- 2023-08-29 CN CN202311094435.2A patent/CN116822380B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110045608A (en) * | 2019-04-02 | 2019-07-23 | 太原理工大学 | Based on the twin mechanical equipment component structural dynamic state of parameters optimization method of number |
CN112427624A (en) * | 2020-11-04 | 2021-03-02 | 中国科学院重庆绿色智能技术研究院 | Casting and forging double-control forming system based on digital twinning and parameter optimization method |
CN112926765A (en) * | 2021-01-22 | 2021-06-08 | 湖南大唐先一科技有限公司 | Desulfurization system operation optimization method and information physical fusion system |
CN113192568A (en) * | 2021-03-15 | 2021-07-30 | 山东钢铁股份有限公司 | Refining furnace desulfurization terminal point forecasting method and system |
Non-Patent Citations (1)
Title |
---|
Synergic optimization of pollution prevention and resource recovery of secondary lead smelting industry based on two-stage BPNLP network model;Yanping Li et al.;Journal of Cleaner Production;1-10 * |
Also Published As
Publication number | Publication date |
---|---|
CN116822380A (en) | 2023-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116822380B (en) | Collaborative optimization method for tail gas recycling in copper smelting process based on digital twin | |
US11755976B2 (en) | Method for predicting oxygen load in iron and steel enterprises based on production plan | |
Pistikopoulos et al. | Towards the integration of process design, control and scheduling: Are we getting closer? | |
CN111651931B (en) | Derivation method of blast furnace fault diagnosis rule based on deep neural network | |
CN117930786B (en) | Intelligent digital twin simulation system for steel production process | |
CN114706353B (en) | An automated control virtual simulation manufacturing platform | |
CN103942422B (en) | Granular-computation-based long-term prediction method for converter gas holder positions in metallurgy industry | |
CN105894125A (en) | Transmission and transformation project cost estimation method | |
CN106650944A (en) | Metallurgical enterprise converter gas scheduling method based on knowledge | |
CN105425583A (en) | Control method of penicillin production process based on cooperative training local weighted partial least squares (LWPLS) | |
CN103674778B (en) | The industrial melt index soft measurement instrument of RBF particle group optimizing and method | |
Liu et al. | Multi-source and multivariate ozone prediction based on fuzzy cognitive maps and evidential reasoning theory | |
CN115081156B (en) | Self-perception, self-decision and self-execution intelligent ventilation control platform and control method for mine | |
Zhang et al. | Intelligent decision-making system for mineral processing production indices based on digital twin interactive visualization | |
CN113554331A (en) | Steelmaking digital scheduling optimization method based on process rhythm management and control | |
CN118409567A (en) | Full-link intelligent management and control system of coal mine heating system | |
Wang et al. | A novel prediction model of desulfurization efficiency based on improved FCM-PLS-LSSVM | |
CN118117668A (en) | Comprehensive energy optimization dispatching method in cold regions based on wind and solar energy | |
Ashraf et al. | Multiple machine learning models for predicting annual energy consumption and demand of office buildings in subtropical monsoon climate | |
Tang et al. | An intelligent airflow perception model for metal mines based on CNN-LSTM architecture | |
Jiang et al. | Adaptive Data‐Driven Modeling Strategy Based on Feature Selection for an Industrial Natural Gas Sweetening Process | |
Amangeldy et al. | Development and Evaluation of an Intelligent Control System for Sustainable and Efficient Energy Management | |
Li et al. | A new algorithm for detection of animal and plant ion concentration based on gene expression programming | |
CN117458604B (en) | A system framework for coordinated autonomy of photovoltaic grid-connected whole counties | |
CN119209504B (en) | Microgrid energy-saving scheme generation method and system based on energy storage optimization scheduling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |